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Abstract

Cancer has been a worldwide health issue, and its burden is considered to increase
in the future. For most cancer disorders, the success with current therapies has been
limited. Even after huge investments in drug development, the need for therapeutic
advances remains high. As effective anti-cancer drugs are in high demands, drug
repurposing, using existing drugs for other diseases has sparked a growing interest.
Drug repurposing presents a striking opportunity and potentially significant cost-
saving in the future treatment of cancer.

The cost and complexity of conducting randomized clinical trials (RCT), the
growth of electronic health record (EHR) sources, and the thriving technological
advances in modern data analytics create an unparalleled opportunity to develop a
systematic approach for drug repurposing,using EHR data and sophisticated analyt-
ical methods.

In this thesis, by leveraging enriched high dimensional EHR data with diagnosis,
drug prescription and lab test information, we aim to develop a systematic approach
to emulate clinical trials regarding various drugs and diseases based on modern data
analytics. Specifically, we take a data-driven approach to repurpose anti-diabetic
drugs for several types of cancer incidence and mortality risks among the aging pop-
ulation, through the lenses of optimization, statistics, and machine learning.

We start by introducing background knowledge for this study including cancer,
drug repurposing, anti-diabetic drugs and clinical trials in Chapter 1. In Chapter
2, we describe the UK primary care database Clinical Practice Research Datalink
(CPRD) along with its data structure for data preprocessing. Methods and mech-
anisms for missing data in clinical studies are also discussed as they will influence
model robustness, statistical significance and directional results. In Chapter 3, we
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discuss alternative frameworks for survival analysis and causal inference with empha-
sis on modelling the behavior of how physicians prescribe drugs, using propensity
scores. Several Cox regression based semi-parametric methods are also reviewed for
survival analysis. Chapter 4 offers baseline characteristics for a comprehensive in-
silico randomized controlled trial with a total of 640 model specifications. Chapter
5 presents numerical risk ratio results for 10 sub-studies and discussions of covariate
balance evaluation and sensitivity analyses among 64 schemes within each sub-study.

Through this work, we have made preliminary contributions to repurposing anti-
diabetic drugs for cancer incidence and mortality risks. More importantly, we have
offered a systematic approach that has the potential to be used to repurpose drugs for
other diseases that are of interest. This use of modern data analytics offers tremen-
dous potential to meet healthcare challenges in this era of rapid technological change.

Thesis Supervisor: Roy Welsch
Title: Professor of Statistics and Management Science

Thesis Supervisor: Stan Finkelstein
Title: Senior Research Scientist, Institute for Data, Systems, and Society
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Chapter 1

Introduction

Cancer continues to be a major health issue worldwide. In 2012, more than 14 mil-

lion people were diagnosed with cancer and 8.2 million were estimated to die from it.

According to global statistics, it is estimated that more than 20 million people will

be diagnosed with cancer in 2025 (Sleire et al., 2017). Correspondingly, the global

economic burden of cancer treatments is expected to soar in the coming years. Ef-

fective, safe and economically viable cancer drug development is thus an imperative

demand worldwide.

Drug development has always been circuitous. Particularly, discovering drugs from

scratch to governmental approval is an expensive, time-consuming and risky process.

According to estimates, the total capitalized cost of developing new drugs varies from

161 to 1800 million dollar per drug (Adams and Brantner, 2006). The average time

span from initial discovery to approval varies between 11.4 to 13.5 years (Paul et al.,

2010).

Traditionally, cancer drug discovery and development involves a time-consuming

process, starts from identification and optimization of lead compounds, followed by

pre-clinical research on microorganisms and animals and three to four phases of clini-

cal trials on humans to detect and identify pharmacological features, pharmacokinet-

ics, anti-tumor effects and toxicity.
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Even though with more than 10,000 current clinical trials for cancer underway,

only a limited number of candidates entered the next phase (Hay et al., 2014). The

approval rate for cancer drugs passing phase I trials can be as low as 5% (Kola and

Landis, 2004). The number of approvals declined yearly, both from the U.S. Food and

Drug Administration (FDA) and from the European Medicines Agency (EMA). For

example, FDA approved 22 new drugs in 2016 compared to 45 in 2015 (Mullard, 2017).

Even if cancer drugs ultimately receive clinical approval, the increasing prices

become a heavy burden on both patients' families and national health economies. Al-

though it is understandable that the high price intends to cover overall investments

both for failed and successful drug candidates, it is unacceptable and unaffordable for

many patients. These challenges have inspired great interests in searching for alter-

native approaches to improve success rates, shorten processing time and cut costs in

cancer drug development.

Drug repurposing or repositioning offers an alternative way of finding effective

drugs for cancer treatment. Drug repurposing refers to the use of an approved drug

for a different indication than that for which it was originally developed, while drug

repositioning refers to the novel use of a drug that was previously discontinued for de-

velopment. Sometimes, drug repurposing and repositioning are used interchangeably

(of Medicine, 2014). Since great amounts of time and money can be saved compared

with the process of developing a drug de novo, drug repurposing or repositioning have

received increasing attention among academics, clinical practitioners and pharmaceu-

tical companies.

Large databases, such as those containing genome-based information have enabled

advances in drug development. During traditional drug discovery and development

processes for gaining approval for a specific indication, the safety, efficacy, and toxic-

ity of the drug was extensively studied and large amounts of data were accumulated
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and stored electronically. The available recorded data present a major opportunity

for drug repurposing, as it could reduce the need for additional studies to investigate

pharmacokinetic properties and toxicity and increases the chance of success. Besides,

high failure rates of clinical trials and the fact that most drugs have multiple effects

offer strong justification for drug repurposing.

The development of new tools and technologies adds momentum for repurpos-

ing and repositioning. Drug repurposing requires extensive exploration on existing

large databases obtained from preclinical experiments, clinical trials and observational

studies to find effective anti-cancer drugs which have already been approved for other

indications to treat cancer. Recent advances in statistics and machine learning could

make it feasible to reduce the complexity of traditional drug discovery by using ad-

vanced data analytics to explore the enriched data sources from electronic health

records. We hypothesize that by emulating clinicals via construction of synthetic or

in-silico clin- ical trials using electronic health records and sophisticated modern data

analytics, it is possible to develop a systematic approach for drug repurposing.

This chapter will briefly introduce background knowledge including drug repur-

posing and repositioning methods, promising drugs for cancer treatment and potential

mechanism of anti-diabetic drugs.

1.1 Drug Repurposing Methods

Drug repurposing provides an amazing opportunity and significant cost saving po-

tential. Because toxicity testing was done in previous phase I clinical trials, drug

repurposing has received increasing interest as an alternative strategy to de novo drug

development. Drug repurposing relies on the extensive data obtained by randomized

controlled trial, observational studies and meta-analysis, and requires employing reli-

able algorithms, statistical survival analysis, machine learning methods and big data

techniques to analyze these data. In-silico drug repurposing is an emerging method
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for drug repurposing based on available EHR data.

1.1.1 Randomized Controlled Trial

A randomized controlled trial (RCT) aims to reduce bias when testing a new treat-

ment. In a RCT, two or more groups of people participating in the trial are randomly

allocated as receiving the treatment under investigation and receiving standard treat-

ment (or placebo treatment), respectively. The latter group acts as the control group.

With all the other variables kept constant, the effects of the treatment can be com-

pared with the control group.

Even with ultra-high cost to conduct randomized clinical trials and frequently en-

countered difficulties in desigining them, they are still believed to be the best way to

estimate of the outcomes of given treatments with minimal bias (Lilford et al., 1995;

Schulz and Grimes, 2005). Strict implementation of RCT minimizes confounding

bias which may affect outcomes and distort significant treatment outcomes. Other

potential benefits are standardized protocols, improved supportive care, inclusion of

low-risk patients and increased efforts on treatment hazard prevention.

Despite the benefits of randomized clinical trials, a variety of factors prevent

physicians from conducting useful RCTs, including patients, healthcare providers,

relatively low occurrence of disease, small sample sizes of targets (Fung and Lore,

2002; Abraham et al., 2006; Solomon and McLeod, 1995). Because of the Hawthorne

or placebo effect, patients who participate in the trial can also observe different out-

comes, which may distort the obvious therapeutic effect and harm the effectiveness

of RCT. Besides, misleading information might be lead by improper testing and de-

ficient reporting.

Nevertheless, RCT is still the gold standard for assessing the effectiveness of in-

terventions. And physicians should not be prevented from conducting randomized

clinical trials by the above reasons.
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1.1.2 Observational Survival Analysis

In drug discovery and development, questions regarding comparative effectiveness,

efficacy, or safety of a new treatment are preferably answered by appropriately de-

signed and conducted randomized controlled trials. However, when it's not feasible,

ethical, and timely to carry out randomized experiments, observational studies are

conducted instead.

In contrast with randomized controlled trials, where person participating in the

trial is randomly assigned to a treated group or a control group, an observational

study draws inferences from a sample to a population where the independent variable

is not under the control of the researcher. A major challenge in conducting observa-

tional studies is to draw inferences without biases (Hernin and Robins, 2016).

Retrospective or prospective historical observational cohort studies, as well as

those with the most complex designs and analyses, can potentially control known

confounding factors and lead to useful findings. Unknown confounding factors often

can't be explained totally. A rudimentary criticism of observational studies is that

they might lead to biased estimates of treatment outcomes (Sacks et al., 1982; Kunz

et al., 2007), and many medical and surgical researchers believe that observational

studies add in confusion and can be ineffective or even detrimental.

Treatment outcome estimates can be partially improved by novel statistical meth-

ods due to known and unknown confounders in non-randomized designs (Baggs et al.,

1999; Sturmer et al., 2005). Conventionally, non-random or observational studies ad-

just for known confounders to model the mathematical relationship between one or

more predictors and estimates isolated effects of each variable.

Large observational databases, i.e. electronic health record data can be used to
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answer questions on comparative effectiveness or safety. These databases usually

include a number of variables measured in many people and possess "big data" char-

acteristics (Hernin and Robins, 2016). Since decisions need to be made in the absence

of randomized trials, it is important to employ sound approaches to design and ana-

lyze observational studies to draw inferences without biases.

Causal inference is the process of identifying the cause or causes of a phenomenon.

It infers causation by establishing covariation of cause and effect and eliminate plau-

sible alternative explanations. In epidemiological studies or clinic trials, the disease

in defined populations are studied, and the evidence of risk factors and their effects

are collected and measured. An association between a putative risk factor and the

disease may be suggested, however, it is not equivalent to causality as correlation

does't indicate causation, and causation may be able to be be inferred by further

methods.

Causal inference from a large observational database can be regarded as an at-

tempt to emulate a randomized experiment, or a target trial. Formal counterfactual

theory of causality is consistent with the target trial approach (Robins, 1986). If ob-

servational analysis can be emulated into a particular target trial, effect estimates can

be obtained from observational data. However, an ideal trial can be rarely emulated,

since a number of compromises, including eligibility criteria, treatment strategies to

be compared, assignment procedures, outcome of interest, etc., have to be made while

emulating the target trial from observational database. Observational data has the

potential to generate useful effective estimate if target trial emulation is successful

(Hernin and Robins, 2016).

An organizing principle for causal inference is provided by a target trial approach

that relies on counterfactual reasoning implicitly. By outlining a protocol and a flow

chart and using suitable analytic methods, the observational dataset can be used to

emulate the target trial (Hernin, 2011; Schulz et al., 2010).
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The big data feature of large observational databases facilitates the emulation of

target trials. However, big data should not be regarded as an alternative to ran-

domized trials (Hernan, 2011). Large observational databases have limitations. The

certification of big data for research generally requires procedures for harmoniza-

tion and standardization. Besides, it can require an in-depth understanding of the

dataset, expensive validation, comprehensive internal consistency checks and cross-

dataset comparisons (Hernin and Robins, 2016).

Survival analysis is an important sub-area of statistics. It involves the modelling

of time to event data to analyze subsequent events of interest. Here events refer to

disease occurrence, disease recurrence, recovery, or death in biological organisms, and

time refers to the time from the beginning of an observation, e.g. beginning of treat-

ment, to an event, or to the end of the study, or to the loss of contact or withdrawal

from the study.

One of the main challenges in survival analysis is dealing with censoring. Censor-

ing occurs if a subject does not have an event during the observation time. Further-

more, censoring is common in large observational databases (Hernaln, 2011; Hernan

and Robins, 2016). It is a form of a missing data problem in which an event is not

observed due to the early termination of study, or loss of follow-up during the obser-

vation period.

Traditionally, statistical approaches have been widely developed to overcome cen-

soring issues. However, applying predictive algorithms directly to analyze survival

data using standard statistical and machine learning methods is not always appro-

priate. Apart from the complexity of processing censored data, challenges remain in

survival data predictive modeling. In Chapter 3, we present a detailed introduction

to techniques and representative statistical methods for survival analysis.
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1.1.3 Meta-analysis

Meta-analysis integrates the statistical analysis of multiple scientific studies. The

critical assumption behind meta-analyses is a common principle behind all analogous

research with a certain error or bias associated with individual studies. Meta-analysis

aims to conclude a weighted expectation to reduce the uncertainty around the esti-

mate. Apart from that, meta-analysis can compare the results from different studies

to recognize the patterns among individual results.

Meta-analysis is one of the key components of systematic literature review. For

instance, based on several clinical trials of a medical treatment, meta-analysis can

offer a better understanding regarding the effect of certain therapy. Meta-analyses

can improve the confidence by offering a higher statistical power and a more robust

estimate than individual studies. In performing meta-analysis, the search process for

studies, objective criteria, methods dealing with missing data, analytical methods

and associated bias can affect the results in a broad sense (Walker et al., 2008).
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1.2 Promising Candidates for Cancer Treatment

Most drugs have multiple effects. Substantial published studies of preclinical exper-

iments, clinical trials, and observational studies have also demonstrated that a wide

range of drug classes have anti-tumor efficacy apart from their primary function.

Some of the drugs suppress different aspects of cancer cell behavior or induce cancer

cell death, others may prevent cancer development. Therefore, these licensed drugs

have potential to be repurposed as anti-cancer drugs both for cancer prevention and

for cancer therapy.

In this section, we will briefly introduce drugs for which studies have indicated ef-

fectiveness in cancer treatment from clinical, epidemiological and laboratory research.

The drugs include aspirin, statins, selective estrogen receptor modulators, cardiovas-

cular drugs, antipsychotic drugs, antidepressants, microbiological agents, anti-viral

drugs, antibiotics, and nonsteroidal anti-inflammatory drugs (Sleire et al., 2017). One

such drug, metformin, which is the main focus of the thesis, will be introduced in the

next section.

Aspirin is a non-steroidal anti-inflammatory drug (NSAID) and widely used due to

its analgesic, and antipyretic properties (Mcquay and Moore, 2007; Aronoff and Neil-

son, 2001). Currently, it is also used for prevention of thromboembolism in patients

with manifest or increased risk of cardiovascular disease (Miner, 2007). Numerous

experimental and observational studies have established a close correlation between

inflammation and cancer. For certain cancer types including colrectal cancer and

liver cancer the inflammatory process is considered a main driver of carcinogenesis.

Therefore, the anti-inflammatory properties of aspirin underly its cancer protective

effects. Data from in vitro and in vivo experiments, observational studies and prospec-

tive trials have convincingly confirmed the anti-neoplastic effects of aspirin (Cuzick

et al., 2009; Phillips et al., 2013; Elder et al., 1996). It is reported that regular use

of aspirin significantly reduced the incidence of colorectal, esophageal, gastric, biliary
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and breast cancer after systematically comparing randomized trials with cohort and

case-control studies (Algra and Rothwell, 2012).

Statins are among the most commonly prescribed drugs used to treat lipid dis-

orders, as they can effectively prevent the development of cardiovascular diseases.

So far, the association between statin use and cancer incidence is inconclusive over-

all. Some observational studies and meta-analyses suggest a positive correlation with

reduced incidence of gastric cancers (Wu et al., 2013), esophageal cancer (Leonard

et al., 2013) and hepatocarcinoma (Zhong et al., 2016), while several cohort and

case-control studies as well as meta-analyses reported only weak or no significant

link between reduced incidence of prevalent cancer types including breast (Borgquist

et al., 2016) and colorectal cancer (Lytras et al., 2014). A possible role for statins in

cancer prevention might best be determined through carefully designed RCTs with a

sufficiently long follow-up and use cancer incidence rather than cardiovascular disease

as a primary endpoint.

Selective estrogen receptor modulators (SERMs) are drugs that act on the estro-

gen receptor (ER) and mediate different effects depending on the organs or tissue.

Tamoxifen, one drug belonging to SERMs, originally developed as a fertility drug,

has been known to have anti-cancer properties since the 1970s, and approved as a

preventive drug against breast cancer recurrence in 1998 by FDA (Li et al., 2016).

Raloxifene, another drug belonging to this class, initially approved for treatment

of osteoporosis inmenopausal and post-menopausal women, received approval in the

US for breast cancer prevention in potmenopausal women in 2007 (Sleire et al., 2017).

Cardiac glycosides such as digoxin and digitoxin are compounds found in plants

and animals that are used to treat different cardiac conditions (Elbaz et al., 2012).

Already in 1967 Shiratori reported growth inhibitory effects on cancer cells from

prostate cancer (Mcconkey et al., 2000) and breast cancer (Bielawski et al., 2006).
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Antipsychotic drugs are commonly used to treat psychosis and schizophrenia.

Studies have indicated that some of these drugs may reduce the risk of certain cancers

(Dalton et al., 2006). For example, chlorpromazine might decrease risk of developing

prostate cancer (Mortensen, 1992) for schizophrenic male user.

Tricyclic antidepressants are used to treat clinical depression and other mood dis-

orders. Several studies have reported antidepressants, such as Lithium (LiCl), have

anti-neoplastic effects on certain cancers, like prostate cancer and colon cancer (Tut-

ton and Barkla, 1982; Sun et al., 2007; Maeng et al., 2016)

Microbiological agents, such as artemisinins, a traditional Chinese medicine for

the treatment of malaria infections, are also reported having anti-angiogenic effects

for renal cancer and hepatocellular carcinoma with reduced tumor growth in vivo.

Growth inhibition in vitro and in vivo in cell lines are also noticed from other cancer

types including lung cancer (Sasaki et al., 2002), colon cancer (Nygren et al., 2013),

melanoma (Doudican et al., 2008, 2013) and glioblastoma (Bai et al., 2011).

Anti-viral drugs, such as ritonavir and nelfinavir, are protease inhibitors against

HIV. Substantial data shows that ritonavir can inhibit cell cycle progression, induce

apoptosis in ovarian, pancreatic and breast cancer cells (Kumar et al., 2009; Sri-

rangam et al., 2006).

An antibiotic, such as doxycycline, is effective against a range of infectious dis-

eases. Some tetracyclines were found effective in inhibition of angiogenesis (Tamargo

et al., 1991), while doxycycline was found to have growth inhibitory effects in os-

teosarcoma, prostate cancer and mesothelioma cells (Fife et al., 1998; Rubins et al.,

2001). Their proapoptotic effects on pancreatic cells pancreatic cells (Mouratidis

et al., 2007) and leukemic cells (Song et al., 2014) have been observed lately.

Nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, acetyl sali-
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cylic acid, naproxen, and diclofenac, have analgesic antipyretic, and anti-inflammatory

effects (Buer, 2014). Epidemiological studies and recent data suggest that NSAIDs

may be effective in the treatment of established tumors (Pantziarka et al., 2016). For

example, Ibuprofen can inhibit the growth of prostate cancer cells (Kim and Chung,

2007). Naproxen has demonstrated anti-neoplastic properties in vitro and in vivo in

leukemic, breast, colon, bladder and osteosarcoma cell lines (Sleire et al., 2017).
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1.3 Potential Mechanisms of Anti-diabetic Drugs

Metformin is a first-line oral medication for the treatment of type II diabetes. It

decreases high blood sugar by suppressing liver glucose release (hepatic gluconeoge-

nesis) and reducing sugar absorption from food in the gut. Metformin also increases

the insulin sensitivity of body tissues, including skeletal muscle, adipose tissue, en-

dothelium, ovary and liver (Diamanti-Kandarakis et al., 2010; Lord et al., 2003).

Epidemiological studies have suggested that diabetic patients have an increased

risk of developing several types of cancer (Wu et al., 2018). A meta-analysis showed

that diabetic women have a high risk of breast cancer and cancer related death. Many

studies have found that diabetes, especially type II diabetes, has a close relationship

with the development of non-Hodgkin's lymphoma, pancreatic, colorectal, bladder

and endometrial cancer (Sleire et al., 2017).

Like many other drugs, the anticancer effect of metformin was discovered by

serendipity. Considerable epidemiological evidence suggests taking metformin may

reduced cancer risk. Compared with patients using other anti-diabetic drugs, dia-

betic patients using metformin have potentially reduced both incidence and mortal-

ity. From a meta-analysis on the impact of several anti-diabetic drugs, researchers

found that metformin users reduced cancer incidence and mortality by 14% and 30%

respectively. On the other hand, other anti-diabetic drugs, like insulin, increased risk

and mortality of cancer (Sleire et al., 2017). After using metformin, diabetes patients

with established cancer demonstrated a favorable response to treatment, and survival

was increased for hepatocellular carcinoma (Chen et al., 2011), colorectal (Garrett

et al., 2012), prostate (He et al., 2011), breast (He et al., 2012), ovian (Romero et al.,

2012), pancreas (Sadeghi et al., 2012), esophageal (Skinner et al., 2013b) and rectal

cancer (Skinner et al., 2013a). Several reviews suggest that in diabetic patients, using

metformin is associated with lower incidence of colorectal, hepatocellular, pancreas,

stomach, liver, esophagus and lung cancer incidence (Noto et al., 2012; Franciosi et al.,
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2013; Tsilidis et al., 2014a).

Even with these findings based on observational studies and meta-analyses, no

RCT has been reported about the effect of metformin on cancer incidence and mor-

tality. However, a recent multicenter double-blind, placebo-controlled, randomized

phase III trial found that both the occurrence and number of adenomas/polyps were

reduced in the patients using metformin compared to the control group (Lytras et al.,

2014).

Diabetes is a complex metabolic syndrome characterized by long-term high blood

glucose levels and life-threatening complications (Wu et al., 2018). Diabetes and

cancer may be linked by high glucose levels. Therefore, any measure that improves

glycemic level may be expected to prevent cancer development. Its mechanism is

thought to be inhibition of oxidative phosphorylation, causing energetic stress and

inhibition of gluconeogenesis, especially in liver cells (Pollak, 2014).

Metformin is also believed to have a direct anti-proliferative effect because it ac-

tivates the liver enzyme AMPK, with the effect of inhibiting cancer cell growth as

reported by several in vivo and in vitro studies. Protein kinase LKB1, the upstream

regulator of AMPK, is a recognized tumor suppressor. Nonetheless, the mechanism

on how metformin improves cancer survival directly (insulin independent) or indi-

rectly (insulin dependent) is still not fully understood (Sleire et al., 2017).

More recently, researchers found that metformin, in combination with the antihy-

pertensive drug syrosingopine, can stop cancer tumors from growing by cutting energy

supply to cancer cells. Cancer cells need energy to grow and spread. A molecule called

NAD+ can turn nutrients into energy. Many cancer cells rely on glycolysis to break

sugar down into lactate and generate NAD+ from nicotinamide adenine dinucleotides

(NADH) in their metabolism. Too much lactate will block glycolytic pathways. It

is found that two key lactate transporters are blocked by syrosingopine, resulting in

36



high intracellular lactate levels. Metformin, meanwhile, blocks the pathways that help

NAD+ regenerate from NADH. The combined metformin and syrosingopine treat-

ment results in glycolytic blockade, leading to a shortage of energy supply, which

ultimately cause the death of cancer cells. The two drug combination may provide a

viable cancer treatment strategy (Benjamin et al., 2018). Future studies are required

to unravel the biological mechanisms underlying their anti-neoplastic effects.

Although the treatment of multiple cancers suggests a generalized anticancer effect

of metformin and a great interest in repositioning metformin as an anticancer drug,

there are also some studies indicating no or weak correlation between metformin use

and cancer risk (Kordes et al., 2015; Tsilidis et al., 2014b). It also seems biologically

implausible that the reduction in risk with the use of metformin starts from the first

year of follow-up (Currie et al., 2009; Onnelly, 2009). For some epidemiologic studies

demonstrating association with a reduced risk of cancer incidence or mortality (Currie

et al., 2009; Onnelly, 2009; Ateren, 2010; Evans, 2005; Bodmer, 2010; Bowker, 2006;

Hall, 2005; Yeung, 2009), studies focused on several types of specific cancer, and most

of these findings compared metformin with other anti-diabetes drugs without taking

severity into account as an active factor.

Since most studies are retrospective and the patient selection is heterogeneous,

there is some degree of conflicting in these findings. This thesis, therefore, will focus

on an investigation of anticancer effects of metformin on incidence and mortality of

cancer in general, and, specifically breast cancer, prostate cancer, bowel cancer and

lung cancer, with an aim to obtain conclusive results regarding its role on cancer

treatment.
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1.4 Main Contribution

In this thesis, we want to answer this question: what is the effect of anti-diabetic drugs

on cancer incidence and mortality. The initial null hypothesis is that the effect of vari-

ous anti-diabetic drugs on cancer incidence and mortality are the same. Many studies

confuse cancer incidence with cancer mortality. For example, an event of interest for

cancer incidence is the diagnosis of cancer one year after the initial anti-diabetic drug

prescription. For cancer mortality, the corresponding event of interest is death within

one year of initial anti-diabetic drug prescription after cancer diagnosis. Researchers

also debate the effect of anti-diabetic drugs on various types of cancer incidence and

mortality and most of them draw either of two different conclusions: different drugs

have similar effect, or metformin is more protective. The contribution I aim to make

in this thesis is to develop a standardized and comprehensive analytical framework to

address the issues. By leveraging a high-dimensional EHR database with abundant

diagnostic, drug and lab test information, we proposed a systematic approach to em-

ulate randomized clinical trials of various drugs and diseases in silico. Specifically,

we used a data-driven approach to reposition anti-diabetic drugs for cancer incidence

and mortality risks using causal inference setting.

Chapter 1 introduces background knowledge for this study, including general drug

repurposing methods, promising candidate for drug repurposing for cancer treatment,

repositioning of anti-diabetic drugs and in-silico randomized clinical trials using a

large dataset. In Chapter 2, we study the data structure of the UK primary care

database Clinical Practice Research Data Link (CPRD). Methods and mechanisms

for missing data in clinical studies are discussed as they will affect the robustness, sta-

tistical significance and directional results of various drugs. In Chapter 3, we discuss

survival analysis and causal inference, with a focus on modeling physician behavior

by propensity scores. Several semiparametric methods based on Cox regression were

also evaluated. Chapter 4 provides baseline characteristics of a comprehensive ran-

domized controlled trial emulation with a total of 640 specifications.
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Chapter 5 presents numerical results for the emulated 640 randomized controlled

trials in 10 sub-studies to detect the signal of two general anti-diabetic drugs on in-

cidence and mortality risks for general cancer, breast cancer, prostate cancer, bowel

cancer, and lung cancer. Within each sub-study, a total of 64 in-silico RCTs were con-

ducted by semi-parametric conventional Cox regression, Cox regression in alternative

weighting schemes, with 16 cases correspondingly. Chapter 6 presents the conclusion

of the study.

I examine the impact of inverting treatment and control in a statistical setting

when both groups are medically treated by anti-diabetic drugs. Sixteen studies were

divided into two groups - metformin/sulfonylureas as control/treatment or sulfony-

lureas/metformin as control/treatment. Four methods of dealing with missing data,

including using fewer variables, complete case analysis, treating missing as a separate

category and inverse probability weighting, further divide 8 RCTs into a group of

two. A cutoff of initial anti-diabetes prescriptions prior to year 2000 were considered

to form the final cohort. Covariate balance were evaluated based on Somer's D. Sen-

sitivity of all 640 trials was analyzed using weighted summary statistics.

Through this work, we have made preliminary contributions to-repurpose anti-

diabetic drugs for cancer treatment. More importantly, we offer a systematic approach

to reposition many diseases based on all kinds of drugs. This has driven the rapid

development of modern data analysis that has shown the potential for enormous

medical challenges in this era.
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Chapter 2

Data

2.1 Clinical Practice Research Datalink (CPRD)

2.1.1 Data Description

The Clinical Practice Research Datalink (CPRD) is an ongoing general practice's

(GP) primary care database covering more than 11.3 million patients among 674

practices in UK. Data from a total of 4.4 million active (alive, currently enrolled) pa-

tients meet quality standards, with approximately 6.9% of the UK population being

included, and patients are representative of the general population in terms of age,

gender and ethnicity in UK (Su et al., 2018).

In this study, there are around 6 million participants in this CPRD cohort by

April 30th, 2018. We use this cohort to analyze the effect of anti-diabetic drugs on

cancer incidence risks and mortality risks. Only participants whose ages were over 40

at the first prescription of anti-diabetic drugs were included in this analysis. Time

scale and age can affect conclusions, and this is discussed in section 4.4.

To maximize the number of participants and validate diagnoses in primary care

EHR, we hope to establish a consistent cancer diagnoses using data both from Of-

fice for National Statistics (ONS) and Hospital Episode Statistics (HES). Two recent
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studies on the consistency between primary care and HES in coronary heart disease

(CHD) diagnoses revealed that the inclusion of HES data will increase CHD diag-

noses from primary care EHR by 17%. Another comparison showed that the average

incidence of community-acquired pneumonia among people using HES-linked data

was 39% higher than independent EHR data. A similar increase is discovered by

leveraging HES Chronic Obstructive Pulmonary Disease (COPD) diagnoses.

2.1.2 Data Structure

The main CPRD dataset consists of the following parts (Su et al., 2018):

1. Clinical dataset: mainly contains diagnostics;

2. Other data sets: smoking, alcohol consumption and other past medical history

(other information about cancer diagnoses by patient identifier);

3. Consultation dataset: each visit and consultation for every patient;

4. Referral dataset: from primary care to secondary care;

5. Laboratory and medical tests: results with event date;

6. Treatment dataset: medication (with dosage).

In this analysis, a new CPRD dataset was extracted with follow-up updated to

April 2018. Participants/patients were included if they meet the following standards.

The start of follow-up was the latest of

1. January 1st, 1987;

2. the year that each individual turned 50 years old;

3. one year following CPRD registration date including an additional year to ac-

count for baseline risk factors;

4. one year after the practice achieved "up to standard" data quality status
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Participants were followed up until the earliest of

1. patient death;

2. the individual leaving practice/CPRD database;

3. the practice last data collection date;

4. the end date (April 30th, 2018) of data inclusion.

43



2.2 Data Preparation

2.2.1 Study Population

We extracted data from CPRD based on the following criteria (Su et al., 2018):

1. All participants with type II diabetes aged over 50 between 1st January, 1987

and April 30 2018;

2. Prescribed at least one anti-diabetes agent between 1st January, 1987 and April

30, 2018;

3. First prescription dated at least 12 months after CPRD registration date (to

ensure that most of the diabetic patients included are new users of anti-diabetes

drugs and prevalent users with unknown type and duration of treatment are

excluded);

4. Age at initial anti-diabetes prescription over 40;

5. Diabetes mellitus type 2 (DMT2) based on CPRD codes;

6. Diabetic complications or hospitalizations any time before index date from Hos-

pital Episode Statistics.

2.2.2 Exposure Assessment

Anti-diabetes drugs can be categorized as (Su et al., 2018)

1. Metformin hydrochloride (Biguanides): recommended as the first choice for

initial treatment.

2. Sulfonylureas, including first generation (tolbutamide, chlorpropamide, tolaza-

mide, acetohexamide) and second generation (gliclazide, glibenclamide, glip-

izide, glimepiride, gliquidone, glibornuride, glymidine sodium).

3. Thiazolidinediones (rosiglitazone, pioglitazone).
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4. a-glucosidase inhibitors (acarbose).

5. Meglitinide analogs (nateglinide, repaglinide).

6. The dipeptidyl peptidase-4 inhibitors (gliptins), alogliptin, linagliptin, sitagliptin,

saxagliptin, and vildagliptin.

7. The sodium glucose co-transporter 2 inhibitors, canagliflozin, dapagliflozin, and

empagliflozin.

8. The glucagon-like peptide-1 receptor agonists, albiglutide, dulaglutide, exe-

natide, liraglutide and lixisenatide, should be reserved for combination therapy

when other treatment options have failed.

9. Insulin.

Based on prescription records in CPRD, individual anti-diabetic treatment is clas-

sified into one of the following mutually exclusive groups within initial 12-month

period.

1. Monotherapy with metformin: excluding those prescribed with combination

therapy in a single prescription (i.e. Metformin with rosiglitazone 500mg +

1mg Tablet) or through separate prescriptions during the initial 12 months;

2. Monotherapy with first generation of sulfonylureas;

3. Monotherapy with second generation of sulfonylureas;

4. Monotherapy with rosiglitazone;

5. Monotherapy with pioglitazone;

6. Monotherapy with other orally administered antihyperglycemic agents (OHAs),

including acarbose, meglitinide (nateglinide, repaglinide), the dipeptidyl peptidase-

4 inhibitors, the sodium glucose co-transporter 2 inhibitors, and the glucagon-

like peptide-1 receptor agonists;
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7. Monotherapy with insulin;

8. Combination therapies with metformin if the participants were simultaneously

exposed to two or more OHAs including metformin during the initial 12-month

treatment period;

9. Combination therapies with insulin;

10. Other combination therapies.

2.2.3 Outcome Assessment

For cancer incidence risks (Tsilidis et al., 2014a),

1. Malignant neoplasms National Health Service readcode in CPRD;

2. Exclude nonmelanoma skin cancers;

3. No previous history of cancer before index date;

4. Cancer diagnosed within the first year of initial anti-diabetic prescription is

excluded;

For cancer mortality, outcome is death when deathdate is present. Censoring is

assumed when deathdate is not recorded.

2.2.4 Covariate Selection

Based on empirical drug research, we try to find out all the true confounding factors,

which are the covariates contributing to treatment outcomes. In addition, the propen-

sity score model can also include predictors of outcomes unrelated to treatment, as

these covariates will increase the ability to test therapeutic effect. (Brookhart et al.,

2006)

Start by an apriori-defined list of confounders including demographic information,

lifestyle characteristics, lab tests, medical diagnoses, and prescription history, we list
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Table 2.1: Covariate selection and attributes

Covariates Type Attributes
Demographic variables
Multiple Deprivation Index (IMD) Ordinal 1, 2, 3, 4, 5
Gender Nominal Male or female
Year of index date Numeric
Year of birth (YOB) Numeric
Lifestyle variables
Smoking Nominal Never, former, current

5-year latest before index date
Laboratory tests
Body Mass Index (BMI) Numeric 5-year latest before index date
Glycated Hemoglobin (HbAlc) Numeric 1-year mean/1-year latest level

before index date
Medical diagnoses
Heart Failure (HF) Categorical Yes/No
Coronary Heart Disease (CHD) Categorical Yes/No
Atrial Fibrillation (AF) Categorical Yes/No
Peripheral Vascular Disease (PVD) Categorical Yes/No
Chronic Kidney Disease (CKD) Categorical Yes/No
Chronic Obstructive Categorical Yes/No
Pulmonary Disease (COPD)

out covariates by name, type and attributes in Table 2.1. Age and sex were recorded

at approximately the time of the first anti-diabetic drug prescription (index date) (Su

et al., 2018).
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2.3 Missing Data

Missing data are ubiquitous in both clinical observational studies and experimental

research. It refers to the phenomenon that no data is stored for a variable in a dataset.

Missing data may introduce bias into the analysis and have a significant influence on

the conclusions to be drawn from the data. Hence, dealing with missing data has al-

ways been considered critical and well-studied in academia (Molenberghs et al., 2014).

2.3.1 Missing Mechanisms

Understanding the nature of missing data mechanisms can facilitate correct handling

the incomplete data in the dataset to obtain valid inferences. Missing data occur

probably due to nonresponse, participants early drop out, one or more missing data,

improper data collection, or mistakes in data entry. They are roughly classified as

three types, missing completely at random, missing at random, and missing not at

random (Molenberghs et al., 2014). The different forms of missingness have different

impacts on the validity of research conclusions.

Assume for each of N individuals, response variable on the same individual is

measured ni times repeatedly. A subject with a complete set of responses has an

ni x 1 response vector of Y = (Yu, Y 2 , -- -,Y)T, where Yi is the jth response for the

ith subject at time tij, which is associated with an ni x p matrix of covariates, Xi.

Let Resi be an ni x 1 vector of response indicators, Resi = (Resai, Resi2 , ..., Resi,i)T .

The complete data, Y = (YA, Y 2 , ... , Yin)T, can be partitioned into two subvectors

Yi° and Yim, where, Y is the observed data, representing the vector of observed re-

sponses on the ith subject and contains those Yij for which Resij = 1; Y' is the

missing data, indicating the complementary set of responses that are missing where

Resij = 0. Here, i = 1, 2, ... , N and j = 1, 2, ... , ni (Molenberghs et al., 2014).

The missing data mechanism describes the probability that a response is observed
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or missing. It specifies the probability distribution of the response indicators, Resi,

conditional on Y, Yin, and Xi. According to the dependent methods of response

indicators, Resi on the response, Y and covariates, Xi, the missing data mechanism

can be classified into three basic categories, missing completely at random (MCAR),

missing at random (MAR), and not missing at random (NMAR) (Molenberghs et al.,

2014).

Missing completely at random (MCAR): the probability of missing is independent

of both observed subvectors Yi and unobserved subvectors Ym. Therefore, missing-

ness in Y is purely the result of a chance mechanism unrelated to any study variable.

According to (Little and Rubin,- 2002), the term MCAR is defined to the case where

P(ResiIYi, Yi m , Xi) = P(Resi) (2.1)

An MCAR mechanism has important consequences for the analysis of data. If

data is MCAR, the observed responses are likely a random sample of the complete

data. The analysis performed on the MCAR data is unbiased, and most standard

approaches of analysis are applicable to yield valid inferences. However, data are

rarely MCAR in clinical trials (Molenberghs et al., 2014).

Missing at Random (MAR): the probability of missing depends on the observed

responses, but unrelated to unobserved responses. Both MCAR and MAR are often

referred to as ignorable mechanisms. In particular, data are MAR when Resi is

conditionally independent of Y m , given Y, as

P(Resi|I,Yi°, Yi", Xi) = P(Resi|Yi, Xi) (2.2)

If data is MAR, the observed responses are a random sample of the sampled values

within a subclass defined by the observed data rather than the sample of the complete

data. The MAR implies that the completers (i.e. those subjects with no missing data)

are a biased sample from the target population, consequently, an analysis restricted
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to the "completers" is not valid.

Not Missing at Random (NMAR): the probability of missing is related to both

observed and unobserved values (Molenberghs et al., 2014). Or the missing data is

related to the reason it's missing.

NMAR is often referred to as non-ignorable mechanisms as the analysis aims to

make inferences about the distribution of the complete data. When data are NMAR,

almost all standard methods of analysis are invalid. However, alternative methods,

such as weighting, can be used for handling NMAR (Molenberghs et al., 2014).

According to missing data mechanisms, missing data can be dealt with by complete

case analysis, weighting methods and imputation methods.

2.3.2 Complete Case Analysis

Complete case analysis is the most common methods of dealing with missing data.

Complete case are the cases whose subjects have no missing data. During the com-

plete case analysis, only those observations with complete data are kept, while cases

with a missing value are deleted. Take a longitudinal study as an example, only those

patients who were observed a response at each predetermined time point are included

in the complete case analysis (Mayers, 2000).

A distinct advantage of this analysis is that it is straightforward and easy to im-

plement. In addition, it provides effective results in the case of missing completely at

random (MCAR), while for other missing data mechanism, the analysis may produce

biased treatment comparisons. Besides, complete case approach may provide an in-

efficient estimate with low statistical power due to the reduced sample size. Finally,

it is often not a good practice to discard data for the measurements of longitudinal

clinical trials. (Weber et al., 2017; Nakai and Ke, 2011)
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2.3.3 Inverse Probability Weighting

Another strategy of dealing with missing data is weighting methods. The main idea of

weighting methods is to build weights for complete cases to reduce or eliminate bias.

Inverse probability weighting is a statistical technique, usually employed to standard-

ize from a sampled population in which the data was collected (i.e. the subjects with

non-missing data) to a target population. Weighting, when correctly applied, can

reduce the bias of unweighted estimators (Newson, 2013).

Weights are usually characterized as sampling probability. With various combo of

covariates, the sampling probability is calculated by the ratio between the frequency

of the same observation among overall population and the frequency of the same

observation among sample population. In a treatment control study, the sampled

population has a list of demographic information, diseases, therapies and labtests

both in treatment and control population with/without the drug (disease).

Inverse probability weighting is also used to deal with missing data when subjects

with missing data cannot be included in the analysis. Here, the inverse probability

weight is defined as a completeness-propensity score (Mayers, 2000). Typically, we

have a list of observed responses Y', and a list of missing data Ym. Let "complete-

ness" denote the dummy variable indicating all possible missing variables Ym are

present. Then, we apply logistic regression on "completeness" regarding complete

variables Y'. The predicted probability is considered to be the probability of being

complete for each observation. The inverse probability weight is the reciprocal of

the predicted probability for each observation. Observations with higher probability

of being complete are down-weighted while instances with lower probability of be-

ing complete are up-weighted. As such, inverse probability weighting can be used to

inflate the weight for subjects under-represented due to a large degree of missing data.

In this thesis, we require both a primary target population for handling miss-
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ingness and a secondary target population for covariate balancing. To standardize

from sampled population to the secondary target population, we multiply primary

weight and secondary weight for the final weight. The primary weight in the product

stands for a completeness-propensity weight, standardizing the sampled population

to primary target population. While the secondary weight in the product depends on

drug/disease status, being different in various schemes.

2.3.4 Imputation

Imputation is any method of replacing missing data with reasonable estimates. Once

all the missing data have been imputed and a complete dataset is generated, standard

statistical methods can be applied to analyze the dataset. Commonly used imputa-

tion methods with reasonable estimation of missing data include mean imputation,

regression imputation, last observation carried forward, stochastic imputation, and

multiple imputation.

Last observation carried forward (LOCF) method is a common imputation method.

When observing the longitudinal measurement of each patient, LOCF obtains the last

available response and replaces all subsequent missing values with it. However, LOCF

may give a biased treatment comparison if different dropout rates or different drop

time occur between treatment groups (Mayers, 2000).

One particular imputation method receiving a lot of attention recently is multiple

imputation. Multiple imputation is to impute more than one value for the missing

item from an appropriate distribution for the missing values. This will generate two

or more complete datasets. Contrast to filling missing data with mean value directly,

which usually underestimates variability, multiple imputation considers the uncer-

tainty among missing values. Multiple imputation methodology relies on the MAR

assumption.
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In this thesis, multiple imputation, especially multiple imputation using chained

equation (van Buuren and Groothuis-Oudshoorn, 2011), is replaced by inverse prob-

ability weighting due to their similar assumption on MAR and multiple imputations

computational infeasibility on such a large dataset (>20,000 observations) in the cur-

rent study.
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Chapter 3

Statistical Methods for Survival

Analysis

Survival analysis is an important sub-area of statistics. It involves the modelling of

time to event T to analyze the occurrence of specific events of interest at future time

points with feature predictors Xi. One of the main challenges in survival analysis is

censoring, i.e. events of interest are not identified during observation, or the value

of measurement or observation is only partially known. Censoring can be effectively

processed using survival analysis techniques by either statistical methods or machine

learning techniques (Wang et al., 2017).

In this chapter, we start with a brief introduction on basic concepts to facilitate

understanding of survival analysis algorithms. Representative traditional statistical

methods for survival analysis, especially semi-parametric models, will be presented

next, followed by an introduction to causal inference.
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3.1 Concepts and Methods

3.1.1 Survival Data and Censoring

Most statistical and supervised machine learning problems can be formulated as ei-

ther classification or regression. Classification adopts binary categorical data of either

1, or 0 as response, while regression takes quantitative variable as response. Survival

analysis can be used to describe the effect of categorical or quantitative variable on

survival. However, standard classification formulation does not take time to event

as outcome. Although standard regression formulation does take time to event into

consideration, the outcome would confuse the impact of confounders in the regression

model (Marubini and Valsecchi, 2004).

Events refer to disease incidence, disease recurrence, disease progression, death or

other experience of interest. Time is defined as the time from the beginning of an

observation to an event, or to an end of study, or to the loss of contact or withdraw

from the study. Survival analysis incorporates both time to event information and

event of interest.

Censoring is a main challenge in survival analysis. It is a form of missing data

problem in which an instance does not have an event during the observation time.

Censoring occurs probably due to limited observation time window or other events

lead to missingness (Klein and Moeschberger, 2003).

Censoring can be roughly divide into three groups. The most commonly encoun-

tered type is right-censoring, where the observed survival time is less than the real

survival time. Left-censoring has the observed survival time greater than the real

survival time. When the event occurs within a given time interval, it is interval

censoring. However, within all the three cases, the actual event occurrence time is

unknown (Lee and Wang, 2003).
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In survival analysis, only those instances of events which occur during the study

have the precise time to the event of interest (T). For the rest of the instances, the

censored time (C) may be the time of withdrawal, loss or end of observation due to

lost of track during observation or because the events occur longer than the observa-

tion time. For any given instance i, either survival time T or censored time Ci can

be observed. Right-censored happens if yi = min(T, Ci), of which survival time is

a random variable since events may randomly terminate the study (Wang et al., 2017).

For a given instance i, represented by a triplet (Xi, yi, Ji), where Xi C R1 x P is the

feature vector of instance, og is defined as

1 uncensored instance
Ji = (3.1)

0 censored instance

where yi denotes observed time which equals to survival time T for uncensored

instances and Ci for censored instances, i.e.,

yi Ti if og = 1 (3.2)

Ci if or = 0

The objective of survival analysis is to predict time of event of interest T for a

new instance j with the feature predictor X. For a typical survival analysis problem,

the value of T will be non-negative and continuous (Wang et al., 2017). Details of

symbols are listed in Appendix B.

3.1.2 Survival and Hazard Function

Two important functions in survival analysis are survival function and hazard func-

tion. The survival function represents the probability that an event of interest survives

longer than the specified time t, denoted by S, as

S(t) = P(T > t) (3.3)
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where P stands for probability, T is a random variable denoting the time of event

of interest (Marubini and Valsecchi, 2004; Klein and Moeschberger, 2003). The sur-

vival function is monotonically decreasing with t. Its initial value is 1, indicating that

100% of the observed subjects survive at the beginning of observation, i.e. no events

of interest occurs at t = 0.

The cumulative death distribution function F(t) indicates that the event of inter-

est occurs earlier, defined as the complement of the survival function, i.e.

F(t) = 1 - S(t) (3.4)

and the death density function, which is the rate of death per unit time, is defined

as

f(t) = lim F(t + At) - F(t)
At-) = At (3.5)

by continuity, we have

f (t) = -F(t)
dt

(3.6)

where At denotes a small time interval in discrete cases.

A hazard function represents the probability of event in which no event occurred

before time t, which is defined as (Dunn and Clark, 2009)

h(t) = IP(t < T < t +AtIT > t) = Fm F(t +At) - F(t) f(t)
Ateo At At-+o At . S(t) S(t)

and therefore

f(t) = d

(3.7)

(3.8)
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the hazard function can be expressed as

h(t) - f W d S(t) 1 [ln(S(t))] (3.9)
S(t) di S(t) dt

Thus, the survival function can be rewritten as

S(t) = e-H(t) (3.10)

where the cumulative hazard function (CHF) (Klein and Moeschberger, 2003) is

H(t) = jh(u)du (3.11)

To sum up, the survival function S(t), the cumulative hazard function H(t), the

death density function f(t), and the hazard function h(t) are related via

S(t) = e-H(t) f f I t > 0 (3.12)
h(t) -

3.1.3 Survival Analysis Methods

Survival analysis methods include statistical methods and machine learning meth-

ods. Both of them aim to predict survival time and estimate the probability of

survival for estimated survival time. However, statistical methods focus on char-

acterizing the distribution of event times and the statistical properties of parameter

estimates by estimating survival curves for low-dimensional data, while machine learn-

ing methods concern with predicting event occurrences at a given point in time for

high-dimensional settings. Besides, machine learning methods uses the latest devel-

opments and optimization to learn the dependencies between covariates and lifetimes

(Klein and Moeschberger, 2003).

Within statistical methods, three models, i.e. non-parametric, semi-parametric,

and parametric, are used to estimate the survival/hazard functions. Non-parametric

methods are employed when no suitable theoretical distributions for the event time are
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known. When using non-parametric methods, an empirical estimate of the survival

function can be obtained by Kaplan-Meier (KM) method, Nelson-Aalen estimator

(NA) or Life-Table (LT). These methods are efficient, yet difficult to interpret, and

easy to produce inaccurate estimates. When the time to the event of interest follows a

specific distribution, non-parametric methods are less efficient compared to the para-

metric methods (Lee and Wang, 2003).

Parametric methods are used when the time to event of interest follows a specific

distribution, typically the normal, exponential, weibull, logistic, log-logistic and log-

normal distributions. Parametric methods include linear regression and accelerated

failure time (AFT) methods. The linear regression model includes Tobit, Buckley-

James regression and the penalized regression models, which are the most commonly

used linear parametric models for survival analysis. If the log(survival time) for all

instances follow the above specific distributions, then AFT taking survival time as a

function of covariates can be employed (Klein and Moeschberger, 2003). Parametric

methods are simple, efficient and accurate in predicting the time to event of interest

when survival time follows some pre-defined distribution. They are considered as es-

sential alternatives to semi-parametric models including Cox-based regression. How-

ever, when the distribution assumption is violated, the survival estimates obtained by

the parametric survival models can be inconsistent with a theoretical survival distri-

bution. Also, if there is no suitable theoretical distribution available, non-parametric

methods can be more efficient than parametric methods.

The semi-parametric method can be regarded as a hybrid of the parametric and

non-parametric methods. It does not require the knowledge of the underlying dis-

tribution of survival times. The semi-parametric method can yield more consistent

estimators among other conditions compared to parametric models, and a more accu-

rate estimator than non-parametric methods (Powell, 1994). Semi-parametric method

includes basic Cox, and its different variants and extensions, such as regularized Cox,

CoxBoost, time-dependent Cox models. Although based on parametric regression
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model, the event distribution is not known and not easy to interpret (Wang et al.,

2017).

Machine learning algorithms, such as survival trees, Bayesian methods, neural

networks and support vector machines, have gained popularity in survival analysis.

Currently, several advanced machine learning methods, such as ensemble learning, ac-

tive learning, transfer learning, and multitasking learning, also emerge in the survival

analysis (Wang et al., 2017).
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3.2 Semi-parametric Statistical Methods

Semi-parametric models are a class of survival models in statistics. This section will

introduce two semi-parametric models, i.e. conventional Cox regression (CCR) model

and weighted Cox regression model, which will be used in the thesis.

3.2.1 Conventional Cox Regression

The Cox model (Cox, 1972) is the most commonly adopted semi-parametric methods

for survival analysis. Based on the proportional hazards assumption, it optimizes

partial log likelihood function for parameter estimation.

For a given instance i, represented by a triplet (Xi, yi, Ji), hazard function h(t, Xi)

in a Cox model follows the proportional hazards assumption given by

h(t, Xi) = ho(t)ex"O (3.13)

where the baseline hazard function ho(t) describes risk change per unit time for

baseline covariates. It can be an arbitrary nonnegative function of time. Xi =

(xil, Xi2 ,... , Xip) is the covariate vector for instance i. In the thesis, the covariates

include treatment assignment, as well as patient characteristics such as age, gender,

and the presence of other diseases at start of study, etc. )3 = (#1, #1, . . - , /P)T is the

coefficient vector. The method represents the effects of covariate vector as a multi-

plier of a common baseline hazard function, ho(t).

The hazard ratio between instance X1 and X2 can expressed as

h(t, X 1 ) ho (t)eXi0 = e(X1X2)03  
(3.14)

h(t,X2) ho(t)eX2

Therefore, the hazard ratio is constant and independent of baseline hazard func-

tion. Since all subjects share the same baseline hazard function in the Cox propor-
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tional hazard model, the survival function can be calculated as

S(t) = e-Ho()eXl  S (t)exO (3.15)

where Ho(t) represents the cumulative baseline hazard function, and So(t) =

e-Ho(t) is the baseline survival function.

The Breslow's estimator (Breslow, 1972) is most widely employed to estimate

Ho (t),

HO(t) = Zho(ti) (3.16)

if ti is event time

1
ho(ti) = eXf3  (3.17)

jERKi

otherwise ho(ti) = 0. Here, RKi stands for the subject set at risk at time ti.

Since the baseline hazard function ho(t) in the Cox model is not specified, the

standard likelihood function cannot be used to determine the model. In other words,

the hazard function ho(t) is an annoying, and the coefficients # are of interest in the

model.

To estimate 3, Cox proposed partial likelihood (Lee and Wang, 2003), where the

covariates can be estimated without taking time-varying hazard into account.

Let j = 1, 2, ... , I be the total number of events of interest occurred during obser-

vation, and Ti < T2 < ... < T be the time for the event of interest. Suppose Xj is

the corresponding covariate vector at T and Rj be the instances set at risk at T.

The individual probability corresponding to the covariate Xj occurred at time T
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can be expressed as

(3.18)h(T, Xj)dt 63
iERK3 h(T, X j dt

The partial likelihood is the product of the probability of each instance, defined

as

N

L(,8) = ].R et
E RK1

(3.19)

When the event occurs, 6j = 1 in the jth term represents conditional probability.

If censored, i.e. 6j = 0, the corresponding term equals to 1, implying no influence on

the partial likelihood.

The corresponding log partial likelihood is

N

log(L()) = - 3 {Xj,3 - log[ S eXl] }
j=1 iERK

(3.20)

The coefficient vector / is estimated by maximizing the partial likelihood, or

equivalently, the negative log-partial likelihood is minimized to improving efficiency

(Cox, 1972, 1975). Using numerical Newton-Raphson method (Kelley, 1999), regres-

sion coefficients estimates a can be calculated iteratively by

log(L(3)) N ZiGRK,XieXi8

j=1Z{XK eX

(3.21)

3.2.2 Weighted Cox Regression

Cox's regression for survival analysis relies on the proportional hazards assumption.

When this assumption is violated, an alternative approach, a weighted Cox regression

model can be used instead.

In a weighted Cox regression model, except for o, = wj, where wy is individual
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weight, all else will be the same as conventional Cox regression. Using numerical

Newton-Raphson method, weighted regression coefficients estimates f3 can be calcu-

lated iteratively by

Olog(L(3)) N R1a XieX(3
-8E WfXj ezR } =, 0 (3.22)

0)3j=1 Ei€RKj
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3.3 Causal Inference

Causal inference is the process of drawing a conclusion about a causal connection

based on the occurrence condition of an effect. It attempts to estimate the treatment'

effects by accounting for the covariates that predict receiving the treatment (Imbens

and Rubin, 2015).

In randomized controlled trials, the randomization, which implies that treatment

groups will be balanced on average for each covariate, enables unbiased estimation

of treatment effects. However, in observational studies, the treatment assignment

of participants is typically not random. Due to non-random covariates differences

for treated and untreated groups, treatment effect estimates might be biased. It is,

therefore, ideally to mimic randomization by creating a treated group with compara-

ble covariates to a control group to reduce bias in treatment effect estimates (Leite,

2017).

In observational studies, treatment effects are commonly estimated by propensity

score analysis methods. In simple cases, the treatment and control groups can be

easily matched on single characteristics. However, in complex cases which contain

many covariates, it is hard to find an appropriate match for each participant with

respect to all covariates. (Imbens and Rubin, 2015) This difficulty of multivariate

matching can be solved by propensity scores (Rubin, 1973).

Propensity scores are probabilities of treatment assignment that can be used to

reduce selection bias. They simplify analysis by reducing all the information in the

predictors to one number. Rubin causal model is one of the most commonly used

model to obtain propensity score for causal inference. Rosenbaum and Rubin have

shown that adjustment for the propensity score is sufficient to remove all bias related

to covariates (Rosenbaum and Rubin, 1983). Bias is removed by balancing covariates

between treated and untreated groups. It will be much more straightforward to match
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instances with different combinations of covariates once covariates are balanced.

3.3.1 Causal Models

Rosenbaum and Rubin proposed the use of propensity scores to reduce selection bias

due to confounding variables (Rosenbaum and Rubin, 1983). The propensity score

method was connected to matching methods for selecting an untreated group that

was similar to the treated group with respect to covariates (Rubin, 1973). It has been

wide applied to many fields involving causal inference, such as statistics, sociology,

education, economics, psychology, and epidemiology.

In Rubin causal model, all participants have potential outcomes associated with

either the presence of treatment or in the absence of treatment. As illustrated in 3.1,

an individual i participates in the treatment Zi = 1 has a potential outcome Y1

which is only observed in the presence of the treatment condition; while an individual

does not participate Zi = 0 has a potential outcome Yjo which is only observed in

the absence of the treatment. Therefore, the treatment effect for each individual is

1 - 70.7-i =Y Yi°.

Table 3.1: Potential outcome in Rubin's causal model

Outcome for Treatment (Y 1) Outcome for Control (Yo)
Treatment (Z = 1) Y1jZi = 1 YI|ZI = 1
Control (Zi = 0) Y|ZIi = 0 YIZi = 0

In Table 3.1, the outcomes (YIZi = 1) and (YijIZi = 0) are observed, while the

outcomes (YlIZi = 0) and (YiIZi = 1) are missing.

Accordingly, three different types of treatment effects can be defined:

(1) Average treatment effect (ATE): is defined as the difference between the ex-

pected values of the potential outcomes of all individuals in the treated and untreated
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conditions.

ATE = E(Y|) - E(YjO) (3.23)

(2) The average treatment effect on the treated (ATT): ATT is defined as the dif-

ference between the expected values of the potential outcomes of treated individuals.

ATT = E(Y'|Zi = 1) - E YOI|Zi = 1) (3.24)

(3) The average treatment effect on the untreated (ATU): ATU is defined as the

difference between the expected values of the potential outcomes of the untreated

individuals.

ATU = E(Y|Zj = 0) - E(Y°jZj = 0) (3.25)

The treatment effects are selected according to different criteria, such as research

question (risk difference, ratio difference), or whether assumptions are met for the

treatment effect of interest.

Naive average treatment effect: a simple difference in mean outcomes (SDO) is

the difference between the population average outcome for the treatment and control

groups.

SDO = E(Y|1jZj = 1) - E(Yj0|Zj = 0) (3.26)

Unobserved counterfactual outcome, defined as

yCF = (1 - Z )Y| ± Zx 0  (3.27 )

In RCTs, ATE equals to the ATT and ATU because random assignment of par-

ticipants to conditions implies that they are exchangeable and therefore

E(Y||Z = 1) = F(Y0I°Zj = 0) (3.28)
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and

E(Yi"|Zi = 1) = E(Yi'lZi = 0) (3.29)

While in observational studies, the ATE, ATT, and ATU could differ substantially.

While using Rubin's causal model to estimate unbiased treatment effects, it is

usually assumed that treatment assignment has strong ignorability, a stable unit

treatment value, and adequate balance of covariate distributions between treated and

untreated groups (Leite, 2017).

3.3.2 Propensity Score Estimation

The objective of propensity score estimation is to obtain propensity scores for treated

and untreated individuals. A propensity score is the probability of an individual given

some observed covariates belonging to the treatment group (Rosenbaum and Rubin,

1983).

e(X) = P(Z = 1|X) (3.30)

Propensity score methods aim to reduce selection bias by balancing covariates

between treatment and control. With propensity scores, each individual has a unique

score that indicates the relationship between covariates and the treatment assignment.

Therefore, matching participants according to multiple covariates can be simplified

to matching by the propensity score (Rubin, 1973).

If treatment is independent of potential outcomes Y0 and Y1 given a set of ob-

served covariates X, potential outcomes are also independent of treatment given

propensity score e(X) which is a function of these covariates. Treatment is also

independent of covariates with propensity score, i.e. (Rosenbaum and Rubin, 1983)

if (Y 0 , Y') _L Z|X, then (3.31)
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(Y 0 , Y') _L ZlX and Z I XIe(X)

Since the mean difference between treated and untreated outcomes at a specific

propensity score is the average treatment effect at that propensity score due to the

balancing characteristic of propensity score, matching, weighting, and stratification

based on the propensity score can provide unbiased estimates of the treatment effect

(Imbens and Rubin, 2015).

Propensity scores can be estimated by parametric models and data mining meth-

ods. Parametric models include logistic regression, probit regression, and discriminant

function analysis, while classification trees and random forests belong to a class of

methods known as data mining, or machine learning (Berk, 2006). However, the se-

lection of propensity score estimation methods is less important than the controlling

for the right covariates in reducing bias (Setoguchi et al., 2008; Westreich et al., 2010).

A successful estimation of propensity scores should produce adequate balance of

covariate distributions between treated and untreated groups when estimated in com-

bination with a matching, stratification, or weighting strategy (Ho et al., 2007). In

this thesis, we will only fit a logistic regression model to the data to predict treatment

assignment while maximizing covariate balance by propensity score weighting.

Logistic regression is a commonly used model propensity score estimation and

the obtained propensity scores are similar to those acquired by probit regression

or discriminant function analysis. A basic logistic regression model for estimating

propensity scores is expressed as

logit(Zi = 1|X) = #0 + #f1X1 , + ... + #kXk,i (3.33)

Covariates X1, X 2, ... , Xk are considered to be either true confounders or predictors

of the outcome. Higher order polynomial terms (e.g. X2, X3) and/or interaction
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terms (e.g. Xi x X2) can be added to the model. The coefficients in logistic regression

is optimized by maximum likelihood estimation. The propensity scores are estimated

probabilities of treatment assignment, expressed in terms of estimated logits,

exp(logit(Zi = 1|X))
1 + exp(logit(Zi = 1|X))

The selection of covariates for the propensity score model is critical. The propen-

sity score model should contain all true confounders, the covariates that affect the

treatment assignment and the outcome. If an important true confounder is not added,

there will be substantial bias remaining even if covariates are well balanced. The

propensity score model may also include predictors of the outcome that are unrelated

to treatment assignment, but not covariates that are related to treatment assignment

but not the outcome (Brookhart et al., 2006).

3.3.3 Propensity Score Weighting

This section discusses treatment effects estimation by using propensity score weight-

ing (PSW) by different types of treatment effect of interest. By using propensity

scores, we are able to model the behavior of primary care physicians by balancing

covariates among different drug groups.

For average treatment effect (ATE) weights (Robins et al., 2000)

=1
waTEZ{ e(X) - (3.35)

1-e(X) Zi 0

In the ATE analysis, we are actually inflating numbers of participants in both

cases reaching to the number of participants level n.
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ATT weight is estimated by the odds (Harder et al., 2010),

WATT = 1 Zi 1 (3.36)
e~) Z-=0

1-e(X) i

Under ATT weighting scheme, the number of untreated participants is adjusted

which will lead to a bias.

ATU weight is estimated by the odds inverse,

1-e(X) Z. = 1
WATU - e(X) (3.37)

1 Zi = 0

Under ATU weighting scheme, the number of treated participants is adjusted

which will lead to a bias.

It is easy to find out that

WATT - WATU = WATE (3.38)

Though we will inflate both anti-diabetes cases to the population level applying

ATE weights, the benefit is obvious: we will have reciprocal directional results if we

inverse "treatment and control" leading to the same conclusion.

3.3.4 Covariate Balance Evaluation

The objective of propensity score weighting is to balance covariates and therefore to

remove selection bias. In this work, Somers' D D(Y|X) is employed to assess covari-

ate balance. X are covariates, Y is a confounder or a propensity score (Newson, 2006).

Assume pairs (Xi, Y) and (Xj, Y) are sampled under a specified sampling scheme

from a population of bivariate pairs (X, Y).
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Kendall's tau Ta can be defined as

TXY = E[sign(Xi - Xj)sign(Y - Yj)] (3.39)

Kendall's tau can be interpreted as the expectation of concordance or discordance

between two (X, Y) pairs. A pair of (X, Y) is concordant if the ranks of both elements

agree, e.g. the larger X value is paired with the larger Y value, and is discordant if

the ranks of both elements disagree, e.g. the larger X value is paired with the smaller

Y value (Newson, 2006).

Somer's D D(X|Y) is defined as

D(X|Y) = TXY (3.40)
TXX

Somer's D can be interpreted as the asymmetrical ratio between two conditional

expectation of concordance or discordance. Definition and calculation can be ex-

tended to censored cases and also to treatment effect of X on Y (Newson, 2006).

Specifically, if X and Y are binary variables, Somers' D can be calculated by the

difference between proportions (Newson, 2014)

Dxy = P(Y = 1|X = 1) - P(Y = 1|X = 0) (3.41)

If X is binary, Y' and Y 0 corresponds to a sample from X = 1 and X = 0

(Newson, -2014)

Dxy = P(Y1 > Y 0) - P(Y0 > Y') (3.42)
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3.3.5 Sensitivity Analysis

Sensitivity analysis aims to identify the impact of unobserved confounding on the

significance test of the treatment effect (Rosenbaum, 2010; Rosenbaum and Rubin,

1983). It 'an improve the understanding of the relationships between input and out-

put variables in a model. By focusing on the sensitive parameters obtained from

sensitivity analysis, important connections between observations, inputs, and predic-

tions, can be identified, leading to the development of robust models.

Usually, the larger the sensitivity parameter, the greater the impact of the unob-

served confounding is. Therefore, in practical analysis, small sensitivity parameter

attributes are removed, and researches are focus on the large sensitivity parameter in-

puts that cause significant uncertainty in the output to increase robustness. This can

greatly simplify the model and reduce the workload of data analysis and processing.

74



Chapter 4

Study Design

4.1 Exploratory Data Analysis

Included were 294,701 participants with type II diabetes and at least one anti-diabetes

prescription recorded in CPRD. Among these diabetes patients, 148,983 individuals

(50.6%) started taking metformin monotherapy, 61,741 (21.0%) started sulfonylureas

monotherapy, and some smaller number started taking other drugs as shown in Ta-

ble 4.1. Figure 4-1 and Figure 4-2 reveals the trend of all types of initial anti-diabetic

drug prescription in number and in percentage by prescription year respectively. Since

synthetic RCT can only include two drugs as "treatment" and "control", combina-

tion therapies are dropped due to our focus on intention-to-treat (ITT) analysis and

its hybrid feature. Furthermore, due to similar clinical indications and number of

patients with initial anti-diabetic drug prescription, we limit our horizon within met-

formin and sulfonylureas monotherapy initiators as listed in Table 4.2. Figure 4-3

and Figure 4-4 reveal the trend of initial metformin and sulfonylureas prescription in

number and in percentage by prescription year, respectively.
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Table 4.1: Number of anti-diabetes initiators by drug classes

Model Number of observations %
Metformin 148,983 50.6%
Sulfonylureas 61,741 21.0%
Glitazone 519 1.8%
Insulin 15,793 5.4%
Combination 67,665 23.0%
Total 294,701 100%

Table 4.2: Number of metformin and sulfonylureas initiators

Model Number of observations %
Metformin 148,983 70.7%
Sulfonylureas 61,741 29.3%
Total 210,724 100%
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Figure 4-1: Number of new initial anti-diabetes prescription on all drug classes by
calendar year
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Figure 4-2: Percentage of new initial anti-diabetes prescription on all drug classes by
calendar year
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Figure 4-3: Number of new initial anti-diabetes prescription on metformin and sul-
fonylureas by calendar year
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Figure 4-4: Percentage of new initial anti-diabetes prescription on metformin and
sulfonylureas by calendar year
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Table 4.3 and Table 4.4 report the baseline demographic and region characteristics

according to initial metformin and sulfonylureas. Compared with those who started

using sulfonylureas monotherapy, those who started using metformin monotherapy

were, on average, younger (mean age: 63.45 vs. 68.50 years), had a higher BMI

(mean: 32.31 vs. 27.52 kg/m2 ), their median year of the first prescription was more

recent (2008 vs. 1998), with a much smaller proportion of missing on smoking.
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Table 4.3: Baseline characteristics by initial anti-diabetes prescription on metformin
and sulfonylureas

Covariates Metformin % Sulfonylureas % Total
Gender

Male 83,143 70.7% 34,392 29.3% 117,535
Female 65,840 70.7% 27,349 29.3% 93,189

Prescripton age
35 - 49 20,594 81.9% 4,549 18.1% 25,143
50 - 64 64,580 76.9% 19,417 23.1% 83,997
65 - 79 53,380 65.6% 27,942 34.4% 81,322
> 80 10,429 51.5% 9,833 48.5% 20,262

Prescripton year
< 1990 722 14.4% 4,306 85.6% 5,028
1990 - 1999 15,257 30.8% 34,353 69.2% 49,610
2000 - 2009 83,318 83.0% 17,082 17.0% 100,400
> 2010 48,954 95.3% 2,395 4.7% 51,349

Region
1 2,054 67.9% 973 32.1% 3,027
2 16,976 68.9% 7,661 31.1% 24,637
3 4,041 57.9% 2,941 42.1% 6,982
4 4,120 58.8% 2,887 41.2% 7,007
5 14,975 72.6% 5,664 27.4% 20,639
6 11,199 66.3% 5,681 33.7% 16,880
7 12,241 69.5% 5,381 30.5% 17,622
8 14,143 73.4% 5,137 26.6% 19,280
9 16,866 73.5% 6,084 26.5% 22,950
10 14,817 74.1% 5,189 25.9% 20,006
11 4,725 74.0% 1,659 26.0% 6,384
12 13,832 73.2% 5,073 26.8% 18,905
13 18,994 71.9% 7,411 28.1% 26,405
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Table 4.5 and Table 4.6 reflects number of overall commorbidites and commor-

bidites after initial metformin and sulfonylureas prescription, respectively. CHD and

hypertension dropped far more than other commorbities (50%). Also, the proportion

of CHD and hypertension changed quite a bit compared with other commorbities.

Speaking of cases of interest, there are a total of 42,898 first incident cancers

identified, of which 4,929 were postmenopausal breast cancers, 5,195 were prostate

cancers, 4,876 were bowel cancers, and 3,328 were lung cancers. After first metformin

and sulfonylureas prescription, the number of first incident cancers identified dropped

to 23,466, of which 2,023 were postmenopausal breast cancers, 2,952 were prostate

cancers, 2,928 were bowel cancers, and 2,776 were lung cancers.
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Table 4.4: Baseline characteristics by initial anti-diabetes prescription on metformin
and sulfonylureas, continued

Covariates Metformin % Sulfonylureas % Total

BMI, kg/m2
< 18.5 206 33.3% 412 66.7% 618
18.5 - 24.9 10,038 46.7% 11,453 53.3% 21,491
25 - 29.9 41,017 71.8% 16,108 28.2% 57,125
> 30 80,720 89.3% 9,636 10.7% 90,356
Missing 17,002 41.3% 24,132 58.7% 41,134

IMD, kg/m 2

Least deprived 26,854 72.0% 10,455 28.0% 37,309
2 25,322 69.4% 11,163 30.6% 36,485
3 29,508 70.5% 12,326 29.5% 41,834
4 30,147 70.4% 12,680 29.6% 42,827
Most deprived 27,219 69.3% 12,072 30.7% 39,291
Missing 9,933 76.5% 3,045 23.5% 12,978

Smoking
Non-smoker 69,784 71.5% 27,767 28.5% 97,551
Ex-smoker 25,524 73.9% 8,996 26.1% 34,520
Smoker 48,794 82.9% 10,801 18.1% 59,595
Missing 4,881 25.6% 14,177 74.4% 19,058

HbAlc
< 7% 18,961 85.7% 3,168 14.3% 22,129
7% - 10% 76,497 84.8% 13,697 15.2% 90,194
> 10% 17,192 75.0% 5,729 25.0% 22,921
Missing 36,333 48.1% 39,147 51.9% 75,480
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Table 4.5: Overall comorbidity characteristics by metformin and sulfonylureas

Covariates
HF
CHD
AF
Stroke
Hypertension
PVD
CKD
COPD
Cancer
Breast cancer
Prostate cancer
Bowel cancer
Lung cancer

Metformin
10,825
77,375
15,620
17,368

144,643
46,266
32,700
11,482
28,290
3,605
3,464
3,026
1,949

48.4%
70.5%
63.9%
57.0%
71.6%
74.9%
69.2%
73.1%
65.9%
73.1%
66.7%
62.1%
58.6%

Sulfonylureas
11,535
32,320
8,812
13,095
57,490
15,482
14,564
4,215
14,608
1,324
1,731
1,850
1,379

Table 4.6: Comorbidity characteristics after initial metformin and sulfonylureas pre-
scription

Covariates
HF
CHD
AF
Stroke
Hypertension
PVD
CKD
COPD
Cancer
Breast cancer
Prostate cancer
Bowel cancer
Lung cancer

Metformin
6,043

17,594
7,596
6,956
7,224

26,233
21,854
4,941
14,338
1,381
1,836
1,763
1,645

46.0%
54.1%
61.8%
48.5%
39.8%
69.7%
63.6%
65.3%
61.1%
68.3%
62.2%
60.2%
59.5%

Sulfonylureas
7,081

14,945
4,688
7,389

10,911
11,396
12,510
2,628
9,128
642

1,116
1,165
1,131
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51.6%
29.5%
36.1%
43.0%
28.4%
25.1%
30.8%
26.9%
34.1%
26.9%
33.3%
37.9%
41.4%

Total
22,360
109,695
24,432
30,463
202,133
61,748
47,264
15,697
42,898
4,929
5,195
4,876
3,328

54.0%
45.9%
38.2%
51.5%
60.2%
30.3%
36.4%
34.7%
38.9%
31.7%
37.8%
39.8%
40.7%

Total
13,124
32,539
12,284
14,345
18,135
37,629
34,364
7,569

23,466
2,023
2,952
2,928
2,776



For all of the covariates included in this thesis, four of them have missing data

problems - BMI, IMD, Smoking and HbAlc. The quality of existing data depends on

first anti-diabetes prescription year as in Table 4.7. We figured out that the proportion

of missing data is lower when first anti-diabetes prescription happens later than 2000,

and given the large number of observations with initial anti-diabetes prescription year

later than 2000, we decided to add a constriant on initial anti-diabetes prescription

at 2000 for subgroup analyses, as shown in Table 4.17.
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Table 4.7: BMI, IMD, smoking and HbAlc summary statistics by first anti-diabetes
prescription year

Covariates <2000 % >2000 % Total
BMI, kg/m 2

< 18.5
18.5 - 25
25-30
> 30
Missing

IMD, kg/m 2

Least deprived
2
3
4
Most deprived
Missing

Smoking
Non-smoker
Ex-smoker
Smoker
Missing

HbAlc
< 7%
7%-10%
> 10%
Missing

155
5,852

11,321
10,435
23,096

8,419
9,012
10,214
10,439
10,577
2,198

22,661
6,874
6,205
15,119

1,808
6,559
3,518

38,974

25.1%
27.2%
19.8%
11.5%
56.1%

22.6%
32.8%
24.4%
24.4%
26.9%
16.9%

23.2%
19.9%
10.4%
79.3%

8.2%
7.3%

15.3%
51.6%

463
15,639
45,804
79,921
18,038

28,890
27,473
31,620
32,388
28,714
10,780

74,890
27,646
53,390
3,939

20,321
83,635
19,403
36,506

74.9%
72.8%
80.2%
88.5%
43.8%

77.4%
67.2%
75.6%
75.6%
73.1%
83.1%

76.8%
80.1%
89.6%
20.7%

91.8%
92.7%
84.7%
48.4%

618
21,491
57,125
90,356
41,134

37,309
36,485
41,834
42,827
39,291
12,978

97,551
34,520
59,595
19,058

22,129
90,194
22,921
75,480
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Table 4.8, 4.9 and 4.10 presents average initial metformin and sulfonylureas pre-

scription age, average cancer incidence age and average all-cause death age among

all metformin and sulfonylureas initiators, respectively. Average initial metformin or

sulfonylureas prescription age and average cancer diagnosis age are close, while av-

erage all-cause death age are approximately 10 years after. The proportion of death

for metformin initiators dropped to 50% compared with the proportion of metformin

initiators among metformin and sulfonylureas initiators which is around 70% from

Table 4.2.

Table 4.11, 4.12 and 4.13 presents average initial metformin and sulfonylureas

prescription age, average cancer incidence age and average all-cause death age among

those who prescribed metformin or sulfonylureas before cancer diagnosis, which are

designed for cancer incidence risks analyses. Since the proportion of cancer diagnosis

for both drugs are similar among the population level as in Table 4.2, metformin and

sulfonylureas might have similar risks in cancer incidence.

Table 4.14, 4.15 and 4.16 presents average initial metformin and sulfonylureas

prescription age, average cancer incidence age and average all-cause death age among

those who prescribed metformin or sulfonylureas after cancer diagnosis, which are

designed for cancer mortality risks analyses. Since the proportion of all-cause death

for metformin initiators dropped from from 70% (Table 4.2) to around 50%, this may

contribute to the relative protective effect of metformin on cancer mortality.
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Table 4.8: Average initial metformin/sulfonylureas prescription age

Disease Met N % Sulf N % All N
Cancer 68.3 28,290 65.9% 70.2 14,608 34.1% 69.0 42,898
Breast cancer 66.8 3,605 73.1% 70.4 1,324 26.9% 67.8 4,929
Prostate cancer 70.5 3,464 66.7% 71.5 1,731 33.3% 70.8 5,195
Bowel cancer 68.7 3,026 62.1% 71.2 1,850 37.9% 69.3 4,876
Lung cancer 68.3 1,949 58.6% 68.2 1,379 41.4% 68.2 3,328

Table 4.9: Average cancer incidence age by initial metformin/sulfonylureas prescrip-
tion

Disease Met N % Sulf N % All N
Cancer 67.1 28,268 66.0% 72.0 14,587 34.0% 68.8 42,855
Breast cancer 64.0 3,600 73.2% 69.7 1,318 26.8% 65.5 4,918
Prostate cancer 71.0 3,462 66.7% 74.8 1,726 33.3% 72.2 5,188
Bowel cancer 68.7 3,023 62.1% 72.2 1,846 37.9% 70.1 4,869
Lung cancer 72.1 1,948 58.6% 73.5 1,377 41.4% 72.7 3,325

Table 4.10: Average all-cause death age by initial metformin/sulfonylureas prescrip-
tion

Disease Met N % Sulf N % All N
Cancer 77.0 9,101 50.0% 78.9 9,101 50.0% 78.0 18,202
Breast cancer 77.2 799 52.8% 80.1 713 47.2% 78.5 1,512
Prostate cancer 79.9 959 48.6% 81.1 1,016 51.4% 80.5 1,975
Bowel cancer 77.0 1,143 48.1% 78.7 1,234 51.9% 77.9 2,377
Lung cancer 74.2 1,422 54.3% 74.8 1,198 45.7% 74.5 2,620
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Table 4.11: Average initial metformin/sulfonylureas prescription age when prescrip-
tion happens before cancer diagnosis

Disease Met N % Sulf N % All N
Cancer 66.2 14,338 61.1% 68.0 9,128 38.9% 66.9 23,466
Breast cancer 64.3 1,381 68.3% 68.1 642 31.7% 65.5 2,023
Prostate cancer 67.6 1,836 62.2% 68.7 1,116 37.8% 68.0 2,952
Bowel cancer 66.5 1,763 60.2% 68.0 1,165 39.8% 67.1 2,928
Lung cancer 67.8 1,645 59.3% 67.6 1,131 40.7% 67.7 2,776

Table 4.12: Average cancer incidence age when initial metformin/sulfonylureas pre-
scription happens before cancer diagnosis

Disease Met N % Sulf N % All N
Cancer 71.5 14,338 61.1% 75.0 9,128 38.9% 72.9 23,466
Breast cancer 69.4 1,381 68.3% 74.9 642 31.7% 71.1 2,023
Prostate cancer 72.7 1,836 62.2% 76.1 1,116 37.8% 74.0 2,952
Bowel cancer 72.2 1,763 60.2% 75.3 1,165 39.8% 73.4 2,928
Lung cancer 73.2 1,645 59.3% 74.5 1,131 40.7% 73.8 2,776

Table 4.13: Average all-cause death age when initial metformin/sulfonylureas pre-
scription happens before cancer diagnosis

Disease Met N % Sulf N % All N
Cancer 75.8 5,768 50.3% 78.5 5,690 49.7% 77.2 11,458
Breast cancer 77.3 365 52.5% 81.3 330 47.5% 79.2 695
Prostate cancer 79.0 507 45.6% 81.1 605 54.4% 80.1 1,112
Bowel cancer 76.2 788 50.2% 78.6 781 49.8% 77.4 1,569
Lung cancer 74.3 1,277 56.4% 75.3 989 43.6% 74.7 2,266
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Table 4.14: Average initial metformin/sulfonylureas prescription age when prescrip-
tion happens after cancer diagnosis

Disease Met N % Sulf N % All N
Cancer 70.5 13,900 71.9% 73.9 5,422 28.1% 71.5 19,322
Breast cancer 68.2 2,213 76.6% 72.6 676 23.4% 69.3 2,889
Prostate cancer 73.7 1,619 72.7% 76.5 607 27.3% 74.5 2,226
Bowel cancer 71.8 1,259 65.0% 73.8 679 35.0% 72.5 1,938
Lung cancer 70.7 301 55.9% 71.0 237 44.1% 70.8 538

Table 4.15: Average cancer incidence age when initial metformin/sulfonylureas pre-
scription happens after cancer diagnosis

Disease Met N % Sulf N % All N
Cancer 62.5 13,900 71.9% 67.0 5,422 28.1% 63.8 19,322
Breast cancer 60.6 2,213 76.6% 64.8 676 23.4% 61.6 2,889
Prostate cancer 69.0 1,619 72.7% 72.5 607 27.3% 69.9 2,226
Bowel cancer 63.9 1,259 65.0% 66.9 679 35.0% 65.0 1,938
Lung cancer 65.8 301 55.9% 68.9 237 44.0% 67.1 538

Table 4.16: Average all-cause death age when initial metformin/sulfonylureas pre-
scription happens after cancer diagnosis

Disease Met N % Sulf N % All N
Cancer 79.2 3,315 49.6% 79.5 3,367 50.4% 79.3 6,682
Breast cancer 77.1 430 53.2% 79.1 379 46.8% 78.0 809
Prostate cancer 80.8 445 52.3% 81.1 406 47.7% 80.9 851
Bowel cancer 78.8 353 44.1% 78.9 448 55.9% 78.8 801
Lung cancer 73.8 143 41.6% 72.7 201 58.4% 73.1 344
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4.2 Synthetic Randomized Controlled Trial Design

Table 4.17 reveals the design of randomized controlled trial emulation in this thesis.

Particularly, 10 sub-studies are composed of general cancer, breast cancer, prostate

cancer, bowel cancer and lung cancer together with incidence and mortality risks.

Within in each study, we investigated CCR, ATE, ATT and ATU weighting schemes

with metformin/sulfonylureas and sulfonylureas/metformin as treatment and control.

Fewer variables, complete case analysis, treating missing as a separate category and

inverse probability weighting are employed to enclose various missing mechanisms

on missing data. From Table 4.7, we add a final constraint on initial anti-diabetes

prescription at 2000 to avoid massive missing data problem. All the cases formulated

640 emulated RCTs so as to take all factors and cases into consideration.
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Table 4.17: Synthetic RCT study design, 640 in total (+: include possible cases
above)

Multiples 5 2 4 2 4 2 Model
Sub-study 1 Cancer Incidence CCR Ref=Met Fewer All Model 1
Sub-study 1 Cancer Incidence CCR Ref=Met Fewer >2000 Model 2
Sub-study 1 Cancer Incidence CCR Ref=Met Complete All Model 3
Sub-study 1 Cancer Incidence CCR Ref=Met Complete >2000 Model 4
Sub-study 1 Cancer Incidence CCR Ref=Met Separate All Model 5
Sub-study 1 Cancer Incidence CCR Ref=Met Separate >2000 Model 6
Sub-study 1 Cancer Incidence CCR Ref=Met IPW All Model 7
Sub-study 1 Cancer Incidence CCR Ref=Met IPW >2000 Model 8
Sub-study 1 Cancer Incidence CCR Ref=Sulf Fewer All Model 9
Sub-study 1 Cancer Incidence CCR Ref=Sulf Fewer >2000 Model 10
Sub-study 1 Cancer Incidence CCR Ref=Sulf Complete All Model 11
Sub-study 1 Cancer Incidence CCR Ref=Sulf Complete >2000 Model 12
Sub-study 1 Cancer Incidence CCR Ref=Sulf Separate All Model 13
Sub-study 1 Cancer Incidence CCR Ref=Sulf Separate >2000 Model 14
Sub-study 1 Cancer Incidence CCR Ref=Sulf IPW All Model 15
Sub-study 1 Cancer Incidence CCR Ref=Sulf IPW >2000 Model 16

Sub-study 1 Cancer Incidence ATE + + + +
Sub-study 1 Cancer Incidence ATT + + + +
Sub-study 1 Cancer Incidence ATU + + + +

Sub-study 2 Cancer Mortality CCR + + + +
Sub-study 2 Cancer Mortality ATE + + + +
Sub-study 2 Cancer Mortality ATT + + + +
Sub-study 2 Cancer Mortality ATU + + + +

Sub-study 3 Breast Incidence + + + + +
Sub-study 4 Breast Mortality + + + + +

Sub-study 5 Prostate Incidence + + + + +
Sub-study 6 Prostate Mortality + + + + +

Sub-study 7 Bowel Incidence + + + + +
Sub-study 8 Bowel Mortality + + + + +

Sub-study 9 Lung Incidence + + + + +
Sub-study 10 Lung Mortality + + + + +
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4.3 Model Specifications

Within each scheme, 16 Models on the rightmost column tabulated in 4.17 are spec-

ified as follows,

Model 1: metformin as control; adjust for fewer variables including gender, initial

anti-diabetes prescription year, region and stratified on prescription age (5-year span).

Model 2: metformin as control; restrict initial anti-diabetes prescription year from

2000 onwards; adjust for fewer variables including gender, prescription year, region

and stratified on prescription age (5-year span).

Model 3: metformin as control; complete case analysis; adjusted for gender, initial

anti-diabetes prescription year, region, stratified on prescription age (5-year span),

IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hypertension,

PVD, CKD, COPD).

Model 4: metformin as control; restrict initial anti-diabetes prescription year

from 2000 onwards; complete case analysis; adjusted for gender, initial anti-diabetes

prescription year, region, stratified on prescription age (5-year span), IMD, BMI,

HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hypertension, PVD,

CKD, COPD).

Model 5: metformin as control; missing data as a separate category; adjusted for

gender, initial anti-diabetes prescription year, region, stratified on prescription age

(5-year span), IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke,

hypertension, PVD, CKD, COPD).

Model 6: metformin as control; restrict initial anti-diabetes prescription year from

2000 onwards; missing data as a separate category; adjusted for gender, initial anti-
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diabetes prescription year, region, stratified on prescription age (5-year span), IMD,

BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hypertension, PVD,

CKD, COPD).

Model 7: metformin as control; inverse probability weighting on complete cases;

adjusted for gender, initial anti-diabetes prescription year, region, stratified on pre-

scription age (5-year span), IMD, BMI, HbAIc, smoking, and comorbidities (HF,

CHD, AF, stroke, hypertension, PVD, CKD, COPD).

Model 8: metformin as control; restrict initial anti-diabetes prescription year from

2000 onwards; inverse probability weighting on complete cases; adjusted for gender,

initial anti-diabetes prescription year, region, stratified on prescription age (5-year

span), IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hy-

pertension, PVD, CKD, COPD).

Model 9: sulfonylureas as control; adjust for fewer variables including gender, ini-

tial anti-diabetes prescription year, region and stratified on prescription age (5-year

span).

Model 10: sulfonylureas as control; restrict initial anti-diabetes prescription year

from 2000 onwards; adjust for fewer variables including gender, prescription year,

region and stratified on prescription age (5-year span).

Model 11: sulfonylureas as control; complete case analysis; adjusted for gender,

initial anti-diabetes prescription year, region, stratified on prescription age (5-year

span), IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hy-

pertension, PVD, CKD, COPD).

Model 12: sulfonylureas as control; restrict initial anti-diabetes prescription year

from 2000 onwards; complete case analysis; adjusted for gender, initial anti-diabetes
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prescription year, region, stratified on prescription age (5-year span), IMD, BMI,

HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hypertension, PVD,

CKD, COPD).

Model 13: sulfonylureas as control; missing data as a separate category; adjusted

for gender, initial anti-diabetes prescription year, region, stratified on prescription

age (5-year span), IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF,

stroke, hypertension, PVD, CKD, COPD).

Model 14: sulfonylureas as control; restrict initial anti-diabetes prescription year

from 2000 onwards; missing data as a separate category; adjusted for gender, initial

anti-diabetes prescription year, region, stratified on prescription age (5-year span),

IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke, hypertension,

PVD, CKD, COPD).

Model 15: sulfonylureas as control; inverse probability weighting on complete

cases; adjusted for gender, initial anti-diabetes prescription year, region, stratified on

prescription age (5-year span), IMD, BMI, HbAlc, smoking, and comorbidities (HF,

CHD, AF, stroke, hypertension, PVD, CKD, COPD).

Model 16: sulfonylureas as control; restrict initial anti-diabetes prescription year

from 2000 onwards; inverse probability weighting on complete cases; adjusted for

gender, initial anti-diabetes prescription year, region, stratified on prescription age

(5-year span), IMD, BMI, HbAlc, smoking, and comorbidities (HF, CHD, AF, stroke,

hypertension, PVD, CKD, COPD).

Gender is excluded in breast cancer and prostate cancer cases by limiting gender

to female and male correspondingly.
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4.4 Positive Study Settings

Dependent variable settings

As comorbidities/complications are potential confounders, we take comorbidities

as 1 when it happens before initial anti-diabetes prescription. Comorbidities after

initial anti-diabetes prescription are assigned to 0 even if they take place afterwards.

Under this agreement, we delete those with comorbidities but without corresponding

eventdate.

In a Cox model, stratification will offer the same number of hazard functions as

the number of strata. Hazard ratios (e) will be optimized for each strata before

fitting.

In this study, the model will output a hazard ratio for initial anti-diabetes pre-

scription age in the presence of 10 hazards intrinsic to the levels of initial anti-diabetes

prescription age. If initial anti-diabetes prescription age violats the proportional haz-

ards assumption, generating strata may potentially make the proportional hazard

assumption satisfied and make the estimates for initial anti-diabetes prescription age

valid. The effect of initial anti-diabetes prescription age is not explicitly provided as

a hazard ratio.

Both smoking and BMI (weight) are imported by 5-year latest record before initial

anti-diabetic drug prescription. If BMI is not recorded in the database directly, we

take the weight from [-5, +1] with respect to initial anti-diabetic drug prescription

year, and height is considered as a constant after age 30.

Those who are not in this range or missing from the database is regarded as miss-

ing. For HbAlc, the time window is 2 years since it might deviate from original level

quite a bit. Also, as socioeconomic status is quite stable in UK, we take the latest

IMD from the database.
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Since there are only around 1000 observations when BMI < 18.5, we combine

those BMI under 25 as one category instead of two.

Without stratification, initial anti-diabetes prescription age will output a hazard

ratio for itself, assuming that the hazard for different levels of initial anti-diabetes

prescription age are the same. Initial anti-diabetes prescription age is stratified into

10 layers, starting from 40 to over 85, with 5 years in each level.

Independent variable settings

Key components for a typical survival object are presented in Table 4.18. Origin

time is when an individual begins at risk. For cancer incidence, origin time is 0 since

patients become at risk of cancer when they are born. While for cancer mortality,

patients become at risk of death after cancer diagnosis. Start date is when an individ-

ual enters survival study. Start date is initial anti-diabetes prescription date for both

incidence and mortality. For incidence risks, we choose age as time scale considering

P(cancer age = 50|prescription age = 40) / P(cancer age = 60|prescription age =

50). However, average age for all-cause mortality after cancer diagnosis among dia-

betes patients is 11.69 years, P(death age = 50|cancer age = 40) ~ P(death age =

601cancer age = 50), age after cancer diagnosis should be chosen instead.

Table 4.18: Survival object settings

Case Incidence Mortality
Origin time 0 Cancer age
Start time Prescription age Prescription age
End time min(icdn, t,te, td) - YOB min(icd_n, t, td) - YOB
Study population DMT2 patients DMT2 & cancer patients
Event of Interest Cancer Death

where icdn is latest GP data upload date, tc is cancer eventdate, te is data ex-

traction date (2018 - 06 - 01), td is death date, and YOB is year of birth.
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Other settings

Inverse probability weights for missing adjustment are calculated after deleting

incomplete cases. Propensity score weighting is calculated by specific models and

schemes, accordingly. Only instantaneous risk ratio "hazard ratio" is considered

thoughout this study.
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Chapter 5

Results and Analysis

5.1 Sub-study 1: Cancer Incidence Risks

In this section, we compare cancer incidence risks between metformin and sulfony-

lureas under CCR, ATE, ATT and ATU schemes along with four distinct methods

dealing with missing data, including adjusting for fewer variables, complete case anal-

ysis, treating missing as a separate category and inverse probability weighting. Tab-

ulated in Table 5.1, 5.2, 5.3 and 5.4, we found out that both drugs reveal similar

risks on cancer incidence since p-values exceed 0.05 and 95% CIs include 1 among 64

sub-analyses.
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Table 5.1: Conventional Cox regression comparing cancer incidence risks between
metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

HR (95% CI)
0.976 (0.944 - 1.009)
0.979 (0.937 - 1.024)

1.021 (0.968 - 1.077)
1.035 (0.973 - 1.100)

1.002 (0.968 - 1.038)
1.010 (0.964 - 1.059)

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.028 (0.993 - 1.065)
1.038 (0.983 - 1.096)

HR (95% CI)
1.025 (0.991 - 1.060)
1.021 (0.976 - 1.068)

0.979 (0.928 - 1.033)
0.966 (0.909 - 1.027)

0.998 (0.964 - 1.033)
0.990 (0.945 - 1.037)

0.973 (0.939 - 1.007)
0.963 (0.913 - 1.017)

0.121 99,620
0.180 91,297

p-value

0.156
0.362

0.437
0.274

N
184,573
137,261

99,620
91,297

0.898 184,573
0.665 137,261

0.121
0.180

99,620
91,297

100

p-value
0.156
0.362

0.437
0.274

0.898
0.665

N
184,573
137,261

99,620
91,297

184,573
137,261

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110



Table 5.2: Propensity score analysis comparing cancer incidence risks between met-
formin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

Complete

Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.019 (0.970 - 1.072)
1.028 (0.948 - 1.115)

1.006 (0.886 - 1.141)
0.978 (0.851 - 1.124)

1.041 (0.983 - 1.103)
1.048 (0.955 - 1.151)

1.005 (0.909 - 1.111)
0.980 (0.860 - 1.118)

p-value
0.449
0.502

0.931
0.754

N
184,573
137,261

99,620
91,297

0.168 184,573
0.325 137,261

0.924
0.766

99,620
91,297

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.981 (0.933 - 1.031)
0.973 (0.897 - 1.055)

0.994
1.023

(0.877
(0.890

0.960 (0.907
0.954 (0.869

- 1.128)
- 1.175)

- 1.017)
- 1.048)

0.995 (0.900 - 1.101)
1.020 (0.895 - 1.163)

p-value
0.449
0.502

0.931
0.754

0.168
0.325

N
184,573
137,261

99,620
91,297

184,573
137,261

0.924 99,620
0.766 91,297
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I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110



Table 5.3: Propensity score analysis comparing cancer incidence risks between met-
formin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

HR (95% CI)
1.007 (0.954 - 1.064)
0.991 (0.947 - 1.038)

1.031 (0.959 - 1.110)
1.052 (0.985 - 1.124)

1.024 (0.963 - 1.089)
1.019 (0.968 - 1.074)

IPW
IPW, >2000

1.028 (0.906 - 1.167)
1.050 (0.981 - 1.123)

0.665 99,620
0.161 91,297

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
0.981 (0.917 - 1.050)
0.963 (0.874 - 1.062)

Complete

Complete, 2000

Separate

Separate, >2000

IPW
IPW, >2000

1.005 (0.862 - 1.172)
1.037 (0.883 - 1.216)

0.961 (0.887 - 1.041)
0.948 (0.846 - 1.062)

1.008 (0.891 - 1.139)
1.034 (0.888 - 1.204)

0.949 99,620
0.660 91,297

0.326
0.354

184,573
137,261

0.903 99,620
0.665 91,297
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p-value
0.791
0.705

0.406
0.133

0.443
0.465

N
184,573
137,261

99,620
91,297

184,573
137,261

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110

p-value

0.587
0.452

N
184,573
137,261

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110



Table 5.4: Propensity score analysis comparing cancer incidence risks between met-
formin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.019 (0.952 - 1.091)
1.038 (0.942 - 1.144)

Complete

Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

0.995 (0.853 - 1.160)
0.965 (0.822 - 1.132)

1.041 (0.961 - 1.127)
1.055 (0.942 - 1.182)

0.992 (0.878 - 1.122)
0.967 (0.831 - 1.126)

0.949 99,620
0.66 91,297

0.326
0.354

184,573
137,261

0.903 99,620
0.665 91,297

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
0.993 (0.940 - 1.048)
1.009 (0.964 - 1.056)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

0.970 (0.901 - 1.043)
0.951 (0.890 - 1.016)

0.976 (0.918 - 1.038)
0.981 (0.931 - 1.033)

0.972 (0.857 - 1.104)
0.953 (0.890 - 1.019)

0.406 99,620
0.133 91,297

0.443
0.465

184,573
137,261

0.665 99,620
0.161 91,297
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p-value
0.587
0.452

N
184,573
137,261

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110

p-value
0.791
0.705

N
184,573
137,261

I
21,881
14,092

10,658
9,110

21,881
14,092

10,658
9,110



5.2 Sub-study 2: Cancer Mortality Risks

In this section, we compare cancer mortality risks between metformin and sulfony-

lureas under CCR, ATE, ATT and ATU schemes with four methods dealing with

missing data accordingly. Tabulated in Table 5.5, 5.6, 5.7 and 5.8, we found out

that metformin is protective over sulfonylureas on cancer mortality since p-values are

highly significant and 95% CIs do not include 1 among 64 sub-analyses.

Table 5.5: Conventional Cox regression comparing cancer mortality risks between

metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.465 (1.376 - 1.561)
1.558 (1.452 - 1.673)

1.376 (1.253 - 1.510)
1.414 (1.283 - 1.559)

1.385 (1.297 - 1.480)
1.439 (1.337 - 1.550)

1.325 (1.238 - 1.418)
1.396 (1.276 - 1.526)

p-value
<0.001
<0.001

N
18,041
15,594

I
5,897
4,285

<0.001 11,176 2,835
<0.001 10,697 2,549

<0.001 18,041 5,897
<0.001 15,594 4,285

<0.001 11,176 2,835
<0.001 10,697 2,549

Reference (sulfonylureas) HR (95% CI) p-value N I
Fewer 0.682 (0.641 - 0.729) <0.001 18,041 5,897
Fewer, >2000 0.642 (0.598 - 0.689) <0.001 15,594 4,285

Complete 0.727 (0.662 - 0.798) <0.001 11,176 2,835
Complete, >2000 0.707 (0.642 - 0.780) <0.001 10,697 2,549

Separate 0.722 (0.676 - 0.771) <0.001 18,041 5,897
Separate, >2000 0.695 (0.645 - 0.748) <0.001 15,594 4,285

IPW 0.755 (0.705 - 0.808) <0.001 11,176 2,835
IPW, >2000 0.717 (0.655 - 0.783) <0.001 10,697 2,549
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Table 5.6: Propensity score analysis comparing cancer incidence risks between met-
formin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate

Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.673 (1.542 - 1.816)
1.897 (1.734 - 2.074)

1.869
1.873

1.577
1.800

(1.541
(1.509

(1.433
(1.616

- 2.266)
- 2.325)

- 1.736)
- 2.005)

1.699 (1.446 - 1.997)
1.835 (1.502 - 2.242)

p-value
<0.001
<0.001

<0.001
<0.001

N
18,041
15,594

11,176
10,697

<0.001 18,041
<0.001 15,594

<0.001
<0.001

11,176
10,697

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.598 (0.551 - 0.649)
0.527 (0.482 - 0.577)

0.535 (0.441 - 0.649)
0.534 (0.430 - 0.663)

0.634 (0.576 - 0.698)
0.556 (0.499 - 0.619)

0.588 (0.501 - 0.692)
0.545 (0.446 - 0.666)
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I
5,897
4,285

2,835
2,549

5,897
4,285

2,835
2,549

p-value
<0.001
<0.001

<0.001
<0.001

<0.001
<0.001

<0.001
<0.001

N
18,041
15,594

11,176
10,697

18,041
15,594

11,176
10,697

I
5,897
4,285

2,835
2,549

5,897
4,285

2,835
2,549



Table 5.7: Propensity score analysis comparing cancer incidence risks between met-
formin and sulfonylureas using

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

ATT weights

HR (95% CI)
1.241 (1.127 - 1.366)
1.384 (1.291 - 1.484)

1.223 (1.114 - 1.343)
1.267 (1.148 - 1.397)

1.172 (1.043 - 1.317)
1.264 (1.167 - 1.370)

1.167 (1.049 - 1.298)
1.257 (1.137 - 1.389)

HR (95% CI)
0.496 (0.450 - 0.546)
0.474 (0.428 - 0.526)

0.473 (0.378 - 0.593)
0.482 (0.376 - 0.618)

0.516 (0.461 - 0.577)
0.489 (0.429 - 0.556)

0.517 (0.425 - 0.630)
0.492 (0.390 - 0.622)

p-value
<0.001
<0.001

<0.001
<0.001

0.008
<0.001

0.004
<0.001

p-value
<0.001
<0.001

<0.001
<0.001

<0.001
<0.001

<0.001

N
18,041
15,594

11,176
10,697

18,041
15,594

11,176
10,697

N
18,041
15,594

11,176
10,697

18,041
15,594

11,176

I
5,897
4,285

2,835
2,549

5,897
4,285

2,835
2,549

I
5,897
4,285

2,835
2,549

5,897
4,285

2,835
<0.001 10,697 2,549
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Table 5.8: Propensity score analysis comparing cancer incidence risks between met-
formin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
2.017 (1.831 - 2.
2.109 (1.901 - 2.

222)
339)

2.113
2.073

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

(1.686
(1.617

- 2.648)
- 2.658)

1.939 (1.733 - 2.170)
2.047 (1.798 - 2.330)

1.934
2.031

(1.588
(1.609

2.355)
2.563)

<0.001 11,176
<0.001 10,697

<0.001
<0.001

<0.001
<0.001

18,041
15,594

11,176
10,697

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

HR (95% CI)
0.806 (0.732 - 0.887)
0.723 (0.674 - 0.775)

0.818
0.789

0.853
0.791

IPW
IPW, >2000

(0.745 -
(0.716 -

(0.759 -
(0.730 -

0.898)
0.871)

0.959)
0.857)

0.857 (0.771 - 0.953)
0.796 (0.720 - 0.879)

p-value
<0.001
<0.001

<0.001
<0.001

N
18,041
15,594

11,176
10,697

0.008 18,041
<0.001 15,594

0.004
<0.001

11,176
10,697

- 107

p-value
<0.001
<0.001

N
18,041
15,594

I
5,897
4,285

2,835
2,549

5,897
4,285

2,835
2,549

I
5,897
4,285

2,835
2,549

5,897
4,285

2,835
2,549



5.3 Sub-study 3: Breast Cancer Incidence Risks

In this section, we compare breast cancer incidence risks between metformin and

sulfonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing

with missing data accordingly. Tabulated in Table 5.9, 5.10, 5.11 and 5.12, we found

out that both drugs reveal similar risks on breast cancer incidence since p-values

exceed 0.05 and 95% CIs include 1 among 64 sub-analyses.

Table 5.9: Conventional Cox regression comparing breast cancer incidence risks be-
tween metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, 2000

HR (95% CI)
0.899 (0.797 - 1.013)
0.899 (0.767 - 1.053)

0.977 (0.808 - 1.182)
1.013 (0.816 - 1.259)

0.950 (0.839 - 1.075)
0.952 (0.807 - 1.123)

IPW
IPW, >2000

1.072 (0.949 - 1.210)
1.033 (0.853 - 1.251)

0.266 46,130
0.738 42,291

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, 2000

HR (95% CI)
1.113 (0.987 -- 1.255)
1.113 (0.950 - 1.304)

1.023 (0.846 - 1.237)
0.987 (0.795 - 1.226)

1.053 (0.931 - 1.191)
1.050 (0.890 - 1.239)

IPW
IPW, >2000

0.933 (0.826 - 1.054)
0.968 (0.799 - 1.172)

0.266 46,130
0.738 42,291

108

p-value
0.081
0.186

0.814
0.905

0.412
0.561

N
87,335
64,375

46,130
42,291

87,335
64,375

I
1,845
1,279

940
818

1,845
1,279

940
818

p-value

0.081
0.186

0.814
0.905

0.412
0.561

N
87,335
64,375

46,130
42,291

87,335
64,375

I
1,845
1,279

940
818

1,845
1,279

940
818



Table 5.10: Propensity score analysis comparing breast cancer incidence risks between
metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

HR (95% CI)
0.926 (0.804 - 1.066)
0.824 (0.667 - 1.017)

1.213 (0.794 - 1.852)
1.128 (0.720 - 1.768)

1.056 (0.888 - 1.257)
1.023 (0.788 - 1.327)

IPW
IPW, >2000

1.248 (0.909 - 1.715)
1.125 (0.737 - 1.716)

0.171 46,130
0.585 42,291

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.080 (0.938 - 1.243)
1.214 (0.983 - 1.498)

0.824 (0.540 - 1.259)
0.886 (0.566 - 1.389)

0.947 (0.796 - 1.126)
0.978 (0.753 - 1.269)

0.801 (0.583 - 1.101)
0.889 (0.583 - 1.356)

109

p-value
0.286
0.072

0.372
0.598

0.537
0.865

N
87,335
64,375

46,130
42,291

87,335
64,375

I
1,845
1,279

940
818

1,845
1,279

940
818

p-value
0.286
0.072

0.372
0.598

0.537
0.865

0.171
0.585

N
87,335
64,375

46,130
42,291

87,335
64,375

46,130
42,291

I
1,845
1,279

940
818

1,845
1,279

940
818



Table 5.11: Propensity score analysis comparing breast cancer incidence risks between
metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

HR (95% CI)
1.093 (0.926 - 1.290)
0.961 (0.817 - 1.131)

1.082 (0.877 - 1.335)
1.128 (0.700 - 1.415)

1.115 (0.922 - 1.349)
0.997 (0.835 - 1.191)

IPW
IPW, >2000

1.242 (0.945 - 1.631)
1.150 (0.913 - 1.447)

0.120 46,130
0.235 42,291

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.198 (1.002 - 1.433)
1.262 (0.990 - 1.610)

0.815 (0.504 - 1.319)
0.890 (0.543 - 1.458)

0.985 (0.786 - 1.234)
0.971 (0.719 - 1.312)

0.806 (0.553 - 1.176)
0.895 (0.559 - 1.430)

p-value
0.047
0.061

N
87,335
64,375

0.405 46,130
0.644 42,291

0.894
0.850

87,335
64,375

0.263 46,130
0.642 42,291

110

p-value
0.293
0.633

0.464
0.297

0.260
0.974

N
87,335
64,375

46,130
42,291

87,335
64,375

I
1,845
1,279

940
818

1,845
1,279

940
818

I
1,845
1,279

940
818

1,845
1,279

940
818



Table 5.12: Propensity score analysis comparing breast cancer incidence risks between
metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
0.835 (0.698 - 0.998)
0.792 (0.621 - 1.010)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.227 (0.758 - 1.985)
1.124 (0.686 - 1.841)

1.015 (0.810 - 1.272)
1.029 (0.762 - 1.390)

1.240 (0.851 - 1.809)
1.118 (0.699 - 1.788)

0.405 46,130
0.644 42,291

0.894
0.850

0.263
0.642

87,335
64,375

46,130
42,291

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

HR (95% CI)
0.915 (0.775 - 1.080)
1.040 (0.884 - 1.224)

0.924 (0.749 - 1.141)
0.887 (0.707 - 1.112)

Separate
Separate, >2000

IPW
IPW, >2000

0.897 (0.742 - 1.084)
1.003 (0.840 - 1.198)

0.805 (0.613 - 1.058)
0.870 (0.691 - 1.095)

0.260 87,335
0.974 64,375

0.120 46,130
0.235 42,291

111

p-value
0.047
0.061

N
87,335
64,375

I
1,845
1,279

940
818

1,845
1,279

940
818

p-value
0.293
0.633

0.464
0.297

N
87,335
64,375

46,130
42,291

I
1,845
1,279

940
818

1,845
1,279

940
818



5.4 Sub-study 4: Breast Cancer Mortality Risks

In this section, we compare breast cancer mortality risks between metformin and

sulfonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing

with missing data accordingly. Tabulated in Table 5.13, 5.14, 5.15 and 5.16, we found

out that metformin is protective over sulfonylureas on breast cancer mortality since

p-values are significant and 95% CIs do not include 1 among most sub-analyses.

Table 5.13: Conventional Cox regression comparing breast cancer mortality risks
between metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.542 (1.280 - 1.858)
1.661 (1.337 - 2.064)

1.455 (1.072 - 1.977)
1.539 (1.111 - 2.131)

1.581 (1.297 - 1.927)
1.587 (1.254 - 2.008)

1.374 (1.102 - 1.714)
1.500 (1.120 - 2.010)

HR (95% CI)
0.648 (0.538 - 0.781)
0.602 (0.484 -- 0.748)

0.687 (0.506 - 0.933)
0.650 (0.469 - 0.900)

0.633 (0.519 - 0.771)
0.630 (0.498 - 0.798)

0.728 (0.584 - 0.908)
0.667 (0.497 - 0.893)

p-value
<0.001
<0.001

0.016
0.009

<0.001
<0.001

N
2,669
2,341

1,677
1,616

2,669
2,341

0.005 1,677
0.007 1,616

p-value
<0.001
<0.001

0.016
0.009

N
2,669
2,341

1,677
1,616

<0.001 2,669
<0.001 2,341

0.005 1,677
0.007 1,616

112

I
709
508

315
280

709
508

315
280

I
709
508

315
280

709
508

315
280



Table 5.14: Propensity score analysis comparing breast cancer mortality risks between
metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.987 (1.504 - 2.625)
2.328 (1.697 - 3.193)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

3.239 (1.942 - 5.402)
3.550 (2.163 - 5.827)

2.109
2.376

2.757
3.329

(1.486 -
(1.552 -

(1.641 -
(2.017 -

2.995)
3.638)

4.631)
5.492)

<0.001 1,677
<0.001 1,616

<0.001
<0.001

<0.001
<0.001

2,669
2,341

1,677
1,616

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
0.503 (0.381 - 0.
0.430 (0.313 - 0.

665)
589)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

0.309
0.282

(0.185
(0.172

- 0.515)
- 0.462)

0.474 (0.334 - 0.673)
0.421 (0.275 - 0.644)

0.363
0.300

(0.216
(0.182

- 0.609)
- 0.496)

<0.001 1,677
<0.001 1,616

<0.001 2,669
<0.001 2,341

<0.001
<0.001

1,677
1,616

113

p-value

<0.001
<0.001

N
2,669
2,341

I
709
508

315
280

709
508

315
280

p-value

<0.001
<0.001

N
2,669
2,341

I
709
508

315
280

709
508

315
280



Table 5.15: Propensity score analysis comparing breast cancer mortality risks between
metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.283 (1.023 - 1.610)
1.425 (1.147 - 1.771)

Complete
Complete, >2000

Separate

Separate, >2000

IPW
IPW, >2000

1.377 (1.012 - 1.873)
1.458 (1.054 - 2.016)

1.406 (1.052 - 1.879)
1.472 (1.134 - 1.909)

1.338 (0.958 - 1.867)
1.436 (1.033 - 1.996)

0.042 1,677
0.023 1,616

0.021
0.003

0.087
0.031

2,669
2,341

1,677
1,616

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
0.406 (0.294 - 0.562)
0.378 (0.267 - 0.535)

0.268
0.250

Complete

Complete, >2000

Separate

Separate, >2000

IPW
IPW, ;>2000

(0.162
(0.154

- 0.445)
- 0.405)

0.388 (0.258 - 0.582)
0.375 (0.234 - 0.602)

0.311 (0.183 - 0.529)
0.266 (0.162 - 0.435)

<0.001 1,677
<0.001 1,616

<0.001 2,669
<0.001 2,341

<0.001
<0.001

1,677
1,616

114

p-value
0.031
0.001

N
2,669
2,341

I
709
508

315
280

709
508

315
280

p-value

<0.001
<0.001

N
2,669
2,341

I
709
508

315
280

709
508

315
280



Table 5.16: Propensity score analysis comparing breast cancer mortality risks between
metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
2.461 (1.780 - 3.401)
2.645 (1.869 - 3.744)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

3.726 (2.249 - 6.173)
4.000 (2.469 - 6.480)

2.581 (1.719 - 3.876)
2.667 (1.662 - 4.280)

3.211
3.763

(1.891
(2.297

- 5.452)
- 6.164)

HR (95% CI)
0.779 (0.621 - 0.
0.702 (0.565 - 0

977)
872)

0.726 (0.534 - 0.988)
0.686 (0.496 - 0.949)

0.711 (0.532 - 0.951)
0.680 (0.524 - 0.882)

0.748 (0.536 - 1.043)
0.696 (0.501 - 0.968)

<0.001 1,677
<0.001 1,616

<0.001
<0.001

<0.001
<0.001

p-value

0.031
0.001

0.042
0.023

2,669
2,341

1,677
1,616

N
2,669
2,341

1,677
1,616

0.021 2,669
0.004 2,341

0.087
0.031

1,677
1,616

115

p-value

<0.001
<0.001

N
2,669
2,341

I
709
508

315
280

709
508

315
280

I
709
508

315
280

709
508

315
280



5.5 Sub-study 5: Prostate Cancer Incidence Risks

In this section, we compare prostate cancer incidence risks between metformin and

sulfonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing

with missing data accordingly. Tabulated in Table 5.17, 5.18, 5.19 and 5.20, we found

out that sulfonylureas reveals protective effect on prostate cancer incidence in around

half of the cases, especially under the ATE weighting scheme. The other half revealed

similar risks on prostate cancer incidence risks. Since the number of participants and

events of interest are not sufficient to reach significance level, we can't tell whether

sulfonylureas is more protective or not.

Table 5.17: Conventional Cox regression comparing prostate cancer incidence risks
between metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

HR (95% CI)
0.917 (0.833 - 1.009)
0.913 (0.807 - 1.032)

0.919 (0.794 - 1.063)
0.897 (0.758 - 1.061)

Separate

Separate, >2000

IPW
IPW, >2000

0.921 (0.834 - 1.016)
0.922 (0.811 - 1.047)

0.948 (0.859 - 1.046)
0.895 (0.770 - 1.040)

0.100 111,562
0.211 85,091

0.284 62,194
0.147 57,273

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

HR (95% CI)
1.091 (0.991 - 1.201)
1.096 (0.969 - 1.239)

1.089 (0.941 - 1.259)
1.115 (0.943 - 1.320)

1.086 (0.984 - 1.199)
1.085 (0.955 - 1.233)

IPW
IPW, >2000

1.055 (0.957 - 1.164)
1.118 (0.962 - 1.299)

0.284 62,194 1,419
0.147 57,273 1,215

116

p-value

0.077
0.146

0.253
0.204

N
111,562
85,091

62,194
57,273

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215

p-value
0.077
0.146

0.253
0.204

0.100
0.211

N
111,562
85,091

62,194
57,273

111,562
85,091

I
2,733
1,840

1,419
1,215

2,733
1,840



Table 5.18: Propensity score analysis comparing prostate cancer incidence risks be-
tween metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
0.923 (0.794 - 1.073)
0.902 (0.707 - 1.151)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

0.648
0.610

(0.526
(0.469

- 0.797)
- 0.794)

0.867 (0.757 - 0.994)
0.798 (0.654 - 0.974)

0.759
0.631

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

(0.632
(0.485

- 0.910)
- 0.822)

HR (95% CI)
1.083 (0.932 - 1.259)
1.108 (0.869 - 1.414)

1.544
1.639

1.153
1.253

1.318
1.585

IPW
IPW, >2000

(1.255
(1.259

(1.006
(1.026

(1.098
(1.217

- 1.900)
- 2.134)

- 1.322)
- 1.529)

- 1.582)
- 2.063)

<0.001 62,194
<0.001 57,273

0.041 111,562
0.027 85,091

0.003
<0.001

p-value

0.296
0.408

<0.001
<0.001

0.041
0.027

62,194
57,273

N
111,562
85,091

62,194
57,273

111,562
85,091

0.003 62,194
<0.001 57,273

117

p-value
0.296
0.408

N
111,562
85,091

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215



Table 5.19: Propensity score analysis comparing prostate cancer incidence risks be-
tween metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
0.975 (0.822 - 1.157)
0.962 (0.848 - 1.091)

Complete

Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.078 (0.911 - 1.275)
1.006 (0.846 - 1.198)

0.994 (0.830 - 1.191)
0.969 (0.842 - 1.115)

1.165 (0.934 - 1.453)
1.001 (0.839 - 1.194)

0.382 62,194
0.943 57,273

0.948
0.662

0.176
0.992

111,562
85,091

62,194
57,273

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
1.145 (0.925 - 1.417)
1.131 (0.832 - 1.538)

Complete

Complete, 2000

Separate
Separate, >2000

IPW
IPW, >2000

1.861 (1.418 - 2.441)
1.855 (1.346 - 2.557)

1.307 (1.091 - 1.566)
1.338 (1.039 - 1.723)

1.634 (1.290 - 2.069)
1.789 (1.292 - 2.476)

<0.001 62,194
<0.001 57,273

0.004
0.024

<0.001
<0.001

111,562
85,091

62,194
57,273

118

p-value
0.774
0.545

N
111,562
85,091

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215

p-value

0.214
0.432

N
111,562
85,091

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215



Table 5.20: Propensity score analysis comparing prostate cancer incidence risks be-
tween metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate

Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.874 (0.706 - 1.081)
0.884 (0.650 - 1.202)

0.537 (0.410 - 0.705)
0.539 (0.391 - 0.743)

0.765 (0.639 - 0.916)
0.747 (0.580 - 0.963)

0.612 (0.483 - 0.775)
0.559 (0.404 - 0.774)

HR (95% CI)
1.025 (0.864 - 1.217)
1.040 (0.917 - 1.179)

0.928 (0.784 - 1.098)
0.994 (0.835 - 1.183)

1.006 (0.840 - 1.206)
1.032 (0.897 - 1.188)

0.859 (0.688 - 1.071)
0.999 (0.837 - 1.192)

p-value
0.214
0.432

<0.001
<0.001

N
111,562
85,091

62,194
57,273

0.004 111,562
0.024 85,091

<0.001 62,194
<0.001 57,273

p-value

0.774
0.545

N
111,562
85,091

0.382 62,194
0.943 57,273

0.948
0.662

0.176
0.992

111,562
85,091

62,194
57,273

119

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215

I
2,733
1,840

1,419
1,215

2,733
1,840

1,419
1,215



5.6 Sub-study 6: Prostate Cancer Mortality Risks

In this section, we compare prostate cancer mortality risks between metformin and

sulfonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing

with missing data accordingly. Tabulated in Table 5.21, 5.22, 5.23 and 5.24, we found

out that metformin is protective over sulfonylureas on prostate cancer mortality risks

in most circumstances. ATT and ATU weighting schemes tend not to offer stable

hazard ratio if treatment and control are inverted. This implies that the ATT and

ATU weighting schemes are not suitable for synthetic randomized controlled trials

Table 5.21: Conventional Cox regression comparing prostate cancer mortality risks

between metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.389 (1.163 - 1.659)
1.459 (1.206 - 1.765)

1.258
1.292

Complete
Complete, 2000

Separate

Separate, 2000

IPW
IPW, >2000

(0.982
(0.997

- 1.610)
- 1.673)

1.379 (1.143 - 1.664)
1.446 (1.181 - 1.769)

1.245
1.284

(1.035
(1.009

- 1.498)
- 1.633)

0.069 1,378
0.052 1,340

<0.001
<0.001

2,088
1,870

0.020 1,378
0.042 1,340

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

HR (95% CI)
0.720 (0.603 - 0.860)
0.685 (0.566 - 0.829)

0.795 (0.621 - 1.018)
0.774 (0.598 - 1.003)

Separate

Separate, 2000

IPW
IPW, >2000

0.725 (0.601 - 0.875)
0.692 (0.565 - 0.847)

0.803 (0.668 - 0.966)
0.779 (0.612 - 0.991)

<0.001 2,088
<0.001 1,870

0.020
0.042

1,378
1,340

120

p-value
<0.001
<0.001

N
2,088
1,870

I
775
608

424
401

775
608

424
401

p-value

<0.001
<0.001

0.069
0.052

N
2,088
1,870

1,378
1,340

I
775
608

424
401

775
608

424
401



Table 5.22: Propensity score analysis comparing prostate cancer mortality risks be-
tween metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.573 (1.279 - 1.936)
1.754 (1.405 - 2.190)

2.092
2.151

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

(1.532
(1.518

- 2.856)
- 3.048)

1.609 (1.276 - 2.030)
1.784 (1.387 - 2.294)

1.832
2.097

(1.359
(1.491

- 2.469)
- 2.950)

<0.001 1,378
<0.001 1,340

<0.001
<0.001

<0.001
<0.001

2,088
1,870

1,378
1,340

Reference (su
Fewer
Fewer, >2000

lfonylureas) HR (95% CI)
0.636 (0.517 - 0.782)
0.570 (0.457 - 0.712)

Complete
Complete, >2000

Separate
Separate, >2000

0.478 (0.350 - 0.653)
0.465 (0.328 - 0.659)

0.621
0.561

0.546
0.477

IPW
IPW, >2000

(0.493
(0.436

0.784)
0.721)

(0.405 - 0.736)
(0.339 - 0.671)

<0.001
<0.001

<0.001
<0.001

1,378
1,340

2,088
1,870

<0.001 1,378
<0.001 1,340

121

p-value
<0.001
<0.001

N
2,088
1,870

I
775
608

424
401

775
608

424
401

p-value

<0.001
<0.001

N
2,088
1,870

I
775
608

424
401

775
608

424
401



Table 5.23: Propensity score analysis comparing prostate cancer mortality risks be-
tween metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, 2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, 2000

IPW
IPW, >2000

HR (95% CI)
1.162 (0.944 - 1.432)
1.334 (1.098 - 1.622)

1.072 (0.841 - 1.366)
1.132 (0.885 - 1.447)

1.123 (0.871 - 1.449)
1.257 (1.021 - 1.546)

1.010 (0.769 - 1.328)
1.127 (0.879 - 1.445)

HR (95% CI)
0.533 (0.417 - 0.682)
0.515 (0.400 - 0.663)

0.387 (0.276 - 0.543)
0.388 (0.268 - 0.564)

0.495 (0.378 - 0.650)
0.485 (0.361 - 0.653)

0.435 (0.313 - 0.605)
0.398 (0.275 - 0.574)

122

p-value
0.157
0.004

0.574
0.325

0.371
0.031

0.941
0.346

p-value
<0.001
<0.001

<0.001
<0.001

<0.001
<0.001

<0.001
<0.001

N
2,088
1,870

1,378
1,340

2,088
1,870

1,378
1,340

N
2,088
1,870

1,378
1,340

2,088
1,870

1,378
1,340

I
775
608

424
401

775
608

424
401

I
775
608

424
401

775
608

424
401



Table 5.24: Propensity score analysis comparing prostate cancer mortality risks be-

tween metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.876 (1.466 - 2.400)
1.941 (1.507 - 2.498)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, 2000

2.582 (1.841 - 3.620)
2.576 (1.775 - 3.739)

2.019
2.061

2.299
2.515

(1.538 - 2.649)
(1.532 - 2.773)

(1.653 - 3.198)
(1.742 - 3.632)

<0.001 1,378
<0.001 1,340

<0.001
<0.001

<0.001
<0.001

2,088
1,870

1,378
1,340

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

HR (95% CI)
0.860 (0.699 - 1.060)
0.749 (0.617 - 0.911)

0.933 (0.732 - 1.189)
0.884 (0.691 - 1.130)

Separate
Separate, >2000,

0.890
0.798

0.990
0.887

IPW
IPW, >2000

(0.690
(0.647

- 1.149)
- 0.979)

(0.753 - 1.300)
(0.692 - 1.138)

0.371 2,088
0.031 1,870

0.941
0.346

1,378
1,340'

123

p-value
<0.001
<0.001

N
2,088
1,870

I
775
608

424
401

775
608

424
401

p-value

0.157
0.004

0.574
0.325

N
2,088
1,870

1,378
1,340

I
775
608

424
401

775
608

424
401



5.7 Sub-study 7: Bowel Cancer Incidence Risks

In this section, we compare bowel cancer incidence risks between metformin and

sulfonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing

with missing data accordingly. Tabulated in Table 5.25, 5.26, 5.27 and 5.28, we found

out that both drugs reveal similar risks on bowel cancer incidence since p-values

exceed 0.05 and 95% CIs include 1 among 64 sub-analyses.

Table 5.25: Conventional Cox regression comparing bowel cancer incidence risks be-
tween metformin and sulfonylureas

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

IPW
IPW, 2000

HR (95% CI)
0.927 (0.844 - 1.019)
0.944 (0.833 -- 1.070)

1.013
1.054

(0.870
(0.886

- 1.179)
- 1.255)

0.950 (0.862 - 1.047)
0.969 (0.850 - 1.105)

1.027 (0.928 - 1.136)
1.076 (0.924 - 1.254)

p-value
0.115
0.368

N
202,087
152,379

0.871 110,443
0.550 101,641

0.302
0.637

0.606
0.345

202,087
152,379

110,443
101,641

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
1.079 (0.982 - 1.185)
1.059 (0.934 - 1.201)

Complete
Complete, 2000

Separate

Separate, >2000

IPW
IPW, >2000

0.987
0.948

(0.848
(0.797

- 1.150)
- 1.128)

1.053 (0.955 - 1.160)
1.032 (0.905 - 1.177)

0.974 (0.880 - 1.077)
0.929 (0.797 - 1.082)

0.871 110,443
0.550 101,641

0.302 202,087
0.637 152,379

0.606
0.345

110,443
101,641

124

I
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064

p-value
0.115
0.368

N
202,087
152,379

I
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064



Table 5.26: Propensity score analysis comparing bowel cancer incidence risks between
metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
0.942 (0.808 - 1.098)
0.987 (0.773 - 1.261)

Complete

Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.090 (0.721 -- 1.647)
1.108 (0.710 - 1.729)

0.928 (0.801 - 1.075)
0.945 (0.773 - 1.155)

1.077 (0.774 - 1.500)
1.141 (0.739 - 1.760)

0.683 110,443
0.652 101,641

0.317
0.582

202,087
152,379

0.660 110,443
0.552 101,641

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

HR (95% CI)
1.062 (0.911 - 1.238)
1.013 (0.793 - 1.295)

0.918 (0.607 - 1.387)
0.903 (0.579 - 1.409)

Separate
Separate, >2000

IPW
IPW, >2000

1.078 (0.930 - 1.249)
1.058 (0.866 - 1.293)

0.928 (0.667 - 1.293)
0.877 (0.568 - 1.353)

0.317 202,087
0.582 152,379

0.660
0.552

110,443
101,641

125

p-value

0.443
0.916

N
202,087
152,379

I

2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064

p-value

0.443
0.916

0.683
0.652

N
202,087
152,379

110,443
101,641

I
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064



Table 5.27: Propensity score analysis comparing bowel cancer incidence risks between
metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.883 (0.763 - 1.021)
0.952 (0.837 - 1.082)

1.026 (0.841 - 1.251)
1.053 (0.864 - 1.283)

0.881 (0.731 - 1.061)
0.970 (0.824 - 1.141)

1.056 (0.808 - 1.379)
1.076 (0.879 - 1.317)

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete

Complete, 2000

Separate
Separate, >2000

IPW
IPW, 2000

HR (95% CI)
1.007 (0.803 - 1.262)
1.003 (0.739 - 1.361)

0.902 (0.543 - 1.499)
0.894 (0.535 - 1.493)

1.032 (0.861 - 1.238)
1.068 (0.837 - 1.361)

0.921 (0.596 - 1.424)
0.867 (0.522 - 1.437)

p-value

0.955
0.985

0.690
0.668

N
202,087
152,379

110,443
101,641

0.733 202,087
0.598 152,379

0.713
0.578

110,443
101,641

126

p-value

0.093
0.451

0.804
0.607

0.182
0.711

0.691
0.479

N
202,087
152,379

110,443
101,641

202,087
152,379

110,443
101,641

I
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064

I
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064



Table 5.28: Propensity score analysis comparing bowel cancer incidence risks between
metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
0.993 (0.793 - 1.245)
0.997 (0.735 - 1.353)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.109 (0.667 - 1.843)
1.119 (0.670 - 1.869)

0.969 (0.808 - 1.162)
0.937 (0.735 - 1.194)

1.085 (0.702 - 1.677)
1.154 (0.696 - 1.915)

HR (95% CI)
1.133 (0.980 - 1.310)
1.051 (0.924 - 1.194)

0.975 (0.780 - 1.189)
0.949 (0.779 - 1.157)

1.135 (0.942 - 1.368)
1.031 (0.876 - 1.214)

0.947 (0.725 - 1.237)
0.930 (0.759 - 1.138)

0.690 110,443
0.668 101,641

0.733
0.598

0.713
0.578

p-value
0.093
0.451

0.804
0.607

202,087
152,379

110,443
101,641

N
202,087
152,379

110,443
101,641

0.182 202,087
0.711 152,379

0.691
0.479

110,443
101,641

127

p-value
0.955
0.985

N
202,087
152,379

I
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064

I -
2,753
1,725

1,254
1,064

2,753
1,725

1,254
1,064



5.8 Sub-study 8: Bowel Cancer Mortality Risks

In this section, we compare bowel cancer mortality risks between metformin and

sulfonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing

with missing data accordingly. Tabulated in Table 5.29, 5.30, 5.31 and 5.32, we found

out that metformin is protective over metformin on bowel cancer mortality risks

in most circumstances. ATT and ATU weighting schemes tend not to offer stable

hazard ratio if treatment and control are inverted. This implies that the ATT and

ATU weighting schemes are not suitable for synthetic randomized controlled trials.

Table 5.29: Conventional Cox regression comparing bowel cancer mortality risks be-
tween metformin and sulfonylureas

Reference (metformin) HR (95% CI) p-value N I
Fewer 1.497 (1.244 - 1.802) <0.001 1,786 697
Fewer, >2000 1.500 (1.213 - 1.854) <0.001 1,491 491

Complete 1.503 (1.128 - 2.004) 0.005 1,051 316
Complete, >2000 1.516 (1.120 - 2.052) 0.007 992 277

Separate 1.511 (1.241 - 1.839) <0.001 1,786 697
Separate, 2000 1.492 (1.193 - 1.866) <0.001 1,491 491

IPW 1.577 (1.276 - 1.948) <0.001 1,051 316
IPW, >2000 1.506 (1.139 - 1.991) 0.004 992 277

Reference (sulfonylureas) HR (95% CI) p-value N I
Fewer 0.668 (0.555 -- 0.804) <0.001 1,786 697
Fewer, >2000 0.667 (0.540 - 0.824) <0.001 1,491 491

Complete 0.665 (0.499 - 0.887) 0.005 1,051 316
Complete, >2000 0.660 (0.487 - 0.893) 0.007 992 277

Separate 0.662 (0.544 - 0.806) <0.001 1,786 697
Separate, 2000 0.670 (0.536 - 0.838) <0.001 1,491 491

IPW 0.634 (0.513 - 0.784) <0.001 1,051 316
IPW, >2000 0.664 (0.502 - 0.878) 0.004 992 277

128



Table 5.30: Propensity score analysis comparing bowel cancer mortality risks between
metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.582 (1.269 - 1.974)
1.619 (1.297 - 2.021)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.365 (0.973 - 1.915)
1.400 (0.988 - 1.984)

1.398 (1.073 - 1.822)
1.551 (1.232 - 1.952)

1.372 (1.022 - 1.841)
1.421 (1.015 - 1.991)

HR (95% CI)
0.632 (0.507 - 0.788)
0.618 (0.495 - 0.771)

0.733 (0.522 - 1.028)
0.714 (0.504 - 1.012)

0.715 (0.549 - 0.932)
0.645 (0.512 - 0.812)

0.729
0.704

(0.543 - 0.979)
(0.502 - 0.986)

0.072 1,051 316
0.059 992 277

0.013
<0.001

0.035
0.041

p-value
<0.001
<0.001

0.072
0.059

1,786
1,491

1,051
992

N
1,786
1,491

1,051
992

0.013 1,786
<0.001 1,491

0.035 1,051
0.041 992

697
491

316
277

I
697
491

316
277

697
491

316
277

129

p-value
<0.001
<0.001

N
1,786
1,491

I
697
491



Table 5.31: Propensity score analysis comparing bowel cancer mortality risks between
metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.442 (1.067 - 1.949)
1.390 (1.144 - 1.688)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.270 (0.961 - 1.679)
1.344 (1.016 - 1.778)

1.244
1.277

1.216
1.328

(0.864
(1.021

(0.892
(0.999

- 1.790)
- 1.597)

- 1.658)
- 1.765)

0.093 1,051
0.038 992

0.240
0.032

0.217
0.051

1786
1,491

1051
992

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete

Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.592 (0.467 - 0.751)
0.581 (0.450 - 0.751)

0.719
0.705

(0.476
(0.471

- 1.086)
- 1.054)

0.658 (0.514 - 0.842)
0.594 (0.454 - 0.777)

0.694 (0.486 - 0.991)
0.689 (0.467 - 1.017)

p-value

<0.001
<0.001

0.117
0.089

N
1,786
1,491

I
697
491

1,051 316
992 277

<0.001 1,786
<0.001 1,491

0.044
0.061

1,051
992

697
491

316
277

130

p-value
0.017

<0.001

N
1,786
1,491

I
697
491

316
277

697
491

316
277



Table 5.32: Propensity score analysis comparing bowel cancer mortality risks between
metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.689 (1.332 - 2.
1.720 (1.332 - 2.

142)
220)

Complete
Complete, >2000

Separate
Separate, >2000

1.391 (0.921 - 2.103)
1.419 (0.948 - 2.123)

1.520
1.685

1.441
1.451

IPW
IPW, >2000

(1.188
(1.287

(1.009
(0.983

- 1.946)
- 2.204)

- 2.058)
- 2.140)

0.117 1,051 316
0.089 992 277

<0.001 1,786
<0.001 1,491

0.044
0.061

1,051
992

697
491

316
277

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

HR (95% CI)
0.693 (0.513 - O.
0.719 (0.592 - 0

0.788
0.744

(0.596
(0.562

937)
874)

- 1.041)
- 0.984)

Separate
Separate, >2000

IPW
IPW, >2000

0.804 (0.559 - 1.157)
0.783 (0.626 - 0.980)

0.822 (0.603 - 1.121)
0.753 (0.566 - 1.001)

0.240 1,786
0.032 1,491

0.217
0.051

1,051
992
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p-value
<0.001
<0.001

N
1,786
1,491

I
697
491

p-value
0.017

<0.001

0.093
0.038

N
1,786
1,491

1,051
992

I
697
491

316
277

697
491

316
277



5.9 Sub-study 9: Lung Cancer Incidence Risks

In this section, we compare lung cancer incidence risks between metformin and sul-

fonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing with

missing data accordingly. Tabulated in Table 5.33, 5.34, 5.35 and 5.36, we found out

that both drugs reveal similar risks on lung cancer incidence since p-values exceed

0.05 and 95% CIs include 1 among most 64 sub-analyses.

Table 5.33: Conventional Cox regression comparing lung cancer incidence risks be-
tween metformin and sulfonylureas

Reference (metformin) HR (95% CI) p-value N I
Fewer 1.076 (0.976 - 1.187) 0.143 203,483 2,554
Fewer, >2000 1.137 (1.003 - 1.288) 0.044 153,538 1,667

Complete 1.011 (0.865 - 1.180) 0.893 111,294 1,213
Complete, 2000 1.045 (0.877 - 1.244) 0.623 102,444 1,043

Separate 1.027 (0.928 - 1.137) 0.606 203,483 2,554
Separate, >2000 1.083 (0.951 - 1.234) 0.229 153,538 1,667

IPW 1.028 (0.927 - 1.140) 0.599 111,294 1,213
IPW, >2000 1.048 (0.897 - 1.225) 0.553 102,444 1,043

Reference (sulfonylureas) HR (95% CI) p-value N I
Fewer 0.929 (0.843 - 1.025) 0.143 203,483 2,554
Fewer, >2000 0.880 (0.777 - 0.997) 0.044 153,538 1,667

Complete 0.989 (0.847 - 1.156) 0.893 111,294 1,213
Complete, 2000 0.957 (0.804 - 1.140) 0.623 102,444 1,043

Separate 0.974 (0.880 - 1.078) 0.606 203,483 2,554
Separate, >2000 0.923 (0.810 - 1.051) 0.229 153,538 1,667

IPW 0.973 (0.877 - 1.079) 0.560 111,294 1,213
IPW, >2000 0.954 (0.816 - 1.115) 0.553 102,444 1,043
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Table 5.34: Propensity score analysis comparing lung cancer incidence risks between
metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.058 (0.940 - 1.
1.076 (0.923 - 1.

191)
255)

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

0.815
0.811

(0.642
(0.620

- 1.033)
- 1.061)

0.994 (0.877 - 1.128)
0.938 (0.802 - 1.097)

0.862 (0.699 - 1.064)
0.830 (0.642 - 1.072)

0.091 111,294
0.126 102,444

0.932 203,483
0.424 153,538

0.167
0.154

111,294
102,444

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.945 (0.840 - 1.
0.929 (0.797 - 1.

064)
084)

1.228 (0.968 - 1.557)
1.234 (0.943 - 1.614)

1.006 (0.887 - 1.140)
1.066 (0.912 - 1.247)

1.160 (0.940 - 1.431)
1.205 (0.933 - 1.558)

p-value
0.351
0.349

0.091
0.126

N
203,483
153,538

111,294
102,444

0.932 203,483
0.424 153,538

0.167
0.154

111,294
102,444
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p-value
0.351
0.349

N

203,483
153,538

I
2,554
1,667

1,213
1,043

2,554
1,667

1,213
1,043

I

2,554
1,667

1,213
1,043

2,554
1,667

1,213
1,043



Table 5.35: Propensity score analysis comparing lung cancer incidence risks between
metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

Complete

Complete, 2000

Separate

Separate, >2000

IPW
IPW, >2000

HR (95% CI)
1.038 (0.890 - 1.210)
1.137 (1.000 - 1.291)

0.976
1.044

1.043
1.110

(0.815
(0.867

(0.884
(0.964

1.170)
1.256)

- 1.231)
- 1.278)

0.973 (0.766 - 1.235)
1.044 (0.865 - 1.260)

p-value
0.637
0.050

0.795
0.649

N
203,483
153,538

111,294
102,444

0.619 203,483
0.149 153,538

0.821 111,294
0.657 102,444

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, 2000

Separate
Separate, >2000

HR (95% CI)
0.938 (0.817 - 1.076)
0.946 (0.792 - 1.129)

1.301 (0.967
1.305 (0.952

1.056
1.132

(0.909
(0.941

- 1.751)
- 1.789)

- 1.227)
- 1.362)

IPW
IPW, >2000

1.228 (0.943 - 1.598)
1.274 (0.941 - 1.725)

0.127 111,294
0.117 102,444
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I
2,554
1,667

1,213
1,043

2,554
1,667

1,213
1,043

p-value
0.358
0.537

0.082
0.098

0.475
0.190

N
203,483
153,538

111,294
102,444

203,483
153,538

I
2,554
1,667

1,213
1,043

2,554
1,667

1,213
1,043



Table 5.36: Propensity score analysis comparing lung cancer incidence risks between
metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

HR (95% CI)
1.067 (0.930 - 1.
1.058 (0.885 - 1.

224)
263)

Complete
Complete, >2000

Separate
Separate, >2000

0.769 (0.571 - 1.034)
0.766 (0.559 - 1.050)

0.947
0.884

IPW
IPW, >2000

(0.815 -
(6.734 -

1.100)
1.063)

0.815 (0.626 - 1.060)
0.785 (0.580 - 1.062)

0.082 111,294
0.098 102,444

0.475
0.190

0.127
0.117

203,483
153,538

111,294
102,444

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

HR (95% CI)
0.964 (0.826 - 1.124)
0.880 (0.774 - 0.100)

1.024 (0.855 - 1.227)
0.958 (0.796 - 1.153)

0.959 (0.812 - 1.132)
0.901 (0.783 - 1.038)

1.028 (0.809 - 1.305)
0.958 (0.794 - 1.157)

p-value
0.637
0.050

0.795
0.649

N
203,483
153,538

111,294
102,444

0.619 203,483
0.149 153,538

0.821 111,294
0.657 102,444
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p-value
0.358
0.537

N
203,483
153,538

I
2,554
1,667

1,213
1,043

2,554
1,667

1,213
1,043

I
2,554
1,667

1,213
1,043

2,554
1,667

1,213
1,043



5.10 Sub-study 10: Lung Cancer Incidence Risks

In this section, we compare lung cancer mortality risks between metformin and sul-

fonylureas under CCR, ATE, ATT and ATU schemes with four methods dealing with

missing data accordingly. Tabulated in Table 5.37, 5.38, 5.39 and 5.40, we found

out there are very limited cases and events of interest. We have very few patients

with lung cancer diagnoses after initial anti-diabetes prescription and death after lung

cancer diagnoses. As such, we can't draw conlusions on lung cancer mortality risks

between metformin and sulfonylureas within this cohort.

Table 5.37: Conventional Cox regression comparing lung cancer mortality risks be-

tween metformin and sulfonylureas ,

Reference (metformin) HR (95% CI) p-value N I
Fewer 1.673 (1.218 - 2.300) 0.002 408 232
Fewer, >2000 1.796 (1.243 - 2.596) 0.002 349 185

Complete 1.660 (0.890 - 3.097) 0.111 214 109
Complete, >2000 2.158 (1.108 - 4.205) 0.024 205 102

Separate 1.503 (1.040 - 2.172) 0.030 408 232
Separate, >2000 1.830 (1.200 - 2.792) 0.005 349 185

IPW 1.858 (1.176 - 2.935) 0.008 214 109
IPW, >2000 2.155 (1.159 - 4.004) 0.015 205 102

Reference (sulfonylureas) HR (95% CI) p-value N I
Fewer 0.598 (0.435 - 0.821) 0.002 408 232
Fewer, >2000 0.557 (0.385 - 0.805) 0.002 349 185

Complete 0.602 (0.323 - 1.124) 0.111 214 109
Complete, >2000 0.463 (0.238 - 0.903) 0.024 205 102

Separate 0.665 (0.461 - 0.961) 0.030 408 232
Separate, >2000 0.546 (0.358 - 0.834) 0.005 349 185

IPW 0.538 (0.341 - 0.850) 0.008 214 109
IPW, >2000 0.464 (0.250 - 0.863) 0.015 205 102
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Table 5.38: Propensity score analysis comparing lung cancer mortality risks between
metformin and sulfonylureas using ATE weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

HR (95% CI)
1.332 (1.007 - 1.761)
1.462 (1.070 - 1.995)

1.279 (0.756
1.920 (1.326

1.027
1.314

(0.723
(0.905

- 2.163)
- 2.780)

- 1.461)
- 1.908)

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

1.194 (0.744 - 1.918)
1.919 (1.336 - 2.757)

HR (95% CI)
0.751 (0.568 - 0.993)
0.684 (0.501 - 0.934)

0.782 (0.462
0.521 (0.360

0.973
0.761

0.837
0.521

(0.685
(0.524

(0.522
(0.363

- 1.322)
- 0.754)

- 1.384)
- 1.106)

- 1.344)
- 0.748)

0.462 214 109
<0.001 205 102

p-value
0.045
0.017

0.359
<0.001

0.880
0.152

N
408
349

I
232
185

214 109
205 102

408 232
349 185

0.462 214 109
<0.001 205 102
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N
408-
349

I
232
185

p-value
0.045
0.017

0.359
<0.001

0.880
0.152

214 109
205 102

408 232
349 185



Table 5.39: Propensity score analysis comparing lung cancer mortality risks between
metformin and sulfonylureas using ATT weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate

Separate, >2000

IPW
IPW, >2000

Reference (sulfonylureas)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate
Separate, >2000

HR (95% CI)
1.157 (0.835 - 1.602)
1.406 (0.969 - 2.038)

1.185
1.650

0.954
1.194

1.026
1.665

(0.850 - 1.652)
(1.058 - 2.572)

(0.669 - 1.360)
(0.769 - 1.855)

(0.732 -
(1.078 -

1.439)
2.571)

HR (95% CI)
0.679 (0.507 - 0.908)
0.674 (0.489 - 0.929)

0.796 (0.427 - 1.485)
0.499 (0.344 - 0.724)

0.908
0.723

0.830
0.503

IPW
IPW, >2000

(0.582
(0.469

(0.460
(0.349

1.415)
1.113)

- 1.497)
- 0.726)

p-value
0.380
0.073

0.317
0.027

0.795
0.430

N
408
349

I
232
185

214 109
205 102

408 232
349 185

0.882 214 109
0.022 205 102

p-value
0.009
0.016

0.474
<0.001

0.670
0.141

N
408
349

I
232
185

214 109
205 102

408 232
349 185

0.536 214 109
<0.001 205 102
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Table 5.40: Propensity score analysis comparing lung cancer mortality risks between
metformin and sulfonylureas using ATU weights

Reference (metformin)
Fewer
Fewer, >2000

Complete
Complete, >2000

Separate

Separate, >2000

HR (95% CI)
1.473 (1.101 - 1.972)
1.483 (1.077 - 2.044)

1.256
2.003

1.101
1.384

(0.674 -
(1.381 -

(0.707
(0.898

2.341)
2.905)

- 1.717)
- 2.131)

p-value

0.009
0.016

0.474
<0.001

0.670 408 232
0.141 349 185

IPW
IPW, >2000

1.205 (0.668 - 2.172)
1.987 (1.378 - 2.864)

Reference (sulfonylureas)
Fewer
Fewer, >2000

HR (95% CI)
0.864 (0.624 - 1.197)
0.712 (0.491 - 1.032)

0.844
0.606

Complete
Complete, >2000

Separate
Separate, >2000

IPW
IPW, >2000

(0.605
(0.389

1.048 (0.735
0.838 (0.539

0.975
0.601

(0.695
(0.389

- 1.177)
- 0.945)

- 1.495)
- 1.301)

- 1.367)
- 0.928)
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N
408
349

214
205

I
232
185

109
102

0.536
<0.001

214 109
205 102

N
408
349

I
232
185

p-value

0.380
0.073

0.317
0.027

0.795
0.430

0.882
0.022

214 109
205 102

408 232
349 185

214 109
205 102



5.11 Covariate Balance Evaluation

As in section 3.3.4, we plan to evaluate covariate balance by comparing the difference

between before-weighting Somers' D and after-weighting Somers' D. Covariate bal-

ance evaluation is the main indicator of the success of the propensity score analysis. It

provides evidence that the distribution of each covariate for treated and untreated in-

dividuals is similar, and therefore selection bias due to the covariate has been removed.

Since there are 480 summary tables in total, we analyze covariate balance by

generalizing information in the big picture instead of detailing local facts among sub-

analyses.

From all 640 tables, we found out that in general, prescription age and prescrip-

tion year are always not balanced before weighting. As shown in Fig. 4-3 and Fig. 4-

4, anti-diabetes treatment is strongly related to prescription year. On the other

hand, anti-diabetes treatment is less related to prescription age due to year of birth.

Both prescription age and prescription year are balanced significantly after weighting.

Moreover, prescription year is less balanced compared with prescription age before

weighting, and after weighting. For further analysis, even after introducing propen-

sity scores, we may still want to adjust for prescription year for those model with

Somer's D larger than 0.1.

In terms of other covariates, some covariates (no coherently along 640 sub-analyses)

might be not balanced before weighting. But after weighting, these covariates are well

balanced.
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5.12 Sensitivity Analysis

Propensity score weighting may result in extreme weights, which inflate the standard

errors of the treatment estimates (Robins et al., 2000) and may also increase bias

(Harder et al., 2010). In this section, we perform sensitivity analysis by looking into

fantasy population and weight summary statistics in Appendix C. Analysis follows

the study design sequence as in Table 4.17.

Table 5.41: Number of "fantasy" observations between metformin and sulfonylureas
under different schemes

Ref=Met Metformin Participants Sulfonylureas Participants Total Participants
CCR Nmet (real) N,8 If (real) N (real)
ATE N (fantasy) N (fantasy) 2N (fantasy)
ATT Nmet (real) Nmet (fantasy) 2Nmet (fantasy)
ATU N,sIf (fantasy) N,8 If (real) 2N8 ,If (fantasy)

Ref=Sulf Metformin Participants Sulfonylureas Participants Total Participants
CCR Nmet (real) N8 ,if (real) N (real)
ATE N (fantasy) N (fantasy) 2N (fantasy)
ATT N8 ulf (fantasy) N,lf (real) 2Nslf (fantasy)
ATU Nmet (real) Nmet (fantasy) 2Nmet (fantasy)

Table 5.41 reveals the number of metformin participants, sulfonylureas partici-

pants and overall participants for all the analysis in this thesis. For CCR, all three

numbers are actual participants. By balancing two groups of interest, weighting

scheme would always distort the number of participants for all ATE, ATT.and ATU

cases. Since ATE and CCR have the same number of participants if treatment/control

inverted, and thanks to the homogeneity within the partial log likelihood function for

optimization, inverting treatment/control will yield reciprocal hazard ratios. Take

treatment/control into consideration, the conclusion will always be the same, and

thus, CCR and ATE are considered optimal for comparing ratio risks among survival

analyses.
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By multiplying 0 < e(X) < 1 (ATT) and 0 < 1 - e(X) < 1 (ATU) based on

ATE weights, ATE weights are more extreme compared with ATT weights and ATU

weights (Harder et al., 2010). Though Equation 3.36 and 3.37 looks heterogeneous,

the idea is essentially the same. By substituting e(X)ref=met + e(X)refsulf = 1, we

have

1 - e(X)ref=suIf - e(X)ref=met (5.1)
e(X)ref=sulf 1 - e(X)ref=met

thus,

wATT,ref=met = WATU,ref=suIf , WATT,ref=sulf = WATU,ref=met (5.2)

this eventually leads to

NATT,ref=met = NATU,ref5=suIf, NATT,ref=sulf NATU,ref5=met (5.3)

Weighting relationships regarding methods of dealing with missing data are ex-

pressed in Equation 5.4. Since inverse probability weighting and complete case anal-

ysis are based on complete records, propensity score generally upweights both meth-

ods to the original population level as in "fewer" and "separate". Inverse probability

weighting further adjusts the weights by inverting the possibility of being complete,

leading to larger overall weights. Moreover, treating missing as a separate category

increases the number of categories for BMI, IMD, smoking and HbAlc, and this re-

sult in fewer common cases among the population which direct to larger propensity

weights on being a control or treatment, resulting in larger weights compared with

only adjusting for fewer variables. Last, initial anti-diabetes prescription year does

not have a large impact on weighting.

WIPW > WComplete >> WSeperate > WFewer (5.4)

142



Chapter 6

Conclusions

6.1 Discussions

Cancer has always been a worldwide health issue. With limited success and huge

investment in drug development, effective anti-cancer drugs were inspired by using

drugs already approved for other indications. Based on high dimensional UK primary

care EHR system CPRD, we emulated a total of 640 RCTs among 10 sub-studies to

test the effect of two universal anti-diabetic drugs - metformin and sulfonylureas on

various cancer incidence and mortality risks among the aging population. Sub-studies

are formulated according to incidence/mortality risks and 5 cancer types - general

cancer, breast cancer, prostate cancer, bowel cancer and lung cancer.

Within each sub-study, a total of 64 in-silico RCTs is emulated by semi-parametric

conventional Cox regression, weighted Cox regression in ATE, ATT and ATU schemes,

16 survival analysis each, correspondingly. To distinguish two treatments for risk ra-

tios in the medical sense, 16 studies within each scheme are initially classified by

inverting treatment and control. Four methods of dealing with missing data, in-

cluding, using fewer variables, complete case analysis, treating missing as a separate

category and inverse probability weighting further divided 8 RCTs into a group of

2. Final division is added on anti-diabetic drug prescription year due to poor data

quality before 2000.
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Conclusions on various cancer incidence and mortality risks are tabulated in Ta-

ble 6.1, 6.2 and 6.3 for clarification. In the rightmost column, " +", " -", "" means

metformin is more protective, sulfonylureas is more protective and neither is protec-

tive, respectively. In general, metformin is protective over sulfonylureas on cancer

mortality risk, whereas the effect of the two drugs on cancer incidence risks is similar.

Within each sub-study, we found that models are quite robust within CCR, ATE,

ATT and ATU schemes. However, risk among CCR, ATE, ATT and ATU schemes

revealed differences. Specifically, CCR/ATE, ATT/ATU gives similar results respec-

tively. Inversing treatment and control in CCR/ATE does not change significance nor

hazard ratio. On the other hand, inverting treatment/control groups in ATT/ATU

will exaggerate one case, leaving the other case much less significant. From sec-

tion 3.3.3, we demonstrated that ATT/ATU weights are biased when the reference

is a drug treatment instead of placebo, thus ATT/ATU weights are not considered

optimal for comparing the effect between two drugs. Recommended approach would

be applying four schemes including conventional Cox and conduct sensitivity analysis

afterwards.

In terms of sensitivity analysis based on weight summary attached, we found

that combining IPW for missing data and PSW are always larger than original PSW

weights as IPW will always up-weight observations to some extent. Also, weight

summary statistics including Min, 1st Qu., Median, Mean, 3rd Qu. Max for ATE are

greater than ATU/ATT, while ATU weights and ATT weights from Appendix C are

similar and they are smaller than 1 in most cases. ATE weights are always larger than

1, while ATU/ATT weights approach to zero. Generally speaking, though extreme

weights are less common by looking into 3rd Qu, extreme weights for ATE are larger

than ATT/ATU weights.
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Table 6.1: Conclusions regarding general cancer and breast cancer inci-
dence/mortality risks between metformin and sulfonylureas initiators

Sub-study
Cancer incidence
Cancer incidence
Cancer incidence
Cancer incidence
Cancer incidence
Cancer incidence
Cancer incidence
Cancer incidence

Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer

Breast
Breast
Breast
Breast
Breast
Breast
Breast
Breast

Breast
Breast
Breast
Breast
Breast
Breast
Breast
Breast

mortality
mortality
mortality
mortality
mortality
mortality
mortality
mortality

cancer
cancer
cancer
cancer
cancer
cancer
cancer
cancer

cancer
cancer
cancer
cancer
cancer
cancer
cancer
cancer

incidence
incidence
incidence
incidence
incidence
incidence
incidence
incidence

mortality
mortality
mortality
mortality
mortality
mortality
mortality
mortality

Scheme
CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU
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Reference
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Effect
0
0
0
0
0
0
0
0

+

±

+

+

+

0
0
00
0
0
0
0

+

+

+

+

+

+

+

+



Table 6.2: Conclusions regarding prostate cancer and bowel
dence/mortality risks between metformin and sulfonylureas initiators

Reference
Metformin
Sulfonylureas
Metformin-
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

cancer inci-

Protective effect
0
0

0

0

incidence
incidence
incidence
incidence
incidence
incidence
incidence
incidence

mortality
mortality
mortality
mortality
mortality
mortality
mortality
mortality
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Sub-study
Prostate c
Prostate c
Prostate c
Prostate c
Prostate c
Prostate c
Prostate c
Prostate c

Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Bowel
Bowel
Bowel
Bowel
Bowel
Bowel
Bowel
Bowel

Bowel
Bowel
Bowel
Bowel
Bowel
Bowel
Bowel
Bowel

ancer
ancer
ancer
ancer
ancer
ancer
ancer
ancer

cancer
cancer
cancer
cancer
cancer
cancer
cancer
cancer

cancer
cancer
cancer
cancer
cancer
cancer
cancer
cancer

cancer
cancer
cancer
cancer
cancer
cancer
cancer
cancer

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

incidence
incidence
incidence
incidence
incidence
incidence
incidence
incidence

mortality
mortality
mortality
mortality
mortality
mortality
mortality
mortality

Scheme
CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU



Table 6.3: Conclusions regarding lung cancer incidence/mortality risks between met-
formin and sulfonylureas initiators

Sub-study
cancer incidence
cancer
cancer
cancer
cancer
cancer
cancer
cancer

incidence
incidence
incidence
incidence
incidence
incidence
incidence

cancer mortality

cancer mortality

cancer mortality

cancer mortality

cancer mortality

cancer mortality

cancer mortality

cancer mortality

Scheme
CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

CCR
CCR
ATE
ATE
ATT
ATT
ATU
ATU

Reference
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas
Metformin
Sulfonylureas

Protective effect
0
0
0
0
0
0
0
0

+

0
0
0
0
0
0
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By looking into Somer's D for all 640 RCTs, we found out that before balanc-

ing, prescription year and prescription age have high Somer's D, indicating balancing

these two variables is the main objective. After weighting, prescription age is well-

balanced. While with a Somer's D between 0.1 and 0.2, prescription year is somewhat

balanced but not well-balanced in most cases. We may also want to control it beyond

anti-diabetic prescription in weighted Cox regression.

In this study, missing mechanisms and methods dealing with missing data revealed

very limited impact on significance level and confidence interval. From results with

and without constraint on calendar year of initial anti-diabetic drug prescription,

data quality with prescription year later than 2000 is much better despite a decline

in observation and events. If the drop in observation and events is not too sharp, it's

a good idea to add a limit on prescription year.

As such, we draw a final conclusion that metformin is protective over sulfonylureas

on cancer mortality risk, whereas the effect of the two drugs on cancer incidence risks

is similar. In terms of methodologies, less variable or inverse probability weighting,

conventional Cox regression and propensity score analysis in ATE scheme, together

with prescription year over 2000 should be adopted.
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6.2 Future Directions

In this thesis, after investigating the effect of anti-diabetic drugs on cancer incidence

and mortality risks with multiple schemes and settings, we come to a systematic way

to repurpose not only incidence/mortality risks, but also onset/progression risks and

even prevention/development risks for many other types of diseases based on different

group drugs.

Apart from simply applying this framework directly, we can also investigate more

on methods dealing with missing data, especially under MNAR scenarios. Many

other machine learning methods to generate propensity score can be adopted to fur-

ther balance prescription year etc. Furthermore, though not highly recommended

due to reduction in observations, propensity score stratification and propensity score

matching can also be added. Besides graphical model especially casual diagrams

such as directed acyclic graph (DAG) and undirected graph for clarification can be

integrated for variational inference. Stepwise Cox and penalty methods are a poten-

tial approach to justify covariate selection. Supervised machine learning techniques

including survival trees, Bayesian method, deep learning, support vector machines,

transfer learning, ensemble learning, multi-task learning, reinforcement learning and

active learning will be the next tipping point for survival analysis.

Broadly speaking, applying and combining advances in the areas of optimization,

statistics, and machine learning, with new and interesting sources of data, we have

the potential to make substantive improvements in finding the effective treatments

for some disease without therapy or affordable drugs.
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Appendix A

Abbreviations

Table A.1: Abbreviation and full form in alphabetic order

Abbreviation Full Form
AF Atrial Fibrillation
AFT Accelerated Time to Failure
ATE Average Treatment Effect
ATT Average Treatment Effect on the Treated
ATU Average Treatment Effect on the Untreated
AUROC Area under Receiver Operating Characteristic
BMI Body Mass Index
CCR Conventional Cox Regression
CHD Coronary Heart Disease
CHF Cumulative Hazard Function
CI Confidence Interval
CKD Chronic Kidney Disease
COPD Chronic Obstructive Pulmonary Disease
CPRD Clinical Practice Research Datalink
DAG Directed Acyclic Graph
DMT2 Diabetes Mellitus Type 2
EHR Electronic Health Record
FDA Food and Drug Administration
GBM Generalized Boosted Model
GP General Practice
HbAlc Glycated Hemoglobin
HES Hospital Episode Statistics
HF Heart Failure
HR Hazard Ratio
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Table A.2: Abbreviation and full form in alphabetic order, continued

IMD Multiple Deprivation Index
IPW Inverse Probability Weighting
ITT Intention-To-Treat
LOCF Last Observation Carried Forward
MAR Missing at Random
MCAR Missing Completely at Random
Met Metformin
NMAR Not Missing at Random
MPLE Maximum Partial Likelihood Estimation
OHAs Orally administered antihyperglycemic agents
ONS Office for National Statistics
PSW Propensity Score Weighting
PVD Peripheral Vascular Disease
RCT Randomized Controlled Trials
Ref Reference
ROC Receiver Operating Characteristic
SDO Simple Difference in Mean Outcomes
Sulf Sulfonylurea
YOB Year of birth
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Appendix B

Notations
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Table B.1: Symbol notation in alphabetic order

Notation Description
C R^'N1 vector of last follow up time
Ci Individual last follow up time
I Number of events of interest
i i = 1, 2, ... Nh observation

j=1,2..., nih variable
N Number of observations
n Number of features
ni Repeated measures of the response variable on the same individual
RKi Subjects at risk at time ti
Resi Response indicators
T RNx1 vector of event time
Ti Individual event time
t Time
X RNxP feature covariate matrix
Xi RxP covariate vector of observation i

YCF Unobserved counterfactual outcome
Ym Missing responses

Yim Missing responses of ith object
Y° Observed responses

Yi" Observed responses of it" object
Yo Outcome for control

i Individual outcome for control
Y Outcome for treatment

i Individual outcome for treatment
Zi Treatment(=1),control(=0)
z Mean difference in units of the common standard deviation
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Table B.2: Greek notation in alphabetic order

Notation Description
# R'x1 coefficient

/3 Estimated coefficient
)3 Coefficient vector
)3 Estimated coefficient vector
eo Hazard ratio
eo Hazard ratio for all covariates
At Small time interval
6 N x 1 binary vector for event
6i Individual event/outcome
o Standard deviation

Ta Kendall's tau
Ti Individual treatment effect
<» Standard Normal distribution
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Table B.3: Function notation in alphabetic order

Notation Description
D Somer's D
E Expectation
E(.|) Conditional expectation
e(X) Propensity score
F(t) Cumulative event probability function

f(t) Death density function
H(t) Cumulative hazard function
Ho(t) Baseline cumulative hazard function
Ho(t) Estimated baseline cumulative hazard function
h(t) Hazard function
ho(t) Baseline hazard function
ho(t) Estimated baseline hazard function
L(3) Partial likelihood
Li (3) Individual partial likelihood

y RNx1 vector of observed time which is equal to min(T, C)
yi Individual observed time equal to min(Ti, Ci)
S(t) Survival probability function
P Probability

P(.) Conditional probability
w Weight
WATE ATE weight
WATT ATT weight
WATU ATU weight
WComplete Weight for complete case analysis
WFewer Weight for using fewer variables
WIPW Weight for IPW on missing data
WSeperate Weight for treat missing as a separate category

-1 | Norm
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Appendix C

Covariate Balance Evaluation

C.1 Weights summary for cancer incidence risks
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Table C.1: ATE weights summary for cancer incidence risks between metformin and
sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.003 1.050 1.159 2.079 1.573 229.991
Fewer, met 1.003 1.035 1.096 1.491 1.292 84.058
Fewer, sulf 1.011 1.196 1.587 3.486 2.588 229.991

Fewer, >2000, overall 1.002 1.029 1.093 2.195 1.363 340.178
Fewer, >2000, met 1.002 1.024 1.067 1.163 1.189 7.454
Fewer, >2000, sulf 1.169 2.152 3.193 8.363 6.255 340.178

Complete, overall 1.000 1.015 1.062 2.487 1.278 2,170.904
Complete, met 1.000 1.012 1.041 1.174 1.140 51.206
Complete, sulf 1.008 1.486 2.230 9.849 4.680 2,170.904

Complete, 2000, overall 1.000 1.013 1.048 2.409 1.194 1, 974.650
Complete, 2000, met 1.000 1.011 1.037 1.116 1.116 24.369
Complete, 2000, sulf 1.062 2.070 3.337 13.120 7.550 1, 974.650

Separate, overall 1.002 1.038 1.124 2.054 1.503 327.708
Separate, met 1.002 1.026 1.073 1.496 1.253 98.844
Separate, sulf 1.006 1.145 1.474 3.389 2.376 327.708

Separate, >2000, overall 1.001 1.020 1.068 2.126 1.305 550.730
Separate, >2000, met 1.001 1.017 1.048 1.165 1.149 17.051
Separate, >2000, sulf 1.052 1.742 2.684 7.873 5.670 550.730

IPW, overall 1.118 1.334 1.597 4.411 2.496 3, 009.869
IPW, met 1.118 1.304 1.497 1.927 1.884 346.112
IPW, sulf 2.214 4.889 6.454 18.334 11.778 3,009.869

IPW, >2000, overall 1.018 1.089 1.160 2.790 1.379 2, 317.062
IPW, >2000, met 1.018 1.083 1.140 1.242 1.268 30.436
IPW, >2000, sulf 1.309 2.899 4.503 15.616 9.636 2, 317.062

158



Table C.2: ATE weights summary
sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.003 1.050 1.159 2.079 1.573 229.991
Fewer, met 1.003 1.035 1.096 1.491 1.292 84.058
Fewer, sulf 1.011 1.196 1.587 3.486 2.588 229.991

Fewer, >2000, overall 1.002 1.029 1.093 2.195 1.363 340.178
Fewer, >2000, met 1.002 1.024 1.067 1.163 1.189 7.454
Fewer, >2000, sulf 1.169 2.152 3.193 8.363 6.255 340.178

Complete, overall 1.000 1.015 1.062 2.487 1.278 2, 170.904
Complete, met 1.000 1.012 1.041 1.174 1.140 51.206
Complete, sulf 1.008 1.486 2.230 9.849 4.680 2,170.904

Complete, >2000, overall 1.000 1.013 1.048 2.409 1.194 1, 974.650
Complete, >2000, met 1.000 1.011 1.037 1.116 1.116 24.369
Complete, >2000, sulf 1.062 2.070 3.337 13.120 7.550 1, 974.650

Separate, overall 1.002 1.038 1.124 2.054 1.503 327.708
Separate, met 1.002 1.026 1.073 1.496 1.253 98.844
Separate, sulf 1.006 1.145 1.474 3.389 2.376 327.708

Separate, >2000, overall 1.001 1.020 1.068 2.126 1.305 550.730
Separate, >2000, met 1.001 1.017 1.048 1.165 1.149 17.051
Separate, >2000, sulf 1.052 1.742 2.684 7.873 5.670 550.730

IPW, overall 1.118 1.334 1.597 4.411 2.496 3, 009.869
IPW, met 1.118 1.304 1.497 1.927 1.884 346.112
IPW, sulf 2.214 4.889 6.454 18.334 11.778 3, 009.869

IPW, >2000, overall 1.018 1.089 1.160 2.790 1.379 2, 317.062
IPW, 22000, met 1.018 1.083 1.140 1.242 1.268 30.436
IPW, >2000, sulf 1.309 2.899 4.503 15.616 9.636 2, 317.062
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Table C.3: ATT weights summary for cancer incidence risks between metformin and
sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.003 0.054 0.237 0.641 1 83.058
Fewer, met 0.003 0.035 0.096 0.491 0.292 83.058
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.029 0.093 0.283 0.366 6.454
Fewer, >2000, met 0.002 0.024 0.067 0.163 0.189 6.454
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.00005 0.015 0.062 0.299 0.340 50.206
Complete, met 0.00005 0.012 0.041 0.174 0.140 50.206
Complete, sulf 1 1 1 1 1 1

Complete, 2000, overall 0.00004 0.013 0.048 0.211 0.195 23.369
Complete, 2000, met 0.00004 0.011 0.037 0.116 0.116 23.369
Complete, 2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.040 0.201 0.645 1 97.844
Separate, met 0.002 0.026 0.073 0.496 0.253 97.844
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.020 0.068 0.284 0.330 16.051
Separate, >2000, met 0.001 0.017 0.048 0.165 0.149 16.051
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.021 0.092 0.794 0.605 335.406
IPW, met 0.0001 0.016 0.059 0.398 0.226 335.406
IPW, sulf 1.197 2.058 2.679 3.014 3.425 26.426

IPW, >2000, overall 0.00004 0.014 0.053 0.265 0.223 29.187
IPW, >2000, met 0.00004 0.012 0.041 0.135 0.131 29.187
IPW, >2000, sulf 1.027 1.197 1.296 1.339 1.430 3.226
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Table C.4: ATT weights summary for cancer incidence risks between metformin and
sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.011 1 1 1.438 1 228.991
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.011 0.196 0.587 2.486 1.588 228.991

Fewer, >2000, overall 0.169 1 1 1.912 1 339.178
Fewer, >2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.169 1.152 2.193 7.363 5.255 339.178

Complete, overall 0.008 1 1 2.188 1 2,169.904
Complete, met 1 1 1 1 1 1
Complete, sulf 0.008 0.486 1.230 8.849 3.680 2,169.904

Complete, >2000, overall 0.062 1 1 2.198 1 1, 973.650
Complete, >2000, met 1 1 1 1 1 1
Complete, >2000, sulf 0.062 1.070 2.337 12.120 6.550 1, 973.650

Separate, overall 0.006 1 1 1.410 1 326.708
Separate, met 1 1 1 1 1 1
Separate, sulf 0.006 0.145 0.474 2.389 1.376 326.708

Separate, >2000, overall 0.052 1 1 1.842 1 549.730
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.052 0.742 1.684 6.873 4.670 549.730

IPW, overall 0.053 1.276 1.444 3.617 1.766 3, 008.176
IPW, met 1.114 1.271 1.423 1.529 1.628 14.095
IPW, sulf 0.053 1.560 3.351 15.320 8.636 3, 008.176

IPW, >2000, overall 0.100 1.063 1.095 2.525 1.153 2, 315.889
IPW, >2000, met 1.015 1.062 1.090 1.107 1.133 2.146
IPW, >2000, sulf 0.100 1.483 3.144 14.277 8.395 2, 315.889
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Table C.5: ATU weights summary for cancer incidence risks between metformin and
sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.011 1 1 1.438 1 228.991
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.011 0.196 0.587 2.486 1.588 228.991

Fewer, >2000, overall 0.169 1 1 1.912 1 339.178
Fewer, >2000, met 1 1 1 1 1 1 1
Fewer, >2000, sulf 0.169 1.152 2.193 7.363 5.255 339.178

Complete, overall 0.008 1 1 2.188 1 2,169.904
Complete, met 1 1 1 1 1 1
Complete, sulf 0.008 0.486 1.230 8.849 3.680 2,169.904

Complete, 2000, overall 0.062 1 1 2.198 1 1, 973.650
Complete, 2000, met 1 1 1 1 1 1
Complete, 2000, sulf 0.062 1.070 2.337 12.120 6.550 1, 973.650

Separate, overall 0.006 1 1 1.410 1 326.708
Separate, met 1 1 1 1 1 1
Separate, sulf 0.006 0.145 0.474 2.389 1.376 326.708

Separate, >2000, overall 0.052 1 1 1.842 1 549.730
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.052 0.742 1.684 6.873 4.670 549.730

IPW, overall 0.053 1.276 1.444 3.617 1.766 3, 008.176
IPW, met 1.114 1.271 1.423 1.529 1.628 14.095
IPW, sulf 0.053 1.560 3.351 15.320 8.636 3, 008.176

IPW, >2000, overall 0.100 1.063 1.095 2.525 1.153 2, 315.889
IPW, >2000, met 1.015 1.062 1.090 1.107 1.133 2.146
IPW, >2000, sulf 0.100 1.483 3.144 14.277 8.395 2, 315.889
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Table C.6: ATU weights summary for cancer incidence risks between metformin and
sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.003 0.054 0.237 0.641 1 83.058
Fewer, met 0.003 0.035 0.096 0.491 0.292 83.058
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.029 0.093 0.283 0.366 6.454
Fewer, >2000, met 0.002 0.024 0.067 0.163 0.189 6.454
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.00005 0.015 0.062 0.299 0.340 50.206
Complete, met 0.00005 0.012 0.041 0.174 0.140 50.206
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.00004 0.013 0.048 0.211 0.195 23.369
Complete, 2000, met 0.00004 0.011 0.037 0.116 0.116 23.369
Complete, >2000, sulf 1 1. 1 1 1 1

Separate, overall 0.002 0.040 0.201 0.645 1 97.844
Separate, met 0.002 0.026 0.073 0.496 0.253 97.844
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.020 0.068 0.284 0.330 16.051
Separate, 2000, met 0.001 0.017 0.048 0.165 0.149 16.051
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.021 0.092 0.794 0.605 335.406
IPW, met 0.0001 0.016 0.059 0.398 0.226 335.406
IPW, sulf 1.197 2.058 2.679 3.014 3.425 26.426

IPW, >2000, overall 0.00004 0.014 0.053 0.265 0.223 29.187
IPW, >2000, met 0.00004 0.012 0.041 0.135 0.131 29.187
IPW, >2000, sulf 1.027 1.197 1.296 1.339 1.430 3.226
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C.2 Weights summary for cancer mortality risks

Table C.7: ATE weights summary for cancer mortality risks between metformin and
sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.006 1.075 1.205 2.109 1.638 138.614
Fewer, met 1.006 1.059 1.133 1.380 1.324 41.775
Fewer, sulf 1.018 1.353 1.902 4.081 3.508 138.614

Fewer, >2000, overall 1.006 1.069 1.176 2.110 1.573 146.011
Fewer, >2000, met 1.006 1.057 1.123 1.228 1.275 5,.985
Fewer, >2000, sulf 1.177 2.036 2.987 5.875 5.820 146.011

Complete, overall 1.000 1.037 1.115 2.474 1.405 850.639
Complete, met 1.000 1.029 1.079 1.194 1.208 9.275
Complete, sulf 1.024 1.684 2.610 8.626 5.619 850.639

Complete, 2000, overall 1.000 1.034 1.101 2.373 1.348 881.207
Complete, 2000, met 1.000 1.028 1.074 1.170 1.190 10.866
Complete, 2000, sulf 1.081 2.032 3.218 9.279 6.339 881.207

Separate, overall 1.004 1.057 1.163 2.084 1.558 157.505
Separate, met 1.004 1.044 1.105 1.401 1.281 50.836
Separate, sulf 1.013 1.251 1.717 3.932 3.144 157.505

Separate, >2000, overall 1.004 1.049 1.138 2.057 1.498 174.741
Separate, >2000, met 1.004 1.039 1.093 1.233 1.230 17.016
Separate, >2000, sulf 1.065 1.694 2.564 5.574 5.128 174.741

IPW, overall 1.138 1.355 1.596 4.036 2.479 1,137.134
IPW, met 1.138 1.325 1.494 1.754 1.832 21.298
IPW, sulf 2.293 4.476 6.042 15.001 10.658 1,137.134

IPW, >2000, overall 1.020 1.109 1.210 2.705 1.543 977.351
IPW, >2000, met 1.020 1.098 1.170 1.286 1.322 13.711
IPW, >2000, sulf 1.402 2.728 4.201 10.850 7.530 977.351
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Table C.8: ATE weights summary for cancer mortality risks between metformin and
sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.006 1.075 1.205 2.109 1.638 138.614
Fewer, met 1.006 1.059 1.133 1.380 1.324 41.775
Fewer, sulf 1.018 1.353 1.902 4.081 3.508 138.614

Fewer, >2000, overall 1.006 1.069 1.176 2.110 1.573 146.011
Fewer, >2000, met 1.006 1.057 1.123 1.228 1.275 5.985
Fewer, >2000, sulf 1.177 2.036 2.987 5.875 5.820 146.011

Complete, overall 1.000 1.037 1.115 2.474 1.405 850.639
Complete, met 1.000 1.029 1.079 1.194 1.208 9.275
Complete, sulf 1.024 1.684 2.610 8.626 5.619 850.639

Complete, >2000, overall 1.000 1.034 1.101 2.373 1.348 881.207
Complete, >2000, met 1.000 1.028 1.074 1.170 1.190 10.866
Complete, >2000, sulf 1.081 2.032 3.218 9.279 6.339 881.207

Separate, overall 1.004 1.057 1.163 2.084 1.558 157.505
Separate, met 1.004 1.044 1.105 1.401 1.281 50.836
Separate, sulf 1.013 1.251 1.717 3.932 3.144 157.505

Separate, >2000, overall 1.004 1.049 1.138 2.057 1.498 174.741
Separate, >2000, met 1.004 1.039 1.093 1.233 1.230 17.016
Separate, >2000, sulf 1.065 1.694 2.564 5.574 5.128 174.741

IPW, overall 1.138 1.355 1.596 4.036 2.479 1,137.134
IPW, met 1.138 1.325 1.494 1.754 1.832 21.298
IPW, sulf 2.293 4.476 6.042 15.001 10.658 1,137.134

IPW, >2000, overall 1.020 1.109 1.210 2.705 1.543 977.351
IPW, >2000, met 1.020 1.098 1.170 1.286 1.322 13.711
IPW, >2000, sulf 1.402 2.728 4.201 10.850 7.530 977.351
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Table C.9: ATT weights summary for cancer mortality risks between metformin and
sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.006 0.080 0.250 0.548 1 40.775
Fewer, met 0.006 0.059 0.133 0.380 0.324 40.775
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.006 0.069 0.176 0.375 0.651 4.985
Fewer, >2000, met 0.006 0.057 0.123 0.228 0.275 4.985
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0003 0.037 0.116 0.333 0.495 8.275
Complete, met 0.0003 0.029 0.079 0.194 0.208 8.275
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0003 0.034 0.101 0.293 0.363 9.866
Complete, >2000, met 0.0003 0.028 0.074 0.170 0.190 9.866
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.004 0.062 0.212 0.563 1 49.836
Separate, met 0.004 0.044 0.105 0.401 0.281 49.836
Separate, sulf 1 1 1 1 1 1

Separate, 2000, overall 0.004 0.049 0.139 0.379 0.692 16.016
Separate, 2000, met 0.004 0.039 0.093 0.233 0.230 16.016
Separate, 2000, sulf 1 1 1 1 1 1

IPW, overall 0.0004 0.049 0.162 0.676 0.809 18.449
IPW, met 0.0004 0.038 0.109 0.324 0.309 18.449
IPW, sulf 1.301 1.747 2.140 2.369 2.731 12.885

IPW, >2000, overall 0.0003 0.036 0.111 0.353 0.410 12.449
IPW, 2000, met 0.0003 0.030 0.080 0.192 0.212 12.449
IPW, >2000, sulf 1.033 1.138 1.218 1.275 1.351 2.368
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Table C.10: ATT weights summary for cancer mortality risks between metformin and
sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.018 1 1 1.561 1 137.614
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.018 0.353 0.902 3.081 2.508 137.614

Fewer, >2000, overall 0.177 1 1 1.735 1 145.011
Fewer, >2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.177 1.036 1.987 4.875 4.820 145.011

Complete, overall 0.024 1 1 2.141 1 849.639
Complete, met 1 1 1 1 1 1
Complete, sulf 0.024 0.684 1.610 7.626 4.619 849.639

Complete, >2000, overall 0.081 1 1 2.080 1 880.207
Complete, >2000, met 1 1 1 1 1 1
Complete, >2000, sulf 0.081 1.032 2.218 8.279 5.339 880.207

Separate, overall 0.013 1 1 1.521 1 156.505
Separate, met 1 1 1 1 1 1
Separate, sulf 0.013 0.251 0.717 2.932 2.144 156.505

Separate, >2000, overall 0.065 1 1 1.678 1 173.741
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.065 0.694 1.564 4.574 4.128 173.741

IPW, overall 0.133 1.268 1.401 3.360 1.628 1,135.786
IPW, met 1.133 1.263 1.364 1.430 1.508 4.738
IPW, sulf 0.133 1.777 3.569 12.633 8.496 1, 135.786

IPW, >2000, overall 0.144 1.054 1.085 2.352 1.145 976.242
IPW, >2000, met 1.011 1.052 1.078 1.094 1.117 1.662
IPW, >2000, sulf 0.144 1.379 2.885 9.575 6.334 976.242
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Table C.11: ATU weights summary for cancer mortality risks between metformin and
sulfonylureas

Reference (metformin)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete,
Complete,

Complete,
Complete,

Complete,

met
sulf

>2000,
>2000,
>2000,

overall
met
sulf

Separate, overall
Separate, met
Separate, sulf

Separate, >2000, overall
Separate, >2000, met
Separate, >2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

>2000,
>2000,
>2000,

overall
met
sulf

Min
0.018

1
0.018

0.177
1

0.177

0.024
1

0.024

0.081
1

0.081

0.013
1

0.013

0.065
1

0.065

0.133
1.133
0.133

0.144
1.011
0.144

1st Qu. Median
1 1
1 1

0.353 0.902

1
1

1.036

1
1

0.684

1
1

1.032

1.
1.

0.251

1
1

0.694

1.268
1.263
1.777

1.054
1.052
1.379

1.
1

1.987

1
1

1.610

1
17

2.218

1
1

0.717

1
1

1.564

1.401
1.364
3.569

1.085
1.078
2.885
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Mean
1.561

1
3.081

1.735
1

4.875

2.141
1

7.626

2.080
1

8.279

1.521
1

2.932

1.678
1

4.574

3.360
1.430

12.633

2.352
1.094
9.575

3rd Qu.
1
1

2.508

19
1

4.820

1
1

4.619

1
14

5.339

1
1

2.144

1
1

4.128

1.628
1.508
8.496

1.145
1.117
6.334

Max
137.614

1
137.614

145.011
1

145.011

849.639
1

849.639

880.207
1

880.207

156.505
1

156.505

173.741
1

173.741

1,135.786
4.738

1,135.786

976.242
1.662

976.242



Table C.12: ATU weights summary for cancer mortality risks between metformin and
sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.006 0.080 0.250 0.548 1 40.775
Fewer, met 0.006 0.059 0.133 0.380 0.324 40.775
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.006 0.069 0.176 0.375 0.651 4.985
Fewer, >2000, met 0.006 0.057 0.123 0.228 0.275 4.985
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0003 0.037 0.116 0.333 0.495 8.275
Complete, met 0.0003 0.029 0.079 0.194 0.208 8.275
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0003 0.034 0.101 0.293 0.363 9.866
Complete, >2000, met 0.0003 0.028 0.074 0.170 0.190 9.866
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.004 0.062 0.212 0.563 1 49.836
Separate, met 0.004 0.044 0.105 0.401 0.281 49.836
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.004 0.049 0.139 0.379 0.692 16.016
Separate, >2000, met 0.004 0.039 0.093 0.233 0.230 16.016
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0004 0.049 0.162 0.676 0.809 18.449
IPW, met 0.0004 0.038 0.109 0.324 0.309 18.449
IPW, sulf 1.301 1.747 2.140 2.369 2.731 12.885

IPW, >2000, overall 0.0003 0.036 0.111 0.353 0.410 12.449
IPW, >2000, met 0.0003 0.030 0.080 0.192 0.212 12.449
IPW, >2000, sulf 1.033 1.138 1.218 1.275 1.351 2.368
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C.3 Weights summary for breast cancer incidence

risks

Table C.13: ATE weights summary for breast cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.004 1.051 1.165 2.053 1.586 211.118
Fewer, met 1.004 1.035 1.098 1.487 1.299 55.563
Fewer, sulf 1.010 1.209 1.593 3.404 2.623 211.118

Fewer, >2000, overall 1.002 1.029 1.093 2.142 1.360 331.844
Fewer, >2000, overall 1.002 1.029 1.093 2.142 1.360 331.844
Fewer, >2000, overall 1.002 1.029 1.093 2.142 1.360 331.844
Fewer, >2000, met 1.002 1.024 1.067 1.165 1.186 6.285
Fewer, >2000, sulf 1.130 2.084 3.194 7.926 6.373 331.844

Complete, overall 1.000 1.015 1.060 2.420 1.273 1, 367.363
Complete, met 1.000 1.011 1.040 1.167 1.139 46.051
Complete, sulf 1.016 1.498 2.253 9.607 4.895 1, 367.363

Complete, 2000, overall 1.000 1.013 1.046 2.359 1.189 1, 535.591
Complete, 2000, met 1.000 1.011 1.036 1.115 1.114 13.739
Complete, 2000, sulf 1.074 2.034 3.342 12.776 7.801 1, 535.591

Separate, overall 1.002 1.040 1.132 2.027 1.519 313.741
Separate, met 1.002 1.026 1.076 1.486 1.261 89.701
Separate, sulf 1.007 1.161 1.487 3.320 2.418 313.741

Separate, >2000, overall 1.001 1.021 1.069 2.082 1.301 462.960
Separate, >2000, met 1.001 1.017 1.049 1.166 1.148 10.663
Separate, >2000, sulf 1.063 1.712 2.670 7.504 5.753 462.960

IPW, overall 1.108 1.339 1.616 4.386 2.522 2,041.518
IPW, met 1.108 1.310 1.514 1.945 1.914 257.934
IPW, sulf 2.229 5.145 6.829 18.382 12.467 2, 041.518

IPW, >2000, overall 1.015 1.085 1.158 2.738 1.382 1, 704.006
IPW, >2000, met 1.015 1.080 1.138 1.245 1.269 17.486
IPW, 2000, sulf 1.357 2.934 4.572 15.234 9.865 1, 704.006
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Table C.14: ATE weights summary for breast cancer incidence risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.004 1.051 1.165 2.053 1.586 211.118
Fewer, met 1.004 1.035 1.098 1.487 1.299 55.563
Fewer, sulf 1.010 1.209 1.593 3.404 2.623 211.118

Fewer, >2000, overall 1.002 1.029 1.093 2.142 1.360 331.844
Fewer, >2000, met 1.002 1.024 1.067 1.165 1.186 6.285
Fewer, >2000, sulf 1.130 2.084 3.194 7.926 6.373 331.844

Complete, overall 1.000 1.015 1.060 2.420 1.273 1, 367.363
Complete, met 1.000 1.011 1.040 1.167 1.139 46.051
Complete, sulf 1.016 1.498 2.253 9.607 4.895 1, 367.363

Complete, >2000, overall 1.000 1.013 1.046 2.359 1.189 1, 535.591
Complete, >2000, met 1.000 1.011 1.036 1.115 1.114 13.739
Complete, >2000, sulf 1.074 2.034 3.342 12.776 7.801 1, 535.591

Separate, overall 1.002 1.040 1.132 2.027 1.519 313.741
Separate, met 1.002 1.026 1.076 1.486 1.261 89.701
Separate, sulf 1.007 1.161 1.487 3.320 2.418 313.741

Separate, >2000, overall 1.001 1.021 1.069 2.082 1.301 462.960
Separate, >2000, met 1.001 1.017 1.049 1.166 1.148 10.663
Separate, >2000, sulf 1.063 1.712 2.670 7.504 5.753 462.960

IPW, overall 1.108 1.339 1.616 4.386 2.522 2, 041.518
IPW, met 1.108 1.310 1.514 1.945 1.914 257.934
IPW, sulf 2.229 5.145 6.829 18.382 12.467 2, 041.518

IPW, >2000, overall 1.015 1.085 1.158 2.738 1.382 1, 704.006
IPW, 2000, met 1.015 1.080 1.138 1.245 1.269 17.486
IPW, >2000, sulf 1.357 2.934 4.572 15.234 9.865 1, 704.006
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Table C.15: ATT weights summary for breast cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.004 0.055 0.240 0.638 1 54.563
Fewer, met 0.004 0.035 0.098 0.487 0.299 54.563
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.029 0.093 0.286 0.367 5.285
Fewer, >2000, met 0.002 0.024 0.067 0.165 0.186 5.285
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.015 0.061 0.291 0.328 45.051
Complete, met 0.0001 0.011 0.040 0.167 0.139 45.051
Complete, sulf 1 1 1 1 1 1

Complete, 2000, overall 0.0001 0.013 0.046 0.209 0.190 12.739
Complete, 2000, met 0.0001 0.011 0.036 0.115 0.114 12.739
Complete, 2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.209 0.638 1 88.701
Separate, met 0.002 0.026 0.076 0.486 0.261 88.701
Separate, sulf 1 1 1 1 1 1

Separate, 2000, overall 0.001 0.021 0.069 0.287 0.329 9.663
Separate, 2000, met 0.001 0.017 0.049 0.166 0.148 9.663
Separate, 2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.020 0.091 0.801 0.598 252.333
IPW, met 0.0001 0.015 0.059 0.393 -0.228 252.333
IPW, sulf 1.230 2.059 2.730 3.139 3.640 29.733

IPW, >2000, overall 0.0001 0.014 0.051 0.267 0.219 16.213
IPW, >2000, met 0.0001 0.011 0.039 0.135 0.129 16.213
IPW, >2000, sulf 1.031 1.197 1.303 1.364 1.469 3.635
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Table C.16: ATT weights summary for breast cancer incidence risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.010 1 1 1.414 1 210.118
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000,
Complete, >2000,
Complete, >2000,

Separate, overall
Separate, met 1
Separate, sulf

Separate, >2000,
Separate, >2000,
Separate, >2000,

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

overall
met
sulf

overall.
met
sulf

>2000, overall
>2000, met
;>2000, sulf

1
0.010

0.130

1
0.209

1

1
0.593

1
2.404

1 1.857
1 1 1

0.130 1.084 2.194

0.016
1

0.016

0.074
1

0.074

0.007
1

0.007

0.063
1

0.063

0.104
1.108
0.104

0.120
1.012
0.120

1
1

0.498

1
1

1.034

1.
16

0.161

1
1

0.712

1.288
1.281
1.665

1.061
1.060
1.476

1
6.926

1 2.129
1

1.253

12
1

2.342

1
1

0.487

1
1

1.670

1.471
1.436
3.536

1.095
1.090
3.156

1
8.607

2.150
1

11.776

1.390
1

2.320

1.795
1

6.504

3.585
1.552

15.243

2.472
1.110

13.870

1
1.623

1
210.118

1 330.844
1

5.373
1

330.844

1 1, 366.363
1

3.895

1
1

6.801

1
1

1.418

1
1

4.753

1.794
1.661
9.251

1.158
1.136
8.560

1
1, 366.363

1, 534.591
1

1, 534.591

312.741

312.741

461.960
1

461.960

2, 040.025
16.107

2, 040.025

1, 702.896
2.511

1, 702.896
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Table C.17: ATU weights summary for breast cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, 2000, overall
Complete, 2000, met
Complete, 2000, sulf

Min
0.010

1
0.010

0.130
1

0.130

0.016
1

0.016

0.074
1

0.074

1st Qu.
10
1

0.209

1
1

1.084

1
1

0.498

1.
1

1.034

Median
19
1

0.593

1
1.

2.194

1
12

1.253

1
1

2.342

Mean
1.414

1
2.404

1.857
1

6.926

2.129
1

8.607

2.150
1

11.776

3rd Qu.
16
1

1.623

1
1

5.373

13
1

3.895

1
1

6.801

Max
210.118

1
210.118

330.844
1

330.844

1, 366.363
1

1, 366.363

1, 534.591
1

1, 534.591

Separate, overall
Separate, met
Separate, sulf

0.007 1 1 1.390
1 1 -1

0.007 0.161 0.487
1

2.320

1 312.741
1

1.418
1

312.741

Separate, >2000, overall
Separate, >2000, met
Separate, >2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

>2000, overall
>2000, met
>2000, sulf

0.063
1

0.063

0.104
1.108
0.104

0.120
1.012
0.120

1
1

0.712

1.288
1.281
1.665

1.061
1.060
1.476

1 1.795 1 461.960
1 1 1 1

1.670 6.504 4.753 461.960

1.471
1.436
3.536

3.585
1.552

15.243

1.095 2.472
1.090 1.110
3.156 13.870

1.794
1.661
9.251

1.158
1.136
8.560

2, 040.025
16.107

2, 040.025

1, 702.896
2.511

1, 702.896
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Table C.18: ATU weights summary for breast cancer incidence risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, >2000, met
Complete, >2000, sulf

Min
0.004
0.004

1

0.002
0.002

1

0.0001
0.0001

1

0.0001
0.0001

1

1st Qu.
0.055
0.035

1

0.029
0.024

1

0.015
0.011

1

0.013
0.011

1

Median
0.240
0.098

1

0.093
0.067
- 1

0.061
0.040

1

0.046
0.036

1

Mean

0.638
0.487

1

0.286
0.165

1

0.291
0.167

1

0.209
0.115

1

3rd Qu.
1

0.299
1

0.367
0.186

1

0.328
0.139

1

0.190
0.114

1

Max
54.563
54.563

1

5.285
5.285

1

45.051
45.051

1

12.739
12.739

1

Separate, overall
Separate, met
Separate, sulf

Separate,
Separate,
Separate,

>2000,
>2000,
>2000,

overall
met
sulf

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

>2000, overall
>2000, met

2000, sulf

0.002
0.002

1

0.001
0.001

1

0.0001
0.0001
1.230

0.0001
0.0001
1.031

0.042 0.209 0.638
0.026 0.076 0.486

1

0.021
0.017

1

0.020
0.015
2.059

0.014
0.011
1.197

1

0.069
0.049

1

0.091
0.059
2.730

0.051
0.039
1.303

1

0.287
0.166

1

0.801
0.393
3.139

0.267
0.135
1.364

1 88.701
0.261 88.701

1 1

0.329
0.148

1

0.598
0.228
3.640

0.219
0.129
1.469

9.663
9.663

1

252.333
252.333
29.733

16.213
16.213
3.635
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C.4 Weights summary for breast cancer mortality

risks

Table C.19: ATE weights summary for breast cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.005 1.058 1.158 2.228 1.526 138.261
Fewer, met 1.005 1.046 1.103 1.296 1.250 20.953
Fewer, sulf 1.021 1.432 2.124 5.414 3.898 138.261

Fewer, >2000, overall 1.006 1.048 1.124 2.298 1.406 158.404
Fewer, >2000, met 1.006 1.042 1.090 1.179 1.206 4.131
Fewer, >2000, sulf 1.154 2.131 3.227 8.276 6.663 158.404

Complete, overall 1.000 1.020 1.071 3.901 1.246 1,601.023
Complete, met 1.000 1.016 1.049 1.139 1.141 5.242
Complete, sulf 1.062 1.626 2.490 21.194 5.959 1, 601.023

Complete, 2000, overall 1.000 1.017 1.060 3.816 1.223 1,495.470
Complete, 2000, met 1.000 1.015 1.045 1.121 1.138 4.428
Complete, 2000, sulf 1.128 1.886 3.160 23.921 7.837 1, 495.470

Separate, overall 1.003 1.042 1.123 2.278 1.447 245.460
Separate, met 1.003 1.032 1.079 1.314 1.212 29.352
Separate, sulf 1.015 1.307 1.838 5.577 3.283 245.460

Separate, >2000, overall 1.002 1.031 1.093 2.317 1.328 248.952
Separate, >2000, met 1.002 1.025 1.065 1.179 1.172 8.083
Separate, >2000, sulf 1.079 1.691 2.552 8.397 5.549 248.952

IPW, overall 1.140 1.320 1.517 6.026 2.084 2,155.788
IPW, met 1.140 1.303 1.451 1.653 1.737 10.151
IPW, sulf 2.440 4.426 6.060 33.400 12.256 2,155.788

IPW, >2000, overall 1.020 1.097 1.169 4.343 1.390 1, 596.462
IPW, >2000, met 1.020 1.091 1.146 1.236 1.270 5.100
IPW, >2000, sulf 1.608 2.708 4.095 27.521 9.799 1, 596.462
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Table C.20: ATE weights summary for breast cancer mortality risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.005 1.058 1.158 2.228 1.526 138.261
Fewer, met 1.005 1.046 1.103 1.296 1.250 20.953
Fewer, sulf 1.021 1.432 2.124 5.414 3.898 138.261

Fewer, >2000, overall 1.006 1.048 1.124 2.298 1.406 158.404

Fewer, >2000, met 1.006 1.042 1.090 1.179 1.206 4.131

Fewer, >2000, sulf 1.154 2.131 3.227 8.276 6.663 158.404

Complete, overall 1.000 1.020 1.071 3.901 1.246 1, 601.023

Complete, met 1.000 1.016 1.049 1.139 1.141 5.242

Complete, sulf 1.062 1.626 2.490 21.194 5.959 1, 601.023

Complete, >2000, overall 1.000 1.017 1.060 3.816 1.223 1, 495.470

Complete, >2000, met 1.000 1.015 1.045 1.121 1.138 4.428

Complete, >2000, sulf 1.128 1.886 3.160 23.921 7.837 1, 495.470

Separate, overall 1.003 1.042 1.123 2.278 1.447 245.460
Separate, met 1.003 1.032 1.079 1.314 1.212 29.352
Separate, sulf 1.015 1.307 1.838 5.577 3.283 245.460

Separate, >2000, overall 1.002 1.031 1.093 2.317 1.328 248.952
Separate, >2000, met 1.002 1.025 1.065 1.179 1.172 8.083
Separate, >2000, sulf 1.079 1.691 2.552 8.397 5.549 248.952

IPW, overall 1.140 1.320 1.517 6.026 2.084 2, 155.788
IPW, met 1.140 1.303 1.451 1.653 1.737 10.151
IPW, sulf 2.440 4.426 6.060 33.400 12.256 2,155.788

IPW, >2000, overall 1.020 1.097 1.169 4.343 1.390 1, 596.462
IPW, >2000, met 1.020 1.091 1.146 1.236 1.270 5.100
IPW, >2000, sulf 1.608 2.708 4.095 27.521 9.799 1, 596.462
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Table C.21: ATT weights summary for breast cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.005 0.059 0.171 0.455 1 19.953
Fewer, met 0.005 0.046 0.103 0.296 0.250 19.953
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.006 0.048 0.124 0.308 0.420 3.131
Fewer, >2000, met 0.006 0.042 0.090 0.179 0.206 3.131
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0002 0.020 0.071 0.257 0.269 4.242
Complete, met 0.0002 0.016 0.049 0.139 0.141 4.242
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0001 0.017 0.060 0.225 0.225 3.428
Complete, >2000, met 0.0001 0.015 0.045 0.121 0.138 3.428
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.003 0.042 0.135 0.469 1 28.352
Separate, met 0.003 0.032 0.079 0.314 0.212 28.352
Separate, sulf 1 1 1 1 1 1

Separate, 2000, overall 0.002 0.031 0.093 0.309 0.383 7.083
Separate, 2000, met 0.002 0.025 0.065 0.179 0.172 7.083
Separate, 2000, sulf 1 1 1 1 1 1

IPW, overall 0.0002 0.027 0.101 0.531 0.425 8.214
IPW, met 0.0002 0.022 0.067 0.227 0.211 8.214
IPW, sulf 1.316 1.754 2.417 2.430 2.805 7.340

IPW, >2000, overall 0.0001 0.018 0.066 0.282 0.255 3.949
IPW, >2000, met 0.0001 0.016 0.049 0.137 0.153 3.949
IPW, >2000, sulf 1.042 1.200 1.311 1.362 1.465 2.416
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Table C.22: ATT weights summary for breast cancer mortality risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.021 1 1 1.773 1 137.261
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.021 0.432 1.124 4.414 2.898 137.261

Fewer, >2000, overall 0.154 1 1 1.989 1 157.404
Fewer, 2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.154 1.131 2.227 7.276 5.663 157.404

Complete, overall 0.062 1 1 3.644 1 1, 600.023
Complete, met 1 1 1 1 1 1
Complete, sulf 0.062 0.626 1.490 20.194 4.959 1, 600.023

Complete, >2000, overall 0.128 1 1 3.591 1 1, 494.470
Complete, >2000, met 1 1 1 1 1 1
Complete, >2000, sulf 0.128 0.886 2.160 22.921 6.837 1,494.470

Separate, overall 0.015 1 1 1.809 1 244.460
Separate, met 1 1 1 1 1 1
Separate, sulf 0.015 0.307 0.838 4.577 2.283 244.460

Separate, >2000, overall 0.079 1 1 2.008 1 247.952
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.079 0.691 1.552 7.397 4.549 247.952

IPW, overall 0.259 1.257 1.388 5.496 1.602 2,154.441
IPW, met 1.118 1.253 1.351 1.426 1.500 3.364
IPW, sulf 0.259 1.637 3.574 30.971 10.429 2,154.441

IPW, >2000, overall 0.216 1.062 1.090 4.061 1.138 1, 595.395
IPW, >2000, met 1.015 1.062 1.085 1.099 1.122 1.447
IPW, >2000, sulf 0.216 1.260 2.869 26.158 8.558 1, 595.395
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Table C.23: ATU weights summary for breast cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, 2000, met
Complete, 2000, sulf

Separate, overall
Separate, met
Separate, sulf

Separate, >2000, overall
Separate, >2000, met
Separate, >2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW, >2000, overall
IPW, >2000, met
IPW, >2000, sulf

Min
0.021

1
0.021

0.154
1

0.154

0.062
1

0.062

0.128
1.

0.128

0.015
1

0.015

0.079
1

0.079

0.259
1.118
0.259

1st Qu.
1
1

0.432

1
1

1.131

1
1

0.626

1

Median
1.
1

1.124

1
1

2.227

1
1

1.490

Mean
1.773

1
4.414

1.989
1

7.276

3.644
1

20.194

1 3.591

3rd Qu.
1
1

2.898

15
1

5.663

1
14

4.959

Max
137.261

1
137.261

157.404
1

157.404

1, 600.023
1

1, 600.023

1 1, 494.470
1 1 1 1

0.886 2.160 22.921 6.837

1
1

0.307

1
1

0.691

1.257
1.253
1.637

1
1

0.838

1
1

1.552

1.388
1.351
3.574

1.809
1

4.577

2.008
1

7.397

5.496
1.426

30.971

1
1

2.283

1
1

4.549

1.602
1.500

10.429

1
1,494.470

244.460
1

244.460

247.952
1

247.952

2,154.441
3.364

2,154.441

0.216 1.062 1.090 4.061 1.138 1, 595.395
1.015 1.062 1.085 1.099 1.122 1.447
0.216 1.260 2.869 26.158 8.558 1, 595.395
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Table C.24: ATU weights summary for breast cancer mortality risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.005 0.059 0.171 0.455 1 19.953
Fewer, met 0.005 0.046 0.103 0.296 0.250 19.953
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.006 0.048 0.124 0.308 0.420 3.131
Fewer, >2000, met 0.006 0.042 0.090 0.179 0.206 3.131
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0002 0.020 0.071 0.257 0.269 4.242
Complete, met 0.0002 0.016 0.049 0.139 0.141 4.242
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0001 0.017 0.060 0.225 0.225 3.428
Complete, >2000, met 0.0001 0.015 0.045 0.121 0.138 3.428
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.003 0.042 0.135 0.469 1 28.352
Separate, met 0.003 0.032 0.079 0.314 0.212 28.352
Separate, sulf 1 1 - 1 1 1 1

Separate, >2000, overall 0.002 0.031 0.093 0.309 0.383 7.083
Separate, >2000, met 0.002 0.025 0.065 0.179 0.172 7.083
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0002 0.027 0.101 0.531 0.425 8.214
IPW, met 0.0002 0.022 0.067 0.227 0.211 8.214
IPW, sulf 1.316 1.754 2.417 2.430 2.805 7.340

IPW, >2000, overall 0.0001 0.018 0.066 0.282 0.255 3.949
IPW, >2000, met 0.0001 0.016 0.049 0.137 0.153 3.949
IPW, >2000, sulf 1.042 1.200 1.311 1.362 1.465 2.416
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C.5 Weights summary for prostate cancer incidence

risks

Table C.25: ATE weights summary for prostate cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.005 1.052 1.161 2.103 1.573 176.274
Fewer, met 1.005 1.038 1.099 1.482 1.295 78.364
Fewer, sulf 1.012 1.196 1.606 3.597 2.616 176.274

Fewer, >2000, overall 1.003 1.034 1.105 2.185 1.404 278.097
Fewer, >2000, met 1.003 1.029 1.075 1.172 1.205 6.249
Fewer, >2000, sulf 1.203 2.166 3.149 7.917 6.061 278.097

Complete, overall 1.000 1.019 1.070 2.519 1.306 3, 166.679
Complete, met 1.000 1.015 1.047 1.183 1.153 33.651
Complete, sulf 1.007 1.500 2.250 9.647 4.683 3,166.679

Complete, 2000, overall 1.000 1.017 1.056 2.404 1.219 2,853.532
Complete, 2000, met 1.000 1.014 1.043 1.126 1.128 27.730
Complete, 2000, sulf 1.061 2.083 3.325 12.228 7.296 2,853.532

Separate, overall 1.002 1.039 1.125 2.076 1.499 316.688
Separate, met 1.002 1.027 1.076 1.492 1.253 68.977
Separate, sulf 1.006 1.142 1.478 3.482 2.411 316.688

Separate, >2000, overall 1.001 1.024 1.077 2.114 1.341 455.129
Separate, >2000, met 1.001 1.019 1.054 1.175 1.162 16.320
Separate, >2000, sulf 1.057 1.754 2.662 7.429 5.570 455.129

IPW, overall 1.126 1.329 1.585 4.330 2.517 3, 988.474
IPW, met 1.126 1.300 1.482 1.893 1.864 284.413 -
IPW, sulf 2.077 4.643 6.176 17.331 11.236 3, 988.474

IPW, >2000, overall 1.018 1.093 1.170 2.776 1.403 3,122.628
IPW, >2000, met 1.018 1.087 1.146 1.249 1.278 33.815
IPW, >2000, sulf 1.261 2.857 4.422 14.512 9.113 3,122.628
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Table C.26: ATE weights summary for prostate cancer incidence risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.005 1.052 1.161 2.103 1.573 176.274

Fewer, met 1.005 1.038 1.099 1.482 1.295 78.364

Fewer, sulf 1.012 1.196 1.606 3.597 2.616 176.274

Fewer, >2000, overall 1.003 1.034 1.105 2.185 1.404 278.097

Fewer, 2000, met 1.003 1.029 1.075 1.172 1.205 6.249

Fewer, 2000, sulf 1.203 2.166 3.149 7.917 6.061 278.097

Complete, overall 1.000 1.019 1.070 2.519 1.306 3, 166.679

Complete, met 1.000 1.015 1.047 1.183 1.153 33.651

Complete, sulf 1.007 1.500 2.250 9.647 4.683 3, 166.679

Complete, >2000, overall 1.000 1.017 1.056 2.404 1.219 2, 853.532

Complete, >2000, met 1.000 1.014 1.043 1.126 1.128 27.730

Complete, >2000, sulf 1.061 2.083 3.325 12.228 7.296 2,853.532

Separate, overall 1.002 1.039 1.125 2.076 1.499 316.688

Separate, met 1.002 1.027 1.076 1.492 1.253 68.977

Separate, sulf 1.006 1.142 1.478 3.482 2.411 316.688

Separate, >2000, overall 1.001 1.024 1.077 2.114 1.341 455.129

Separate, >2000, met 1.001 1.019 1.054 1.175 1.162 16.320

Separate, >2000, sulf 1.057 1.754 2.662 7.429 5.570 455.129

IPW, overall 1.126 1.329 1.585 4.330 2.517 3, 988.474

IPW, met 1.126 1.300 1.482 1.893 1.864 284.413

IPW, sulf 2.077 4.643 6.176 17.331 11.236 3, 988.474

IPW, 2000, overall 1.018 1.093 1.170 2.776 1.403 3,122.628

IPW, 2000, met 4.018 1.087 1.146 1.249 1.278 33.815

IPW, >2000, sulf 1.261 2.857 4.422 14.512 9.113 3,122.628
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Table C.27: ATT weights summary for prostate cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.005 0.057 0.240 0.634 1 77.364
Fewer, met 0.005 0.038 0.099 0.482 0.295 77.364
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.003 0.034 0.105 0.297 0.407 5.249
Fewer, >2000, met 0.003 0.029 0.075 0.172 0.205 5.249
Fewer, 2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.019 0.071 0.312 0.382 32.651
Complete, met 0.0001 0.015 0.047 0.183 0.153 32.651
Complete, sulf 1 1 1 1 1 1

Complete, 2000, overall 0.0001 0.017 0.056 0.227 0.221 26.730
Complete, 2000, met 0.0001 0.014 0.043 0.126 0.128 26.730
Complete, 2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.200 0.641 1 67.977
Separate, met 0.002 0.042 0.200 0.641 1 67.977
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.024 0.077 0.299 0.375 15.320
Separate, >2000, met 0.001 0.019 0.054 0.175 0.162 15.320
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.025 0.104 0.778 0.665 274.663
IPW, met 0.0001 0.019 0.067 0.392 0.241 274.663
IPW, sulf 1.211 1.966 2.535 2.839 3.175 22.719

IPW, >2000, overall 0.0001 0.018 0.062 0.280 0.253 32.595
IPW, >2000, met 0.0001 0.015 0.047 0.145 0.144 32.595
IPW, 2000, sulf 1.033 1.186 1.281 1.316 1.400 3.081
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Table C.28: ATT weights summary for prostate cancer incidence risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, >2000, met
Complete, >2000, sulf

Separate, overall
Separate, met
Separate, sulf

Separate, >2000, overall
Separate, >2000, met
Separate, >2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW, >2000, overall
IPW, >2000, met
IPW, 22000, sulf

Min
0.012

1
0.012

0.203
1

0.203

0.007
1

0.007

0.061
1

0.061

0.006
1

0.006

0.057
1

0.057

0.042
1.120
0.042

0.083

1st Qu.
1
1

0.196

1
1

1.166

1
1

0.500

1
1

1.083

1.
15

0.142

1
1

0.754

1.274
1.271
1.525

1.063

Median
14
1

0.606

1
1

2.149

1
1

1.250

1
1

2.325

1
1

0.478

1
1

1.662

1.433
1.395
3.297

1.095

Mean
1.469

1
2.597

1.889
1

6.917

2.207
1

8.647

2.177
1

11.228

1.435
1

2.482

1.815
1

6.429

3.552
1.501

14.492

2.496
1.017 1.061 1.089 1.104 1.130 1.789
0.083 1.475 3.068 13.196 7.867 3, 121.534

185

3rd Qu.
1
1

1.616

1
1

5.061

1
1

3.683

1
1

6.296

1.
1

1.411

1
1

4.570

1.715
1.604
8.230

1.151

Max
175.274

1
175.274

277.097
1

277.097

3, 165.679
1

3,165.679

2, 852.532
1

2, 852.532

315.688
1

315.688

454.129
1

454.129

3, 987.215
10.014

3, 987.215

3,121.534



Table C.29: ATU weights summary for prostate cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.012 1 1 1.469 1 175.274
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.012 0.196 0.606 2.597 1.616 175.274

Fewer, >2000, overall 0.203 1 1 1.889 1 277.097
Fewer, >2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.203 1.166 2.149 6.917 5.061 277.097

Complete, overall 0.007 1 1 2.207 1 3, 165.679
Complete, met 1 1 1 1 1 1
Complete, sulf 0.007 0.500 1.250 8.647 3.683 3,165.679

Complete, 2000, overall 0.061 1 1 2.177 1 2,852.532
Complete, 2000, met 1 1 1 1 1 1
Complete, 2000, sulf 0.061 1.083 2.325 11.228 6.296 2,852.532

Separate, overall 0.006 1 1 1.435 1 315.688
Separate, met 1 1 1 1 1 1
Separate, sulf 0.006 0.142 0.478 2.482 1.411 315.688

Separate, >2000, overall 0.057 1 1 1.815 1 454.129
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.057 0.754 1.662 6.429 4.570 454.129

IPW, overall 0.042 1.274 1.433 3.552 1.715 3, 987.215
IPW, met 1.120 1.271 1.395 1.501 1.604 10.014
IPW, sulf 0.042 1.525 3.297 14.492 8.230 3, 987.215

IPW, >2000, overall 0.083 1.063 1.095 2.496 1.151 3, 121.534
IPW, >2000, met 1.017 1.061 1.089 1.104 1.130 1.789
IPW, >2000, sulf 0.083 1.475 3.068 13.196 7.867 3,121.534
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Table C.30: ATU weights summary for prostate cancer incidence risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.005 0.057 0.240 0.634 1 77.364
Fewer, met 0.005 0.038 0.099 0.482 0.295 77.364
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.003 0.034 0.105 0.297 0.407 5.249
Fewer, >2000, met 0.003 0.029 0.075 0.172 0.205 5.249
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.019 0.071 0.312 0.382 32.651
Complete, met 0.0001 0.015 0.047 0.183 0.153 32.651
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0001 0.017 0.056 0.227 0.221 26.730
Complete, >2000, met 0.0001 0.014 0.043 0.126 0.128 26.730
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.200 0.641 1 67.977
Separate, met 0.002 0.027 0.076 0.492 0.253 67.977
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.024 0.077 0.299 0.375 15.320
Separate, >2000, met 0.001 0.019 0.054 0.175 0.162 15.320
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.025 0.104 0.778 0.665 274.663
IPW, met 0.0001 0.019 0.067 0.392 0.241 274.663
IPW, sulf 1.211 1.966 2.535 2.839 3.175 22.719

IPW, >2000, overall 0.0001 0.018 0.062 0.280 0.253 32.595
IPW, >2000, met 0.0001 0.015 0.047 0.145 0.144 32.595
IPW, >2000, sulf 1.033 1.186 1.281 1.316 1.400 3.081
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C.6 Weights summary for prostate cancer mortality

risks

Table C.31: ATE weights summary for prostate cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.007 1.071 1.202 2.121 1.599 99.992
Fewer, met 1.007 1.056 1.131 1.351 1.305 18.374
Fewer, sulf 1.014 1.313 1.891 4.265 3.767 99.992

Fewer, >2000, overall 1.007 1.073 1.190 2.117 1.608 100.552
Fewer, >2000, met 1.007 1.058 1.124 1.242 1.279 4.701
Fewer, >2000, sulf 1.257 1.911 2.844 5.642 5.525 100.552

Complete, overall 1.001 1.040 1.119 2.025 1.422 98.188
Complete, met 1.001 1.031 1.077 1.209 1.218 6.373
Complete, sulf 1.063 1.601 2.678 5.799 5.322 98.188

Complete, 2000, overall 1.000 1.032 1.104 1.985 1.401 152.538
Complete, 2000, met 1.000 1.026 1.069 1.196 1.180 7.986
Complete, 2000, sulf 1.066 1.771 2.625 5.983 5.368 152.538

Separate, overall 1.004 1.056 1.159 2.019 1.526 54.482
Separate, met 1.004 1.042 1.103 1.369 1.271 40.035
Separate, sulf 1.011 1.235 1.711 3.829 3.318 54.482

Separate, >2000, overall 1.003 1.048 1.142 1.971 1.515 58.703
Separate, >2000, met 1.003 1.038 1.094 1.254 1.239 6.562
Separate, >2000, sulf 1.092 1.714 2.425 4.857 4.643 58.703

IPW, overall 1.145 1.303 1.532 3.187 2.499 182.082
IPW, met 1.145 1.274 1.431 1.706 1.756 15.479
IPW, sulf 2.232 3.908 5.597 10.038 9.886 182.082

IPW, >2000, overall 1.021 1.089 1.186 2.210 1.611 164.194
IPW, >2000, met 1.021 1.081 1.143 1.294 1.297 8.817
IPW, >2000, sulf 1.277 2.195 3.390 6.849 6.264 164.194
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Table C.32: ATE weights summary for prostate cancer mortality risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.007 1.071 1.202 2.121 1.599 99.992
Fewer, met 1.007 1.056 1.131 1.351 1.305 18.374
Fewer, sulf 1.014 1.313 1.891 4.265 3.767 99.992

Fewer, >2000, overall 1.007 1.073 1.190 2.117 1.608 100.552
Fewer, >2000, met 1.007 1.058 1.124 1.242 1.279 4.701

Fewer, >2000, sulf 1.257 1.911 2.844 5.642 5.525 100.552

Complete, overall 1.001 1.040 1.119 2.025 1.422 98.188

Complete, met 1.063 1.601 2.678 5.799 5.322 98.188

Complete, sulf 1.001 1.031 1.077 1.209 1.218 6.373

Complete, >2000, overall 1.000 1.032 1.104 1.985 1.401 152.538
Complete, >2000, met 1.066 1.771 2.625 5.983 5.368 152.538
Complete, >2000, sulf 1.000 1.026 1.069 1.196 1.180 7.986

Separate, overall 1.004 1.056 1.159 2.019 1.526 54.482
Separate, met 1.011 1.235 1.711 3.829 3.318 54.482

Separate, sulf 1.004 1.042 1.103 1.369 1.271 40.035

Separate, >2000, overall 1.003 1.048 1.142 1.971 1.515 58.703
Separate, >2000, met 1.092 1.714 2.425 4.857 4.643 58.703
Separate, >2000, sulf 1.003 1.038 1.094 1.254 1.239 6.562

IPW, overall 1.145 1.303 1.532 3.187 2.499 182.082
IPW, met 1.145 1.274 1.431 1.706 1.756 15.479
IPW, sulf 2.232 3.908 5.597 10.038 9.886 182.082

IPW, >2000, overall 1.021 1.089 1.186 2.210 1.611 164.194
IPW, >2000, met 1.021 1.081 1.143 1.294 1.297 8.817
IPW, >2000, sulf 1.277 2.195 3.390 6.849 6.264 164.194
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Table C.33: ATT weights summary for prostate cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.007 0.078 0.238 0.522 1 17.374
Fewer, met 0.007 0.056 0.131 0.351 0.305 17.374
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.007 0.073 0.190 0.392 0.772 3.701
Fewer, >2000, met 0.007 0.058 0.124 0.242 0.279 3.701
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.001 0.040 0.121 0.349 0.562 5.373
Complete, met 0.001 0.031 0.077 0.209 0.218 5.373
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0004 0.032 0.104 0.328 0.466 6.986
Complete, >2000, met 0.0004 0.026 0.069 0.196 0.180 6.986
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.004 0.061 0.201 0.536 1 39.035
Separate, met 0.004 0.042 0.103 0.369 0.271 39.035
Separate, sulf 1 1 1 1 1 1

Separate, 2000, overall 0.003 0.048 0.143 0.402 0.837 5.562
Separate, >2000, met 0.003 0.038 0.094 0.254 0.239 5.562
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.001 0.050 0.163 0.656 0.884 13.050
IPW, met 0.001 0.039 0.101 0.340 0.306 13.050
IPW, sulf 1.246 1.620 1.977 2.118 2.486 6.453

IPW, >2000, overall 0.0004 0.034 0.111 0.382 0.517 7.713
IPW, >2000, met 0.0004 0.027 0.073 0.218 0.199 7.713
IPW, >2000, sulf 1.014 1.110 1.186 1.213 1.274 1.734
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Table C.34: ATT weights summary for prostate cancer mortality risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 0.014 1 1 1.599 1 98.992

Fewer, met 1 1 1 1 1 1

Fewer, sulf 0.014 0.313 0.891 3.265 2.767 98.992

Fewer, >2000, overall 0.257 1 1 1.725 1 99.552

Fewer, >2000, met 1 1 1 1 1 1

Fewer, >2000, sulf 0.257 0.911 1.844 4.642 4.525 99.552

Complete, overall 0.063 1 1 1.675 1 97.188

Complete, met 1 1 1 1 1 1

Complete, sulf 0.063 0.601 1.678 4.799 4.322 97.188

Complete, >2000, overall 0.066 1 1 1.657 1 151.538

Complete, >2000, met 1 1 1 1 1 1

Complete, >2000, sulf 0.066 0.771 1.625 4.983 4.368 151.538

Separate, overall 0.011 1 1 1.483 1 53.482

Separate, met 1 1 1 1 1 1

Separate, sulf 0.011 0.235 0.711 2.829 2.318 53.482

Separate, >2000, overall 0.092 1 1 1.568 1 57.703

Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.092 0.714 1.425 3.857 3.643 57.703

IPW, overall 0.173 1.222 1.327 2.531 1.553 180.228
IPW, met 1.098 1.219 1.311 1.366 1.438 3.786

IPW, sulf 0.173 1.491 3.593 7.920 7.795 180.228

IPW, >2000, overall 0.080 1.043 1.069 1.829 1.119 163.117
IPW, >2000, met 1.010 1.044 1.065 1.077 1.100 1.327

IPW, >2000, sulf 0.080 0.947 2.054 5.636 5.106 163.117
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Table C.35: ATU weights summary for prostate cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.014 1 1 1.599 1 98.992
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.014 0.313 0.891 3.265 2.767 98.992

Fewer, >2000, overall 0.257 1 1 1.725 1 99.552
Fewer, >2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.257 0.911 1.844 4.642 4.525 99.552

Complete, overall 0.063 1 1 1.675 1 97.188
Complete, met 1 1 1 1 1 1
Complete, sulf 0.063 0.601 1.678 4.799 4.322 97.188

Complete, >2000, overall 0.066 1 1 1.657 1 151.538
Complete, >2000, met 1 1 1 1 1 1
Complete, >2000, sulf 0.066 0.771 1.625 4.983 4.368 151.538

Separate, overall 0.011 1 1 1.483 1 53.482
Separate, met 1 1 1 1 1 1
Separate, sulf 0.011 0.235 0.711 2.829 2.318 53.482

Separate, 2000, overall 0.092 1 1 1.568 1 57.703
Separate, 2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.092 0.714 1.425 3.857 3.643 '57.703

IPW, overall 0.173 1.222 1.327 2.531 1.553 180.228
IPW, met 1.098 1.219 1.311 1.366 1.438 3.786
IPW, sulf 0.173 1.491 3.593 7.920 7.795 180.228

IPW, >2000, overall 0.080 1.043 1.069 1.829 1.119 163.117
IPW, >2000, met 1.010 1.044 1.065 1.077 1.100 1.327
IPW, >2000, sulf 0.080 0.947 2.054 5.636 5.106 163.117
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Table C.36: ATU weights summary for prostate cancer mortality risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.007 0.078 0.238 0.522 1 17.374
Fewer, met 0.007 0.056 0.131 0.351 0.305 17.374
Fewer, sulf 1 1 1 1 1 1 1

Fewer, >2000, overall 0.007 0.073 0.190 0.392 0.772 3.701
Fewer, >2000, met 0.007 0.058 0.124 0.242 0.279 3.701
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.001 0.040 0.121 0.349 0.562 5.373
Complete, met 0.001 0.031 0.077 0.209 0.218 5.373
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0004 0.032 0.104 0.328 0.466 6.986
Complete, >2000, met 0.0004 0.026 0.069 0.196 0.180 6.986
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.004 0.061 0.201 0.536 1 39.035
Separate, met 0.004 0.042 0.103 0.369 0.271 39.035
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.003 0.048 0.143 0.402 0.837 5.562
Separate, >2000, met 0.003 0.038 0.094 0.254 0.239 5.562
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.001 0.050 0.163 0.656 0.884 13.050
IPW, met 0.001 0.039 0.101 0.340 0.306 13.050
IPW, sulf 1.246 1.620 1.977 2.118 2.486 6.453

IPW, >2000, overall 0.0004 0.034 0.111 0.382 0.517 7.713
IPW, >2000, met 0.0004 0.027 0.073 0.218 0.199 7.713
IPW, >2000, sulf 1.014 1.110 1.186 1.213 1.274 1.734
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C.7 Weights summary for bowel cancer incidence

risks

Table C.37: ATE weights summary for bowel cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.003 1.052 1.163 2.082 1.578 218.960
Fewer, met 1.003 1.037 1.099 1.479 1.294 84.099
Fewer, sulf 1.011 1.206 1.610 3.540 2.652 218.960

Fewer, >2000, overall 1.002 1.032 1.100 2.171 1.380 304.239
Fewer, >2000, met 1.002 1.027 1.072 1.169 1.197 7.775
Fewer, >2000, sulf 1.157 2.141 3.197 7.955 6.259 304.239

Complete, overall 1.000 1.017 1.066 2.483 1.291 2, 533.461
Complete, met 1.000 1.013 1.045 1.175 1.147 48.014
Complete, sulf 1.008 1.506 2.271 9.716 4.837 2, 533.461

Complete, 2000, overall 1.000 1.015 1.052 2.387 1.207 2, 096.414
Complete, 2000, met 1.000 1.013 1.040 1.121 1.123 22.850
Complete, 2000, sulf 1.059 2.067 3.347 12.466 7.429 2, 096.414

Separate, overall 1.002 1.040 1.128 2.056 1.508 310.178
Separate, met 1.002 1.027 1.076 1.485 1.256 96.764
Separate, sulf 1.006 1.152 1.490 3.437 2.432 310.178

Separate, >2000, overall 1.001 1.023 1.073 2.103 1.323 450.934
Separate, >2000, met 1.001 1.019 1.052 1.171 1.156 17.458
Separate, >2000, sulf 1.050 1.739 2.685 7.484 5.668 450.934

IPW, overall 1.118 1.334 1.598 4.360 2.507 3,147.775
IPW, met 1.118 1.304 1.496 1.909 1.882 339.257
IPW, sulf 2.197 4.849 6.447 17.905 11.788 3,147.775

IPW, >2000, overall 1.018 1.091 1.165 2.765 1.394 2, 282.572
IPW, >2000, met 1.018 1.085 1.143 1.247 1.274 28.539
IPW, >2000, sulf 1.295 2.899 4.496 14.854 9.419 2, 282.572
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Table C.38: ATE weights summary for bowel cancer incidence risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.003 1.052 1.163 2.082 1.578 218.960

Fewer, met 1.003 1.037 1.099 1.479 1.294 84.099

Fewer, sulf 1.011 1.206 1.610 3.540 2.652 218.960

Fewer, >2000, overall 1.002 1.032 1.100 2.171 1.380 304.239

Fewer, >2000, met 1.002 1.027 1.072 1.169 1.197 7.775

Fewer, >2000, sulf 1.157 2.141 3.197 7.955 6.259 304.239

Complete, overall 1.000 1.017 1.066 2.483 1.291 2, 533.461

Complete, met 1.000 1.013 1.045 1.175 1.147 48.014

Complete, sulf 1.008 1.506 2.271 9.716 4.837 2, 533.461

Complete, >2000, overall 1.000 1.015 1.052 2.387 1.207 2, 096.414

Complete, >2000, met 1.000 1.013 1.040 1.121 1.123 22.850

Complete, >2000, sulf 1.059 2.067 3.347 12.466 7.429 2, 096.414

Separate, overall 1.002 1.040 1.128 2.056 1.508 310.178

Separate, met 1.002 1.027 1.076 1.485 1.256 96.764

Separate, sulf 1.006 1.152 1.490 3.437 2.432 310.178

Separate, >2000, overall 1.001 1.023 1.073 2.103 1.323 450.934

Separate, >2000, met 1.001 1.019 1.052 1.171 1.156 17.458

Separate, >2000, sulf 1.050 1.739 2.685 7.484 5.668 450.934

IPW, overall 1.118 1.334 1.598 4.360 2.507 3, 147.775

IPW, met 1.118 1.304 1.496 1.909 1.882 339.257

IPW, sulf 2.197 4.849 6.447 17.905 11.788 3,147.775

IPW, >2000, overall 1.018 1.091 1.165 2.765 1.394 2, 282.572

IPW, 2000, met 1.018 1.085 1.143 1.247 1.274 28.539

IPW, 2000, sulf 1.295 2.899 4.496 14.854 9.419 2, 282.572

195



Table C.39: ATT weights summary for bowel cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.003 0.056 0.238 0.632 1 83.099
Fewer, met 0.003 0.037 0.099 0.479 0.294 83.099
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.032 0.100 0.292 0.385 6.775
Fewer, >2000, met 0.002 0.027 0.072 0.169 0.197 6.775
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.017 0.067 0.301 0.355 47.014
Complete, met 0.0001 0.013 0.045 0.175 0.147 47.014
Complete, sulf 1 1 1 1 1 1

Complete, 2000, overall 0.0001 0.015 0.052 0.219 0.208 21.850
Complete, 2000, met 0.0001 0.013 0.040 0.121 0.123 21.850
Complete, 2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.201 0.636 1 95.764
Separate, met 0.002 0.027 0.076 0.485 0.256 95.764
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.023 0.073 0.293 0.354 16.458
Separate, >2000, met 0.001 0.019 0.052 0.171 0.156 16.458
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.023 0.099 0.780 0.625 328.551
IPW, met 0.0001 0.018 0.064 0.388 0.235 328.551
IPW, sulf 1.197 2.010 2.621 2.949 3.386 26.426

IPW, >2000, overall 0.0001 0.016 0.058 0.274 0.238 27.290
IPW, >2000, met 0.0001 0.014 0.044 0.141 0.138 27.290
IPW, >2000, sulf 1.027 1.191 1.292 1.336 1.429 3.226
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Table C.40: ATT weights summary for bowel cancer incidence risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas)
Fewer, overall
Fewer, met
Fewer, sulf

Min
0.011

1
0.011

1st Qu.
10
1

0.206

Median
10
1

0.610

Mean
1.451

1
2.540

3rd Qu.
1.
1

1.652

Max
217.960

1
217.960

Fewer,
Fewer,
Fewer,

2000, overall
>2000, met

2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000,
Complete, >2000,
Complete, >2000,

Separate, overall
Separate, met
Separate, sulf

Separate, >2000,
Separate, >2000,
Separate, >2000,

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

overall
met
sulf

0.157
1

0.157

0.008
1

0.008

0.059
1

0.059

0.006

1.
1

1.141

1
1

0.506

1
1

1.067

1
1 1

0.006 0.152

overall
met
sulf

>2000, overall
2000, met
2000, sulf

0.050
1

0.050

0.053
1.114
0.053

0.095
1.015
0.095

1
1

0.739

1.273
1.269
1.595

1.063
1.062
1.483

1 1.879
1 1

2.197 6.955

1.
1

1.271

1
12

2.347

2.182
1

8.716

2.168
1

11.466

1 1.421
1

0.490

1.
1

1.685

1.440
1.418
3.412

1.095
1.090
3.138

1 1
2.437 1.432

1.810
1

6.484

3.580
1.521

14.956

2.491
1.106

13.518

1 303.239
1

5.259

1
1

3.837

16
1

6.429

1
303.239

2, 532.461
1

2, 532.461

2, 095.414
1

2, 095.414

1 309.178
1

309.178

449.934
1

449.934

3,146.533
14.095

3,146.533

2, 281.483
2.146

2, 281.483

1
1

4.668

1.756
1.623
8.721

1.153
1.132
8.119
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Table C.41: ATU weights summary for bowel cancer incidence risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.011 1 1 1.451 1 217.960
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.011 0.206 0.610 2.540 1.652 217.960

Fewer, >2000, overall 0.157 1 1 1.879 1 303.239
Fewer, >2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.157 1.141 2.197 6.955 5.259 303.239

Complete, overall 0.008 1 1 2.182 1 2, 532.461
Complete, met 1 1 1 1 1 1
Complete, sulf 0.008 0.506 1.271 8.716 3.837 2, 532.461

Complete, 2000, overall 0.059 1 1 2.168 1 2, 095.414
Complete, 2000, met 1 1 1 1 1 1
Complete, >2000, sulf 0.059 1.067 2.347 11.466 6.429 2, 095.414

Separate, overall 0.006 1 1 1.421 1 309.178
Separate, met 1 1 1 1 1 1
Separate, sulf 0.006 0.152 0.490 2.437 1.432 309.178

Separate, >2000, overall 0.050 1 1 1.810 1 449.934
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.050 0.739 1.685 6.484 4.668 449.934

IPW, overall 0.053 1.273 1.440 3.580 1.756 3,146.533
IPW, met 1.114 1.269 1.418 1.521 1.623 14.095
IPW, sulf 0.053 1.595 3.412 14.956 8.721 3,146.533

IPW, >2000, overall 0.095 1.063 1.095 2.491 1.153 2, 281.483
IPW, >2000, met 1.015 1.062 1.090 1.106 1.132 2.146
IPW, >2000, sulf 0.095 1.483 3.138 13.518 8.119 2, 281.483
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Table C.42: ATU weights summary for bowel cancer incidence risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 0.003 0.056 0.238 0.632 1 83.099

Fewer, met 0.003 0.037 0.099 0.479 0.294 83.099
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.032 0.100 0.292 0.385 6.775

Fewer, >2000, met 0.002 0.027 0.072 0.169 0.197 6.775

Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.017 0.067 0.301 0.355 47.014

Complete, met 0.0001 0.013 0.045 0.175 0.147 47.014

Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0001 0.015 0.052 0.219 0.208 21.850

Complete, >2000, met 0.0001 0.013 0.040 0.121 0.123 21.850
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.201 0.636 1 95.764
Separate, met 0.002 0.027 0.076 0.485 0.256 95.764
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.023 0.073 0.293 0.354 16.458
Separate, >2000, met 0.001 0.019 0.052 0.171 0.156 16.458
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.023 0.099 0.780 0.625 328.551
IPW, met 0.0001 0.018 0.064 0.388 0.235 328.551
IPW, sulf 1.197 2.010 2.621 2.949 3.386 26.426

IPW, >2000, overall 0.0001 0.016 0.058 0.274 0.238 27.290
IPW, >2000, met 1.027 1.191 1.292 1.336 1.429 3.226
IPW, >2000, sulf 0.0001 0.014 0.044 0.141 0.138 27.290
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C.8 Weights summary for bowel cancer mortality

risks

Table C.43: ATE weights summary for bowel cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.016 1.116 1.284 2.063 1.784 43.323
Fewer, met 1.016 1.094 1.199 1.492 1.462 35.186
Fewer, sulf 1.025 1.285 1.711 3.196 3.113 43.323

Fewer, 2000, overall 1.018 1.116 1.282 2.065 1.794 49.376
Fewer, >2000, met 1.018 1.093 1.186 1.304 1.381 3.545
Fewer, >2000, sulf 1.184 1.909 2.701 4.471 5.141 49.376

Complete, overall 1.001 1.061 1.182 2.533 1.570 359.774
Complete, met 1.001 1.050 1.119 1.258 1.274 5.144
Complete, sulf 1.023 1.493 2.088 6.984 4.935 359.774

Complete, 2000, overall 1.001 1.060 1.165 2.372 1.525 264.460
Complete, 2000, met 1.001 1.048 1.115 1.223 1.257 5.415
Complete, 2000, sulf 1.141 1.883 2.892 7.351 5.695 264.460

Separate, overall 1.008 1.081 1.227 2.063 1.674 47.262
Separate, met 1.009 1.070 1.147 1.542 1.385 47.262
Separate, sulf 1.008 1.207 1.555 3.097 2.715 37.021

Separate, >2000, overall 1.009 1.079 1.217 2.010 1.661 45.419
Separate, >2000, met 1.009 1.062 1.136 1.315 1.326 7.911
Separate, >2000, sulf 1.072 1.579 2.287 4.208 4.488 45.419

IPW, overall 1.125 1.392 1.758 4.141 3.007 522.220
IPW, met 1.125 1.348 1.540 1.905 2.005 24.291
IPW, sulf 2.040 3.761 5.481 11.950 9.029 522.220

IPW, >2000, overall 1.022 1.138 1.283 2.690 1.769 286.092
IPW, >2000, met 1.022 1.119 1.219 1.352 1.417 6.226
IPW, >2000, sulf 1.577 2.447 3.694 8.485 6.898 286.092

200



Table C.44: ATE weights summary for bowel cancer mortality risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.016 1.116 1.284 2.063 1.784 43.323

Fewer, met 1.016 1.094 1.199 1.492 1.462 35.186

Fewer, sulf 1.025 1.285 1.711 3.196 3.113 43.323

Fewer, >2000, overall 1.018 1.116 1.282 2.065 1.794 49.376

Fewer, >2000, met 1.018 1.093 1.186 1.304 1.381 3.545

Fewer, >2000, sulf 1.184 1.909 2.701 4.471 5.141 49.376

Complete, overall 1.001 1.061 1.182 2.533 1.570 359.774

Complete, met 1.001 1.050 1.119 1.258 1.274 5.144

Complete, sulf 1.023 1.493 2.088 6.984 4.935 359.774

Complete, >2000, overall 1.001 1.060 1.165 2.372 1.525 264.460

Complete, >2000, met 1.001 1.048 1.115 1.223 1.257 5.415

Complete, >2000, sulf 1.141 1.883 2.892 7.351 5.695 264.460

Separate, overall 1.008 1.081 1.227 2.063 1.674 47.262

Separate, met 1.009 1.070 1.147 1.542 1.385 47.262

Separate, sulf 1.008 1.207 1.555 3.097 2.715 37.021

Separate, >2000, overall 1.009 1.079 1.217 2.010 1.661 45.419

Separate, >2000, met 1.009 1.062 1.136 1.315 1.326 7.911

Separate, >2000, sulf 1.072 1.579 2.287 4.208 4.488 45.419

IPW, overall 1.125 1.392 1.758 4.141 3.007 522.220

IPW, met 1.125 1.348 1.540 1.905 2.005 24.291

IPW, sulf 2.040 3.761 5.481 11.950 9.029 522.220

IPW, >2000, overall 1.022 1.138 1.283 2.690 1.769 286.092

IPW, 2000, met 1.022 1.119 1.219 1.352 1.417 6.226
IPW, >2000, sulf 1.577 2.447 3.694 8.485 6.898 286.092
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Table C.45: ATT weights summary for bowel cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.016 0.137 0.463 0.662 1 34.186
Fewer, met 0.016 0.094 0.199 0.492 0.462 34.186
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.018 0.116 0.284 0.471 1 2.545
Fewer, >2000, met 0.018 0.093 0.186 0.304 0.381 2.545
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.001 0.062 0.186 0.423 0.994 4.144
Complete, met 0.001 0.050 0.119 0.258 0.274 4.144
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.001 0.060 0.166 0.369 0.584 4.415
Complete, >2000, met 0.001 0.048 0.115 0.223 0.257 4.415
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.009 0.100 0.389 0.696 1 46.262
Separate, met 0.009 0.070 0.147 0.542 0.385 46.262
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.009 0.080 0.231 0.479 1 6.911
Separate, >2000, met 0.009 0.062 0.136 0.315 0.326 6.911
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.001 0.083 0.264 0.898 1.429 19.441
IPW, met 0.001 0.065 0.165 0.454 0.439 19.441
IPW, sulf 1.242 1.639 1.969 2.448 2.600 15.404

IPW, >2000, overall 0.001 0.064 0.183 0.440 0.656 5.076
IPW, >2000, met 0.001 0.052 0.127 0.252 0.288 5.076
IPW, >2000, sulf 1.025 1.115 1.205 1.251 1.319 1.996
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Table C.46: ATT weights summary for bowel cancer mortality risks between met-

formin and sulfonylureas, continued

Reference (sulfonylureas)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, >2000, met
Complete, >2000, sulf

Separate, overall
Separate, met
Separate, sulf

Separate, >2000, overall
Separate, >2000, met
Separate, >2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW, >2000, overall
IPW, 2000, met
IPW, >2000, sulf 0.194 1.111 2.398 7.234 5.622 285.010

203

Reference (sulfonylureas)
Min 1st Qu. Median Mean 3rd Qu.

0.025 1 1 1.400 1
1 1 1 1 1

0.025 0.285 0.711 2.196 2.113

0.184 1 1 1.593 1
1 1 1 1 1

0.184 0.909 1.701 3.471 4.141

0.023 1 1 2.110 1
1 1 1 1 1

0.023 0.493 1.088 5.984 3.935

0.141 1 1 2.003 1
1 1 1 1 1

0.141 0.883 1.892 6.351 4.695

0.008 1 1 1.367 1
1 1 1 1 1

0.008 0.207 0.555 2.097 1.715

0.072 1 1 1.530 1
1 1 1 1 1

0.072 0.579 1.287 3.208 3.488

0.246 1.265 1.409 3.243 1.695
1.098 1.264 1.371 1.450 1.535
0.246 1.369 2.694 9.503 6.654

0.194 1.046 1.082 2.250 1.170
1.009 1.046 1.075 1.100 1.122

Max
42.323

1

42.323

48.376
1

48.376

358.774
1

358.774

263.460
1

263.460

36.021
1

36.021

44.419
1

44.419

520.768
4.850

520.768

285.010
1.550



Table C.47: ATU weights summary for bowel cancer mortality risks between met-
formin and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.025 1 1 1.400 1 42.323
Fewer, met
Fewer, sulf

1 1 1
0.025 0.285 0.711

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, >2000, met
Complete, >2000, sulf

Separate, overall
Separate, met
Separate, sulf

Separate, 2000, overall
Separate, 2000, met
Separate, 2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

>2000, overall
>2000, met
>2000, sulf

0.184 1 1 1.593 1 48.376
1 1 1 1 1 1

0.184 0.909 1.701 3.471 4.141 48.376

0.023
1

0.023

0.141
1

0.141

0.008
1

0.008

0.072
1

0.072

0.246
1.098
0.246

0.194
1.009
0.194

1
1

0.493

1
1

0.883

1
1

0.207

1
1

0.579

1.265
1.264
1.369

1.046
1.046
1.111

1 2.110
1

1.088

1.
1

1.892

1
0.555

1
1

1.287

1.409
1.371
2.694

1.082
1.075
2.398

1
5.984

2.003
1

6.351

1.367
1

2.097

1.530
1

3.208

3.243
1.450
9.503

2.250,
1.100
7.234

1 358.774
1

3.935

14
1

4.695

1
1

1.715

1
1

3.488

1.695
1.535
6.654

1.170
1.122
5.622

1
358.774

263.460
1

263.460

36.021
1

36.021

44.419
1

44.419

520.768
4.850

520.768

285.010
1.550

285.010
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1
2.196

1
2.113

1
42.323



Table C.48: ATU weights summary for bowel cancer mortality risks between met-
formin and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.016 0.137 0.463 0.662 1 34.186
Fewer, met 0.016 0.094 0.199 0.492 0.462 34.186
Fewer, sulf 1 1 1 1 1 1

Fewer, 2000, overall 0.018 0.116 0.284 0.471 1 2.545
Fewer, >2000, met 0.018 0.093 0.186 0.304 0.381 2.545
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.001 0.062 0.186 0.423 0.994 4.144
Complete, met 0.001 0.050 0.119 0.258 0.274 4.144
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.001 0.060 0.166 0.369 0.584 4.415
Complete, >2000, met 0.001 0.048 0.115 0.223 0.257 4.415
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.009 0.100 0.389 0.696 1 46.262
Separate, met 0.009 0.070 0.147 0.542 0.385 46.262
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.009 0.080 0.231 0.479 1 6.911
Separate, >2000, met 0.009 0.062 0.136 0.315 0.326 6.911
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.001 0.083 0.264 0.898 1.429 19.441
IPW, met 0.001 0.065 0.165 0.454 0.439 19.441
IPW, sulf 1.242 1.639 1.969 2.448 2.600 15.404

IPW, >2000, overall 0.001 0.064 0.183 0.440 0.656 5.076
IPW, >2000, met 0.001 0.052 0.127 0.252 0.288 5.076
IPW, >2000, sulf 1.025 1.115 1.205 1.251 1.319 1.996
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C.9 Weights summary for lung cancer incidence risks

Table C.49: ATE weights summary for lung cancer incidence risks between metformin
and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.004 1.053 1.163 2.083 1.579 218.193
Fewer, met 1.004 1.037 1.099 1.479 1.295 84.336
Fewer, sulf 1.011 1.206 1.610 3.540 2.652 218.193

Fewer, >2000, overall 1.002 1.033 1.101 2.170 1.383 305.727
Fewer, >2000, met 1.002 1.027 1.072 1.170 1.197 7.838
Fewer, >2000, sulf 1.156 2.139 3.193 7.919 6.254 305.727

Complete, overall 1.000 1.017 1.067 2.500 1.293 2, 464.718
Complete, met 1.000 1.014 1.045 1.175 1.148 47.864
Complete, sulf 1.008 1.506 2.272 9.790 4.849 2,464.718

Complete, 2000, overall 1.000 1.015 1.053 2.408 1.209 2, 564.806
Complete, 2000, met 1.000 1.013 1.041 1.122 1.124 22.749
Complete, 2000, sulf 1.059 2.065 3.343 12.592 7.409 2, 564.806

Separate, overall 1.002 1.040 1.128 2.058 1.509 305.362
Separate, met 1.002 1.027 1.077 1.485 1.257 96.847
Separate, sulf 1.006 1.152 1.491 3.441 2.433 305.362

Separate, 2000, overall 1.001 1.023 1.074 2.104 1.325 447.830
Separate, 2000, met 1.001 1.019 1.052 1.172 1.157 17.464
Separate, 2000, sulf 1.050 1.738 2.682 7.462 5.652 447.830

IPW, overall 1.118 1.334 1.599 4.381 2.513 3, 073.533
IPW, met 1.118 1.304 1.496 1.908 1.883 336.721
IPW, sulf 2.195 4.842 6.439 17.990 11.751 3, 073.533

IPW, >2000, overall 1.018 1.091 1.166 2.789 1.396 2, 844.448
IPW, >2000, met 1.018 1.085 1.144 1.248 1.275 28.413
IPW, >2000, sulf 1.293 2.897 4.493 14.984 9.380 2, 844.448
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Table C.50: ATE weights summary for lung cancer incidence risks between metformin

and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.004 1.053 1.163 2.083 1.579 218.193

Fewer, met 1.004 1.037 1.099 1.479 1.295 84.336

Fewer, sulf 1.011 1.206 1.610 3.540 2.652 218.193

Fewer, >2000, overall 1.002 1.033 1.101 2.170 1.383 305.727

Fewer, >2000, met 1.002 1.027 1.072 1.170 1.197 7.838

Fewer, >2000, sulf 1.156 2.139 3.193 7.919 6.254 305.727

Complete, overall 1.000 1.017 1.067 2.500 1.293 2, 464.718

Complete, met 1.000 1.014 1.045 1.175 1.148 47.864

Complete, sulf 1.008 1.506 2.272 9.790 4.849 2, 464.718

Complete, >2000, overall 1.000 1.015 1.053 2.408 1.209 2, 564.806

Complete, >2000, met 1.000 1.013 1.041 1.122 1.124 22.749

Complete, >2000, sulf 1.059 2.065 3.343 12.592 7.409 2, 564.806

Separate, overall 1.002 1.040 1.128 2.058 1.509 305.362

Separate, met 1.002 1.027 1.077 1.485 1.257 96.847

Separate, sulf 1.006 1.152 1.491 3.441 2.433 305.362

Separate, >2000, overall 1.001 1.023 1.074 2.104 1.325 447.830

Separate, >2000, met 1.001 1.019 1.052 1.172 1.157 17.464

Separate, >2000, sulf 1.050 1.738 2.682 7.462 5.652 447.830

IPW, overall 1.118 1.334 1.599 4.381 2.513 3, 073.533

IPW, met 1.118 1.304 1.496 1.908 1.883 336.721

IPW, sulf 2.195 4.842 6.439 17.990 11.751 3, 073.533

IPW, >2000, overall 1.018 1.091 1.166 2.789 1.396 2, 844.448

IPW, >2000, met 1.018 1.085 1.144 1.248 1.275 28.413

IPW, >2000, sulf 1.293 2.897 4.493 14.984 9.380 2, 844.448
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Table C.51: ATT weights summary for lung cancer incidence risks between metformin
and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.004 0.057 0.239 0.632 1 83.336
Fewer, met 0.004 0.037 0.099 0.479 0.295 83.336
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.033 0.101 0.293 0.389 6.838
Fewer, >2000, met 0.002 0.027 0.072 0.170 0.197 6.838
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.017 0.068 0.302 0.358 46.864
Complete, met 0.0001 0.014 0.045 0.175 0.148 46.864
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0001 0.015 0.053 0.220 0.210 21.749
Complete, >2000, met 0.0001 0.013 0.041 0.122 0.124 21.749
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.202 0.636 1 95.847
Separate, met 0.002 0.027 0.077 0.485 0.257 95.847
Separate, sulf 1 1 1 1 1 1

Separate, 2000, overall 0.001 0.023 0.074 0.294 0.357 16.464
Separate, >2000, met 0.001 0.019 0.052 0.172 0.157 16.464
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0.0001 0.023 0.100 0.781 0.632 326.015
IPW, met 0.0001 0.018 0.064 0.388 0.237 326.015
IPW, sulf 1.197 2.001 2.607 2.944 3.382 26.426

IPW, >2000, overall 0.0001 0.016 0.059 0.275 0.240 27.164
IPW, >2000, met 0.0001 0.014 0.045 0.142 0.139 27.164
IPW, >2000, sulf 1.027 1.191 1.291 1.335 1.428 3.226
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Table C.52: ATT weights summary for lung cancer incidence risks between metformin

and sulfonylureas, continued

Reference (sulfonylureas)
Fewer, overall
Fewer, met
Fewer, sulf

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, >2000, met
Complete, >2000, sulf

Separate, overall
Separate, met
Separate, sulf

Separate, >2000, overall
Separate, >2000, met
Separate, >2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW, 2000, overall
IPW, >2000, met
IPW,. 2000, sulf

Min
0.011

1
0.011

0.011
1

0.156

0.008
1

0.008

0.059
1

0.059

0.006
1

0.006

0.050
1

0.050

0.054
1.114
0.054

0.096

1st Qu.
1
1

0.206

0.206
1
1

1
1

0.506

1.
1

1.065

1
1

0.152

1
1

0.738

1.272
1.269
1.593

1.063

Reference (sulfonylureas)
Median

1
1

0.610

0.610
1
1.

1
1

1.272

1
1

2.343

1
1

0.491

1
1

1.682

1.440
1.417
3.414

1.095

Mean
1.451

1
2.540

2.540
1

1.877

2.198
1

8.790

2.188
1

11.592

1.422
1

2.441

1.810
1

6.462

3.600
1.521
15.046

2.513
1.015 1.062 1.089 1.106 1.132 2.146
0.096 1.485 3.139 13.649 8.102 2, 843.339
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3rd Qu.
1
1

1.652

1.652
1
13

1
1

3.849

1
1

6.409

1
1

1.433

1
1

4.652

1.756
1.622
8.697

1.154

Max
217.193

1
217.193

217.193
1

304.727

2, 463.718
1

2, 463.718

2, 563.806
1

2, 563.806

304.362
1

304.362

446.830
1

446.830

3, 072.028
14.095

3, 072.028

2, 843.339



Table C.53: ATU weights summary for lung cancer incidence risks between metformin
and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.011 1 1 1.451 1 217.193
Fewer, met 1 1 1 1 1 1
Fewer, sulf 0.011 0.206 0.610 2.540 1.652 217.193

Fewer, >2000, overall 0.156 1 1 1.877 1 304.727
Fewer, >2000, met 1 1 1 1 1 1
Fewer, >2000, sulf 0.156 1.139 2.193 6.919 5.254 304.727

Complete, overall 0.008 1 1 2.198 1 2, 463.718
Complete, met 1 1 1 1 1 1
Complete, sulf 0.008 0.506 1.272 8.790 3.849 2, 463.718

Complete, 2000, overall 0.059 1 1 2.188 1 2, 563.806
Complete, 2000, met 1 1 1 1 1 1
Complete, 2000, sulf 0.059 1.065 2.343 11.592 6.409 2, 563.806

Separate, overall 0.006 1 1 1.422 1 304.362
Separate, met 1 1 1 1 1 1
Separate, sulf 0.006 0.152 0.491 2.441 1.433 304.362

Separate, >2000, overall 0.050 1 1 1.810 1 446.830
Separate, >2000, met 1 1 1 1 1 1
Separate, >2000, sulf 0.050 0.738 1.682 6.462 4.652 446.830

IPW, overall 0.054 1.272 1.440 3.600 1.756 3, 072.028
IPW, met 1.114 1.269 1.417 1.521 1.622 14.095
IPW, sulf 0.054 1.593 3.414 15.046 8.697 3, 072.028

IPW, >2000, overall 0.096 1.063 1.095 2.513 1.154 2, 843.339
IPW, >2000, met 1.015 1.062 1.089 1.106 1.132 2.146
IPW, >2000, sulf 0.096 1.485 3.139 13.649 8.102 2, 843.339
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Table C.54: ATU weights summary for lung cancer incidence risks between metformin

and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 0.004 0.057 0.239 0.632 1 83.336
Fewer, met 0.004 0.037 0.099 0.479 0.295 83.336

Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.002 0.033 0.101 0.293 0.389 6.838
Fewer, >2000, met 0.002 0.027 0.072 0.170 0.197 6.838
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0.0001 0.017 0.068 0.302 0.358 46.864

Complete, met 0.0001 0.014 0.045 0.175 0.148 46.864

Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0.0001 0.015 0.053 0.220 0.210 21.749

Complete, >2000, met 0.0001 0.013 0.041 0.122 0.124 21.749

Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.002 0.042 0.202 0.636 1 95.847
Separate, met 0.002 0.027 0.077 0.485 0.257 95.847
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.001 0.023 0.074 0.294 0.357 16.464

Separate, >2000, met 0.001 0.019 0.052 0.172 0.157 16.464

Separate, >2000, sulf 1 1 1 1 1' 1

IPW, overall 0.0001 0.023 0.100 0.781 0.632 326.015
IPW, met 0.0001 0.018 0.064 0.388 0.237 326.015
IPW, sulf 1.197 2.001 2.607 2.944 3.382 26.426

IPW, >2000, overall 0.0001 0.016 0.059 0.275 0.240 27.164

IPW, >2000, met 0.0001 0.014 0.045 0.142 0.139 27.164

IPW, 2000, sulf 1.027 1.191 1.291 1.335 1.428 3.226
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C.10 Weights summary for lung cancer mortality risks

Table C.55: ATE weights summary for lung cancer mortality risks between metformin
and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 1.046 1.205 1.434 2.026 2.056 16.218
Fewer, met 1.046 1.165 1.301 1.603 1.636 15.682
Fewer, sulf 1.059 1.445 1.994 2.761 3.034 16.218

Fewer, >2000, overall 1.041 1.208 1.413 2.029 2.047 16.516
Fewer, >2000, met 1.041 1.150 1.276 1.414 1.525 3.936
Fewer, >2000, sulf 1.251 1.903 2.451 3.500 3.854 16.516

Complete, overall 1 1.037 1.166 1.900 1.536 30.227
Complete, met 1 1.026 1.100 1.258 1.272 3.950
Complete, sulf 1.058 1.400 2.111 4.119 4.396 30.227

Complete, >2000, overall 1 1.029 1.129 2.031 1.456 50.971
Complete, >2000, met 1 1.023 1.089 1.240 1.228 3.921
Complete, >2000, sulf 1.071 1.396 2.362 5.010 3.700 50.971

Separate, overall 1.007 1.096 1.274 1.994 1.721 17.756
Separate, met 1.007 1.066 1.179 1.592 1.549 17.756
Separate, sulf 1.015 1.173 1.547 2.692 2.224 17.067

Separate, 2000, overall 1.010 1.089 1.235 2.039 1.768 38.147
Separate, >2000, met 1.010 1.067 1.149 1.348 1.435 4.736
Separate, >2000, sulf 1.045 1.268 1.835 3.690 3.347 38.147

IPW, overall 1.150 1.485 1.918 3.697 3.331 58.937
IPW, met 1.150 1.409 1.684 2.018 2.228 9.018
IPW, sulf 2.031 4.154 5.844 9.502 11.141 58.937

IPW, >2000, overall 1.020 1.119 1.270 2.328 1.729 56.418
IPW, >2000, met 1.020 1.100 1.196 1.374 1.437 4.482
IPW, >2000, sulf 1.280 1.848 2.896 5.924 4.773 56.418
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Table C.56: ATE weights summary for lung cancer mortality risks between metformin

and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 1.046 1.205 1.434 2.026 2.056 16.218

Fewer, met 1.046 1.165 1.301 1.603 1.636 15.682

Fewer, sulf 1.059 1.445 1.994 2.761 3.034 16.218

Fewer, >2000, overall 1.041 1.208 1.413 2.029 2.047 16.516

Fewer, >2000, met 1.041 1.150 1.276 1.414 1.525 3.936
Fewer, >2000, sulf 1.251 1.903 2.451 3.500 3.854 16.516

Complete, overall 1 1.037 1.166 1.900 1.536 30.227

Complete, met 1 1.026 1.100 1.258 1.272 3.950

Complete, sulf 1.058 1.400 2.111 4.119 4.396 30.227

Complete, 2000, overall 1 1.029 1.129 2.031 1.456 50.971

Complete, 2000, met 1 1.023 1.089 1.240 1.228 3.921

Complete, 2000, sulf 1.071 1.396 2.362 5.010 3.700 50.971

Separate, overall 1.007 1.096 1.274 1.994 1.721 17.756

Separate, met 1.007 1.066 1.179 1.592 1.549 17.756
Separate, sulf 1.015 1.173 1.547 2.692 2.224 17.067

Separate, >2000, overall 1.010 1.089 1.235 2.039 1.768 38.147
Separate, >2000, met 1.010 1.067 1.149 1.348 1.435 4.736
Separate, >2000, sulf 1.045 1.268 1.835 3.690 3.347 38.147

IPW, overall 1.150 1.485 1.918 3.697 3.331 58.937

IPW, met 1.150 1.409 1.684 2.018 2.228 9.018
IPW, sulf 2.031 4.154 5.844 9.502 11.141 58.937

IPW, >2000, overall 1.020 1.119 1.270 2.328 1.729 56.418
IPW >2000, met 1.020 1.100 1.196 1.374 1.437 4.482

IPW, >2000, sulf 1.280 1.848 2.896 5.924 4.773 56.418
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Table C.57: ATT weights summary for lung cancer mortality risks between metformin
and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.046 0.232 0.731 0.748 1 14.682
Fewer, met 0.046 0.165 0.301 0.603 0.636 14.682
Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.041 0.208 0.445 0.587 1 2.936
Fewer, >2000, met 0.041 0.150 0.276 0.414 0.525 2.936
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0 0.037 0.177 0.424 1 2.950
Complete, met 0 0.026 0.100 0.258 0.272 2.950
Complete, sulf 1 1 1 1 1 1

Complete, >2000, overall 0 0.029 0.138 0.399 1 2.921
Complete, >2000, met 0 0.023 0.089 0.240 0.228 2.921
Complete, >2000, sulf 1 1 1 1 1 1

Separate, overall 0.007 0.120 0.624 0.741 1 16.756
Separate, met 0.007 0.066 0.179 0.592 0.549 16.756
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.010 0.096 0.352 0.540 1 3.736
Separate, >2000, met 0.010 0.067 0.149 0.348 0.435 3.736
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0 0.050 0.272 0.970 1.601 8.217
IPW, met 0 0.037 0.158 0.436 0.459 6.735
IPW, sulf 1.487 1.974 2.277 2.815 3.160 8.217

IPW, >2000, overall 0 0.033 0.160 0.478 1.049 3.339
IPW, >2000, met 0 0.024 0.100 0.269 0.265 3.339
IPW, >2000, sulf 1.042 1.096 1.146 1.263 1.373 2.394
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Table C.58: ATT weights summary for lung cancer mortality risks between metformin

and sulfonylureas, continued

Reference (sulfonylureas)
Fewer, overall
Fewer, met
Fewer, sulf

Min
0.059

1
0.059

1st Qu.
1
1

0.445

Median
10
1

0.994

Mean
1.278

1
1.761

3rd Qu.
12
1

2.034

MaxMax
15.218

1
15.218

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, 2000,
Complete, 2000,
Complete, 2000,

Separate, overall

Separate, met
Separate, sulf

Separate, >2000,
Separate, >2000,
Separate, >2000,

IPW, overall
IPW, met
IPW, sulf

IPW,
IPW,
IPW,

overall
met
sulf

overall
met
sulf

>2000, overall
>2000, met
>2000, sulf

0.251 1
1 1

0.251 0.903

0.058
1

0.058

0.071
1

0.071

0.015
1

0.015

0.045
1

0.045

0.218
1.148
0.218

0.099
1.010
0.099

1
1

0.400

1
1

0.396

17
1

0.173

1
1

0.268

1.298
1.298
1.306

1.047
1.050
0.468

1 1.443 1
1 1 1

1.451 2.500 2.854

1.
1

1.111

1
1

1.362

1
1

0.547

1
1

0.835

1.512
1.478
2.997

1.081
1.078
1.624

1.475
1

3.119

1.631
1

4.010

1.253
1

1.692

1.499
1

2.690

2.727
1.582
6.687

1.851
1.104
4.661

1
1

3.396

1
1

2.700

1.
1

1.224

1
1

2.347

1.927
1.670
5.380

1.176
1.134
3.688
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15.516
1

15.516

29.227
1

29.227

49.971
1

49.971

16.067
1

16.067

37.147
1

37.147

56.987
4.899

56.987

55.311
1.511

55.311

Reference (sulfonylureas)



Table C.59: ATU weights summary for lung cancer mortality risks between metformin
and sulfonylureas

Reference (metformin) Min 1st Qu. Median Mean 3rd Qu. Max
Fewer, overall 0.059 1 1 1.278 1 15.218
Fewer, met
Fewer, sulf

1 1 1 1 1 1
0.059 0.445 0.994 1.761 2.034 15.218

Fewer, >2000, overall
Fewer, >2000, met
Fewer, >2000, sulf

Complete, overall
Complete, met
Complete, sulf

Complete, >2000, overall
Complete, >2000, met
Complete, >2000, sulf

0.251
1

1
1

1 1.443
1 1

1 15.516
1 1

0.251 0.903 1.451 2.500 2.854 15.516

0.058
1

1
1

1 1.475
1 1

1 29.227
1 1

0.058 0.400 1.111 3.119 3.396 29.227

0.071
1

1
1

1 1.631
1 1

1 49.971
1 1

0.071 0.396 1.362 4.010 2.700 49.971

Separate, overall
Separate, met
Separate, sulf

0.015
1

1 1.2531
1 1 1

1 16.067
1 1

0.015 0.173 0.547 1.692 1.224 16.067

Separate, >2000, overall
Separate, 2000, met
Separate, 2000, sulf

IPW, overall
IPW, met
IPW, sulf

IPW, >2000, overall
IPW, >2000, met
IPW, >2000, sulf

0.045
1

1
1

1 1.499
1 1

1 37.147
1 1

0.045 0.268 0.835 2.690 2.347 37.147

0.218 1.298 1.512 2.727 1.927 56.987
1.148 1.298 1.478 1.582 1.670 4.899
0.218 1.306 2.997 6.687 5.380 56.987

0.099 1.047 1.081 1.851 1.176 55.311
1.010 1.050 1.078 1.104 1.134 1.511
0.099 0.468 1.624 4.661 3.688 55.311
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Table C.60: ATU weights summary for lung cancer mortality risks between metformin

and sulfonylureas, continued

Reference (sulfonylureas) Min 1st Qu. Median Mean 3rd Qu. Max

Fewer, overall 0.046 0.232 0.731 0.748 1 14.682

Fewer, met 0.046 0.165 0.301 0.603 0.636 14.682

Fewer, sulf 1 1 1 1 1 1

Fewer, >2000, overall 0.041 0.208 0.445 0.587 1 2.936
Fewer, >2000, met 0.041 0.150 0.276 0.414 0.525 2.936
Fewer, >2000, sulf 1 1 1 1 1 1

Complete, overall 0 0.037 0.177 0.424 1 2.950

Complete, met 0 0.026 0.100 0.258 0.272 2.950

Complete, sulf 1 1 1 1 1 1

Complete, 2000, overall 0 0.029 0.138 0.399 1 2.921

Complete, 2000, met 0 0.023 0.089 0.240 0.228 2.921
Complete, 2000, sulf 1 1 1 1 1 1

Separate, overall 0.007 0.120 0.624 0.741 1 16.756
Separate, met 0.007 0.066 0.179 0.592 0.549 16.756
Separate, sulf 1 1 1 1 1 1

Separate, >2000, overall 0.010 0.096 0.352 0.540 1 3.736
Separate, >2000, met 0.010 0.067 0.149 0.348 0.435 3.736
Separate, >2000, sulf 1 1 1 1 1 1

IPW, overall 0 0.050 0.272 0.970 1.601 8.217
IPW, met 0 0.037 0.158 0.436 0.459 6.735
IPW, sulf 1.487 1.974 2.277 2.815 3.160 8.217

IPW, >2000, overall 0 0.033 0.160 0.478 1.049 3.339
IPW, >2000, met 0 0.024 0.100 0.269 0.265 3.339
IPW, >2000, sulf 1.042 1.096 1.146 1.263 1.373 2.394
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