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ABSTRACT

We study the properties of small depth circuits. The main results are establishing

lower bounds on the size of small depth circuits computing functions such as parity and

majority. The main tool used in the proof of the lower bounds is a lemma, stating that any

AND of small fanout OR gates can be converted into an OR of small fanout AND gates

with high probaility when random values are substituted for a randomly chosen subset of

the variables

We also prove that there are functions which have linear size circuits of depth k but

which require exponentially large circuits for depth k — 1. In addition we prove that if

majority is computable by polynomial size constant depth gates containing AND, OR and

parity gates then at least Q((log n)%) parity gates are needed.

We give some connections to relativized complexity by completing previous proofs that

the above lower bound results imply the existence of an oracle A such that PSPAC EA +

PHA and 24 # £24 for all 5.

Finally we exhibit permutations which are computable in N CO, but are P-complete

to invert.
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1. Introduction

Proving lower bounds on the amount of resources needed to compute specific functions

is one of the most active branches of theoretical computer science. One of the ultimate goals

is of course to resolve the NP # P question. It seems, however, that achieving this goal

is still quite far off, and that new techniques must be developed before significant progress

is made in resolving this question. Several restricted models of computation have been

studied in order to develop lower bound proof techniques and gain a better understanding

of the problem.

In this thesis we will study Boolean circuits. A Boolean circuit contains AND gates,

OR gates and negations configured to compute a Boolean function. It is important to

remember that a single function is computed by a family of circuits, one for each length of

the input. Different assumptions can be made about how hard it is to construct a member

of the family for a given length of the input. We will adopt the model of nonuniform

circuits which means that we will make no such assumptions.

The size of a circuit is defined to be the number of gates it contains, while the depth

is defined to be the longest path from input to output. It is well known that if a problem

can be solved in time T'(n) on a Turing Machine, then it can be solved by a family of

Boolean circuits of size O(T (rn) log T(n)) [PF]. Thus problems in P have polynomial size

circuits. Proving lower bounds on the size of general circuits computing a function yields

corresponding lower bounds for the time to compute it on a Turing Machine.

Circuits can also be used to model parallel computation. In this case we interpret

the size of the circuit as the number of processors computing in parallel, and the depth as

maximum computation time of any processor.

Even though circuits are more powerful than Turing Machines they do not contain

hard to control features like moving heads and changing states, and hence they seem better

suited to lower bound proofs. Significant progress has recently been made for proving lower

bounds in two restricted models of Boolean circuits. The first model is the model of small
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depth circusts. These circuits have the complete instruction set of negations, AND and OR

gates which have arbitrarily many inputs. However the depth is restricted to be small.

The subject of this thesis is the study of small depth circuits. The main result is the

development of techniques for proving exponential lower bounds on the size of small depth

circuits. The techniques are quite powerful and can be used to show almost optimal lower

bounds on the size of small depth circuits computing several different functions such as

parity and majority. Our results can be viewed as a step forward in understanding what

may cause functions to be difficult to compute by small depth circuits.

Another example of a restricted model of computation is the model of monotone

circuits. Monotone circuits contain just AND and OR gates, but no negations. This

restricts the functions which can be computed to be monotone, i.e. changing an input

from O to 1 cannot change the value of the function from 1 to 0. For example, monotone

circuits can compute the majority function but not the parity function. Recently Razborov

[R] proved superpolynomial lower bounds on the size of monotone circuits computing the

NP-complete clique function. The results were improved to give exponential lower bounds

by Alon and Boppana [AlBo]. Andreev [An| independently obtained exponential lower

bounds for other NP-functions.

Interestingly, Razborov [R] proved the same superpolynomial lower bounds for detect-

ing whether a graph has a perfect matching. Since this second problem is well known to be

in P this result shows that even when a function can be computed by monotone circuits,

these circuits may have to be significantly larger than general circuits computing the same

function.

The recent results for small depth circuits and monotone circuits show that it is

possible to prove exponential lower bounds in nontrivial cases. Although, it is doubtful

that will apply to the P # NP question, the results can be taken as an optimistic sign for

the quest of lower bound proofs in the general circuit model.



1.1 Lower bounds for small depth circuits.

The problem of proving lower bounds for small depth circuits has attracted the at-

tention of several researchers in the field. Functions considered have been simple functions

like parity and majority. Parity is defined to be the sum modulo two of the inputs and

majority is defined to be 1 when at least half the inputs are 1.

Furst, Saxe and Sipser [FSS] were the first to give superpolynomial lower bounds.

They proved that circuits of depth k computing parity was of size Q(nlos®*™™ "), where

log(® n denotes the logarithm function iterated z times. One of the important contributions

of their paper was to introduce the concept of random restrictions. These have played a

major role in subsequent papers. Ajtai [Aj] independently proved the slightly stronger

bounds (nck logn),

To illustrate the difference in the power of depth k circuits versus depth k — 1 circuits

Sipser [Si] introduced a sequence of functions fi which were computable by linear size

circuits of depth k but seemed to require large circuits of depth k — 1. Sipser quantified

this by showing superpolynomial lower bounds for the size of depth k—1 circuits computing

fr.

Next, in the attempt to prove exponential lower bounds, the simpler case of mono-

tone small depth circuits was studied. Valiant [V] proved that the clique problem needed

exponential size circuits when the circuit depth was restricted to 3. Boppana [Bol] proved

that depth &amp; monotone circuits computing majority had to be of size 20(nFT). Klawe,

Paul, Pippenger and Yannakakis [KPPY] proved similar bounds for fr.

The first breakthrough in proving exponential lower bounds without restricting the

circuits to be monotone was obtained by Yao [Y2] who proved that depth k circuits com-
1

puting parity had to be of size (2(2"**). He also stated exponential lower bounds for the

functions fi}. These results also have interesting consequences for relativized complexity

which will be described in section 1.3.



1.2 Our results in lower bounds.

In this thesis we prove that depth k circuits computing parity have to be of size

penn FT .The cg’s tend toward 5 This is close to optimal, as there are depth k circuits

of size n2%=T which compute parity. The key to the lower bound proof is the following

technical lemma. Let a small gate denote a gate with few inputs.

Lemma: Given a depth two circuit which is an AND of small OR gates, then if random

values are substituted for a randomly selected subset of the variables, it is possible to write

the resulting induced function as an OR of small AND gates with very high probability.

Using this lemma lower bounds for circuits computing parity are proved by induction

over the depth k.

The idea of giving random values to some of the variables was first introduced in

[FSS] and weaker versions of our main lemma were proved in [FSS] and [Y2]. In [FSS], the

probability of the size not increasing too much was not proved to be exponentially small

and Yao only proved that the resulting OR of small ANDs was in a technical sense a good

approximation of the original function. This fact significantly complicated the rest of the

proof. Also, Yao did not obtain the sharp estimates for the probability of failure. Since

we get almost optimal lower bounds for the size of parity circuits, our estimates are tight

up to a constant.

Our nearly optimal results for the size of parity circuits imply that a polynomial size

circuit computing parity has to have depth pO (reais) The best previous

lower bounds for the depth of polynomial size parity circuits were Q(/Togn) by Ajtai [Aj].
1

We also prove that the functions f* require circuits of size gcknk tE=1 when the

depth is restricted to k — 1. The proof is quite similar to the proof for the parity function.

The main difference is that we are forced to choose another probability distribution for

distributing values to some of the variables.



1.3 Small depth circuits and Relativized Complexity.

Because of our inability to prove lower bounds for functions and hence to separate

complexity classes, a significant amount of attention has been spent on relativized com-

plexity. This is a concept which originated in recursion theory. As a computational aid

the Turing Machine is given the possibility to ask questions of the type: Is z € A? Here z

is an arbitrary string and A is the oracle set which remains fixed during the computation.

It is possible to define the usual complexity classes relative to this oracle. Two important

questions concerning these complexity classes can be resolved using lower bounds for small

depth circuits.

Furst, Saxe and Sipser [FSS] proved that subexponential lower bounds (more pre-

cisely 0(2(los n)*) for all 7) for any constant depth circuit computing the parity function

would imply the existence of an oracle separating PSPACE from the polynomial time hi-

erarchy (PH={J2, T;). Yao [Y2] was the first to prove sufficiently good lower bounds to

obtain PSPACE# # PHA for a certain oracle A. In section 7 we give a full proof of the

correspondence between the two problems.

Cai [Ca] extended Yao’s methods to prove that a random oracle separated the two

complexity classes with probability 1. Namely, the set {A | PSPACEA # PH*} has

measure 1 in the natural measure.

The heart of the proof of Cai’s result is to prove that any small circuit cannot compute

parity correctly for significantly more than half of the inputs. We will address the question

on what fraction of the inputs a small circuit can compute parity in section 8.

In [Si], Sipser presented the theorem that lower bounds of 01(2(1°¢™)) for all 5 for

the size of depth k — 1 circuits computing the previously mentioned functions FE would

imply the existence of an oracle separating the different levels within the polynomial time

hierarchy. His proof was very sketchy. We give a complete proof in section 7. The lower

bounds claimed by Yao give the first oracle achieving this separation. Our bounds are also
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sufficient. An interesting open question is to decide whether a random oracle achieves this

separation. We conjecture that this is the case.

1.4 Is Majority harder than Parity?

The lower bounds proved for parity are also valid for majority. An interesting question

is which of the two is harder. It is not hard to see that given a gate computing majority,

one can construct a constant depth circuit computing parity. However the converse is not

known to hold. It has been conjectured that parity gates do not help. We prove that

constant depth polynomial size circuits computing majority that contain parity gates need

at least )((log n)%) parity gates. This can be taken as very weak evidence in favor of the

conjecture.

1.5 Related Results

As mentioned earlier the small depth circuit model can be viewed of as a model of par-

allel computation. Our results then imply lower bounds on the time to compute a function

(e.g parity) given a certain number of processors. In the parallel model corresponding to

small depth circuits the processors can read arbitrarily many memory locations but they

are only able to compute either the AND or OR of what they have read. Another model

where the processors can do arbitrary computations but are restricted to read only one

memory location has been studied by Beame [Be]. Surprisingly our main lemma plays a

crucial role in some of his arguments.

1.6 Outline of thesis.

In section 2 we give basic definitions and some properties of small depth circuits. In

section 3 we give some background and intuition for the main lemma which is proved in

section 4. Section 5 applies the main lemma to get lower bounds for circuits computing

parity. In section 6 we introduce the functions f? and prove lower bounds on depth £ —1

circuits computing them. This amounts among other things to reprove the main lemma in

11



a different setting. Section 7 contains the applications to relativized complexity and section

8 investigates on what fraction of the inputs small constant depth circuits can compute

parity correctly. Finally in section 9 we discuss the problem of computing majority when

parity gates of arbitrary fanin are allowed.

2. Small Depth Circuits

2.1 Computational Model

We will be working with unbounded fanin circuits of small depth. A typical example

looks like this.

7.
] ~

#

k y. Xo Xa

I

|
&lt;q Xy Xo

Figure 1

Without loss of generality we can assume that negations occur only as negated input

variables. If there are negations higher up in the circuit we can move them down to the

inputs using DeMorgan’s laws. This procedure at most doubles the size of the circuit.

Observe that we have alternating levels of AND and OR gates, since two adjacent gates

of the same type can be collapsed into one gate.

The crucial parameters for a circuit is the depth and the size. Depth is defined as

the length of the longest path from an input to the output and can also be thought of as

12



the number of levels of gates. For instance the depth of the circuit in figure 1 is 3. Size

is defined to be the total number of AND/OR gates and the circuit in figure 1 is of size

11. The fanin of a gate is defined as the number of inputs to it. We put no restriction on

the fanin of the gates in our circuits. We will however be interested in the bottom fanin

of a circuit which is defined as the maximum fanin for any gate on the lowest level of the

circuit and hence has variables as inputs.

2.2 General notation

The following notation will be used through out the thesis. The letter n will always

denote the number of inputs to a function. The set of all finite strings from the alphabet

{0,1} is denoted by L*. Strings are denoted by lower case letters. The 2’th bit of a string

z is denoted by z;. All logarithms used in the paper are of the base 2.

Z2.3 Smallest size circuits for parity

Eventually in this thesis we will prove lower bounds on the size of small depth circuits

computing parity. In this section, we present constructions of circuits whose size achieves

the best upper bounds known. This construction seems to belong to the folklore of the

subject.

We start by a simple observation.

Lemma 2.1: Depth 2 circuits computing parity are of size 2"~!. The circuit can be

written either as an AND of ORs or an OR of ANDs.

Proof: In the OR of AND case take one AND corresponding to each way of making

parity 1. There are precisely 2"~! such ANDs. To make it into an AND of ORs is equally

easy. A few minutes reasoning will convince the reader that the presented construction is

the best possible. The optimality is due to Lupanov [Lul. =

In general we will have.

Theorem 2.2: There are depth k circuits computing parity of size O(n¥=t gn FT), The

12



output gate can be either an AND or an OR gate.

Proof: A natural idea is to divide the inputs in n% groups of n? variables each. First
1

compute the parity of each group in depth 2 and size 2% and then compute the parity of
’ A

the nz outputs using another depth 2 and size 2”*. This would lead to a circuit of depth
1

4 and size O(n32"%),

We have not used the full force of Lemma 2.1. Assume that the top circuit is an AND

or ORs. If we let the lower circuits to be OR of ANDs it seems like we get two adjacent

levels of OR gates which we then could collapse and decrease the depth to 3. This is not

quite true since the top circuit also needs the negation of the outputs of the lower circuits

as inputs. The way around this is to have two copies of the lower circuits, one which is an

OR of ANDs and one which is an AND of ORs. The latter is used when the input to the

top circuit is negated and otherwise we use the first. In both cases we get adjacent levels

of OR gates and we can decrease the depth to 3.

To get the general case make a parity tree of depth k — 1 and fanout n*¥=T and for

each node in the parity tree we make on copy of it as an AND of ORs and one copy-as an

OR of ANDs. By every time choosing the suitable copy it is possible to make the resulting

circuit have depth k.

In section 8 we will investigate how well smaller circuits can compute parity. We know

that there are no small circuits which always compute parity. On the positive side we have.

Theorem 2.3: There are circuits of depth d and size n2°® which compute parity correctly

for a fraction 1 + 2778 of the inputs.

Proof: Divide the inputs into Zt sets of each s%~1! variables. Compute the parity of

each such set by a circuit C; of size s%~12° and depth d. Let each C; have an OR gate

as output gate. The final circuit C will be the OR of the circuits C;. The depth of this

circuit is still d and it has the prescribed size.

If C output 0 it has computed parity correctly since the parity of all the subsets are 0.

14



This happens for a 2~ 7-7 fraction of the inputs. This is the only case where the circuits

is correct when the parity of the input is 0. On the other hand the circuit is always correct

when the parity of the input is 1. This is because one of the subsets must have parity 1.

We conclude that C has the desired advantage on parity. »

2.4 Some related Complexity Classes

Let us relate to some standard definitions of Circuit Complexity. In particular let us

mention let us mention the complexity class NC and AC defined in [Co]. We have NC =

Uso NC"* where NC" is defined to be languages which are recognized by uniform constant

fanin circuits of polynomial size and depth O((logn)*). In the same way AC = Jo, AC®

where AC" is defined to be languages which are recognized by uniform unbounded fanin

circuits of polynomial size and depth O((logn)'). Clearly NC! c AC* c¢ NC**L. The

only strict inclusions that are known are NC° # AC? # NC. The first strict inclusion

is trivial since AC? functions might depend on all inputs while this is impossible for NC°

functions. The second result was first proved by [FSS] and follows from the lower bounds

for parity circuits since parity is in NC!. We will see in the next section that it is possible

to do nontrivial things even in NC°

2.5 How hard is it to invert NC° permutations?

The class NCP is the class of circuits of constant fanin and constant depth. This

means in particular that the output can only depend on a constant number of inputs.

It seems that nothing really interesting could be done in this model. However consider

the following question. Given a permutation which can be computed by an NC© circuit

how much effort must be spent on inverting this function? Boppana and Lagarias [BL]

proved that there are permutations which were computable in NC? but whose inverses

were as hard to compute as parity. These permutations can be said to be oneway since

their inverses are much harder to compute than the permutation itself. Barrington [Bar]

18



gave another example of a oneway function which was computable in"AC°, but computing

its inverse was LOGSPACE-complete. We prove the following stronger result.

Theorem 2.4: There is a uniform family of NC° permutations which are P-complete to

invert.

Proof: We will reduce the problem of evaluating a straight line program to the problem of

inverting an NC° permutation. Since the former problem is well known to be P-complete

[La] the latter will be P-hard. We will use the term P-complete to mean P-complete under

LOGSPACE-reductions. Thus if a P-complete problem is in LOGSPACE every problem

in P is in LOGSPACE. In a similar manner a problem is defined to be P-hard if it has the

above property but is not known to be in P.

Let us set up some notation for the straight line program. The program contains a

sequence of variables which are either defined as a part of the input or in terms of two

previously defined variables. To make this formal let ¢x and jx be two indices which are

less than k and let fi be arbitrary functions of two Boolean inputs to one Boolean output.

Using this notation we define an instance of straight line program.

INPUT: Boolean variables T1,T25...Ln

PROGRAM: z; = fie(zip, 25), k=n+1.n+2,...m

OUTPUT: Value of z,,.

We will reduce this problem to the question of inverting an NC° permutation. Let

us denote the permutation by g. It will be defined from {0,1}™ to {0,1}™ where m is the

number of variables occurring in the straight line program. Let zy, 25,... 2, denote the

input bits and ¢;1,¢92...9, the output bits. Let @® be exclusive or.

Than.

JE\2) = 2k k=1,2,...,n

9.(2) = 2k ® fr(zi,,2;.) k=n+1.n+2,...m

1A



where 2k, jr and the functions fi are the same as in the straight line program.

Let us establish that the reduction is correct.

Fact 1 gis a permutation.

We need only show that g is onto. Given y € {0,1}™ find z € {0,1}™ such that

g(z) = y by solving for 2;,2,...2, in increasing order. This can be done since the

equations can be written zx = yx ® f(2:,, 25, )-

Fact 2 The m’th bit of g~ (21,23 ...24s,0,...,0) is the output of the straight line program.

Solving for this input as described above performs the computation of the straight

line program.

Fact 3 The reduction from straight line programs to permutations is effective and g is

computable by NC? circuits.

The reduction is trivial computationally since it just replaces equality signs by @.

The second part of Fact 3 follows from the fact that any function that only depends on a

constant number of inputs can be computed in NCP.

To get the theorem we need that there is a uniform family of instances of the straight

line program problem which are hard to solve. One way to see this is as follows.

Take a Turing machine ~hich solves the problem of evaluating straight line programs.

Now take the computation tableau of this machine and convert it into a straightline pro-

gram. Evaluating this straightline program for different inputs is P-complete and thus

inverting the corresponding NC° permutation is also P-complete. =

We know ([BM], [GM], [Y1], [Le]) that in the sequential setting the existenc= of oneway

functions implies the existence of good cryptosystems.

There are two obvious obstacles to using the present results to construct parallel

cryptosystems.

The first problem is that the function needs to be hard to invert on a random input.

17



This is not quite achieved since even if we start with a straight line program which is

hard to compute for a random input it is not necessarily true that the corresponding NC°

permutation is hard to invert for random outputs. This is so as our reduction only maps

to values of the permutation whose last m — n bits are O.

The second problem is that the reductions from oneway functions to cryptographic

generators is sequential i.e. even if the oneway function is easy to compute in parallel

the resulting cryptographic generator will require large parallel time. For a discussion of

“parallel cryptography” we refer to Reif and Tygar [RT].

We have proved that there is a sequence of uniform NC° circuits which are P-complete

to invert. An interesting open question is whether inverting every NC° permutation is in
+

3. Outline of Lower Bound Proof

Having established that even very limited circuits may compute reasonably compli-

cated functions let us see how to prove lower bounds for small depth arbitrary fanin circuits.

Many of lower bound proofs cited in the introduction ([FSS],[Y2] and the present paper)

have the same outline. The proofs are by induction and proceed as follows.

(1) Prove that parity circuits of depth 2 are large

(2) Prove that small depth k parity circuits can be converted to small depth k — 1 parity

circuits.

Of these two steps the first step is easy and tailored for the parity function. It is the

comment about optimality in the construction of Lemma 2.1. The second step is much

more difficult and here lies the difference between the papers. The basic idea for doing

this lies in the fact that every function can be written either as an AND of ORs or as an

OR and ANDs. To give an idea of (2) assume that k = 3 and we have the following depth

IR



3 circuit.

J

dd

*
~~

/

Figure 2

Take any gate at distance two from the inputs. It represents a subcircuit of depth

2. In this case this circuit will be an AND of ORs. Now observe that any function can

be written either as an AND or ORs or as and OR of ANDs. Thus we can change this

depth 2 circuit to and OR of ANDs which computes the same function. Thus we have the

following circuit computing the same function.

”' ~
Pa

,

”

AVIV ANNAN IN ANNAN INN ITN
 Xz Xs XXX XX Ye XXX Xo X Xe XR X GX Y vx Xo Xx%BX8%:%XXXXK%RX,KsXeXoXsBX,XsXe

Figure 3

Observe that we have two adjacent levels consisting of OR gates.
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These two levels can be merged to one level and we get the following circuit of depth

=3g = AS
\

- TA Mh AAA ACA

ZIVAN/ININAINANANVIN ZN ZINN INI IN TIN
Y, X3 Xs XXXoXX Xo XX Xg XXXoXRXGXXUXXgKXRy5,0,©YLTXXXMRXKXeXyXeRyXy Xs Xe

\
\

ge

Figure 4

However doing this we run into one problem. When we convert an AND of ORs to

an OR of ANDs the size of the circuit will in general increase considerably. Thus we have

converted a small depth k circuit to a large depth k — 1 circuit and hence we fail to achieve

9)

3.1 Restrictions

The way around this problem was introduced in [FSS] and works as follows. If we

assign values to some of the variables we can simplify the circuit. In particular if we assign

the value 1 to one of the inputs of an OR gate, the output of the OR gatewill be 1 no

matter what the other inputs are. In the same way we need only know that one of the

inputs to an AND gate is 0 to decide that it outputs 0. This means that the value ofany

specific gate on the bottom level can be forced by assigning a suitable value to one of its

inputs. However there are many more gates than inputs and we have to do something

more sophisticated. Let us first make formal what we mean by fixing some variables.

Definition: A restriction p is a mapping of the variables to the set {0,1, % |
J

p(z:) = O means that we substitute the value 0 for z;

o(z;) = 1 means that we substitute 1
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p(z;) = * means that z; remains a variable.

Given a function F we will denote by F[, the function we get by doing the substitu-

tions prescribed by p. F[, will be a function of the variables which were given the value

* by0

Example: Let F(z,zs,Z3,Z4,T5)=majorityofthevariablesandletp(z;)=1,p(z;)=

*,p(z3) = *,p(z4) = 1 and p(z5) = *. Then F[,(z2,z3,75) = at least one of z3,z3 and

rs is 1.

The following simple observation will be important when we consider circuits computing

parity.

Observation: Parity|,= Parity or the negation of Parity.

As pointed out above we could get rid of one gate by giving the value 0 or 1 to one

of the variables. This is clearly not efficient and we have to make more clever assignments

serving many purposes simultaneously. To do this explicitly seems hard and our way of

avoiding this is to rely on luck. We will pick a random restriction and it will do the job

for us with high probability.

We will be working with random restrictions with distributions parameterized by a

real number p which usually will be small.

Definition: A random restriction p € R, satisfies

p(z:) = 0 with probability 1 —

p(z:) = 1 with probability 3 - 2

p(z;) = * with probability p.

independently for different z;.

Observe that we have probability p of keeping a variable. Thus the expected number of

variables remaining is pn. Obviously, the smaller p, the more we can simplify our circuits,

but, on the other hand, fewer variables remain. We must choose p as to optimize this trade

fF.
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The main improvement of our result over previous work is that we make a tighter

analysis of how much a restriction simplifies a circuit. We will prove a lemma which

basically tells us that if we hit a depth two circuit with a random restriction then we can

change an AND of ORs to an OR of ANDs without increasing the size. We prove that this

fails with only exponentially small probability.

We will need some notation. A minterm is a minimal way to make a function 1. We

will think of a minterm o for a function F as a partial assignment with the following two

properties.

(1) o forces F to be true.

(2) No subassignment of o forces F to be true.

Thus (2) says that o is minimal satisfying (1).

Example Let F(z,,z,,z3) be the majority function. Then the minterms are 01,02 and

03 where

o1(z1) = 1,01(z2) = 1,01 (z3) = *

o2(z1) = 1,02(z2) = *,02(z3) = 1

o3(z1) = *,03(z2) = 1,03(z3) = 1

The size of a minterm is defined as the number of variables to which it gives either

the value O or the value 1. All three of the above minterms are of size 2. Observe that it

is possible to write a function as an OR of ANDs where the ANDs precisely correspond to

its minterms. The size of the ANDs will be the size of the minterms since z; will be input

precisely when o(z;) = 1 and Z; will be input precisely when o(z;) =0.

4. Main Lemma

Our main lemma will tell us that if we apply a restriction we can with high probability

convert an AND of ORs to an OR of ANDs. This will provide the tool for us to carry

through the outline of the proof described in section 3.
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Main Lemma 4.1: Let G be an AND of ORs all of size &lt; t and p a random restriction

from R,. Then the probability that G[, cannot be written as an OR of ANDs all of size

&lt; 8 is bounded by a® where « is the unique positive root to the equation.

4p 1, 2p 1,,1+ ——)'=(14+4 ——— 1( t1ipa) ( tira +

Remark 1 By looking at —=G one can see that it is possible to convert an OR of ANDs to

an AND or ORs with the same probability.

Remark 2 There are two versions of the proof of the main lemma which are almost

identical except for notation. Our original proof was in terms of a labeling algorithm used

by Yao [Y2] in his proof. The present version of the proof, avoiding the use of such an

algorithm, was proposed by Ravi Boppana [Bo2|.

It turns out that it is easier to prove a stronger version of the main lemma. First we

will require all minterms of G[, to be small. By the remark above this implies that GJ,

can be written as an OR of small ANDs. A more significant difference is that we prove

that the probability of the existence of large minterms remain small even if we condition

upon an arbitrary function being forced to be 1. This facilitates induction.

For notational convenience let min(G) &gt; s denote the event that G|, has a minterm of

size at least s.

Stronger Main Lemma 4.2: Let G = AY, G;, where G; are OR’s of fanin &lt;t. Let F

be an arbitrary function and p a random restriction in R,. Then

Primin(G) &gt; s | F[,=1] &lt; of

Remark 3: The stronger main lemma implies the main lemma by choosing F = 1 and the

fact that a function has a circuit which is an OR of ANDs corresponding to its minterms.

Remark 4 If there is no restriction p satisfying the condition F[,= 1 we use the convention

that the conditional probability in question is 0.
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Proof: We prove the stronger main lemma by induction on w the number of ORs in G.

A picture of G which is good to keep in mind is the following.

IN

is

—

{1 J J JN fe
Figure 5

If w = 0 the lemma is obvious (G = 1). Suppose now that the statement is true for

all values less than w. We show that it is true for w. We first study what happens to G,,

the first OR in the circuit. We have two possibilities, either it is forced to be 1 or it is not.

We estimate these two probabilities separately. We have

Pr'min(G) &gt; s | F[,=1] &lt;

max(Pr{min(G) &gt; s | F[,= 1A G1[,= 1], Primin(G) &gt; s | F[,= 1A G4 [0% 1])

The first term is

Pr[min(G) &gt; s | (F A G1)[,= 1]

However in this case G[,= A{L;G;[,= AX,G;[, since we are only concerned about p’s

which forces G1 to be 1. Thus min(G) &gt; s is equivalent to saying that AY ,G;[, has a

minterm of size at least s. But this probability is &lt; a® by the inductive hypothesis since

we are talking about a product of size w — 1. We are conditioning upon another function

being 1 but this is OK since we are assuming that the induction hypothesis is true for an

arbitrary F. It is precisely the fact that the conditioning keeps changing that “forced” us

to introduce the stronger version of the main lemma.
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Now consider the second term (Pr[min(G) &gt; s | F[,= 1 A G1[,# 1]). For notational

convenience we will assume that G; is an OR of only positive literals, i.e.

Gi J
_ ~=

=

VEX

where |T'| &lt;t. We do not lose generality by this since we can interchange z; and Z%;.

Let p = pip, where p; is the restriction of the variables in T' and p; is the restriction

of all other variables. The condition G 1] ,# 1 is equivalent to pj never assigning the value

1. As this is only a condition on p; we rewrite this as G, [on % 1.

Before going on let us at this point give some intuition what is going on and why the

proof works. Assume that p &lt; I

We are now studying the case where the first OR, G; is not forced to be 1 by the

restriction. There are two possibilities, either G; is forced to be 0 or it remains undeter-

mined. In the first case all our troubles are over since G itself is forced to be 0. The second

case is the bad case and we have to do further work. However by our choice of p the first

case will occur with at least constant probability and that is what makes the proof work.

Let us return to the formal proof.

By definition a minterm of G[, makes G[, true. Since we are now conditioning upon

the fact that G; is not made true by the restriction, we know that G; has to be made

true by every minterm o i.e. there must be an 7 € T such that o(z;) = 1. Observe that o

might give values to some other variables in T and that these values might be both 0 and

1. Partition the minterms of G[, according to which variables in IT they give values to.

Call a typical such subset Y.

The fact that the minterm gives values to the variables in Y implies that the variables

in Y were given the value * by p;. This fact will be denoted by p;(Y) = *. Further let

min(G)Y &gt; s denote the event that G[, has a minterm of size at least s whose restriction

to the variables in T assigns values to precisely those variables in Y'. Using this notation

RT- ge’
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Primin(G) 2 s | F[,=1AG1[, 21] &lt;3 Prlmin(G)Y &gt; s| F[,= 1AGy[,,21] =
YCT,Y #0

&gt;. Prlmin(G)Y &gt; sApi(Y) =| F[,=1AGy[,,#
vT.Y £0

1]

&gt; Pripi(Y) =| F[,=1AGy[,21]
YCT,Y #0

XPrimin(G)Y &gt;s | F[,=1A Gy], # 1A p1(Y) = #]

The inequality and the first equality follows by the reasoning above. The last equality

follows by the definition of conditional probability. Let us estimate each of the two factors

in each term of the above sum starting with the first factor (ie. Pr[pi(Y) = «|F[,=

1A G1[,,# 1] ). To make life simpler we will first ignore the condition F[,=1. a

Lemma 4.3: Prp;(Y) =| Gi[, #1] = (22).

Proof: As remarked above the condition G, [0,7 1 is precisely equivalent to p, (z:) € {0, +}

for  € T. The induced probabilities are Pr[p(z;) = 0] = 5 and Prip(z;) = *] = iE.

The lemma follows since the probabilities are independent. =

Now we must take the condition F[,= 1 into account. The intuition for handling this

case is as follows. The fact that F is determined to be 1 cannot make stars more likely

since having a lot of stars is in a vague sense equivalent to things being undetermined.

This argument can be made formal in several ways. The one presented here was proposed

by Mike Saks.

We first need an elementary fact from probability theory. Let A,B and C be three

arbitrary events

Lemma 4.4: Pr[A| BAC|&lt; Pr[A| C| if Pr[B | AAC] &lt; Pr[B | C].

This lemma follows from use of definition of conditional probability and trivial algebra.

Our final estimate is
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Lemma 4.5: Pr[p1(Y)=*| F[,=1AG1[,, #1] &lt; (£22),

Proof: Let A = (p1(Y) = #),B = (F[,=1) and C = (G1[,,# 1). By the above lemmas

we only Rave to verify that

JPriF[,=1p1(Y) =*AG1[p, #1] &lt; PrF[,=1| Gi[p, #1]

This is clear from inspection since requiring that some variables are * cannot increase the

probability that a function is determined. =

Nex. we to estimate the other factor. Nameiv

Pe(min(@)Y &gt; 8 | F[,=1AG[pZ 1A p1(Y) = #]

To do this think of a minterm of G[, which give values to the variables in-Y and no other

variable in T' as consisting of two parts:

(1) Part oy which assigns values to the variables of Y'.

(2) Part 02 which assigns values to some variables in the complement T of T.

This partitioning of a minterm is possible since we are assuming that it assigns no

values to variables in T'—Y. Observe that 02 is a minterm of the function (G[,)[s,. This

obviously suggests that we can use the induction hypothesis. We only have to get rid of

the unpleasant condition that G;[,, # 1. This we do by maximizing over all p; satisfying

this condition. Let min(G)¥°* &gt; s denote the event that G[, has a minterm of size at

least s which assigns the values 0; to the variables in Y and does not assign values to any

other variables in T'. We have

Primin(G)Y &gt;s | F[,=1AG1[,,Z1Ap1(Y) = #| &lt;

{0 2 er r=, DEO [min(G)Y"* &gt; 5 | (Flpu00)[ a= 1])
71 9 Ty
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The two last conditions have disappeared because they involve only p; and the prob-

ability is taken over p, only. By (2) above we know that min(G)Y°1 &gt; s implies that

(Glp101)[p, has a minterm of size at least s — |Y| on the variables in T. Thus we can

estimate the probability by a®~1Y| by the induction hypothesis. The stars of p; are sub-

stituted by taking AND of the two formulas resulting by substituting 0 and 1. This can

be done since both F[,= 1 and the property of having a certain minterm are properties

of making a function 1. Making a function 1 even when some variable is undetermined is

the same as making the function 1 in the two cases where 0 and 1 are substituted for the

variable. Finally observe that G[;,=0AG[,=1 does not contain more ORs than G. The

reason is that ORs that do not contain z; are duplicated and one of the copies can be

removed. ORs that contain either z; or Z; occur only in one of G[z;=0 and G[,—;.

To sum up, each term in the sum is estimated by a®~!Y! and we have 2!¥| —1 possible

01. This is because 0; must make G; true and hence cannot be all 0. Thus we get the

total bound (2/¥! — 1)o*—1Y!

Finally we must evaluate the sum and since the term corresponding to Y = 0 is 0 we

can include it.

|T|
2p - T 4p 1; 2p 1..

2 (735) EM - ne -ey (V)i6 o ~5a)l=YCT p t=0 p p

4p 1 2p 1 4p 1 2p 1(+22 Lym gy BP yr cena 2 Lyepp22Lye*(( titra) ( titra) ) = e*(( tia) ( tia) @

The second equality comes from the fact that (1 + z)t = So (})z' and the last

equality follows from the definition of . This finishes the induction step and the proof of

the stronger main Lemma.

4.1 Improving the constant

It is possible to prove a slightly stronger version of the main lemma. This result is due

 RR



to Ravi Boppana [Bo2| and we are grateful for his permission to include it here. Shlomo

Moran [M] independently produced a similar proof for the same result. The few mistakes

occurring in that proof was easily fixed.

Lemma 4.7: Let G be an AND of ORs all of size &lt; t and p a random restriction from

R,. Then the probability that G[, cannot be written as an OR of ANDs all of size &lt; s is

bounded by a® where « is the unique positive root to the equation.

20,2... 2p 1 .
1+ — (2 -1))tf=(1+—(=-1 11+ 17503 )) +1505 +

Furthermore we have the same estimate on the probability even if we condition upon an

arbitrary function F being forced to 1 by p.

To get this result we only have to do a few slight modifications to the original proof.

Observe that we are not any more claiming that all the minterms are small but only that

the resulting function can be written as an OR of small ANDs. To see the difference look

at f(z1.z2,z3) = (21 Az2) V(Z1 A 22). z2 = 1 and z3 = 1 gives a minterm which does not

correspond to an AND. By this relaxation we can choose the set Y to be precisely the set

of variables given the value * by p. Thus by the same reasoning as before we are led to

estimating

Y Pripi(Y)=#Ap(T-Y)=0| F[,=1AG1[, #1]
YCT,Y #0

xPrlAND(G)Y &gt;s | F[,=1AG1[pZ1Ap1(Y)=*Apsi(T -Y) = 0]

The second factor will be estimated by induction as before. Denote the first term by

Py. Previously we used the bound Py &lt; (£5) provided by Lemma 4.5. No stronger

bound for Py can be obtained in general. However Lemma 4.5 really tells us that

2yi%
YoCY

and this is what we will use.
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In the final summation we are estimating

&gt; Py(21 — 1) 1¥]
YT

Using partial summation this is equal to

SEY -1e by) 3 Py,
YcrT YCYo

where 6; = 0 if { = 0 and (2°! — 1)a®+!~* otherwise.

Now the term outside the inner sum is positive in a &lt; 1 which is the only case we are

interested in. Thus we can use the upper bound (£5) for the inner sum. Observing

that the case of equality is Py = (£5) (152)ITI= IY! we can simplify our calculations by

immediately substitute this expression for Py n the original sum. Observe that we have

proved that F' = 1 is the worst case. Now estimating the final sum is done as usual.

2p 1—p\ir|- —
&gt; (FFE YI(2lYl — 1)qe—1¥
YCT p p

Ir of ~ (2) =f- l—-pa4p 1

|T| (F222 ) aME ? oo
(115 t= 4p Zyl .

TT ikel rn
2p (2(1+ 175

The last equality follows by the definition of «. This finishes the proof.s

4.2 Estimates on the size of oa

To make Lemma 4.1 easier to apply we need more explicit bounds on the size of a. These

are provided by the following lemma.
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Lemma 4.8: Let «a solve the equation

4p 1
Fo) = (U4 =)!+ra Tipa +1

and let ¢ = /EtL Then a &lt; et + O(tp?). In particular a &lt; 5pt for p &lt; po for some

absolute constant pg &gt; 0.

Proof: Neglecting terms of order ¢p? the equation can be written

apt
 Pp a _ aee a 1 1

This equation is solved by eF = # leading to the claimed expression.

5. Lower bounds for small depth circuits

Parity is the first function for which we prove lower bounds.

Theorem 5.1: There are no depth k parity circuits of size o(#5) FT nF=T for n &gt; nk for

some absolute constant nq.

Remark 5: Observe that this is quite close to optimal since by Theorem 2.2 parity can
1

be computed by depth k circuits of size n2"*~'. The best previous lower bounds were
1

(2"*) by Yao [V2].

As in the case of the main lemma we first prove a result suitable to induction, and

later show that this result implies Theorem 5.1.

1

Theorem 5.2: Parity cannot be computed by a depth k circuit containing &lt; 276n*T

gates of distance at least 2 from the inputs and which has bottom fanin &lt; Lpr=t for

n &gt; nk, where no is some absolute constant.

Proof: We prove the theorem by induction over k. The base case k = 2 follows from the

well known fact that depth 2 parity circuits must have bottom fanin n. The induction step
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is done as outlined in section 3. We proceed by contradiction. Assuming that a depth k

circuit exists with the the described parameters we construct a depth k —1 circuit with the

corresponding parameters. The key step is of course provided by the main lemma which

enables us to control the size of the depth k — 1 circuit.

Suppose, without loss of generality, that our depth k circuits are such that the gates

at distance 2 from the inputs are AND gates and hence represents a depth 2 circuit with

bottom fanin bounded by EnET, Apply a random restriction from BR, with p = n"FT,

Then by our lemma every individual depth two subcircuit can be written as an OR of

ANDs of size bounded by s with probability 1 — a®. By the chosen parameters and Lemma

4.8 a is bounded by a constant less than 3. If we choose s = Lprt the probability that

it is not possible to write all depth two circuits as OR of ANDs of size s is bounded by

gis nT a® = (2a)®. Thus with probability at least 1 — (2a)® we can interchange the order

of AND and OR in all depth 2 subcircuits giving adjacent levels of OR gates and still

maintain bottom fanin bounded by s. The adjacent levels of OR’s which can be collapsed

to decrease the depth of the circuit to kK — 1. Observe that gates at distance at least two

from the inputs in this new circuit corresponds to gates at distance at least three from the

inputs in the old circuit and are hence bounded in number by gt nF-T

The number of remaining variables is expected to be pn = nE=T and with probability

greater than 1 we will get at least this number for n &gt; nf. Thus with nonzero probability

the new circuit of bottom fanin &lt; LnET having &lt; 925n FT gates of distance at least

2 from the inputs and which computes the parity of nist variables. In particular such

a restriction exists. Applying this restriction and letting m = nE=1 we have a circuit

certified not to exist by the induction hypothesis. The proof of Theorem 5.2 is complete.

Let us now prove Theorem 5.1. Consider the circuit as a depth k + 1 circuit with

bottom fanin 1. Hit it with a restriction from R, using p = 7 and by using our main
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lemma with s = L(zyer we see that we get a circuit which does not exist by Theorem

3.2.

Since there are no constants depending on k hidden in the theorem we get the following

corolls ~+

Corollary 5.3: Polynomial size parity circuits must have depth at least eyrm for

some constant c.

Observe that this is tight since for every constant ¢ there are such polynomial size

circuits.

Observe that in the above proof the properties of parity were hardly used. Only the

lower bound for k = 2 and the fact that it behaves well with respect to restrictions. Thus

our main lemma can be used to improve lower bounds for sizes of small depth circuits

computing other functions as well. Let us do majority

k 1

Theorem 5.4: Majority requires size 2(36)*"Tn®=T donth k circuits for n &gt; nk for some

absolute constant ng.

Proof: The proof is almost identical. First we observe that the base case k = 2 holds. To

do the induction step we will use a restriction from R,. However this time we will require

the following properties of the restriction

(i) All depth 2 subcircuits within in the circuit can be converted to the other type.

(ii) p gives out the same number of 0’s and 1’s.

(iii) p gives out at least (1 — €)np *’s.

The probability that the restriction violates either (i) or (iii) is exponentially small.

The probability that it satisfies (ii) is =~ n~%. Thus with a positive probability all three

conditions are satisfied.

Now the inductionstep can be done since (i) implies that the depth of the circuit

decreases and (ii) together with (iii) imply that the remaining circuit computes majority
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of large number of variables.

Suppose we want to prove lower bounds for a function f. In general it is not necessary

that f[, is the same function f on fewer variables. As can be seen from the proof it is

sufficient that f[, for a severe restriction p has a reasonable probability of having large

minterms. We leave the details to the interested reader.

5.1 Improving the constant.

Since we did not use optimal use even of Lemma 4.1 it is clear that 75 is not the

optimal constant. Let us improve the constants slightly by using Lemma 4.7 and not

being so careless.

Theorem 5.5: Parity cannot be computed by a depth k circuit containing &lt; 9-143TnFT

subcircuit of depth at least 2 and bottom fanin &lt; .1136n¥T for n &gt; nk for some absolute

constant ng.

Proof: The proof is identical to that of Theorem 5.2. We use s = ¢ = .1136n¥T and
 a

p=n p= and use the bounds of lemma 4.7 giving a = .415904. =»

The restriction of the bottom fanin can be removed as before and we can get theorem

5.1 with the ¢; tending towards .1437.

8. Functions requiring depth k to have small circuits.

In [Si], Sipser defined a set of functions fJ* which could be computed in depth k and

polynomial size. He showed , however, that these functions required superpolynomial size

for depth £ — 1.
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The functions were defined by a depth k circuit as follows:

Fanout
m

Fay

A “IN I . oo
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-7}

 rn »

Figure 6

To avoid confusion we will refer to the above circuit as the defining circuit of f".

The defining circuit is thus a tree with fanout m, depth k, in which each variable occurs

only once. Yao has claimed exponential lower bounds for these functions. The proof

has not yet appeared but is supposed to be as complicated as in the case of the parity

function. Therefore, we include our lower bound proof, even though the bounds are not

quite optimal.

First let us redefine the functions fi" slightly. Let gi be defined by the following

circnite
ial Farout

2% m
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Figura 7
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Note that the only difference between fi and g7* is that the fanouts in the defining
2k

tree varies for g7*. Observe that gr’ is a function of (1.1)k—14k—2, 2 —25=2 variables. The

gr: might seem more complicated than fx but they will simplify the notation in the proof.

The constant 1.1 is any constant greater than 1 and 4 is any constant greater than el-l.

For the g;* we have the following theorem.

Theorem 6.1: Depth k — 1 circuits computing gi* are of size at least 216™ for m &gt; m,

where m is some absolute constant.

Let us make explicit the relation between fJ* and gr’. Define a function kh; be a

restriction of a function hj if fixing some of the inputs to hg it is possible to make the

induced function on the remaining variables equal to h;. If this is the case it is clear that

any circuit for hy can be converted to a circuit for hi without increasing the size.

Using this definition we note that fi* is a restriction of g[* and gr is a restriction of

fame and thus the sizes of depth k — 1 circuits computing the two functions are related.

This gives the following corollary to Theorem 6.1.

Corollary 6.2: Depth k — 1 circuits computing fit has to be of size at least 225 (3)F2

for m. &gt; m*~2 for some absolute constant mq.

8.1 New random restrictions

One would like to prove Theorem 6.1 with the aid of the main lemma. However here

one runs into problems not encountered in the case of the parity function. If a restriction

from R, is applied to either fi" or gr the resulting function will be a constant function

with very high probability. This happens since the gates at the bottom level are quite wide

and with very high probability all gates will be forced. To get around this problem we will

define another set of restrictions which will be more suitable to the present functions.

Definition: Let p,, po and p. be real numbers satisfying p; + Po +p. = 1 and (B;)i_; a

partition of the variables (The B; are disjoint sets of variables and their union is the set
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of all variables). Let R; P0,pesB be the probability space of restrictions which takes values

as follows.

For p € R; Do.pesB and every B;, 1 &lt;¢ &lt;r independently

With probability pi, p(z;) = 1 for all z; € B;.

With probability po + p« choose a random zx € B;. Let p(z;) = 1 for j # k and

p(zr) = 0 or * with probability Bl and Er respectively.

Similarly a R,. »..p.,B Probability space of restrictions can be defined by interchanging

the roles played by 0 and 1.

These sets of restrictions do not assign values to variables independently as our pre-

vious restrictions did but they are nice enough so that the proof of our main lemma will

go through with only minor modifications. Define ¢ to be maz(SE, (srs )i=1)

Lemma 6.3: Let G be an AND of ORs all of size &lt; t and p a random restriction from

R} p1.p.,B+ Then the probability that G[, cannot be written as an OR of ANDs all of

size &lt; s is bounded by a®, where a is the unique positive root to the equation

21+) =a+Lt+1
y ry

Remark 6 The same is true for Rr, p1.pe.B"

Remark 7 The probability of converting an OR of ANDs to an AND of ORs is the same.

As in the case of the main lemma, before proving Lemma 6.3, we prove a stronger

lemma, stating that the resulting function has large minterms is very unlikely even when

conditioning upon an arbitrary formula being forced to 1 by the restriction.

Lemma 6.4: Let G = AZ,G;, where G; are OR’s of fanin &lt; t. Let F be an arbitrary

function. Let p be a random restriction in RY popu. B Then

2rimin(G[,) &gt; s | F[,=1] &lt; a*
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where «a: is the unique positive root to the equation

21+)=(+d)4oo o

Remark 8: Lemma 6.4 implies Lemma 6.3 as the strong main lemma implies the main

lemma.

Remark 9: Recall that, if there is no restriction p satisfying the condition F[,= 1 then

the conditional probability in question is defined to be O.

Proof: The proof of Lemma 6.4 will be done the same way as the proof of the stronger

main lemma (Lemma 4.2). We therefore only outline the proof, and give details only where

the proofs differ.

As before

Primin(G[,) &gt; s | F[,= 1]

&lt; maz(Pr[min(G[,) &gt;s | F[,=1AGy[,= 1], Primin{G[,) &gt; s | F[,= 1A Gi[,Z1])

The first term.

Pr[min(G[,) &gt; s | (FAG1)[,=1]

is taken care of by the induction hypothesis, as discussed in the proof of Lemma 4.2.

The second term, Pr[min(G[,) &gt; s | F[,= 1 A G1[,% 1] is estimated as in Lemma

1.2 with the only difference that here we cannot assume that G 1 is an OR of only positive

literals since the restrictions employed here assign 0 and 1 nonsymmetrically.

We denote the set of variables occurring in G; by T, and |T| &lt; t. We still know

that G; must be made true by every minterm of G|[,, and partition the minterms of Gl,

according to what set of variables Y C T they assign values to.

We cet

Primin(G[,) 2s | F[,=1AG1[,£ 1] &lt;
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Yo  Prip(Y)=x| F[,=1AGy[,#1]x
YCT,Y #0

Primin(G[,)¥ &gt;s| F[,=1AG1[,£1Ap(Y) = «]

The factors in the above sum can be estimated separately. The estimates are made

in a slightly different way than in the proof of Lemma 4.2. This is the main difference

between the present proof and that proof.

Let us start with the first factor Pr[p(Y) = * | F[,= 1A G1[,# 1].

Lemma 6.5 investigates which restrictions satisfy the conditions F[,= 1 A G1[,# 1

and how this might effect the probability of a set of variables taking the value * under p.

Lemma 6.5: Let z; € Y. Then if an assignment p satisfies the condition F [,= 1AG,[ pE 1

and has p(z;) = * and =; (Z;) occurs in G1. Then the corresponding assignment j which is

the same as p with the exception of j(z;) = 0 (1) instead of * also satisfies the condition.

Proof: Clearly, the condition G;[,# 1 presents no problem. The other condition Fl,=1

is easily verified since the fact that F[,= 1 and p(z;) = * implies that a change in the

value of z; cannot change the value of F[,.

Next we prove

Lemma 6.8: Prp(Y) =| F[,=1AG[,#1]&lt; gY!

Proof: The proof of Lemma 6.6 will use Lemma 6.5. By the definition of conditional

probability we want to prove

Lo)=2Pro) _ vy,
SY Prin)

Here the ’ indicates that we are only summing over p’s satisfying the condition F[,=

I A Gy[,% 1. If this quotient is 2 we use the convention that it takes on the value 0. Now

observe that if p gives a nonzero contribution to the numerator, then by Lemma 6.5, all

possible p obtained by changing arbitrary stars of Y to nonzero values required by G,; | oF 1

will give contributions to the denominator. Calculation shows that this contribution is at
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least a factor ¢—!V! larger. This clearly proves the lemma. We will carry out the detailed

calculation for |Y'| = 2, the general case being similar.

Suppose Y contains z; and rj and that =; and Z; occurs in G;. Assume for notational

convenience that z; € B; and Tr; € Bj. We can assume that B; # B; since p never gives

out two #’s to the same block and thus in the case B; = Bj the above probability is

0. Take a restriction p which satisfies p(Y) = * A F[,= 1 A G; [,#Z 1. Define p,; by

Pab(Tk) = p(x) for k # 4,7, p(z;) = a and p(z;) = b. By Lemma 6.5 Pap satisfies the

condition F[,= 1A Gi[,# 1 for (a,b) € {(*,%),(*,1),(0,%),(0,1)}. Thus corresponding

to the contribution of Pr(p) in the numerator we get the the following contribution in the

denominator:

Pr(p) + Pr(p«,1) + Pr(po,«) + Pr(po,1) =

Pr(p) + Pr(p)2L + Pr(p) 22 + Pr(p)Po 0,
5;T Pa P+ T5;7

By the definition of gq, we have fem 1&lt; he.and T= 1&lt; + Using this the above expression
* Bg

is bounded from below by

Prip)(1+(¢7" = 1) + (¢7=1)+ (¢7* — 1)2) = Pr(p)g~?

Next we try to estimate the factor

Primin(G[,)Y &gt;s | F[,=1AG1[,£ 1A p(Y) = 4]

We think of every minterm as consisting of two parts:

(1) Part oy which assigns values to the variables of Y.

(2) Part 02 which assigns values to some variables in the complement T of T'.

To use the induction hypothesis we have to get rid of the condition that G 1[oZ 1. We

will maximize over the behavior of p on T. Let p[r denote the behavior of p on T' and pls

the behavior on 7°
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Primin(G)Y &gt;s | F[,=1AG1[,Z1Ap(Y) =] &lt;

&gt; (maxPr, [min(G)Y7r &gt; —a1 €{0,1}1¥1 Gy [o, =1 plr oll (G) &gt;s | F[,=1])

The two last conditions have disappeared since the probability is taken over pls. By

(2) above we know that min(G)¥°* &gt; s implies that (G[,0,) has a minterm of size at

least s — |Y| on the variables in T.

We have to be slightly careful since the values of p on T and T are not independent.

We get around this as follows. If p(z;) = 0 or 1 for z; € T then we incorporate that in

the condition F[,= 1. If p(z;) = * substitute all the other values in the the same block

B; (they are now known to be all 1) and in the future we take the probability over a

restriction with one block less. In F and G we substitute as in the case of the stronger

main lemma. Thus we can use the induction hypothesis and we get the estimate a®—!Y!

for each individual oy. Since 0; has to make G; true there are 2/Y! —1 possible o;. Thus

we get the total bound

Finally we evaluate the sum to

fo|Y9l¥1 _

a. I

1)o* YI

YT

This finishes thie induction step and the proof of the lemma 6.4. n

An interesting question is for what probability distributions on the space of restrictions

is it possible to prove the equivalent lemma of Lemma 6.3 and Lemma 4.1. The general

proof technique uses two crucial properties of the distribution.

(1) The condition F[,= 1 for an arbitrary F does not bias the value of any variable too

much towards *. This should also remain true even if we know that a specific variable

1s not 1 or O.
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(2) It is possible to eliminate the variables of G; and use induction on a similar restriction

over the remaining variables.

Condition (1) was taken care of by Lemmas 6.6 and 4.5. Condition (2) seems easier to

satisfy and was so obviously satisfied that no formal lemma was needed. The verification

was basically done where we claimed that induction could be used after getting rid of G;.

8.2 Back to proof of Theorem 6.1

Let us continue with the present restriction space R p1,p0,B and prove Theorem 6.1.

We first prove a slightly stronger technical theorem.

Theorem 6.7: There is no depth k circuit computing grt with bottom fanin &lt; ism and
° 1

size &lt; 216™ for m &gt; mg some absolute constant ma

Note that Theorem 6.7 implies Theorem 6.1 since a depth k — 1 circuit can be con-

sidered as a depth k circuit with bottom fanin 1.

Theorem 6.7 is proved by induction over k. The base case for k = 2 is quite easy and

is left to the reader.

For the induction step we use one of the restrictions defined above. Assume for

definiteness that k is odd, so that the gates on the bottom level are AND gates. Define

the sets B; in the partition to be the set of variables leading into an AND gate. Recall

that since the defining circuit of gi is a tree the blocks are disjoint. Set p; = m!=% py =

L—m™! —m!~* and p. = m~! and apply a random restriction from Rp, po,p.,B. Since

the size of every block B; is m*=1, we get q¢ = maz (Le, (rss) i=1) = Err.

In the case of the parity function even after applying a restriction, the remaining

circuit still computed parity or the negation of parity. In the case of gr, we will prove

that the new restrictions used transform gJ* into something that is very close to gk_,. It

was precisely the fact that the R, restrictions simplified grt too much that forced us to

define the new probability space of restrictions.
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Lemma 6.8: If k is odd then the circuit that defines g7*[, for a random p € Rr’ P0,pe,B

will contain the circuit that defines g5*,withprobability at least 2, for all m &gt; m;, where

m; is some absolute constant.

Remark 10: Lemma 6.8 holds for even k when R™ is replaced by R™.

Proof: The fact that k is odd implies that the three lower levels look like:

-
—

 ~~

A, Fanout
YippyX72

AMARA ARARR AARNA ARRAR »&lt;
Figure 8

The restriction can be viewed as giving values to the AND gates. The value 1 is given

with probability p;, the value 0 with probability po and * with probability p..

An OR gate is determined to 1 as soon as it has one input which is 1. This means

that the probability that an individual OR gate on level k — 1 will not be determined to

lis (1 — m1=*)1-1m*~! For large m this is approximately e~!-!. Look at an AND gate

on level k — 2. The expected number of nondetermined OR gates leading into this gate is

e~ 1-14 4mk-2, The probability that the number of surviving OR gates is at least 1.1m*~2

is 1 — 2=°™"7for some constant ¢ for m &gt; mo some absolute constant mg. Thus the

probability that this will be true for all AND gates is &gt; 2 if m &gt; m, for some absolute

constant mi.

If an OR gate is not determined to 1 then the expected number of #’s in it is 1.1m*—2.

The probability that an individual OR gate contains at least m*=2 sis 1 — g—em*=?

Hence the probability that all OR gates will have at least this many #’s as inputs is &gt; 2

form&gt;mm.
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To sum up, with probability at least 2 all AND gates at level k — 2 will remain

undetermined. Furthermore all such AND gates will have at least 1.1m*—2 OR gates

leading into it each having at least m*—2 inputs. This constitutes the defining circuit for

grr1.Thelemma is proved. =»

Let us now finish the proof Theorem 6.7. We need to perform the induction step. This

is done using the same argument as in the proof of Theorem 5.2. Apply a restriction from

rR; po,p.,B tO the circuit. By Lemma 6.8 the defining circuit still computes a function as

difficult as g*;andsetting some of the remaining variables the circuit can be made into

the defining circuit of g*..

In the circuit of smaller depth we can by Lemma. 6.3 with high probability change the

order of AN Ds and ORs in the last two levels and still maintain a small bottom fanin.

Thus we get a circuit which does not to exist by the induction hypothesis.

7. Application to relativized complexi.y

In this chapter we will outline the connection between relativized complexity and

lower bounds for small depth circuits. The proofs and theorems of this section are not

due to the author of the thesis. The proofs that sufficiently strong lower bounds for small

depth circuits computing certain functions would imply the existence of certain oracles,

were obtained by Furst, Saxe and Sipser [FSS] and Sipser [Si]. The first sufficiently strong

lower bounds to imply the existence of such oracles were obtained by Yao [Y2]. As some

of the available proofs are somewhat sketchy, in this section we give the complete proofs.

Let us introduce the necessary notation.

Definition: An oracle A is a subset of £*. A Turing machine with oracle A is a Turing

machine with the extra feature that it can ask questions of the form: Is the string z in the

set A. These questions are answered correctly in one timestep.
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Let us introduce the model of an Alternating Turing Machine (ATM) [CKS], in order

to define the polynomial time hierarchy (abbreviated as PH) [St].

An ATM is a nondeterministic Turing machine, whose states have one of four labels.

The labels “accept” and “reject” occur on halting states. The non halting states are

marked either by A or V. These states may have several possible next configurations. We

will assume for notational convenience that the number of possible next configurations is

at most 2. For each input z the computation can be viewed as a directed tree with the

interior nodes marked with either A or V and the leaves marked either “accept” or “reject”.

The machine accepts the input iff the root is evaluated to 1 under the natural evaluation of

the tree. (Replace “accept” by 1, “reject” by 0 and evaluate the A and V gates as logical

functions). We make the following definition:

Definition: A YP-machine is an ATM for which each path from the root to a leaf is ‘of

polynomial length and such that the number of consecutive alternating runs of A and Vv

along any path is at most :. The machine starts in a state labeled Vv.

We use the almost the same notation for languages.

Definition: A language L is in Xf iff if it is accepted by some Xf machine.

It is clear that NP = X£?. The polynomial time hierarchy is defined as

PH =|]U %-N :

By allowing the alternating machine to have access to an oracle A we define the

complexity classes TF A of languages accepted by machines having at most + alternations

and which run in polynomial time. PH# is defined as |Jo,Zf 4. In a similar way

PSPACEA4 is defined to be the set of languages which are accepted in polynomial space

by a Turing machine with oracle A. One of the original motivations for [FSS] was to try to

construct an oracle A such that PSPACEA #£ PHA. Let us first do some preliminaries.

Definition: A weak oracle machine is one which asks at most one oracle question on each
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computation branch. Furthermore this question is asked at the end of the computation

branch

This. might seem like a very weak machine but alternation is powerful.

Lemma 7.1: For every oracle A, every T.F'4 language L is accepted by some =i weak

oracle machine.

Proof: Take a X7 4 machine M4 which accepts L. We convert this into a weak TF+2

machine M{* accepting the same language. Mj! will guess the answers to the questions

that M4 asks along a computation branch and then verify the answers in the end of the

branch using some extra alternations. Let us make this formal.

To simulate the answer to a query z € A? asked by machine M4, M{* proceeds as follows.

If M4 is asking the question while in an A state, M{! enters an A branch and assumes

along one branch that the answer was 0 and along the other that it was 1. It remembers

the question and its guess of the answer for the rest of the computation.

If M4 is asking the question while in an V state, M{* enters an V branch and assumes along

one branch that the answer was 0 and along the other that it was 1. It again remembers

the question and its guess of the answer for the rest of the computation.

When we arrive at a leaf of M4 we have to determine whether M.A accepts or rejects.

Let Q; denote the :’th guess made by M{ for an oracle answer along the present branch.

M{ accepts iff

(IM# accepts on this branch]A [Vi Q; is a correct guess|)

V ( 3¢[Q; is an incorrect and-guess|A [Vj &lt; 3 @; is a correct guess|)

The second line reflects the fact that we did not really want to do an A guess but

rather an V guess.

Claim: M{* accepts an input z iff M4 accepts z.
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Look at the tree corresponding to the computation of Mf}. It contains all the branches

of MA. These correspond to branches of M{# where only correct guesses were made.

However we also have branches sticking out from this tree corresponding to incorrect

guesses.

Observe now that as soon as we leave the tree of correct guesses the value of the branch

is determined. If the first incorrect guess was made at an A branch the corresponding

branch will accept by the second criteria. If the first incorrect guess was made at an Vv

branch the corresponding branch will reject. In neither case does the incorrect guess effect

the value of the tree and hence the claim is established.

To finish the proof of the lemma we need only observe that M{! is a ora weak oracle

machine. No new alternations are introduced by the internal guesses since we always use

the same connective as the previous state. To realize the acceptance criteria we need only

add two more alternations at the end. »

In the future we will identify an oracle A with a set of Boolean variables y2 defined

for every z € L* by y2 = 1 iff z € A. Using this notation we can establish the relationship

between circuits and weak oracle machines.

Lemma 7.2: Let M4 be a zp 4 weak oracle machine which runs in time t on input z.

Then there is a depth 1 circuit C of size 2° with has a subset of the yA as inputs such that

for every oracle A, M4 accepts = precisely when C outputs 1 on inputs y#

Observe that the structure of the circuit depends on M4 and the input z.

Proof: Write down the computation tree of M4 on input z. At each leaf one of four

things happens. M4 accepts without looking at the oracle, M4 rejects without looking at

the oracle, M4 asks z € A? and accepts iff y2 = 1 or M4 asks z € A? accepts iff y2 = 0.

In the corresponding circuit we will write the constant 1, the constant 0 , the variable y2

and the variable §2 respectively. By the definition of acceptance by an ATM the circuit
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will output 1 precisely when the machine accepts z. By the definition of being in Lf 4 the

computation tree does not have more than alternations along any branch. This implies

that the corresponding circuit can be collapsed to be of depth i. Finally since the depth

of the original tree was &lt; t the size of the resulting circuit is bounded by 2¢. =

7.1 An oracle such that PSPACEA # PHA

Having taken care of the preliminaries we go on to the essentials of this section.

Theorem 7.3 ([FSS], [Y2]): There is an oracle A such that PSPACEA # PHA

Proof: Since clearly PHA C PSPACE“ for any A we want to display an oracle such

that the inclusion is proper. The language which is in PSPACEA will not be in PHA for

a later determined choice of 4 is.

L(A) = {1™ | the number of strings of length n in A is odd }

The connection to parity is clear since to determine whether 1” is in L(A) is precisely

to compute the sum mod 2 of the y2, where |2| = n. This can clearly be done in polynomial

space since we can ask the oracle about all strings of length n. Thus L(A) €e PSPACEA

for all A and hence it remains to construct A to make A € PHA. We will do this by

diagonalization.

Let MA, q = 1,2... be an enumeration of all weak oracle machines that belong to

£2 4 for some constant J. We construct A by determiningthevariablesv2inrounds. In

round ¢ we will make sure that MA does not accept L(A).

The idea of the construction is as follows. To recognize L(A) MA wants to compute the

parity of y2, |2| = n. However we know by Lemma 7.2 that the output of M# corresponds

to the output of a circuit with inputs yA of constant depth and relatively small size. We

know by Theorem 5.1 that such a circuit cannot compute parity.

Initialize ng = 1

Round 7. Suppose MA runs in time ¢n® and has J alternations. Find an m; such
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that 100em{ &lt; 27-1 and m; &gt; n;_;. Look at the computation tree of MA on the input

1™, By Lemma 7.2 the value of this computation is determined by the value of a circuit

with inputs y2 for some 2’s. We know that the depth of this circuit will be j and the

size will be at most 26™i. First substitute the values of all y2 which has been previously

determined. Then substitute some arbitrary values (e.g. 0) for all other y2 with |z| # m;.

Now the remaining circuit is a circuit of depth j in the 2™: variables yd with |z| = m;. We

know by Theorem 5.1 that a depth j circuit computing parity of 2™: variables have to be

of size odTT 2 Thus by the choice of m; the present circuit does not compute parity

correctly. Give values to the y2, |z| = n such that the circuit does not compute parity on

this input. Finally let n; be the largest integer such that y2 has been determined for some

z with |z| = n;. Set y2 = 0 for all the so far undetermined variables with |z| &lt; n;.

Fact 1: A is well defined.

This is clear since A is uniquely determined by the variables y2 and each of these

variables is given a value precisely once.

Fact 2: MA does not decide L(A) correctly on 1™:

This is by construction. 1" € L(A) precisely when parity of the variables y2, |z| =n

and A was chosen such that M# did not compute parity of y2, |z| = m..

Using these two facts we see that L(A) is not accepted by any weak oracle machine

which has a bounded number of alternations. Finally using Lemma 7.1 we have proved

the theorem. =

7.2 An oracle such that £94 # £24 for allsi.

Having established the firm connection between oracle machines and circuits by Lem-

mas 7.1 and 7.2 it is natural to proceed and try to use Theorem 6.1 to get a similar

4%.2 alt.
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Theorem 7.4 ([Si], [Y2]): There is an oracle A such that EPA o£ TPA for alli.

Remark 11: Yao claimed sufficient lower bounds to give Theorem 7.4. Our Theorem 6.1

gives the first proof of such lower bounds.

To prove Theorem 7.4 we first need a preliminary remark.

Lemma 7.5: If SP # £24 for i &gt; 3 then TPA # SPA for all i.

Proof: In fact £24 = £24 implies that PHA = XP“ and in particular Ths =A. a

Thus it is sufficient to construct an oracle satisfying the hypothesis of Lemma 7.5. The

construction is almost identical to the previous one. Start by defining a suitable language.

L;(A) = {1"|3z,,24,...zaVzeiy...Td... z€ A}

Thus 1" € L;(A) iff the function £2! of section 6 evaluates to 1 on the inputs yz

where |z| = n.

Since the 7 alternations are built into the definition of L; (A) it is clear that L;(A) €-

x? 4. We will construct A such that L;(A) ¢ TA, The proof is very similar to the proof

of Theorem 7.3.

As before let MA,7=1,2... be an enumeration of »24 weak oracle machines for all

constants 1.

The idea of the proof is that a weak oracle machine with ¢ —1 alternations corresponds

to a relatively small circuit of depth 7 — 1 with inputs ya. We know by Corollary 6.2 that

a small circuit of depth ¢ cannot compute 2v
%

Initialize ng = 1.

Round i. Suppose M# runs in time ¢n® and has j alternations. Thus we want MA

not to accept Lji1(A). Find an m; such that 10cm{ &lt; 220052 and m; &gt; n;_;. Look at

the computation tree of M#* on the input 1™i. This is a circuit of depth 7 and size at

most 2°™ with inputs yA for some 2's. First substitute the values of all yA which have
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been previously determined. Then substitute some arbitrary values (e.g. 0) for all other

yd with |z| # m;. Now the remaining circuit is a circuit in the 2™ variables yA with
Di

|2| = m;. We know by Corollary 6.2 that it is too small to compute FAT correctly. Give

a set of values to the y2 such that the circuit makes an error for this input. Finally let

n; be the largest integer such that y? has been determined for some z with |z| = ng. Set

y2 = 0 for all the so far undetermined variables with |z| &lt; n;.

Fact 1: A is well determined.

This is clear since A is uniquely determined by the variables y2 and each of these

variables is given a value precisely once.

Fact 2: No weak oracle machine with j alternations computes L;,; correctly. More

precisely, if the index of the machine is ¢ it makes an error on 1™

By Lemma 7.1 no nA machine accepts L;(A) and hence we have proved Lemma 7.5

and the theorem follows. =

Of course it is possible to interleave the two constructions and get an oracle which

achieves the two separations simultaneously. This gives us the following theorem.

Theorem 7.6 ([F'SS], [Si], [Y2]): There is an oracle B such that PSPACE® # PHB

and £P'8 + PB for alls.

7.3 Separation for random oracles.

The above constructions give very little information what the oracles look like. One

nice extra piece of evidence was provided by by Cai [Cal.

Theorem 7.7 ([Ca]): With probability 1, PSPACE4 # PHA for a random oracle A.

Let us first make clear what the theorem means. It is possible to look at the set B

of oracles A satisfying PSPACEA # PHA. There is also a natural measure on the set
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of subset of *, this measure corresponding to Lebesgue measure on [0,1]. The theorem

states that B has measure 1. For related results see [BG].

Proof: (Due to Babai [Bab]) In view of the previous theorems and proofs it is not surpris-

ing that the theorem will rely on the following question. How well can small depth circuits

compute parity? By this we mean for what fraction of the inputs can a small circuit be

correct. The lemma that will be sufficient for our present purpose is the following.

Lemma 7.8: For any constant k there is a constant cr such that for n &gt; nk a depth k

circuit which computes parity correctly for 60% of the inputs is of size at least 2%. Here

no 1s an absolute constant.

We will prove much stronger forms of Lemma 7.8 in the next section. However we will

here establish this weaker result by a simpler proof. Lemma, 7.8 follows from Theorem 5.1

and the following result of Ajtai and Ben-Or [AjBe].

Lemma 7.9: Suppose there is a depth k circuit of size s which computes parity correctly

for 60% of the inputs. Then for some absolute constant ¢ there is a circuit of depth k + 4

and size cns which computes parity exactly.

For the sake of completeness we will give an outline of this result. Define a (p,q)

family of circuits to be a set of circuits such that for any fixed input z a random member

of this family outputs 1 on input z with probability &gt; p if parity(z) = 1 and outputs 1

with probability &lt; g if parity(z) = 0. Using the circuit C which is correct for 60% we will

construct a (.6,.4) family Cy. For y € {0,1}" define C, starting from C by

Interchange z; and z; iff y; = 1.

Negate the resulting circuit if 3...;y; = 1 mod 2.

This will give a (.6,.4) family since for every fixed input the probability that Cy is

correct for a random y is precisely the probability that C is correct for a random input.

Construct a new family of circuits by taking the AND of ¢ lognrandomly chosen C,,.
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For a suitably chosen ¢ this gives a (n=3te, n=7-¢) family. Now take the OR of n3 random

members of this new family. This gives a (1 — e™™",n~¢) family. By choosing the correct

parameters and continuing the construction for two more rounds it is possible to obtain a

1— cl] pgp(1-2 , 2771) family.

Consider a random element from this (1 —-27""1,27"~1) family. The probability that

it is incorrect for any particular input is 2""~1. Thus the probability that it is incorrect

for any input is bounded by z. Thus in particular there is a member of this family which

is correct for all inputs. This concludes the outline of the proof of Lemma 7.9.

Let us see how Theorem 7.7 follows from Lemma 7.9. We will again use the language

L(A) = {1™ | the number of strings of length n in A is odd }

To prove that Pr[L(A) € PH#] = 0 we only need to prove that Pr[M4 accepts L(A)] =:

D for any £7 machine M4. This is sufficient since there is only a countable number of

machines.

Fix a machine M4 with running time ¢m® and j alternations. Define m; such that

emi &lt; 2™:% with the constant ¢; from Lemma 7.8. Then recursively define m; = em§_, +

1. Define “M4 agrees with L(A) on input z” to mean that M4 outputs 1 on input z and

z c L(A) or M4 outputs 0 on input z and z &amp; L(A). Then we have

Lemma 7.10: Pr[M agrees with L(A) on 1™i| M agrees with L(A) on 1™,5 &lt; i] &lt; .6.

Proof: By the bound for the running time M4 cannot write down any string of length

m; during its computations on 1™i,j &lt; ¢. In particular it cannot ask the oracle about

any such string. Thus the condition that M4 behaves correctly on these inputs shed no

information on which strings of length m; the oracle A contains. Thus look at the circuit

corresponding to the computation of M4 on input 1™i. We know by Lemma 7.8 that for

any fixed setting of the values of y, for |2;| # m; the probability that M4 gives the right

answer is &lt; .6. The lemma follows. =

Lemma 7.10 clearly implies that the probability that M4 agrees with L(A) on
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1™, ¢ =1,...k is &lt; (.6)*. Thus the probability that M4 accepts L(A) is 0. By the

previous discussion Theorem 7.7 follows. =

To prove that a random oracle separates the different levels within the polynomial

time hierarchy one would have to strengthen Corollary 6.2 to say that no depth kt — 1

circuit computes a function which agrees with f© for most inputs. This is not true since

if k is even the constant function 1 agrees with fi* for most inputs. However perhaps it is

possible to get around this by defining other functions more suited to this application.

8. How well can we compute parity in small depth?

The information on the size of a circuit which computes parity exactly is now quite

complete. As we saw in the end of the last section the question of on what fraction of the

inputs a small constant depth circuit could compute parity correctly had some interesting

consequences. We believe that the question is interesting in its own right and we will try

to answer it as well as we can. Let us fix the following notation.

Definition: Let h(s, k,n) be the function such that no depth k circuit of size 2° computes

parity correctly for more than a 4 + h(s, k,n) fraction of the inputs.

Ajtai [Aj] was the first researcher to consider this question. He derived the best

known results when the size is restricted to be polynomial. Using our notation he proved

h(clogn,k.n) &lt; 2" for all constants ¢,k,e &gt; 0 and sufficiently large n. Cai [Ca] when

proving the separation result proved a considerably stronger statement than we used in

section 7, namely that h(n3¥, k,n) = o(1). Together with Ravi Boppana we have obtained

the following results.
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Theorem8.1:The following bounds hold for h(s, k,n):

(i) h(s,2,n) &lt; 272) for all s.

(ii) h(s, k,n) &lt;2” FT) for k &gt; 2 and s &gt; nt.

(i) h(s, k,n) &lt; 2-97) for k &gt; 2 and s &lt; nt

Remark: The first two bounds are optimal except for a constant.

Proof: The basic idea is to apply a random restriction from R, and use our main lemma of

section 4. Let us set up some further notation. Suppose that a function f agrees with parity

for a fraction « of the inputs. Define the advantage, A(f) of f by A(f) = a — %. Observe

that this number can be negative. By definition h(s, k,n) is the maximal advantage of

any function on n variables which can be computed by a circuit of size 2° and depth k.

Observe that we get the same bounds for |A(f)| as for A(f). This follows since we can

negate a circuit without increasing its size.

We will need a basic property of how the advantage of a function behaves with respect

to random restrictions. Let EF denote expected value.

Lemma 8.2: A(f) &lt; E(|A(f[,)|) for p € R,.

Proof: Suppose that p give non * values to the variables in the set S. Let w(o)

denote the weight of o i.e. the number of 0; which are 1. Then

A(f)=27181 3° (-1)*@A(f[,)
ce{0,1}S

This expression can be interpreted as an expected value over all possible assignments to S.

Thus for every fixed S the inequality of Lemma 8.2 holds since introducingtheabsolute

values only increases the right hand side. The fact that S is chosen randomly does not

matter since the inequality is true for any fixed S. =

The way to use the above lemma to prove Theorem 8.1 is as follows. Suppose f is

computed by a small circuit of depth k. Then for suitably chosen parameter p, f[, will,

with very high probability, be computed by a circuit of depth k — 1. In this case we can
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use induction. In the very few case where f [, is not computed by a depth k — 1 circuit

we estimate the advantage by 3 Thus the crucial parameter will be the probability of

this failure. Even though it will be exponentially small it will prevent us from getting the

optimal results for some ranges of s. Let us start by the case k = 2 and small bottom

fanin. For this case we get optimal results.

Lemma 8.3: Any depth 2 circuit with bottom fanin bounded by t can not agree with

parity for more than 5 + 27%) of the inputs.

Proof: Assume that the circuit is an AND of ORs of size &lt; t. We will use a slight

modification of the proof of Lemma 4.7. Lemma 4.7 tells us that if we apply a restriction

from R, with p = {{; we can write the resulting function as an OR of ANDs of size &lt;r

with probability 1 —2~". Looking more closely at the proof we see that the inputs accepted

by the different ANDs form disjoint sets.

Now suppose that the number of remaining variables is m. Any AND of size &lt; m

is satisfied by an equal number of odd and even strings. Thus for the circuit to accept a

different number of odd and even strings it is necessary that there are some ANDs of full

size.

The probability that less than 20; variables remain is &lt; 2—2(%). The probability of

getting any AND of size &gt; 207 18 &lt; 2—%(%), Thus with probability 1 —2~%(%) the resulting

circuit has no correlation with parity. Even if we assume that in the remaining case we

get perfect agreement with parity we have established Lemma 8.3 since the probability of

this case is 2—2(2) a»

However not all small circuit have only gates with small fanin. The next lemma takes

care of large bottom fanin.

Lemma 8.4: h(s,2,n) &lt; 2-33).

Ideally one would like to apply a random restriction to the circuit to get rid of the

large bottom fanin. Unfortunately the probability of failure (~ 27%) and this is way too
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much if s &lt; n3. However in these simple cases when we only want to decrease the bottom

fanin we can proceed by the greedy method. For notational convenience let us denote the

implicit constant in Lemma 8.3 by c. We prove

Lemma 8.5: A depth 2 circuit of size 2 which has at most k gates of size &gt; 20s does

not agree with parity for more than 3 + (1+ k) 20:72 58% of the inputs for s &gt; sq for some

absolute constant sg.

Lemma 8.5 clearly implies Lemma 8.4 since k &lt; 2°. Assume that the circuit is an

AND of ORs, the other case can be handled similarly. Furthermore denote the function

computed by the circuit by f. We will prove the lemma by induction over k and n. The

base case k = 0 is already taken care of by Lemma 8.3 and n = 0 is trivial. Find the

variable which appear in the most large clauses (A clause is large if it is of size at least

20s). Clearly there is one which occurs in at least ihe clauses. Without loss of generality

let this variable be z,. We will substitute values for z;. It is true that

A(f) = 5(A(fTe1m0) = A(f 2,21)

We estimate this number by induction. Let k; denote the number of large clauses you get

by substituting z forz,, ¢ = 0,1. By induction the above expression is bounded by

e(n—1) c(n—1) e(n— A pee

=(¢! + ko) 40s3} 0— b= + (1 + ky) S225

&lt; (1 +R) Bing (2b (TH)dr4(TEEai)
Now since the variable x; occurs in at least 200k Jorge clauses either the literal z; or

the literal Z; occurs in at least 102k clauses. Assume without loss of generality that this

is true for z;. This implies that k; &lt; k(1 —10s), Clearly ko &lt; k. Thus

Ry CEE cr =D) cage
~e
Hosules ly

336s "(1 + e750) &lt; 1
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for sufficiently large s and the lemma follows.=

For general k we will proceed in the same matter, first establishing the theorem for

the case when the bottom fanin is bounded.

Lemma 8.8: A circuit of depth k, size 2° and bottom fanin s can not compute parity

correctly for a fraction of the inputs which is greater than

(i) 3+ 2720) for 5 &gt; nt,

(i) 1 +2-90D%T) for g &lt; ni

Proof: Suppose that the circuit computes the function f. We prove the lemma by induc-

tion over k. We have already established the base case k = 2. To do the induction step

apply a random restriction from R, with p = to the circuit and use Lemma 8.2. Let

r = max(s, (2) 7), Observe that r = s precisely when s &gt; nk. By our main lemma with

probability 1—-2-9()_ f [, can be computed by a circuit of depth k —1, size 2° and bottom

fanin bounded by r.

With probability 1 — 2=%(%) the number of remaining variables is at least 1s (1—¢).

If these two conditions are true then by induction with s = r the advantage is bounded by

2 = (Es), Observe that now we are always in case (2) by out choice of r.

In the case where there either remain too few variables or we cannot decrease the depth

of the circuit we estimate the advantage by 3 Since the probability of this happening is

2=9(r) we have the the following estimate for Af):

3

y— xz) | 5—0(r)

Substituting the two possibilities of r we get Lemma 8.6. =»

Finally we need a last lemma.

Lemma 8.7: We have the following bounds for h(s, k,n):

(i) h(s,k,n) &lt;2” FT) for k&gt; 2 and s &gt; nt.
1

(ii) h(s,k,n) &lt;2=U*T) for k &gt; 2 and s &lt; nt.
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Proof: The proof is very similar to the proof of Lemma 8.5. One uses the power =z for
1

s &gt; n¥ and nET in the other cases. =»
gF=T

Finally observe that we have proved Theorem 8.1 since part (1) is Lemma 8.4 and

parts (¢¢) and (#22) is Lemma 8.7. =»

OD. Is majority harder than parity?.

When proving lower bounds for parity circuits it was crucial that the gates in the

circuit were AND and OR gates. A natural extension would be to allow parity gates of

arbitrary fanin. In this case parity trivially has small circuits. It is far from clear whether

there are more efficient circuits computing majority. It is not too difficult to see that

computing parity is easy given gates computing majority.

If we can compute majority, we can compute the function “at least k” for any k and by

negating this function one gets the function “at most k” for any k. Taking AND of these

two functions we get the function “exactly k” and finally the OR of circuits computing

“exactly k” for odd k &lt; n is parity of n variables. In fact majority is as hard as any

symmetric function. We will now provide a weak piece of evidence that majority might be

harder to compute than parity.

Theorem 9.1: A circuit containing AND, OR and parity gates of constant depth d, size
3

2¢(logn)2 which computes majority, contains at least Q((log n) 3) parity gates. Here ¢ &lt; cq,

where ¢,4 is a constant depending on d.

The reason that makes this theorem harder to prove and somewhat weak in conclusion

is that parity gates are quite different from AND and OR gates. An AND gate which has

a 0 as input will output 0 no matter what the other inputs are. To know the output of a

parity gate we must always know all the inputs. In some sense this makes the parity gates

very powerful. Thus we need different techniques.
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Proof: Let us first give an outline of the proof. We will get rid of the parity gates by

“guessing” the outputs of them. To be more precise we will look at all possible outcomes

of the parity gates. Next we will hit all resulting circuits with one restriction from R JR

We will think of this restriction as d restrictions each being picked randomly from BR _ .

Using the main lemma of section 4 we get that all these circuits are transformed into

circuits which are very simple and cannot compute anything even remotely resembling

majority. Finally we establish that at least one of the settings of the parity gates did not

introduce too much error. Let us make this formal.

Number the occurring parity gates by G;,Ga,...Gy, t &lt; c(logn)i. Let a € {0,1}!

and let Co be the circuit obtained by substituting a; for G; for all i. This is a usual
3

depth d circuit of size 2¢x(logn)32 containing only AND and OR gates. These circuits do

not compute majority any more but we will prove that at least one of them computes

something that is reasonably close. Let F, be the function computed by C,,

Let the ¢’th parity gate G; have d; inputs. These inputs are in general subcircuits. In

each of these subcircuits substitute values for its own parity gates as prescribed by a. Call

the resulting subcircuit Ca,i,j for 1 &lt;1 &lt;t,1&lt;j &lt;d;. Denote the function computed by

Ca,i,j bY Fo. In section 3 we introduced the concept of a minterm. Here we also need

the dual concept of a maxterm.

Definition: A mazterm of a function f is a minimal assignment that forces f to be O.

We have the following lemma

Lemma 9.2: Let p be a random restriction from R _1 . Then for n &gt; ng for some constant

no with a positive probability all the following are true.

(i) Fal, has minterms and mazterms of size &lt; 1,/logn for all a.

(ii) Fai; has minterms and mazterms of size &lt; 1+/Togn for all ai, 3].

(iii) p gives out the same number of 0’s and 1's.

(iv) p gives out at least vr *’s.
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Proof: First use the following observation.

Lemma 9.3: Let p; be a random restriction from R,, and p, be a random restriction

from Ry, on the variables given the value * by p1. Then applying p, and then p, gives the

same distribution as using a random restriction from R,,,,.

Proof: Under the composition of p; and ps a variable gets the value * precisely when it

receives the value *# under both restrictions. The probability of this event is hence p; pa.

To see that we get the same distribution as Rp, ,, we just observe that the variables are

treated independently and the probability of 0 is equal to the probability of 1. =

Let us return to the proof of Lemma 9.2. By repeatedly applying Lemma 9.3 we can

interpret the restriction p as d consecutive restrictions from R, with p = n=31. Let us

start by analyzing the probability of failing (i). Fix first an individual F,. We reason as

we did in proof that parity had large circuits. Using our main lemma with s =t = 1 /logn

and p = n—22 d — 1 times we see that we can reduce Ca to be of depth two with bottom

fanin 1./logn with probability 1 — (d—1)(5pt)® = 1 —2¢4(log m3 We even have a stronger

statement that all minterms are small. If we apply a final restriction from R, we get with

the same high probability that also all maxterms are bounded in size by 1 /Togn. Thus the

probability of failure for any individual F, is 2~((log n)%) and we have 2¢(log n)% different

a. If we have chosen ¢ small enough the probability of failing (i) is 2—((log n)%), The

probability of failing (ii) can be estimated by the same bound in the same way.

Continuing, the probability of failing the condition (iv) is bounded by 2—(V7n) by

standard argument. Finally the probability of success of (iii) is = 7 But since the

probability of failing any of the other conditions is exponentially small we have proved

Lemma 9.2. »

We will need an important consequence of having both small minterms and maxterms.

Lemma 9.4: If a function has minterms only of size &lt; 8 and maxterms only of size &lt; t

then it depends on at most 25% — 1 variables.
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Proof: We prove the lemma by induction over s and ¢. The lemma is clearly true for

8 = 1 = 1. Now suppose that ¢ &gt; 1. Observe now that any minterm must at least one

variable in common with every maxterm (Otherwise we could simultaneously force the

function to be 0 and 1.). Take any minterm o which hence is of size at most s. Now try all

the 2° possible settings of the variables in o. Call the resulting functions fz for 8 € {0,1}.

We will bound the sizes of the minterms and maxterms of the fa.

Let 6 be a minterm of fz. By definition 6 together with the assignment prescribed by

B forces the f to 1. Thus f has a minterm 01 which is a subassignment of § plus 5. By

the fact that § is a minterm 0; must contain all of §. Thus the size of § is bounded by the

size of 0; which is bounded by assumption by s.

Now the same reasoning can be applied to the maxterms. However in this case we

know that the corresponding maxterm of f has to have some variable in common with the

substituted minterm o. Using this fact we can bound the size of the maxterms of fa by

t — 1.

Thus by induction each of fg only depends on at most 2°(*~1) — 1 variables. Thus f

only depends on at most s + 22(2°(t=1) — 1) &lt; 2% _ 1 variables. =

Now let us recall a well known lemma which we prove for the sake of completeness.

Lemma 9.5: Each boolean function f of m variables can be written as a GF(2) polyno-

mial of degree at most m.

Proof: Let 8 € {0,1}™. Define

gs(z) = [1 + 6; +1)

Then gp(B) = 1 while gg(z) = 0 for z # 8. Note that gs is a polynomial of degree m. To

prove the lemma observe that

D&gt; gs(2)
A,f(B)=1

is a polynomial of degree at most m which takes the same values as f. nu
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In what follows we always think of a polynomial over GF(2) as a sum of monomials

with all variables occurring to at most their first power. This is possible since z* = z for

all + &gt; 1 for z € GF(2). Let us combine Lemma 9.4 and Lemma 9.5 and state conditions

(i) and (ii) in Lemma 9.2 in a different manner.

Lemma 9.8: The conditions (i) and (ii) of Lemma 9.2 imply that F, [0 and Fy; ;[, can

be written as polynomials of degree at most ni for all a,t and 7.

Proof: By Lemma 9.4 the functions depend on at most nt variables and the degree bound

follows from Lemma 9.5. =»

The true value of G; is &gt;, Fa,i;.Sincethe degree does not increase when we add

two polynomials this means that the value of G; is a polynomial P, ;(z) of degree at most

n&lt;. Now we can make precise in what way the circuits C, almost computes majority.

Lemma 9.7: The circuit C,, computes majority correctly except for those inputs z where

[Tii(Pay(z) +e; +1) =0.

Proof: If the product is nonzero then each term is nonzero. Thus if the product is nonzero

then P, ;(z) + a; + 1 =1 for all ¢ and replacing the parity gates by the a; did not change

the circuit. =

Define Py = [];_;(Pa,i(z) + a; + 1) = 0. Note that the degree of P, is bounded by

ni c¢(logn) 2. We will sometimes call P, the error polynomials.

The reason that the degree bound will give us information is the following lemma.

Lemma 9.8: Let P(x) be a polynomial over GF(2). If majority of m variables agrees

with the constant function 1(0) except when P(z) = 0 then either P(z) = 0 or the degree

on P is at least 2

Proof: We give the proof in the case of 1, the other case being similar. The condition

implies that P(z) = 0 for all z of weight at most %. Assume that P is nonzero and let

[1c s Ti be a monomial of minimal degree of P. S is here a subset of {1,2,...n}. Look at
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P evaluated at z; = 1,1 € §,z; = 0, j &amp; S. This value must clearly be 1. Thus S| &gt; Z. =

There are a two problems in using Lemma 9.8 to prove Theorem 9.1. Firstly, the

remaining circuit does not compute the constant function and secondly we do not know

that the polynomial in question is nonzero.

The first problem can be taken care of as follows. If we replace the final circuit by a

constant b we only make an error where F,, +b+1 = 0. Since this is a polynomial of degree

&lt; ni we only add this polynomial the product defining the error polynomial obtaining a

new error polynomial P, ;.

The second problem comes from the fact that polynomials over GF(2) is not an

integral domain i.e. a product can be zero even if none of the factors is 0. (e.g. z(1+z) = 0).

Even if the proof is not difficult let us state it as a lemma.

Lemma 9.9: There is an « and a b such that P, p(x) #0.

Proof: Take an arbitrary input z to the original circuit C[p. For this input the parity

gates evaluate to some values o; and the circuit evaluates to b. The polynomial P,,is

nonzero, in particular it takes the value 1 at z. =

Let us see how the lemmas fit together to finish the proof of Theorem 9.1. We take

the C, which corresponds to the a of Lemma 9.9. Replace the circuit by the constant b.

Now supposedly majority of the remaining variables is b except when P, »(z) = 0. This is

a contradiction by Lemma 9.8. =

a4



CONCLUSIONS

We have established exponential lower bounds for the size of small depth circuits.

However there are still many open questions concerning small depth circuits. It seems

that the lower bounds proved for the size of circuits computing parity, are essentially the

best bounds one could hope to obtain for any function if the tool used is our main lemma.

It would be very interesting to establish lower bounds which are better than our

bounds for parity on the size of constant depth circuits computing some NP-complete

function like clique. Hopefully, a proof establishing such lower bounds would not only rely

on the restrictive nature of the model but also on the difficulty of computing the clique

function. Such a proof would shed light on what makes a function difficult to compute.

Another interesting direction for future research is to extend the rather weak results of

section 9. Adding parity gates to the circuit seems to complicate the situation considerably.

Our main lemma seems to be an insufficient tool and to get substantially better results we

believe that new insight is required.

One of the few open problems of this thesis which potentially might not need new

ideas but only a bit of cleverness is to prove that xP A F# oa for a random oracle A.

One way to prove this is to prove that there are functions that are computable by small

depth k circuits which cannot be approximated well by small circuits of smaller depth.

Here smaller depth can be interpreted as depth d(k) for any function d(k) which goes to

infinity with k.

Finally a question of another type is to determine the complexity of inverting a NC°

permutation. By the results in section 2 this is at least as hard as P, and clearly the

problem is in NP ()coNP. We conjecture that this problem is not in P.
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