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ABSTRACT

The problem of minimum variance estimation is considered for
a class of general nonlinear systems, Nonlinear relationships in both
the system dynamics, as well as the measurement process are investi-
gated from a new point of view, Two techniques of nonlinear estimation
are explored with explicit comparison to the linear, Kalman estimator
being made whenever possible,

The first technique uses a series expansion to approximate the
nonlinear functions, The required estimation equations are derived in
a straightforward manner, and the resulting system is demonstrated
in a numerical example with a comparison to two other techniques.

A new approach to nonlinear estimation, which introduces a con
cept of quasi-linearization, is demonstrated, The proper estimation
equations for nonlinear system dynamics, as well as measurement non-
linearities, are derived and some of their special characteristics
discussed, The quasi-linear estimator is demonstrated in two examples,
both analytically and numerically, and its performance is compared to
‘he series estimator. as well as the linearized estimator,
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CHAPTER I

INTRODUCTION

Making an accurate estimate of a set of physical parameters

given information only in the form of measured quantities corrupted

by large uncertainties is the problem of concern in this investigation

and is one which can be associated with activities of men for countless

years. Though perhaps not always recognized as such, examples of

early estimation procedures can be found in navigation, at first on

land and later on the oceans, utilizing measurements, however crude,

of stars, the sun and moon, and familiar landmarks. Such measure-

ment data have been processed in systemmatic ways ranging from

simply use of good judgement and previous experience to application

of more complex mathematical data processing and geometric tools.

Although the estimation problem as a formal analytic procedure

has become a major area of interest to engineering only in relatively

recent times, it has by now become somewhat classical. Some of the

more recent work which evolved into the estimation theory of today is

discussed in the following chapter with emphasis on the developments

which are most closely associated with the objectives and results of

this thesis.

The early forms of analytical estimation techniques progressed

from simple curve fittings, an example of which is the least squares

estimator, to the more sophisticated Wiener filter, valid for station-

ary random processes and time invariant systems.



A more generally applicable technique, one which has found

wide application in engineering and is particularly useful in light of

the modern day digital computer capability has been developed by

Kalman (1960), (1961), (1963) and is often referred to as the Kalman

filter or estimator. This revolutionary approach is valid for non-

stationary statistics and provides the transient as well as the steady

state solution. The Kalman estimator, therefore, considers the

dynamics of the system and the statistical nature of any disturbances

as well as the measurement quantities. In addition, a priori informa-

tion about any system parameters may be included in the problem

formulation and the Kalman estimator can be constructed in a recur-

sive manner,

All of these features in combination provide a technique for

utilizing redundant information for the purpose of estimating the state

of some system, and doing so in an optimum fashion, The criterion

for optimality can be either maximum likelihood or minimum variance.

However, under the restrictions normally imposed upon systems to be

estimated with this technique, these two criteria result in the same set

of estimation equations. These restrictions are, first, that the sta-

tistical nature of the random variable to be estimated can be described

by a Gaussian density function and, second, that all the equations as-

sociated with the system description be linear. This linearity is

required in both the system dynamics as well as the measurement

process. The requirement of linear equations does not necessarily

restrict the use of Kalman estimators to linear systems; however, it

does require some form of linearization before the estimation equations

can be applied and therefore an approximation is unavoidably introduced

at the start.

The Gaussian restriction mentioned above has been relaxed

somewhat with more recent techniques; however, the requirement for

linear equations is still basic to Kalman estimation and is part of the

motivation for this investigation.



Many practical systems do not readily lend themselves to an

accurate linearized description and, therefore, the Kalman estimator

is not adequate for these systems. The importance of a nonlinear es-

timation technique has motivated several individuals to investigate

this problem and some specific results of this work are discussed in

Chapter II. Most of these techniques depend on a series expansion of

the nonlinear function about a reference state, The resulting series

does not converge in any predictable manner, if at all, which is a

serious limitation of this procedure. Also, there are many nonlinear

relationships of interest, such as two or three level switches and

quantizers, for which a series expansion cannot be used. These two

major difficulties with nonlinear estimation using series expansions,

have provided the motivation for this research,

Using a new point of view, two techniques for nonlinear mini-

mum variance estimation are presented in this thesis. Chapter III

deals with a Taylor Series expansion procedure which is slightly dif-

ferent from that taken by others and consequently provides a different

result. A completely new technique for nonlinear estimation is intro-

duced in Chapter IV, the required estimation equations for the resulting

recursive estimator are developed, and some of their more interesting

properties discussed. This technique is referred to as a quasi-lineari-

zation and is more precisely defined in Chapter IV, Under certain

conditions these equations can be simplified for easier computation

and in Chapter V an example is used to compare this simplified

technique with the series expansion procedure as well as a linearized

estimator using the Kalman formulation and the general quasi-linear

estimator,

Chapter VI deals with some of the more mechanical problems

associated with the implementation of the new approach. A compari-

son of the complete formulation of the quasi-linear estimator, the

simplified estimation equations, and a linearized estimator is then

made for a nonlinear second order oscillator in Chapter VII. Finally,

Chapter VIII is devoted to a summary of the results and conclusions

contained in the preceding chapters as well as some remarks on the

general nature of quasi-linear techniques and related problems not
considered in this thesis.



Throughout this investigation, a particular type of system has

been used as a vehicle for demonstration of the estimation techniques.

The system chosen is one which can be described by continuous dynamic

equations and a series of discrete measurements at arbitrarily selected

points. The reason for this choice is two fold. First, this type of sys-

tem is most probably the type which will be implemented in present day

as well as future systems with high speed digital computers. Although

the digital nature of these computers requires that the system equations

in the computer for both system dynamics and measurements be dis-

crete in form, the actual equations for motion of the system are des-

cribed by continuous differential equations. Second, the restriction

of discussion to such a system is by no means a limitation of the

techniques described, and in most cases the extension to other types

of systems is straightforward, The restriction does, however, pin-

point the analysis allowing a more concentrated investigation of the

estimation problem.



CHAPTER II

THE GENERAL ESTIMATION PROBLEM

2.1 Problem Definition

In order to facilitate an understanding of the following dis-

cussion concerning optimum estimation, both linear and nonlinear,

a system of equations describing the general estimation problem is

given here, For all further discussions, it will be assumed that a

vector quantity known as the state of some dynamical system has a

time behavior which can be described by the following first order

differential equation

x=f(x, t)+ G(t)u (2.1)

In Eq. (2.1) f(x, t) is a general nonlinear n X 1 vector function of the

n dimensional state vector x, G(t) is an n X n coefficient matrix and

u is an n X 1 vector of independent Gaussian white noise processes. A

matrix which represents the variance of this noise process is defined

by the following

a(t) u(r) = Qr)) s(r, - 7.) (2. 2)



where T is used to signify a transpose and the bar represents an

ensemble expectation.

Note that by a proper redefinition of state variables, any order

system can be expressed in the form of a first order vector differential

equation, For example, given the scalar system

y 2 \e/ Ls (2. 3)

Define

"EY =X

then

£5
= f(x, t) (2. 4)

glx, t)

Equation (2. 4) represents a two dimensional state and is a first order

equation as desired.

Necessary for any of the estimation techniques described here

is a measurement process which uses information external to the sys-

tem itself in order to improve the knowledge of the state vector at any

time, This measurement process may take the form of a continuous



signal or it may be a discrete set of quantities at selected points. In

either case, the general relationship between the measurement quantity

and the system state is described as follows

z= h(x, t}) + v (2. 5)

In the above equation z is the m X 1 measurement quantity with m &lt; nj;

h(x, t) is, in general, an m X 1 nonlinear vector function of the state

and v is an m X 1 vector of Gaussian white noise processes. In this

case, the variance matrix of the noise is defined by the following

equation

V(r) vr = R(T) 5 (7, - 7) (2. 6)

Important to all of the estimation schemes discussed here are

the following two quantities. The first represents the state estimate

which is taken to be the conditional mean of the random process.

Thus,

dx{ x p(x| Zz) (2.7)

In Eq. (2. 7), p(x|Z) represents the probability density function of the

state vector, x, conditioned upon all the measurement quantities in

the set, Z. This definition of the estimate minimizes the variance

of the estimation error conditioned on all the informationinhand:



the a priori information and the measurements. The second quantity of

interest is a representation of the mean squared error in the state esti-

mate and is also the second central moment of the above density function,

0

p= -Dx-0 = x-D&amp;-0T plz) ax (2. 8)

The above equations will be specialized for the particular type

of problem under consideration in the following discussions. In addi-

tion. new quantities will be introduced; however, this general definition

of the basic problem will be retained.



2,2 Research Related to this Investigation

The problems of estimation and control of general nonlinear

systems have been considered for many years with early work being

accomplished by Zadeh and Ragazzini (1950), Laning (1951), Booton
(1952) and others. Only the special case of stationary statistics and

linear systems could actually be carried through to a useful solution.

The linear system with nonstationary statistics was treated from a

new viewpoint by Kalman (1960), Kalman and Bucy (1961) as well as

Stratonovich (1959) and (1960). The work of Stratonovich pioneered

the exploration of random process behavior and the evolution of the

conditional density function which, coupled with Kalman's fresh ap-

proach to estimation triggered a more intensive investigation into the

nonlinear problem,

There are also several alternative approaches to nonlinear

estimation, suggested by Bryson and Frazier (1962), Detchmendy
and Sridhar (1966), Friedland and Bernstein (1966), Ohap and

Stubberud (1965) as well as others. These individuals were generally

concerned with particular specialized problems and their work is some-

what peripheral to the contents of the following chapters. The work

based on the examination of the conditional density function and the

conditional mean as the optimum estimate is most closely allied to

this work and is therefore discussed further in the following.

As pointed out by Stratonovich, it is sufficient, for a nonlinear

minimum variance estimate, to have knowledge of the probability den-

sity function of the random process to be estimated conditioned upon

the measurement process, The mean of this density function is easily

shown to be the optimum estimate, Thus, the estimation problem can

be considered as one of determining the time evolution of the above

mentioned function, and Stratonovich (1960) attempted to do just that.

Although not completely successful, it was the start of a new approach

which was also followed by several others. Four years after this at-

tempt, Kushner (1964) provided an essentially correct formulation of



the nonlinear problem using this approach. The most important general

result of Kushner's paper is the differential equation for the evolution of

the conditional density function. Using this equation, an expression for

the density function at any time can be used to evaluate any desired

moments, the first of which is the minimum variance estimate,

Once this procedure had been outlined by Kushner, several indi-

viduals pursued this approach and approximately one year later Bucy

(1965) presented a more rigorous derivation and an example. The

straightforward and relatively simple procedure proposed by Bucy also
resulted in a partial differential equation governing the temporal evolu-

tion of the conditional density. The result of applying the Ito (1961)

stochastic calculus to the assumed Markov process is the desired result

given below.

 ad H=AHdt+(h-BR*'(dz-hdt)H (2. I)

In the above equation H(x, t, Z) = p(x|Z) represents the desired con-

ditional density function, and h and dz are related to the nonlinear mea-

surement function as follows:

1z=hdt+ RY2 dp (2. 10)

dB being a vector process of independent Brownian motions. The A

operator is defined by the following expression:

n n
2

A o) = _0 (. 1 97 o ‘ * 2.11
Alyse dx 01+} ) ) 0x. 0x. log oj 9] (

i=1 j=1 1]



corresponding to the state differential equation given below

1X = f(x, t) dt+ o (x) dB (2.12)

Using Eq. (2. 9), approximate equations of evolution of the mean
of the state, X and the variance P = (x - xX)? can be determined, Most

of the individuals dealing with this problem have then made the assump-

tion that (x - x) has a symmetric distribution and that a series expansion

of the nonlinear functions about x can be accomplished. This expansion

can be used to evaluate any number of moments; however, as demonstra-

ted in the third and fifth chapters of this thesis, the computations re-

quired for moments higher than second are lengthly at best.

Following Bucy's paper, Bass et al (1965), extended the above

procedure for approximating the evolution of moment terms to the

general vector case in a straightforward and rigorous manner. Under

the assumption that central moments of order higher than two are ap-

proximately zero, the following set of estimation equations were found:

c=1@+5f @P+Ph ®R [z-hE - th(x) P] (2.13)

In the above equation, the subscripts signify a partial derivative with

respect to the vector x. Thus:

nN bd 9 (h)
ox

(2.14)

Jd 0
h =—[— (h)XX 0x 0x ]



For the second central moment, the following equation results:

= PFi@+t ®P-P (bh Rr h (x)] P

— NQGEE +3 GE QG®T] _P
XX

)

= p-1 i po
{Pp h x)R ~ [z - h(x) - 5h (x) Pl}P

(2.15)

The assumption of only two significant moments is not required

of this general technique; however, it is again a practical one from a

computational viewpoint, In some cases, it may be important to keep

an odd moment, for example the third, and a possible procedure for

this is discussed in Chapter III. These considerations are also dis-

cussed in a later paper by Schwartz and Bass (1966) along with some

explanation of the use of a priori information.

One of the most extensive discussions of the use of conditional

density functions and moment evolutions for nonlinear estimation can

be found in Fisher (1966), The dynamic equations which describe the

conditional probability density of the state vector are derived with the

detail of each restriction and assumption discussed. Ordinary stochas

tic differential equations are then derived for central moments of this

density function. The particular moments used by Fisher are a special

type especially useful for density functions which are near Gaussian.

A further description of these moments is found in Appendix A of this

thesis. Ultimately, the requirement for a Taylor Series expansion of

the nonlinear function is again necessary in order to obtain a solution

to the moment equations, as in the case of the other works described

above,



All of the work mentioned above represents investigations of

continuous systems and continuous measurement processes, Ho and

[Lee (1964) have considered the discrete problem utilizing a Bayesian

approach to solve for the conditional density function and from this

the desired estimation updates at measurement points. As discussed

in their paper, several difficulties were encountered in the application

of this technique to the general nonlinear problem which resulted in

very limited use. However, the approach was again explored by

Jazwinski (1966) for a general nonlinear discrete measurement with

additive Gaussian white noise, The procedure is the following. Given

a measurement which can be described as follows

7
~r

 9 -V) + \ (2.16)

where h(x, t) is a general nonlinear measurement function and v is

Gaussian noise with variance

Wr) vr) =R (1) 6 (1, - 7," (2. 17)

the conditional probability density function of the state, x conditioned

upon the measurement sequence, Z, is given by

Wiz) = Hx, t, Z) (2.18)

By indicating the measurement sequence up to but not including the

present measurement with Z(t) and using Z (t) to indicate the com-

plete sequence, an expression for the conditional density after mea-

surement incorporation is found to be



p(zlx) H(x,t,Z")
Hx, t, 2) =-_ ee

(pzix) H (x,t, Z7) dx

(2.19)

The above equality also makes use of Bayes' rule.

Because of the assumption of Gaussian v, the conditional

density p (zx) can be written as follows:

p (21%) = ——5——7s2ry™/ 2 |r! °

.
.

’
ud

[z - h(x, £)17 R™1 [z - h(x, t)]

(2. 20)

The equations for the update of any of the central moments of

H(x,t, Z) can then be found as demonstrated by the following expressions

for the first two such central moments.

0

: {x H(x,t, Z) dx

(2. 21)

o0
— — 2 T

pt = (x - xt) (x _xhT = {xT H(x, t, Z) dx - xr xt



In order to evaluate the expectations indicated in Eq. (2. 21), a Taylor

Series expansion about x is again employed. The resulting expressions

for the updates of the first two central moments are given below

1. “m+ LP -H R [z- hE ) (2.22)

pr =P. Lp TRY [2-0&amp; 0] [z-n&amp;0]TRYHP5 oT Zz x ] [2 X

(2. 23)

v here

— T ..-1 —

D=1+ % {[I h(x, t)]" R ~ [z - h(x, t)]
2 Teg

(2. 24)

tr HIR IHEP) [z-h&amp;E0]TRIHP-HIR![2-01)])

11d

q a
-—

9h, (%, |
0x.

; J

(2. 25)

3T I 0
_0xy Ix, ox

| nN



[
il p- d

|,Tid” Pd
-

4% pd

Some of the characteristics of these results are worthy of special note,

particularly as a comparison to other recent results in nonlinear esti-

mation, First, the two update equations, Egs. (2.22) and (2.23), are

coupled through their direct dependence on the actual measurement

quantity, Thus, P does not represent an ensemble statistic as in the

linear estimation problem, but reflects the actual random errors en-

tering the system through the measurement process. As also pointed

out by Jazwinski, these update equations will not reduce to the proper

linear equations if the nonlinearity is specialized to a linear function.

This is a result of the nature of the approximation made, By using a

different approximation technique, a result is obtained in Chapter III

of this investigation which is different from that above in both respects.

Recently, Kushner (1967) has reported on a technique for

achieving approximate nonlinear minimum variance filtering which is

most closely related to the work contained in the subsequent chapters

here and tends to support the general results as well as those for a

particular example, Again, the initial effort of Kushner is aimed at

developing differential expressions for the conditional density function

of the random process and from this, equations describing the evolu-

tion of the first two moments. Each of these latter expressions con-

tains expectation terms which must be evaluated in some approximate

manner, As pointed out by Kushner and as also noted in subsequent

chapters of this investigation, the procedure of expanding these ex-

pectations in a Taylor Series is often not an adequate approximation.

The general procedure therefore is to assume a particular

form for the conditional density function and proceed with the evaluation

of the required expectations. An example of the van der Pol oscillator



is used by Kushner and has provided an interesting comparison for the

results of this paper as shown in Chapter VII,

It is worth noting that Kushner is one of the few individuals who

has attempted even in a qualitative manner, to show specifically the

salient differences and advantages of using nonlinear estimation tech-

niques over simply a Kalman filter linearized about a reference state,

One of the original objectives of the investigations described in the

following was to examine the conditions which warrant the extra com-

plexity involved in nonlinear estimations. It became evident to the

author that linearized estimation was quite adequate in many practical

nonlinear cases and that some of the nonlinear schemes which have

been proposed offer no significant gains over use of simply a linearized

estimator.





CHAPTER III

SERIES ESTIMATION

3.1 Introduction

The focal point of the approximation method discussed in this

chapter is the nonlinear functional element which can be isolated in

either the system dynamics, assumed to be continuous, or in the mea-

surement geometry where measurements are assumed to be discrete,

This approach is better understood by examination of Fig. 3-1. With

reference to the figure, the nonlinear functions f(x) and H (x) which

appear in the dynamics and in the measurement process, respectively,

have corresponding counterparts in the system model and measurement

incorporation process. These quantities N, and N, in some sense ap-
proximate the behavior of the corresponding nonlinear function. One

approximation method is the subject of this chapter and another is

discussed in Chapter IV,

The approach which will be taken in this chapter is based upon

the assumption that the probability density function associated with the

state variable is adequately described by a finite series of moments,

For a great many useful cases, there are several factors which tend

to support the assumption that the density function under consideration

is, in fact, near Normal, For this reason, it is useful to examine a

particular set of moments which relates the expansion of any density

function to the central moment expansion of a Normal density function.

These quasi-moments are potentially a convenient means of expression

for the following development. However, the first three moments in

this series are identical to the corresponding central moments of the

Normal distribution. For this reason, the discussion which follows
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will consider only the moments of the Normal density function. For

use in higher order expansions, the conversion from one to the other

is a simple process discussed in Appendix A.

The density function described by this series is a real time

variable which is conditioned upon all of the measurements taken up

to the present time. The first moment of the density function is,

therefore, the conditional mean, and represents the optimum estimate

of the state.

The series expansion which will be employed here is of the

form of a Taylor Series expanded about the ensemble expectation of

the state such that any function of the state vector, x, can be described

by the following equation

-) = q(x)
7 9q,(x) _

— (x. - Xx.)

J x. ] J

(3. 1)

J=

3% q;(®)

0%. 0%
(x, - x) (x,

where, in Eq. (3.1) and in all of the following equations, the bar over

any quantity is used to indicate the ensemble expectation of that quantity,

Taking the expectation of Eq. (3. 1) results in a series expression for

the expected value of any vector function of the state variable,

— &lt; J q; (x)
3; (x) = q; (x) + /, a

1=1 i

2° q,()
41 Ld

=1 k=1 2% 9%

r ”

(x, = x)

{.

X. - X. -x )+(x, x;) (x x) +.

2;



The second term in the expansion, which represents the ensemble ex-

pectation of the error in the estimate, or the average deviation of the

state from its mean value is zero. Thus, Egs. (3. 2) reduces to the

following equation, which will be used to expand any vector function of

x as it appears in the following derivation of a set of recursive estima-

tion equations.

 = a@e gd 5 u®
: 0x.0x
j=1 k=1 i k

(x, - X) (x, -x) (x, -x)+... (3. 3)

Note that if the distribution function is, in fact, symmetric as

it would be if nearly Gaussian, the third order moment term

n n nn 2 —

Ly vO 9% q,(x)SVL Lu Ae AwAw.
i=1 k=1 g=1 9%: 9x 0x

(x; - %) (x - XK) (cq =F)

and all higher order odd moment terms will be approximately zero;

however, even order moments will be nonzero, in general. If the

assumption of a near Gaussian density function is valid, these higher

order even moments can be expressed in terms of the second order

moment using the relationships shown in Appendix D.

For the general density function all the higher order moments

will be nonzero. Therefore, in order to select a reasonable number

of terms for inclusion in the estimation scheme, a careful examination

of the particular nonlinear system and the relative behavior of the

moment terms must be made.

In this chapter, a series expression which contains all moments

up to and including the third, will be discussed in detail and the recur-

sive estimation equations appropriate to this order will be derived. The

extension to expansions containing higher order moments is a straight-

forward procedure and will also be indicated,



3.2 Nonlinear System Dynamics

Consider a system described by the following vector differential

aguation

x=f(x)+ Gu (3. 4)

where f(x) is a general n X 1 vector function of x, u is an n X 1 vector

of zero mean Gaussian white noise with a variance matrix defined by

a (rT) u(r)=Q(T,u. (J

and G is a constant coefficient matrix independent of x.

Taking the ensemble expectation of Eq. (3. 4) results in

t= f(x)+Gu-=f(x) (3. 6)

The differential equation for the state estimate, therefore, depends

solely on the expected value of f(x). With reference to Fig. 3-1, T(x)

corresponds to Nis the approximation function used to model the sys-
tem dynamics.

The expansion about the expected value of x, which is used to

approximate this vector nonlinear function is given by the following

expression

f(x) = Ny (m,, m,, ...

)



where the m,'s represent the moment parameters associated with the
probability density function of x. Following the format of Eq. (3. 3)

_ S&amp;P ®
f(x) = f,(x) +5 &gt; &gt; —_—

=1 k=1 9%9%

noon n 3

LY) ) &gt; 0 f; (x)5
i=1k=1 f=1 9% 9x 0x

(x-D, (x -

(3. 7)

(x - x), (x - x) (x -x)

The differential equation for the first moment of the density

function and also for the state estimate is thus given by

&lt; » f (x) (3. 3)

where f (x) is approximated with the series defined above. For a com-

plete estimation scheme, the differential equation for all the moments

included in Eq. (3. 7) must also be determined. The second and third

central moments are defined by

P.. = (x; - xX.) (x. - x) ‘3. 0)

-

A050

Tia = (x, - x.) (x. - x.) (x, - x) (3.10)



The differential equation for P is found as follows.

e..o= (x x.) (x. x) + (x, -x.) = -%,) (3.11)

From Egs. (3. 4) and (3. 8)

x) + Gg uy

¢. = f.(x)

In the above expression for Xx; and in the following discussion, terms

which have subscripts reoccurring such as Gy uy imply a summation
over the common subscript as in the general tensor notation. Sub-

stituting the above equation for X; and x, into Eq. (3. 11) results in

P; = [£;(x) + Gp Ug -T.(x)] Lr - X;)

Cex] IE)+uy Gy = (x)
(3.12)

Pi; = f(x) = - f. (x) %y + Gp up x, - Gp Up % ~ f,(x) % + f, (x) %
(3.13)

B(x) = x; £0) + x; up Gy =X; Up Gyp - x; [00+ x; 1.06)

Noting that, by definition u = 0, Eq. (3. 13) becomes

7 A



Py = f. (x) X; - f.(x) %, + Gg uy x, + X; (x) -X, £;(x) + X; Uy Gjg

(3. 14)

The terms which involve the correlation between u and x can be further

simplified as follows

Gig Ug%;=Gyp uy x(0) + )
0

{f [x(s)] + u Git ds (3. 15)

The first term on the right hand side of Eq. (3. 15) is zero because x(0)

is uncorrelated with any noise for t &gt; 0. Thus,

t 5

iw = { (a, TOTTEE 0+ { (Gy SOLE G,,Gig u, x; {tq u(t f x (s)]} ds + {G,, u(t) us) Gp i ds
0 Nn

In the first integral above, u,(t) and 5 [x (s)] are correlated only for
s = t and at that point the correlation is finite; hence, the contribution

of u(t) X, [x(s)] to the integral for 0 &lt; s &lt;t is zero. Using Eq. (3. 5),
the second integral reduces to

a, 1{ [Gig up) u (8) Gril = 3G Quy Gy
I

(3.16)

A similar result is found for the X, i)Gip term. Thus, Eq. (3.14)
becomes

P. = f.(x) X; ~ f.(x) EE f.(x) - Xx; (x) + Gy ym Gj (3.17)

3



or using vector notation

&gt;= f(x) xT - FX) %L + x f(x) xf) + GQGT (3.18)

In Eq. (3.17), the terms which involve the expectation of a pro-

duct of vector random variables may be evaluated using a matrix series

expansion of the following form.

1 82 q..(%)
Ax)=q..(X)+=&gt; &gt; 4H Pp

L” 1] 2 0 Im
{ m Xp 9%m

3

(3.19)
3

. — 0 q;:(x)
5/, TTETHIE

——

The reason for carrying through the derivation of P using com-

oonent notation is for comparison with the differential equations of the

higher order moments, discussed below. The vector expression

(Eg. (3.18)) can easily be found directly.

It is interesting to note that if, indeed, f(x) is a linear function

of x, i.e., f(x) = Fx, then

f(x) xT = Fx xl

7 fix) 1 = x xT Fl

and Eq. (3. 18) reduces

-

w\J

FP+PFL+GQGT (3. 20)



Equation (3. 20) is the familiar linear estimation equation for extrapola-

tion of P with no measurements.

Before proceeding with the derivation of higher order moment

differential equations, it is convenient at this point to make a note of

the symmetric nature of each of the moment expressions. In the case

of the second order moment

P.:= P,;
ij ji

If this relationship had been exploited in the derivation of P, only a

small reduction in algebra could have been obtained. However, a re-

duction of this type becomes increasingly significant as the order of

the moments increases,

n order to utilize the symmetry property, the following notation

will be employed.

3€em. .

1, ,k

The above symbolism implies that there are N terms of the form in

brackets and that each can be found from the one shown explicitly by

a. permutation of the indices indicated. For example

» Cor. XX.
A

J

gem, i k



Thus, Eq. (3.17) could also be written in the form

 TFTTY so L

ij 7 BO THOR Ty Gag Qn Onl j
(3.21)

The expression for the derivative of the third moment, Tike
and by an obvious extension, the derivative of all higher order moments

is given in the following,

i: (k, - 7) (x; = %.) 0x,-%,) + (x, SE) Gy - A) Ge - %,)

(3.22)

 TTY (x. - x) (x. ’ x

Tix = 3 { (x; - x;) (x; - x) (x, - x.) bo
i,j, k

(3.23)

Again using the following cifferential relationships

Com fo)+Gy up

(3.24)
&lt;.  |

 tT.

Equation (3. 23) becomes

7 ~~



Tyg = 3 {460 x -X) (x ~F)+ Gyu, (x, = 5%) (x - z,)
(3. 25)

£,(x) (x, © x) (x, - “sem, ik

Following the procedure used in the derivation of P, the terms involv-

ing u can be simplified in the following manner. Using Eq. (3. 16)

G.I RX =X20@tm Cmj ¥jk
(3. 26)

~ ; — 1 jy

G.p Up Xp x, = 5 G.p Qo Gj %s

Terms of the form Gp up x; x. are treated as follows.

Gig Ug Xj Xp = Gy u(t) x,(0) + $15 [x(s)] + u_(s) Gini } ds

x, (0)+ fi Ye, [x(r)] + u(r) Gp Hdr

3 27)



GyUp%:%y=GyU8)x00),(0)+Gyult)x,(0){1 [x (r)+u_(r)G_ }dr
0

G,pu(t) fe [%(s)] + u,(8) G } ds x, (0)
0

(3. 28)

b G;, u(t) ) ) it, [x(s)]+u (s)G .} if, [x(r)]+ u (r)G_, }drds
0

The first term is zero since x40) x, (0) is uncorrelated with any com-
ponent of u(t) for t &gt;0. As discussed above, the correlation between

a,(t) and 5 [x (s)] does not contribute to the integral from 0 to t. There-
fore, the second and third integrals in Eq. (3. 28) become

Gig uglt) %,(0) | 1g, [x(r) + u(r) G_, }dr = 5%;(0) G,y Qpp Gre
0

(3 '9)

1d

ry 1 &lt; (0Gp ut) {t, [x(s)] + u (5) G }dsx, (0) = 5 Gy Qp Gyi%,(0)
0

(3 30)

The last term in Eq. (3. 28) may be expanded in the following manner.



Gig ug® | | (8 [x()] + u (6) Gp} ff, [x(0)] + u(r) Gy} dvds =
1)

Gypu(t) ye [x(s)]f, [x(r)] drds +G,, u(t) | Y1,1x(s)) u_(r)G_ drds
0 0

G; p u(t) if u_(s) Gj fi [x(r)] drds+ Gp u(t) | Yu) u(r) Gon G drds
0 0

LJ ih)

Again u(t) is correlated with f [x (s)] only at the limit of the integral.

Therefore, the first term on the right hand side of Eq. (3. 31) is zero.

The last term is also zero because u(t) us)ulr) = 0 forall r, s, and

t. This latter fact comes from the assumption that u is a Gaussian

white noise process. The remaining terms in Eq. (3. 31) become

1 — 1 —

5 Gig Qn Gk 1% - x0] + 5G; py Gj ¥i - x, (0)]

Combining the above result with Egs. (3. 29) and (3. 30) results in

ree —- 1 _—

Gig up XX = 3Gig Qn Gk %5+ 3 Gig Rom Cmj Xk (3. 32)

The above terms cancel with those in Eq. (3. 26) and, therefore, the

differential equation for Tx is independent of Q. Thus, from Eq. (3. 25)



Tike = 3 {f, x) %, xX) - f(x) x) X, - f(x) % Xx, + f,(x) x xX)

Fax. x, -Tawixx +R X +L. xi’k PB Jk jr 1 I em,
1, J,

Lon =3 {f, (x) ® X, f, (x) x, X, - Ex) x, Xx,

}- 2 TNT ¥ FTN

7 x % EC x
sem. .

i, 3,k

(3.23)

In Eq. (3. 33), the terms which involve the expectation of the

product of three vector terms must be evaluated using the series ex-

pression of the following form.

2
— 07q.., (x)

_ 1 jk

Ug) = gE)+5 z Lox, ox Pom
m m

3
} 97g (x) -

CT ee Ix,0x 9x {mn

-—y

(3. 34)

The terms which involve expectations of one or two random variables

can be evaluated in the same manner as for the Py. expression (Eq. (3. 14)).



The practicality of an estimation technique which involves these

higher order moments is greatly enhanced by noting the symmetry dis-

cussed above. This symmetry greatly reduces the computer storage

requirements as well as the computational complexity,

The procedure outlined above can be extended to moments of

any order in a straightforward but increasingly complex manner. The

important factors to consider when contemplating such an extension

are the increased computation time, additional storage locations and the

accuracy to be gained by the addition of these higher order terms. The

number of unique terms associated with each moment expression is

related to the dimension of the state vector and the moment as follows.

For the zeroth order moment, the number of unique terms is, of course,

equal to the state vector dimension (n) for a vector function, and for

terms of the form f(x) xT, this number becomes n X n. For the second

order moment Pi; = Gx;-x;) (x, x), the total number of terms are n2.
but due to the symmetry property only half of all the terms not on the

diagonal of the matrix are unique. Thus, there are

n? + n _n(n+1)
9) = 9 (3. 35)

unique terms.

The general expression for the number of unique terms in a

symmetric tensor of order, r and dimension n is the binomial coeffi-

cient

oewe

which can be seen by examining a table of binary coefficients for a few

example cases. The table below illustrates the increase in complexity

associated with the higher order moments for some typical vector

dimensions.



MOMENT

+
q -

0
=&gt;

-~

—

3

~

J

4

1
c

10

19

21

—t

1) :"15

20 | 35

35 | 70

56 | 126

The general computational problem associated with the opera-

tions which must be performed with these variables is, usually, more

complex than reflected simply by the number in the above table. From

the point of view of one interested in implementing this technique in a

computer, the number of multiplications may be a more interesting

parameter to examine, This parameter is, of course, a function of

the particular nonlinearity under consideration.

The increased complexity of higher order moments for multi-

dimensional series expansions can only be assessed with a particular

problem in mind. However, for practical reasons, the series must

usually be truncated after a relatively small number of terms, which

means a careful examination of the relative importance of the higher

order moments must be made. It is not clear that the series expan-

sion converges in any predictable manner for the general nonlinear

estimation problem.



3.3 Measurement Updates

At periodic points, a measurement of data external to, but de-

pendent upon, the system will be used to update the estimation process.

The measurement quantity, and the best estimate of this quantity, are

used in the following general expression

x = A+ B(z - Be \ (3. 36)

where the superscript plus and the bar over a variable indicates that

the associated expectation is conditioned upon all measurements up to

and including the present one, the superscript minus with the bar sig-

nifies an expectation which does not include consideration of the present

measurement, The vector A and the matrix B are assumed to be sta-

tistical quantities and are determined in the following manner,

Taking the expectation of Eq. (3. 36), conditioned upon the set

of measurements up to, but not including the present one, results in

(x1) = A" ]+ [B (=z a (3. 37)

The measurement quantities can be expressed in the following
‘x7 YY

ia)

(3.38)

7 "7 57)

where H(x) is a general nonlinear vector function of the state and v is

a Gaussian white noise process independent of x with variance defined



(7) wr) =R 6 (7, - 7) (3. 39)

Using Eqs. (3. 37) and (3. 33)

Xt) =A-+B [Hx - H-()+v]

(3. 40)

(x)=A-

Since A is, by definition, a statistical quantity

(xt) =A

The double expectation above will be taken to mean the expectation of

xt before the last measurement and so

(x 1) = xX

Thus:

A= -- (3. 41)

To determine B, the following technique may be used. The

expectation of the squared error given all the measurements may be

formed as follows:



T TT ryoT = -7)-T)t (3. 42)

SN ott = (x -x7) (x - x)* - [x -x-] [H(x) - H (x) + _— BL

B[H(x) - H (x)+ Vv] (x-x-1 T+ B[H(x) - H*(x) -v] (H(x)-H-GHv] BT

‘3 43)

et tT =e” eT -e- [Hx)-HHv]® BT -e-v! BT -B[H(x)-H-{x}v]e|-Bve™

3 v [H(x) - Tw1 eT + B (Hx) - 00) Jv! BT

i| (HG) - Hw) (Hx) - T@1T T+ Bw! BT

(3. 44)

As defined above, the noise vector, v is a white noise process,

and therefore uncorrelated with e”, x~ and any other expression which

does not consider the present measurement, (i.e., a term with a

superscript -). In addition, the expectation of the error, e~ is zero.

Therefore, Eq. (3. 44) reduces to



+ +1et etl zee! -e- Te- He)! BT-BHx) e-!B H(x) e~ *

(3. 45)

+ bY "H(x) F(x) T - H (x) HG) TL] Bl + BR BY

Now define B to be the sum of the gain which minimizes the trace of

et et Bur and a small but otherwise arbitrary variation from that
value, 6B. Using this definition

|} YVs (3. 46)

Equation (3. 45) becomes

Het - e-e* -e- H(x)T (By * 5B) 1 - (By; + 6B) H(x) e-1

 + 6B] [H(x) He)* - H (a; 37)"+R] [By+6B]

(3 47)

Collecting all the terms of the first variation (i. e., terms with 6B),

taking the trace and setting the result equal to zero provides the fol-

lowing expression.

2 wd [on [ H(x) HE) TL - H™ (x) H (x) + + R] -e~ fo | i 0

(3. 48)

4



Since 6B was defined to be an arbitrary variation of B, Eq. (3. 48) can

only be true in general, if the following equation is also true

B,, [H(x) Hx) - H (x) H-()T + R] = e- Hx)

By, = e"H(x)' [H(x) Hx) - H (x) Ht) + R] (3. 49)

An examination of the terms of second variation in Eq. (3. 47)

will provide, in conjunction with Eq. (3. 49), both the necessary and

sufficient conditions for determining the value of B which minimizes

tr (et et Ty, The terms involving sB2 can be grouped as follows.

sB{ [H&amp;) Hx). - H-(x) H-(x)T + R]) 6 BY

When rewritten in the following way

3 1 J (Hx) - T(x] (Hx) - T@] +R 6BT

it is obvious that the quantity in braces is always positive definite if

there is measurement noise, as assumed. Therefore, the second

variation is always positive, and Eq. (3. 49) does indeed provide a

minimizing expression for B.

The evaluation of the expectations in Eq. (3. 49) is again per-

formed with a series expansion of the form of Eq. (3.7). Thus, the

update expression for the state estimate is given by



xt =x + Bz - H(x)] (3. 50)

where B is given by Eq. (3. 49).

The update equations for the higher order moments are found

in a similar manner, First, the expression used to find PY will be

found in component form and then the update expression for the third

order moment will be outlined using the results of the first derivation.

P.. = (x
1 1 J

X .) (x . —X

 vw here

xT = x + B., [H,(x) - H (x) + vl

(3.51)

- Bim [H (x) - H(x) + Vin}

Using Eqs. (3. 51) in the expression for Py. results in

7% = {(x-%])+By;[Hy(«)-H, (Hv, 1} (Ge WB, [H, ()-H (Hv ])

(3 2)

+ - _ CITA TT 0

Lj
(3.53)

8; VHplx)-Hy(x)+v,][H_(x)-H_(x)+v_]Bl



Noting that:

 Vv. = J
-

(x, - =
: 7) =

' Eu ” _ - Yr =

x. ¥,)v, (x, X; )v, J

+ { 1}

v. v. = R..
1 ij

Equation (3. 53) becomes

ptij = p-
ii

2 {Biol H ((x)] [x,-X.ix51)S em
i,q

8, [Hy(x) H_(x) - Hj (x) H (x) + Rpm] Bp

&amp; 54)

From Eq. (3. 49)

 —7T TT. TT =
By =e; H,_(x) [H(x) H(x)™ - H (x) H (x) + RI

(3. 55)



[t is important to note that in Eq. (3. 55), the subscripts on the bracketed

terms refer to the elements of the indicated inverse matrix. In general

 1]- [M,.My; + :

and consequently care must be exercised in the evaluation of Eq. (3. 55)

for use in the estimation equations.

Substituting Eq. (3. 49) into (3. 54) results in

+ _ pe 9 [a- T T Tob T_-

Pi = Pr 2 le; H_(x) [H(x) H(x)" -H™ (x)H™(x) Rl [H(x)] [x % Nn |
1, ]

 —_— — —— =]- T - ti T TC—

+ e H_.(x) [H(x) Hx)” - H (x) H (x) + RI Ie H_(x) ¢

(3. 56)

where Lg is the identity matrix resulting from

: . - : - —_ -

H(x) H(x) © - H (x) H™(x) © + Rlym [ H(x) H(x)® - H (x) H (x)! + R]
ms

[n this case, the two terms implied by { bem. are, in face iden-
tical because of the symmetric form of the term.” In addition, each

of the two terms is equal to the last terms so that Eq. (3. 56) can be

simplified to

(



ge = - ——gF  *~}

- - T - getT ~

Pi = P;; -e; H_(x) [H(x) Hx)  - H (x) H (x) + RI [H,(x) e, ]

(3, 37)

Once again, the terms involving expectations are to be evaluated

using series expansions and using caution with the evaluation of the in-

verse matrix terms,

Equation (3. 57) could have been easily, and more directly,

derived using entirely vector notation resulting in

pt i

TT al ok T
ie Huo |Hx) Hx) - H (x) H(x)T +R] Hx) e !

(3, 38)

However, the procedure just used will now prove useful in the extension

of this to the derivation of the update equation for the third order moment

term

T;ix = (x. - ) (x.-+ _—+x.) (x, x, ) 3. 59)

Using Eq. (3. 51)

 = {65 FD) By [H (0) =H (abe) (6x, ROB, [HGF H Geb TIX

(x, -x)+ B [H (x) - H(x) + v 1}

(3. 60)



Noting that:

Vv. = U

Gp =x) = 0

(x; - x) v, = (x, “xv -

wit]

H, (x) vy Vy = H, (x) vy Vv, = H, (x) Ry

Equation (3. 60) can be reduced to

+ - TTA Lo To NT

Ch To + 3 {R; BH (x) (x; x.) (x, x, ) H (x) Bo
i,4,k

3 {6x = X77) Ho) H (0) Byy By - (x; ~¥) H (x)Hy(0B,B_

x; - x5) H (x) H_ (x) Big B_}
sem, i, k

f xETNwef

3 (Bi, H,(x) H_ (x) H_(x) Big Buck
i, j,k

- B., B..}

: (By Hy(x) He, (x) H (x) jf "nk sem, Li

Bj, H, (x) H_(x) H(x) Big B "Big H,(x) H_ (x) H_(x) Big B_

(3 61)



The value of B given by Eq. (3. 55) can now be used in Eq. (3. 61) to

find the update equation for Tk Additional algebraic manipulation
may further reduce the expression for Tx however, it is best, be-
fore doing so, to also exploit the characteristics of the particular

nonlinearity under consideration. For this reason, the more general

form of Eq. (3. 61) is retained.

In Eq. (3. 61), expectations of third order tensors can be evalu-

ated by extending Eq. (3. 30) to the following.

2
— 0° q..,. (x)

- = — 1 WW Qk

dd ary) ) SR
{ m 0 m

Pom

pw{ m J vn
m x, 0xm 0X

n

0 Tomn

(3. 62)

Expectations of lower order terms are evaluated as shown above for

the update of Py

The above procedure can be extended to any higher order

moment in a straightforward manner. The mth central moment

can be written

+ f— .

Mig... = &amp; \X.~Px

 mM

a) (xm X0)

terms



Making use of the symmetry properties as discussed above will greatly

reduce the required computations.

It is important to emphasize that the quantity B was assumed

to be only a function of the statistics of the state and noises, Taking

a Bayesian point of view, Jazwinski (1966) (see Chapter II) has derived

a set of update equations where B depends on the actual measurement

quantity as well as state and noise statistics. This, of course, subjects

the filter gain to the random actions of noise in the measurement:

however, in the absence of good a priori statistical data, a filter gain

sensitive to actual measurements may, in fact, be better on any given

Monto Carlo run.

4



3,4 Limitation of Series Expansions

The general technique used in the above procedure is that of

expanding the expectation of any function of the state in a series about

a reference point, The function of the state may be of any form: a

vector, matrix or tensor. The reference state is usually chosen to

be the current estimate of the state with the tacit assumption that the

series expression has a known behavior with respect to the relative

magnitudes of each of the terms, This knowledge is required in order

to truncate that series with a reasonable number of terms and still

approximate the desired function in an acceptable way.

The Taylor Series was used in the above because it is readily

applicable to this problem; however, any series with the desirable

properties mentioned above may be used.

The problems associated with using the Taylor Series and

generally with most series expressions are:

If the series must be truncated, it is necessary to have

the terms decreasing in a known manner in order to

make an intelligent decision about which terms to in-

clude. The complete Taylor Series can be written in

the form

—3 _ (Sys Rg 0)
(=) = q(x)+Ly &gt; agfg (x - %), (x - %), (3. 53)

where the second term represents a remainder term

with §&amp; a random variable in the same space as x. In

the series, as used, the final term is evaluated about

x and therefore.the series expression is not complete.

It is also not always clear that the series is converging

in a desirable manner.
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A large number of nonlinear functions encountered in the

field of estimation and control are such that a series ex-

pression is not applicable, In the case of a Taylor Series,

the derivatives which appear in all but the first term,

must exist. Thus, "hard" nonlinearity such as two or

three level switches and quantizers, cannot be adequately

described using these techniques.

As can be seen from the previous discussion, the com-

plexity involved in the evaluation of higher order moment

terms makes the series approach unattractive for sys-

tems requiring a large number of terms in the series

expansion. The application of series expansion estima-

tion in Chapter V demonstrates this fact. If the series

is to be truncated after only two terms, (i.e., only

statistics up to the second order are to be considered)

a different approach to the nonlinear approximation

can be taken. (See Chapter IV.)





CHAPTER IV

A QUASI-LINEAR ESTIMATION TECHNIQUE

4,1 Introduction

One approach to the problem of state estimation for systems

with nonlinear functions is to first isolate the nonlinearities and then

consider the problem of determining reasonable approximations for

the nonlinearities in the system differential equations and/or the

measurement process. Once these approximations are found, tech-

niques which are analogous to those used in linear estimation theory

may be employed in order to complete the problem. The proper

selection of a reasonable approximation to the nonlinearities thus be-

comes the focal point of this discussion, It is important to make the

distinction between an approximation to the nonlinearity and the pro-

cess of linearization, The approximations contained in this chapter

and in Chapter III are not the same as linearizing and once an ap-

proximation is developed, the procedure for deriving the recursive

estimation equations, although analogous to that of linear estimation

techniques is different in several significant ways, One such non-

linear technique has been discussed in Chapter III, and in this chapter

a new approach is developed with some discussion of the salient dif-

ferences between the two approaches,

Consider the class of nonlinear systems, the dynamics of

vhich can be described by the following first order differential equation

f/7 YY + Cu (4. 1 \J

where f (x) is a general nonlinear function of the state vector x, G is

a matrix coefficient independent of x, and u is a vector of Gaussian



white noise, each component of which is uncorrelated with x, Equation

(4.2) defines the covariance of u:

IT. 6 (19 - 74u(ry)u ry) Q
bem

i
\

xy
 34 }

The expectation indicated by the bar in Eq, (4.2) and in all the sub-

sequent work in this chapter is taken over an ensemble of random

processes,

As an aid to understanding the following approximation tech-

nique, the above system can also be presented in a block diagram form

1S shown below :

r

K pS
1]

A

f (x) NON LINEAR

FUNCTION

Figure 4-1 System Block Diagram



The success of any estimation scheme hinges on how well the

system can be modelled and therefore, in this case, on how well the

function f (x), the output of the nonlinearity, can be approximated,

The value of the approximation must reflect considerations of both the

accuracy with which the model fits the true nonlinear relationship and

also the usefulness of the resulting estimation algorithm,

The quasi-linear technique which will be discussed in detail

here is a method for finding an expected value for the nonlinear function

f (x) to be used in a recursive relationship for an optimum estimate

of the state. The expectation involved is conditioned upon the statistical

nature of the input to the nonlinear function, the state variable x, In

order to proceed with the evaluation of the expection involved, it is

therefore necessary at this point to make certain assumptions about

the state vector. These assumptions, which are related to the statis-

tics of the state, basically require that the input to the nonlinearity be an

ensemble bias vector plus a zero mean multi-dimensional Gaussian

process, The bias which is also the expected value of x is the optimum

estimate and the Gaussian random variable is, in fact, the deviation

of the estimate from the true value, the estimation error,

The following represents some of the more important factors

which lend support to the above assumptions, They are also some of

the moviation for taking a quasi-linear viewpoint for developing a non-

linear estimation scheme,

The noise which enters the system either through the

dynamics or from external measurements can be assumed

to be of Gaussian form, If this noise signal is a significant

portion of the random component in x, then a Gaussian

description of the random process to be estimated would

seem to be reasonable,



The statistical behavior of the estimator is, to some

degree, a function of the initial conditions used. Generally,

the initial conditions for the equations in any estimation

technique which are most readily available, and also most

meaningful in a wide variety of estimation problems, are

of Gaussian form,

3) With reference to the block diagram shown in Fig, 4-1, the

integration which takes place immediately before the non-

linear function operates on the state, has a filtering effect

which often tends to make the random portion of x appear

more nearly like a Gaussian random variable even though

x may be considerably non-Gaussian in nature due to the

direct dependence of x on f (x).

For a large number of useful nonlinear functions, the

unimodal and symmetric properties of a Gaussian function

are preserved if the initial conditions are Gaussian, Tf

only first and second order statistics are to be considered.

as is true here, then the assumption of a Gaussian form is

further justified,

The most serious factor which would tend to undermine the

assumption that x is a bias plus a Gaussian random variable would be

a system nonlinearity of the type which has extreme skewness or other

property in conflict with the general properties of a Gaussian process.

This nonlinear effect might arise either in the system dynamics or at

a measurement point, if the measurement nonlinearity is again the

type which will not preserve the general shape of a Gaussian density

function, If for some reason initial conditions on the estimation are

known to differ greatly from a Gaussian form, the above required as

sumption will not be reasonable,

These then are the considerations which influence the confidence

associated with the assumptions basic to this quasi-linear estimation

technique, It is possible to make any other assumption about the



statistical nature of x; however, because of the filtering effect of the

system integration, the Gaussian assumption is most widely applicable,

As is true with most approximate techniques, numerical studies to

demonstrate the effect of the basic assumptions are always desirable,

if not necessary, Chapters V and VII are devoted to such studies.

1,2 A Minimum Variance Approximation

As discussed above, the basic requirement for this quasi-linear

estimation scheme is a method for approximating a general nonlinear

function of the state vector x, The approximator which will be used

here, is depicted in block diagram form below,

3
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The matrices, N° and Nt are to be selected such that the

expectation of the squared error in the estimate of f(x) is minimized.

This property may be expressed as

YT TN
)

eace |e{ tr

where the expectation indicated by the bar is again an ensemble average,

In general, the approximation matrices will be assumed to be

simply a set of time varying gains such that the approximate output is

given by the following expression

7)

., Nib.i= J] ), Niri= oH

»

(4. 3)

An expression for the expectation of the square of the estimation error

is then given by:

"Tr (eel) =tr[(a-c)(a- ce) = tr (nal - ack - cal + ze’)

m

— 1 ©

io (eet) = / cH
1 1

m m

_— 2) a;c; + ) i
i= 1 1 =1

1 1)

2

Substituting Eq. (4.3) into the above expression results in



m n n

tr (eel) = ) &gt; y N° No b. by,
i= 1 i='1 k=1 HY J

n

b r TT) N.. N. :
r= k= ik Pj Tk

n

) ol?N.. N, r.r
0 kr ik "jkbm

mn n
5 b 7 — 0 a =

’ &gt; N..b. c. + y N..r. c.
ly . i 1i=1 j=1 N31 i=1 Wl

(4,5)

m

) 2C.
: 1
1 =

Using the fact that r is a zero mean process, and that b represents the

ansemble mean and therefore b = b, Eq. (4.5) reduces to

m n n

T b ..b r ..r ———
'r (ee = N..N.. b.b, + N..N., r.r

Iq}

2 RPATR N.. r. c. + cg2 Ni; pet j=1 WJ y 3
1 =

(4 5

To minimize Eq, (4.6) with respect to each element of the

approximation matrices, the following technique is used, It is possible

to define the general matrix element as the sum of the corresponding

element of the optimum gain matrix and a small, but otherwise

arbitrary deviation from that value, Thus



NY = N20 4 sNP
ij ij ij

(4.7)

NY = NTO 4 sNT
ij ij ij

Substituting these expressions into Eq. (4.6) results in

m n n

T | b0 b b0 btr (ee) = ) ) ) NY + sNo) (NV + sNo Yb. b

r0 r ro r, —
+ 3 3 .(N;; +o Ny) (Ny +6 Ny, ) rg ry

/ ( N. . * 3 gi 3s » 3

] ]

C.

1

[ 14. 3)

The necessary and sufficient conditions for minimizing tr (e el)

are: 1) the first variation must equal zero; and 2) the second variation

must be positive, An expression for the first variation may be found

from Eq. (4.8) by collecting all terms of order § Nyse

 7 8



m n n

&gt; 5 bO _ ..b b boNOY 6 Ne + 6N2 NYYb. bTAL Zl ij © Mak TON Mac) Py
le

ro Tr r .rO0, ——

| (Ny; 6 Nop + 8 Ni; Nic) 7; Tk |

oo _
), Nob T+ &gt; 6NL Tc, | p= 0
j=1 J] j=1 J] J 1

i)

(4.9)

By a proper redefinition of variables, it is easy to show that

Eq. (4.9) can be reduced to the following

S n n
b &gt; b0 —Re PRE | = Nike ©; oy "Bi

(4.10)
n

r ro r - I. C. = 0A &gt; N., r. Kk ;

The ensemble mean, b and the random variable, r are independent

and as defined above, both 6 Ny, and 6 Nj; are completely arbitrary,
Therefore, the above equality could only be true for the trival case of

b and r identically zero unless the following two expressions are also

satisfied,

b0 —_—
) N., b.b, = b. c.

i=l, ik Tj k J “3

T—

(4.11)

&gt;for all i and j

) r0 — —N., r.r, = r.c.
K=1 ik "j "k j 1 af

(4,12)

 3



Each of the above equations can be rewritten in the more useful vector

notation as shown below

N

N

a

JJ = Cu
1

T T
TY = Cr

(4, 13)

(4, 14)

In Eqs. (4.13) and (4,14) and in all of the subsequent work, the

superscript 0 indicating the optimum value of the gain matrix has been

dropped, Whenever the matrix appears in the following equations it

will be interpreted as the optimum value,

Returning to Eq. (4.8) and collecting all the terms of second

order variation, provides the following expression

m n n n n

b b r r —) &gt; &gt; 6 N..6N.,b.b+ ) 6N,.6N,r.rLITT joi yk 2 py HO TRI

Consider the following hypothetical system

i

5 N

Each component of the output, q can be expressed by the following

20



lf

~ LZ * Nij Pi (4.195)

and the components of the mean squared output are given by

11 n

2 ) _ = 6 N..6N.,p.
94 i= k= 1] ik Pi Px (4,16)

Thus, each of the two terms in the second variation expression which

are contained in the brackets represents a mean squared quantity and

must be a positive number, Consequently, the second variation of

Eg. (4.6) is positive and Eqs, (4.13) and (4, 14) do, indeed define

necessary conditions for a minimum mean squared error,

Two important properties of the above approximation equations

can be demonstrated without any further manipulation of Eqs, (4.13)

and (4,14), The approximation to the output of the nonlinear function

v 5

”
NT

-

(4,17)

has the desirable property of rendering the quasi-linear approximation

anbiased, From Eq, (4.13)

N
— —

 0D = C (4.8)

and therefore

— — Tr — —

a=¢c+N r=o=c¢ (4.19)



"NY

e=(a-¢c)=0 (4.20)

Also, the error in the quasi-linear approximation is uncorrelated with

the input to the nonlinearity,

ext = | NPb + N “ev-cl[b+r]" }. z1)

ex’ = NP2bbl + NP bl + NP 7bY + NF rel -CbY - crt (4.22)

ex’ = (NP bbT -ebT) + (NF ret - ert) (4.23)

The two terms in Eq. (4.23) which are in parenthesis are precisely

the defining relations for NP and NT and are equal to zero by virtue

of Eqs. (4.13) and (4. 14).

The general approximation determined above will now be

considered in light of the estimation problem, The bias component is,

in fact, the ensemble mean of the random state variable and will be

denoted by x, and the random input component is the deviation of the

state from that mean and is, therefore, the error in the estimate,

y S 5 [ i . 24)

39



Associated with the error and necessary for the estimation procedure

is a matrix which represents the mean squared errors in the estimate

and is defined by the following equation

sel = (wn ~T) {x - B) (4,25)

Rewriting Eqs, (4.13) and (4, 14) in light of the above

N “xx! - cx) xT

Vieel - NCP - c (x) el

( 4 .26)

{ 7)

Equation (4,27) can be solved for N © because the matrix e el always

has a unique inverse.

\ = cc (x) ot pl (4,28)

A similar procedure is not possible for Eq, (4.26) because the matrix
2x7 is always singular, as is any vector diadic product, A useful

definition can be found by defining a pseudo inverse matrix, Such an

inverse, as well as the most general solution to Eq, (4.13), is found

in Appendix B, Using the results of Appendix B and Eq, (4.28), the

gain to x can be written as

\ TGF, yep. EET
zl *Tx

(4.29)

where I is the n X n identity matrix.



Note that with these definitions for N© and N* as c (x) is specialized

to a linear function, Cx

NC = N° = C (4.30)

Two additional properties which result from this definition of

the quasi-linear approximators are the following, From Eq. (4.18),

tne product of the gain to X and x itself is equal to the expectation of

the nonlinear output, c(x). Taking the derivative of this quantity with

respect to x results in the following

a

d 2 d
— [N x] = — [c(x)]
dx dx

§
fe(:|

(2m) 2 |p|i/2

(4,31)

(4.32)

ua

rm on/2 (x - HT px - XxX)
|

dx

The differentiation with respect to Xx can be evaluated as follows

a | (xy e-l2x-0TPl(x-3%)
dx |

(4.33)

|= [c(x)] -1/2¢ (x) -Ldx dx

spate

-T.-1 —_

(x-%)T Piss) Levees PH (x-%)

»

"



The first term is zero because c (x) is not an explicit function of x and

therefore the following result is found

ev =\T p-

— Lon) ent 20TH) P(x -%),

hs

(4.34)

=T ,-1 —

V(x -%)T ple 1/2(x-X) P “(x -X)

Substituting this result into Eq, (4.32)

 4d T(x]
1x

(4, 35)

(27)2|p| 1/2 [-
wr. —T_ -1 —

[cx) (x -m)T ple l/2(x-3) P (x-X) 4,

However this right hand side of Eq. (4.35) is simply another expectation

integral, Thus

Lem] = cx) (x-0T Pp} (4, 36)

The right hand side of Eq. (4.36) is precisely the quasi-linear gain to

the random input component, N°®. Therefore, the following property

of these estimators is always true,

d Nx] = NT
1%

4 37)

~



Another interesting and often useful property of the quasi-

linear approximations can be expressed by the following equation,

For f(x) equal to an odd function

lim —

_ Nx] - N © Xx —-&gt;0 (4,38)

This result can be shown in the following manner, If a difference

matrix, A is defined by the following equation

3
NT

“ e
- N f(x+e)-f(x+ eer pl X 37

J |x|
(4.39)

then the (ij yi element of A can be expressed as follows

A.. = V. U.

where

f(X+e)-f(X+e)el Px
.

1nd

——

 ng

 Kr

13 = J
|x|



Clearly, the following inequality is also true

- | BV uiI&lt; 1 Vv

Now, if |v] = 0 as Xx — 0, then each element of A - 0 and the proof of

Eq. (4.38) is complete, Using Eq. (4.37) the following is always
found to be true,

d (f(x+e)] = N°
1%

and for x = 0, N © =f (e)el P* Using a Taylor series expansion for

f (X+e)

F(x+e)=f(e)el P Lx+0(Z%) (4,40)

Therefore, to first order in xX, f (x +e) =f (e) eT pl and consequently

lv] &gt; 0 as x—-0.

Thus, for a state variable with a "small" mean value, the gain

to the mean and the gain to the random component are approximately

the same, What constitutes "small" is not obvious in general and will

asually depend on several other system parameters, This question

will be considered again in Chapter VII and the usefullness of Eq, (4.38)

demonstrated in a numerical example at that time,

It is important to note that, if one can assume N® = N* and if

the limiting characteristic of N* as the non-linearity is specialized to

a linear function is not particularly important, a great deal of compu-

tation complexity can be saved, The equation for N* can be simplified

")



- 7 =T

NX. e(x)x
_T—
X X

(4.41)

because the additional term is arbitrary as shown in Appendix C. The

computation of N © which involves the expectation of the matrix c¢ (x) x71

need not be performed since the estimation equations will contain only
X

N

The quasi-linear approximation matrices, as defined above,

can be used for nonlinear estimation whenever a nonlinear function

appears in the estimation equations, The consequences of this approx-

imation for the particular recursive relationships which are used in an

optimal estimation scheme are discussed below,

"
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1,3 Extrapolation of a Quasi-Linear Estimator

Consider a system which can be described by the Eq, (4.1)

repeated here for convenience

o-~ ) + Cu (4.1)

where f (x) is a general nonlinear vector function of the state, G is a

coefficient matrix independent of x, and u is a Gaussian white noise

process, The differential equation used to model this system and to

describe the extrapolation of the optimum estimate is given by the ex-

pectation of Eq, (4.1).

&lt;= f(x) (4.42)

where the bar indicates an ensemble expectation,

The quasi-linear technique described above can now be used to

approximate the expectation of the nonlinear function, resulting in a

differential equation of the form shown below,

(4,43)

where Np the approximation to f (x) tor the mean input x, is a function

of the first and second order statistics of the state vector and is

determined using the procedure discussed in Section 4. 2.

The covariance matrix which is a representation of the expected

value of the squared error in the estimate of x can be approximated in a

similar manner,

% Po
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P : gel = (x -F)(x-T))

c= (x-D(x-DT+(x-D(2-07

(4.44)

(4,45)

The quasi-linear approximation for the differential equations of the

state and its estimate are as follows:

Fal &lt; + Ne (x - X } - Gu

(4, 46)
2 X -

 Xx ~ N,. X

Substituting Eqs, (4.46) into Eq. (4.45) results in the following ex-

pression for P,

: — — — JT —

P=NS(x-X) (x-0)T + Gu(x-H)T + (x-%) (x-5)TN + (x-%)u'GT

(4 47)

: T TT7

P-NSP+PNS +G uxt + xu gt (4.48)

The last two terms of Eq, (4.48) may be evaluated in the following

manner



ulGT = x0) u(t)! GT J{igx0) + Gu(s) pdsu (t)T gt\.

As discussed in Chapter III x (0) u(t)? = 0 and f[ x(s) Ju(t)T does

10t contribute to the integral for 0 s t. Thus:

cul GY = 1/2GQGHT (4,49)

Similarly, the other term of Eq, (4.43) reduces to:

~~
 TIT

T -1/2cQat (4,50)

Using the above results, Eq. (4.43) becomes:

| No
&gt;

P+PNS +GQG T
(4.51)

Equations (4,43) and (4,51) together provide a means of

extrapolating the first and second order statistics of the state from

one measurement point to the next, At each measurement time, a

different set of equations is necessary in order to update the estimate

using the information contained in the measurement quantity and the

statistics associated with both the present estimate and the measure-

ment process,



1,4 Updating With Nonlinear Measurements

At discrete times, a measurement of some quantity external

to the system, but related to the state is necessary in order to update

the current state estimate, This measurement quantity will be de-

fined by the following relationship

yr,  1 ya) tv (4,52)

where H (x) is a general nonlinear function of the state vector x and v

is a Gaussian white noise process independent of the state, The ran-

dom vector v obeys the following relationship

P(r) v (To) = Ré6 (7 (4 53)

[n order to update the state estimate, it is necessary to find

an approximate expression for the expected value of H (x) which will

allow a recursive formulation of the update equations, This problem

is exactly analogous to finding the quasi-linear approximation to f(x)

in Eq. (4.1) in all but one respect, In the case of measurement up-

dates, because of the added information contained in the measurement

quantity z, either of two sets of assumptions about the probabilitv

density function of the state may be used to evaluate the expectation

involved in the quasi-linear approximation, This conditional expecta-

tion may be found using either of the following assumptions,

The input to the nonlinear measurement may be assumed

to be just the bias plus Gaussian variable available just

prior to the measurement. This assumption does not make

use of the actual measurement in the evaluation of the

required expectation,



The probability density function of the input to the non-

linearity may be modified by the measurement quantity z.

The expectation required will then be evaluated on the

basis of a probability density function conditioned upon z

which, in general, will no longer be of Gaussian form,

This latter fact naturally presents some additional compu-

tational difficulties; however, it would seem that the added

information contained in the conditional density function

would allow a greater accuracy in the computation ofH(x).

The first approach is exactly the same as that used in the

development of the extrapolation equations for system dynamic non-
linearities., In this case, the evaluation ofH(x) follows the procedure

described in Section 4,2, Using the second approach introduces

certain different aspects which increase the complexity of the estima-

tion procedure,

The ensemble expectation of H (x) using the probability density

function available immediately before a measurement can be found

from:

H (x)= |  JT ()p(x)dx (4.54)

where p (x) is the Gaussian probability density of the state, Using the

conditional density function discussed above, Eq. (4.54) becomes

30

(x)=|H(x)p(a]|z)ux { 4 55°

where p(x | z) is the probability density function of the state before

the measurement update, but given the particular measurement quantity

for that time, Equation (4.55) may be evaluated as follows,



Po (=| 7) = p(z |x)p(x)
p(z)

(4.56)

piney = Slzlaiplx)

/ p(z|x)p(x)dx

Thus, evaluation of the conditional expectation of the non-

linear function H (x) focuses on the problem of determining the following

relationships

pz |x) p(x)dx

2,3]
»

(4.57)

H(x)p(z |x)p(x)dx

Under the assumption that the measurement noise is a Gaussian pro-

cess, and making use of Eq. (4.52), p(z | x) can be written in the

following form.

J2(=

omy gl2
exp 4-1/2] z-H(x)] RMz-H(x)1)

(4,58)



Using Egs. (4.58) and (4.56) the following expression for Eq, (4, 54)
can be found,

X

JH) p(x) expd -1/2[z-H(x)] TR [2-H (x)] pdx
d(x) = 22 es rs ae sami _

p(x) xpd-1/ 2[z-H(x)] Tr 2-H (x)]p dx

(4,59)

In general, Eq. (4.59) can only pe evaluated with numerical

techniques, However, in certain cases of interest the expression for

H(x) can be further modified to gain insight into the selection of a

particular numerical procedure, A good example of this type of

modification is found for quantized measurements where the conditional

density function would seem to have a significant advantage over the

unconditional Gaussian density function of the state, This nonlinear

measurement relationship is demonstrated inthe following figure and can

be expressed by Eq, (4.60 ), where § z {is the quantization level assumed

be a constant in this case,

~. LU. y+ Vv = nz+vy (4.60)

An alternative and perhaps more realistic definition of a quantized

measurement is the following

1 -+- Vv, L 5 51)

vith the function H as defined above,
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Figure 4-3 Quantized Measurements

Since x and v are independent, the probability density function of x + v

is the convolution of the two density functions, both of which are

Gaussian, Thus, the procedure is similar, but more computationally

complex, For purposes of demonstrating the type of procedure which

must be followed, Eq. (4.60) will be used as the definition of the non-

linearity for the following, Specializing Eq. (4.59) to the chosen

nonlinear relationship results in each of the integrals being replaced

by an infinite series with each term a weighted error function, Thus.

Eq. (4.62) represents the expression for H(x)for the quantized

measurement as defined by Eq. (4.60).



(n+1/2)6x

néz exp[ -1/2(z-n6z) "RH (z-ns2)] / exp [1/2 (x-2) TP Hx - 50] dx
ed

I(x) = n=-oo (n-1/2)6x
(n+1/2)6x

expl-1/2(z-ns2) RN (z-ns2)) | expl-1/2 (x - 0) TP Hx - 0) ] ax
C
n= -o0 (n-1/2)6x

(4,62)

Since the above summations have infinite limits, a practical

solution would require some judgement on where to truncate the series,

Because of the known behavior of error functions, this can be done in a

systematic manner by including, in the series, those terms required in

order to consider a chosen number of standard deviations of the apriori

probability density function of x about its mean value, This number

should be selected with consideration of required accuracy and compu-

tational time available, A level of confidence can be associated with

the selection of n because of the Gaussian nature of the apriori density

function of x,

Having thus found an expression for the expectation of the non-

linear measurement function, either by assuming the probability density

function of x is Gaussian or by using a probability density function

which is conditioned upon the actual measurement, this expression can

be used to update the state estimate in the following way. Governed by

the quasi-linear nature of this approximation and the familiar form of

the update equations used in linear estimation techniques, it is reason-

able to define the following form for the quasi-linear measurement

Jpdate equation,



+ K[z - H(x)] (4,63)

where x is the updated state estimate, x is the estimate just prior to

incorporation of the measurement information and K is a statistical

gain factor chosen to minimize the ensemble expectation of the squared

error in the estimate, To determine the proper value of K, the following

procedure is both convenient and straight-forward.

The mean squared error in the estimate after incorporation of

the measurement is formed by taking the trace of

2s defined below.

 rT 1
at et (x -n)(x-%)

(4.64)

_ TT _ —

=(x-u)(x-x) -K[z-H(x)] [x-x1

Ix-x1[z-H(x)] TT Kr z-H(2)] [ z SB (x) TT

Using Eq. (4.51) and the general form of the quasi-linear approxima-

tion for the expectation of any nonlinear measurement function, Eq.

(4.64) can be rewritten as:



CI a Sl x _- Lor
c'e =ee -K[H(x)-N_x+v]e -e [H(x)-N_ x +v] K

ji— rd
LN. [H() -N_ x +v][H(=) -N_ x +V] “p

3

(4,65)

where N° is the measurement quasi-linear approximation matrix,
Using the assumptions associated with the noise and some algebraic

sxpansion, Eq. (4.65) becomes

I T T T T 1
2 e =e e -KH(x)e -e H(x) K +KH(x)H(x) K

-—

_T TT - ~~—-T
Loa(x)x N K -KN x H(x) X

m m

7 ——=T = T T T
K NT x x N K + KRK

m m

-r

(4.66)

To determine the optimum value of K requires that the trace of Eq,

(4,44) be minimized with respect to K, This minimization is ac-

complished by defining K to be the sum of the optimum value, x’ plus

a small, but otherwise arbitrary variation, 6 K, The necessary and

sufficient conditions for minimizing the trace of

a +r

are: 1, the first variation of the trace of Eq, (4,66) is zero; and 2,

the second variation is positive, It is convenient to first substitute

the following expression into Eq. (4.66) and then to take the trace of

the result,



K = K’ + 6K (4.67)

Equation (4,66) becomes:

T T ~ TT T
tet see” eH) KU+5K) -(KP+6K)H(x)e

go
) T o FT 0 ——=T x 0 !
+6K) H(x) H(x) (K +6K) - (K '+6K)H(x)x NK +6K)

) x= ot 0 0 v==" 0 1
L5K) N_ x H(x) (K'+6K) + (K +HOK)N_ x x (KK '+6K)

A A D4 sk) R (KO+sk)7T ( 43 » 58)

The terms in Eq, (4.68) which contain the first variation are:

} T T — .T - T JT T 7
-e H(x) 6K -6KH(x)e + 6 KH(x)H(x)K + K'H(x)H(x) 6K

+6 KN "xx N K +K N xx N 6K -K'H(x)x N 6K
m m m m m

— —T zT oT 0 z= ———T T ay oe, oem oT
-6KH(x)x N K -K'N x H(x) 6K -6KN x H(x) K

m m m

T T
KYRsK + sKRK"

Taking the trace of these terms and setting the resulting expression

equal to zero



T oo T ol 5 &lt;7 =T oT
&gt; rd 5K | -H(x)e + H(x)H(x) K +N XX N, K

1

wr mm ="T &lt;T oT qr gy me L oF oT
H(x)x N_K - Nx H(x) K + RK 1 = 0

1 4 c9)

Since § K was defined to be an arbitrary variation of the gain factor

K, Eq. (4.69) will be satisfied, in general, only if the term in brackets

is identically zero.

Pr xT 3T —=T g—=——T ofH(x)H (x) +N xx N, -H(x)x N_ x H(x) rk

H(x)e =0 { = 70)

The equation which defines the optimum gain is therefore given by the

following

2° = e H(x)
Po. -_T _T ___T ZT _ _ T J

| Hx)H(x) +N “xx No -H®x N= -N“xH(x) +R

(4,71)

Returning to Eq, (4.68), an examination of the terms involving the

second variation of K will provide, in conjunction with Eq, (4.71),

ooth the necessary and sufficient conditions for an optimum gain, The

terms of second variation are:

{



r T —T «1 T
s K H(x)H(x) 6K -6KH(x)x N 6 K

T T es T
5 K N&gt; x H R an x! t

: (x) 6K +6KN_xxN s§K +6KR6K

(
: 12)

These terms can be rewritten in the following form

I
| T —__T &lt;T z—=—1T ogyoz wT + T 1
 H(x) H(x) - H(x)x N -N "x Hix) +N "x x N + R| 6Km m m m

- -_T 7

SK |(HG) -N x) (H(x) - Nx ) rr sx { 1 [ 3)

The first term in the orackets on the right hand side of Eq. (4.73) is

always a positive semidefinite matrix and R is always positive definite

if there is noise in the measurement process as postulated, Therefore,

the second variation terms of Eq. (4.68) are always positive and

Eq. (4.71) is, indeed the equation which defines the value of K required

to minimize the expected value of the squared error,

Having derived Eq. (4.71), it now becomes necessary to ex-

amine more closely the evaluation of each term and to discuss the use

of K in a recursive estimation scheme, First, it is both interesting

and reassuring to note that if H (x) is, in fact, a linear function (i, e.,

H(x) = hx) then the following simplifications also result,



N= =
m

] . TT _ TT

e H(v) =e x H =ee H

— T -~ 7

 =a H(x) =P H

Viaking the above substitutions into Eq. (4.71) results in Eq. (4.74)

0 on TT ——T T
¢"=PH [Hxx H -Hxx H +R]

(4,74)

) TT _T
&lt;"=PH [HP H +R]

The above expression is identical to that obtained in several other ways

‘or the now well-known linear filtering problem,

In the general nonlinear case, Eq, (4.71) can be further sim-

plified by noting that the quasi-linear approximation provides the

following relationships.

H (x)= Nx

(4.75)

I( )~ N
Tom .e

om + ~ ene

The above Eq, can be used to evaluate the terms in the expression for
50



] 1?" ——T —_T _ T T _ T
e H(x) =e x N_ +e e N =P N_ (4.76)

x = Y=

H (x) H (x) = (Nx +N e ) (Nx +N"e
(4,77)

TT 7 e eT
N "xx N +N PN

m m m m

serene =z = —=—=T ZT
H(x) x N =N x x N

m m m

| = TT ==T JT
N74 H(x) =N_"xx N

m m m

(4,78)

(4.79)

Using these two equations in Eq. (4.71) provides the following equation

for the optimum gain,

0 - el e _. - el
{=P N [ NP N + R |

m m m
( 1 30)

Equation (4, 80) provides an expression for KY which is of the same

form as Eq. (4.74) for a linear measurement except that the linear

geometry matrix, H is replaced by a quasi-linear matrix N° which is

generally a function of the first and second order statistics of the state

vector,

a



The update equation for the covariance matrix given the

optimum gain factor, KY can be found by returning to Eq. (4.68) and

examining the terms of zeroth order in 6K,

—% — 7% — "TFT 1 TF o ToT
ete” =e’ - e H(x) KY kK H (x)e” +K H(x)H(x) KY

o— —T =T oT 0 &lt; ——T oT
K'H(x)x N K -K'N "x H(x) K

m m

eT —T .T T
Lorri NX KY + kORrKO

Mn m

As with Eq. (4.80), e d(x)
T

can be replaced by PN and

(4,81)

H(x)H (x)

— woes! 3 T ec  - el
N XX N +N PN

m m m m

resulting in

T T
 Pp NE KY -kNep +k

m m

 7
  _T .T T 1
NE kV iON ep NE KO

m Mm m

0T .T — oT ——=T =T _T
KOv x NX KY -kONFKO + kONEL NF KY

m m mm m ™m

T
KOR KO { 1,82)



As can readily be seen, the terms above which do not cancel may be

combined to give the following equation,

T .T T T

 PpNe KY -kNEP+kNCPNE+R]KCm m m m

( 4
» 33)

Substituting the expression for Kk given by Eq, (4.80) into the above

expression and noting the symmetry of the bracketed term results in

the update equation for the covariance matrix P.

- el e..~ el oe
-PN® [N®P NE +R] NOPm m m m

 el e ert lo.
P N [ NPN +R] N_P

m m m m

- el e. .- el ’ e  - el

PN [NP N + R] [NPN + R JXm m m Tn m

T -1
e - e e

[NPN +R] NP

- el e . - el “le
P NE INP NG +R] NOPm m m m

(4. 84)

Once again, the form of the resulting expression is similar to

that found in linear estimation except for the appearance of N- instead
of H.



Summarizing, for the assumed continuous system with discrete

measurements the following equations provide a recursive estimate of

the state vector x,

3etween measurements ( Extrapolation):

 Se NM  Ee

(4.85)

+ NP + PNY + GQC

At a measurement point ( .2dating)

T oe ‘ = —

PN® [IN°PN® +R] [z-NTx)
m m m m

(4.86)

 a

cer e - er toe -
PN [NN PNE® +R] NEP

m m m m

It is interesting to note that the complicated looking expressions

for Np and N_ need not actually be computed for the general case since
they both appear multiplied by x.

NT X = f(x)

X — ray
N x = H(z)

Also, Ny appears only in the form



NCP = f(x)e’

c ss

Only N_ need be evaluated explicitly for use in the measurement incor-

poration equations.

As pointed out earlier the evaluation ofH(x) can be based upon

either of two different probability density functions, The results sum-

marized above are valid ifH(x) is computed with the density function of

x prior to the measurement, Or one might use the more complicated

procedure in some cases,

Finally, it is interesting to note that the basic character of a

nonlinear operation, namely, that behavior depends on the amplitude

of the input, is reflected in the above results, The estimation equations

are related to a series of gains which depend, in general, on the mean

value and covariance matrix of x and hence the name quasi-linear,



4,5 Some Illustrations of Quasi-Linear Approximation

A demonstration of the techniques described above is presented

here for some simple cases in order to provide some insight into the

use of the quasi-linear estimation Eqs. and also to illustrate the pro-

cedure involved in formulating a set of recursive Eqs. In order to

better illustrate the nature of the approximation, the discussion here

will be limited only to nonlinear functions for which an analytical solu-

tion for the quasi-linear approximation is possible,

4.5.1 A Scalar Quadratic Nonlinearity

Given the following differential Eq, for the dynamics of

3 scalar state

 Jr
* fe I gus ( 4 37,

the first task is to find the quasi-linear approximation to this nonlinear

function, Equation (4, 28) specialized to this scalar case is given below

qe _ c(x)x - c(x)x ( 4,88)

and Eq. (4.29) becomes

x _ c(x)

Ng=—

where x is the state estimate, P is the mean square error in the esti-

mate and



c(x) = ax + bE

(4.89)

c(x)x = 2 1 + xd

To find the expectation of c¢ given that x is a bias plus a zero mean

Gaussian random variable, the following integral must be evaluated.

(ax +bx")p(x)dx

int.

-

 mn

| [a(X+r1)+b(X+r)p(r)dr]
(4.90)

Using a Normal probability density function for

NII [[a@+r +b(x+n)]e *F’ v
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(a+2bX)re d r 4 I

(4,91)



Each of the above three integrals is easily evaluated resulting in Eq,

(4,64)

C=» aR + Das+Bl (4,92)

In a similar manner cxis found to be

Sh =a (XX +P)Y+Db(X°+5%P) (4.93)

Thus, the quasi-linear approximation matrices are given by

NEF
= a+bx+bF

(4.94)
» - a+ 2bx

and in this simple case, the differential Eqs, required for the estimate

ire

5 X - I
i = N, x = ax+ + -" F

(4.95)
P=2N°P =2(aP+2b%P)



It is interesting at this point to compare the quasi-linear esti-

mation given by Eq. (4. 95) and the analogous expression which results

from the Taylor Series expansion techniques described in Chapter III.

For this simple scalar nonlinear function, the Taylor Series up to and

including second order terms would be of the form,

2, , =

c= Fx) f(x +1/2 80) p
0 X

(4.96)

Substituting for f (x), the nonlinear function of Eq, (4.87), the above

equation becomes,

Xx = ax+bx°+1/2(2b)P

v  ~~ (4.97)

p= 298(X) p _ 9 (ap +2b%P)
3x

In this case the Taylor Series estimation procedure results in precisely

the same estimation equations, If the series expansion is restricted to

only second order terms and also if the nonlinearity is quadratic in form,

these two techniques will always agree,

The difference between the two approximation techniques will

manifest itself in different differential equations for the state estimate

as well as the variance for certain other types of nonlinearities as

demonstrated in the following example,

4.95.2 A Trigonometic Nonlinearity

If the following equation represents the dynamics of

some system

3%



X = sin x (4.98)

then the quasi-linear estimation equation is found in the following way,

The expectation of the output of the nonlinear function is given by

&gt;
a
[

—“—_ sin (X + r)e 2P 41
V2 P

-ry

a

C = ——— sinXcos r e 2P 4p +

Var P J

oo
- 2cos Xsilnre Pir

 —_

(4.99)

The integrand in the second term on the right hand side of Eq. (4. 99)

is an odd function of r and therefore when it is integrated over the in-

terval -o £ r 2 the result is equal to zero, The first term may be

integrated as follows.

Z
T™

 -_

La
a

a?

— sin Xx

Ver Pp ,

-P/
3111 r ef

COS IT e 2P 4.

(4.100)

Thus, the quasi-linear gain used to approximate the nonlinear function

for the state estimation is given by Eq. (4.101)



N*% _ sin x o-P/2
he

(4,101)

and the differential Eq, for the estimate 1s

— . — -P

X = sin xXx e : (4.102)

Using a Taylor Series expansion to approximate this same non-

linear system results in the following

x = sinx+ 1/2 (-sinx)

(4. 103)

x=sinx (1-1/2 ™)

Returning to Eq. (4.102) and expanding the exponential function 1n a

series results in

x=sinx(l-1/2P¢+°/7 A

4
e (4, 04

Thus the Taylor Series provides the same information as the first two

terms in the expansion of Eq. 4.102. This result is clearly a demon-

stration of the difference between a second order series expansion and

the assumption of a Gaussian distribution function, Indeed, if the fourth

order moment term of the Taylor Series were computed, it would be

1/8 P?, Each additional term in the series is considerably more diffi-

cult to compute than the previous one and, therefore, it is generally

not desirable to include terms of order higher than two. The equations for

P are given below, For the quasi-linear estimator



N'Y; = COS (¥)e F/2

(4.105)

 rt = 2P cos (x) e F/2

For the series estimator

of (x)
Py = cos (X)

(4. 106)
J
: 2 FV COS \ 1)

[n this case only the first term in the series for e P/2 is included in

the series estimator equation,

4.5.3 An Exponential Nonlinearity

For a scalar system with the following differential

2quation

C ( 4  107)

the quasi-linear approximation matrices are found in the following way,

NG = &amp; (xe* - xe¥) = KeXref
LD] ™

(4.108)



The expectation above can be rewritten as

rel = ta

V27FP
“0

”~y r

re’s 2P 4

(4.109)
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ns (— -r)

ref _ 1 re 2P

V2 7P
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The exponent appearing in Eq, (4,109) can be redefined in terms of a

perfect square as follows

ad

 -»:

2P
- rr v'o-Ef 2) (4.110 )

where

: og {Emv=

1)

dr =\/2Pdy

Equation (4. 109) then becomes
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(4.111)

Tr Po.
re = Pe 1

and Eq. (4.108) is the following

Ne = K X peP/2 _ kext P/2)
P

(4.112)

The quasi-linear gain to the bias component is found from

NE = BeTO —
—

(4,113)

Using a procedure analogous to that above, the expectation in Eq. (4.113)

is clearly

Z Xx + P/2
ce = (4,114)

Thus,

x we + Ff?
Ne = ——— (4.115)



The extrapolation equations for this estimate then become

¢ = N5X = geXTP/2

(4.116)

Pp = 2N$P = sxkeXTP/2p

Again by way of comparison, the corresponding estimation equations

for a series estimator of second order are the following:

X Ke*+1/2K (e*)P = Ke* (1+ 1/2 P)

b_ 9 0f(x¥) p x
= = 2Kep

(4.117)

(4.118)

One further example will serve to illustrate the estension of both

approximation techniques to a simple case with a two dimensional state

vector and one which is not always amenable to linearization techniques.

4.5.4 A System Identification Problem

Consider a system the dynamics of which can be des-

scribed by the following differential equation

(4. 119)



where A is a constant but unknown parameter, It is possible, in this

instance, to define a two dimensional state vector in the following way

2 (4.120)

The differential equation for this vector is

 = f(x)=

Lo

TF

0 | O 0
7.

(4.121)

Thus, the parameter A as well as the original state variable Y are com-

oined in a single state vector differential equation, and both variables

can be estimated jointly,

The quasi-linear matrix which represents the gain to the error

may be found in the following way,

NS = f(x)xT - L(x)x? Pp}

Ry X . “3
5

(4,122)

The expectations in Eq. (4,122) are evaluated in the usual way with the

following result



X) Xg = XXo + Pg

2 — 2— 5 —

xy x, = Xy Xo + Xo Pi + 2x, Poy (4.123)

 EE A
x1%g = X,X%, + xy Poo + 2X, Pio

Thus

-

|
oP FX Py X Pog Tx, P 0

pl (4.124)

In order to compute the gain to the bias component, the following expres-

sions are needed

Xt Po)x (xX + Po)%,
— _T

g = L(x)x _ 1

ETT-gD
XX Xy +X,

(4,125)
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(4.126)

Equations (4.124), (4.125) and (4.126) provide the required expressions
‘or the computation of NZ where

ee e€

Ne =1U+ NV (4.127)

Again, as an interesting comparison, a Taylor Series expansion

may be used for this type of nonlinearity in the following way, In two di-

mensions, the series approximation is of the form

ZZ 2

0 sai nd il
f(x) ~ f(x) + 1/2/ , [, ——— Py

j=1 k=1 9x.0%
(4.128)

For this problem, the following expressions follow from Eq. (4. 128)

f(x) ~ XX, + 1/2 (Py, + Py) = XX, + P,

f(x) ~ 0 (4, 129)

 ]



Using these results, the differential equations for the series estimator

are found to be

X, = f(x) = XX, + £49

(4.130)
&lt;

3 tot .) J

1103

pf(X) _ | 2 i

0X 0 0

(4.131)
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Pig = PigXg + Pyox,
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g
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(4.132)

In a similar way, the quasi-linear estimation equations can be found from

the above results

1)
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The series estimator described by Eqs, (4. 130) and (4, 132) is identical

to that found using the quasi-linear technique, Eqs. (4.133) and (4. 135).

In this case, the two techniques are the same because the nonlinear func-

tion is quadratic in nature, As was shown in Sections 4,5.2 and 4. 5. 3,

the two estimators will significantly differ for other types of nonlinear

functions, For polynomial nonlinearities of orders higher than quadratic,

the resulting equations are also different even if the series expansion is

limited to only first and second order statistics as in the case of the quasi-

linear estimator,

Summarizing, there are three important factors concerning the

two approximation methods discussed in Chapter III and in this chapter.

There is a basic difference in the underlying assumptions.

In one case, the probability density function of the state is

assumed to be Gaussian while in the other case, the ensem-

ble expection of any function of the state is described by a

Taylor Series up to and including second order terms, Al-

though higher order terms may be included, the increased

computational complexity as well as the computer storage

requirements become rapidly impractical.

) As shown above, quadratic nonlinearities result in the two

approaches producing the same approximate estimation

equations, However, for some types of nonlinearities, the

guasi-linearization technique contains more information

about the system dynamics. This is a result of the basic

difference in assumptions discussed above,

3) For nonlinearities with nonanalytic derivatives, only the

quasi-linear technique can be used, An example of this, a

quantizer, was discussed in Section 4, 4.

Further discussion of the differences between series estimation

techniques and the quasi-linear estimator (Chapter V) as well as a

demonstration of some of the features of the later (Chapter VII) can be

found in the following chapters,



CHAPTER V

5,1

A COMPARISON OF THREE ESTIMATION TECHNIQUES

Introduction and Problem Definition

The purpose of this chapter is that of comparing three basically

different approaches to solving an estimation problem which is non-

linear, A series expansion technique, the subject of Chapter III, will

be demonstrated with expansions up to 2nd, 3rd and 4th order, These

three estimators coupled with the quasi-linear estimation scheme dis-

cussed in Chapter IV and the familiar linear estimator will provide

five different systems for comparison, The comparison will be made

on three levels, First, the development of recursive estimation equations

will be compared with emphasis on the required assumptions and neces-

sary analytic complexity, Second, the preparation of a digital computer

program and problems of a numerical nature which must be delt with

are discussed, Finally the three estimation schemes, which result in

five different estimators, will be compared with respect to performance,

As a vehicle for all of the above objectives, a simple estimation

problem has been selected which is complex enough to reveal the salient

differences among the five estimators and yet simple enough to make

the algebraic manipulations required for the series expansion procedure

tractible, The system dynamics can be described by the following dif-

ferential equation,

X = -sin (x) + u (5.1)

1 5



where x is the state variable and u is a white noise process independent

of x and defined by Eq. (5.2)

a (7,) u(y) = Q6 (7, : 7) (5,2)

Here, as in previous chapters, the bar over a quantity is used to re-

present an ensemble expectation and the §, as used above, is a Dirac

delta function,

Equation (5. 1) with the driving noise, u set equal to zero can

be solved analytically as follows.

aX
dt

csc (dx

J ©

In tan (3) |
3

= - sin (x,

Ao

 Nn

(5.3)

« 0, -t
tan (5) = tan (5-)e

) top L “tan (0 1oe i

Figure 5-1 shows the behavior of Eq. (5.3) for various initial condi-

tions
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As can be seen from Eq. (5.3), the asymptotic behavior of the

state depends on the initial conditions, The solution to Eq. (5,3) as

t &gt; oo is a function of Xqe Thus, with reference to Fig, 5-1, all states

which have initial conditions greater than 7 and less than 27 will approach

27 and those with initial conditions between 0 and 7 will approach 0, etc.

For convenience, the region of study considered here will be restricted

to that between 0 and 7,

Periodically, measurements of some quantity related to the

state will be used to update each of the estimation procedures, Two

different types of measurements will be considered here, The first,

linear measurement, will be a direct measure of the state and is ex-

A

pressed as follows

(5.4)

where v is a Gaussian white noise process dependent of x and u and is

defined by Eq. (5.5)

v(T,)v (Ty) = Rs (1, (5. 9)

The second type of measurement is defined by the following

aquation

7
J sin (Z xX) J [ \

The reason for this particular definition is as follows, With no driving

noise, the second derivative of the state is given by

od



i x [ -sin(x)] = cos (x) sin (x)

&gt;

A = 1/2 sin (2x)

(5.7)

(5.8)

Thus, the second measurement type, a nonlinear function of the state.

is related to the second derivative of the state, if there is no system

driving noise,

Summarizing, a continuous system, the dynamics of which are

expressed by Eq, (5.1), along with discrete measurements given by

Eqs. (5.4) and (5.6) will be examined with three different estimation

schemes.

Ld



5.2 Linear Estimation

The simplest and most familiar approach to state estimation is

that of linearizing all the system equations and using linear estimation

techniques, the Kalman filter. The technique of linearization which is

generally used, defines a reference state, Xp and considers the problem

of estimating deviations from this reference, defined by

(5.9)

The success of this technique depends on the accuracy of the

assumption that the deviation state remains small enough to allow a

linear approximation to the dynamics of 6x. In order to help insure

success, it is possible to periodically redefine the reference to be

the most recent estimate, This can be done as often as every mea-

surement or at any frequency less than that depending on the particular

system under consideration, This process, often called retification,

will result in zero initial conditions for the differential equation of éx.

In order to make an honest comparison of linear and nonlinear estima-

tion, the above procedure will be employed and also a comparison

made to a linear estimator with no retification,

From the definition of 6x (Eq. (5. 9)) and using Eq. (5.1), the

following procedure can be used to find the differential equation for

the reference state and the deviation state.

5 JX = =Sii

(5.10)

&lt;4 + 6x = ~-[sin (xp) cos (6x) + cos (xp) sin (6x)] + u



Using the assumption that 6x is small

6X = -sin (xp) - cos (xp) 6x + u (5.11)

By defining the reference state to be

7

PR -= =-sin (xp) (5.12)

the deviation state dynamics are given by

= -COS (xp) 6x + U (5.13)

The linear estimation procedure now involves the integration of Eq.

(5. 12) and the integration of the expectation of Eq. (5. 13), given below

5X = -COS (x) 6% (H 14)

At any time, the linear state estimate is found as the sum of the re-

ference state plus the deviation estimate.

¥ =X, 0X
1

(5, 15)

In order to properly consider measurement updates, it is also

necessary to know a quantity which represents the mean squared error

in the estimate given by Eq. (5. 16).



P= (6x-5%)° (5.16)

where

dX =

5x=

 IT -XR

“. *R

The differential equation for P is easily shown to be

2 cos (x) P+ Q (5.17)

Using the same linearization procedure for the measurement

updates results in the following equations. Defining a measurement

deviation as follows:

AZ 4

(5.18)

62 = 2, =~ Zp

The linear measurement is incorporated in the following way:

57 = £Xx

sxt=6x+ B [62 - 62] (5.19)



B= _E
P + R

Lb .P--BP =(1-B*P + B*R

(5. 20)

(5. 21)

In the case of the second type of measurement (Eq. (5. 6)) the equations

which correspond to Egs. (5.19) - (5. 21) are the following:

- cos (2x5) [3s

Sx+: ET + B[éz, - 625 = 625]

L - cos (2xp) B]° P-+ BE

(5. 22)

(5. 23)

where

P~ cos (2x)
B=ER

P- CO (2x4) + R

(5. 24)

Equation (5. 23) may also be written in the following form

&gt;t = P- - cos (2xp) BP” (5. 25)



as in Eq. (5. 21). However, the form of (5.23) is preferred in order to

insure that P be a positive number as is dictated by its physical defini-

tion.

After a measurement update, the optimum linear estimate is

once again found with the aid of Eq. (5. 15).

a



5.3 Nonlinear Estimation Using Series Expansion Techniques

The series expansion procedure which was discussed in

Chapter III will first be specialized to a scalar state with terms up to

and including the fourth central moment. Then the equations appro-

priate to this particular example can be found as a special case of the

scalar estimation equations,

The differential equations of the first four central moment, used

:0 extrapolate the series estimator between measurements are found

as follows. The nonlinear function

x = f(x) (5.26)

ls expanded in the following Taylor Series

—_— — 2, ,— 3, ,— 4
TNL 107°f (x) 1 07f (x) 1 ofF(x) =f = = — (x)

(x) (+g == Pre 3 T + 5 a S (5.27)

In Eq. (5.27), the third and fourth order central moment terms

are designated by T and S, respectively, They have the following def-

initions for this scalar case.

mr - (x - %)5

(5.28)

5:=(x - 0?

Using Eq. (5.27) in Eq. (5.26) provides the desired extrapolation

equation for the first moment, x, Similarly

1



P=2(x-%)(x-%)=2[x-F] [£f(x)-£(X) +u] (5.29)

po=2[xf(x)- xf(x)+xu| (5.30)

where

— : 2 T(E), 30(0) p
x(x) =xL(x)+1/2[R “—y= —

EE es Te xe a 2) 5xX 0X 24 0X 0X

{5.31)

1.4]

2, ,— 3, — 4, ,—

— TT Tey, 12071 (X) 1-0°f (X) 1 —93°f (x)
xiix) =xl(x) tgx—g—PrgX—g—THgx—7p S

{ 3.32)

The last term in Eq, (5.30) may be evaluated as follows

3



xu = x (0) u(t) + [{iixeon tu (s) pds u(t) (5.33)

-

The initial value of x is uncorrelated with the driving noise u (t) for any

t &gt;0. Thus,

Xu = fl x(s)] u(t)ds+ u(s)u(t)ds (5,34)

2

In the interval 0« sc t, fl x (s)] and u (t) are correlated only at
3 = t and at that point the correlation is finite, Therefore, the term

f[ x (s)] u(t) does not contribute to the integral over the indicated

region and consequently

xd = 1/2Q ( 5.25)

Thus, Eqs. (5.31) (5.32) and (5.35) used in conjunction with

Eq. (5.30) provide the differential equations for the second central moment,

F'ollowing the same procedure

 | -3(x-%)°(x-T)=3[x-%]“[f(x)-T(x)+u] (5.36)

P= 3x2 f(x) -%x2f (x) +xou-2%xf(x)+2%f(x)-2%xu]

oT)



In Eq, (5.37), each of the expectations indicated by a bar are

again expanded in a series using the following equations,

5 2. mm —

r(x) = X63) + 1/2 LEE) 45) opm) gp
0X 0X

3c, D5 —
wD -

L 1% 0 f(x) , gx 0 f(x) .0f(x) ]
5 0X 0 x J x

4, — 30 ,— 2, =

 x LL) gx BEX), gy 3E(X) gg (5.38)
24 J X 0X 0X

—_— 2. ,— 3ey—

= Lx) . [32 +P] [£(x) + 1/2 3iBip 2 LE R)y
0X 6 0x

4
1 0 f(x)

b— —— SS] (5.39)
24 0x

2 = [ x0) +[{ f1x(s)] +u(s) pds) X

[x (0) +H] [x(n] + u(r) bar u(t)
0

(5.40)

| 1 Q



2u = x(0)%u +2x(0) | f[ x(s)] u(t)ds anki)| u(s)u(t) ds
0

 oo ‘oo

[[ stxterierxerudras +2 [[ flxs))uryuin aras
n I

[[uorumiuaras
 nN

(5.41)

As discussed above, x (0) and similarly x(0)° are uncorrelated with

u(t), and f[ x(s)] u(t) and similarly f[ x(s)] f[ x(r)] u(t) do
not contribute to the integrals over the region shown. In addition, be

cause u is assumed to be a zero mean Gaussian white noise process

1(s)u(r) u(t) = 0 for all r, s and t¢

Thus, Eq. (5.41) becomes,

oy = 2x(0) (1/2 Q) + 2 | fl x(s)] ds (1/2 Q)

0

=a = x(0)Q@ + Ql x - x(0)]

a = QX (5.42)

| i



The remaining terms in Eq. (5.37) can be evaluated using the expres-

sions given previously, It is interesting to note explicitly that the

terms in Eq, (5.37) which involve u are as follows

2a - 2XXUu = Qx -2x(1/2 @) 0 (5.43)

Thus, as also shown in Chapter III the extrapolation of the third central

moment, T is independent of Q.

T = 3[ x2 f(x) - x2 f(x) - 2x xf(x)+2%2£(x)|(5.44)

Finally, the fourth central moment is extrapolated in the follow -

lng N Ay -

~

 JD s(x -E)(%-%) = 4[x-%] [f(x)-T(x) +u] (5.45)

S = 4] x5f(x) x38 (x) + =u - 3x f(x) + 3% 22 (x)

3% x%u + 3%% xf(x) - 3%° f(x) + 3% xu] (5.46)

The terms which involve u explicitly will be examined first, They are

19°



ou - 3% wou + 3 %2 xu

The first may be expanded as in the case of ow

Su - x00) + [{erx(s) + u(s) pds |
0

[ x(0) of {ere + u(r) dr]
nN

"x(0) [Ex] Fu(v) pdv] oa.)
 J)

(5.47)

Keeping in mind the discussion given above, Eq. (5,47) can be re-

duced to the following

Su = 3x(0)2 (1/2 Q) + 6x (0; | flx(s)] ds (1/2 Q)
3

3 [fixe f[x(r)] drds (1/2 Q)
0

J[[5 ue ur ue) arasan
0

(5.48)

The last term above may be expanded into three terms using the re

lationship between fourth and second order central moments of a

Gaussian random variable discussed in Appendix D.

 /



[[[atm ue um ult) dvds dv
9

Jar w(s) ul) + u(r) uls) u(v) u(t)
0

a(r)u(t)u(s)u(v)] drdsdv (5.49)

[Integrating this expression three times results in

[i Qs (v -r)u(s)u(t)+1/2Qu(r)u(s)+Qé(v-s)u(r)u(t)]drds
 Nn

Y

 [1/2 Q%s (v-r)+1/2 Q%s (s -v) + Qtu(r)u(t)] dr

12 Q% + 1/2 Q%t + 1/2 Q%t = 3/2 Q%t ( 2) 30)

Returning to Eq. (5.48), the third term on the right hand side of the

equation does not haveaclear evaluation; however, consider the fol-
lowing expansion for =,

2 = [x(0) « [4x x(s)] + u(s) as)’
3

(5.51)



2 = x (0)2 + 2 x(0)[x - x(0)]

SIRE IRIE aras + [ w(s) u(r) dras (5.52)
9 0

The last term above is similar to one evaluated in order to obtain

Eq. (5.50), Thus, Eq. (5.52) can be rearranged to give

| fx(s)]f[ x(r)] drds = x&gt; - x(0)% - 2x(0)[X - x(0)] (5.53)
y

Substituting this result, as well as the result of Eq. (5.50) into Eq.

(5,48)

a = 3/2 x(0)%Q + 3x(0)Q[x-x(0)] +3/2Q] = - 2(0)°

4 x(0) (XT -x(0)) - Qt] +3/2Qt (5.54)

Su =3/2 Q x?

Using Eq. (5.54) and previous results, the terms of Eq. (5.46) in-

volving u can be summarized as follows

PER



3/2Qx°-3x (QX) + 3%2 (1/2 Q) = 3/2 Q (x2 -%°)

(5.55)

3/2 QP

Returning to Eq, (5.46), the first term may be expanded with

the following equation,

——— 2 = -_

Brix) = Bex v2 (PELE) 4632 21) Ler) p
J xX JX

3¢(T 2elioy ends —

161% LEE), 0x2 814%) 485 00{X) 653) T
0x 0X JX

k

4, , 3. ,— a2, =

1/24 2 £13)fix),193528L(x)f(x)+36%L(x)f(x)
0x 0 0X

 24 28x) 5 (5.56)
Ax

and the second with Eq. (5.57).
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3 3 J 3..-

x1 (x) [sz er] [r 1/2 &amp; {®) p12 LhX x

4 —

- 1/24 210f(x)s]
JX

(5.57)

The remaining terms may be evaluated using equations found in the
development of T or Pp,

By making all the indicated expansions and carrying out the

required algebra the following extrapolation equations are found,

2 2¢(%fof) +1/220 f(x) py 231 (% 4. ,—1/6 X)EDpry maja Sg s (5.58)xX

5p 208) p 2% 1 (X) Si (Xor 1/2 it refs St s + 1/2 Q) (5.59)-

— 2, ,— 2, ,— 3.,—

boa 200) pp 22s pt p22)py0X 0X 0X 0x

4
. 0 f(x

TE aXxX

(3. 50)

. —- 2, — 3,,= 4. —

S =a) 4/28TX) pp _ yg 8LX)12pq 8LX)pg
Jd xX JX oY 0%

3/2 QP] (5.61)

AH



Specializing Eqs. (5.58) through (5,61) for the nonlinear func-

Hon

i; A ) = - sin (x) (5.62)

results in the following

x =sin(X)[1/2P -1/24S-1] +1/6cos (xX) TT (5.63)

+ = sin {x}T+cos(x) 1/3S -2P 1 FQ ( 3 54)

T . sin (X) [3/28+1/8PS - 3/2P%] - cos(X)[ 3T + 1/2 PT]

(5.65)

S = sin (X)[ 1/6 TS - 2PT] - cos (X)[4S+2/3T%]+6QP]

(5.66)

Updating the estimator with periodic measurements requires a

set of equations for each type of measurement, The general form of

measurement update for each of the four moments is found as follows.

For the state estimate

: x + B[z-2z] (5.67)

I



where z is the actual measurement, z is the ensemble expectation of

the measurement written, in general, as

Rats
 ¥ \)

(5.68)
Zz = H (x)

and B is the optimum gain factor given by

[3 (x-x)H(x)
H(x)? - H(x)? +R

(5.69)

Proceeding as in the case of nonlinear system dynamics, a series ex-

pansion for H (x) is defined by:

-_ 2 si 3 — 4 ea

H(x) = H(X) + 1/2 pe 1/6 22320 + 1/24 ps
X xX xX

( 5. 70)

in order to evaluate Eq. (5.69) xH(x) and H (x)? are required:

{ Jr



———— Z —_ —_—
xH(x) = TH(X)+1/2[xHX),,0H(X)yp

3 &lt;2 Jd Xx

311 =y Aly (= nd —

v1/6] xox)H(x)40H(x)HOD)pr1/24xHK)H(x)
3 2 4

Ax dx dX

Ser ;—

p49HX) gq (5.71)
 -~ 3

RUC, 2 —_ —12

5 2 J xX

L

3y — — 2, ,—

1/6 [2m (x) ZED, 6 2H)2H), T (5.72)
0 X 0 xX dX

2
4 = ~~ wd. po J

EE 82 THEOL |) I'SX X X x

b=

Equations (5,70) (5,71) and (5,72) can thus be used to evaluate Eq,

(5,69).

The general update expression ror the second central moment is

found as follows.

| 9Q



S72 (x - xT) = {ix - x7) - B[ H(x) - H(x) rv ]p? (5.73)

po’ =P - 2 BI xX a] [ H (x ) -H (x) + \Y% ] + B2 [ H (x ) -H (x) +

n | |
74)

p =P -2B[xH(x)-%H(x)] + Bi [H(x)? -H(x)2 +R] (5.74)

Equation (5.74) can be further simplified by making use of the Eq, for

B.

  -B(x-x )H (x) (5.75)

However, the more general form of Eq. (5.74) is useful for comparison

to the update equations for T and S, All of the series expansions required

for pt are given above, (Note that the expression in Eq, (5.75) with the

par over it is just the numerator of B, )

F'ollowing this same procedure, the corresponding equation for

I is found

— 3 :

(x “xT {ix -x )-B[H(x) - H(x) tv) (5.76)
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T =T -3B[x-% | [H(x)-H(x)+v]

T

B [ «er

YS

2 -

] [H(x) -H(x)+v] -B°[H(x)-H(x)+v]

( 3. 77)

=T -3B[ (x - x7) H(x) -P H(x)]

3 B[ (x SX) H(x) - 2 (x “x )H(x) H(x) ]

—3 —3 — Bis

B [H(x) + 2H(x) - 3H(x) H(x)] (5,78)

In order to evaluate Eq. (5,78), the following expansions are required

in addition to those given above:

_ ~~ 2,

(x -x) H(E) =H(x) Pp +20 p74 4/58HX) g
7 JX

(5.79)
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&amp; ~~ 2 Br =) 2

(x - x) H(x) =2H(x)3HX) PT rH ZEAE), ARG) | T
0X 0X 0 X

3... ,— —_ 2 —

_/3 (x) LE), 0H) 9Hix) Ss” (5.80)
0X 0 Xx 0X

) o a 2 ,2.. ,— —

H(x) =H(R) +1/2 [3H (X) EE one (2LE) .0X 0X

2,3 — — 2 — —_3

[6 [ 3H(X) gHix), to 11 (x) SHO)O04 (OHO) T0x 0X 0x 0X

4. —

[24 3H (X) 2B) +24 H (xX) 2H) 55H (X)
0 X 0 3x 0 xX

2. = 2 12 arse

+ 18 H (X) plied + a6 | 2D) 8 H(x)Sy)S
(

J i)

Finally the update for S is found as follows:

a - 4

st = (x - x7) -{(x-x) -BlHE) -A@ +v]) (5.82)
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Carrying out the expansion, noting the properties of the Gaussian random

variable, v, the update equation becomes:

_ J a—

3 =S -4B[(x-x)H(x)-TH(x)]

BY [(x-%)2 -2(x -X )?H(x) B(x) +P H(X)°+PR]

4B (x - x) H(x) -3(x - &lt; YH (x)%H (x)

(5. 33)

£3 (x -x )H(x)H(x)?+3(x-x)H(x)R]

Bria? -sH (nt - 4 Hx) H(x) +6 H(x)? H(x)’

= 6 H(x)°R - 6 H(x)° R + 3R?|

The additional expansions required for the evaluation of Eq, (5,83) are:

f

[ x  Hex)=HG)T+2H)
A

‘3. 34)



— 2 2 _ 9

(x -x) H(x) =H(x)’P +2H(x) LE) py g(x) HZ)
0X 0x

[ene i2X) ys

0X

(5.85)

— v 2 -— 2 .2 _—

(x -x )H(x) = 3 H(x) OH(X) p= 4 [3/2 H(F) 0 H(x)
dX 0 X

- 3H (x) my |
0X

2 3%H(% = a2 =

[1/2 H(X) PBX) sy (x) LH(X) 97H (X)
0 x 0x 5 x2

-4 § 54J
es

 aH (T°
| ox | 4

&lt; hs

(5.86)



4 4 3 025 (% 2 ow (x 2
H(x) =H(x) +1/2[4H(X)CRNESPEH(xX)EE)

0x 0X

3 Ad, = 2 wes py Ot,

1/6 [4 H(X) 0HX) 4 36H (x) 0H(x) 9H (X)
9 x 9 x 9 x2

i.

— 13

24 H(F) a | T
) X

3.4, — 2 fry A3y;—

yeaa H(T) LHD4ggy(x) 2H) 9 Hx)
d¥ d X J X

2 1.2. ,— 2 —12 2.

| =.“ [90°H (X) uaa [EY 9H (X)355147) | 0 X | * | ox 0 X

—\4

24 [FEED S”
J X

( 5,87)

Thus Eqs. (5.84) through (5.87) coupled with the previous results pro-

vide the means for evaluation of Eq, (5.83).

The two types of measurements under consideration here can

now be used to specialize the above, For the linear measurement;



y

H(x) = x

dH (x) _ i

JX

(5.4)

(5.88)

(5.89)

Equation (5, 70) becomes

H(x) = x (5.90)

Similarly

x H(x) on +

(5.91)
H (x)° = %2 +

-
—

a

«11g

 35



By = meres
P + R

(5.92)

thus

Eo ?
X = X +B, [2z;, - x7]

(5.93)

 =: P - B,P = (1 - B, PT + BR

Specializing Eqs. (5.79), ( 5.80) and (5.81)

_- 2
(x -x) H(x) = xP =

(x - x )H(x)? = 2%5P +

H(x) = 3° + 3%P +

(5.94)

(5.95)

(5.96)

and therefore:
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«77-3B,[XP +T -p X] + 3B [2XP +T -2%P |

BOX +3%XP + T+2%° - 3%(x° + P7)]

(5.97)

of1-3B, +38) -BY] = (1-8):

Specializing Eq. (5.84), (5.85), (5.86) and (5.87)

(x -x) H(x) =o

(x x) H (x)2 = PP 4c - ’

re

-

(5.98)

(x - x ) H(x)" = 3Z2 PT + 3TT 4

Hix): 3162p +4Es -

3D

and using previous results

&lt;



~
» .S -4B, [XT +S -T X] + 6B. [X°P +2XT +8

‘PT -2XT +%°P +P RI] 4B [3% PT + 3xT 4 ~

3

3 “pT - 3XT +3%°P + 3P R] + BY xt +6’ P

- — - -7 = — _—

:T +S Sex oat le -4xT 35

3 - Pp + 6%°R+6PR-6X°R+3R° (5.99)

ST =87(1 - 4B, + 6B’ 483+ Bh + BR (6F - 12B P+ 6B p +382 R)

5S =(1 - B,)* Ss” + 3B°R (2P -4B,P +2B P+ BR) (5.100)

The second measurement type

7 . = 1/2sin (2x) + v (5,8)

has all terms non-zero and therefore does not lend itself to any signifi-

cant simplification, Therefore, only the series expansions required for

the update expressions will be specialized for z,,.
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H(x) = sin (2X) [1/2 -P +1/3S ] -2/3 cos (2%) T (5.101)

(x -% )H(x) = sin(.2)[ -T i COS (..SIP -2/30 7 (5.162)

H (x)? = 1/4 sin (2%)+cos(4%)[P™-4/v5|- 4/3 sin (4%) T"

(5.103)

(x -X)“ H(x) = sin (2%) [1/2 P -S|+cos (2%) T" (5.104)

(x -X )H(x)? = sin (4%) [1/2 P - 4/35 | +cos (4%) T (5.105)

H(x)° = sin® (2%) [1/8 -3/4P + 7/48|+ cos (2%) T

(x -% )

sos”? (2x) sin (2%) [3/2 P~ 35D

. 4

- iY (2x) cos (2x) [7/2 T7]

= sin(2x. 71/2 ~ L + cos (2%) S

(5.106)

( 5 107)

(x -%X ) =sin(2%)[1/4P | +sin(4%)[1/2T ] + cos (4x) S’

(5.108)

{ 3¢C



(x C¥) Hx) = sin’ (2x) [ - 3/4 T ] + con® (2x) S

) cos (2X) sin (2X)
p—_,

1

-

J wil ( - X) cos (zc X)[ ~14 nl + (5.109)

H(x)* - sint (2%) [1/16 -1/2P +5/°3 | cs (2X) S

7) con® (2x) [3/2 P 25

3

Y  i | (ax)cos (2x) [7/3T | +cos (2X) sin(2x)[2T |

( a i 10)

Equations (5,110) when properly substituted into Eqs. (5.69),

(5.75), (5.78), and (5.83) provide the update equations for the non-

linear measurement, zg.

Some of the required algebra has been carried out in this chapter

to provide evidence of the straightforward but lengthly calculation re-

quired of the series estimation procedure, Keeping in mind the system

under consideration is a scalar state, a serious deficiency of the series

approach is evident,

By way of contrast, the quasi-linear estimation equations for the

same system are derived below.
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5.4 Nonlinear Estimation Using a Quasi-Linear Approximation

The third type of estimation scheme to be considered here is

based upon the discussion of Chapter IV and is referred to as a quasi-

linear estimator. For the nonlinear function

»-2) = -sin (x) (5.111)

the quasi-linear approximator is given by:

NE _ sin (x) oPl2

(5.112)

NT=- cos x) e E12

where x is the quasi-linear estimate and the ensemble expectation of

the state variable, x; and P is the variance defined by

2 (x - %)° (5.113)

The differential equations required by the quasi-linear estimator for

extrapolation are therefore:

® X —
x = N.X

P=2NP+Q

(5.114)

(5.115)
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In order to update the estimate with measurement data, the

following equations are used. For the linear measurement,

- nt —

Nim = Nip = 1 (5.1186)

ind

ry mmoar _ =
X x +B, [2 2 (5.117)

where

"
- ff !

—— _ X T=

z= Ny X

B, = ——
P+ R

(5.118)

(5.119)

the variance is updated with the following equation.

pt =P -B.P =(1-B,)°P +B2R
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For the nonlinear measurement

1/2 sin (2x) + v

NE = 1/g Sin (2x) oc 2F
m

(5.121)

2 e

Coed
pSA

"T+ B, [z, ~ 25] (5.122)

where

X ; -2P

ry = Np, X= 1/2 sin(2x)e

- e

 PING
By = ———%3

P (Ng) + R

(5.123)

(5.124)

3d

51. To € To _ 2 2 - 2

= P B, Nom P (1 By Ny, ) P + B, R (5.125)
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Using the equations found in Section 5.2, 5.3 and 5.4, a

numerical simulation is now used to compare the performance of

these various estimators.

1



J. O Digital Simulation and Results

A digital simulation of the above nonlinear estimation problem

was performed using an IBM 360/75 computer and the MAC compiler

language of the M. LT. Instrumentation Laboratory. Each case was

a Monte Carlo run with the random noise being generated by a random

number generator using a Normal Distribution of numbers with a zero

mean and specified standard deviation,

In each of the cases considered, the initial error in the estimate

was one radian and the measurement interval was 0. 2 seconds. The

parameters which were varied for each of five estimators were the mea-

surement noise variance and the driving noise variance. Both linear

and nonlinear measurements, 24 and Zo were also considered for each

system.

The results of using the linear measurement, z, are summarized

in Fig. 5-2 for all of the estimators considered. As can be readily seen

from the figure, each of the estimators performs well. For this esti-

mation problem, the effect of the nonlinear system dynamics is minor

compared to the nonlinear effects in the measurement process. There

is no apparent advantage to using either of the nonlinear techniques for

this system if a direct measurement of the state is available. However,

this is only true if the linear estimate is rectified at each measurement

point. If this rectification procedure is not used, the linear estimator

is not at all comparable to any of the nonlinear techniques because of

the inaccurate approximation to the system dynamics, a result also

verified numerically.

In Figs. 5-3 and 5-4, the performance of each of the five esti-

mators: three series estimators, a quasi-inear estimator and the

linear estimator, is shown for a measurement noise variance of 0.02

sq. rad. and a system driving noise with variance 0.01 sq. rad. In

this case, and in the remaining cases, only the nonlinear measurement

z is considered. As can be seen from Fig. 54, the linear errors and

the quasi-linear errors generally bracket the errors of all the series
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estimators in this case. From Fig. 5-3, which depicts the time be-

havior of the linear and quasi-linear estimators, it is clear that the

relatively large initial error does not allow effective linearization,

With reference to both figures for this simulation run, the quasi-linear

estimator results in the smallest estimation error.

For a smaller measurement noise variance of 0. 005 sq. rad.,

the performance of the quasi-linear and linear estimator is shown in

Figs. 5-5 and 5-6. All of the series estimators, not shown for pur-

poses of clarity, again demonstrated an improvement over the linear-

ized estimator but did not equal the performance of the quasi-linear

technique. An important difference between this case and the one above

is, of course, that random numbers entering the measurement process

in this run are only half those which would occur for a variance of 0. 02

sq. rad. More important than the actual random numbers, however, is

the relative magnitude between R and P in the measurement update

aquations. This situation manifests itself as an increased sensitivity

of the nonlinear estimators to measurements. Because of the nonlinear

nature of the estimation equations, the excursions of the estimate, as

can be seen in Fig. 5-5, are much larger than would occur with just

the addition of a random number from the distribution specified. This

amplification of random affects occurs for each of the nonlinear esti-

mators considered.

Again, it is clear that the linear estimator cannot be used for

initial errors of this magnitude even if the measurements are relative-

ly accurate.

Another case was considered with a relatively large system

driving noise. All of the estimators were examined with the mea-

surement noise variance equal to 0. 02 sq. rad. and a driving noise

variance of 0.10 sq. rad. The behavior of the state estimate using a

linear and a quasi-linear technique is shown in Fig. 5-7. Although,

the quasi-linear approach again provides a distinct advantage over

the linear estimator, the increased value of Q results in a better
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linear estimate. The larger value of Q produces a relatively larger

value of the covariance matrix and hence the estimator tends to be

more sensitive to measurements throughout the run, thus allowing the

estimator to converge to the actual state sooner than in the earlier cases,

In Fig. 5-8, the magnitude of the estimation errors is shown for

all five estimators for the same case just discussed. From this figure,

it is obvious that the third and fourth order estimators are not as ef-

fective as in the case summarized by Fig, 5-4. The second order esti-

mator again shown an advantage over the linear estimator, but displays

slightly larger errors than those associated with the quasi-linear esti-

mate. The series terms are apparently not converging asymptotically

in this case, a fact which points up one of the serious difficulties of this

technique and one which other individuals have also noted.

Finally, in Fig. 5-9, the results of a case with a large measure-

ment noise variance of 0.10 sq. rad. and no system noise is shown. The

consistently better performance of the quasi-linear estimator is again

evident; however, the performance of all the estimators is somewhat

degraded as expected,
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5.6 Summary

The original purpose of this chapter was twofold. First, it was

presented to show that nonlinear estimation techniques are required in

certain cases and that the two approaches under consideration in this

work do provide a significant gain over a linear estimate. Second, a

comparison between the two nonlinear techniques was to be made with

respect to estimation equations and numerical results.

The discussion in the previous sections clearly points up the

advantages of quasi-linear estimation in terms of complexity and im-

plementation difficulties, This is due, in part, to that fact that the

nonlinear relationship considered, permits an analytic solution to the

quasi-linear equations. However, even if numerical techniques, such

as those discussed in Chapter VI, were necessary algebraic complexity

such as that involved in a series estimation technique would still not be

in evidence. In addition to the calculations required by a series esti-

mator, it was found that many practical problems associated with the

numerical behavior of the moment terms must be carefully considered

if this technique is to be generally applicable,

Because of the consistently better performance of the quasi-

linear estimator as evidenced numerically, as well as the analytic

simplicity of this approach, the next two chapters will be devoted to

some further investigation of implementing this technique. Chapter VI

will discuss some of the additional analytic and numerical techniques

required for a general multi-dimensional nonlinear problem using a

quasi-linear approximation and Chapter VII will be used to demonstrate

the performance of a quasi-inear estimator in a more complex situation

including a comparison to a linear estimator.
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CHAPTER VI

COMPUTATIONAL TECHNIQUES ASSOCIATED WITH

QUASI-LINEAR ESTIMATION

6.1 Introduction

The use of quasi-linear estimation techniques, as discussed in

the preceding chapters, hinges on the ability to evaluate the expectation

of a general nonlinear function of the state vector under the assumption

that the state vector can be described by a particular probability den-

sity function. The form of this density function has been assumed to

be Gaussian for reasons discussed in Chapter IV. Therefore, in the

general case, a multiple integral of the following form must be evalua-

ted.

© ES
a s -1/2 [x-x]" P ~ [x-X]
v - 2m) 2 |p(172 §§ dx, ® 0 © dx f(x) e

(C 1)

In Eq. (6. 1), the number of integrals is equal to the dimension of the

state vector, n, and the matrix P is the covariance matrix of errors

in the estimate of x. The matrix P is also the covariance of the

assumed Gaussian density function and is defined by:

= lt x -9) (x -0F (6. 2)
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In a number of useful cases, the function, f(x) is such that the

integral in Eq. (6. 1) can be analitically evaluated. In general, however,
it is necessary to use some approximation technique to find f(x). The

simplest approach to this problem, and also the most generally appli-

cable in light of the present-day high speed digital computer capability,

is to utilize one of the many numerical integration techniques which

are available. The majority of useful techniques, however, are de-

signed for the solution of a single integral. There are a great many

practical systems, for which the nonlinear vector function f(x) is

actually a collection of one or more scalar nonlinear functions, each

a function of just one variable, In such cases, each element off(x) can

be evaluated separately using a single integral,

The general nonlinear vector function is not as simply treated.

Therefore, the first problem which will be discussed here will be the

separation of Eq. (6. 1) into the product of n single integrals. Some of

the techniques for numerical evaluation of the resulting single integrals

will then be discussed, keeping in mind the kinds of nonlinear functions

which typically arise in estimation problems.
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6.2 Multiple Expectation Integrals

The general expectation integral of Eq. (6. 1) can be rewritten as:

op T -1
ck ela ae fx eT Pu (

~y

wo 3)

where K is the scalar coefficient of the integral in Eq. (6. 1), redefined

simply for convenience, and r is defined by the following

(6. 4)

The matrix P © will not generally be diagonal; however, be-

cause of its physical definition, it will always be real and symmetric

and therefore, a transformation which will result in a diagonal matrix

is always possible. By defining a new variable which is related to r

by the following expression

1 = (6. 5)

such that

«I plop.p (6. 6)

where D is a diagonal matrix, the exponent of Eq. (6. 3) will become
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The a; in the above expression are the diagonal elements of D, and are
also the Eigenvalues of 1). The matrix T can be formed by making

each column of T a unit Eigenvector of hy. The differentials,

ds, ns ds are related to the original variables dr, ‘es dr in the fol-

lowing way

4+1 4 &gt;» @ ® as. = J Lz

where the Jacobian, J 1s given JY

or, or,

or,
95
or,

 sn
ory ar,

£4 oo ar

or_

or

or

(6.7)

(6. 8)

Using the above relationships, the integral of Eq. (6. 3) can now

be rewritten as:
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f= _ -1/2 [ay sé+a, 8,04... +a s 2)
=k {(10as,.. as De® sre nn

(8 J)

2 -1/2a8° PB -1/2e,s; © -1/2a_s’
xg (e as, {e dso... (e@ ede ds

no ~n

(6.10)

where g (x, s) = f(x, Tr).

The series of single integrations indicated in Eq. (6. 10) can be

a formidable task even after the nontrivial procedure of diagonalizing

has been accomplished. For example, consider the following double

integral.

2-1/2 eps 2 -1/2a,s] ~
(e ds, {e ds, g (x, Sy Sq) ds, (6.11)
~~

Assume that a numerical procedure has been selected in order to

evaluate each of the above integrals. A general relationship for the

approximation in such a procedure may be written in the following way.

m

Fe) Kg) £2)
i=1

| A |

(6.12)



Thus,

C “1/2ays] _ a “1/2, ¢? _e g (x, S15 55) ds, = &gt; K(€;) e g (x, Sq £;)
i=1

(6.13)

From Eq. (6.13), a series of m terms which are weighted functions of x

and 84 results. Each of these terms then becomes a new single integral

to be evaluated. Again an approximation such as that in Eq. (6. 12) may

be used to evaluate each term. Thus, there are m terms resulting

from the first integration and each of these is approximated by another
m term series. Therefore, m? numbers must be calculated. In general

there are m" such numbers for an expectation involving n integrations.

A further demonstration of this procedure is discussed in the

following, Consider a function of two state vector components which

can be expressed by the following

F  (x, r)]-

F NE. x1 xg)2

(
: m ,— n

Fr) (x,+ry)

(6.14)

(6. 15)

After expansion of Eq. (6.15), one of the resulting terms will be

 A 7
1 2
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Examining this term in detail, the integral corresponding to

Eq. (6. 3) is

Lo, lz rl pi
k { ar, dry ry ro, € (6.16)

Making the substitution

T s

results in equations of the following general form

oe. + Tio 8,

(6.17)

fy = T 31 817 Tog 89

Thus,

er = (Ty 8 + Tp ps) (Ty) 5, + Tog 5,5)" (6.18)

“10

” - . 1/2 [as ays]
[= KJ { fas, ds, (Ty s+ Tyo So) (Ty;s,+ Tyg85) e

= nN

(6.19)
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where J, a and a, are as defined above. The double integration can
now be rewritten as

0 2 0
-1/2a, s -1/2a.s

171 2 2 m n&lt;3 {e as, {e dso (T;s;+T 985) (Ty 8, FTyy8,)
- nA ”

I=

(6. 20)

Before computing any of the actual values of the a's and Ty’ it is
often useful to examine more closely some of the characteristics of

the terms in Eq. (6. 20). Because the exponential weighting function is

even and the integration interval is symmetric about zero, all odd

terms in the integrand do not contribute any net value to the integral,

In the example, the integrand in Eq. (6. 20) can be expanded with the

r+ 1st term of the first expansion times the t + 1st term of the second

expansion being given by the following

m-r n-t n! m! min-(r+t) r+t
Ti Ti2aTey Tog mT mT 777 51 Sq

From this expression and the particular type of integral involved, it

is obvious that for m+n equal to an odd integer, the double integration

is zero. For m+n even, r+t must also be even in order to have a

non zero contribution to the overall expectation. Thus, for r A ry

if m+n is odd, the expectation is always zero, and for m+n even,

only the r + t even terms need be considered. These latter terms

can be evaluated in closed form with the following general expression

~ 2

(,2n gaz” ; _1:8-5...(2n-1) [rm
ol! ol a

(6. 21)
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Because of the assumption that r is a multi-dimensional

Gaussian variable, any term which is the expectation of products of

the components of r, raised to a power represents a term of the

moments of the Gaussian density function. Such terms, if they are

even, can always be expressed as a function of the second order moment

terms as discussed in Appendix D. If odd, these terms are always zero.

The above example is therefore provided to demonstrate the procedure

of separating integrals and, in fact, need not be used for functions which

are of polynomial form. However, the same steps and examinations of

even and odd terms can be followed for any functions, f [x (x, r)] which

appear in Eq. (6. 3).

As can be seen from this example, the procedure of expanding

the nonlinear function may increase the resulting computational com-

plexity considerably, Therefore, each particular case should be ex-

amined to determine whether or not the original form should be

approximated directly.

In the general case, after the required expectation is redefined

in the form of Eq. (6. 10), the evaluation of the integrals must be per-

formed in some approximate manner, It is possible to approximate

the nonlinear function by some other function such as a series, poly-

nomial or straight line segments; however, this procedure must be

tailored to a particular nonlinearity and is therefore not general. For

this reason, as well as the numerical accuracy attainable on high speed

computers, only numerical techniques will be considered in the following

discussion.
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6. 3 Numerical Approximation to Expectation Integrals

All of the expectation integrals which arise in the computation

of the quasi-linear approximation, under the Gaussian assumption can

be reduced to the following general form as shown above.

{ :\ ds eas’\ f(s) (6.22)

Several techniques have been developed for numerical evaluation

of a single integral with an integrand composed of a general function of

the independent variable multiplied by a weighting function. These are

generally called Gaussian quadrature formulae, A specialization of

this general procedure for the particular weighting function

A 3) = &gt; (6. 23)

and for an integral with infinite limits is known as the Hermite -Gauss

quadrature, Note that Eq. (6. 22) can always be rewritten such that

Eq. (6. 23) is the appropriate weighting function, simply by the proper
definition of a new variable.

The Hermite-Gauss quadrature technique is briefly summarized

in the following. A polynomial function of the independent variable, s

is defined by the following

T s) = 271 H_(s) (6. 24)

where H_(s) is the mth Hermite polynomial. (See Appendix C for a
definition of Hermite polynomials.) The value of m corresponds to

~n
ha



the number of abscissa points to be used in the approximation and is

therefore a function of the desired accuracy and acceptable computa-

tional complexity.

According to the Hermite -Gauss procedure the appropriate

formula for numerical integration is then

Ce’ f(s) ds =
-

2 ol

m
—

K._. f(s.) + E
T 1

(6. 25)

where S.. is the rth zero of the polynomial 7(s). The rth coefficient is

evaluated using the following relationship.

tl NT
2

(6. 26)

and the error term, E which represents the remainder when the sum-

mation is truncated at a finite value of m, can be expressed as follows.

po NT 2m)
2° (2m)!

(6.27)

In the above equations g(2m) (§) is evaluated at some appropriate (but

unknown) £ in the same region as s.
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As an example of the evaluation of an integral of the form in

Eq. (6. 22), consider the following 4 point approximation,

fe 3{e f(s) ds = J K. f(s)
n r=1

(6. 28)

Equation (6. 24), specialized to this example is:

T (51=1/16 H,(s) = s — S “+ 3/4 (6. 29)

The zeros of 7n(s) are easily found to pe

+

= [3243 = -1. 651;

r

&gt;

[3:NE = 0.525

[3 -N6
 9 = -0, 525

(6. 30)

and the corresponding values of the coefficients found from Eq. (6. 26)

are given below

{ , = tH, = J, U81; H, = H, = 0. 805 (6. 31)
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Thus the 4 point numerical approximation to Eq. (6. 28) is the

following

x 2
=-S

™ f(s) ds = . 081 [ f(1. 651) + £f(-1. 651)] + . 805 [f(. 525) + f(-. 525)]

(6. 32)

Another numerical approximation procedure which is also

tailored to integrals of the form which arise for the expectation of

functions of Gaussian random variables has been suggested by Gelb

and Vander Velde (1968). The general form of integral to be evaluated

is the following:

2
oQ Ir-1/2
(+ r)e oc? dr

__. v

ull J -o0A

(6. 33)

Note that evaluating the integral in Eq. (6. 33) is equivalent to evaluat-

ing the integral in Eq. (6. 22). However, the form shown in Eq. (6.33)

ls more convenient for this particular discussion,

The Gaussian probability density function is evoressed by

J xy c)= -

Jor 3

2
1/2 &amp;

. oe (6. 34)

and therefore by definition a differential of the associated probability

distribution function, F is

RL



4 [F(v)] = —1— ve
— e dv (6. 35)

where a new Gaussian random variable with unit variance has been

introduced and is defined by

7
5

(6.36)

The integral in Eq. (6. 33) can, therefore be expressed as

\ f(x+ or) d[F(v)] (6.37)

and the approximation to this integral is given by the following

[ al S [F(v)] &gt; fx+o Vv.) (6.38)

where the increments of F(v) are assumed to be equal. The values of

vi at which the nonlinear function is to be evaluated, can be chosen is

a number of ways, one of which (suggested by Vander Velde) is a

trapezoidal integration rule which approximates each portion of the

integral by the area under a straight line segment. This linear func-

tion is selected such that it is equal to the nonlinear function at each

of the end points of the integration interval,
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The approximation given by Eq. (6. 38) has the build-in advantage

of selecting more sample points where the probability density function

is greatest, This is a result of the choice of equal é [ F(v)] for

0&lt; F(v) &lt;1.

Using this technique for a cubic nonlinearity, which resprsents

a smooth nonlinear function, as well as a relay, chosen to represent a

discontinuous nonlinear relationship, Gelb and Vander Velde (1968)

have shown that maximum errors do not exceed 10% for a 10 point ap-

proximation procedure and 5% for 20 points.
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6.4 General Considerations

For many of the estimation problems which can be solved using

a quasi-linear technique, there are singularities which can arise in

the expression for the nonlinear function. A familiar example of this

is the expression for the gravitational acceleration of a spherically

symmetric planet given by

J
4 Ey:irl

(6. 39)

where u is the appropriate gravitational constant and r is the position

vector of the second body, perhaps a spacecraft. Inherent in the defi-

nition of the gravity using Eq. (6. 39), is the assumption that the space-

craft state vector always satisfies the following inequality constraint,

 J

I R

where R is the radius of the planet under consideration.

{t is possible to define a six-dimensional state vector as

follows.

(6. 40)

x,  JT

where r and v represent the position and velocity vectors of a body,

respectively. Then the differential equation describing the free fall

motion of the spacecraft about the planet can be expressed as

| 7



(6.41)

C3
gl

The associated quasi-linear estimation procedure requires the evalua-

tion of the ensemble expectation of Eq. (6. 41)

(6. 42)
/

‘ “1

13Ix /)

Thus, one of the integrals to be evaluated is the following

wo 1/2 [x-X] P} [xX]

(f= e
cw Ix |

37

where the vector xy represents the position component of the state,
and P is the covariance matrix of estimation errors. As is obvious

from Eq. (6. 42), x, = 0 is a singular point and would result in an

infinite value of the integral if the infinite limits were used. However,

as pointed out in the above discussion, the chosen expression for the

gravitation acceleration is only valid for Xx) &gt; R and in fact, that is
the only region of interest for this problem. The expectation involved

in the quasi-linear approximation should therefore be taken over a

restricted region.



By way of illustration, consider the following one dimensional

example. Suppose the position of a body on a line were to be estima-

ted, but it was known that the body could not lie within a fixed distance

of a point defined to be the coordinate origin, (See Fig. 6-1.)

-

Restricted

Region
4 LS py

oa~ 2

Figure 6-1

Under the quasi-linear assumption, the position of the body is a

Gaussian random variable with mean x and variance P. The density

function of such a random variable is depicted in the figure, If one

were to select the region of integration to be from a to 2x -a, where

a &gt; R, then any numerical difficulty in the region 0 to R, if it existed.

would be avoided. The inaccuracy which might be introduced by the

above procedure can be quickly evaluated by examining the magnitude

of P with respect to the interval x - a and the point, R. If, for example,

the density function of x were to look similar to that shown on the

following page.

- 1



Tr.

L
- 1x)

op—t

©

ai

Pi

 1

Figure 6-2

Then even choosing the largest acceptable and symmetric region of

integration, from R to 2x - R would still result in the neglect of the

shaded regions.

Because of the Gaussian form of p(x), knowledge of P will

allow an exact determination of the area of the probability density

function which has been neglected and consequently an evaluation of

the inaccuracy introduced by restricting the region of integration is

straightforward.

In many practical situations, the loss of accuracy as a result

of using finite integration limits is not significant as illustrated by

the following. Consider a spacecraft circling the Earth in an orbit

the altitude of which has an expected value equal to 100 n. m. The

region of integration used to evaluate the expected value of the gravi

tational acceleration is restricted to

Tl yy I+ -Rp 1x1 _ 21x41 Rp

of Ten



where Rn is the radius of the Earth and Xy the expected value of the
position vector. Then a one sigma error in the estimate of the space-

craft altitude can be as large as 33 n. m. and the area of the density

function which would be neglected as a result of the finite integration

limits described above would be of the order of 0. 3%.

The type of practical consideration discussed above is indicative

of both the difficulties which arise in evaluation of an expectation inte-

gral over doubly infinite limits as well as the physical properties of a

problem, which must also be considered. Each problem has its own

particular physical constraints and very few general techniques can be

developed. Also, it is useful to note that even though an expectation

integral constains no singularities, one may take advantage of the phy-

sical interpretation of such an expression to possibly simplify the

numerical or analytic integration and also to perhaps increase the

accuracy of a numerical approximation for a given computational

complexity.
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CHAPTER VII

[HE VAN DER POL OSCILLATOR

l.1 [Introduction

The purpose of this chapter is to investigate in some depth the

behavior of the linear and quasi-linear estimation techniques. The ex-

ample system chosen is a second order oscillator with highly nonlinear

behavior allowing a demonstration of the multi-dimensional form of the

estimation equations as well as a comparison of the two estimators in a

truly nonlinear environment, In contrast to the example in Chapter V,

this investigation will deal with only two estimation schemes and will

consider some of the sensitivities of each to various system parameters

as well as the stability of the estimated quantities,

The nonlinear oscillator to be estimated is described by the

classic van der Pol equation given below

“+ ex (1 - 2%) (7.1)

This second order differential equation may be rewritten as two first

order equations in the following way

(7.2)

8

2
SExy (1 - x)



By defining a vector

¥
«

(7. 3)

| %s |

Equation (7. 2) can be written 1n vector torm as follows

x = f(x) = (7. 4)

(exh

The behavior of the van der Pol oscillator is depicted in Figs.

7-1and 7-2. In the first figure, the behavior of Xy is plotted for three

different values of e. As is obvious from Eq. (7.1) as € — 0, x, (t) —cos(t)

and for relatively large eg, 3 switches sign rapidly. Figure 7-2 shows

the behavior of X, as a function of time, demonstrating the short periods

of large velocity. As can be seen from Eq. (7. 2), these will occur when

lx, | &lt;1 and are the regions of greatest interest as far as estimation

behavior is concerned. Based on these figures, a value of € = 3 has

been selected for the remaining investigation.

It will be assumed that the actual state derivatives are the ideal,

described by Egs. (7. 2), plus additive Gaussian white noise as shown

below:

(7. 5)

-
- oo. 2

(1 x, ) + u,

-
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where

(7. 6)
LuUg|

has a variance matrix defined by the following equation,

AT) wr) =Q 8 (1, - 7.) (7.7)

In Eq. (7. 7), Q represents the variance matrix of the noise process and

is diagonal in form because of the assumption of independent white noise

components in u,

At discrete time intervals, the size of which will remain one of

the variable system parameters, a scalar measurement directly pro-

portional to the first component of the state will be used to update the

estimates. This measurement is described by the following equation

[7 3)

where vy is again assumed to be a zero mean Gaussian white noise

process independent of x and u., For convenience in comparing this

example to a general vector measurement, the following definition is

made,
a1

z

er ——

J
—

(7.9)

A  1 £4Vv

4 |



In Eq. (7. 9), the geometry matrix, H is given by

(7.10)

and

(7.11)

Va]

The Gaussian process, v has the following variance matrix,

T _ ..

v(T,) v(T,) =R § (7, - 7

Thus, Eq. (7. 5) describes the system dynamics and Eq. (7.9)

the measurement process associated with the actual system to be esti-

mated with linear and quasi-linear estimation schemes.



7,2 Linear Estimation Equations

As discussed in Chapter V, the linear estimation procedure is

based upon the definition of a reference state and deviations from that

reference.

A

oy

Ae

3% |

1 "*IR

x2 - *2R |

(7.12)

Using this definition, the differential equations for the actual state may

be expanded as follows

iT tv - Xop 7 éx + u,

(7.13)

&lt;  _ _ _ 2

“on t 8x, = (x; pt ox,)+ € Xop+ 6x5] [1 (x, g+ 6x) ] + u,

Expanding the second equation above and dropping all variational terms

of order 2 or higher results in

. 0 Co 2, 2 _

Gopt 0%o= “(x pt ox.)+exp(1-xp)+e[(1-x5)6X5-2X,pXop6X;J+ug

f -. 4)

By defining the reference state differential equations to be

| Q«&lt;



YRC *2R
(7.15)

OR X
1

. _. 2

Fe xXop (1 - xp)

the deviation state dynamics are then described by the following:

11

(7.16)

HX
. qf _ 2
: =(1 + 2€ XR XoR) 2 +e (1 XR) bx, + u,

For convenience in defining the estimation equations in vector

form, Eqgs. (7.16) can be rewritten as follows

7
he

iYaLT+ u (7.17)

where the matrix F is defined by

(7.18)
lt

- 1 2 € Xp Xop
2

e€ (1 - XR)

and

(7.19)

| V2 |



At any time, the linear state estimate is found from Eq. (7.20)

K, =X,3
Ld

0X (7. 20)

where 6x is the ensemble expectation of the deviation state and is the

solution to the following differential equation

Sa rr (7.21)

[n addition to the state estimate, a statistical measurement of

the estimation errors is also required for proper measurement incor-

poration. This quantity defined by the following matrix

P -
- (6x - 3%) (6% - 30)Y (7.22)

is extrapolated from one measurement to the next with the following

equation

P=FP+ PFI + Q (7. 23)

The measurement incorporation procedure for the linear filter

again utilizes a deviation vector defined as follows

ve v

rh
— Hx-x= Hobéxstv

(7. 24)
5z=Hox

where H is given by Eq. (7. 10).



Defining an optimum gain matrix by the following expression

B=P H! [HP HL+R] (7. 25)

the update equations for the state estimate and the covariance matrix

are:

sx+ = 6x + B [62 - H 6x]

pt T-BHYP (I - BH)T + BRB!

(7.26)

(7, 27)

where I is the identity matrix, in this case two-dimensional.

After each measurement incorporation, the linear estimate is

found by employing Eq. (7. 20).

The rectification procedure which was discussed in Chapter V

will be employed here, and the effect of redefining the reference at

intervals greater than the measurement interval will also be examined.

1



7.3 Quasi-Linear Estimation Equations

The results of Chapter IV have indicated two possible sets of

estimation equations for the quasi-linear technique. The simplified

set is only rigorously true if x is "small". The particular estimation

problem considered in this chapter has an associated |x| which ranges

up to approximately 2.5, however, it does have the interesting property

that, for an accurate estimator the time average of x is close to zero.

Therefore, the simplified set of equations may possibly result in a

useful filter. Because of this, both sets of estimation equations will

be derived here and each resulting filter will be simulated in order to

compare the performance.

7. 3.1 General Formulation

The general set of quasi-linear estimation equations which

were derived in Chapter IV requires the use of two gain matrices

which are defined by the following equations

© x
N. 1 x- - I(x) | p-!

(7.28)

WX. MEL, ce; x=
f° T= f T=

X X X X

However, it is important to note that the matrices themselves need

never actually be computed because they always appear in the estima-

tion equations as follows. The state estimation is given by

x = NX x = Ii (7.29)

4



Thus, only f(x) need be evaluated and not the entire N matrix, Simi-

larly Ng appears as follows

D - NEP+PNS +GQGT (7. 30)

For this particular case, with G = I, Eq. (7. 30) reduces to

P= (f(x) z= -Ix) ral + [x 2x) T -x f(x)" ]+Q (7. 31)

Therefore, the only new quantity to be evaluated is f(x) x 1.

Specializing f(x) to the problem under consideration,

Fix) (7.32)
2

7s (1 - Xx, )

Taking the expectation of Eq. (7. 32) results in

£157)

&lt; X, - x, x2)Xo = Xg9 X4

jo 2

(7.33)



The expectation, x, %,° may be further simplified as follows. Expand-
ing each state variable in terms of a mean and random component

See —_ - 7
Xo X,° = (x, + ry) (x, + r.) (, ) 4)

 alr 5240 2TF 45 ro24527 +95 FE +220
Xo Xg = Xo Xg + 2x, Xq ry + Xg ry + xy ro + 2x, ry ro tr, ry

(7. 35)

Using the fact that r is treated as a zero mean Gaussian random

variable, Eq. (7. 35) reduces to the following:

x2 = E z.°
21 92 4

x, P 2, Poy toy Poy

Thus, Eq. (7.33) becomes

f(x) = (7.36)

Xo RF, -F - 2%, P,,)¥ tex, xx, x, Py 1 Pia

The matrix f(x) xt may be evaluated in a similar manner,

9



X1 *2 2
4

1

*

f(x)x~ =

2 C2
Xy + € X; Xg (1 x")

na. Z ze

xX, Xo + €%, (1 =x)

(7.37)

The expectations of products of state components in Eq. (7. 37)

may be reduced in the same way as shown for I(x). The result is

x; Xo+Pry
~ &amp;

Yo + Pr,

fc) x 3 =

2 —-— —-

- (x, + P+ € (x, X, + Po)

=, z2 Xx, x, P,.+P 9)-e (7,0 T+ 3X, Po+ 3x 2 T11 111

0 — 2

(x) Xp + Pig) +e (x) + Py)

2-2. —2 - 2.

-€ (x7 Xo +X" Popt 4X, Xg Pi o+X, "P+ Prono)

'7 IR)

bY,



where Pi112 and Pii29 represent the fourth moment terms rr, and
r ry’ repsectively, As shown in Appendix D, because of the assumed
Gaussian nature of r, these fourth moment terms can be expressed as

functions of second moment terms. In this case

 ow 73 Py Pry
(7. 39)

-
_ 2

129°P11Pog72Pg

Each element of the f(x) x! matrix is therefore given by the following:y g

T A

(f(x)x"] =x, ¥ + P.
11 - 12

T _ = 2

f(x) x I, =X, + Py

or nT. _ =2 = = =3= a2
(f(x) x I = (x, +P) €(x;x5+ Po XX 3x4 Pg

3%. X, Py - 3P,, P.,)

TT _ —2 —2 2 — 2
f = - + ” -

 f(x)x I, (x, X, Pl o)+ €(x, + Py, X," Xg "TX Py,
— — —2 2

4%) X53 Proxy Pry “PP Poo m2P 57)

(7. 40)

The expressions in Eq. (7. 40) along with Eq. (7. 36) are used in

Eq. (7. 29) and (7. 31) for extrapolation of the quasi-linear estimate..
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(.3.2 Simplified Formulation

As discussed in Chapter IV, for an odd nonlinearity, the quasi-

linear approximation matrix for x approaches the corresponding matrix

for e as x — 0. The example under consideration in this chapter, in

addition to having a nonlinearity which is odd, also has the interesting

property that the time average of x is zero, and consequently for a good

estimator, the time average of x should also be close to zero. Because

of these special characteristics, it is of interest to also consider here

the simplified set of quasi-linear estimation equations which require

the computation of only one approximation matrix. This matrix is de-

fined by the following equation.

N ma ET
f° TT =

X° X

(7.41)

The matrix Ne is employed in the extrapolation of both the state esti-
mate and the covariance matrix using the following equations:

z Nw

P=N.P+PN,_ +Q

(7. 42)

7 1 3)

In order to evaluate N, as defined in Eq. (7. 41), the ensemble

expectation of f(x) is required; however, Eq. (7. 36) provides an ex-

pression for I(x) and N, is thus found to be

"QD



X9 Xq )

A

ws 3 pp com
xX, Tex x,

 =, =4
¥, X5 + € Xg

NR - me pe elo —
-€ X4 (x4 Xo F Xo Pit 2x, Po) €X,(x, X4 +X, P, tax, P,.)

(7. 44)

7. 3.3 Measurement Incorporation

The measurement incorporation procedure for each of the two

guasi-linear estimators is the same. Because the measurement is a

linear one, the following linear update equations are used, If the mea-

surement is defined by

xX.

z= Hx+v= (7. 45)

then the state update is given by the following

Xz - Hx] (7. 46)

where

 XK =P HL [HP HT+R] (7. 47)

oq



The proper update equation for the covariance matrix is given by

i P--KHP =(I-KHP (I-KHY+KRKT (7. 48)

where K is defined by Eq. (7.47).

Using the three sets of estimation equations, one for a linear

estimator and two for quasi-linear techniques, a numerical study is

used to demonstrate some of the performance characteristics of each

estimator.

1 Q A



i.4 Digital Simulation and Results

As in Chapter V, an IBM 360/75 computer and the MAC compiler

language of the M. I. T. Instrumentation Laboratory was used to simulate

the above estimation equations. Again, a series of Monte Carlo runs

were performed with actual random numbers selected from a Gaussian

distribution with specified variance.

The rectification procedure discussed in the above description

of the linearized estimator was examined numerically to determine the

importance of redefining the reference state to be the current estimate.

The two extremes of this procedure are, of course, to redefine the re-

ference after each measurement or to use the initial reference through-

out the run. These two situations are depicted in Fig, 7-3. The need

for rectification for this particular nonlinear system is clear; however,

it was found that redefining the reference after every two or even five

measurement incorporations did not significantly degrade the linear

estimator performance. The measurement intervals for all of the

simulation runs were 0. 5 seconds. The performance of the estimators

was also not very sensitive to this parameter. As can be seen from

the figure the initial error in the estimate is 1 and is therefore not

small enough for a linear assumption to be valid. The requirement

for rectification is also a function of this error and must, therefore,

be assessed for each set of initial conditions.

The discussion of the remaining simulation runs is divided into

two parts. The first part concerns a set of three runs all of which

have the same initial error of 1 unit and an initial variance estimate

of 1 sq. unit indicating that this error represents a lg value. In this

set of runs two levels of measurement noise variance and two levels

of system driving noise variance are examined, The second part of

the discussion is concerned with two sets of Monte Carlo runs, each

representing a ten sample case from the same distribution of random

processes. For each Monte Carlo set the initial conditions as well as

the measurement errors are random numbers selected from a Gaussian
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distribution. Each set of runs contained initial errors with a variance

of 1 sq. unit. Each set did not have any system driving noise, however,

the measurement noise variance was 1 sq. unit in the first case and

4 sq. units inthe second case.

Examining the individual runs in detail, the first case considered

did not have any system driving noise and the measurement noise variance

was 1 sq. unit. Figure 7-4 demonstrates the behavior of the state esti-

mate as determined by a linear estimator and the general form of the

quasi-linear estimator. A comparison of the two quasi-linear estima-

tion formulations for this same case is shown in Fig, 7-5. Associated

with each estimation scheme is an estimate of the mean squared error

in the state estimate. This quantity, hereafter referred to as the

variance estimate, is determined from the appropriate equations for

the quantity, P discussed in the previous sections. The behavior of

the variance estimate for each of the three types of estimators which

corresponds to this particular run is depicted in Fig. 7-6. As can be

seen from these three figures, both quasi-inear estimators have

slightly better performance than the linear estimate and are compar-

able to each other. In Fig. 7-6, the relatively sharp peaks which occur

for the linear estimate of the variance indicate some instability in this

juantity. This problem as well as similar difficulties with the esti-

mate of the state are more pronounced with larger measurement noise.

The next set of three figures shows the behavior of these same

three estimators for a run with measurement noise variance equal to

4 sq. units, The other system parameters and initial conditions are

the same as those used for the run discussed above. Figures 7-7

through 7-9 correspond, in content, to the first set of figures with

the first two depicting estimator behavior and the third showing the

estimated variance as a function of time.

From Fig, 7-7, it is clear that the linear estimator exhibits

periods of relative instability particularly at the points where the esti-

mate changes algebraic sign as demonstrated by the large "overshoot"

in the dynamics of the estimator. Figure 7-9 reveals a similar erratic
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behavior in the linear estimate of the variance. This characteristic of

the state estimate and the variance estimate is not noticeable for either

of the quasi-linear estimators. The basic difference between the two

types of estimators, and therefore the reason for this behavioral dif-

ference, is the fact that each of the quasi-linear estimators includes

some consideration of higher order moment terms not found in the

linear estimation equations, These terms are apparent in the extra-

polation equations for the variance as derived in the previous section

of this chapter. The superiority of the full quasi-linear estimator over

the linearized and simplified quasi-linear estimators is more evident

in this case with larger measurement noise variance. |

It is also of interest to consider the behavior of each of these

estimators with a significantly large driving noise variance. Therefore,

another run was made with the same initial conditions and measurement

parameters as in the first case (summarized in Figs. 7-4 through 7-6)

but with a system noise variance, Q, equal to 0.5. The results of this

simulation are shown in Figs, 7-10 through 7-12. The first two figures

indicate that the general formulation of the quasi-linear estimator is

still significantly better than the linear estimator; however, the sim-

plified quasi-linear estimation equations give results which are quite

comparable to the linear estimate. Further evidence of this is found

in Fig, 7-12 which shows the behavior of the variance estimate, From

this figure, it is clear that the simplified quasi-linear estimation

equations result in stability problems similar to those of the linear

estimator.

The second portion of this numerical study is composed of two

sets of 10 Monte Carlo runs used to compare the linear estimator and

the general formulation of the quasi-linear estimator, The first set is

for a system with no system driving noise, initial condition errors with

variance of 1 sq. unit and a measurement variance of 1 sq. unit, The

results of this simulation are shown in Tables I and II, In the first

table, the actual state along with the average of the two estimates of

the state is shown at 21 different points in time. The average error

is also shown and a quantity not previously discussed is used to help

}
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TABLE I

NO SYSTEM NOISE, MEAS. NOISE VAR. = 1

Time State

I) 2. 00

1.79

L. 48

0.96

1. 69

1. 90

1. 63

l. 24

0.11

1.99

1.75

l. 43

0. 84

-1. 96

{0

3

2

[3

| 4 -1, 86

5 -1, 58

-1.16

0.38

 5

7

| 8 1.96

1g| 1.71

20 1. 37

Avg.
Lin. Est.

1.48

1. 57

1.30

0.97

-0. 71

-1, 81

-1. 50

1.11

0. 41

2. 07

1,78

1.39

0.75

-1. 95

-1. 92

-1. 62

-1. 36

0. 04

2.00

 lL. 76

1. 40

Avg,
Lin, Err.

-0, 52

-0. 22

-0, 19

0.01

0.98

0. 09

0.13

0.13

0. 52

0.08

0.03

0. 04

-0. 09

0. 41

-0, 06

-0. 04

-0. 20

-0. 34

0.04

J. 05

0.03

Computed
Lin. Err.

1.09

0. 62

1. 60

1.99

1. 99

0. 02

0.08

0.26

1.70

0.15

0.05

0.11

0. 66

0.95

0.01

0.05

0.15

1.14

0.01

0.03

0. 04

2; 4

Avg,
Q. L. Est.

1.48

1. 63

1.37

0.18

-1. 20

-1, 74

-1. 29

-0. 54

0.74

1.79

1.24

0. 82

-0.16

1.77

-1. 62

-1. 10

-0. 71

0.97

1. 80

Ll. 25

0. 87

Avg.
Q. L. Err,

-0. 52

-0.15

-0.12

-0. 79

0. 49

0. 24

0.34

0.70

0. 85

-0. 20

-0. 52

-0. 61

-1. 00

0.19

0. 24

0. 48

0. 59

0. 59

-0.16

-0. 46

-0, 50

Computed
Q. L. Var.

1.09

0. 43

0. 46

2.80

1. 01

0.14

0.59

1. 46

1. 65

0.27

1, 67

1. 45

2.38

0.12

0. 23

1.41

0.90

0. 88

0.14

1.41

1.07



TABLE II

NO SYSTEM NOISE, MEAS. NOISE VAR. =1

Time

0

B

| 9

| 3

1 4

by

| 6

| 8

19

20

State

2.00

1.79

1.48

0.96

-1. 69

-1, 90

-1. 63

-1. 24

-0. 11

1.99

1.75

1.43

0. 84

-1. 96

-1. 86

-1. 98

1.16

0.38

1.96

1.71

1.37

Avg. Lin,
Var. Est.

1.00

0.71

1. 83

3.39

0.42

0.07

0.09

0. 50

0. 62

0.11

0.08

0.07

0. 43

0.70

0.08

0.08

0.15

0.37

0.02

0.03

0. 05

Computed
Lin, Var.

1.09

0. 62

1. 60

1.59

1.59

0.02

0.08

0.26

1.70

0.15

0.05

0.11

0. 66

0.95

0.01

0.05

0.15

1.14

0.01

0.03

0. 04

Variance of
{.in,Var.Est.

0.08

0.06

13.23

81.93

3. 83

0.02

0.02

0. 43

1.98

0.04

0.01

0.01

0. 43

0. 88

0. 02

0.01

0.03

0.79

0. 00

0. 00

0.00

Avg. Q. L.
Var. Est.

1. 00

0. 57

0. 99

0. 38

0. 57

0. 04

0.10

0.21

0.10

0.08

0. 04

0. 09

0, 22

0.06

0.10

0.06

0. 33

0.14

0. 09

0. 02

J. OR

Computed
Q. L. Var.

1.09

0. 43

0. 46

2. 80

1. 01

0.14

0. 59

L. 46

1. 65

0.27

1. 67

1. 45

2.38

0.12

0.23

1.41

0.90

0. 88

0.14

1.41

1.07

Variance of
R.L.Var.Est.

0.08

0. 02

0.10

5. 98

0. 63

0, 01

0.28

1. 64

2.20

0.06

2. 67

1. 86

5. 03

0. 01

0. 07

1. 84

0. 55

0.58

0. 06

1.93

0. 99

AUY



evaluate each estimate. This quantity, the computed variance, is found

by taking the average of the square of the actual errors in the estimate

for each of the 10 runs. It, therefore, represents a true variance in

the estimate for a 10 sample case. In the second table, the estimated

variance for each type of estimator is compared to this computed vari-

ance. In addition, another new parameter is introduced. This para-

meter is a measure of the variance in the estimate of the variance and

is found by taking the difference between the estimated variance for

each Monte Carlo run and the computed variance for the entire 10

sample case, squaring this quantity and averaging over the ten runs,

Therefore, it represents the mean squared deviation of the estimated

variance from the computed variance.

From Table I, it can be seen that use of the quasi-linear esti-

mation technique does not provide any significant advantage over using

a simple linear estimator, for a measurement noise variance of 1 sq.

unit, This fact was also evident in the individual run, the results of

which were shown in Fig. 7-4. In Table II there is some evident of

instability in the variance estimate at the time points 2 and 3, however,

the overall behavior of the two estimators is again comparable,

For a set of runs with measurement noise variance of 4 sq.

units, a summary of estimator performance is depicted in Tables III

and IV. Again the linear estimator and the general formulation of the

quasi-linear estimator are compared. From Table III, there is evi-

dence of some advantage to using the quasi-linear estimator from the

point of view of estimator accuracy and also instability in the estimate

is more pronounced for the linear estimate as seen at time points 4

and 13, by examination of the computed variance. In Table IV, the

instability associated with the estimate of the variance is more pro-

nounced as can be seen by examining the variance of the linear

variance estimate.

) 19



TABLE III

NO SYSTEM NOISE, MEAS. NOISE o° = 4

Time State

2.00

1.79 |

Ll. 48

0.96

1. 69

1. 90

‘1. 63

-1. 24

-0.11

1.99

l. 79

1. 43

0. 84

1.96

-1. 86

1.58

1.16
0.38
1.96

1.71

50 | 1.37

|

Avg.
Lin. Est.

1. 48

1. 41

1,06

0.73

-0, 36

-1. 58

-1. 49

-1. 07

-0. 97

1.03

L. 64

1.32

1.14

0.07

-1. 19

-1. 39

-1. 70

-0, 72

1. 66

|. 88

1.30

Avg.
Lin. Err.

-0. 52

-0. 38

-0. 42

-0, 23

1, 33

0.32

0.14

0.17

-0. 46

-0. 96

-0. 11

-0. 11

0. 30

2. 03

0. 67

0.19

-0. 54

-1.10

-0. 30

0.17

~-0. 07

Computed
Lin, Var.

1. 09

1.18

2.98

2.45

5. 22

0, 77

1. 64

1.88

2.14

3. 00

1.15

1.46

1.79

9. 90

2.17

0. 60

1,04

1.98

0,77

0.14

0.72

Avg.
Q. L. Est.

1.48

1.47

1.16

0.28

-0. 56

-1. 07

-0. 84

-0. 02

0.71

1.52

1.06

0.34

-0.12

-1. 09

-1. 25

-0, 72

-0. 24

1.06

1.958

0. 82

0. 23

Avg.
Q. L. Err,

-0. 52

-0. 32

-0. 32

- 0, 68

1.13

0. 83

0.79

1.22

0. 82

-0. 47

-0. 69

-1.09

-0. 99

0. 87

0. 61

0. 86

0.92

0. 68

-0. 38

-0. 89

-1.14

Computed
Q. L. Var.

1. 09

0.76

1.07

2,74

2, 64

1.06

1. 56

3. 61

2.29

0. 38

1. 25

2.99

2. 82

1. 60

0. 89

2.67

2.920

1. 54

0. 62

2.95

3.30



TABLE ./

NO SYSTEM NOISE, MEAS. NOISE 02 = 4

Time

| 0

| 1

192

1 3

14

5

| 6

17

| Q

| QO

20

State

2.00

1.79

1.48

0.96

-1. 69

-1. 90

-1. 63

-1. 24

-0. 11

-1. 99

1.75

1. 43

0. 84

-1. 96

-1. 86

-1,58

-1.16

0.38

1.96

1.71

1.37

Avg. Lin,
Var. Est.

1.00

1.21

1. 20

0.72

1. 34

1.15

1.17

0.91

1.29

0.58

0.35

0.57

0.56

0.71

1. 68

1.99

0. 84

3. 81

1.13

1. 09

0. 95

Computed
Lin, Var.

1 99

1,18

2.98

2. 45

5. 22

0.77

l. 64

1. 88

2.14

3.00

1.15

1. 46

L. 79

5. 90

2.17

0. 60

1,04

1.98

0.77

0.14

0.72

Variance of
Lin, Var. Est.

0.01

0. 22

4,06

3. 22

18.41

1.33

1. 62

1.21

2.08

6. 32

0. 84

1.52

1,78

27. 50

4,02

12.21

1. 07

44, 33

1.59

0.13

2.929

Avg.Q.L.
Var.Est.

1. 00

0. 88

0. 85

0.71

0. 58

0. 38

0. 40

0. 23

0. 30

0. 30

0.30

0. 38

0. 40

0. 25

0. 22

0.16

0. 20

0. 09

0.04

0. 09

0. 07

Computed
Q.L.Var.

1. 09

0.76

1.07

2.74

2. 64

1.06

1.56

3. 61

2.29

0.38

1.25

2.99

2. 82

1. 60

0. 89

2. 67

2.20

1. 54

0. 62

2.955

3 30

Variance of
QO.L.Var.Est.

0. 01

0.03

0,16

4, 39

5.47

0. 53

1.53

11, 65

4 18

0.10

1.10

7.16

6. 14

1. 99

0. 61

6. 44

4. 01

2.14

0. 34

6.11

10. 48
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Referring back to Figs. 7-7 and 7-9, this degraded performance

of the linear estimate is also evident. The averaging affect of the 10

sample statistics provides some smoothing of the behavior as seen in

all these Tables. A look at the individual runs reveals even larger

peaks in the variance of the linear estimates, On the other hand, the

averages for the quasi-linear estimate as shown in the Tables are also

typical of the individual runs.

Finally, a phase plane plot of the position xy and velocity X, of
the van der Pol oscillator is depicted in Fig. 7-13. Also included on the

figure is the estimate generated by the general form of the quasi-linear

estimator for two complete cycles, The particular case shown in

Fig. 7-13 is for a run, with no system driving noise and a measurement

noise variance of 1 sq. unit also summarized by Figs. 7-4 through 7-6,
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Figure 7-13 Phase- Plane Behavior
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7.5 Summary

The van der Pol oscillator has provided a system which exhibits

regions ofhighly nonlinear behavior and therefore presents a useful ve-

hicle for comparing the linearized estimator and the quasi-linear esti-

mator. Also, because of the zero mean value of the system state when

averaged over time, the simplified quasi-linear estimation equations

give good results in some cases, namely when the driving noise is

small,

The estimation equations, shown in the earlier sections of this

chapter, can all be written in algebraic form allowing a direct compari-

son of each estimation scheme. As was noted earlier, both quasi-linear

schemes consider the fourth order moments of the density function; how -

ever, the general formulation provides a more exact relationship. It

is of interest to note that this general formulation produces exactly the

same set of estimation equations as was found by Kushner (1967) when

he specialized his problem to a Gaussian case,

In the case of the simplified quasi-linear estimator, the accuracy

involved in the approximation required for the simplified result is de-

graded for a large driving noise variance, However, large Q does not

seem to degrade the performance of the general quasilinear estimator

more than would seem reasonable,

The general remarks and conclusions concerning the performance

of the linear and general quasi-linear estimation equations are substan-

tiated by the statistical data obtained from 10 sample Monte Carlo runs.

A great deal more data is required, however, before any general quan-

titative information can be stated.
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CHAPTER VIII

SUMMARY AND GENERAL COMMENTS

8.1 Summary of Results

The problem of nonlinear estimation has been viewed in a slight-

ly different manner in the preceding chapters than that which has been

recently discussed by other authors. The evolution of a conditional den-

sity function, as the fundamental basis for minimum variance estima-

tion, which is the focal point of most of the published research in recent

years, need not be considered explicitly, As shown in this study, it is

also possible to directly examine the nonlinear function as it appears in

estimation equations and to develop methods for directly approximating

this nonlinearity. Several individuals have shown that a differential

equation for the temporal evolution of the desired conditional density

function can be found: however, the solution for the general nonlinear

estimation problem also requires some technique of approximation.

Therefore, the two approaches have similar difficulties and often pro-

duce similar results, as discussed in Chapter VII. The advantage of

simply determining an approximation to the nonlinear element, in ad-

dition to not requiring the somewhat involved stochastic calculus nec-

essary for finding the partial differential equation of the conditional

density function, is also that the resulting analysis much of the well

known work in nonlinear control theory, thereby allowing further in-

sight into the behavior of a given nonlinear system.

The series expansion technique, as developed in Chapter III,

provides one straightforward procedure for replacing any expectation

of a nonlinear function by a Taylor series, expanded about the current



estimated quantities. By assuming a form for the measurement update,

several of the desirable properties of an optimum estimator are retained.

First, the equations for the state and the higher order moments are un-

coupled. Second, all the moments are, indeed, ensemble statistics and

do not depend on random numbers, Third, the estimation equations re-

duce to the Kalman filter equations when the nonlinearity is specialized

to a linear function, This assumed form for incorporating measurements

is more restrictive than is actually required and therefore, may cause

some loss in accuracy. This possible problem, versus the above men-

tioned advantages, must be considered for the specific system of interest.

For the one discussed in Chapter V, the restricted form of measurement

incorporation did provide a useful set of nonlinear estimation equations.

An additional problem of nonlinear estimation with any series expansion

technique, and one which is difficult to analyze quantitatively, is con-

cerned with the term by term behavior of the Taylor series, It is not

clear that the moment terms converge rapidly, if at all, and once again,

a particular series estimator must be investigated for a selected non-

linear system in order to answer the questions of convergence. The

behavior of the higher order moments was found to depend not only on

the nonlinear system under investigation, but also on various other sys-

tem parameters, such as driving noise, measurement noise and the

measurement interval, In theory, an asymptotically converging set of

moments should result in an increasingly accurate estimator as the

number of moments is increased. However, the discussion in Chapter V

shows a large increase in computational complexity as this number is

increased even for a system which can be described by scalar equations.

In addition, it may be necessary to include only some of the higher or-

der moments (e.g., all even moments). The selection of which mo-

ments to include is again problem dependent.

Finally, although the series estimation procedure does produce

a significant improvement over a linearized estimator for nonlinear

systems, it cannot be used to solve problems with '"hard'’ nonlinearities;

that is, nonlinear functions for which some of the derivatives are not

finite. A well known example of a nonlinearity of this type is the

quantizer.

J iA



The quasi-linear estimation technique introduced in Chapter IV,

and demonstrated numerically in Chapters V and VII, shows a marked

improvement over linear estimation in each of the example problems.

It also has the advantages of: 1) being useful for any type of nonlinear

relationships; and 2) being identical to the optimum linear estimation

when all of the nonlinear functions are specialized to linear relationships.

As discussed in Chapter VII, the higher order moment terms, which

are implicitly contained in the quasi-linear formulations, provide solu-

tions for the state estimate and variance estimate which do not exhibit

some of the stability problems associated with a linearized estimator.

In the scalar example of Chapter V, the quasi-linear estimator consis

tently provided a better estimate than the linear or any of the series

estimators considered.

Two significant limitations of this quasi-linear approach are:

1) it is not always possible to find an analytic solution to the expectation

integral required by this technique, and, consequently, numerical pro-
cedures, some of which are discussed in Chapter VI, are required; and

2) nonlinear functions which result in a state with a highly skewed prob-

ability density function are not adequately described by the quasi-linear

formulation of Chapter IV. However, this formulation may be general-

ized to somewhat alleviate this problem as discussed in Section 8. 2.

In Chapter IV, it was demonstrated analytically that under certain

circumstances, a simplified quasi-linear estimator could be developed.

Such circumstances are that the conditional expectation of the state be

close to zero, In Chapter VII, the characteristic of having the time

average of the state be zero was demonstrated as an adequate approxi-

mation to this requirement and, thus, the simplified quasi-linear es-

timator provided useful results. However, the simplified estimator

performance was adequate only for small system driving noise,

)  )
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B.2 Generalization ofthe Quasi-Linear Approach

The technique of using a quasi-linear approximation for the non-

linearity in the system or measurement process requires the evaluation

of certain expectations of functions of a randomvariable given the prob-

ability density function of that variable. The expectations required are

the result of requiring that the quasi-linear approximation produce the

minimum mean squared error in the approximation. Such a mean is to

be taken over the ensemble of random processes. Important to the en-

tire quasi-linear procedure, then, is the expression for the above men-

tioned probability density function. For several reasons enumerated in

Chapter IV, it is logical to assume that this density function is of

Gaussian form. Once this assumption has been made, the entire ran-

dom process can be described by the evolution of two parameters which

represent the mean and variance of the random variable.

The assumption of a Gaussian process is not, however, a re-

quirement of this general quasi-linear approach. If a convenient,

preferably analytic, expression for a probability density function can be

developed which is a function of three or more parameters, a similar

procedure can be devised with the required number of parameters in-

cluded in the estimation equations. It seems likely that a third order

term would be most useful, if it is a measure of skewness, a property

not expressible with the Gaussian assumption. Having such an ex-

pression, the quasi-linear estimator can be developed in a manner

exactly analogous to that described in Chapter IV.

A technique for describing a general probability density function

in a convenient series has been suggested by Cram€r (1946). For the

normalized random variable

XX 5 -m

) /

(8. 1)



where £ is any random variable, m is the mean value of £€ and ¢ is the

standard deviation of &amp;§, the probability density function p(x) can be

written in the following series,

P vonJf

M

+ 2 6x)
a

(8. 2)

Hq 4 10 [H3)2 (6
_ 4-9 6M) + 12 3 69x)

In the above equation, the terms on each line are of the same order of

magnitude in the original variable of expansion, For a detailed deriva-

tion of Eq. (8. 2), which is somewhat involved, the reader is referred to

Cramé€r. In Eq. (8.2) the first term, ¢(x), is a Normal density function,

the u's are central moments of the general density function p(x), and
5(x) is the nth derivative of ¢(x) with respect to x. Note that if p(x)

is actually Normal, 4 = 3 and Hg = 0 resulting in p(x) = ¢(x).
a

Clearly, Eq. (8.2) can be used in a quasi-linear estimation

technique in the same manner as the normal distribution was used in

the preceding chapters. For example, if the nonlinear problem under

consideration were such that the distribution were significantly skewed.

a third central moment may be included in the estimator with all ex-

pectations being taken with respect to the following density function:

HM
(x) = x) - 5 —5 6B)

a

(8. 3)
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8.3 Suggestions for Further Work

There are several aspects of nonlinear estimation using series

expansion techniques which require additional studies. First, the

problem of analytically determining the relative magnitudes of succes-

sive moments has not been solved, and is one that is extremely impor-

tant to the successful application of this technique. In order to properly

select a truncation point, the above information is required.

The more general problem of series convergence and asymptotic

behavior is one which needs additional work also, It is highly desirable

to select a series expansion with desirable convergence characteristics.

This series may not be in terms of central moments or of a Taylor series

form.

As demonstrated in Chapter V, even a simple scalar nonlinear

system may require a very complex algorithm for series estimation.

Techniques for simplifying the required estimation equations should be

developed, exploiting some of the special characteristics of moment

terms, such as their symmetry,

The quasi-linear approach to nonlinear estimation has shown a

creat deal of promise in this investigation, and further studies both

analytic and numerical are necessary to fully exploit this promise,

Specifically, the class of nonlinear systems for which this technique

is most useful should be identified, and numerical problems associated

with implementationrequires further study. The general problem of

evaluating the multiple integral expressions which are required has

been discussed in Chapter VI. However, as shown, a considerable

=2ffort is required in order to separate the integral. This fact is suf

ficient motivation for a closer examination of the possibility of ap-

proximating the multiple integral directly.
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More generally, the question of stability of the estimation

equations can be considered as was done for a specific problem briefly

in Chapter VII. Also, the general technique of quasi-linear approxima-

tion, as described in Section 8. 2, suggests a larger class of problems

for which this approach might be useful. The series expression for a

general density function, which is given there, provides a means of

extending the quasi-linear approach; however, the problems associated
with a vector state and the associated evaluation of expectations given

a density function in terms of a vector mean, a covariance matrix and

a third order moment tensor are considerable, This area would seem

most worthy of investigation.
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APPENDIX A

RQUASI-MOMENT FUNCTIONS

it is often possible in engineering applications to justify the

assumption that random variables tend to be near-Gaussian. It is

therefore useful to consider a set of moment functions which are

tailored to provide a description of such a distribution,

If p(x, t) is any n-dimensional probability density function and

g(x, t) is a Gaussian probability density function with the same mean

and covariance matrix, the following function can then be formed as

the ratio of these density functions.

(x, t) = Bi 1)
o(%, 1) (A.1)

The characteristic functions which correspond to p(x, t) and

s(x, t) are

pO, 1) = { px ty dd X gx (A. 2)
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(A, 0= {atx t) 2 X ax (A. 3)

respectively.

Because of the Gaussian form of g(x, t) the characteristic

function can also be written as

 RNsor p= iN Xo U2 PY (A. 4)

where x and P are the mean and covariance of the Gaussian density

function, respectively. The ratio of ¢(A, t) and Y(A, t) can therefore

be written in the following manner,

A . Po6 to, be tN XH 1/2 AL pa (A. 5)

The expression in Eq. (A. 5) can now be expanded in an n-dimensional

Maclaurin series.

x n \2 n nMA, t : i)°2 = A(t) A, : A.JN, 1) 1+ ) Ky) it 21 ). ) Kk ®) ’
: j=1 ji=1 k=1

(A. 6)
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where

M0Ko veo (t)=— ————

1) aM Nn Nn, «oe
M

oN, 4WR, D5,
(A. 7)

fiquation (A. 7) defines the desired moment functions.

Using the mean and covariance along with the moment functions

defined by Eq. (A. 7), any probability density function can be expressed

by a series of moments which are referenced to the Gaussian probability

density function,

The moments given by Eq. (A. 7) are closely related to the cen-

tral moments as can be shown by comparing each term of a Maclaurin
~j% Tx

series for ¢(A, t) e IX" X and

pA, t) = he &gt;x-1/22L p A) og n\MWars
L n=3 M! bY

 i

(A. 8)

The results of the first four moment terms are given below, with

P; ... used to signify central moments,

= K

P.. = K..
1] 1]

(A. 9)
Pik = Kijk

Pike = Kijke* Pij Pre Pix Pye t Pig Pix

))n





APPENDIX B

IT'HE PSEUDO-INVERSE MATRIX

There are many practical situations which arise in engineering

requiring the inverse of a matrix which is singular or perhaps not even

square. In order to handle these situations, a pseudo-inverse may be

defined in a simple and useful way. According to Penrose, the follow-

ing four equations will uniquely define a pseudo-inverse denoted by A'.

Aa A = ..

A TAA! = A!

(B. 1)

AAnT = AA!

ATAYY = AA

The first equation taken alone can be used as the definition of a pseudo-

inverse and provides a useful result in many cases; however, the non-

unique quality of such a definition presents problems in the solution to

certain matrix equations discussed below.

The particular problem of interest in this paper arises from the

optimality condition for the quasi-linear approximation in Chapter IV,

In this case, the matrix which requires an inverse is the diadic product

of a vector with itself, a quantity which can easily be shown to have a

zero determinant, Using the above equations as the definition, the

pseudo-inverse of the diadic product x 27 is found to be

’ «3
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&amp;xT) = z= _
 —T—2x" x)

(B. 2)

Of particular interest to the discussion of Chapter IV is a further

result of Penrose. As a special case of his first theorem, the following

important result is found. A necessary and sufficient condition for the

equation

 xX 8=C (B. 3)

to have a solution is that

CB'"'B=C (B. 4)

where X, B, C can be any rectangular matrices. If Eq. (B. 4) is satis-

fied, then the most general solution to Eq. (B. 3) is the following

( *

&gt;.

« -C B'+ Y [I-85] (R. 3)

where B' is the pseudo-inverse of B as defined by equation set (B.1)

and Y is completely arbitrary. The freedom in choice of Y is easily

verified by substituting the expression for X into (B. 3) and noting that

because of the definition of B' the term which Y multiplies is always

Zero.

Specializing these results to the equations for the quasi-inear

estimator derived in Chapter IV.

NM 0)



&gt; zxt = c(x) zT (B. 6)

the general form of the gain matrix is the following

NE SRE Ly [1-5] (B. 7)

The simplest solution to N is, of course, found by setting Y = 0;

mowever, the freedom in choice of Y can also be exploited in the follow-

ing manner, Suppose Y were defined to be

cx) xT - cx) #T pl (B. 8)

then if the general nonlinear function c(x) is specialized to the linear

form Cx

(Tr
L : C (xx1 zx plo (B. 9)

and the special case of N™ becomes

= —=T wed

NX = EC xx re roxx 1%
C (B. 10)

) 3:



Note that if Y were chosen to be zero, the limit of N* would be

NX. CEE
J

XxX X

(B.11)

From the derivation in Chapter IV, Eq. (B. 8) is recognized as the de-

finition of the gain to the error, N°. Thus, a particularly useful defi-

nition for N* is the following

Eoewxt oe [xx]
SET igXX X XxX X

(B. 12)

For the special case of N* equal to a scalar Eq. (B. 7) reduces

NE — cx) (B. 13)

which eliminates the freedom in selection of a Y value, However, note

that as c(x) in Eq. (B. 13) is specialized to Cx, N* becomes C as de-

sired.
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APPENDIX C

HERMITE POLYNOMIALS

The Hermite polynomial is generally defined by the following

expression

2 n 2

i(s) = (-1)%e® (7)
dc

(C.1)

Such a definition is motivated by the fact that integrals over the inter-

val -0 &lt; 8 &lt; «0 with the weighting function

wv!
Lé

a)
3) = (C. 2)

occur often and the definition given by Eq. (C. 1) has the following

desirable property.

~ 2

{es H(s)H (s)ds=0 nfm (C. 3)

?



That is, over the infinite interval Eq, (C. 1) defines a set of polynomials

orthogonal with respect to the weighting function of Eq. (C. 2).

~
»] C

The Hermite polynomials obey the following recursive

H , 1(s) = 2s H (s) - 2, H _(s)

relation -

(C. 4)

with

H,(s) = 1; H. (s) = 2s (C. 5)

A list of the first ten hermite polynomials defined by Eq. (C. 1)

is given below

Hy(s) = 1]

H, (s) = 2s

H,(s) = 45° -2

_ 3

Ha(s) = 8s  - 12s

H,(s) = 16% - 485% + 12

 ss 5 2
Hc(s) = 328" - 160s” + 120s

H(s) = 6458 - 480s?+72052 - 120

_ 7 5 3
H.(s) = 128s - 1344s“ + 3360s” - 1680s

_ 8 6 4 2
Hy(s) = 256s - 3584s + 13440s™ - 13440s” + 1680

_ 9 7 5 3
Hy(s) = 512s” - 9216s + 48384s” - 80640s" + 30240s

_ 10 8 6 4 2
Hy ,(s)= 1024s - 23040s™ + 161280s - 403200s™ + 30240058“ - 30240



APPENDIX D

CHARACTERISTICS OF GAUSSIAN MOMENT TERMS

The multi-dimensional Gaussian random variable has associated

with it a characteristic function which is defined as the following expec-

tation.

 oo ix 1 Cc iaTx c1/2xT ply
p00) = Ee I= omiT2 pil? (fe e dx

(D. 1)

where i = N-1 and P is the n X n covariance matrix. The integration

indicated above can easily be performed to give the following expression

for the characteristic function

soy = 1/220 PA (D. 2)

The function can now be used to generate expressions for the

central moments of the Gaussian density function by making use of the

fact that partial derivatives of ¢(A) evaluated at A = 0 are directly re-

lated to these moments, This relationship can be expressed as follows

’
Ye &lt;



Le—~ ab Aor.“ ox 4 J} SE. es \ = Map...
(D. 3)

Thus, in order to find the moment M.; one must take the (a+ b+... jth

derivative of ¢(A) with respect to the proper A's and evaluate the result

for all A's = 0. For example

| 56

M93 = I TTT3 312
@° ax a® ax, ooo]

=0

£0

A.=0

(D. 4)

Take the partial derivatives of ¢(A) is straightforward as shown

in the following equations using differential notation

1 yo ole PA

5 1
I - A A2 &gt;» 1/2 P- = (6 , P ){ ) = A e

 IT
526(\) = [AT pax fp 81,) - on T Pac 1/2 2

5A

T
Cpaalp-pyan,et/2A PR

) ¥
 -~

PA

(D. 5)

D 3)

(1. 7)



_1/ oT

59) = rT (Por, xl p+ p2 oA p - (PAA! P-P) org PA] a, e 1/2)" pA

j 3)

52600) = ox, T[Par, or, pp ox, or, P-(P sx AT pep sx1Pp)an, PA

f-
_ T

aT pp) al par, jon, /22 PA

D--Tear ATpepaar,p
_ T

PT pyar] PAY ax, (AT py eTL/2N PA

(1, J)

This procedure can be carried out to as many terms as desired,

Using Eq. (D. 4), the following results are obtained

= 1961)

Mn A = r

2
1 2%) |M_, = =22%) =P

3b (5) ax ox ak
a bly _q

/ 4

(D. 10)

(D. 11)



Md 290)ab .

© Waa ay on
(D. 12)

|=~~
 Jp

Mad 2%)
abcd 1/4 an ox an aa

(1) a b Cc d
- Pac Pia + Poa Pre * Pub Ped

| A=0

'T) 3)

In general, for n Gaussian random variables

7 J
2 ) 9 93

the n'® moment is given by

71 Vg Vg ooo v=)TTvv, ee (D. 14)

where &gt; TT symbol is to be interpreted as the summation of all terms
of distinct products of the random variables taken two at a time, There

are

n!

(n/2)1 27/2

such distinct products.
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