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ABSTRACT

I present a series of case studies that demonstrate that an interval representa-

tion of time is more expressive than a point representation for digital design
reasoning tasks. The case studies exemplify where the use of time intervals
results in increased modeling efficiency, where it results in increased model-
ing accuracy, and where it enables new tasks to be performed. To provide a
basis for comparison, I have modified an existing digital design description
language to include a vocabulary for referencing time intervals.
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Chapter 1

Introduction

The choice of a good representation language in which to do problem solving
is a central issue in design [Ama81]. Kramer demonstrates that changes in
vocabulary can result in exponential reductions in the computational com-
plexity of some reasoning tasks [{ra87].

In this thesis, I compare and contrast two models of time for digital
design simulation: (a) a point-based or discrete model, and (b) an interval-
based or continuous model. The results of the thesis are a series of case

studies that demonstrate techniques for and advantages of using the interval
representation.

A point model is currently used in the Helios Design Assistant [Kra85],
wherein an event is defined as the change in the value of some object. The

occurrence of the event is specified by stating the new value of the object, and
the time at which the change occurs. For example, the output of a counter
becoming 3 at time 5 is an event. The behavior of an object is represented
by a series of pairs of events and the points in time at which they occur.

In the interval model, an event is any unchanging value that an object
has: An event is defined as a value and the interval of time over which that

value does not change. An object’s behavior, using this model, is represented
as a series of pairs of events, and the intervals of time over which they exist.
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Filling a tub might be represented by: (a) The tub is empty from time 0
to time 3; (b) From time 3 to time 5 the tub is filling at a constant rate of
2 cubic feet per second; and (c) from time 5 to time co the tub contains 4
cubic feet of water.

To view the point model more formally, an isomorphism can be con-
structed between the time point domain and the set of real numbers. In
cases where time is assumed to have an absolute starting point, as opposed
to extending back infinitely, the isomorphism is limited to the non-negative
reals. A time point corresponds to a point on the number line.

Extending this analogy, intervals are convex sets of time points. Less
formally, an interval is any piece of the real number line that does not contain
a hole.

From this analogy one can infer that there is a qualitative difference
between a time point, and an interval. All non-trivial (i.e. those which are
neither empty nor singleton) intervals are made up of an infinite number of

points. Unquantified first order predicate calculus statements about intervals
cannot be made using a finite number of statements from the point domain.

1.1 Previous Work

The idea of using intervals of time, instead of points, to describe when events
occur 1s neither new nor limited to the digital design domain. Allen presents
13 disjoint, yet complete relations' that can exist between any two intervals
of time [AlI83]. These make up his “interval-based temporal logic”.

Along with the logic, he presents an O(n?) time, O(n?) space algo-
rithm for deducing what relations can exist between two intervals. “It should
be noted that this algorithm, while it does not generate inconsistencies, does
not detect all inconsistencies in its input. ...the computational complexity

"The relations are complete because there is at least one relation which holds between

any two intervals, and are disjoint because no more than one relation holds between any
wo intervals.
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of the algorithm [to detect all inconsistencies] is exponential.” [All83, p.837]

Many papers extend Allen’s work. Hayes and Allen use the first order
predicate calculus to axiomatize the 13 relations in terms of a single relation,
Meet [AH84]. Recently, Ladkin has supplemented Allen’s work by developing
“a taxonomy of important binary relations between intervals which are unions
of convex intervals” [Lad86a]. Ladkin describes the relations and situations
in which they may be used [Lad86a,Lad86b].

Within the domain of digital design, Moszkowski developed a Propo-
sitional Interval Temporal Logic (ITL) [Mos83]. He formalizes ITL, presents
a complexity analysis, and then shows how ITL may be used to model a
variety of simple digital devices.

Joyce takes a single example of using intervals to model digital designs
and contrasts “two techniques for representing time-dependent digital sys-
tem behavior and controlling reasoning to achieve desired hardware states,”
[Joy83]. He concludes that by using intervals and propagating constraints,
diagnostic reasoning in the digital design domain can be done more efficiently.

1.2 The Thesi

A new representation has been developed for modeling the time at which
events occur. I present a series of case studies that demonstrate the increase

in representational power one attains by switching from the point model to
he interval model of time.

I have divided the quality of representational power into three compo-
nents: modeling accuracy, modeling efficiency, and performable tasks. Mod-
eling accuracy is concerned with the extent to which the design vocabulary
allows the user to describe the actual behavior of the device being designed.

Modeling efficiency relates to the tasks which one would want to per-
form with a model. Certain vocabularies or representations lend themselves
to efficient performance of certain tasks.
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A natural extension to task efficiency is task performability. The
representational power of one language is greater than that of another if
there exist certain tasks which can be performed in the former, but not the
latter.

I have implemented an Interval Reasoning System (IRS) that extends
Corona [Sin84], an existing design language, so that an event may be de-
scribed as taking place during an interval of time. IRS differs from Allen’s
work in several areas. IRS is not a general interval problem solver, but
rather a vocabulary tailored to aid in digital design related tasks. The re-
lations available for comparing intervals are not complete; however, none of
the associated algorithms work in worse than O(n) time, or O(n) space. The
work presented in this thesis has been implemented using IRS.

1.3 Overview

The remainder of this thesis is organized as follows: Chapter 2 presents the
context in which the work was done, The Helios Design Assistant. Chapter
3 begins with definitions of an interval and the associated IRS predicates.
[t then includes a discussion of the changes that were made to the Helios
simulator to accommodate the interval vocabulary. Chapter 3 ends with a
comparison and contrast of two behavioral descriptions of a simple circuit
element. The first description uses the point model of time, the second uses
the interval model. Chapter 4 presents case studies which demonstrate how
‘ntervals increase model accuracy and design task efficiency, and how new
tasks may be performed as a result of the introduction of an interval vocab-

lary. Behaviors that can be modeled more accurately with intervals include

setup time, consecutive events, and tristate devices. Increased reasoning ef-
ficiency is demonstrated on a latch, and a generic device with propagation
delay. New tasks that can be performed with intervals include detecting
contention and detecting when an object does not have a defined behavior.
Chapter 5 summarizes the results of the case studies and presents directions
for future work.



Chapter 2

Context — The Helios Design

System

[RS operates within the context of the Helios Design Assistant [Kra85]. He-
lios’s goal is to provide an environment in which a declarative behavioral
description of an artifact may be entered once, and several tasks may then be

performed using the single design description. Currently the Helios subsys-
tems include a simulator, a test vector generator, a verifier, a diagnostician,
an input editor, and an embedded auto-router.

Single design entry offers many advantages. The most apparent is
the time savings for the design engineer. Another is consistency. One of the
most difficult types of design errors to locate is that arising from the use of
inconsistent behavioral models for different tasks during the design process.
One requirement of IRS is that it must support the single model principle.

To allow for the explicit reasoning which a design system must per-
form, Helios uses MRS [Rus85]. MRS is logic programming substrate that
uses pattern matching to store, access, and make deductions with the behav-
toral descriptions of artifacts under design.

From a control viewpoint, there are two categories of MRS statements.
I'he first consists of unquantified first order predicate logic statements. Sen-

 ]
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Rule Type
Structure
Behavior

Predicate

Corona
(port A B)
(val A 1)
(true (val A 1) 10)

(bnot A B)

English
A is a port of module B.
A has the value 1.

The statement, “A has the
value 1” is true at time 10.

The boolean negation of A is B.

Figure 2.1: Examples of Corona Statements

tences are clauses with universal quantifiers removed and existential quanti-
fiers handled through Skolem functions.

The second type are meta-level control statements. These are rules

which allow for explicit reasoning about the base level sentences. Meta-level
statements can modify how lookups and assertions are done, and control the
order in which they are done. Several of the Helios subsystems are written
in MRS using the meta-level statements.

2.1 Coro.‘3 Za

Helios behavioral descriptions are written in the language Corona [Sin84].
Corona is a set of predefined MRS predicates that are useful for specifying
behaviors of digital designs. Corona does not mask any of the MRS constructs
or capabilities.

The three major types of Corona statements are listed in figure 2.1.
The first is for describing the structure of artifacts. The second describes the
behavior of artifacts. The third type of statements includes generally useful
predicates such as boolean not. So that all possible instantiations do not
need to be stored, some of the predicates are implemented with procedural
attachments.

In general, a Corona behavioral description is given as a set of “if-
hen” rules which include all three types of statements. The if-then rules
are specified by the Corona if statement. The if statement takes two ar-
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(if (and (true (val (port ini or-gate) on) $t)
(+ $t 5 $t1))

(true (val (port out or-gate) on) $t1))

Figure 2.2: A partial description of an OR gate with delay.

guments, an antecedent and a consequent. The antecedent is either a single
Corona statement, or several statements conjoined by the and connective.
The consequent has the same syntax. A “$” before a variable name indicates
a universally quantified variable.

The example in figure 2.2 partially describes an OR gate with a prop-
agation delay of 5 time units: If at time $t the value of the in1 port of device
or-gate is on, and if there is a value for $t1 such that the statement (+ $t
5 $t1) is true, then the value of the out port of or-gate is on at time $t1.

The Helios requirement that all tasks can be performed using a single
description restricts what predicates may exist in Corona. Notice that all of
the predicates in figure 2.2 represent invertible functions. It is just as easy
to compute $t1 given $t as it is to go in the other direction. This need
arises because certain systems naturally use backward reasoning —given the
consequent, determine what antecedents must be present. An example of a
backward reasoning system is the Helios diagnostician, DART [Gen81]. The
anputs to DART are a set of supposed faulty outputs to a real device. DART
works backwards from the faulty outputs to determine what rules in the
model, if not adhered to, account for the behavior.

The depth first inference mechanism that is most often used for rea-

soning with Corona rules also restricts the set of viable Corona predicates.
To derive a consequent, this mechanism steps through the conjuncts of the
antecedent. When it reaches an uninstantiated variable, it finds a possible
instantiation of the variable that makes the predicate in which it occurs true.
[f a conjunct is not satisfiable, then the mechanism backtracks to the last
point a variable occurred, and selects a different possible instantiation.
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Because the MRS inference mechanism binds variables as they occur,
the domain of values for unbound variables must be restricted to a small set

by the bound variables in the enclosing predicate. Otherwise, the probabil-
ity of finding the binding that satisfies other conjuncts in the same rule is
low, resulting in poor efficiency. Predicates in which knowledge of all vari-
able bindings except one do not restrict the possible values for the unbound
variable are called non-invertible.

An example of a non-invertible predicate is &gt;. It could be reasonable

in some situation to replace (+ $t 5 $t1) by (&gt; $t1 $t). Knowing $t
would offer little in determining $t1. If there were a small set of $t1’s
that satisfy latter constraints, then the system could go into an infinite loop
choosing a bad instantiation and backtracking.

Because there are times that relations such as &gt; are necessary, they

are included in Corona. To avoid the problems described above, a non-
invertible predicate may not have any uninstantiated variables when it is

looked up. Joyce's Achiever [Joy83] investigates the effects of delaying vari-
able instantiation. Instead of choosing a single possible instantiation of a
variable, instantiating the variable, and moving to the next conjunct in the
antecedent, Achiever is able to instantiate underspecified variables to sets of
‘nequalities. “The bulk of the current instantiator is a fairly simple algorith-
mic inequality solver based on work by Markowsky.” [Joy83, p.22].

MRS, and subsequent systems built on top of it also suffer from the
problems that classically plague logic-based languages. For example, it is ex-
;remely inefficient to reason using syllogism. Encoding the knowledge that,
‘Exactly one of the outputs of a 2-to-4 decoder is valid at any one time,” is

very difficult unless it is done by enumerating the possible output combina-
tions. To capture the meaning of the above statement one must be able to
say, “If it is not the case that one of the first three outputs is high, then the
fourth is high.” But, checking whether a statement is not the case requires
that the system tries to prove the statement in all possible ways, and is un-
able to. Corona does have a predicate, unknown, which does this, however
its use is extremely inefficient, and its use is discouraged.

Another important point to make is that although the true predicate
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is treated specially by the systems that use Corona, it is just an ordinary bi-
nary predicate. (True &lt;a&gt;&lt;b&gt;) may be asserted, and looked-up in the
same way that (Father Abraham Isaac) is. True’s arguments may be any-
thing. However, to retain the semantics of the predicate, the first argument
is expected to be another statement, and the second argument is a real num-
ber. A consequence of the true statement having no special meaning is that
something asserted to be true at time 10 has no bearing on time 10.5. This
is an instance of the more general problem of determining what facts should
persist when the world changes state. Hayes called this the frame problem
Hay73].

The frame problem is especially relevant when time is modeled as a
continuous flow. If time is considered discrete, values that persist can be
reasserted at the next step in time. The axioms which do the reassertion are
called frame azioms. In the case where time is continuous, there is no next
step at which a fact can be reasserted.

Corona, however, ignores the frame problem. The choice of what
frame axiom to use is left to the individual Helios subsystems, and is not
necessarily the same for each. In all cases, the choice represents an implicit
assumption that must be made by the subsystem. Using only a point vocab-
lary there is no way for the user to explicitly describe a frame over which a

behavior persists.

2.2 MARS

The system on which all of the case studies have been run is MARS [Sin83],
the Helios simulator. “The basic inference technique used by MARS for per-
forming event-driven simulation is forward chaining on an explicit rule base.”
Sin83, p.14] Although not completely accurate, MARS can be thought of as
a collection of MRS meta-level rules, which affect the way assertions and
lookups of the true predicate are made.

One of the effects of the MARS meta-level rules is that when true

statements are first asserted they are placed in a heap indexed by their second
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argument. Recall that the second argument to the true statement is a real
number representing a point in time. MARS expects the first argument
to be a statement of the form, (val (port &lt;a&gt; &lt;b&gt;) &lt;c&gt;). The true
statement with the minimum second argument value is at the top of the heap.
This value is held in a global variable called current-time. Just as events

in the future can not cause events in the past, no true statement may be

asserted whose second argument is less than current-time.

After a true statement has been asserted it is stored in a tree that is

also indexed by the second argument of the true statement. There is a tree
associated with each port of each device in the design. The tree contains the
chronological history of the port with which it is associated. The purpose of
storing true statements in this manner is that lookups may be performed in
O(Inn) time in the number of true assertions which have been made about
that port.

The skeleton MARS algorithm is given in figure 2.3. MARS loops as
long as the scheduling heap is not empty. For each loop, MARS removes the
first statement in the heap and asserts it. As a result of the assertion, other
statements may be placed in the heap.

Figure 2.4 depicts a rule which models a D flip-flop with a 5 time-unit
delay: If the clk port of the D flip-flop d-ff is 1 at time $t1 and was 0 one

time unit previous to $t1, then 5 time units after $t the q port of d-ff will
have the value that the d port has at time $t.

As an example, assume that in addition to the D flip-flop rules from
figure 2.4, the database contains the assertions:

(true (val (port clk d-ff) 0) 0)
(true (val (port 4d d-ff) 1) 1)

And the heap contains the single entry:

(true (val (port clk d-ff) 1) 1)
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L. Starting at the top of the heap, if the first argument to the true statement
has been previously asserted and no different statement has been made about
the same port since the original statement, remove the true statement and

repeat step 1.

) | Remove the top true statement from the heap, and make a list of all rules
from the database that contain a conjunct in their antecedent that matches
the removed statement.

3. For each of those rules, taken in arbitrary order:

(a) Unify the removed statement with the conjunct that it matches, and
create an environment which has all free variables that were matched

in the unification bound to the value that they matched.

For each conjunct, in the order they are listed, from the antecedent of
the rule:

(i) Instantiate the values of the variables which have bindings from
the enclosing environment.

(ii) Do a lookup on the resulting expression.

(iii) If the lookup returns no matches from the database, then the rule
fails; go on to the next rule.

(iv) If the lookup returns exactly one match then update the enclosing
environment to include the new bindings, and proceed to the next

conjunct.
If the lookup returns n matches, where n &gt; 1, then create n envi-

ronments in the same manner as the previous step, and continue

this algorithm on each of the new environments independently.

(c) Using the new environment, instantiate the unbound variables in each
of the conjuncts of the consequence of the if-statement.

(d) Assert each of the instantiated conjuncts in the consequence by placing
them in the heap.

i Add the true statement to the history of the port mentioned in the second
argument of the true statement.

Figure 2.3: The MARS Algorithm
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(if (and (true (val (port clk d-ff) 1) $t1)
(+ $t 1 $t1)
(true (val (port clk d-ff) 0) $t)
(true (val (port d d-ff) $d) $t)
(+ $t 5 $t2))

(true (val (port q d-ff) $d) $t2))

~

Figure 2.4: A D flip-flop

Figure 2.5 presents a step by step record of the simulation. There
are several details of the algorithm brought out by this example that deserve
special mention. First, MARS unifies the conjuncts of the antecedent in the
order that they are specified in the rule. If the assertion that causes the rule

to fire is the clock becoming 0, (true (val (port clk d-ff) 0) 4), then
when the algorithm looks up the first conjunct, it returns all times at which
clk is 1. If the D flip-flop were part of a real time device that contained

a micro-second clock, the number of possible matches returned could easily
overburden MARS.

To cope with this situation a special predicate, +*, was added to
Corona which could be placed as the first antecedent of a rule, and does
all of the necessary arithmetic before any other lookups are done. This
scheme avoids the problem of a time variable being unbound by using the
time variable from the conjunct that caused the rule to fire, to calculate the
other time variables. For the case above, +*, given any of $t, $t1, or $t2,
computes the other two.

Another key point to note in the operation of MARS is how it deals
with simultaneous events. Singh [SinS5, p.63] presents a simple situation
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C

Lt. The single entry in the heap is removed from the top. This true statement
is matched against the first conjunct in the only rule (i.e. if-statement) in
the database.

2. An environment is created with $t1 bound to 1

3. The first conjunct is re-looked up.

In the second conjunct of the antecedent, $t1 is replaced by 1, and the
result is looked up. The result of the lookup causes the binding, $t to 0,
to be appended to the environment. Notice that the predicate can solve the
addition both backwards and forwards.

5 The $t in the third conjunct is replaced by 0, and the fact, (true (val
(port clk d-ff) 0) 0) is looked up. It is found in the database so the
algorithm proceeds.

A. The rest of the conjuncts in the antecedent cause $t2 to be bound to 6 and
$d to be bound to 1.

7 Instantiating the free variables in the consequence of the rule with the bind-
ings generated from the antecedent yields (true (val (port q d-ff) 1)
6). This fact is asserted and inserted into the heap.

R The scheduler removes the top assertion from the heap, the statement just
asserted, and finds that it matches no rules. The heap is empty so the
simulation is finished.

Figure 2.5: Simulation of a D Flip-Flop
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in which MARS, to simulate simultaneous events correctly must overwrite
one assertion in a port’s history with another. In short, if there exists an
assertion of the form, (true (val (port x y) z) t), and a new assertion
is made equivalent to the first except the value z is different, then the original
assertion is removed from the port x’s history and replaced with the second.

Because the vocabulary MARS uses to describe time is limited to
points, MARS is limited in the way in which it can deal with the frame prob-
lem. There is no way to describe a frame over which something is explicitly

stated to be true. Consequently, MARS implicitly assumes the persistence of
values once they have been asserted. So, for example, if (true (val (port
a b) c) t) had been asserted, then a lookup done on (true (val (port a
b) $x) t1) causes $x to be bound to c, as long as t1 after t, and no other
statement was made about the value of port a of device b since t.

Persistence is implemented in two places in the MARS algorithm.
In step 1, if the previous value a port was asserted to have is the same as
the value currently asserted, then the current assertion is removed from the
heap with no side effects. In step 3b, the algorithm for doing a lookup is
modified slightly to implement persistence. If a port does not have a value
that explicitly was given to it at a certain time, (that is there is no perfect
match in the database) then the lookup routine searches backwards in the
tree to find the previous time at which a value was asserted to exist at the

port. This value is assumed to persist to the time currently being looked up.

Because assertions may not be made about events in the past, and
lookups may not be made of events in the future, there is no possibility that
a value will be asserted between the current simulator time and the time that

something was previously asserted.

Implicit persistence avoids the problem of requiring a method for de-
ciding what ports will retain their values to the current time. As some of the
case studies in chapter 4 show, it also limits what the user can say. Much
of the power of a vocabulary that can explicitly reference intervals is derived
from the ability of an interval to represent a frame during which a value on
a port persists.



Chapter 3

Interval Reasoning System

In the point model, the behavior of a device is represented by a sequence
composed of pairs of events and the times at which they occur. The true
statement in MARS creates these pairs out of its first and second arguments.
[n the interval time model, the behavior of a device is represented as pairs
of constant behaviors and the intervals over which the behaviors occur. To

accomplish the pairing I have written IRS. IRS is an extension to Corona
that includes useful predicates for manipulating intervals.

3.1 The Ival Predicate

The syntax of ival is analogous to that of true. Ival takes two arguments.
The first is a statement, and the second, instead of a point, is an interval.
(Ival (val (port d d-ff) 1) &lt;interval&gt;) asserts that the d port of
device d-ff has the value 1 during the interval &lt;interval&gt;.

An interval is a 4-tuple represented by a list of 4 elements. The
first value is either closed (c) or open (0). This indicates whether the lower
bound of the interval is included or excluded from the interval. The second
element of the 4-tuple is any real number from —oo to co. The third and

)]
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fourth elements of an interval are a mirror image of the first two. The third

specifies the upper bound of the interval, and the fourth specifies whether it
is open or closed. In addition to any real number, the third element of the
tuple also can be the symbol persists.

The interval syntax is constrained by two global requirements:

| The lower bound of the interval must be less than or equal to the upper
bound.

). If the lower and upper bounds of the interval are equal, then both the
upper and lower bounds of the interval must be closed.

Examples of intervals are:

(o250)
(c44¢)
(c 2 persists o)

When the upper bound of an interval is not persists, the semantics
of the 4-tuple is straightforward and best demonstrated by example. The
first example from above is the interval from 2 to 5 exclusive. The second is
she interval from 4 to 4, or more simply, the point 4. The second example
demonstrates how the interval logic degrades nicely into the point represen:
tation.

A more formal definition of an interval is:

&lt;cijo&gt;={z:i&lt;z&lt;j},
and similarly for the other three cases.

[his expands easily to yield a natural semantics for the ival statement:

‘ival (val (port d d-ff) 1) (c i j o)) =
{(true (val (port d d-ff) 1) x): : &lt; z &lt; J}
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As with true, the first argument to the ival statement is any other
legal Corona statement. This means that it can contain constants or vari-

ables. Because the second argument of the ival statement is used for in-
dexing, when ival is asserted, none of the elements of the interval may be
variables.

Using the initial definition of ival , lookup is not well-defined. This
is because of the infinity of points represented by an interval. For example,
if after (ival (val (port d d-ff) 1) (c 2 5 o)) is asserted a lookup is
done on (ival (val (port d d-ff) $x) (o 3 4 o)), to what should $x
be bound? There is no fact in the data base that matches what is being
looked up.

This problem is solved by introducing the predicate contains. (Contains
&lt;a&gt; &lt;b&gt;) is true if and only if the interval &lt;b&gt; is completely contained
within the interval &lt;a&gt;. Contains is formally defined as follows:

(contains &lt;a&gt; &lt;b&gt;) = Vx.[(x € &lt;b&gt;) — (x € &lt;a&gt;)]

Now, for the purposes of a lookup, an interval can unify with another
interval that contains it. One of the consequences of this is that lookups are
no longer really doing unification, what is being done is not commutative.
[nterval a can unify with interval b even though b does not unify with a.

Another ambiguity arises when an unknown occurs in the second argu-

ment of the ival statement being looked up. Again, let (ival (val (port
d d-ff) 2) (c 2 5 0)) be a fact in the data base. This time the expres-
sion, (ival (val (port d d-ff) 2) (c 2 $x o)) is to be looked up. The
obvious choice for $x is 5, however, applying the aforementioned contains
predicate, 4 is an equally valid, and possibly more desirable choice for a
binding.

To make an ival lookup well-defined, I have adopted the principle
of always binding the largest possible subinterval to an unknown. There
are several justifications for this. First, it resolves the previously described
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ambiguity associated with lookups. There is almost always! a unique largest
subinterval that is contained by a given interval, and satisfies a given set of
constraints.

Second, only the largest subinterval contains enough information to
generate all other subintervals that match the constraints. This follows from
the definition of an interval as a convex set of points.

Kramer also proposes the strategy of starting to reason with the
largest intervals as a means of reducing the number of entities considered

during problem solving [Kra84, p.92]. He claims that this is an instance of
hierarchical decomposition used for problem solving.

The persists Marker

When one considers a single interval, the persists marker has little meaning.
Applying the rules that define a well-formed interval, it can be inferred that
the persists marker represents a real number that is greater than or equal
to the lower bound of the interval in which it occurs.

As part of a chronological series of intervals, such as the one used to
store the history of a port, the persists marker is used to denote an upper
bound that is as large as possible without conflicting with the assertion over

the next interval of time, i.e. the point time semantics of true. Modeling
memory is an instance in which one would want to use the persists marker.

The value of a memory slot persists until it is changed.

To use the persists marker some concept of a next interval must

exist. This requires that intervals be well-ordered. Allen introduced 13 re-
lations that can exist between any two given intervals [All83]. In general, a
total ordering cannot exist if more than two relations, &gt; and its inverse, &lt;,

1 Cases still exist wherein an ambiguity can arise. For example, if the interval in the
database is (0 2 5 0) and the interval being looked up is (0 2 $x c), there does not
exist a largest interval that matches the database entry and satisfies the constraints placed
by the interval being looked up. Because of the continuity of real numbers, open ended
sets do not contain a largest element. In this case an ival lookup fails.
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exist between any two unique objects in the domain.

Because the lower bound of an interval is always a real number a

partial ordering of intervals may be formed using the lower bound. If two
intervals have the same lower bound, the one whose first element is ¢ is less

han the one whose first element is o. This definition corresponds to ordering
intervals by their starting points.

None of the intervals that describe the behavior of a device overlap.
[f two intervals overlap and the events they are paired with are the same,
then there is a single larger interval that corresponds to the time over which
the constant behavior occurs. If the events are different, then there is an
inconsistency: At some point in time the device has two different behaviors.

Because the intervals that describe the behavior of a specific device do
not overlap the partial ordering between intervals described above is adequate
for generating a unique ordering of the intervals in the history of a device.
Consequently, when one is talking about the behavior of a device there exists
the concept of a next interval, and the persists marker has a well-defined
meaning

3.2 Other Predicates

Along with the ival statement for asserting and looking up statements
which hold over intervals, IRS provides four predicates for manipulating in-
tervals. They are: IDelay, ILength, Intersect, and Meets.

3.2.1 IDelay

IDelay n &lt;wali&gt; &lt;ivaly&gt;) =
Vx.[(x € &lt;ivaly&gt;) © (z+ n € &lt;ivaly&gt;)]

IDelay is the interval delay operator. It takes 3 arguments, a real
aumber, and two intervals. Just as 2 of the 3 arguments to + must be
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specified to do a lookup, enough information must be given to IDelay so
shat it may uniquely determine all unbound variables. If there is no unique
solution, IDelay is false.

IDelay’s principal use is to model the propagation delay associated
with a device. In figure 2.2 a partial description of an Or gate with a prop-
agation delay of 5 time units was given. Recast in the interval domain, the
behavior is modeled by:

(if (and (ival (val (port inl or-gate) on) $t)
(idelay $t 5 $t1))

(ival (val (port out or-gate) on) $t1))

The only differences between the two models are that true is replace by
ival, and + is replaced by IDelay.

3.2.2 ILength

(ILength n &lt;ag,a;,a2,a3&gt;) = a; +n = a,

ILength pairs an interval and a real number that represents the length
of the interval. Notice that there are no restrictions on the values of ay and

a1. Eventhough, there is no constraint on their values, the values must be
specified for a lookup or assertion to be true. There is no analogous predicate
in the point domain because there is no concept of a point having a width.
As with IDelay, enough information must be given to ILength for it to bind
all unbound variables, otherwise it is false.

The most common use of ILength is to insure that minimum require-
ments, such as setup time, are adhered to. The following is the same Or gate
as in the previous example, except an additional requirement is added: The
signal on port ini of device or-gate must be steady for at least 5 time units
if a change 1s to occur on the output.
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(if (and (ival (val (port inl or-gate) on) $t)
(idelay $t 5 $t1)
(ilength $n $t)
(&gt; 5 $n))

(ival (val (port out or-gate) on) $t1))

The &gt; relation and the ILength predicate could have been combined
to form a single minimum interval length relation, however, the new relation
would suffer from the same problem as &lt;: All of the arguments to the new
relation would have to be bound before a lookup could be done.

When modeling hold-time (the interval of time over which an output
remains steady after it has been asserted), one wants to go from a partially
specified interval and an interval length to the completely specified inter
val. If the minimum length relation existed instead of ILength, then sucha
computation would not be possible.

3 2}7 Meets

Meets n &lt;ag,a;,as,a3&gt; &lt;bg,by,by,bs&gt;) =

(V(A(=nayb)
(V (A (= asc) (= bo 0))

(A (= az 0) (= bo c))))
(A (= n b, a)

(V (A (= bz ¢) (= a 0)
(A (= b3 0) (= ag ¢)))))

Meets is one of the 13 relations that Allen specified could exist be-
tween two intervals [All83]. The first argument to Meets is a point. The
second and third arguments are intervals. Meets is true if and only if the
two intervals meet at the point. Two intervals meet if they do not overlap
and there does not exist a point which is less than all of the points in one
interval and greater than all of the points in the other. For example:
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(Meets $pt (0 2 5 c) (0 5 7 0)) is true, and binds $pt to 5.
(Meets $pt (0 2 5c) (c 5 7 0)) is false

—there exists a point of overlap.
(Meets 5 (0 2 5 ¢) (o $low 7 c)) is true,

and binds $low to 5.

If there is not adequate information to bind all of the unbound vari-
ables then Meets is false. If this were not the case, Meets would have

an infinite number of possible bindings. A rule using Meets could loop in-
finitely between choosing a binding for the variables in Meets, and failing in
subsequent conjuncts of the same rule.

The following example is false because $x may take on any value
greater than 5:

(Meets $ot (0 2 5 c) (0 5 $x 0)) is false.

Meets with Ports

In practice, Meets, as it is described above, has limited usefulness. This is
because of the requirement that Meets can bind all of its variable arguments.
Often, only one of the interval arguments to Meets is known when Meets
is applied. This problem is solved by noticing that the interval arguments
are almost always elements of the histories of ports. By pairing a port name
with each of the interval arguments, Meets has a finite domain, the history
of the port, in which it can search for bindings for unspecified intervals. The
syntax of Meets with ports is:

(Meets n (&lt;port-name;&gt; &lt;interval;&gt;) (&lt;port-names&gt;
&lt;interval,&gt;))

I'he use of Meets with ports is exemplified in the following rule:
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(if (and (meets $t (in $t0) (in $t1)))
(ival (val (port in change-detector) 1) $t1)
(ival (val (port in change-detector) 0) $t0)

(ival (val (port out change-detector) 1) (c $t $t c)))

If asserting that in has the value 1 causes the rule to fire, then when
Meets is looked up, only one of the three variables is bound. For Meets to

be true, $t1 and $t0 must share a boundary. Consequently, the problem
of binding $t0 is broken down into four cases. For each of these cases one

boundary of $t0 is known. With the boundary point fixed, there is at most
one longest interval in the history of in that matches $t0. With ports, Meets
is guaranteed to find a successful variable instantiation in a finite time, or
fail because one does not exist.

3.2.4 Intersect

Intersect &lt;interval&gt;q &lt;interval&gt;}) =

&lt;ainterval &gt;,= MN &lt;interval &gt;;

The Intersect statement is true if and only if the 0" interval is
the setwise intersection of the :** intervals. Because intervals are convex
sets of points the intersection of a set of intervals will also be an interval.

[tf there is inadequate information to find unique bindings for all variables.
then Intersect fails.

For example:

(Intersect (0 1 20) (c12¢c¢) (015¢) (c 02 0))is true.
(Intersect $x (c 1 5 0) (c 2 6 0)) is true

and binds $x to (c 2 5 o).



CHAPTER 3. INTERVAL REASONING SYSTEM 30

Intersect with Ports

Like Meets, Intersect can take port names to limit the possible variable
instantiations to a finite set. The syntax of Intersect with port names is:

(Intersect &lt;interval&gt;; (&lt;port-name&gt;; &lt;interval&gt;;)#))

If &lt;interval&gt;; is not completely specified by Intersect, then Intersect
with ports assumes that &lt;interval&gt;; must be contained within an interval

‘n the history of &lt;port-name&gt;;.

The following is a partial description of an Or gate:

(if (and (intersect $t (in-1 $t1) (in-2 $t2))
(ival (val (port in-1 or-gate) on) $t1)
(ival (val (port in-2 or-gate) on) $t2))

(ival (val (port out or-gate) om) $t))

If in-1 having the value on causes the above rule to fire, then Intersect
will do a lookup with 2 out of 3 variables unbound. Without the port re-
strictions there are an infinite number of possible bindings for $t2. With
the requirement that $t2 is an interval from in-2’s history, the number of
possible bindings is limited to the number of interval-event pairs in in-2’s
history. Because a port’s history is finite, Intersect with ports is guaran-
teed to terminate with either a legal set of variable bindings, or if none exists,
failure. Intersect without the port name restriction would suffer from the
same infinite looping problem as Meets.

3.3 MARS Modifications

To reason with IRS predicates new MRS meta-level control rules have been

added to MARS. The meta-level rules control how each of the IRS predi-
cates are asserted and looked up. The version of MARS modified to handle
intervals is called IMARS.
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The output of a simulator is indicative of the model of persistence
that it employs. MARS displays an event when the current simulator time
reaches the point in time at which the event occurs. MARS stops displaying
the event only when another event is asserted at the same port and replaces
the first.

IMARS displays an event when the current simulator time reaches

the lower bound of the interval corresponding to the event. IMARS stops
displaying the event when the current simulator time reaches the upper bound
of the interval. If no new event is asserted at that time, then IMARS indicates

that the event at the corresponding port is unknown. Section 4.3.2 explores
how permitting ports to have a null behavior permits a new type of reasoning,

If the upper bound of an interval over which an object’s behavior is
defined is persists, then IMARS acts in the same manner as MARS. The

event 1s assumed to persist until a new behavior is asserted. MARS has an

implicit model of persistence. An event is assumed to continue to occur until

another event is asserted at the same place in the design. IMARS has an
explicit model of persistence. An event only occurs during the interval at
which it was asserted to occur. A port has the behavior unknown at some

time if no event is explicitly asserted to exist at that time.

Lookups in the respective simulators are also different because of the
change in time representation. When a lookup is done on a true statement,

 nothing in the corresponding port’s history is asserted at that point in time,
hen MARS looks to the previous assertion in the history. If the previous
assertion unifies with the first argument of the true statement, then the
MARS lookup returns the result of the unification.

Referring to the previous assertion in the history of the port is another
manifestation of assumed persistence. If there is no behavior at the current
point in time, then MARS assumes that the last behavior asserted is still
true.

If an IMARS lookup fails to find an exact match between the second

argument to ival and the time element of a port’s history, IMARS uses the
contains predicate to determine if an interval in the port’s history contains
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the one being looked up. If one does, then the corresponding event entry in
the port’s history is unified with the first argument of the ival statement.
The result of the unification is returned as the result of the lookup. This
modification to the straightforward lookup captures the fact that the asser-
tion that a port has a constant behavior over an interval implies that the

port has the behavior at every subinterval of the interval.

In both MARS and IMARS there is a current simulator time, and
consequently the concepts of past and future times. The current simulator
time is either the point (MARS) or the lower bound (IMARS) of the assertion
at the top of the simulation heap. In neither system may an assertion be
made about a fact in the past, nor may a lookup be done on an event in

the future. IMARS uses these restrictions to replace all persists markers
occurring in intervals that start in the past with real number values.

If in the history of an object there exists an interval with an upper
bound which is persists and following that interval is another interval, then
when the current time is greater than the lower bound of the succeeding
interval, the persists marker is replaced by a value such that the interval in
which it occurs and the succeeding one meet. This can be done because no

event can be asserted to exist between the two intervals; they are both in the
past.

For example, the history of a port might contain the pairs 1 over the
interval (o 2 persists c), and 0 over the interval (¢c 5 7 0). When the current
‘ime exceeds 5, there is no way a new event can occur between time 2 and

time 5, hence persists is replaced with a 5. In addition, the c associated
with the persists marker is replaced by an o.

Even before time 5, say at time 4, one has additional information

about the persistence marker. At time 4 (0 2 persists ¢) can be replaced by
(02 4 0) and (c 4 persists ¢). This replacement allows a lookup to use all of
the history up to, and including the current time.

Every time an assertion or a lookup is made at a port, IMARS goes

through the history of the port and removes all of the persists markers
from the past.
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3.4 An Example

Figure 3.1 illustrates a 74LS10 3 input positive Nand [The81] gate as it is
modeled in Helios. A, b, and c are the input ports. Y is the output port. For
/lustration purposes the behavior of the Nand gate first is modeled using
Corona and time points. Then, another rule is given in IRS with the time
interval vocabulary. The first four assertions describe 3 input boolean nand.
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Device nand3

Ports: A, C, B, Y
No states

; 3 74LS10

, ;3=-Input Positive Nand-Gate

, ;Propagation Delay:
vs Setup time:

10ns

none

(bnand3 0 $x $y 1)
(bnand3 $x 0 $y 1)
{bnand3 $x $y 0 1)
(bnand3 1 1 1 0)

; ; Point Model

(if (and (true (val (port a nand3) $a) $t)
(true (val (port b nand3) $b) $t)
(true (val (port c nand3) $c) $t)
($+$ 10 $t $t0)
(bnand3 $a $b $c $y))

(true (val (port y nand3) $y) $t0))

; ;Interval Model

(if (and (intersect $sect (a $ival-a) (b $ival-b) (c $ival-c))
(ival (val (port a nand3) $a) $ival-a)
(ival (val (port b nand3) $b) $ival-b)
(ival (val (port c nand3) $c) $ival-c)
(idelay 10 $sect $ival-y)
{bnand3 $a $b $c $y))

(ival (val (port y nand3) $y) $ival-y))

Figure 3.1: A Nand Gate
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3.4.1 MARS &amp; The Point Model

As an example of how the point description in figure 3.1 might be used in
a larger simulation, assume that when the current simulator time is 2, the
event heap contains the following entries:

top
(true (val (port a nand3) 1) 2)
(true (val (port b nand3) 0) 2)
(true (val (port c nand3) 1) 2)
(true (val (port b nand3) 1) 4)

MARS begins by removing the top element from the heap. (True
(val (port a nand3) 1) 2) matches the first conjunct in the first rule, so
‘hat rule is placed in a list of fired rules. $4 and $t are bound to 1 and 2
respectively, and MARS looks up the second conjunct. There is no assertion
that has been already made that matches the second conjunct so the rule
fails. The event of a taking on the value 3 is placed in a’s history, and MARS
removes the second element from the heap.

The first rule is again the one to fire. This time the second conjunct
matches the event. 0 is bound to $b and and 2 to $t. MARS then goes back
bo the first conjunct in the rule, substitutes 2 for $t, and does a lookup on
(true (val (port a nand3) $a) 2). This time there is a match because
of the first assertion; $a is bound to 1. MARS continues with the third
conjunct because the second one is the one that caused the rule to fire. The

third rule does not have a match so the rule fails. The second event is placed
in port b’s history, and MARS continues with the third event.

The third event also causes the first rule to fire. $C is bound to 1,
and $t is bound to 2. MARS goes back to the first conjunct, does a lookup,
and binds $a to 1. In the same manner $b is bound to 0. The fourth

conjunct is the + predicate. The first argument is 10, the second is bound
to 2, consequently $t0 is bound to 12. This conjunct is included to model
a 10ns delay between when an event occurs on the inputs of the device, and
when the effect is seen on the output.
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The last conjunct matches the second bnand3 assertion, subsequently
y is bound to 1. In the consequence of the rule there are two variables,
8y which is bound to 1, and $t0, which is bound to 12, consequently (true
(val (port y nand3) 1) 12) is asserted and placed in the event heap.

[he current time is now 4, and the two events in the heap are:

top
(true (val (port b nand3) 1) 4)
(true (val (port y nand3) 1) 12)

The top rule is removed and again the first rule is fired. This time
$b is bound to 1 and $t is bound to 4. MARS goes to the first conjunct
and does a lookup on (true (val (port a nand3) $a) 4). There is no
event in a’s history at time 4 so MARS assumes that the last event to have

occurred before time 4 persisted. As a result, (true (val (port a nand3)
1) 4) is assumed to be true and $a is bound to 1. $c is bound to 1 in the
same manner.

After all of the conjuncts have been evaluated, $a, $b, and $c are
all bound to 1, and $y is bound to 0. The consequence which is placed in
the event heap is (true (val (port y nand3) 0) 14). The remaining two
events in the heap do not match a conjunct in any rule, and consequently
do not cause any rule to fire. They do, however, cause the user interface to
display the fact that port out gets the value 1 at time 12, and 0 at time 14.
At time 14 the event heap is empty, so the simulation is over.

3.4.2 IMARS &amp; The Interval Model

IMARS follows the same basic algorithm as MARS: Events cause rules to

fire, and IMARS does lookups on the conjuncts of an antecedent to bind
variables. For this example, assume that the initial state of the event heap
iS:
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top
(ival (val (port a nand3) 1) (c 2 6 o0))
(ival (val (port b nand3) 0) (c 2 5 o))
(ival (val (port c mnand3) 1) (c 2 6 0))

+ (ival (val (port b nand3) 1) (0 5 7 0))

Because the assertions are ordered by their lower bounds this is one
of the 6 possible states that the event heap could be in. When the first event
is removed, it matches the second conjunct in the second rule, and causes
that rule to fire. IMARS binds $a to 1 and $ival-a to (c 2 6 o). IMARS
then moves to the first conjunct and does a lookup.

Only one of the four variables, $ival-a, in the first conjunct is bound.
To find bindings for $ival-b and $ival-c IMARS uses the information that
$ival-b must come from the history of port b, and$ival-c from port c.
Notice that the orts in the Intersect statement enforce constraints that will

be imposed by the third and fourth conjuncts of the rule. No new constraints
are added to the rule.

Because neither ports b nor ¢ have any bindings in their histories the

rule fails. Consequently, the initial event, (ival (val (port a nand3) 1)
(c 2 6 0)) is placed in port a’s history, and IMARS goes on to the next
event in the heap.

The consequences of asserting (ival (val (port b nand3) 0) (c
2 5 0)) are analogous to those for asserting the first event.

When the next event from the heap is asserted, all of the other ports
have a value. (Ival (val (port c nand3) 1) (c 2 6 o)) matches the
fourth conjunct in the interval model rule. $c is bound to 1, and $ival-c to
{c 2 6 0). IMARS continues by looking up the first conjunct in the rule.

Of the four variables, the only one in the first conjunct that is bound
is $ival-c, to (c 2 6 o). The next variable that needs to be bound is either
$ival-a or $ival-b. $Ival-a is constrained in two ways. First, it must be
an element of port a’s history. Second, it must have a non-empty intersection
with (c 2 6 o). The sole interval in port a’s history satisfies both of these
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estrictions, so $ival-a is bound to (¢ 2 6 0).

The same two restrictions hold for the lookup of $ival-b, except
the interval which $ival-b must intersect is (c¢ 2 5 0), the intersection of
intervals $ival-a and $ival-c. The reason that the restricting interval can
be smaller is that the Intersect predicate only returns true when all of its
arguments intersect in a non-empty interval. The reason it is desirable that
the restricting interval is smaller is that this further limits the domain over
which the search for possible matches is made.

The final binding for $sect, the intersection of the times at which
the different ports have values, is (c 2 5 0). After returning the bindings for
the variables in intersect, IMARS looks up the values at each of the ports
asing these bindings.

Next, IDelay is used to compute the interval which is 10 time units
after $sect. This models the 74LS10’s 10ns delay. The last lookup done in
the antecedent of the rule is the same as was done when time points were

used to model the Nand gate, $y is bound to 1.

The two variables in the consequence of the rule, $y, and $ival-y,
are bound to 1 and (¢c 12 15 o) respectively so the result of the rule firing is
that (ival (val (port y nand3) 0) (o 15 16 0)) is placed in the heap.
At this point the current simulation time is 5, and the state of the event heap
1s:

top
(ival (val (port b nand3) 1) (0 5 7 o))

(ival (val (port b nand3) 0) (c 12 15 o))

The top rule is removed from the heap, and the interval model rule
again is the one fired. This time, as a result of a lookup on intersect,
$sect is bound to (0 5 6 0), the intersectionof (0 5 7 0), and (c 2 6 o).
[Delay delays the overlapping interval by 10 time units, bnand3 computes
the 3-input boolean nand of the inputs, and the resulting asserted expression
is, (ival (val (port y mnand3) 0) (o 15 16 o)).
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Neither of the remaining two statements in the heap cause any of the
rules to fire. They do however, update the database to first indicate a value
of 1 on the output port, then a value of 0, and finally a value of unknown.
They will also be inserted into port y’s history to describe its behavior from
time 12 to time 16.

3.4.3 Comparison &amp; Contrast

[In many ways the two models of the 741.S10 are similar. Both are fired by

changes of the values of the input ports, and both use the input port values,
via the bnand3 predicate, to compute the output. Also, in both cases, a
predicate was use to compute a delay between when the change of input
values occurs, and when the change of value of the output is asserted.

The differences between the two models are also apparent. With the
point model of time, when there is no explicit entry in the database for the
value on the input ports at time 4, the value that was asserted to exist at

time 2 is assumed to persist. Under the interval model, no assumption of
persistence was made. Only explicit database entries matched the conjuncts
in the rules.

Under the interval model the values did not remain on the ports for-
ever. MARS ended with each of the inputs having the value 1, and the
output having the value 0. At time 7, IMARS set the values of the inputs to
unknown. At time 16 the value of the output was set to unknown.

The interval time models rejection of the implicit persistence assump:
tion created the need for a new predicate which computes when all of the rel-
evant ports whose values are being looked up, do not have the value Unknown.
This need was satisfied by the Intersect predicate. Intersect computed
the interval over which all of the input ports to the Nand gate had a known
value. Only during this interval could a valid output be computed.

The change in representation of time also created the need for a new

predicate to compute delay. Previously, under the point model, + was suf-
ficient to increase the real number value representing the point. Intervals
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needed an operator which would increment both endpoints of the interval
and preserve the boundary types (closed or open). IDelay satisfies this re-
quirement.

In the next chapter I demonstrate that as a result of the aforemen-

tioned differences the interval model of time is a more powerful representa-
tion. Certain reasoning tasks require explicit control of the persistence of
values at a port. Other tasks need to know when a port does not have an ex-

plicitly stated value. Only the interval model of time offers control required
vo perform these tasks.



Chapter 4

Examples

IRS introduces both a vocabulary for explicitly denoting intervals of time,
and a set of predicates for manipulating intervals of time. A question which
must be asked when one introduces a new vocabulary is, “What is the rela-

sionship between the vocabulary, and the situations or plans which can be
represented using that vocabulary?” More simply, “What is the representa-
tional power of the language?” This chapter breaks these questions down into
three categories, and for each category shows, via examples, that IRS’s new
vocabulary increases Helios’s representational power and ability to reason
about designs.

The format of each example is to first discuss the desired behavior,
next give the point model of the behavior and describe its inadequacies, and
then show how the interval model overcomes the inadequacies. The following
three questions are used to categorize the examples:

Does the new vocabulary increase the user’s ability to correctly specify
the behavior of the artifact being designed?

) Does the new vocabulary allow any design related tasks to be performed
more efficiently?

1)
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3. Are there tasks which may be performed with the new vocabulary that
can not be performed without it?

4.1 Correctness

[t is impractical, if not impossible, to model perfectly an artifact being de-
signed. Digital designs are themselves an abstraction of the true analog
behavior of a device. The questions arise: To what degree of accuracy does
one want to specify the behavior of a device? Is such a degree of accuracy

achievable with the available description vocabulary?

The following three examples demonstrate how Corona’s lack of rep-
resentational power limits the correctness with which one is able to model

digital designs. In the first case, the point model is unable to model setup
time because there is no way of specifying that a port’s behavior is unchang-
ing at an infinity of points. The second case demonstrates that the point
model cannot capture the concept of two events meeting and consequently
cannot describe consecutive behavior. The last example shows that to model
iristate devices the designer is forced to emulate intervals with points.

4.1.1 Setup Time

The setup time associated with an input to a clocked device is, “the time

required for the input data to settle in before the triggering edge of the
clock” [Fle80]. As described here, setup time is not a point, but an inter-
val. Requirements made of an input’s setup time must hold over the whole
interval.

The currently used technique for modeling setup time in Corona is to
require that the value on the input be the same at the beginning and end of
the setup time.

I'he latch described in figure 4.1 has a 20ns setup time associated with
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Device latch

Ports: D, G, Q
No states

; ; Width of enabling pulse:
v;0etup time:
; ;Propagation Delay:
;5 The TTL Data Book, p. 7-39

Min 20ns

Min 20ns

Typ 10mns

; ; Point model

; Persistence assumed

(if (and (+* $t0 ($t1 30) ($t 10))
(true (val (port D latch) $d) $t)
(known (true (val (port D latch) $d) $t1))
(true (val (port G latch) 1) $t)
(known (true (val (port G latch) 1) $t1)))
(val (port Q latch) $d) $t0))(true

Figure 4.1: Point Model of a Latch with a 20ns Setup Time
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its D and G inputs. D’s setup time is enforced by the 2"¢ and 3" conjuncts
in the rule’s antecedent. When a statement about the value of D is made,
it matches the 2" conjunct, causes the latch rule to fire, and binds $d to a

specific value. The third conjunct will block Q’s value from being updated,
i.e. the rule from succeeding, if D’s value was not the same 20 time units
previous to the current time.

The known statement wrapped around the 37¢ conjunct blocks MARS
from causing the rule to fire because a true statement matches the conjunct.
Because MARS requires that all statements in the antecedent of a rule occur

at or before the current simulation time, a rule can not fire due to a conjunct

whose time stamp is not the maximum of all of the conjuncts’ time stamps.
By wrapping known around the 3™ conjunct, it saves MARS from firing the
rule and finding out that the second conjunct is making a query about 20
time units in the future. Known is included to increase MARS’s efficiency,
out otherwise does not affect the meaning of the rule.

There are two inadequacies with this model setup time. Recall that
MARS only fires a rule when one of its conjuncts appears at the top of the
scheduling heap. When the data port of the latch first attains a new value,
it obviously will not satisfy the setup time requirement. At the end of the
setup time, however, there is nothing in the scheduling heap to cause the rule
to fire.

The first problem with the MARS modeling methodology results in
a rule not firing when it should. The second problem results in MARS not
blocking a rule from firing when the setup time requirement is not satisfied.
Notice that the setup time requirement is modeled as a constraint only upon
its starting and ending points. That is, the setup time requirement is con-
sidered to be fulfilled if a port has the same value at the beginning and end
of the setup interval. No constraint is placed on the intermediate times. A
short deviation of value (a glitch) will not be detected in the value of the
data port.

Specifically, consider port D of latch. If D has the value x at time 0,
the value y at time 10, and again attains the value x at time 20, then the
model of the setup time requirement has been satisfied even though the value
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on the data port had not had enough time to settle.

Solutions to each of these problems have been proposed and/or imple-
mented. To handle the scheduling problem, MARS includes meta-level rules
for inserting a special marker into the scheduling heap. The marker signals
that a certain rule should be checked, even though none of its conjuncts are
being asserted.

This patch is not satisfying in the sense that it is not consistent with
the MARS paradigm: The rule associated with a device only needs to be
checked when the input values of the device change. Furthermore, this fix
can lead to an indeterminate number of checks being placed in the scheduling
heap. The efficiency problems with this patch and how an interval vocabulary
solves them are discussed in section 4.2.2 of this chapter.

One way of viewing the point model of setup time is as a sampler
with frequency 2. Using this model, glitches can occur because the sampling
frequency is not high enough. The designer must choose a granularity and
sample at a high enough rate to detect glitches that are larger than the
prespecified granularity.

For example, instead of modeling a 20ns setup time by requiring that
the value on the data port be the same at time $t, and at $t-20, the designer
chooses a granularity of, say 5ns, and samples the value of the port at times
$t-20. $t-15, $t-10, $t-5, and $t.

This solution is inadequate first because of its bulkiness. A 20ns
setup time is relatively small. To detect 2ns glitches, each data port would
need 11 conjuncts to model its setup time. More important, the solution is
inadequate because, for any granularity that the designer chooses to sample
at, a shorter length glitch can go undetected.

Another proposed solution to the glitch problem is to associate a
state variable with every port, and store the last time a change was made to

the value of that port in the state variable. With this mechanism, enforcing
setup time is equivalent to requiring that the value (&lt;current-time&gt; — &lt;last-
update-time&gt;) is greater than the minimum setup time.
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Again, the problem of efficiency arises with this solution. It requires a
new state variable to be associated with each port in the design. Furthermore,
if this methodology is adopted in MARS, the number of rules required to
describe a design doubles. Everytime a value is asserted to exist at a port,
another rule must assert that &lt;last-update-time&gt; holds the current simulator
time.

Better than patching the point model of time is to have a vocabulary
with primitives that capture the concept of setup time. The interval is that
primitive. Figure 4.2 describes the latch from figure 4.1 using the interval
model. Setup time is satisfied if the length of the interval representing it is
large enough. The sampling frequency of the interval is infinite because an
assertion made about an interval of time is equivalent to the assertion made
at every point during the interval. The last-update-time is analogous to the
low bound of the interval.

Each of the patches to the point model is an attempt to incorporate
some part of the interval model into MARS. The interval model concepts that
each of the patches capture are themselves a description of what vocabulary
one needs to correctly specify setup time in a design.

4.1.2 Consecutiveness

Not all digital behavior results from constant values existing on the inputs
of devices. For example, the behavior of a D flip-flop is such that, the value
of the Q output port is set to the value of the D input port when the clk
input is rising, ¢.e., when the clock input was 0 a moment before some point
in time, and is 1 at the point in time.

In the case of the D flip-flop, the behavior of the Q output of the
flip-flop is a function of a change in the behavior of the D input, i.e., it
switching from 0 to 1. The method used to model the change using time
points resembles the method used to model setup time. When the clock
nput of the flip-flop becomes 1, an assertion matches the second conjunct of
the flip-flop rule, and the rule is fired. The third conjunct of the rule checks
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 ; Interval model

;Persistence must be modeled

(if (and (intersect $sect (D $d-ival) (G $g-ival))
(ival (val (port D latch) $d) $d-ival)
(ival (val (port G latch) $g) $g-ival)
(ilength $len-d $d-ival)
(ilength $len-g $g-ival)
(&gt; $len-d 20)
(&gt; $len-g 20)
(idelay 30 $sect ($lo-b $lo $hi $hi-b)))

{(ival (val (port Q latch) $d) (c $lo persists c)))

(if (and (intersect $sect (G $g-ival) (Q $q-ival))
(ival (val (port G latch) 0) $g-ival)
(ival (val (port Q latch) $q) $q-ival))

(ival (val (port Q latch) $q) $sect))
(true (val (port Q latch) $4) $t0))

[Figure 4.2: Interval Model of a Latch with a 20ns Setup Time
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Device dff

Ports: D, CLK, Q
No states

.; Modified SN74LS377 Octal D-type flip-flop

Data Setup Time:
Propagation Delay:

20 ns

18 ns

+ ;Point Model:

:;Persistence assumed

(if (and (+* $t ($t0 1) ($t1 20) ($t2 -18))
(true (val (port clk dff) 1) $t)
(known (true (val (port clk dff) 0) $t0))
(true (val (port d dff) $d) $t)
{true (val (port d dff) $d) $t1))

(true (val (port q dff) $d) $t2))
(ival (val (port q d4dff) $4) $g-ival))

“igure 4.3: Point Model of an Edge-Triggered D Flip-Flop
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to see that the value of the clock was 0, one time unit previous to when the
value was 1.

Because a point mode] of time is used to model the rising edge, the
design engineer is forced to choose a specific length of time, and check to see
that the clock was 0 that length of time previous to when the clock value
becomes 1. As in the setup time example, the choice of time length represents
the design engineer’s choice of design description granularity.

In figure 4.3 the granularity of description is 1 time unit. If the clk
input of the D flip-flop is driven with a period 1 clock, then the D flip-flop
rule will never fire. Whenever the clock input has a certain value, it will have
had the same value 1 time unit before.

A solution to this problem is to reduce the granularity used to describe
the flip-flop. If the D flip-flop rule checked the value of the clock input one
half time unit before the input becomes 1, then the rising edges of the clock
would cause the rule to fire. This solution, however, requires the design
engineer to anticipate the minimum width of any stray glitches that could
occur at the clock port of the flip-flop and does not solve the problem in
the general case. A glitch can occur at a finer level of granularity than that
which the rule employs for detecting a rising edge.

The underlying problem in describing edges is not one of granularity,
out of the inability of the point model of time to represent the consecutive-
ness of events. A rising edge is a combination of two consecutive events.

Specifically, a rising edge occurs at a port when the value of the port is 0,
followed immediately by 1. With a vocabulary for intervals one is able to
express the concept of consecutiveness, or abutment; unlike points, intervals
can meet.

The two rules in figure 4.4 give the interval model of the flip-flop’s
behavior. The first rule differs from the point model in three ways. First, the
setup time is modeled as an interval. This is done as in the previous section.

Second, in the point model of time, the propagation delay is accounted for by
adding 18 time units to the time when rise occurs. Using the interval model.
the idelay predicate is used to slide the interval up by 18 time units.
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Device dff

Ports: D, CLK, Q
No states

&gt; o

’y 3

Ce

vo»

vw

Ly

oe

, 3

Modified SN74LS377 Octal D-type flip-flop

Data Setup Time: 20 ns

Propagation Delay: 18 ns

i; Interval Model:

; ; Persistence must be modeled.

(if (and (meets $c (clk $lo-time) (clk $hi-time))
(known (ival (val (port clk dff) 0) $lo-time))
(ival (val (port clk dff) 1) $hi-time)
(ival (val (port d dff) $dat) ($a $b $c $d))
(ilength $d-len ($a $b $c $d))
(&lt; 20 $d-len)
(idelay 18 $hi-time $q-time))

(ival (val (port q dff) $dat) $q-time))

, ; Persistence

(if (and (ival (val (port q dff) $d) ($a $x $x $b))
(ival (val (port clk dff) $c) ($w $x $y $2))
(idelay 18 ($w $x $y $z) $q-ival))

(ival (val (port q dff) $d) $g-ival))

figure 4.4: Interval Model of an Edge-Triggered D Flip-Flop
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The important difference is in how the edge is detected. Under the
point model an edge is modeled as the value being 1 at time $t, and 0 at
time $t0. Under the interval model of time, a rising edge occurs when the
value of the port is asserted to be 1 over an interval, $hi-time, the value
was 0 over an interval $1o-time, and the two intervals meet.

The second rule is necessary because persistence is not assumed under
the interval model. We must model the fact that the output of a D flip-flop
does not change if the edge is not rising.

4.1.3 Tristate Devices

A common situation in digital design is output from several devices being
lied together by a single wire called a bus. All of the output must have the
same value, otherwise the value of the bus is in a state of contention. To
avold the problem of contention tristate devices are used. Tristate devices
are able to disable their output, cutting themselves off from the bus. If a
device on the bus asserts that it has a value and the rest of the devices are
disabled, then there is no contention.

The point model of a disabled output includes two patches to MARS.
First, a reserved value, hi-z, is asserted as the value of an output port when it
is disabled. Second, special wire models are used to connect tristate devices.
The special wires are equivalent to devices that collect all of the non-hi-z
inputs and if they are the same asserts their value at the output. If all of the
inputs to the wire are hi-z, then so is the output.

There are several reasons why the patches to MARS are undesirable.

The use of reserved value names that have special meaning is generally dis-
couraged. Errors that result from a design that unknowingly uses a reserved
variable name are difficult to track down.

Having two different types of wires is also an extremely ad hoc way of
modeling tristate devices. It violates modularity principles by coupling the
behavior of a wire and the device it is connected to.
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I'he introduction of hi-z into MARS’s vocabulary is, in effect, an
attempt to model intervals. Hi-z is equivalent to the upperbound of an
interval. Asserting that a port has the value, hi-z is asserting that it no
longer has a value. The concept of not having a value is captured by hi-z’s
anique behavior of not overwriting other values.

IMARS captures the desired behavior of hi-z in a single well-defined
design model. Instead of special tristate wires detecting contention, IMARS
is able to detect contention at all ports. This capability is discussed more in
section 4.3.1 of this chapter.

Because IMARS does not have an implicit model of persistence, it
includes the concept of a port not having a value. A gap between the intervals
when a port has a value, is an interval during which the port has no value.

To model tristate devices and a tristate bus nothing special need be
added to IMARS or IRS. Contention exists when two devices that are con-

nected are outputting different values onto the bus. Devices with disabled
outputs do not assert any value onto the bus.

4.2 Efficien_y

Part of the question, “What is the representational power of a new vocabu-
lary?” is declarative: What situations can be represented? Another facet of
representational power is, how efficiently may tasks be performed with the
representation?

The previous section presented examples which demonstrate that time
intervals allow a broader class of situations to be modeled correctly. The
examples in this section demonstrate that certain tasks may be performed
more efficiently using the interval model.
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4.2.1 Latch

A forward chaining task is one in which conditions cause rules to fire, which
in turn setup new conditions, which cause new rules to fire. The examples
presented thus far have demonstrated problems that can occur with a forward
reasoning simulator. Either a rule fires when it should not, or a rule does
not fire when it should.

Different types of problems can occur with backward reasoning tasks.
Backward reasoning tasks are characterized by being given a set of existing
conditions and, as a goal, trying to determine which rules fired to cause the
conditions to exist. Diagnosis and test vector generation are two tasks that
involve backward reasoning.

A problem associated with backward reasoning is that of infinite
regress. Smith gives an example of this over the domain of integers [Smi85].
After presenting his example I will show that the problems are a result of
the discreteness of integers and that the map directly onto the point model
of time. Smith’s example:

We are given the rules:

PosInteger(1l), and
PosInteger(X) «+ PosInteger(X-1).

Proving that 3 is a positive integer is a “straight backward” process.
3 is a positive integer if 2 is, 2 is a positive integer if 1 is, and we know that
l 1s a positive integer. When the same question is asked of 2.5, the problem
regresses infinitely. 2.5 is an integer if 1.5 is. 1.5 is integer if .5 is, and so on.

As a solution, Smith proposes representing what is contained in the
data base, and using that knowledge to cut off infinite regressions. In the
above discussion, 1 is the smallest integer in the database, if the argument
to PosInteger ever falls below 1. then the rule fails.

An alternate solution is to use intervals and negation to assert when

the PosInteger rule should fail. —PosInteger([o,0,1,0]) could represent
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Device state-mach

Ports: clk
States: curr-state

(if (and (+x $t (1 $t1))
(true (val (state curr-state state-mach) $s) $t1)
(state-table $S $next-s)
(true (val (port clk state-mach) 0) $t1) ;clk-rise
{true (val (port clk state-mach) 1) $t)) ;clk-rise

(true (val (state curr-state state-mach) $next-s) $t))

(state-table SO S1)
(state-table S1 SO)

Figure 4.5: Point Model of a Two State Machine

the fact that, if the argument to PosInteger is between 0 and 1, exclusive.
then the deduction is false and should stop.

With this mechanism in place, the query PosInteger(2.5) reduces
to PosInteger(1.5). And PosInteger(1.5) reduces to PosInteger(.5),
which in turn would cause the query to return False.

Infinite regression also can occur with backward reasoning tasks in the
digital design domain. The device in figure 4.5 is a clock driven, two state
machine. On a rising edge of the clock input the state machine moves to the
next state in the state table. In this example, there are only two states, SO
and S1.

A desirable subtask of diagnosis and test vector generation is to de-
termine, given a set of conditions, a series of inputs and the times at which
they occur that will cause the state machine to be in a certain state at a cer

tain time. Using the point model, the conditions are specified by the true
statement. As an example, consider the goal of determining the initial value
of curr-state given the conditions:
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(true (val (port clk clock) 0) 0), and
(true (val (state curr-state state-mach) Si) 15)

Also, assume that clk is driven by a cloc

(if (and (true (val (port clk clock) $x) $t))
(bnot $x $y)
(+ $t 5 $t1))

(true (val (port clk clock) $y) $t1))

Working backward through the rules that model the state machine,
$t is bound to 15, $t1 to 1, and $next-s to S1. New goals are setup, clk
must be 1 at time 15 and 0, at time 14. $S is bound to SO. and the value of
curr-state at time 14 must be SO.

Because clk must be 1 at time 15, working backward through the
clock behavioral rule, it must be 0 at time 10, 1 at time 5, and 0 at time 0.
Carrying out the same regression with the rest of the conditions, the original
goal is satisfiable if curr-state is SO at time 0.

Like the PosInteger example, if the time at which the goal state
is supposed to exist is not an even multiple of the clock frequency, then the
backward reasoning facility regresses infinitely. If the goal were, “curr-state
is S1 at time 8,” a subgoal would be setup that it is SO at time 3. There is
no fact in the state machine’s history to match this, so it checks at time -2,
and so on.

Smith’s solution [Smi85] is to add a meta-level rule that detects when
the argument to the query is less than the earliest time that an assertion

is made about curr-state’s value. If the goal time were very large with
respect to the clock increments, however, then the number of checks that
would need to be made would also be large. Furthermore, the addition of
the meta-level rule to solve this is too problem specific. A common way of
asserting that a port has always had a value is to assert that it received the
value at time —oo, and let the value persist. In this instance, Smith’s least
value solution would never reach the base case.
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Device state-mach

Ports: clk
States: curr-state

(if (and (meets $meet-pt (clk $ilo) (clk $ihi))
(ival (val (port clk state-mach) 0) $ilo)
(ival (val (port clk state-mach) 1) $ihi)
(ival (val (state curr-state state-mach) $s)

($x $y $meet-pt $2))
(state-table $s $next-s))

{ival (val (state curr-state state-mach) $next-s) $ihi))

(if (and (meets $meet-pt (clk $ihi) (clk $ilo))
(ival (val (port clk state-mach) 0) $ilo)
(ival (val (port clk state-mach) 1) $ihi)
(ival (val (state curr-state state-mach) $s)

($x $y $meet-pt $z2)))
{(ival (val (state curr-state state-mach) $s) $ilo))

(state-table SO S1)
(state-table Si SO)

Figure 4.6: Interval Model of a Two State Machine

The interval solution proposed for the integer rendition of the problem
also works in the digital domain. The interval description of state-mach’s
behavior is given in figure 4.6. The behavior is captured by two rules instead
of one: First, the value that a state machine receives at the rising edge of
a clock stays with it during the interval the clock value remains high. The
second rule says that the current state of the state machine does not change
when the clock edge falls, and that the value remains constant as long as the
value of the clock is 0.

I'he second rule is a frame axiom [Hay73], that explicitly specifies how
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long the value of curr-state persists. As a result, the behavior of the state
machine is completely specified. There is never a time at which it does not
have an explicitly asserted behavior. Furthermore, because the behavior of
the component is completely defined, the backward reasoning regression is
not infinite.

[n the interval model the initial conditions and the clock behavior are

given by:

(ival (val (port clk clock) 0) (c 0 5 o0))
(ival (val (state curr-state state-mach) SO) (c $x 8 o))

(if (and (ival (val (port clk clock) $x) $i))
(bnot $x $y)
(idelay $i 5 $i1))

(ival (val (port clk clock) $y) $i1))

There are two possible paths that the backward reasoner can start

down to achieve SO at time 8. They correspond to the two rules that model
the state machine. If the clock ends up being high at time 8 then the first
rule is the correct path, otherwise the second.

Following the first rule, 8 must be contained in the interval $hi.
$hi meets an interval $1lo during which clk was 0. $1lo matches the fact,

(ival (val (port clk state-mach) 0) (c 0 5 o)). Back substituting,
this constrains clk to 1. Finally the test generator concludes that the
curr-state must have been S1 at time 0.

The previous example was generated manually. No modifications were
made to the Helios test vector generator or diagnostician to perform such
reasoning. Achiever [Joy83] performed a restricted case of the backward
reasoning described here. The results on the single example of a D flip-flop
show an order of magnitude increase in the time efficiency of the backward
reasoner.
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Device Same

Ports: A, Y
No states

(if (and (+ $t 10 $t1)
(true (val (port A same) $x) $t)
(true (val (port A same) $x) $t1))

(true (val (port Y same) 1) $t1))

Figure 4.7: Point Model of Device Requiring a Recheck Marker

4.2.2 Recheck

In the setup time discussion it was shown that because MARS only checks
a rule when an assertion from the scheduling heap matches a conjunct in
the rule, it is possible that the rule does not fire even though the antecedent
of the rule is satisfied. This problem occurs whenever two conjuncts in the
antecedent of a rule reference the same port at different times.

The device, same in figure 4.7 exemplifies the problem. Consider the
MARS simulation started with the assertion:

(true (val (port A same) 0) 0)

MARS removes the assertion from the heap. It first tries to bind $t
to 0. This results in $t1 being bound to 10, and in the rule failing because
a lookup was attempted on a statement with a time stamp greater than the
current simulator time. Next, MARS matches the removed statement to the
third conjunct of the rule. $t1 is bound to 0, $t is bound to -10 and the
rule fails because A did not have a value at time -10. No more assertions are

in the scheduling heap so the the simulation is over without the same rule

firing.

Assuming persistence, at time 10 same’s antecedent is satisfied. J
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should have a value after time 10. To correct this problem, whenever a rule
fails because a conjunct’s instantiated time stamp is in the future, a marker
is placed in the heap at the time that the conjunct should be checked. The
marker matches the failed conjunct, and consequently causes the rule to
refire.

In the above case, the marker has the form (true (val (port A
same) $x) 10). The effect of the marker is the same as if there was a rule
that found the value of A at time 10 and reasserted it. When the marker

matches the second conjunct, $t1 is bound to 10, $t is bound to 0, and the
rule succeeds.

In addition to the marker matching the second conjunct, it matches
the first. When it matches the first, $t is bound to 10, $t1 to 20, and again
a marker is placed in the heap because a lookup was done in the future.
Once placed into the queue, the marker will reassert itself every n time units
where n is the difference between the time stamps of the conjuncts that check
the same port. The combinatorics of the reassertion scheme can overburden

MARS for many designs.

The important difference between the point and interval models is
captured not only in the behavioral descriptions; the representation of sim-
1lation data is equally important. The interval model simulation data is:

(ival (val (port A same) 0) (c 0 &lt;upper-bound&gt; o))

Same’s output is 1 during the interval that results from intersecting (c
0 &lt;upper-bound&gt; o) delayed by 10 time units with itself. In IMARS there
is no implicit assumption of persistence, and consequently no need for the
recheck marker. Assertions include the whole interval over which a port has
a value. Waiting for the current simulator time to change will not increase
the upper bound of the interval.
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4.3 New Tasks

The representational power of a language can be discussed in terms of its

declarative, and procedural aspects. The declarative aspects of a language
encompass the question: What can be said with this language? The pro-
cedural aspects are captured in: What tasks may be performed with this
language?

In section 4.1 of this chapter, I presented examples which demonstrate
that the declarative power of the point model of time and its associated
vocabulary is less than that of the interval model of time. In this section, I
lemonstrate the procedural power of the interval model of time: What new
tasks may be performed with the interval model of time that can not be

performed with the point model?

4.3.1 Contention

In the MARS algorithm, as it is described in chapter 3, no ordering is specified
in the scheduling heap for assertions with the same time stamp. Because
MARS employs a depth first, forward chaining inference mechanism [Sin83],
the actual ordering is that the last statement, out of a set of statements made
about the same point in time, is the one closest to the top of the heap. In the
case that two statements assert that a port has different values at the same

point in time,“...the old value is removed. There is an implicit assumption
that the latest information is more correct...” [Sin83, p.21].

Singh gives the example in figure 4.8 to support the need for overwrit-
ing. A change of the value at point a in the circuit causes three sets of rules
to fire: I, the rules associated with the inverter, A, the rules associated with
the And gate that fired because of a change at point b in the circuit, and A,
the rules associated with the And gate that fired because of a change in the
value at point c. in the circuit.

The only constraint on the firing order of these rules is that I must

precede Ap. This leaves three possible orderings: (I, Ay, Ac), (I, Asp Ab)
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Figure 4.8: Simulation of Zero Delay Components

and, (Ac, I, Ap). Because there is no delay associated with any device, the
results of all rule firings are assertions at the point in time that the original
change at a occurred.

Consider the firing order (I, A;, A.) when the value at point a is
changed from 1 to 0. Point a going from 1 to 0, causes the value of b to go
from 0 to 1, which causes the output of the And gate to have the value 1.
Following the lower path, a going from 1 to 0 causes c to change from 1 to

0, causes the output of the And gate to have the value 0. Two conflicting
assertions have been made about the value of the And gate at a single point
in time.

As per the overwrite rule, the last assertion about the value at d takes

precedence. This models the correct behavior. However, representational
power is sacrificed by implicitly assuming that the last value asserted is the
correct one. With overwriting allowed, it is impossible to detect a certain
type of incorrect behavior specification —those in which the design engineer
specifies more than one behavior for a port at a single point in time.

At the root of the need for overwriting is MARS’s implicit assumption
of persistence. From the example, the first value asserted at point d was a
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result of firing the And gate rules with the new value at b, and the value
that persisted at c. The conflicting assertion about the value at d was made
as a result of using the new value at ¢ and the new value at b.

If MARS did not assume persistence, the first And gate rule firing, A,
would not occur because the c port of the And gate would not have a value
until the value was propagated from a to c.

IMARS does not assume persistence, and consequently does not re-

quire overwrite rules. By doing away with the need for overwriting, IMARS
can consider any attempts at overwriting to be errors in the design specifica-
tion and report them as such. Either the design engineer erred —two different
oehaviors were specified to exist at the same place and time, or a contention

condition exists. Two devices are trying to drive a third with different values.

The ability to differentiate between inconsistency in design specification and
normal simulator behavior is an important task that IMARS can do because
of the introduction of intervals into the design vocabulary.

4.3.2 No Behavior

Apart from tristate devices, it is usually the case that an accurate model of
a device specifies a behavior of the device at all times. An indication of a

possibly faulty model is the lack of behavior at an output port during some
interval of time.

One would like to be able to detect when, during the simulation of
a device, the behavior of the device is unspecified. Using the point model
of time this is extremely difficult; MARS implicitly assumes the persistence
of values at ports. Consequently, once a port attains its initial value, it will
never again not have a value.

Because IMARS does not have an implicit model of persistence, gaps
of no behavior can appear in port histories. These periods of no behavior

indicate that either the behavior of the device’s inputs was not specified, or
the behavior of the inputs was specified but none of the rule antecedents were
satisfied by those inputs.
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To find the periods of no behavior, it is sufficient to scan down the his-
tory of each port checking whether successive intervals meet. If they do not,
then there is a interval of time during which a port had no behavior. Given

this information the design engineer can decide whether the incompleteness
of definition was intended, as in the case of tristate devices, or needs to be
corrected.

4.4 Subsumption

[ have shown that in many cases there are modeling tasks that cannot be
performed using a point model of time, but can be performed with an interval
model. The question arises: Are there tasks that can be performed with the
point model that cannot be performed with the interval model? The answer
's, no. The interval model of time subsumes the point model. This is to
say, any statement made using the point model of time and its associated
predicates can also be made using the interval model. The transformation
from the point to the interval model is performed by the MRS meta-level
rule:

(If (true (val (port $x $y) $z) $t)
(ival (val (port $x $y) $z) (c $t persists c)))

If one wanted to omit the persistence assumption from the point
model, then the rule would be:

(If (true (val (port $x $y) $z) $t)
(ival (val (port $x $y) $2) (c $t $t &lt;)))

The purpose of including rules like these is to show that no power
or simplicity of description is lost in switching from the point to interval
model. It is extremely important to remember that the goal of IRS is not to
be equivalent to a point model. I have demonstrated that the point model
of time is inadequate for modeling digital designs, and have showed that
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che explicit control of persistence afforded by the interval model solves the
nadequacy



Chapter 5

Summary &amp; Conclusion

Allen introduced an interval-based temporal logic for describing temporal
intervals as primitives in a knowledge representation language [All83]. 1
implemented parts of Allen’s logic in IRS, and applied IRS to the problem
of modeling digital designs. This thesis investigated the question: Of what
use are temporal interval primitives for modeling digital designs?

Previous to my work, the Helios system (and more specifically its de-
sign description language, Corona) used a point model of time. The behavior
of a design was described as a set of events occurring at points in time. When

no event occurred the behavior of the previous event was assumed to persist.

By introducing IRS and its associated interval vocabulary I was able
to contrast the representational power of a point and a interval model of
time. The conclusions from my comparison indicate that the interval time
model is representationally more powerful in several ways:

1 Situations that cannot be described using the point model of time can
be described using the interval model.

2. Certain reasoning tasks may be performed more efficiently using the
interval model of time.

5
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3. Certain tasks may be performed with the interval model of time that
could not be performed using the point model.

Chapter 1 gave an overview of work that has been done in the area

of representing time for digital design reasoning and stated the goals of this
thesis. Chapter 2 presented the Helios Design Assistant as an example of
system that uses a point time model for describing digital designs. Both
the Helios design description language, Corona, and the simulator, MARS
were described in detail. Chapter 3 defined the IRS predicates, presented
the modifications to MARS that are needed to support IRS, and ended with
a contrast of how one describes designs using the two time models.

Chapter 4 investigated, via case studies, different aspects of the in-
terval time model's representational power. The first set of case studies

demonstrated that the concept of consecutiveness can not be described using
a point model of time. It also showed that to model tristate devices, ad
hoc functionality had to be added to the point simulator, and that the added
‘unctionality served only to mimic properties of the interval time model. The
second set of case studies demonstrated that a backward reasoning task was
more efficient when modeled with intervals and that a class of assertions could

be avoided when a point model of time was not used. The third section of

chapter 4 demonstrated two tasks that could be performed using the interval
model of time but not the point model. The first task was finding contention
among different devices, and the second task was determining when no be-
havior was attributed to a device at a certain time. Chapter 4 ended with

an argument that no representational power is lost when one switches from
the point to the interval model of time.

Directions for Further Research

The implicit assumption of persistence, Hayes’s frame problem, and the con-
trast between point and interval models of time are all closely related. It is
conceivable that the power of intervals and the interval time model is derived
from their ability to represent a frame or boundary around a span of time.
One direction for further research would be an attempt to axiomatize the
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relative powers of the point and interval models of time, and show that the
difference is exactly the ability to describe Hayes’s frame axioms.

Ladkin is extending Allen’s logic of convex sets of points, i.e intervals
to sets of convex collections of points [Lad86a,Lad86b]. He is using his logic
to describe events which recur regularly. An analysis of the representational
power of his temporal model will need to be carried out, and the same ques-
tions as posed here will have to be asked about the relative powers of Allen’s
interval model and Ladkin’s recurring model of time.
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