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Regularity of Solutions to the Muskat Equation
J1A SHI

Communicated by V. SVERAK

Abstract

In this paper, we show that if a solution to the Muskat problem in the case of
different densities and the same viscosity is sufficiently smooth, then it must be
analytic except at the points where a turnover of the fluids happens.

1. Introduction
The Muskat problem is a free boundary problem studying the interface between

fluids in the porous media [30]. It can also describe the Hele—Shaw cell [34]. The
density function p follows the active scalar equation

4w vp=0 (L.1)
- v - =0, .
dt P
with
_J o1 x € D1(1),
pL D = {pz x € Do),

Here D (t) and D, (¢) are open domains with D1 (z) U Dy (¢t) UdD1(t) = R2. The
velocity field v in (1.1) satisfies Darcy’s law,

"
U= —=Vp—1(0,gp), (1.2)

and the incompressibility condition
V.-v=0,

where p is the pressure and w is the viscosity. «, g are the permeability constant
and the gravity force.
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We focus on the problem where two fluids have different densities p;, pp and
the same viscosity (.

After scaling, the equation for the boundary d D1 (¢) in the periodic setting read
as

%(a [)_,02—[)1 /” sin(f1 (o) — fi(a — B))(0y fi (o) — Oy fi(x — B))
ar

d
2 ), cosh(p@ = fla—B) —cos(f1(@) — fi(a — /?3)’3

fori = 1,2 (see [10]). Here f(«, t) = (fi(«, t), fo(,t)) is a parameterization of
the boundary curve. f(«,t) — («, 0) is periodic in «.

Given an initial interface at time 0, (1.3) is divided into three regimes. When
the interface is a graph and the heavier fluid is on the bottom as in Fig. la, it is in
a stable regime. When heavier fluid is above the boundary as in Fig. 1b, it is in a
stable regime when time flows backward. Thus, given any initial data, (1.3) can be
solved for small negative time 7. In both regimes, shown in Fig. 1a, b, (1.3) can not
be solved in the wrong direction unless the initial interface is real analytic. The third
regime, shown in Fig. l¢, it highly unstable because the heavier fluid lies on top near
point Sy while the lighter fluid lies on top near point S>. Note two turnover points
T and T, where the interface has a vertical tangent. For generic initial data in the
turnover regime, (1.3) has no solutions either as time flows forward or backward.

In the third regime, there are several examples from the literature (eg. [9, 10, 19,
20]), but they are all real analytic solutions. Without the real analytic assumption,
due to the spatially non-consistent parabolic behavior, the existence is usually false
and the uniqueness is unknown. To address this gap, this paper studies to what
extent the solution of (1.3) is analytic.

Moreover, for the analytic solutions, one can prove an energy estimate on an
analyticity region that shrinks when time increases. That energy estimate implies
uniqueness in the class of analytic solutions. [10]. Therefore, the investigation
towards analyticity can serve as a first step to deal with the uniqueness.

We introduce a new way to prove that any sufficiently smooth solution is analytic
except at the turnover points. Here is our main theorem:

Theorem 1.1. Ler f(a, 1) = (fi(e, 1), fola, 1)) € Cl([—to, to], HO[—m, 7] x
HO[—m, 1)) be a solution of the Muskat equation (1.3) satisfying the arc-chord
condition. If 0y f1(ao, t) # 0, and —tg < t < ty, then f (-, t) is analytic at «y.

Our method concerning the analyticity is not limited to the Muskat problem. A
simplified version of our method can be used to show the analyticity of the solution
to a kind of non-local differential equations (see Section 10). This approach is new
to our best knowledge.

In our forthcoming work [35], we focus on the degenerate analyticity near the
turnover points. The existence and uniqueness are crucially related to the way the
real-analyticity degenerates at those points. Given an extra assumption, we have
the following theorem in [35]:

Theorem 1.2. Let f(a, 1) = (fi(a, 1), fr(a, 1)) € C'([—to, o], C'O([—m.7]) be
a solution of the Muskat equation (1.3) with two turnover points. Z1(t), Z»(t) are
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values of a of these two turnover points. If we assume that the solution satisfies the
following three conditions:

R2A(Z1(1).1) #0, (14)
0o f1(a, 1) # 0 except at Zi (1), Z»(t), (1.5)
and
dZ) _ p—p) /” sin(f1(@) — fi(@ = p)) )
=t . d
( i T TP L e (a@) — fala — B) — cos(hi(@) — fila— BT
PP iz <0, (1.0

2

then when —ty < t < ty, f(-,t) can be analytically extended to region Q2 =
iyl —er(t) + Z1(1) = x < Zi1(1) +e1(0), |y| < e (x = Z1(1))*).

1.1. Background

In order to make the equation well-defined, the arc-chord condition is intro-
duced, saying that
’32
cosh(f2(a) — fala — B)) — cos(f1(a) — fi(a — B))

F(f) =

isin L°°.
The Rayleigh-Taylor coefficient o is used to characterize the three regimes in
Fig.1 and is defined as

_P—p 0o f1(a, 1)
2 Oufila, 1))? + (O fol, 1))?

o > 0is corresponding to the stable regime and o < 0 the backward stable regime.
When o changes sign, it is in the unstable regime.

In the stable regime (heavier liquid is below the lighter liquid), local well-
posedness and the global well-posedness with constraints on the initial data have
been widely studied, with the lowest space H% ([1-7,13-17,21-25,29,31,32,36,
38,39]). The existence of self-similar solutions has also been proved [28]. Inter-
esting readers can see [13,28] for detailed reviews. Due to the parabolic behav-
ior, instant analyticity has been proved in the stable regime. Castro—Cérdoba—
Fefferman—Gancedo-Lépez-Fernandez [10] proved the H* solutions become
instantly analytic if the solutions remain to be in the stable region for a short time. In
[29], also in the stable region, Matioc improved the instant analyticity to H*, where
NS (%, 3). In [27], Gancedo—Garcia-Juarez—Patel-Strain showed that in the stable
regime, a medium size initial data in 1.1 N L? with || f|| 711 = [ 1211 £ (©)|de
becomes instantly analytic. Their result also covers the different viscosities case
and the 3D case.

When the heavier liquid is above the lighter liquid, the equation is ill-posed
when time flows forward [22].

(1.7)
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A solution that starts from a stable regime and develops turnover points was
first discovered in [10]. That solution still exists for a short time after turnover due
to the analyticity when the turnover happens. Moreover, breakdown of smoothness
can happen [9]. There are also examples where the solutions transform from stable
to unstable and go back to stable [19] and vice versa [20].

Weak solutions and a special kind of weak solutions: mixing solutions of (1.1)
have also been studied. They do not satisfy (1.3) and can develop a mixing zone.
Weak solutions do not have uniqueness [18]. In all three regimes, there are infinitely
many mixing solutions ( [8,11,12,26,33,37]).

1.2. The outline of the Proof of Theorem 1.1

Inspired by the instant analyticity results in the stable case [10,27,29], our first
idea is localization. If locally the lighter liquid is over the heavier one, we let the
time go forward, and if locally the heavier one is over the lighter one, we let the
time go backward.

Since it leads to lots of difficulties by the standard method due to the localization,
we use a new idea to prove analyticity except at turnover points. The idea is to make a
C! continuation of the parametrized interface o — (fi(c, 1), f>(«, 1)) to complex
o and then prove the C! continuation satisfies the Cauchy-Riemann equation. To
do so, we break the complex region into curves o + ic(a)yt with y € [—1, 1].
On each such curve, we solve an equation for ( f1, f2). We then show that when y
varies, our solutions on the curve fit together into an C ! function of & +1i B. Finally,
we prove that C! function satisfies the Cauchy-Riemann equation, thus producing
the desired analytic continuation.

In Section3, we define a cut off function A(x) and focus on f(a,t) =
Aa) f(a, t). We then localize the equation such that the modified R-T condition
has a fixed sign. In order to make use of the sign, if the sign is positive, we let the
time go forward. If the sign is negative, we let the time go backward.

In Section4, we introduce c(«) with supp c() C {o|r(a) = 1} (Fig. 2). With
the assumption that f“(«, f) is analytic in domain Dy = {a + i| — c(a)t < B <
c(a)t}, we derive the equation on the curve {(« +ic(a)yt)|a € [—m, 7]} for fixed
y € [—1, 1]. Then we obtain the equation

%Z(a, y,t) =T(z(a, y, 1), 1), (1.8)

with z(«, y, 0) = f°(, 0). The analyticity assumption on f€ is dropped after we
get (1.8).

In Section 5, for each fixed y, we use the energy estimate and the Galerkin
method to show the existence of the solution z(«, y, t). The main term is controlled
by Garding’s inequality, where we use a lemma from [9]. This part is similar as to
[9,10].

In Sections 6, 7, and 8, we verify that the z(«, 0, #) coincides with the f“(«, t)
and that z(«, y, t) is also smooth enough with respect to y.

In Section9, we derive some lemmas about the Cauchy-Riemann operator and
use those lemmas to show analyticity of z(«, C(ff)ty, t) by checking that it satisfies
the Cauchy-Riemann equations.
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o)

Fig. 2. The curve c(«) for Theorem 1.1

Remark 1.3. In [10], the analyticity domain can be chosen as a strip, and the
analyticity follows directly from existence. Since our c(«) is supported in a small
region, we do not have such good behavior.

2. Notation

In the paper we will use the following notations:
§: a sufficiently small number.
A(): AMe) > 0 and in C1%9(—o0, 00), satisfying

L Jef <6,

Ma) =
(@ 0 |a| > 26.

3.: sufficiently small number depending on §.
c(a):

suppc(er) C [—3, 81,

{ c(a) = d¢, when |o| < 33,
c(@) = 0, c(@) € C'P(=00, 00), [le(@) [l c100(—c0,00) < 8-

fla, 1) = (fi (~a, 1), fa(a, t)): the original solution of the Muskat equation.
fa, 1), fla,t):

[ t) = ) f(a, 1),
fla,n) =1 — M) f(a, 1).
to: the original solution exists when ¢ € [—1, fo].

Dy: Dy ={(a+if)| —o0 <a < oo, —cla)t < B <c(a)t}.
For any vector function z = (z1, 22) € H*. 7z, € H* and 7, € H*.
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3. The Localization

This step is to localize the equation such that the R-T coefficient has a fixed
sign. Without loss of generality, we study the behavior at origin and let 2 2;'0 L =1.

Let () € C1%(—o00, c0) satisfying A(«) > 0 and

W)zil o <8,

0 |a| =28,

and (o, t) = f(o, HA (), f(oz, t) = f(o,t)(1 — A(@)). Here § is a sufficiently
small number such that when o € [—26, 25], 9y f1(c, 0) has a fixed sign. Without
loss of generality, we assume

e f1(a, 0) > 0. (3.1)
Then we have
Wi s / sin(f (o) = F{(B) + @) — fi(B) (Ba fC (@) — 0 f5(B))
ot -z cosh(f5 (@) — f5(B) + fal@) — fa(B)) — cos(f{ (@) — fE(B) + file) — fi(B))
Y /” sin(f (@) — f£(B) + fi(@) — f1(B)) (P fru (@) — 3 fuu(B))

) = = = = .
Y cosh(f3 (@) — f5(B) + fa(a) = f2(B)) — cos(f{ () — f{(B) + fi(a) — fi (/3)))3/32
(3.2)

We have 1< € CL([0, 10], (H®(T))?), f — (&, 0) € CL([0, 19], (H®(T))?). Here T
is the torus of 27.

4. The Equation on the Complex Plane

4.1. Change the contour
Let c(«) satisfy

supp (@) C [—3. g1, (4.1)

{ c(e) = 8, when |o| < &,
c(e) = 0, (o) € C1%(—00, 00), (@) [l c100(_ 00, 00) < 8-

Here c¢(«) is defined such that f, A can be analytically extended to the complex
domain Dy = {(¢ +iB)| — 00 < & < 00, —c(a)t < B < c(a)t} and satisfy

fla+ic@)yt, t)= f(a, 1), 4.2)
and
Ma +icla)yt) = AMa), 4.3)

forany y € [—1,1].
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Now we assume f¢ is also analytic in this complex domain D 4. For any fixed
y € [—1, 1], we want to find the new equation on the contour {« + ic(x)yt|a €
[—m, 7]} Let o), = & +ic(a)yt. We have
% =ic@)y @a f)(e,, 1) + @ £, 1)
= ic(e)y Bu ), 1)
H(a;)/” s 0 - (6.0 + i, = Fily ) Gafi)@y. 0 = Gpf) B 1)
—x cosh(fy(ad,, 1) = f5 (Bl ) + faley,, 1) — f2(Bl,, 1) — cos(ff (e, 1) — f{ (B}, ) + files,, 1) — fi(BL. 1))
(A +ic' (Byyndp

ra) /ﬂ sin(ff (@, 1) = fE B, 1) + filed, 6) = LB, 0)@Ba ) e, 1) — B ) (B, 1)
" x cosh(f (e, 1) = f5 (B ) + faledy, 1) = fa(BL, 1) — cos(ff (@, 1) = f£(BY, 1)+ filed,, 1) = Fi(BL, 1)
(1+ic'(B)yt)dp. “4.4)

4.2. The equation on the curve

Let z(«, v, t) be the solution of the equation (4.4) with initial data z(«, y, 0) =
14 q 14
f¢(a, 0). Our motivation is to set z(«, y, t) = (e 4+ ic(a)yt, t). Since

- t
c t . 8a(fli(01y,t))
(a()(fﬂ)(()l 7t) = %’
14+ic(a)yt
we have
dzu(a,y, 1) icl@)y
a iy D

x sin(zi (e, y.1) = 21(B. y. 1) + filel, 1) — fi (B, ) (P _ L BLD () el (Byyrydp
+May) f

x cosh(za(a, v, 1) = 22(B, v, ) + faley, 1) = fo(BY. 1) = cos(zi(a, v, 1) = 21 (B, vo 1) + filey, 1) = Ji(BY, 1)
e )/ﬂ sin(zi (e, v, 1) = 21(B, v, 1) +~ﬁ () —.f](ﬂ;,t))((aafu)(a;.r) - (aﬁfm(ﬂ;,r»p +ic(Byndp
" coshiza(a, v 1) — 228, v, 1) + el 1) = a(By, 1) — cos@i@, v, 1) — 21 (B, v, 1) + fileh, 1) = fi(BL. 1)

4.5)

with
z(a, y,0) = f(e, 0).
We drop the analyticity assumption of £ from now. Notice that f and A can still

be analytically extended to D4 as in (4.2) and (4.3).

5. The Existence of z for Fixed y

5.1. Energy estimate

We first assume z is of finite Fourier modes here and do the energy estimate.
The idea of the energy estimate is similar as in [9,10].
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Since f(a +ic(@)yt, 1) = f(a, 1), Mo +ic(a)yt) = A(x), we have

dzp(ay, 1) _ T = ic'((:t)y Doz (@)
dt 1+ic (x)yt

Aoz (@) gz (B)

B Sin(z1(a)fz1(ﬁ)+f1(a)f.f1(/3))(Hic/(a)yt Hicl(ﬁ)y,)(lJriC’(ﬁ)yt)
+ A( )/ — — — —
O] x oo @ — 2B + (@) — 72(B)) —cos(zi @) — 21 (B) + 1 (@) — 1(B)
@ /ﬂ sin(zp (@) — 21 (B) + fi(@) — fi(B) (P fu) (@) — g fu) (BN +ic' (B)yt) d
—x cosh(z2(a) = 22(B) + fr(@) = f2(B)) — cos(zy (@) — 21 (B) + fi (@) — F1(B)) (5' |

Here we omit the dependency of z on y and ¢, and the dependency of f on ¢ for
the sake of simplicity. Let

U = (H (D)),
where T is the torus of length 27 and

(a — p)?
ael-25.28) pel—nn) | cosh(za (@) — 22(B) + fi@) = fi(B)) — cos(zi (@) — z1(B) + fi(e) — fi(B)]

Izl are =

For the L2 norm, we have

IT Dl 2(—r2) S NT @l [—r71 S Clzlo) Izl are-

Here C is a bounded function depending on 8, 8. and || f | ¢1 (0.1, (H6[—r,77)2)- We
will keep using the same notation C in the following proof.
Now we take 5th derivative and have

ic(a)y

PT() = ——2C
T @) = T Tyt

852, ()

992, (@) 92 (B)

@ [n sin(z1 (@) — z1(B) + fj (@) — fj B (st — l+,»(.,—Q,W,)q + id(ﬁjw) .
-z cosh(zz2(a) — z22(B) + f1(a) — f1(B)) — cos(z1(a) — z1(B) + fi(e) — f1(B))
7 sin(z1 (@) — 21(8) + fi(@) — BN fi) (@) — 05 f) (B (L +ic (B)yt)
—x cosh(za(@) — 22(B) + fi(e) — fi(B)) — cos(zi (@) — z1(B) + fi(e) — fi(B))
+) 0 =TI+ Nh@+ @) + Y 0"

+ Aw)

Here O terms contain at most 5th derivative on both z and f.
Before we show the explicit form of O, we introduce some notations. Let

VE@) = (g1(a. 1), ga(e, 1), dag1(@. 1), Baga (@t 1), ... g1 (e, 1), D ga(a. 1)),

. g1, 1) g2(e, 1) k 5
VE () = , ) ,1)0
¢ @ <1+ic/(oz))/t I+ic(a)yt w816 %

1+ ic’(oe)yt) ’

aker(a, )02 (é)) (5.2)
« TN L4 id(a)yt

V; ; (@) is the ith component in ng () and ‘7; ; (@) the ith component in \7gk ().
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When we write X; («, t), we mean
Xi(a, 1) =l - (5.3)
(a, = 94 s .
! N1 +ic(a)yt
with [; < 5. _ .
A function K’ _(A, B), K’ _(A, B, C) is of —o type if, for A, B, C in R", it
has the form
sin(Ay + By)™! cos(A| + B))™
e
T (cosh(As + By) — cos(A; + Bj))™o
x (sinh(Az 4 B2))™?*(cosh(Az + Bz))’“l'ITil(Ax j)l'ij’il(Bx j,z)HTll(Cx i)
(5.4)

withmy +m3 +ms +me +m7 — 2my > —o. ¢; is a constant.
We claim that we can write O' as following three types, by separating the
highest order term in the derivative. Here we omit the dependency on y and ¢.

oM =dlin@) | K (Vi

—7T

= V2B, Vi@ = V). Vie) = V2N Xi () (E (@) — 2 (B))dB,
where 73 € VZ3 U ‘73 U V;, 1 <b; <5.

T
0% =dhin@) | K (Vi)

-7

= VZ(B). V@) = VE(B). V2(e) = VZ(B) Xy (B)(Z (@) — 2 (B))dB.
where 7° € V2 U VZS U V;, 1<b; <5.

; ) ic(a)y b
03,! — abl 1c 8 i ,
o (1 i@yt ) @

where 1 < b;, b, <5.
Then we have the following lemmas:

Lemma 5.1. We have
1012 2y < Cllzllu Nzl are)-
Proof. Since K il is of —1 type, we have
IKL (Vi (@) = V2(B). Vi)
—VAB). V(@) = V2@ = Bllcops ps1x1-mm1 S Cllzlly 1zl are),
we could use Lemma 11.4 to get the result for O'/. Moreover, we have
IKL (V@) = V2(B). V(@)

=V, V(@) = V2@ = Blicr—as ps1x1-m.m1 S Cllzlly 1zl are),
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we then use Lemma 11.2 to get the estimate for O%7. 0> can be bounded easily.
O

Lemma 5.2. We have

I3 2=y S CUlzllus 2]l are)-
Proof. Let

sin(zy (@) — 21 (B) + f1 (@) — f1(B))

K (z(@) — 2(B). f(o) — f(B) = - = _ .
A =2 T = T = @ — 2P + Fa(@) — () — cosz1 @) —21(B) + Fu@ — ((/35»5)

It is also of K_ type. We have
IK (z(@) = 2(B). f(e) = F(B) (@ = Bl cip-as 281x1 -1 < CUlzllUs N1zl are)-
Then the result follows from Lemma 11.2. O

Then we are left to deal with 77 + T5.
By using the same notation as in Lemma 5.2, we have

T2(z(a)) = M) p.v. [:T K (z(@) — 2(B), f(a) = F (B + id(ﬂ)wﬂﬂ%
—-A(a)p.v:/jz K (z(@) — 2(B), f(a) = F(B)dfz,(B)dB
=1.1(2)(@) + T2,2(2) ().
Moreover, we could further split the 7> » and have

Tr2(2)(@) = —A(@)p.v. | K@) = 2(B). f() — f(B)IFz,u(B)dB

-

= —Ma) ﬂhg}y (K(z(a) —2(B), f@) — f(B)) tan (a = ﬂ)) p-v.

2
/n cot (a ; ﬂ) Bgz(ﬁ)dﬁ

T

— (@) (K(z(a) — 2(B). f(@) — f(B)) tan (“ 5 p )

- lim (K(z(a) —2(p). f(@) ~ f(B) an (“ 5 ﬂ)))

cot (a ; '3) Bgz(ﬁ)dﬂ

=T127,1(2) + T22,2(2).

Since K (z(a) — z(B), f(a) — f(B)) is of —1 type, we have

a—p

1K (z(@) — 2(B), f(@) = f(B)) tan ( > ) lles 25280 x (.7
S Clizllare + lizllv)- (5.6)
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Let

K@) —2(B). f@) — f(B))
K (@) = 2(B), f@ = f@yan (452 ) ~timg o (K@ = 2(8), @) — fByan (%52))

tan (#)

Then

IK (z(@) = 2(B), fe) = FBDlcz -2 2811 .71
< Cllizlare + Izllo)-

We can do the integration by parts in 75 2 2(z) to get that

Tr22@) (@) =—Ma) [ K(z(@) —z(B). f(@) — f(B)dgz(B)dB

-7

=) | K@) —2(B), fl@) = f(B)Izz(B)dB.

—T
Therefore we have
1T2.22@) (@) 12(—7,7) S Clllzllare + IIZIIU)IIBOS,Z(a)IILz[_n,n]-

In conclusion, we have

dagzu(% v, 1)

yr =T1(2) + D12 + T221 () + (Tr22(2) + T3(2) + Z 0'(2))

1

_ ( ic(@y @)
“\1+ ic @yt 1+ ic’(a)ytp'v'

/ K(z(e) — z(B), f@) — f(B)(1 + ic’(ﬂ)yt)dﬁ> 382, (c)

-7

— Me) lim (K(z(oe) —2(B). f(@) — f(B)) tan ("‘ i )) 2 AB32) ()
+ (T2 + T3@) + ) 0'(), (5.7)
where A is (—A)% on the Torus T of length 27 and
(T222(2) + T3(z) + »_ O) < Clizllare + llzllv). (5.8)
i L2[—m,7]
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Then we have

463 ( nl? =290 ”35 ( t)~851"( 1)d
a [0z (e, v, ”L?,[—zr,rr] = 2N 2, Y, CPa o, y, )da

—

= Yo [ g et [ K@ = 2 @ - Fena+ i @)
o 14+ic @yt  1+ic(@yt x ’

-

n=1,2
main term

-99z,, (a)dar
—_

main term

—29 f_ " B @ Jim. (K(z(a) —2(B). f@) — f(B)) tan (" 5 b )) 27 A (832 (@)der)

main term

+BT, (5.9)

where B.T. < C(||z|larc + |1z]lv)- Next we show a lemma for controlling the main

terms.
Lemma 5.3. If L1(), La(a) € CX(T), —RL(«) > |SLa()|, h € HY(T), then
we have

R ( / i h(a)L1()(Ah)(a)do + f ! h(oz)Lz(oz)aah(oz)d(x>

= C(||L1||c2(11‘) + ||L2||c2(11‘))||h(05)||i2~

Proof. First, we have

L =% (/ﬂ h(oz)Lz(oz)Bah(a)da)

—TT

— / i R Lo () (R (@) RA (@) + Sh(a)Ih («))da

—7T

— /n XLy () (Rh(a)IA (o) — Ih(e)Rh (@))da

-7

=D+ L.

We could do the integration by parts to I ; and have

1 7 dRL
|| = '5 / %((mhw»%m(a»z)w S CUIL2@) e ()17
Moreover,

=N </ﬂ h(a)Ll(a)(Ah)(oz)da>

-7

= /n NL1 (o) (Nh(o) ARA(a) + Sh(a) ASh(e))da

- fﬂ SL1 () Mh(a) ASh(o) — Sh(a) ARh(a))do

=Iim+ L.
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We can still do the integration by parts to the /1  and have

/ﬂ SLi(@)(Nh(a)AIh(a) — Ih(a) ARK(x))da
= i (AL N () — SL1() ARR(a))Sh(a)da.

-7
Moreover, for any g1 € H 2 (T),go e H 1 (T), we have

A(g182) — 188112y S 1822y 811 2 (1) -
Hence

L2 SISLi@) g2en) ISR @) 2 1RR (@) [ 2T

S ISLi@) g2y 1A @117 5 -
Now we are left to control /1 3 + I ;. We have
Liy+ L= /ﬂ NL1 (o) (NRh(o) AR () + Sh(a) AIh(o))do
-

+ /n SLo (o) Rh()Ih (o) — Ih(e)NA (a))da.

-7

Now we use a lemma from [9, Section 2.4].

Lemma 5.4. Let a, b be real valued functions on T, a(x) > |b(«)| and satisfying
a,b € C*(T). Then we have

m/qrm(“(““f () +b(if )dx = ~Cllallzer + bl c2cry) /T £ ().
Then, from Lemma 5.4, we have

Iy + b S CILtllc2ery + L2l 2 TR (@) 13-

Then we get the result. O
Now let
Lie.y.1)= -2 Jim, (K(z(a, y.)—z(B.y. 1), fle.t) — f(B. 1) tan (#))
- 21 (e, y. 1) + B f1 (0t 1)
(Baz1 (o, y. 1) + 8 f1 (0, D)2 + (Buza (e, v, 1) + 8o fo (o, 1))

(5.10)

and

ic(a)y 1
7 - .
1+ic(a)yr 1 —i—lc’(a)ytp

Li(a,y,1) = (

/ K@ y,0)=z(B, v, 1), fla,1) = F(B,0))(1 + ic/(ﬂ))/f)dﬁ> :
(5.11)
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Since supp c() C {«x|A(x) = 1}, from (5.9), we have

d
1%z Y, Ol

=y mf 332, ()2 (@) L2 () 387, (o) dex +2m/ 3320 (@@ LI (@) A (837, (@) dar

-

n=1,2

main term main term

+ B.T.

From Lemma 5.3, if —ERL;(a) > |%L§(a)| for o € [—26, 28], since supp A C
[—26, 28], we have

d 5 2
E ”aaZ(O{, Vs l) “Lg[—n,n] S B.T.
Moreover, when t = 0, o € [—28, 28], from (5.10), (5.11) and (5.5) we have

o 1 (¢, 0) + 8 f1(et, 0)
(B (@, 0) 4 B f1 (@1, 0))2 + (B £5 (@, 0) + 3 (e, 0))2
aa fl (Ol, O)
T )
(3 f1 (@, 00)2 + (3 f2(a, 0))2

—NLNw, y,0) =27

=2
and

b1
SLY(, 0) = ic(@)y + 3(P~v~f K(f(, 0) = f9(B,0), f(a,0) — f(B,0)dp)
—7T
=ic(a)y.
From (3.1), we could choose §. in (4.1) to be sufficiently small and have

inf  (—ML(a,v,0) — |SL%(«, v, 0 0.
ae[l_nza,zls]( 1L (o, y,0) = ISLZ(a, v, O)]) >

Then let

1
lzllrr (t) =  sup - = .
wel—26,28] IMLY (e, y, 1) + |SL2 (e, y, 1)

If |z]| g7 () < o0, we have
d 2
21205 S Cdlzllu + lzllare)- (5.12)

Therefore, we could let ||z]| ; = |Izllu + Izl are + Izl g7 - From (5.12), and the
following Lemma 5.5, we have

d,
priadly < Clizllig)-

Then ||z(a, y, )|l is bounded for sufficiently small time 7. We claim that the
bound and the time can be chosen such that it holds for all y € [—1, 1].
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Lemma 5.5. We have the following two estimates:

d

E”Z”Arc S Clzll)s
and

d

E”Z”RT S Clzllg)-

Proof. For ||z||grT, we have

d 1
—  sup — —
dt ger—2s,251 INL; (o) + [SLz (@)]]

iLl()
dt o

d 5
+ - Li(@)llLger—26,251 | -

1
< sup — ‘
wel-25,26] IRLI (@) + |SLZ ()| ( Lg°[—28,26] dr =
C'(T)>

From (5.10), we have

d
HELZ(O[)

d
S Cllzll) (sz(a, ¥y, 1)

d -~
+ H Ef(ot, t)

L3[-26,25]
S Clizllg)UIT @l erery + ©)-

From (5.1), it is easy to get

IT@ iy S Cizllg)-

ci(m

Then

< Cllzlig)-

d
—L (o)
H dt * L3°[—28,25]

From (5.11), we have

2@y
- o, Y,
PR

d T -
<c+ cnd—p.v./ K@ - 2(8), f(@
L[—28,26] t -7

— FBYUA +ic (B)y1)dBll Lgo—26,261
+ Ip-v. f K (z() — 2(B), f(@) — F(B)YA +ic' (B)yy1)dBll Leo[-25.25]

-7

<llp.. / ViK (@) — 2(8), (@) — J(B))-

d d df df
(d—j(a) - d_j(ﬁ) + d—{(a) - d_]:(’B)> (1 +ic' (B)y1)dB Il eor—2s,2s1
+lpo. | K@@ —z(8), f@) — B (B)y)ABllL2e(—25251
+ lIp.v. f K(z(@) — z(B), f(@) — F(BO(L +ic (B)yy)dBll Leo(—25.21 + C

=Termy 1 + Terma s+ Termz3 + C.
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From condition (5.6) and Lemma 11.1, we have

Termpp+ Termas S C(lzll7)-

Moreover, Vi K (z() — z(B), f(a) — f(B)) is of —2 type, and
dz df df
T+ @) - E(ﬁ)) @-8)

- - dz
V1K (z(e) —z(B), f(a) — f(B)) - (E(a) -
cl((-28,281x[-m,7])

S AT@ g2y + OC Uzl

From (5.1), it is easy to get
IT@lc2my S Cizllg)-

Then Terms1 < C(|zll;). Hence

S Clizllg)-
L3°[—28,25]

sz(>
—_— o
dt *

Then we have the estimate

d || l d : S Clzly)
—IZIIRT = su z .
dt ael[— 23 28] ML) + [SL2 ()| ~ v

Moreover, we have
1

d d

—lzllare = — sup |

dt dt ge-2s, 2,;] pel-m.x] (wsh( 2 (@) =22 () +fi (@)= 1 (B) —cos(z |(oty1)f LBy +fi=fi (ﬁ)))
(@=p)?

1
< sup } — =
ae[~26,26), pel—m,7] (th(zz(n%zﬂﬂ#h(a)*fl(ﬂ>>(fm;(§2:(w.r)—zn(ﬁ,y.rwl(a) /I(ﬂ)))
=

‘ 2

d [ cosh(@a(@) —22(B) + fi(e) = fi(B) — cos(@i (e y.1) =21 (B, y. 1) + fi(@) — fi(B))
dt (a — ﬂ)z L”“ﬂ[—n,n]x[—n.n]
< lzlae
sinh(z2 (o) — 22(8) + Fo(@) — Ho(B) (2@ = 2(B) + G (f@) = f2(B)
a—pB (@ =p) Ll=m.w]x[~m.7]

4+ [snG@@ =218 + fi@) = AiB) L@ —z1(B) + L (file) — /(B)
(@—p)

a—p Lm[n,n]x[n,n])

Szl ezl AT @ ey + ©)
< Cllzlig)-

We also introduce a corollary here to be used in a later section
Corollary 5.6. For g(a) € HY(T), ifz € H>(T), |zl are < 00 and —RL! (@) —
|A9L2(a)| > 0 when a € [-26, 28], y € [—1, 1], then we have

! 5@ ff K@ —2(B), fl@) — f(ﬂ))(lfjf,((z))w - lfjf,((‘;))w)dﬁda

sup ([
yel-1.1]
+f (@) g(a)L”dw < llgl?s.
. “ +ic(a)yt ~ oL
O
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5.2. Approximation for the picard theorem

Now we approximate the problem and have the following equations,

dz*(a, y,t)
dt

ic(@)y

maa(% *Z )(a))

=¢n*T”(¢n*z”)=¢n*<

e

+ @ * (A(a) K" ((¢n % 2" (@) — (@0 % 2")(B), f(@) — f(B))

-7

0o (@n x Zj) (@) 9p(pn x2),)(B) .
( 1 4+ic(x)yt T +ic(B)yt > (I +ic (ﬁ)yt)d,B)
+ o * (k(a) K" ((¢n % 2") (@) — (@n % 2")(B),

@)= FBY(fule) — fuB)(1 + ic/(ﬂ)yt)dﬂ>,
where

K" ((gn % 2" (@) — (g0 % 2B, fle) — F(B))

= sin(A((gn * 2])(@) + fi(@)))
1

' _ _ 2
| cosh(A((gn % ) (@) + fa(@) — cos(Al(gn * (@) + fi@)I? + £ sin (452

- cosh(A((gn * 25) (@) + f2(@))) — cos(A((gn * 2 (@) + fi(@))).
with

A((@n * (@) + Fr(@)) = (g % 23) (@) — (@n % 2D (B) + fr(@) — Fr(B),
(5.13)

A((@n * 2D (@) + fi(@) = (g * 2D (@) — (00 * ZD(B) + fi(@) — fi(B),
(5.14)

and initial value 7" (a, y,0) = @, * f(«, 0). Here the convolution of ¢, is the
projection to the finite Fourier modes of «.

By the Picard theorem, for any fixed y € [—1, 1], there exists solutions in
CL(0, t,1, Hg (T)). Moreover, by the structure of our approximation, we have z* =
on % 7% andfor1 < j <5,

d (™
o 102" (e, v, 1) |*da
—TT
T -
pe / 012" (@, v, ) (g + Ty * 2"))det
—IT

s B —
— o0 / 81 (gn % ) (@ v, DI (T (g * 27 ))da.

-7
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Then we can do the energy estimate similar to that the previous section by letting
1% gn = 12" 5= 7y + 12" TRT" + 12" A en s
where

wp | cosh(A((gn * 22)(@) + fo(@))) — cos(A((n * Z)(@) + fi(@))|(@ — B)?
ael~28.28] pel—m.x1 | cosh(A((gy % 2)(@) + fa(@))) — cos(A((gn * ) (@) + fi@)? + Lsin(52)2’

with A((gn * 22)(@) + f2(@)) and A((g, * 21 (@) + fi(@)) from (5.13), (5.14),
and letting

2" aren =

1
sup Tn ~7 2 ;
ae[-26,28] ML (o) + |SL; ()]

"l rRTn =

with

LYy, 1) = =27 lim (K"((qon 2" (@) — (g *2")(B). f@) — f(B)) tan (#)) ,

ic(a)y 1
.
14ic (a)yt l—l—ic/(oc)ytp

/ K" ((pn % ") (@) = (g % 2)(B), fle) = F(BN(1 + id(ﬂ)wMﬁ) .

-7

2.n
LG (O{, J/J) = (

Then we can use the similar energy estimate and the compactness argument to
show there exist a solution

(e, y, 1) € L([0, 111, H (T)), (5.15)
satisfying
t
e yit) = / Tt + £°(@,0), (5.16)
0
for sufficiently small time ;. Moreover,
lzll are < 00, (5.17)
and
—RLN @) — SLE(@)] > 0, when a € [-28, 25]. (5.18)

Since the energy estimate has a bound for all y € [—1, 1], we have a existence time
t1 that holds for all y.

Now we abuse the notation and write 7'(z) as T (z(«, y, t), ¥, t). We have the
following lemma:

Lemma 5.7. For any g(a), h(a) € H/TN(T), j = 3.4, |gllare < o0 and
2]l are < 00, we have
1T (g(e), v, t)”Hj('Jr) <1, (5.19)
IT(g(e), v, t) = T (h(e), v, Dllgicry S Ilgle) — g@)l givirys (5.20)
1T (g(@), y. 1) = T(g@), v, ) iy St =11 (5.21)
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Proof. We only show (5.19) and the left can be shown in the same way. From (5.1),
we have
ic(a)y

T(g(a),y, 1) = maab’(a)

m _ ; aa 8
+A(a)/ﬁ K(g(a) —g(B), f@) — f(ﬁ))( gl 55(B)

L+ic @yt 1+ic Byt

) (1+ic (Byyndp
+ (@) / K(g(@) — g(B). f(@) — F(B)@a f @) — g f(B( +ic'(B)yt)dp
=T1(g@). y.0) + T2 (g(@), v, 1) + T5(g(@), 7, 1).

It is trivial that 77 satisfying the (5.19) since c(«) is sufficiently smooth.
Moreover, the 9, f € H>(T) and is more regular than %'
only consider 7>. For 7>, we have

1K (g(@) = g(B). fa) — F(BN(@ — B)llci—2—25251xm) S - (5.22)
Then

Hence we

120 2y S 1 T2l Leer) S 1.

Moreover, we can use the notation from (5.4), (5.2), and get

e

3} Trg) =) [ K(gl@)—gPB), fl@)— f(B))

-7

(aéi“g(a) B

I +ic@yr 1+ ic’(,B)yt) (It ic(Byyndp

Zf’ M)/ K’I(V (a)— [T]w) vJ[T]m) [T]w)

; [%] aka
Vg (o) — Vg 8)
- Xi(B)(E () = 2/ (B))dp
=Termy 1 + Termy.
Here?/ € VgUVg/UV}é. [%] is the biggestinteger less than ’T'H Then from (5.22),

we could use Lemma 11.2 to bound T ermy 1. Moreover, since j + 1 — [%] >
[/H] > 2. We have

Ki"](v[T]m) [T]w) vj[T]m) [T]w)

~g[T]w) —V [T]w))(a —B)

CO([—28,28]1x[—m,7])
S CAiglgiv L f Nl gi+n)-

Then we could use Lemma 11.4 to bound Termy ». O
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Then from Lemma 5.7, (5.15) and (5.16), we have

Z(a, y, 1) € L2([0, 111, H3(T)) N ([0, 111, H(T)) N C1([0, 111, HZ (T)).
(5.23)

6. The Uniqueness

In this section we show there exists sufficiently 0 < f, < #; such that for
0 <t <t,wehave z(x,0,1) = f(a, ).
Let z%(a, 1) = z(a, 0, 1). From (5.1) and (5.5), we have

d%(a, 1) ™ B B
S @ ﬁ K@@ = 2B). @) — F(B)0al (@) — 9520 (B)dp
+ (@) /_ K@@ —22B), f@) — F(B)(0a ful@) — dp fu(B))dB.

Moreover, from (3.2), we have

dfli(a’ 2 T c c F 3 c c

— =@ /_n K(f@) = fEB). (@) — F(B) B fr; (@) — 0p f5(B))AB

+ A@) f K(f(@) = fB). fa) = F(B)) (O fuler) — 3 fru(B))dB.
—T

Then we have the equation for the difference:

d@en - ff@n
dt B

— 9825 — (BB
+ (@) /_ (K@) = 228), @) — F(B) — K(f() — FS(B), f(@) — F(B))

- (B fu (@) + o 5 (@) — B fu (B) — 35 FS(B))dP
=Term| + Termj.

T ~ ~ .
(@) / K@) = 22B). f@) = F(B)(0a () — f5) (@)
—7T

We first control T erm,, we have

T 1 d
Term = i) / / SR (@)~ )
—7Jo T
—7(f(a) — 2°@) — (f°B) — 2°(B))), f@) — F(B)))
+ O ful@) + 3o £ () — Bp fu(B) — Dp £5(B))dTdp
T 1
Y / /0 VIK (@) = f<(B) — T(f*(@) — ()

—(f<B) — 2" B, fl@) — F(BY)
S(f@) — 2%@) — (fEB) — 22(B)) (B fu (@)
+ 3o fL () — dp fu(B) — dp fL(B))dTdP. (6.1)
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Since the component of VK is of —2 type, we have

IVIK(f€ (@) — f9B) — t(fS @) — 22 (@) — (£(B) — 2°(B)),
r ~ 2
f(()[) - f(ﬂ)))(a - /3) ”Col(’ﬁ([—23,28]><[—ﬂ,ﬂ])

S U@l ey F 1@ 2y + 1T @2 CULE = T = 2D are)-
(6.2)

When ¢ = 0, we have 70 = f€, then
1f€ =1 = Mare = 1 Nare S 1. (6.3)
Moreover, we have the following lemma:

Lemma 6.1. For g, h € CY(T), ||h||are < 00, there exists § depending on ||| are
and ||h||c1 1y such that when ||g — hllci(Ty < 8, we have || gl arc < 0.

Proof. We have
| cosh(g2(@) — g2(B) + fo(@) — fo(B)) — cosh(ha(a) — ha(B) + fale) — f2(B))]
1
< lg2(@) — g2(B) — (ha(a) — ha(B))] /O |sinh((1 — 7)(ha(et) — ha(B))

+ 7(g2(@) — £2(B)) + fole) — fr(B))ldt
< (a—PB)lg = hllciqyClhller gy + lg — hlleir),

and
|cos(g1 (@) — g1(B) + fi(@) = f1(B)) — cos(hi(@) — hi(B) + fi(@) — f1(B))]
< lg1(@) = g1(B) — (hi () = hi(B))] /01 Isin((1 = 7)(h1 (o) — h1(B))
+ (1) — g1(B) + fi(@) — fi(B))ldt
< (@ = Bllg = ke Cllklicrry + g = hllciry)-
Since

| cosh(ha (@) — ha(B) + fala) — fo(B)) — cos(hi(@) — hi(B) + fi(@) — fi(B))]
> ||kl arele — BI%,

we have

| cosh(g2(@) — g2(B) + fo(@) — fo(B)) — cos(gi(@) — g1(B) + fi(e) — fi(B))]
> (lhllare = llg = Bl ety C ikl crry + g = hller )l — BI2.

Then we have the result. O
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Since we have z%(«, 1) € C'([0, 1], H>(T)), f(a, 1) € C([0, 1], HO(T)),
then from (6.3), and Lemma 6.1, there exists 7, satisfying 0 < #, < t1, such that
forO <r <n,

1€ = (= Ollare S 1. (6.4)
Then from corollary 11.3, (6.1),(6.2), and (6.4), we have

T ermalFaey < 12° = N2

Then
d T 0 c 2
E_/,,‘” (e, 1) = f(a,t)|["de

" . d
= 23){[ e, 1) — f€ (a,t))E(zo(a,t) — f(a, 1))da

=) o f (& (e, 1) = f (e D)M(@) f K@) = 298, f@) = FB) (el — fO@) — 05 — £5)(B)dBda

=12

+B.T°,

where B.T < [12%(ct, 1) = f“(et. D)1 72,
conditions (5.18), (5.15), (5.17), we have

e

dit )z

o Then from corollary 5.6 when y = 0,

2@, 1) = e D Pda S 1%, 1) = F@ DT

Moreover, we have z°(«, 0) = f¢(a, 0). Therefore we have
L) = 1), (6.5)

forO <r <.

7. The Continuity of z with Respect to y

We first show [|z(e, y, 1) — z(a, ¥/, Dl sy S 1y — V'

For the sake of simplicity, we further shrink the time ¢, to f; such that for all
0<t<f,y,y €l-1,1],t €0, 1], we have ||tz(c, ¥, t) + (1 — T)z(ct, ', 1) —
‘CZ((X, Y O) - (1 - T)Z(av y/9 O)HCI(T) = ”'L'Z(a, yvt) + (1 - T)Z(Ol, y/s t) -
f(@, 0)|lc1(r) is sufficiently small. Then from Lemma 6.1, we have

ez, y,0) + (1 = Dz(e, ¥, Dl are < 00.

This is not necessary but helps to simplify our estimate in this section.
Now we estimate the difference, we have

dz(e,y)  dz(e,y")

=T -T / "t
7 o (z(o, v, ), 7, 1) (z(o, y", 1), v, 1)

y/
= (T (e, y,0), 7, 0) = T(zle, ¥, 1), v, 1) + </ D)l y' 1), n,t)dn)
Y

=Term| + Termy. (7.1)
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For Term», we have

d .
@, T) (@), y.1) = — (%

dy ) 0g2(ct)

g - - d 1 N4
@ [ K@ =28, fe) f(ﬁ))E(%  1)dBduz(@)

+a@) | K@) —z(B8), fl@) = F(B) (0o fla) — B f(B)ic (B)rdp

=Termy1 + Termyy+ Termy 3. (7.2)
Since z(a, y, 1) € LX([0, to], H>(T)), we have
ITermallgsery < 1.

Moreover,

Termap = A) | K(z(@) —z(B), f(@) — f(B))

-7

|:(ic(,3) —ic@)t  (ic(B) —ic()ytic' (@)t
1 4ic(a)yt (14 c'(@)yt)?

i| dBdgz(a).
Since K is of —1 type, we have

K (z(a) — z2(B), f(@) — fF(B)(a — B) € C}([-28,28] x [-m, w]).  (7.3)

Therefore || Termy 2| g3ty S 1. Moreover, T ermy 3 can be bounded in the similar

way since |%‘;‘3ﬂm| € C3([-26,28] x [, 7]) and we get
ITermasllgsery < 1.
Then we have

1@, T)(z(e), v, Dl g3y S L, (7.4)

and

ITermall gy < 1y =¥/l (7.5)
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For Term1, notice that f(a +icla)yt,t) = f(a, t), we have

ic(a)y
1+ ic(a)yt

+r@) | Kl y)—z8,y), f@) — f(B)

B (3,31(/3, y) — dpz(B, V’)))
1 +ic(B)yt
~(1+ic(Byyndp

T

+ M) | (K, y) —z(B, ). f@) — F(B) — K(z(a, )

—z2(8,v), f(@) = f(B)))
duz(et, ¥') dpz(B. v - . ,
(1 @yt TGy T o f () — 8ﬁf(/3)> (1+ic'(B)yt)dp

=Termy1 +Termyp+ Term 3. (7.6)

Term; =

(2, ) — 2(at, ¥"))

aaz(aa V) - 8(]{2(“7 V/)
1+ic(x)yt

It is easy to get that

ITermi il 2y + 1Termiali2ery S llzte, v) = 2@ ¥)llasery- (7.7

Moreover,

T 1
Termy 3 = /\(a)/ /0 ViK (z(z(e, y) — 2B, ) + (1 — D) (z(e, y') — 2(B. ¥"),

fl@) = f(B)dr
(2l y) — 2B, y) — @, y) —z(B. ¥")

< daz(e,y))  9p2(B. ¥
1 +ic(@)yt 1+icd(B)yt

+ 8o f (@) — 3 f(ﬂ)) (1+ic (B)yt)dp.

(7.8)
Since the component of Vi K is of —2 type, we have
sup IViK (z(z(er, y) = 2(B, ¥) + (1 = D) (z(e, ¥)
—2(B. ¥, F@) — F(B) (@ = Bl e3 25 2510 [mn) S 1
then we have
ITermyall 2 S llz(@ ¥) = 2o YD)l gsr).- (7.9)

Now we control agTerml. For BgTerml,l, we have
ic(@)y
1+ic(x)yt

i iC(O{))/ —j ’
+ Z C],jaé (m) 33 Tz, y) — z(a, v'))

3Term; = Iy (z(a, ) — z(a. ")

= Termil’M + Term?’l’z. (7.10)
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Here ||Term?’1’2||Lz(T) < lz(e, y) — z(a, y/)||H3(rﬂ~). For agTerml,g, from

~

Lemma 11.6 and (7.3), we have

BTermip=nr@) | Kz, y)—z2(a—B,y), f@) — fla—p)

-7

. <a3 (BQ(Z((X, V) B Z(Ol, )//))> _ 83 <8a(z(a - ﬂv V) B Z((X - ﬁ7 7//))>>
¢ 1+ic(a)yt ¢ 1+ic(a— B)yt
1+ iC/(Oé — B)yt)dp + Term?,z’l, (7.11)

where ||Termi2,l lL2(m) < z(a, y) — z(a, 7//)||H3(’I[‘)' Moreover, we have

Ma) | Kl y) =zl —B.y), fl@) — fla—pB)

' (83 <3a(z(a, y) —z(e, V’))) _ g del@—poy) —2la—p, )/))))
« I +ic'(a)yt * L+id(a— Byt
(1 +ic'(a = Byyndp

bs

=Ma) | K@ y)—zla@—B.y), fl@) — fla—B)

. (33(2(01, y)—zey)) Iyzla—B.y) —z(@—=B.y")
1+icd(a)yt 14+ic(a— Byt

))(1 +ic(a — Byn)dp

+ > Cjua)/ K(z(a,y) — 2@ = B, y), f(@) = fla—B)(1 +ic (@ — By1)

0<j<2

'(%”&Wwd—dmymﬁﬁ( )—%H@m—ﬁm)

1+icd(a)yt

) 1
B -~ )Y
z(a — B, ¥"))o, (1 +ic/(a—,3)}’f>)d'8
= Term?,z,M + Termizﬁ' o

Then from Lemma 11.2, we have

ITerm3 5 3ll2em) S Nz, v) — 2. ¥ ) s ey (7.13)
For 83 Term 3, we use equation (7.8). Since
IVK (rzle. y) =28, ) + (1 = D). ¥') = 2(B. ¥). Fl@) — FB) @ = B I cs (28 251x1-mnl) S Lo

and

Bz (e, ¥")

Yo\ s - 4
ity il @ e HAD),

from Lemma 11.7 we have

193 Term 3l 2emy S Nz, v) = 2(a, V) | 3 emy- (7.14)
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In conclusion, from (7.7), (7.9), and (7.5), we have

d g g
7 / lz(et, ¥) — z(a, y')lzda = 29{/ (z(et, y) — z(a, y' ) Termy + Termada
7 -
2 2
S |)/ - y/l + ”Z(O{, V) - Z((X, y/)”H?(T)
From (7.10), (7.11), (7.12), (7.13), (7.14) and (7.5), we have

d T 3 Ny 12
o 19, (z(e, ¥) — z(e, ¥"))|*dax
tJx

T -—
= 23%/ 83z, y) — z(a, ")) - 83 Term; + 83Termpda

-

g
= 25)%/ 303((z(<x, v) —z(a,v)) - Term?{lvM + Term?lMda +B.T°

-

ic(@y

Pt S—T _ ’
1+ic,(a)yt3a(zﬂ(a, y) —z(e. y'))da

= Z 2.%/ 9 zpl y) — zp(a )

n=1.2

+ ) 2mf 3% e, y)—z,l(a,y’)n(a)[ K@@, y) =z = B.y), f@) = fla—p)

n=1,2

I y) — 2@, y) 9@ =B y) —z@ =B, y") o
’ ( 1+ic(a)yt B 1+ic(a— Byt >)(1 ride=pyndpde
+ B.T°,

where
BT S (e, v) = 2, Y ) sy + v = 7'

Then from corollary 5.6, we have

d T
il 105 (z(er, ) = 2(er, YD Pder S Mz y) = 20 YD) 1y + v = V1
Moreover, the initial date ||z(a, v) — z(«, ¥') ||12L13 (T)' +=0 = 0. Therefore we have
_ /
z(a, y) z(/a, ) <1 (7.15)
y—=v H3(T)

8. The Differentiability of z with Respect to y

Now we show the differentiability. We define a new function w(w, y, 1). It
satisfies the equation that j—z would satisfy if it is differentiable.

Let w be the solution ofy the equation
dw(a,y,t) =
— - T'(w) =D T(z(e,y, 1), y,Dlwl + 9, T (e, y, 1), 8.1

with initial value w(w, y,0) = 0. Here D, T (z(«, y, 1), ¥, t)[w] is the Gateaux
derivative.
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As in the existence of z(«, y, t), we first show the energy estimate. First, from
(7.4), we have

10, T)(z(@), v, Ollg3er) S 1

Moreover,
_ dc(w)y
DTGy 1),y lw] = =7 (a)ytaaw(a, ¥)
” . . dpw(a, y) dpw(B, y)
+ M) ﬂK(z(a, V) — (B, V),f(a)—f(ﬂ))(“ric/(a)yt - 1+l.c,(ﬁ)yt>
(1+icd(B)yndp
+a@) [ (ViK(@(a,y) — 2B, v), f@) — F(B) - (wle, y) — w(B, ¥)))
daz(ct, y) 98z(B, v)

: <3af(0t) — 3 f(B) + ) (1 +ic'(B)yt)dp.

(8.2)

1+ic )yt 1+ic(B)yt

It has the similar structure as (7.6) and (7.8). The only difference between the first
two terms in (7.6) and (8.2) is that d,w(«, y) takes the place of %
In (7.8), and the third term of (7.6), w(c, y) takes the place of % and
Jo ViK (@@, y) = 2B, ) + (1 = D), v') = 2(B, ¥, (@) = F(Bdr is
replaced by Vi K (z(«, y) — z(B, v), f(a) — f(B)). Therefore we could use the
similar estimate and have

d 2 2
E“w”;ﬂ('ﬂ‘) S C(”w”H3(']I‘))
As in the existence of z(«, y, ), we could do the similar energy estimate to the

approximation of the equation

dw"(a, y, 1)

7 =T (W) = ¢ % (DT (2@, 7, 1), ¥, Dlgn * w") + @n % 3, T (@, 7, 1)),

(8.3)

with initial value w” (o, y, 0) = 0. Then from the Picard theorem and compactness
argument, there exists 0 < 73 < 1, such that

t
w(a, y, 1) = / T(w(a, y, 1))dz,
0
and

lwa, v, Ol Lo o.nympmy) S 1- (8.4)

We claim there is an uniform #3 holds for all y € [—1, 1]. Moreover, we have the
following lemma:
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Lemma 8.1. For any g(o), h(a) € HIH(T), Jj <2, we have

IT(g(@). v. Ollgiemy S 1. (8.5)
IT(g(@), v, 1) = T(h(@), v, Dll iy S 8@ = h@lgisiery,  (8.6)
lim IT(g(@). y. 1) = T(g(@). . ) gicr =0 (8.7)

Proof. It is easy to get these bounds since z(«, y,1) € L([0, 1o], H(f (T)) N
CO([0, 0], Hy (T)). O

Then we have w(e, y,t) € L°°([0,#3], H}(T)) N C°([0, 3], HX(T)) N
C(10, 131, Hy(T)).
We claim that we could do the similar argument as in the estimate of || z(«, y) —
2l YD lgaery S 1y — v/l to get
lw(e, y) — wle, Mgy S 1y —v'I-

Then from (8.4), we have
lim fw(e y") — w(e, Y) g2er) = 0. (8.8)
Y=y

Now we show w is the derivative of z with respect of y. Let

(o, y, 1) —z(, ', 1)
v(e, v,y 0 = — —w(a, y.1).

From (8.1) and (7.1), we have

dv(a,y, v, 1) _ TGy, 0,y 8) =Tz, ¥, 1), 7, 1) N f;’,(anT)(z(oc, v\ 0., 0dn
dt y—v y—v
= D;T(z(a,y, 1), v, Hw(a, v, )] = 0y T)(z(er, v, 1), ¥, 1)
TGy, ),y 1) =T,y 0,70
B ( y—v'
. ( S @)y, m, 0dn

= D;T(z(a, v, 1), ¥, Hw(a, y, t)])

— =0y Tz, y, 1), v, t))
=Term| + Termy.

We have

1 v
Termy = —y / @, T)(z(e, ¥, 1), n, )dn — (3, T)(z(at, ¥, 1), ¥, 1)
¥

_ fy, @Gy 000 = GDEey 0,70,
v y=v
+ ((ayT)(Z(O[, ]//9 t)’ V» t) - (ayT)(Z(Ol, J/» t)’ yv t))
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From (7.2) and (7.15), we have

1@, T)(z(et, ¥', 1), v, 1) = By T) (2o, v, 1), v )l 21y
Szl vy, ) =zl ¥ Dllpzery S 1y =¥/l

and

”(aT]T)(Z(O[a )//» t)’ n, t) - (BVT)(Z(av )//, l)s Y t)||L2(T) S |77 - y|1

Then

ITermall 2y S 1y =¥/l

Moreover, for Term, from (8.2), (7.1), (7.6) and (7.8), we have

T, y,0),y.) — Tz, ¥y, 0), v, 1)
y—v

- DzT(Z(OI, Y, t)7 Vs t)[w(as Vs [)]

i)y
T l4id )yt

+ A(a)/_ K@ y) — 2(B. ). F@) — F(B)) (

(1 +ic'(Byyndp

80{ (U(as Vs )’/))

3Olv(as )/v )’/) _ 8,3”(/37 yv J//))
1+ic(a)yt L+ic(B)yt

T 1
4 (@) f fo ViK (e y) — 2(B. y))
—7T

+ (=) y) — 2B, ¥)). fl@) = F(B))
. (z(a, ¥) —2(B.y) — @ y) — 2(B, V’)))
y—v
( daz(er,y)  0pz(B. ¥
1+id(@)yt 14id(B)yt

+ 3o f (@) — 8,3f(ﬁ)> (1+id(Byt)drdp

s ~ ~
- X(Ot)/ ViK@z(a,y) —z(B, ), f(e) = f(B) - (wle, ) —w(B, y))

_ . duz(a, y) dpz(B,v) .
. <3af(0t) 0B+ el l+ic,(ﬁ)w> (1 +ic (Byydp

=Termy | +Termyp+Term| 3+ Termj 4.
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T 1 .
Termi3+Term 4 = )»(Ot)f /(; ViK (e, y) — 2B, ) + (1 = D, ¥') = 2(8, 7)), f(@)

— fB)dT - (w(e v, ¥") —v(B. v, V)

o dey) 0By
'(a“f(“) WSt T @yt T+ic (Bt

)(1 +ic(B)yn)dp

g 1
+ A [/0 ViK (t(z(e, ¥) — 2B, ) + (1 = D) &le, y) = 2(B, ), f() — F(B)dT

—VIK (e, y) = 2(B. ¥), fl@) — F(BN] - (wla, ¥) — w(B, )
( duz(er, ¥ 3pz(B. v

- +3af'(ot)—3ﬁf(ﬁ)> (1 +ic(Byyndp

1+ic(w)yt 14+ic(B)yt

+a@) | ViK@ey) —2(B.v). f@) — F(B)) - (wle, y) — w(B, y))

-

( Buz(et, ") dpz(B,v") 0az(et, y) 9p2(B.v)

- —( - )) (1 +id (Byynydp

1+ic(a)yt 1+ic(B)yt I +ic(a)yt 1+ic(B)yt
=Termys+ Termy e+ Termy 7.

Since the component of Vi K is of —2 type, we could use Lemma 11.2 to bound

Termi s and have

ITermislyam < 0@ v, YOI

For Term g, we have

1 ~
I [/0 ViK (t(z(e, y) = 2B, ¥) + (1 = D)z, ) = 2(B, ¥)), f(@) — f(B))dr

~ViK (e, v) = 2B, 1), f(@) = FBY] @ = Bl 12,5121

S ||Z(Ol, V) - Z(a’ y/)”[.]}(jr).
Then from Lemma 11.3, and (7.15), we have

ITermigll 2y Sy — v/l

From Lemma 11.3, we again have

I Term1,7 ||L2(T)

SIVIK G y) = 2. 7). f@ = FB) @ = BVl et —as.51x -y 0@ Wl 2

daz(ey))  duzle.y)
1+ic(@)yt 1+ic(a)yt

L%(T)
S llze, y) = 2@ ¥y Sy = 7'l

where we use (8.4) and (7.15). Therefore we have

-
o [ lv(e. y. y")*da

—om /” @y, ) — DYy vy e
=M | vy ) gy @ vy

Ouv(e,y.y")  9pv(B.v.v")

+ 25“/ v(a, y, y'))»(ot)/ K(z(@,y) = 2B, v), f@ — f(B) ( T Fic @yt

+B.7°,

1+ic(B)yt

) (1+ic(B)yt)dBda
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where
BT Sy = ' + vl v, )12 -

Then by corollary 5.6, and the initial value v(e, y, y’, 0) = 0, from the Gronwall’s
inequality we have lim,/_,, |lv(a, ¥, ¥", )|l .21y = O when t < 13.
Form (8.4), and (7.15), we have

(e, v, ¥, Ol S 1.
Moreover from the interpolation theorem, we have

lim [v(e, y, ¥ Ol =0.
Y=y

Then from (8.8), we have
(e y) € CH([—1. 1], Hy(T)).
with

d
d_Z(a’ Vs t) = w(ot, J’)
14

From (8.1), we also have

dd_ _dw dT() _d d
didy~ " dt _ dy dydi”

In conclusion we have

z(a, y, 1) € C/([0, 11], H(T)),
e, y, 1) € Cp(I—1, 1], HX(T)),

i € €10, 131, Hy(T)) N C}([0, 13], Hy (T), 8.9)

dd . _ dd
ddy* = dyai%

72(e,0,1) = f°(a, 1), when 0 <t < 1.

9. The Analyticity

In this section, we want to show f(«, ) is a real analytic function near 0 for
each fixed t, 0 < t < 3. We first show that it is enough to prove that

ic(a)t i

d
, Vo l) — — , Vot :0~ 9.1
—1+ic,(a)wdaz(a 125 dyz(a 1) 9.1

Lemma 9.1. If 7 satisfies (9.1), then f(x) can be analytically extended to Dy =
{a+iy| —o0 <a <00, —c(a)t <y < c(a)t}.
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Proof. From the uniqueness (6.5), we have z(«, 0,1) = f(«, t). Then

2 (o g t) s cl@) £0,

fa+iy, 1) = {
z(a, 0,1), c(a) =0,

is a extension of f¢(«, t) on D4. Moreover, when c(«) # 0, we have

d y B y y yc'(er)
do (Z (“’ cly’ t)) = %) (“’ clayr’ ’) ~ &9 (“’ c(a)r”) (c(aﬂr) ’
d 2 ))=0 DA !

dy (Z (a’ cla)t’ >> =02 (a’ cla)t’ ) <C(a)t)'

Then we have

d . : cd . .
—f(a+iy,t) +i—f(a+iy,t)
do dy

_ y 4 yel@)

= (0u2) (Ot, @t f) — (92 (a’ clayt’ t) (C(a)zt)
» Y ) (L

+1i(9y2) (a, cla)t’ > (c(oz)Z‘)'

Now let 55; = . Then

cly l_) 8,2(c. v, 1)

c(a) c(a)t

d . . .d . .
_f (05+ly’t)+l_f (a+ly7t)=80lz(avy7[)_
do dy

ic'(@)yt+1
ic(a)t

= aotz(av Y, t) - (
=0.

) dyz(a, y,1)

Moreover, z(w«, y,t) € C}E([—l, 1], HD%(’]I‘)). Then 0, f€¢, 0, f¢ are continuous.
Therefore we have the analyticity of ¢ near 0. We also have f(a,f) = f(«, t)
when || < §. Then we have the result. |

Let

ic(a)t

Ao(h) (e, y, 1) = (m

O0q — 8y> h(o, y,t).

Before we prove Ag(z) = 0, we introduce some general lemmas.

Lemma 9.2. Ifallthe derivatives are well-defined and 34,0, h(ct, v, t) = 3, 0 h(a, ¥, 1),
we have

( ic(a)t 3a—3y) g h(a, y) Ou < ic(a)t

- B — 3, ) h(@,y),
1+id @yt T+ ic @yt @ V) (@)

L+ic @yt  1+ic(@)yt
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Proof. First, for the right hand side, we have

%agh(a, Y) ic(a)t —ic"(a)yt
(RHS) = " .- T dh(a, y)
1 +ic(a)yt 1+ic(@)yt \(1+ic(x)yt)
dudyhie.y) i @tdahe.y)
1+ic(@)yt (A +ic(@yt)?’
Also
(o)t . tic ;
(LHS) = l.C () _ lC(Ot). ic()y 8uh(@. )
(A+icd(@yn? (A+ic(@yr)?
ic(a)t 5 1
——— 9 h(a,y) — ———— 0,0, h(a, y).
T ic@yn2 @ Y) = Ty e y)
From the two equalities above, we have the result. O

Lemma 9.3. If all the derivatives are well-defined and we have

ic(a)y

—h=——"" 3,h+ T,
dt 1+ic @)yt © I

d dg _ dd d dg _ dd d d g _ d d
and da %]’l = Eﬁh’ Ed_}/h = Wah, ﬁﬁh = Wﬁh’ then we have
Loty = — O 4 aohy + Ao(F ()
dt" O T T id @y 0 '
Proof. First,
d
EAo(h)(Ot» 20!
d ( ic(a)t ) ic(a)t d d
=2 : duh : g —h — By, —h
dr \1+ic(a)yt 1+ic(w)yt ~dt dt
_ i ic(a)t ic(a)t _ ic(a)y -
T de (1 +ic’(a)yt> daht + (1 +ic(a)yt % 8y> (1 +ic’(a)yt8ah> + AT )
_ i( ic“(a)t )Buh ié(a)t 8‘1< ic‘(a)y )Bah i?(ot)t ié(a)y a§h
dt \1+ic(a)yt 14+ic(a)yt 1+ic(a)yt 14+ic(e)yt 1 +ic(a)yt

ica)y ic(a)y 7
=00 (T rormin) % ey + Ao )

B ic(e)t ) < ic(@)y >+i( ic(a)t )—8 ( ic(@)y ) o h
11 +ic(a)yt “\1 +ic(a)yt dt \1+ic(ax)yt "\1 +ic(a)yt “
Termy Termy
ic(a)y ic(a)t
1+ic(@)yt \1+ic(x)yt

aoc - 8}/) 8och +AO(T(h))<

Termy
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Moreover, we have

i( ic(ot )-a( ic(@)y >—0
dt \1+ic'(a)yt Y\1+icyt)

Termy
ic(a)t 8( ic(a)y >= ic(a)y 8( ic(a)t )
L+ic @yt “\1+ic @)yt 1+ic @yt “\1+ic(@)yt)’
Termy

and
ic.(a)y < ic.(oe)t 8 — By) Bk
I +ic(a)yt \1+ic'(x)yt
Terms
_ lﬁ(a)y 3, << lf(a)t 8 — ay> h)
1+ic(x)yt 1+ic(a)yt
3 ic'(a)y % ( ic"(oz)t ) duh.
1+ic(a)yt 1+ic(ax)yt
Therefore
d _dc()y ic(a)t B ~
grioUn(@, .0 = e, ((—1 i@y ay) h) + Ao(T (h))
ica)y

= maaAO(h) + Ao(T (h)).

O

Lemma 9.4. Let K be meromorphic. 9, X («, v), 9, X (a, y) are well-defined and
in Cg[—n, ], duh(a, y) and 9, h(c, y) are well-defined vector functions with
components in Cg[—n, . If for fixed «, there is no singular point in the integrals
below and c(7) = c(—7) = 0, c(&) € W, then we have

b1

Ao(|  K(h(a,y) —h(B, yNX (B, v)(1 +ic (B)y1dp)

—7T

= / VK (h(@, y) = h(B, ¥)) - (Ao(W) (@, ) — Ag(W) (B, y DX (B, v)(1 +ic' (B)y1)dp

-

+ / K (h(a,y) = h(B, y) Ao(X)(B, y)(1 +ic' (B)yn)dp

g

=Du(|  K(h(a,y) —h(B,y)X (B, y)(1+ic (B)yH)dB)[Ao(h)]

-7

+ / K(h(a,y) = h(B, y)Ao(X)(B, Y)(1 +ic'(B)yt)dp.

—1T

Here Dy, is the Gateaux derivative.
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Proof. We have

o+
Ao (/ K(h(,y) —h(e = B.y)X(@ =B, y)(1 +ic (@ - ﬂ)yf)dﬂ)

a—I
ic(a)t

= oty K y) = =, )X (=7, ) (A +id (=m)yt) = Kh(e@, y) =, y)X (1, ) (L + i/ (1))
+ic(a)yt

Termy
ic(a)t
1 +ic(a)yt

ic(a)t
I+ic(a)yt

-7

a+m -
+/ VK (h(a,y) —h(e@—B.y)) - (( 3«*3;/) he, y) = ( 0o — 0y )h(a — B, V,t)>

Term;
X(@ =B, y)(1 +ic' (@~ pyyndp

Term,

atw o n ic(a)t
+A (h(er, y) — (a*ﬁ-}’))(m

-7

B — ay> X(a =B,y +ic'(@—pyndp

Terms
ic(a)t

atm
+/ﬂ K(h(at,y) —h(a = B,y N X (= B, y) (m

-7

ic(a — Byt —ic'(a — ﬂ)t) dp

Termy
=Terml+

atr ic(a)t . icla — Bt ,
+/ VK h(a,y) —h(e —B,y)) - ((m% — 6V) hia,y) — (mda - dy) hie — By, f))

Terms,|
X(@ — B, ) +ic(a— Byndp
Terma |
atr icla — p)t ic(a)t
+ LT VR (e y) — b = B9 (et g e = 7o e = .. 0)
Terms
X(@— B, 7)1 +ic'(@— Byndp
Termy,
wt icla =Bt . ,\,
+ ﬁ_” K(h(a,y) —h(e—B,y)) (mau - 3;/) X(a =B, y)A +ic(a—p)yt)dp
Terms )
kT ic(a)t icla — Pt .,
+ .L‘h-r K(h(a,y) —h(a =B, 7)) (l T T Tric@= Byt 3a> X(a =B, ) +ic'(a—Byndp
Termsa
ic(a)t

-7

a+m
+f K, y) —h(@ =B y)X(@—B, y)( iC”(a*ﬂ)Vf*iC'(a*ﬁ)f)dﬁ

1+ic(a)yt

Termy

=Termy + Termy + Termay + Term3 | + Term3 s + Termy.
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Moreover,

Termyy + Terms o + Termgy

o+ d ~
=/ — (K (h(a,y) —h(a = B,y ) X(a — B, y)(icla — )t

—x dB
ic(a)t .,
- m(l +ic(a — B)yn))dp
~ . ic(a)t .
= K(h(a,y) —h(=m, y) X (=7, y)(ic(—m)t — #(1 +ic(—m)ytr))
+ic/(a)yt
ic(a)t

— K(h(a, y) = h(x, y )X (, y)(ic(m)t — (I +id (myn).

1 4+ic(x)yt

We use the condition that ¢(—7) = c(wr) = 0 and we could get the Term; +
Termyy 4+ Terms + Termyg = 0. Then we have the result. ]

Now we use Lemmas 9.2, 9.3, 9.4, to show the result. From (4.5) and (5.5), we
have

dzp(a,y, 1) icl@)y
dt 1 +icd (@)t
+r@) [ Ky, —zB.y,0, f,, )= f(B,.0)

—7T

Oazpla, v, 1) _ pzu(B, v, 1)
1+ic(ax)yt 1+ic(B)yt

aOtZ/_L(as )/, t)

> (1+id(Byyndp

+r@) | K@y, 0)—zB, v, 1), fay, 1) = F(B), 0)((0a fr) (@), 1)

—7T

- (3ﬂfu)(,3)t,» (A +ic' (B)yt)dp.
Since we have Ao(k(a;)) = 0, from Lemma 9.3, we get

dAo(zy) _ ic@y
dt 1+ic ()yt

T ~ ~
aaao( [ Ky = 2By Flan - @)

dazulay. 1) dpzu(B, v, 1)
1+icd(a)yt 1+icd(B)yt

Let

aOlAO(ZlL)(as Vs t)

+ B f) @y, 1) = B f) (B, t)) (1 +ic'(Byyn)dp).

Ouzpla, y,t)

1+ic(x)yt

K(h(e,y) —h(B, ) = K(hi(e, y) — hi (B, ¥), hae, y)
—h2(B, ¥))(h3(e, ¥) — h3(B, ¥)),

h(a,y) = (2@, y, 1), f(@), 1), + B fu) (@), 1),

and

X(a,y) = 1.
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then by Lemmas 9.4 and 9.2 and Ao ((3, fﬂ)(a;, 1)) =0, and Ao(fﬂ (a;, 1)) =0,
we have
dAo(zy) _ icla)y
dt 1+ic(a)yt

by

+r@) [ K@@y, n—z2B,y.0), fy,, 1) = f(B).1)

(aaAO(Zu)(aa y.1)  9pAo(z) (B, ¥, t))
1 +ic(a)yt 1+ic(B)yt
(1 +ic(Byt)dp

Y

+a@) [ ViK((a, v, 0) =By, 1), (e, 1) = f(B), 1)
: (A()(Z)(Ol, Y, t) - AO(Z)(ﬂ? Vs t))

duzu(o y. 1) Bpzu(B.y.0) c _—
: (1 it~ Ty T el 0~ @S0}, r))
(1 +ic (Byyr)dp

=Term| + Termy + Terms.

0o Ao(zu) (e, v, 1)

Since
IVIK (2. y. 1) = 2(B. v, ) + fey. 1) = F(BL. D)@ — B llcr1-28 251 [y S s
‘ 8Olzll(av ya t)

3o fr) (@, 1
by Lemma 11.3, we have

<1
C2([—28,28]x[—7, 7))

’

ITermsll2ery S Ao L2(T)-

Then by corollary 5.6, we have

d
E”AO(Z)Hiz(T) S 1A0@ 12

Moreover when t = 0, Ap(z) = —9d,z(a, y,0) = —9), f(a, 0) = 0. Therefore
Ap(z) =0, when t < 13.

10. Using the Energy Estimate to Show the Analyticity

Following an idea similar to that in the previous sections, we introduce a way
to study the analyticity of the solution to some differential equations, which is, to
our knowledge, a new method.

Theorem 10.1. Let T (f) be an operator satisfying the conditions below. We assume
that there exists € > 0, k > 1, fo € H*(T), such that when || f — Jollgx Se

(a) (Boundedness) T (f) : H*(T) — H*(T) with | T (f)|| gt (1) S 1.
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(b) (Existence and boundedness of the Fréchet derivative )| D ¢ (T (f)[A1ll g1y S

A1l e Ty
(c) (L* boundedness of the Fréchet derivative) D¢ (T (DA 2y S WA L2 (T,

(d) LT (f) = Dp(T (L],
(e) iD (T (f)Ih] = Ds(T(f)ih].

Here T is the torus of length 2r. If fo(x) also satisfies the equation

fox) =T(fo), (10.1)
Jo(x) must be real analytic.
Proof. First, we assume fj to be an analytic function with analytic continuation

f(x, t). Then through the Cauchy-Riemann equation and (10.1), we have

(10.2)

%f(x,t) =iT(f(x,1)),
S(x,0) = folx).

Our goal is to show this solution f(x, #) does exist and is analytic.
Through (a), (b), we have
IT(f) =Tl gxery S N — 8llaxer)-
We can use the Picard theorem to show there is a solution satisfying
1
fx, 1) — f(x,0) = / iT(f(x,1))dr.
0
with |t| < g for some 7y > 0. Moreover

f(x, 1) € W ((—to, to), H*(T)). (10.3)

By (10.3), we have

,1) — 4+ At d
fim | L&D =S tRAD A —0.
At—0 At dt Hk(T)
Hence
d d
= f(x,t)— =f(x,t+ At d d
lim xS0 = g /€ )———f(x,t) =0.
At—0 At dx dt HE-1(T)

Therefore we have

d d . d d 0,0 k—1 O¢(_ 2
Zﬁf(x’t)_ Eﬂf(x’t) € C*((—to,t0), H*~(T)) C C”((—to, tp), L°(T)),

(10.4)
and

d d 1,00 2
—f, ) +i—fx, 1) € W ((—to, 10), L™(T)). (10.5)
dx dt
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Then we can control || %f(x, 1)+ i%f(x, Dl g2 (T)- We have
d

i/n (—+ 1) (x, 1)[*dx|

di ax Tigr) S ldx
T /d d d

= |2Re[ﬂ (d —|—1—> f(x, (d —|—1—> f(x,t)dx|
T /d d d\ d

= |2R€/;T[ <dx +l—> f( <E +la> Ef(x,l‘)d)d
T rd d) .

= |2Re/ (—+l—) fx, )(——i—l—)tT(f(X,t))Xm
_7 \dx d

~ 2re | (dd +z—) F G DiDT(f(x. r))[( +,i) [f (e, D)ldx]

Lty

Here the first equality follows from (10.5), the second from (10.4).
Through (10.1), (10.2), we have

(10.6)

|z=0 =0.
L%(T)

d .d
”Ef(x, H+i fx.10)

Moreover, from(10.5), ||dxf(x t) +zdtf(x Ik € W (=1, to). Then

Lz('ﬂ’)
rd 2
H_f(x t)+z—f(x f) =/ f(x t)—l—l—f(x 7) dr.
LX(T) o dr L2(T)
Hence we can use the Gronwall inequality and get
d d
”—f(x,t)vLi—f(X,t) =0. (10.7)
dx dt L2(T)

Moreover, since k > 1, from (10.3), we have j—tf(x, 1) € Whoo((—to, 19), H'(T)).
Then % f(x,t) is continuous in x and ¢. Therefore d, f(x, ) is continuous in x
and 7.

Then by the (10.7) and (10.2), we have the analyticity. O
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11. Appendix

Lemma 11.1. For G(a, B) € c! ([—28, 28] x [—m, ]), we have

T G(a, p)
||P-U-/ @—B) .5||L°°[ 28,281 ~ S G (e, 18)||C'([728‘28]><[77r,n])'
-7

Proof. We have

b S

' a—p)
‘/ G(a, B) — G(a, oz)dﬁ‘
(@ —B)

1
—i—‘p.v./ ——dBG(a,a)| S G (e, B)ll e ((—25,26]x [~ .7 ])-
_ra—p ) ,

Lemma 11.2. For g(a) € L2[—7'r, 7], G(a, B) € Cl([—25, 28] x [—m, ]), we have

H/ Gla ﬂ)g(a) g(ﬁ)dﬂ

@—p) s ||G(0hﬁ)“cl([_za,zg]x[_n,n]) ||8||L2[_;T,n]-

L2[—28,25]
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Proof. We have

™ gla) —g(B)
G(a, f)—————d
R
T G , _ G R T _
= [ SR ETED e — gpnap + Gaapa. [ EO =5
-7 a—pB -7 a—pB
=Termy + Terms.
Here
||T€”m1||L2 —25,28] ~ ||G(a ﬁ)”cl([ 28,28|x[—m,7]) ||g(a)||Lz[ 7,7]
and

||Term2||L2[ 28,281 ~ S IG(a, a)”cO([ 25,28]) ||g(0()||L2[ —,7]

[m}

Corollary 11.3. For g(a) € L [—x, 7], h(a) € C[—m, 7], G(a,pB) € cl(-25,26] x
[—m, ]), we have

7 (g(@) — g(B)(h(@) — h(B))
d
H/_n G p) (@—p)2 P

S 1G(a, ,5)||cl ([—28,281x[—m,7]) ||g||L2[,25,25] ||h||c2[,n,n]-

L2[—28,25]

Proof. We can use Lemma 11.2 and let G(a, B) =G(a, B)—F—~—F—> h(a) h(ﬁ) . m]

Lemma 11.4. For g(o) € H'[—7, 7], G(a, B) € CO([=28, 28] x [—7, ]), we have

H/ Gla. ﬁ)g(a) g(ﬂ)dﬂ

—B) S I1G (e, /3)||C0([—28,28]><[—n,n]) ”gHHl[—n,n]’

L2[—25,25]

Proof. We have

V Gl /3) - g(B) ﬁ’

)]
T 1g(e) — g (Bl
= 1G (e, B)llcoq—2s.281x[ nn)/ Wdﬂ

1
< |G(e, ﬂ)”CO([—ZS,ZS]x[—mn]) f_n/O |g/(t(a) + (I = 1)(B))dzdB

f, G (a, ,B)HCO([_QS,Q(;]X[_HJ]) ”g”Hl[—n,n]’

[m]

Lemma 11.5. For g(a) € HX(T), G(a, B) € C1([—28, 28] x T) N Ck([—28, 28] x T), for
k > 0, we have

[ onzs]
H*[—25,26]

S (16 (e, 'B)Hcl([728,28]x11') + G (a, ﬂ)||Ck([_25’25]><']1'))||g||Hk(']1‘)~
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Proof. From Lemma 11.2, when k = 0, we have the L2 norm. Moreover, when k > 1, we

have
85/71 G(a,ﬂ)g(a)_g(ﬁ)dﬂ
r o —

B
:ak/” G @ =8@=P 0
of 7 B
_ vy e / HG@a— g on~ 'g<a>—a§*"g(a—ﬁ>dﬁ.
0</<k - 13

For j < k — 1, we could use Lemma 11.2 to get the estimate. For j = k, we could use
Lemma 11.4 to get the estimate. O

Lemma 11.6. For k > 2, g(a) € Hk('I[‘), G(a, B) € Ck([—28, 28] x T), we have

x n kg — kg (B)
ok </ ﬂ)ig(ﬁ) ﬂ) —/ Gla, p)—2 PP g
-7 B - a—p

S IG(a, ﬂ)”ck([_zagg]x’}r) ||g||1-1kfl(']1‘)
Proof. We have

x x ohg(@) — 958(B)
ok (/ Gla, ﬁ)Mdﬂ)—/ Glo B g
- B - a—p

L2[-25,25]

o’ g@) = 85 gl — )
Z C; / (G, a — B)) 5 ap

1<j<k

Then for j < k— 1. we could use Lemma 11.2 to get the estimate. Then for j = k. we could
use Lemma 11.4 to get the estimate. m]

Lemma 11.7. For g(o) € H3(T), h(e) € H3(T), G(a, B) € C3([—28, 28] x T), we have

i (a) g(B) h(a) — h(B)
([ et a5)
o — - B oa—pB 12[-25.25]
SIG@, ﬂ)”C3([—25,25]x'J1‘) Il 73 ey 1721l 13y -
Proof. We take the derivative and have
o - - — —
33(/ Ga, o — ﬂ)g(a) gla —p) h(a) — hia 'B)dﬂ)
p B
i J2 _ 2 . 7 B 7 B
= Z " WG, o — B)) 0y g(@) — 0y g(a — B) 9y h(a) — 9y h(a ﬂ)dﬁ,

B B

Jitjtjz=3"""

If jp <1, j3 <1, then

P J2 _ 12 _ j3 _ s B
H/ﬂ 33 (G(a, a — B)) do g(e) — 05" g(a — B) 0y h(a) — 0y h(a 'B)dﬂ

B B

L2[—25,25]
S ||3({¢l (G(a, o — ﬁ))“co([_zagg]x’]r) ||g||c2(’]1‘) ||h||c2(’]1‘)

5 G (a, 13)||c3([_25725]><11‘) ||8||H3(11‘) ||h||H3(']1‘)-



36 Paged4of 46 J1A SHI

If jo = 3, then j; = j3 =0, by Lemma 11.3, we have

0 g(e) — 0 g(e — B) AL hi@) — 8 h(a — B,

b4 .
H | alGaa-p ; ; 8
o 12[-25,25]
5 1(G(a, 0 — ﬁ))||C1([—26,28]><’]I‘) ||g||1-13(’[[‘) ||h||c2(’[[‘)
5 ||G(oz, ﬁ)||c3([_23,25]><11‘) ||g||1-13(']1‘) ||h||1-13(’]1‘)~
If j =2,then j; = 1or j3 =1, by Lemma 11.4, we have
T ajz —8j2 . 8j3h _aj3h _
H/ 00 (Glea — py) 20 8@ — 3’ gle = B) da'h(@) — d5'h(@ = ) o
- p p L2[—25.25]
S 108" (G @, @ = Bl co—25 261 181 113 (1) 196 Bl o1 ¢y
S IG(a, 13)||c3([_25,25]xqr) ||8||1-13(11‘) ||h||1~[3(']1")-
When jz = 3 or j3 = 2, it can treated similarly as jo, =3 and j, = 2. O
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