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Abstract

Three-dimensional markerless pose estimation from multi-view video is emerging as an exciting
method for quantifying the behavior of freely moving animals. Nevertheless, scientifically pre-
cise 3D animal pose estimation remains challenging, primarily due to a lack of large training
and benchmark datasets and the immaturity of algorithms tailored to the demands of animal
experiments and body plans. Existing techniques employ fully supervised convolutional neu-
ral networks (CNNs) trained to predict body keypoints in individual video frames, but this
demands a large collection of labeled training samples to achieve desirable 3D tracking perfor-
mance. Here, we introduce a semi-supervised learning strategy that incorporates unlabeled video
frames via a simple temporal constraint applied during training. In freely moving mice, our
new approach improves the current state-of-the-art performance of multi-view volumetric 3D pose
estimation and further enhances the temporal stability and skeletal consistency of 3D tracking.

1 Introduction

In 3D pose estimation, the positions of user-
defined body keypoints are inferred from images
to reconstruct body kinematics (Desmarais, Mot-
tet, Slangen, & Montesinos, 2021). Precise pose
measurement is a long-standing computer vision
research problem with a myriad of applica-
tions, including to human-computer interfaces,
autonomous driving, virtual and artificial real-
ity, and robotics (Sarafianos, Boteanu, Ionescu, &
Kakadiaris, 2016). Specialized hardware and deep
learning empowered algorithmic advances have
inspired new developments in the field, with the
ultimate goal to recover 3D body poses in natural,

occlusive environments in real time. While most
research and development have thus far focused
on human body tracking, there has been a grow-
ing push in the biological research community to
extend 3D human pose estimation techniques to
animals. Precise quantification of animal move-
ment is critical for understanding the neural basis
of complex behaviors and neurological diseases
(Marshall, Li, Wu, & Dunn, 2022). The latest
generation of tools for animal behavior quan-
tification ditch traditionally coarse and ad hoc
measurements for 2D and 3D pose estimation with
convolutional neural networks (CNNs) (Bala et
al., 2020; Dunn et al., 2021; Gosztolai et al., 2021;
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Günel et al., 2019; Mathis et al., 2018; Pereira et
al., 2019, 2022).

Nevertheless, the majority of state-of-the-art
3D animal pose estimation techniques are fully
supervised, and their performance depends on
large collections of 2D and 3D annotated train-
ing samples. Large-scale, well-curated animal 3D
pose datasets are still rare, making it difficult
to achieve consistent results on real-world data
captured under varying experimental conditions.
Marker-based motion capture techniques (Mar-
shall et al., 2021; Mimica, Dunn, Tombaz, Bojja, &
Whitlock, 2018) enable harvesting of precise and
diverse 3D body pose measurements, but they are
difficult to deploy in freely moving animals and
can potentially perturb natural behaviors. Man-
ual annotation of animal poses therefore often
becomes mandatory. However, manual annotation
is time-consuming, and it can become difficult for
human annotators to precisely localize body land-
mark positions under nonideal lighting conditions
or heavy (self-) occlusion of the body. Although
the influence of label noise has not yet been closely
examined for pose estimation, overfitting to these
inherently ambiguous labels might adversely affect
model performance, as it does in image classifi-
cation (Patrini, Rozza, Krishna Menon, Nock, &
Qu, 2017). In addition to issues with data scarcity,
fully supervised training schemes are often limited
by the quality of training data. Even when using
hundreds of training samples, the performance of
fully supervised 3D pose estimation models can
be inconsistent (Wu et al., 2020), especially when
deployed in new environments and subjects.

This label scarcity has become a major bot-
tleneck in the current animal 3D pose estimation
workflows, limiting model performance, general-
ization to different environments and species, and
comprehensive performance analysis. In recent
years, the success of semi-supervised (Berthelot
et al., 2019) and unsupervised deep learning
(T. Chen, Kornblith, Norouzi, & Hinton, 2020;
He, Fan, Wu, Xie, & Girshick, 2020) method-
ologies has presented new possibilities for mit-
igating annotation burden. Rather than relying
solely on task-relevant information provided by
human supervision, these approaches exploit the
abundant transferable features embedded in unla-
beled data, resulting in robustness to annotation
deprivation and better generalization capacity.

In this paper, we introduce a semi-supervised
framework which seamlessly integrates with the
current state-of-the-art 3D rodent pose estimation
approach (Dunn et al., 2021) to enhance track-
ing performance in low annotation regimes. The
core of our approach is additional regularization
of body landmark localization using a Lapla-
cian temporal prior. This encourages smooth-
ness in 3D tracking trajectories without imposing
hard constraints, while expanding supervisory sig-
nals to include both human-annotated labels and
the implicit cues abundant in unlabeled video
data. To further reduce reliance on large labeled
datasets, we also emphasize a new set of evalua-
tion protocols that operate on unlabeled frames,
thus providing more comprehensive performance
assessments for markerless 3D animal pose estima-
tion algorithms. We have collected and validated
our proposed method on a new multi-view video-
based mouse behavior dataset with 2D and 3D
pose annotations, which have released to the com-
munity. Compared to state-of-the-art approaches
in both animal and human pose estimation, our
method improves keypoint localization accuracy
by 15 to 60% in low annotation regimes, achieves
better tracking stability, and anatomical consis-
tency, and is qualitatively more robust during
identified difficult poses.

Our main contributions can be summarized as
follows:
(1) We introduce a state-of-the-art performing

approach by leveraging temporal supervision
in 3D mouse pose estimation.

(2) We release a new multi-view 3D mouse pose
dataset consisting of freely moving, naturalis-
tic behaviors to the community.

(3) We benchmark the performance of a broad
range of contemporary pose estimation algo-
rithms using the new dataset.

(4) We designate a comprehensive set of evalu-
ation metrics for performance assessment of
animal pose estimation approaches.

2 Related Work

2.1 3D Animal Pose Estimation

There are currently three primary categories of 3D
animal pose estimation techniques. The first cat-
egory encompasses multi-view approaches based
on triangulation of 2D keypoint estimates (Bala
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Fig. 1 Method Overview. Our multi-view volumetric approach constructs a 3D image feature grid using projective
geometry for each timepoint in videos. A 3D CNN (UNet) processes batches of temporally contiguous volumetric inputs
and directly predicts 3D keypoint positions. We then combine a traditional supervised regression loss with an unsupervised
temporal consistency loss for training. While the regression loss LS is applied only on labeled video frames, which are
sparsely distributed across video recordings, the unsupervised temporal loss LT operates over both labeled and unlabeled
frames.

et al., 2020; Günel et al., 2019; Karashchuk et
al., 2021; Mathis et al., 2018). These are typi-
cally lightweight in terms of model training and
inference and are improved by post hoc spatial-
temporal filtering (Karashchuk et al., 2021) when
measuring freely moving behavior, where occlu-
sions are ubiquitous. The second category lever-
ages multi-view geometric information during
end-to-end training. Zimmermann et al. (Zim-
mermann, Schneider, Alyahyay, Brox, & Diester,
2020) and Dunn et al. (Dunn et al., 2021) use 3D
CNNs to process volumetric image representations
obtained via projective geometry, whereas Yao et
al. (Yao, Jafarian, & Park, 2019) propose a self-
supervised training scheme based on cross-view
epipolar information. These techniques improve
3D tracking accuracy and consistency by exploit-
ing multi-view features during training, although
they are more computationally demanding. The
third category comprises learned transformations

of monocular 2D pose estimates into 3D space
(Bolaños et al., 2021; Gosztolai et al., 2021).
Monocular 3D pose estimation is an exciting and
important advance in flexibility, but unavoidable
3D ambiguities currently limit its performance
compared to multi-view techniques (Bolaños et
al., 2021; Iskakov, Burkov, Lempitsky, & Malkov,
2019).

Despite the recent acceleration in method
development, it remains challenging to build 3D
animal pose estimation algorithms that achieve
scientifically precise performance flexibly across
diverse environments and species. Compared to
humans, lab animals such as mice and rats are
much smaller in scale, less articulated, and bear
higher appearance similarities among different
individuals (Moskvyak, Maire, Dayoub, & Bak-
tashmotlagh, 2020), which limits the availability
of discriminable features for body part tracking
and annotation. Because of the drastic differences
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in animal body profiles across species, (e.g. chee-
tahs vs. flies), it is also difficult to leverage the
universal skeleton models and large-scale pretrain-
ing datasets that power the impressive tracking
performance in humans (Cao et al., 2019; Wu
et al., 2020). It is imperative that we develop
algorithms that more efficiently use the limited
resources available for animals.

2.2 Semi-Supervised and
Unsupervised Pose Estimation

Semi-supervised and unsupervised learning
schemes reduce the reliance on laborious data
annotation currently bottlenecking large-scale
supervised training. These schemes learn from the
implicit structure and distribution of unlabeled
data and can utilize knowledge of universal prin-
ciples, such as physics and geometry, to improve
tracking performance.

Inspired by classic multi-view stereo 3D recon-
struction, many works in 3D human pose esti-
mation utilize annotation-free geometric supervi-
sion in the form of multi-view consistency (Iqbal,
Molchanov, & Kautz, 2020; Kocabas, Karagoz,
& Akbas, 2019; Rhodin, Spörri, et al., 2018;
Wandt, Rudolph, Zell, Rhodin, & Rosenhahn,
2021), 3D-to-2D reprojection consistency (C.-
H. Chen et al., 2019; Wandt & Rosenhahn, 2019),
and geometry-aware 3D representation learning
(Rhodin, Salzmann, & Fua, 2018). Training con-
straints with respect to consistent bone length,
valid ranges of joint angles, and body symme-
try (Dabral et al., 2018; Pavllo, Feichtenhofer,
Grangier, & Auli, 2019; Spurr, Iqbal, Molchanov,
Hilliges, & Kautz, 2020; Wu et al., 2020) can
also encourage biomechanically-plausible tracking
results. Exploiting temporal context is also effec-
tive, as we discuss in the next section. Appropriate
use of these implicit supervision signals results in
consistent and robust pose estimates using only a
small fraction of the labeled data required for fully
supervised approaches.

2.3 Temporal 3D Pose Estimation

The temporal nature of behavior provides infor-
mation that can be harnessed to improve 3D
pose estimation. Intuitively, movement progresses
continuously through time in 3D space, provid-
ing a strong prior for future poses given their

temporal history – body movement trajectories
evolve smoothly and are bounded by plausi-
ble, physiological velocities. The spatial displace-
ment between consecutive poses should there-
fore be small, exhibiting relative consistency or
smoothness along the time dimension. Pose esti-
mates from static, temporally isolated observa-
tions ignore these intuitive constraints.

Previous 3D pose estimation algorithms have
incorporated temporal information in several dif-
ferent ways. Given a sequence of pose predictions,
temporal consistency can be introduced as part of
the post-processing optimization that refines ini-
tial 2D (prior to triangulation) or 3D keypoint
estimates (Bala et al., 2020; Joska et al., 2021;
Karashchuk et al., 2021; Zhang, Dunn, Marshall,
Olveczky, & Linderman, 2021). Temporal consis-
tency assumptions have also been used for filtering
out invalid pseudolabels used for self-supervision
(Mu, Qiu, Hager, & Yuille, 2020).

Another popular scheme for exploiting tem-
poral information for 3D pose estimation is to
build models that infer pose from spatiotempo-
ral inputs, using either recurrent neural networks
(Hossain & Little, 2018), temporal CNNs (Pavllo
et al., 2019), or spatial-temporal graphical mod-
els (Wang, Yan, Xiong, & Lin, 2020). Hossain and
Little (Hossain & Little, 2018) processed 2D pose
sequences using layer-normalized LSTMs to pro-
duce temporally consistent 3D poses. Other works
have used temporal CNNs for similar purposes
(R. Liu et al., 2020; Pavllo et al., 2019). Tempo-
ral information can also be explicitly encoded and
appended to model input using apparent motion
estimations such as optical flow (X. Liu et al.,
2021).

Other approaches incorporate temporal infor-
mation as a form of regularization during training.
By employing a temporal smoothness constraint,
one enforces the assumption that joint positions
should not displace significantly over short peri-
ods of time (Wang et al., 2020; Wu et al., 2020),
encouraging learned temporal consistency in pose
predictions. Critically, these temporal constraints
can be applied to unlabeled video frames, provid-
ing an avenue for semi- and unsupervised learning.
Chen et al. (L. Chen, Lin, Xie, Lin, & Xie, 2021)
further exploited temporal consistency in hand
pose estimates along both forward and backward
video streaming directions to establish an effective
self-supervised learning scheme. Our approach is
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most similar to Wu et al. (Wu et al., 2020), in
that we incorporate a temporal smoothness con-
straint in the learning objective to support a semi-
supervised scheme. But we employ this constraint
with multi-view, volumetric 3D pose estimation
during freely moving, naturalistic behavior, rather
than during monocular 2D pose estimation in
restrained animals.

2.4 Pose Evaluation Metrics

In this manuscript we also report a complemen-
tary set of performance metrics that provides more
comprehensive benchmarks for sparsely labeled
3D animal pose data. The cornerstone metrics of
the field are Euclidean distance errors relative to
ground-truth 3D keypoints: mean per-joint posi-
tion error (MPJPE), and, sometimes, PA-MPJPE,
which evaluates MPJPE after rigid alignment of
3D predictions to ground-truth poses. Although
these evaluation protocols convey an imperative
assessment of a model’s landmark localization
capability, they fall short for most markerless
animal pose datasets, where 3D keypoint ground-
truth is derived from noisy manual labeling only
in a small subset of video frames.

Unlike in large-scale human benchmarks, in
animals these position error metrics do not
reflect the large extant diversity of possible poses
and are prone to overestimating performance.
Human3.6M (Ionescu, Papava, Olaru, & Sminchis-
escu, 2013) and HumanEva (Sigal, Balan, & Black,
2010) employ motion capture systems to acquire
comprehensive ground-truth labels over hundreds
of thousands of frames, spanning multiple human
actors and dozens of action categories. Similar
evaluation is nearly impossible for most marker-
less 3D animal pose datasets, where acquisition of
3D labels requires laborious human annotation.

Single-frame position errors over sparsely
labeled recordings also ignore whether models
capture the continuous and smooth nature of
movement. Models with the same mean position
error on a small subset of samples can diverge sig-
nificantly, and pathologically, in unlabeled frames.
We illustrate this in Fig.2 (a), which shows a set of
synthetic movement trajectories. The three noisy
traces all have the same average position error,
yet represent distinct, and erroneous, movement
patterns. The fidelity of predictions on unlabeled
data can be captured using temporal metrics.

For example, Pavllo et al. introduced the mean
per-joint velocity error (MPJVE) to quantify the
temporal consistency of predictions (Pavllo et al.,
2019). Thus far, works in animal pose estima-
tion have not incorporated quantitative temporal
metrics, although some have presented qualita-
tive evaluations of keypoint movement velocity
(Karashchuk et al., 2021; Wu et al., 2020).

Finally, manually annotated 3D pose ground-
truth is inherently noisy and exhibits substantial
intra- and inter-labeler variability. We analyzed
the coefficients of variation (CV = σ

µ ) (Reed,

Lynn, & Meade, 2002), which measures the degree
of data dispersion relative to its mean, for the
lengths of 22 body segments connecting key-
points in our manually labeled mouse dataset
(details in Section 4.1). Although the keypoints
are intended to represent body joints, between
which the lengths of body segments should remain
constant, independent of pose, we found a 10% to
20% deviation in length for the majority of seg-
ments (Fig.2 (b)). This aleatoric uncertainty in
the ground-truth labels will propagate to position
errors.

Given these issues, we argue that it is impor-
tant to establish more diverse evaluation proto-
cols for markerless 3D animal pose estimation.
These protocols should ideally capture tempo-
ral and anatomical variances in both labeled and
unlabeled frames. In addition to our new semi-
supervised training scheme, we introduce two
new consistency metrics that resolve differences
between models not captured by standard posi-
tion errors, and these new metrics do not rely on
large numbers of ground-truth annotations.

2.5 3D Animal Pose Datasets and
Benchmarks

Despite the critical importance of large-scale,
high-quality datasets for developing 3D animal
pose estimation algorithms (Jain et al., 2020),
such resources are relatively uncommon compared
to what is available for 3D human pose. Animal
datasets are not easily applied across species, due
to differences in body plans, and high-throughput
marker-based motion capture techniques are chal-
lenging to implement in freely-moving, small-sized
animals. Nevertheless, multiple 3D animal pose
datasets have been released in recent years, includ-
ing in dogs (Kearney, Li, Parsons, Kim, & Cosker,
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Fig. 2 (a) Ambiguity in absolute position error analysis. In this simulated example, we present three noisy tra-
jectories with the same absolute point position errors with respect the true spiral trajectory. (b) Histogram of body
segment length variation in manually labeled mouse data. We compute the coefficient of variation (CV) for the
lengths of 22 body segments. While CV values should ideally be close to 0, we instead observed notable amounts of length
variation in all body segments. This illustrates the noise present in manually labeled 3D poses.

2020), cheetahs (Joska et al., 2021), rats (Dunn
et al., 2021; Marshall et al., 2021), flies (Günel et
al., 2019), and monkeys (Bala et al., 2020). But in
mice, by far the most commonly used mammalian
model organism in biomedical research (Ellen-
broek & Youn, 2016), large-scale pose datasets are
still lacking. The LocoMouse dataset (Machado,
Darmohray, Fayad, Marques, & Carey, 2015) con-
tains annotated 3D keypoints in animals walk-
ing down a linear track. While being a valuable
resource for developing gait tracking algorithms,
the dataset does not represent the diversity of
mouse poses composing the naturalistic behav-
ioral repertoire. Several 3D mouse datasets also
accompany published manuscripts (Zimmermann
et al., 2020), but they are limited in the num-
ber of total annotated frames. Here we provide a
new, much larger 3D mouse pose dataset consist-
ing of 6.7 million frames with 310 annotated 3D
poses (1860 annotated frames in 2D) on 5 mice
engaging in freely moving, naturalistic behaviors,
which we make publicly available as a resource
for the community. We also utilize the scale of
our dataset to benchmark a collection of popu-
lar 3D pose estimation algorithms and assess the
impact of temporal constraints on performance,
providing guidance on the development of suitable
strategies for quantifying mouse behavior in three
dimensions.

3 Methods

3.1 Volumetric Representation

Following recent computer stereo vision methods
(Dunn et al., 2021; Iskakov et al., 2019; Kar, Häne,
& Malik, 2017; Zimmermann et al., 2020), we con-
struct a geometrically-aligned volumetric input Vt

from multi-view video frames at each timepoint t
and estimate 3D pose from them using a 3D CNN.

As memory limitations restrict the size of the
3D volume (64 × 64 × 64 voxels in our case),
to increase its spatial resolution, we center the
volume at the inferred 3D centroid of the ani-
mal. This centroid is inferred by triangulating
2D centroids detected in each camera view using
a standard 2D UNet (Ronneberger, Fischer, &
Brox, 2015), except with half the number of chan-
nels in each convolutional layer. For triangulation,
we take the median of all pairwise triangulations
across views. We then create an axis-aligned 3D
grid cube centered at the 3D centroid position,
which bounds the animal in 3D world space. We
use N = 64 voxels per grid cube side, resulting
in an isometric spatial resolution of 1.875 mm per
voxel.

Here, we briefly review the volume generation
process. After initialization, 3D grids are popu-
lated with 2D image RGB pixel values from each
camera using projective geometry. With known
camera extrinsic (rotation matrix R, translation
vector t) and intrinsic parameters K, a 2D image
F can be unprojected along the viewing rays as
they intersect with the 3D grid. In practice, rather

6            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

Article Title 7

than performing actual ray tracing, the center
coordinates of each 3D voxel Xi,j,k is projected
onto the target 2D image plane by K[R | t]Xi,j,k

and the value of Xi,j,k is set by bilinear sampling
from the image at the projected point (Kar et al.,
2017). The unprojected image volumes from dif-
ferent views are concatenated along the channel
dimension, resulting in a N×N×N×(Ncam ∗C)-
sized volumetric input, where C is the channel
dimension size of each input view (C = 3 for
RGB images). While we sample directly from 3-
channel RGB images to reduce memory footprint
and computation costs, other approaches unpro-
ject features extracted by 2D CNNs (Iskakov et
al., 2019; Tu, Wang, & Zeng, 2020; Zimmermann
et al., 2020).

The unprojected image volumes are then pro-
cessed by a 3D UNet (implementation details
in Section 4.5), producing volumetric heatmaps
associated with different keypoints. The differen-
tiable expectation operation soft argmax (Nibali,
He, Morgan, & Prendergast, 2018; Sun, Xiao,
Wei, Liang, & Wei, 2018) is applied along spa-
tial axes to infer the numerical coordinates of each
keypoint.

3.2 Unsupervised Temporal Loss

At high frame rates, the per-frame velocity of
animals is low and their overall movement trajec-
tory should typically be smooth. We encode these
assumptions as an unsupervised temporal smooth-
ness loss LT (·) that can be easily integrated with
heatmap-based pose estimation approaches.

Consider the inputs to the network to be a set
of temporally consecutive chunks T where each
chunk Tn consists of 3D volumetric representa-
tions constructed from c adjacent timepoints

Tn = {Vti , . . . , Vti+c−1
},

where c specifies the time span covered by the
unsupervised loss.

Given the 3D keypoint coordinates predicted
by the 3D CNN {Jt,j | ti ≤ t ≤ ti+c, 1 ≤ j ≤
NJ} from one temporal chunk Tn, the temporal
smoothness loss penalizes the keypoint-wise posi-
tion divergence across consecutive frames, which is
equivalent to constraining the movement velocity

within the temporal window.

LT ({Jt,j}) =
1

c

ti+c−1∑
t=ti

1

NJ

NJ∑
j=1

d(Jt,j , Jt+1,j) (1)

where NJ is the number of 3D keypoints and d is
the distance metric used for comparing displace-
ment across timepoints.

This general formulation does not enforce lim-
itations on the choice of distance metric, but
empirically we found that L1 distance performed
better than L2-norm Euclidean distance. Though
it is difficult to give a theoretical explanation
for this observation, the underlying reason could
be similar to that for L1 total variation regu-
larization in optical flow estimation. Formulating
the smoothness constraint as a Laplacian prior
allows discontinuity in the motion and is well
known to be more robust to data outliers com-
pared to quadratic regularizers (Wedel, Pock,
Zach, Bischof, & Cremers, 2009). We have there-
fore used an L1 distance metric for all experiments
presented in the later sections.

3.3 Supervised Pose Regression Loss

The unsupervised temporal loss on its own is
insufficient and will result in mode degeneracy
where the network learns to produce identical
poses for all input samples. We therefore also
include a standard supervised pose regression loss
over a small set of labeled frames during train-
ing. Given the ground-truth and predicted 3D
keypoint coordinates Jt and Ĵt, the supervised
regression loss is defined as

LS(Jt, Ĵt) =
1

NJ

NJ∑
j=1

d(Jt,j , Ĵt,j). (2)

We use L1 distance for computing the joint dis-
tances over L2 distance metric based on empirical
results, which agrees with the results of Sun et al.
on 3D human pose estimation (Sun et al., 2018).

4 Experiments

4.1 Dataset

For performance evaluation, we collected a total
of five 1152 × 1024 pixels color video recordings
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from 6 synchronized cameras surrounding a cylin-
drical arena. We direct the reader to Appendix B
and Supplementary Video 1 for more details on
the 3D mouse pose dataset. Each set of recordings
corresponds to a different mouse (M1, M2, M3,
M4, M5). M1 and M2 were recorded for 3 minutes
and M3, M4, M5 were recorded for 60 minutes.
The number of manually annotated 3D ground-
truth timepoints for 22 body keypoints is n = 81,
91, 48, 44 and 46 from each recording, respectively
(486, 546, 288, 264, and 276 total annotated video
frames). Out of the 22 keypoints, 3, 4, 6, 6, and
3 locate at the animal’s head, trunk, forelimbs,
hindlimbs, and tail, respectively. Notice that the
two keypoints at the middle and end of the tail
were excluded from quantitative evaluations pre-
sented in this paper, as they were often cropped
outside the bounds of the 3D grids. This results in
a total of 20 body keypoints and 22 corresponding
body segments used for analysis.

We allocated n = 172 from M1 and M2 for
training and n = 48 from M3 for internal valida-
tion. We report all metrics using data from M4
and M5 (n = 90 labeled timepoints, plus unlabeled
timepoints for additional temporal and anatom-
ical consistency metrics), which were completely
held out from training or model selection. We also
simulated low annotation conditions by randomly
selecting 5% (n = 8), 10% (n = 17) and 50% (n =
86) from the training samples and compared with
the full annotation 100% condition.

4.2 Evaluation Metrics

4.2.1 Localization Accuracy

We adopt the three common protocols used in 3D
human pose estimation for evaluating the land-
mark localization accuracy of different models.

• Protocol #1: Mean per-joint position error
(MPJPE) evaluates the mean joint-wise 3D
Euclidean distances between the prediction and
ground truth keypoint positions. For J key-
points,

MPJPE(s) =
1

J

∑
j

∥sj − sgtj ∥2

• Protocol #2: Procrustes Analysis MPJPE
(PA-MPJPE) reports the MPJPE values
after rigidly aligning the landmark predictions

(translation and rotation) with the ground-
truth.

• Protocol #3: Normalized MPJPE (N-
MPJPE) assesses the scale-insensitive MPJPE
estimation errors by respectively normalizing
the prediction and ground-truth landmarks by
their norm (Rhodin, Spörri, et al., 2018).

4.2.2 Temporal Smoothness

The aforementioned single-frame evaluation met-
rics are inadequate for capturing the importance
of temporal smoothness in videos. We therefore
also report the mean per-joint velocity errors
(MPJVE) proposed by Pavllo et al. (Pavllo et
al., 2019). MPJVE is the mean absolute value of
first-order derivative of predicted pose sequences.
We used T = 10000 continuous frames from
recordings of mouse M5 for this evaluation.

MPJVE(s) =
1

T · j
∑
j

T−1∑
t=1

| st,j − st+1,j |

4.2.3 Body Skeleton Consistency

Although not explicitly constrained during train-
ing, the anatomical consistency of predictions is
an important component of model tracking per-
formance. Inspired by the analysis by Karashchuk
et al. (Karashchuk et al., 2021), we examined the
mean and standard deviation of the estimated
length of 22 body segments over 10000 continuous
frames from M4 for this analysis.

4.3 Training Strategies

To evaluate the influence of temporal training,
we designed four different model training schemes
that were each applied to the 5%, 10%, 50% and
100% annotation conditions.

Baseline/DANNCE (Dunn et al., 2021)
We employ the multi-view volumetric method pre-
sented by Dunn et al. as the baseline comparison.
All baseline models are trained solely with the
supervised regression L1 loss over the labeled
frames.

Baseline + smoothing. No changes are
made during the training; instead, the predictions
from the baseline models are smoothed in time for
each keypoint, with a set of different smoothing
strategies.
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Fig. 3 Qualitative comparison of landmark localization performance over different annotation conditions.
We randomly selected 5% (n = 8), 10% (n=17) and 50% (n=85) of the training set to simulate low annotation regimes.
Temporal supervision generally improved performance on all three localization protocols compared to the baseline models,
especially with limited access to the training data. Similar improvement cannot be achieved via post hoc smoothing of the
predicted movement trajectories.

Table 1 Quantitative comparison with other state-of-the-art 2D and 3D animal and human pose
estimation methods. We report the absolute 3D MPJPE in millimeters for each approach using four different fractions
of training data. The methods that use ground truth 2D bounding boxes during inference are masked by †. The methods
that use temporal information during training are masked by ∗. For the monocular approach, the reported metric results
are separately computed and averaged across all camera views.

Protocol 1 (absolute 3D MPJPE, mm)

Training set fraction
5% 10% 50% 100%

2D pose estimation methods (+ post hoc triangulation)

DLC† (Mathis et al., 2018) 11.0973 11.0512 9.8934 8.9060
SimpleBaseline† (Xiao, Wu, & Wei, 2018) 18.0990 14.6191 7.3636 5.9555
SimpleBaseline 18.5675 16.5800 8.3573 6.6957
DLC + soft argmax 11.0323 9.2244 6.3545 6.4739
DLC + 2D variant of our temporal constraint∗ 8.5432 9.1236 5.9526 6.0390

3D monocular pose estimation methods
Temporal Convolution∗ (Pavllo et al., 2019) – – – 17.6337

3D multi-view pose estimation methods

Learnable Triangulation† (Iskakov et al., 2019) 18.7795 15.6614 8.9729 6.3177
DANNCE (Dunn et al., 2021) 12.8754 10.9085 4.9912 4.3614
Ours (temporal baseline)∗ 12.4940 7.1162 4.8347 4.3749
Ours (temporal + extra)∗ 8.1706 6.6927 5.0461 4.1409

Temporal baseline. During training, each
batch contains exactly one labeled sample with
three additional unlabeled samples drawn from its
local neighborhood. This scheme ensures a bal-
ance between supervised and unsupervised loss
throughout the optimization. The models were
then jointly trained with LS and LT .

Temporal + extra. In addition to the par-
tially labeled training batches used in temporal
baseline model training, the training set contains

Nu completely unlabeled, temporally consecutive
chunks included only in the unsupervised tempo-
ral loss.

For experiments conducted under lower anno-
tation conditions, 5%, 10% and 50%, we use
respectively 95% (Nu = 163), 90% (Nu = 154)
and 50% (Nu = 86) unlabeled chunks with respect
to the entire training set. This aimed to match the
number of samples used in the 100% baseline and
temporal baseline models. For experiments using
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100% of the training data, we add 20% (Nu = 34)
extra unlabeled temporal chunks.

4.4 Comparison with
state-of-the-art approaches

We compare the performance of our proposed
approach against other contemporary animal and
human pose estimation methods. Specifically,
we have replicated and evaluated the following
approaches on the mouse dataset:

2D animal pose estimation. DeepLabCut
(DLC) (Mathis et al., 2018) is a widely adopted
toolbox for markerless pose estimation of animals,
which expanded on the previous state-of-the-
art method DeeperCut (Insafutdinov, Pishchulin,
Andres, Andriluka, & Schiele, 2016). We followed
the default architecture and training configura-
tions using ResNet-50 as the backbone and opti-
mized the network using sigmoid cross-entropy
loss. Following the same practice by Mathis et
al. (Mathis et al., 2018), the original frames were
cropped around the mice instead of downsam-
pling. 2D human pose estimation. We imple-
mented the SimpleBaseline (Xiao et al., 2018) for
its near state-of-the-art performance in 2D human
pose estimation with simple architectural designs.
This method leverages off-the-shelf object detec-
tors to first locate the candidate subject(s) and
performs pose estimation over the cropped and
resized regions. Compared to DLC/DeeperCut,
additional deconvolutional layers are added to the
backbone network to generate higher-resolution
heatmap outputs.

Multi-view 3D human pose estimation.
Learnable Triangulation (Iskakov et al., 2019)
adopts a similar volumetric approach except that
features extracted by a 2D backbone network,
instead of raw pixel values, are used to con-
struct the 3D inputs. Similar to SimpleBaseline,
a 2D backbone network processes cropped and
resized images, where the resulting multi-view fea-
tures are unprojected on the-fly to construct the
volumetric inputs in the end-to-end training.

Monocular 3D human pose estimation.
Pavllo et al. (Pavllo et al., 2019) presented a
training scheme for sparsely labeled videos that
also leveraged temporal semi-supervision. Instead
of using a smoothness constraint, temporal convo-
lutions are performed over sequences of predicted
2D poses obtained from off-the-shelf estimators

to regress 3D poses, with additional supervision
from a 3D-to-2D backprojection loss and a bone
length consistency loss between predictions on
labeled and unlabeled frames. Notice that we
did not specifically train a 3D root joint tra-
jectory model as in the original implementation
but directly used the ground truth 3D animal
centroids for convenience. Without easy access
to off-the-shelf keypoint detectors for mice, we
employed our best performing 2D model to obtain
initial 2D pose estimates.

In addition to the aforementioned approaches,
we have adapted a 2D variant of our proposed
temporal constraint and applied it to the DLC
architecture, similar to DeepGraphPose (Wu et
al., 2020). Instead of using a final sigmoid acti-
vation and optimizing against target probability
maps, we performed a soft argmax on the result-
ing 2D heatmaps and applied both a supervised
regression loss and an unsupervised temporal loss
as described in Section 3.2 and 3.3, except in the
2D pixel space.

For all approaches, ResNet-50 was used as the
backbone network if not otherwise specified. The
2D mouse bounding boxes were computed from
2D projections of ground-truth 3D poses. For 2D
approaches, the 2D poses were first estimated
separately in each camera view and triangulated
into 3D using the same median-based protocol as
described in Section 3.1. The Protocol 1 MPJPE
results were reported for each approach under dif-
ferent annotation conditions (5%, 10%, 50% and
100%).

4.5 Implementation Details

We implemented a standard 3D UNet (Ron-
neberger et al., 2015) with skip connections to
perform our method’s 3D pose estimation. The
number of feature channels is [64, 64, 128, 128,
256, 256, 512, 512, 256, 256, 128, 128, 64, 64]
in the encoder-decoder architecture, followed by
a final 1 × 1 × 1 convolution layer outputting
one heatmap for each joint position. The encoder
consists of four basic blocks with two 3×3×3 con-
volution layers with padding 1 and stride 1, one
ReLU activation and one 2×2×2 max pooling for
downsampling. The decoder consists three down-
sampling blocks, each with one 2×2×2 transpose
convolution layer of stride 2 and two 3 × 3 × 3
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convolution layers. The 3D keypoint coordinates
were estimated by applying soft argmax (Sun et
al., 2018) over the predicted heatmaps. We did not
explore additional 3D CNN architectures, as this
is not the focus of the paper, but we expect that
the semi-supervised training strategy should gen-
eralize easily to different model architecture, as
demonstrated for 2D in later sections (Section 1).

We trained all models using an Adam opti-
mizer (β1 = 0.9, β2 = 0.999, ϵ = 1e − 7) with
a constant learning rate of 0.0001 for a maxi-
mum of 1200 epochs. We used a mini-batch size
of 4. We did not use an early stopping for the
training; instead, we used the model checkpoint
with the best internal validation MPJPE value for
evaluation on the test set.

Empirically, we found that a warm-start strat-
egy that only incorporated the unsupervised loss
during a later stage performed better for train-
ing the temporal+extra models. A similar strategy
was also used by Xiong et al. (Xiong, Fan, Grau-
man, & Feichtenhofer, 2021). The temporal+extra
models were only supervised by the pose regres-
sion loss during the first third of the training
epochs, and the unsupervised temporal loss was
added afterwards.

5 Results and Discussion

In this section, we quantitatively and qualita-
tively evaluate the performance gains of our
semi-supervised approach.

5.1 Localization Accuracy

We first validated the performance of our semi-
supervised approach across 5%, 10%, 50% and
100% annotation conditions using MPJPE and
its two variants (Fig.3). Compared to fully super-
vised models, the temporal consistency constraint
generally improved the keypoint localization accu-
racy, especially in the low annotation condi-
tions. The temporal baseline models improved the
MPJPE by 3.0% and 34.8% respectively using 5%
and 10% of the training samples. With additional
temporal supervision in “temporal+extra” mod-
els, our approach improved localization errors by
36.5% and 38.6% for the same low annotation
condition.

To confirm that this improvement in local-
ization accuracy could not simply be obtained

via post-processing, we tested deliberate smooth-
ing of baseline model predictions using differ-
ent smoothing methods and window sizes (the
full comparisons are presented in Appendix A1).
Despite the obvious decrease in trajectory oscil-
lations from temporal smoothing (Appendix A
Fig.7), no type of post hoc smoothing improved
localization accuracy more than 1%. This sug-
gests that the unsupervised temporal constraint
encourages more selective and flexible adaptation
of the spatio-temporal features, rather than naive
filtering.

5.2 Temporal Smoothness

We first performed a qualitative examination of
the movement trajectories of four different key-
point positions over 1000 frames (Fig.4 (a)). Given
the same amount of labeled training data, the
temporal approach produced noticeably smoother
keypoint movement trajectories compared to base-
line.

We then quantitatively evaluated MPJVE over
a longer period of 10000 frames (Fig.4 (b)).
The inclusion of temporal supervision improved
MPJVE by 15.6%, 29.6%, 18.4% and 24.3% for
each of the four annotation conditions and by
67.8%, 59.6%, 36.1% and 22.0% when additional
unlabeled chunks were added. Post hoc temporal
smoothing achieved superior trajectory smooth-
ness as indicated by MPJVE (gray lines), but
only resulted in marginal improvement in MPJPE.
In the meanwhile, the temporal semi-supervised
models improved both MPJVE and MPJPE when
compared to the baseline models. This reiterates
the importance of having a set of comprehensive
and complementary performance metrics: MPJVE
metric should not be interpreted alone but rather
in concert with basic localization accuracy met-
rics.

5.3 Body Skeleton Consistency

We also quantitatively analyzed the length varia-
tions of different body segments of 10000 consec-
utive frames (Fig.5). For simplicity, we grouped
the 22 body segments into four general categories:
head, trunk, forelimb and hindlimb, and selected
two from each category for presentation.

While the fully supervised models struggled to
preserve anatomical consistency in low annotation
conditions, temporal semi-supervision helped to
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Fig. 4 Analysis of temporal smoothness. (a) Selected coordinate velocities of four different keypoint positions (snout,
medial spine, right knee, left forehand) over 1000 consecutive frames from test mouse M4. (b) Quantitative MPJVE results
across different training schemes over 10000 frames from test mouse M5. Our temporal models yield more stable movement
trajectories than the baseline fully supervised models.

produce more consistent body structure. The tem-
poral models exhibited less variability in predicted
body segment lengths and more closely matched
ground-truth average values, especially for the
head and trunk. For body segments with higher
coefficients of variation in the ground-truth data
(forelimb, hindlimb), the addition of temporal
supervision generally decreased such variability.

5.4 Qualitative Performance on
Difficult Poses

In practice, we have identified that baseline mod-
els are prone to producing inaccurate keypoint
predictions in low annotation regimes, especially
for the limbs, when animals are in specific rear-
ing poses. Aside from changes in appearance, such
behaviors take place at lower frequencies than

others and are thus underrepresented in labeled
training data. We therefore also presented qualita-
tive visualization results for one example sequence
of rearing behavior frames.

While the baseline 10% model predicted mal-
formed skeletons due to the limited label availabil-
ity (Fig.6 blue bounding boxes), the addition of
temporal supervision produced marked improve-
ments in physical plausibility. With supervision
from additional unlabeled temporal chunks, the
“temporal+extra” model produced qualitatively
better predictions, even when compared to the
100% baseline model. In cases where the fully
supervised baseline model made inaccurate esti-
mates of difficult hindlimb positions (Fig.6 red
bounding box), the semi-supervised approach,
with only 10% of the labeled data, better recov-
ered the overall posture.
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Fig. 5 Body segment length consistency. Plots reporting the statistics of eight different body segment lengths. The
solid black horizontal line in each plot represents the mean body segment length computed from manually labeled ground-
truth, and the horizontal dashed lines encompass corresponding standard deviations. Error bars are standard deviation.

5.5 Quantitative Comparisons with
Other Approaches

We quantitatively examined the proposed
method’s performance against other widely-
adopted animal and human pose estimation
approaches, as summarized in Table.1.

Methods for post hoc triangulation of
2D poses. Our proposed method consistently
outperforms approaches that first independently
estimate 2D pose in each camera view and recon-
struct the 3D poses via post hoc triangula-
tion. Compared to implicit optimization against
heatmap targets, we observed that adapting exist-
ing 2D architectures to direct regression of key-
point coordinates effectively improved the over-
all metric performance (Table.1 “DLC + soft
argmax”). While approaches like SimpleBaseline
appeared sensitive to the quality of 2D bounding
boxes, the soft argmax approach was able to oper-
ate robustly over full-sized images (i.e no cropping
or resizing). Applying the 2D variant of our pro-
posed temporal semi-supervision method further
improved the performance under all annotation
conditions, which implies that the temporal con-
straint behaves as a powerful prior for recovering
plausible poses in both 2D and 3D.

The monocular 3D pose method. Con-
sidering the inherent ambiguities in monocular

3D representations, it was expected that perfor-
mance from monocular estimation cannot achieve
scientific-level resolutions comparable to multi-
view methods, even with 100% of training data
and regularization from additional temporal infor-
mation. These observations are consistent with
what has been reported in previous literature
(Bolaños et al., 2021; Iskakov et al., 2019).

Multi-view 3D pose estimation meth-
ods. We did not observe particular advantages
of using 3D volumes constructed from 2D features
maps vs. raw pixel values. This likely implies that
feature-based volumetric approaches require more
accurate 2D feature extraction, via backbone net-
works pretrained on large-scale 2D pose datasets
(Tu et al., 2020). For the human pose case,
strong off-the-shelf 2D pose estimators already
exist, whereas such options are limited for ani-
mal applications. Our results suggest that volume
construction directly from pixels, i.e., the strategy
used in our temporal semi-supervision method,
is the more suitable choice for 3D animal pose
estimation in cases where species-specific training
data are scarce. This conclusion should neverthe-
less be re-evaluated in the future once larger 2D
animal pose datasets become available.
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Fig. 6 Qualitative visualization on difficult rearing poses. All 3D visualizations are plotted on the same spatial
scale. With 10% of the training samples, the fully supervised baseline model consistently yields inaccurate predictions (blue
bounding boxes). Even with 100% of the training samples, the model is still prone to making mistakes on limb landmarks
(red bounding box). Many of these errors are corrected via temporal supervision when using just 10% of the labeled data, .

6 Conclusion

In this paper, we present a state-of-the-art semi-
supervised approach that exploits implicit tem-
poral information to improve the precision and
consistency of markerless 3D mouse pose esti-
mation. The approach improves a suite of met-
rics, each providing a complementary measure of
model performance, and the approach is particu-
larly effective when the labeled data are scarce.
Along with the newly released mouse pose dataset,
these enhancements will facilitate ongoing efforts

to measure freely moving animal behavior across
different species and environments.

Supplementary informa-
tion. We provide a video file
supplementary video 1 dataset demo.mp4 that
demonstrates one example multi-view sequence
from the released 3D mouse pose dataset. The
original videos are slowed down by 0.3x for better
visualization.
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Günel, S., Rhodin, H., Morales, D., Campagnolo,
J., Ramdya, P., Fua, P. (2019). Deepfly3d,
a deep learning-based approach for 3d limb
and appendage tracking in tethered, adult
drosophila. Elife, 8 , e48571.

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.
(2020). Momentum contrast for unsuper-
vised visual representation learning. Pro-
ceedings of the ieee/cvf conference on com-
puter vision and pattern recognition (pp.
9729–9738).

Hossain, M.R.I., & Little, J.J. (2018). Exploit-
ing temporal information for 3d human pose
estimation. Proceedings of the european
conference on computer vision (eccv) (pp.
68–84).

Insafutdinov, E., Pishchulin, L., Andres, B.,
Andriluka, M., Schiele, B. (2016). Deep-
ercut: A deeper, stronger, and faster multi-
person pose estimation model. European
conference on computer vision (pp. 34–50).

Ionescu, C., Papava, D., Olaru, V., Sminchis-
escu, C. (2013). Human3. 6m: Large
scale datasets and predictive methods for
3d human sensing in natural environments.
IEEE transactions on pattern analysis and
machine intelligence, 36 (7), 1325–1339.

Iqbal, U., Molchanov, P., Kautz, J. (2020).
Weakly-supervised 3d human pose learning
via multi-view images in the wild. Proceed-
ings of the ieee/cvf conference on computer
vision and pattern recognition (pp. 5243–
5252).

Iskakov, K., Burkov, E., Lempitsky, V., Malkov,
Y. (2019). Learnable triangulation of human
pose. Proceedings of the ieee/cvf interna-
tional conference on computer vision (pp.
7718–7727).

Jain, A., Patel, H., Nagalapatti, L., Gupta, N.,
Mehta, S., Guttula, S., . . . Munigala, V.
(2020). Overview and importance of data
quality for machine learning tasks. Proceed-
ings of the 26th acm sigkdd international
conference on knowledge discovery & data
mining (pp. 3561–3562).

Joska, D., Clark, L., Muramatsu, N., Jericevich,
R., Nicolls, F., Mathis, A., . . . Patel, A.
(2021). Acinoset: A 3d pose estimation
dataset and baseline models for cheetahs in
the wild. 2021 ieee international confer-
ence on robotics and automation (icra) (pp.
13901–13908).
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Appendix A Additional
Quantitative
Results

We provide additional metric evaluation results
using different smoothing strategies as discussed
in section 5.1. We also qualitatively demonstrate
the effects of such post hoc smoothing on the
original trajectories.

Appendix B The Multi-View
3D Mouse Pose
Dataset

We provide supplementary figures that demon-
strate the released 3D mouse pose dataset.
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Table A1 Complete localization metric comparison. We recorded the changes in MPJPE, PA-MPJPE and
N-MPJPE after applying 12 different post hoc smoothing strategies. We used either moving average smoothing
(“MovAvg”) or Gaussian smoothing (“G”), with window size of 5, 10, 15, 20, 25 or 30 frames.

Fig. 7 Visualization of different smoothing strategies. The thick green line corresponds to the original trajectory
predicted by the 10% baseline model.
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Fig. 8 Multi-view captures from the released mouse dataset.

Fig. 9 Multi-view captures from the released mouse dataset (overlaid with ground-truth annotations).
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