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Abstract

In this thesis we study the finite-dimensional representations of the symplectic
group Sp(2n,C) from a combinatorial viewpoint. It is known that the irreducible
representations of Sp(2n,C) are indexed by partitions A with at most n parts,
and also that to each irreducible representation ¢, corresponding to the partiiion
A, one can associate a finite set of semi-standard tableaux (which we call sym-
plectic tableaux)of shape A whose cardinality is precisely the dimension of ¢,.
On passing from the representation ¢, to its character one obtains a polynomial
spa(z1, 27, . ..y Tny ;1) (in the 2n variables z,,z7%,...,z,, ;') which can be ex-
pressed as an integral linear combination of monomials in {z;,z7},...,z,, 2},
each monomial arising from a symplectic tableau of shape A. From the tableau
description or otherwise it follows that the characters spy(z1,z77,...,Zn,z;})
are invariant polynomials under the action of the hyperoctahedral group By, the
Weyl group of Sp(2n,C). The finite-dimensional irreducible representations of
Sp{2n,C) may therefore be studied by means of the "symplectic” Schur func-
tions sp, where A runs over all partitions with at most n parts. For Sp(2n,C) a
Schensted-type algorithm which produces symplectic tableaux was recently de-
veloped by Allan Berele (1984). Here the standard tableaux occurring as the right
tableaux of the Knuth-Schensted insertion process are replaced by sequences of
shapes S¥ = (0 = pu°,p!,...,u* = p) where any two consecutive shapes differ by
exactly one box. We refer to such a sequence as an up-down tableau.

Our first result is a reformulation of the Berele correspondence, showing that
its output may be encoded as a triple consisting of

1) a symplectic tableau of shape u,
2) a standard Young tableau of shape A, A 2 u, and
3) a lattice permutation which fits the skew-shape A D u and has weight 3, for
some shape 8 with columns of even length.
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This leads to the discovery of an interesting connection with the Knuth- Schen-
sted algorithm. One of the main results following from this is a combinatorial
description of the decomposition of an irreducible character of G!{2n,C) when
restricted to Sp(2n, C). We also characterise equivalence classes of words giving
the same symplectic tableaux under Berele insertion: the result in this direction
is that Knuth-equivalent words give rise to the same symplectic tableau and the
same lattice permutation, and conversely.
We present the Cauchy identity for Sp(2n,C)

I (1-tt) fI ﬁ (1—tizy) (1 —tiz; ")

1<i<j<n i=1j=1

= Y spu(zi,zit e Ty T ) Sty - - - o k)
BYp)<n

together with a bijective proof using the Berele correspondence. There is also a
dual identity, which we prove via a new "dual” Berele insertion scheme. These
two identities may be interpreted as giving the decomposition into irreducibles
of the action of Sp(V) x GI(W) on the symmetric algebra S(V ® W) and the
exterior algebra A(V ®W), respectively, for vector spaces V and W of appropriate
dimensions.

The symplectic Schur functions sp, are in fact an integral basis for the ring
A, = Z[zy,27Y, ..., 20, T 1]Bn, and an inner product may be defined on this ring
by making this basis self-dual. We show how to characterise dual bases in A,, by
means of the Cauchy identity.
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Introduction

This thesis studies the finite-dimensional representations of the symplectic
group Sp(2n, C) from the combinatorial viewpoint of semistandard tableaux and
the associated polynomials. The ultimate aim of such an investigation would be
to produce a theory analogous to the well-developed theory of Schur functions
sy indexed by partitions A. For £(A)<n, the Schur functions {s,} are in fact
the characters of the irreducible finite-dimensional polynomial representations
of Gl(n,C). From general representation theory it follows that the characters
are polynomials invariant under the action of the symmetric group S,, the Weyl
group of Gl(n,C). One of ihe remarkable properties of the representation ¢, 1s
the existence of a set of objects, semistandard tableaux of shape A, whose cardi-
nality is the dimension of the representation. This leads to a purely combinatorial
definition of s, in terms of semi-standard tableaux:

83(Z1y. ..y 2n) = > wt(T)

T tableau of shape A

Here the weight wt(T) of T is a certain monomial.

The symplectic Schur function spy(z;, zl"_l, .++3Tn, T, ) may be defined as the
character of the irreducible representation ¢, of Sp(2n,C); again from general
theory it follows that the polynomials sp, (in the 2n variables z,, z;%,..., z,,z;)
are invariant under the action of the hyperoctahedral group B,,, the Weyl group
of Sp(2n,C). As in the case of Gl(n,C), for every irreducible representation ¢,
£(\)<n, there is a finite set of objects, symplectic tableaux, whose cardinality
is the dimension of the representation. This, as before, gives a combinatorial
definition of the characters sp,:

-1 -1y __ T
apy(z1, 270, ..y Zny 2, ) = > wit(T)
T symplectic tableau of shape A

where wt(f‘) is an appropriate monomial.
The above definition will be the point of departure of our study. The subject
of this thesis may in fact be said to be the Berele algorithm for Sp(2n, C), which
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12 Introduction

plays the role of the Knuth-Schensted-Robinson correspondence for Gl(n, C) and
the Schur functions s,.

In an attempt to make this thesis somewhat self-contained, and accessible
to a general mathematical audience, we have devoted the first two chapters to
developing the requisite background material.

Chapter 1 presents an overview of the theory of symmetric functions, and
collects some of the more specialised properties of the Knuth correspondence
which play an especial role in the development of the results of this thesis.

Chapter 2 begins with an exposition of basic facts concerning the classi-
cal Lie groups, including the connections between the representation theory of
Gl(n,C) and Schur functions. We then go on to discuss the group Sp(2n,C)
and its irreducible characters, and introduce the Berele insertion algorithm. In
our presentation we have attempted to point out the similarities between the
combinatorial settings for the general linear group and the symplectic group.

In Chapter 3 we present our first results concerning the "up-down" tableaux
which play the réle of the @—tableaux in Schensted insertion. The crucial re-
formulation of the Berele algorithm, introducing the notion of "n-symplectic”
lattice permutations, appears here (Section 9). This enables us to show that the
Berele algorithm possesses remarkable properties. The main result of this chap-
ter (Section 10) uncovers the connection between Berele insertion and Schensted
insertion, which in effect says that the Schensted Q-tableau partially encodes
the up-down tableau of Berele insertion. We also investigate the effect of Knuth
transformations on the Berele algorithm.

In Chapter 4 we use these resuvlts to derive a generalisation of a classical
decomposition formula for the restriction of an irreducible character of GI(2n, C)
down to its symplectic subgroup. As a special case we obtain the classically
known expressions for s, in terms of sp, and vice versa, as functions in the ring
7\,, = Z[zy,z71,..., Zp, z, 1]Bn. The power of the Berele algorithm is also evident
in the discovery of a Pieri rule for symplectic Schur functions (Section 13).

Among the main resuits of the latter sections is a presentation of a "Cauchy”
identity for Sp(2n,C), together with a bijective proof, using ideas developed
in Chapter 3. We also give a dual Berele algorithm, which in turn provides a
bijective proof of a dual Cauchy identity.
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Chapter I

The Combinatorics of Symmetric
functions

This chapter provides the reader with the necessary background on the combi-
natorics of symmetric functions and partitions. We make no claims to complete-
ness; there are many excellent references ([An], [Macd], [Stal]) on the subject,
upon which we could not possibly improve. Our main goal will be to familiarise
the reader with the combinatorial techniques relevant to this thesis. Conse-
quently cur approach will be to state major results without proofs, and supply
what we hope is an adequate number of examples.

1 Partitions

We begin by defining the most basic unit in the combinatorial theory of
symmetric functions.

Definition 1.1 A partition )\ of a nonnegative integer n is a non-increasing
sequence A = {(A; > A3 > ...) such that
(1) there is a £ > G such that A\, =0 for all £ > !
(2) 2" A‘ =n.

We write A F n, or |A\| = n, and refer to n as the size of A. We call £ = £())
the length of A\. Also, each )A; is a part of \. Write Par for the set of all

partitions, and Par, for the set of all partitions of n.
By convention, the partition of 0 is the empty partition 0.

Definition 1.2 The Ferrers diagram of a partition A is a geometric represen-
tation of X obtained by drawing A; boxes in the first row, A2 boxes in the second
row below the first, ..., etc., with the rows left-justified.

15



16 CHAPTER 1. THE COMBINATORICS OF SYMMETRIC FUNCTIONS

Example 1.3 The partition (3,2,2) of 7 has Ferrers diagram

With the Ferrers diagram in mind, we may also refer to a partition A as a
shape. We wiil find it convenient to coordinatise the Ferrers diagram, so that
by the (3, 7)th position in A, we shall mean the box of the diagram in row ¢ and
column j, reading the rows from top to bottom, and the columns from left to

right.

Definition 1.4 The conjugate of A F n is the partition, denoted X', of n,
obtained by reflecting the Ferrers diagram of A about its main diagonal. Thus
A! is the length of 1th column of the Ferrers diagram of A.

It is clear from the Ferrers diagram that A; = [{1 : A; > j}|.
Let m;()\)= number of parts of A of length 1. Clearly

X=X = i x =5} = my(0).

Definition 1.5 The rank of a partition ) is the number of nodes (boxes) in the
main diagonal of the Ferrers diagram of A.

Definition 1.6 The Frobenius notation for a partition A of rank r specifies
A as follows:

Let o; be the number of nodes to the right of the diagonal node (t,7) in row 1,
B; the number of nodes below the node (,¢), s =1,...,r.

Then (ey,...,a/|B1,...,0,) is a description of A in Frobenius notation.

Notice that o; = X\; — ¢, i = A —t{,sothat oy > ... > @, f1 > ... > B, and

A=Y a+d Bi+r.
=1

=1

Definition 1.7 For \,u, in Par, we say A contains u (A D pu), if the Ferrers
diagram of ) contains the diagram of u, or equivalently, if A; > u; for all 1.

Definition 1.8 If A, x4 are partitions such that A D x, the skew-shape A/u is
the set of boxes which are in the Ferrers diagram of A but not in u, i.e., the
set-theoretic difference between the two Ferrers diagrams.
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Example 1.9 The skew-shape (4,3,2)/(3,2) has the Ferrers diagram occupied
by the solid squares

[eloNe} |
ocom
LN N |

Definition 1.10 A skew-shape A/u is a horizontal strip (respectively, a ver-
tical strip) if A/¢ has no two boxes in a column (respectively, a row).

Thus the previcus example is neither a horizontal nor a vertical strip.

Definition 1.11 Given partitions A, u, a tableau (or reverse plane partition
T)/u of shape A/u is a filling of the squares in the Ferrers diagram of A/u with
the integers {1,2,...} such that the rows and columns are weakly increasing.
Equivalently, we may think of a tableau as a strictly increasing sequence of
shapes

p=XcXc...cat=2
(Simply fi'l each skew-shape A*/A*~! with the integer 1).

Example 1.12 The tableau

1123
T= 122
3
corresponds to the sequence of shapes
[ 1 1}
0C " C e C masm

Definition 1.13 A tableau T)/, is column-strict (or semistandard) if it is
strictly increasing down columns. Equivalently, the strictly increasing sequence
of shapes

p=XcAc...cik=2

is a column-strict tableau iff each skew-shape A'/A*~! is a horizontal strip.

Example 1.14

The column-strict tableau

113
T= 23

corresponds to the sequence of shapes

P wc 3*c 2"
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Definition 1.15 A tableau T,,, of skew-shape A/u is standard if all the en-
tries in the filling of the Ferrers diagram are distinct. Equivalently, the strictly
increasing sequence

p=XcAc...ci=2
is a standard skew-tableau if for all i < k, A¥/Ai~! = (1), (i.e., the skew-Ferrers
diagram consists of a single box).

In particular, when g = 0, so that A/u = A, we refer to a standard tableau
of shape A as a standard Young tableau. We will often use the abbreviation
SYT for a standard Young tableau.

Notation. We write f/# to denote the number of standard tableaux of skew-
shape A/y; in particular, f* denotes the number of standard Young tableaux of
shape A.

Definition 1.18 The type of a column-strict tableau T is the (finite) nonneg-
ative integer vector whose ith component is the number of entries ¢ in 7. Note
that sh(T) is a partition of |type(T)| = ¥; type(T);.

In Example 1.14, the type of T is (2, 1, 2).

Definition 1.17 For partitions ), p, and a nonnegative integer vector a such
that [A/u| = |a|, the Kostka number K, , is the number of column-strict
tableaux of shape A/u and type a.

2 Symmetric Functions

Definition 2.1 A function f(z;...z,) is symmetric if
f(xa(l), s za(n)) = f(zl, PN a:,,) Vo € Sn'

We denote the ring of symmetric formal power series with integer coefficients
in the variables z,,...z,, Z(zy,...2,)%, by A,(z), or simply A,, when there is
no ambiguity about the variables involved.

We single out four important symmetric functions:

Definition 2.2 [Macd/[Sta1/For A € Par,
(1) the moaomial symmetric function is defined to be

my(Z1,...,2,) = Z z*

a
all distinct
permutations of
(A1 2g,..0)
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where 22 = [I;>; z;*. Thus my(zy,...,2,) = 0 if £(A) > n.

(2) the complete homogeneous symmetric function h, is defined to be

¢(A)
h’l = H hk.‘)

=1

where for r > 0,

he = 3 ma(z)

Atr
and hg = 1 by definition.
(3) the elementary symmetric function e, is defined to be
{(2)

€\ = H €
=1

where for r > 0,

e = Z Tiy oo o Tiyy

1€i1<..<i,<n
and ¢y = 1.
(4) the power sum symmetric function is defined to be

¢{x)
p =[] px

=1

where for r > 0,

and po = 1.

Theorem 2.3 The following are Z-bases for A,:
(1) {ma(z)}» e Par

(2) {hx(2)}» € Par

(8) {ex(z)}r e Par

while

{pr(2)}2 e Par 18 a basis for the ring A\, ®Q of symmetric funciions with rational
coefficients.
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For single-part partitions A = (r), the homogeneous and elementary symmet-
ric functions have nice generating functions:

Theorem 2.4 [Sta1/[Macd/

fI(l - x‘t)—l = Zhr(xh cee azn) t. (1.1)

=1 r>0
n
[IQ+zit) = er(z1,...,2a) t". (1.2)
i=1 r20

There is also a useful automorphism of the algebra A,:
Theorem 2.5 [Stal][Macd[Define w: A, — A, by
w(h,) = e,.
Then w 18 an snvolutive algebra automorphism.

Observe that we can extend the notion of symmetric function to functions
in infinitely many variables z,,...,Zp,..., by defining f(z;,...,Zm,...) to be
symmetric if

f(Zs(a)s - - Ta(n)s ZTns1y-..) = f(T1y...Zn, Tn414...) VO € Sp,and foralln > 1.

In keeping with the previous notation, we denote the ring of formal power
series in infinitely many variables {z;} Z(z,,...,Zm,...) by A(z), or simply A
when there is no ambiguity about the set of variables in question.

We now define the all-important Schur functions, which form the essential link
between combinatorics and representation theory. There are miany equivalent
definitions; for obvious reasons we prefer the following combinatorial one:

Definition 2.6 For any partitions A, u,A D u, the Schur function s,/, corre-
sponding to the skew-shape A/u is defined to be

& /u(Z1se s Zmy. ) = Z wetght{T), (1.3)
T column—strict tableau
shape(T)=\/n

where .
wcz'ght(T) = H x:mmbcr ofi'einT
s

= gtvpe(T)
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Notice that we made the above definition for possibly infinitely many variables
{z;}. For finitely many variables {z,,...z,}, we make the natural definition

83 /ulTts ey Tn) = 8a/u(Z1y. ooy Tmy . ) |zi=0, ivn

Hence, it immediately follows that
Corollary 2.7

8x(Z1y...52n) = 0 if £(X) > n.

The reader who desires a more formal justification of this passage between a
finite number of variables and infinitely many variables, should consult the first
few pages of [Macd].

It is a remarkable fact, not at all obvious from the definition above, that

Theorem 2.8 The skew-Schur function 8y ;,(z1,...,Z,) 18 @ symmetric function
N Ty,...,Zp.

We postpone the elegant proof due to Bender and Knuth [BKn| until the next
chapter, where it is presented in the course of establishing a similar result for the
symplectic Schur functions.

The preceding theorem immediately gives the following elegant formula:

Theorem 2.9

Saju(Ziyeevzn) = Y. Kajuw my(2). (1.4)
v
Proof: Recalling the definition of Kostka numbers in Section 1, it is clear that
8;/“(31, coe ,2,,) = E Kx/"'a z”. (1.5)
lal=IA/x!

The statement of the theorem foliows, from the definition of the monomial sym-
metric functions m,(z).®

We state the following combinatorial fact about the Kostka numbers:
Lemma 2.10 Let A\,p € Par,. Then
Ku#0 <= > N2> m, r21
i=1 =1
Proof: [Macd, p.57] We need only observe that in a column-strict tableau of
shape A, the integers 1,...,r must appear in the first r rows. Thus if T is a

column-strict tableau of shape A and type u, then there must be at least 3.7, u;
squares available in the first r rows. ®
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Now order Par, in reverse lexicographic order, so that (n) comes first and
(1") comes last. This is clearly a total order on Par,. Then we have

Corollary 2.11 The matriz (K ,), whose rows and columns are indezed by
Par,, with the reverse lexscegraphse order, 18 strictly upper triangular, with 1’s on
the diagonal.

Proof: Use Lemma 2.10 above, together with the fact [Macd, p.6] that
DD o, r>1
i=1 i=1

implies A precedes u in reverse lexicographic order. @
Finally, we have

Theorem 2.12 The Schur functions {s)(z1,...,Z,)}xer)<n form a basis for the
ring A,..

Proof: By the preceding corollary, the matrix of coefficients (K ,) in Theorem
2.9 is invertible with determinant 1, so its inverse is an integer matrix. Hence the
monomial symmetric functions are an integer combination of the Schur functions.
But the {m,}4»)<n form a basis for A,. @

Several remarkable expressions for the Schur function s, exist, which are by
no means obvious from our combinatorial definition. For the proofs, we refer the
reader to [Macd,ch.1], [Stal].

Theorem 2.13
(1) (The Weyl determinant formula for A,-,)[Lil,p.87][Stal ]

det(z;}t""%)

8x(Z1y. ..y 2Zn) = det (2,7 (1.6)
(2) (Jacobi-Trudi)[Li1,p.87][Stal]
8 (1!1, ceoy .'Bn) = det(hh.-—t'-i-j)lSi,jSt(A) (17)

(3) (Naegelsbach)[Lil,p.89][Stal]

8x(Z1; . ..y Zn) = det(exr—irj)ici <o) (1.8)
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We end this section with a few words on one of the more famous combinatorial
objects in the theory of Schur functions:

Definition 2.14 A lattice permutation is a word of positive integers wy ... w,
such that, reading the word from left to right, the number of cccurrences of any
integer ¢ is greater than or equal to the number of occurrences of 1 + 1. The
weight of a lattice permutation w is the finite nonnegative integer vector «
where a; = {7 : 1 < j < n,w; =1}

Example 2.15 The lattice permutation 12113231 has weight (4,2, 2).

Remark 2.16

(1) Notice that a lattice permutation always has partition weight, i.e., its
weight « is a partition.

(2) If the word w is a lattice permutation , so is any initial segment w, ...w;,
t < £(w).

(3) There is a natural bijection between lattice permutations w of length n and
weight a, and standard Young tableaux of shape a, defined as follows: for 1 =
1,...,n,if w; = r, place an ¢ in the rth row of the Ferrers diagram of a; conversely,
given a standard Young tableau of shape «, set w; = r for all 1 appearing in row
r of a. It is clear that the lattice permutation condition, which seems rather
ad hoc at first glance, is precisely equivalent to guaranteeing that the tableau
associated to the lattice permutation in this manner is standard.

Example 2.17 The lattice permutation 12113231

1348
corresponds to 26
57

Definition 2.18 Let T be a tableau of skew-shape A/u. The word of T, read
in lattice permutation fashion, is the word obtained by reading the filling T
row by row, from top to bottom and right to left.

Definition 2.19 A lattice permutation w fits a skew-shape A/pu, if there is a
column-strict tableau T of shape A/u such that the word of T, read in lattice
permutation fashion, is w.
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Example 2.20

The lattice permutation 12113231 fits the skew-shape (5,4,3,1)/(3,1,1) as foi-

lows:
waal2

wll3
a23
1

Definition 2.21 For partitions A, u, v, the Littlewood-Richardson coeffi-
cient, which we denote by cf‘,y, is the number of lattice permutations of shape
A/u and weight v.

Clearly ¢}, = 0 unless A D u,v, and A+ (|u| + |v)).

Theorem 2.22
(1) (The Littlewood-Richardson rule)

sut)s,(t) = 3 e, alt) (1.9)

AH(lul+1v])

(2) (Schitzenberger)
sult) =Y ch, 8u(t) (1.10)

Proof: (1) Littlewood and Richardson discovered the rule, and published an
incomplete proof, in [LR]; Macdonald gives a completed version of their proof
in [Macd], and remarks that other correct proofs were provided by Lascoux and
Schiitzenberger, and Thomas.

(2) Schiitzenberger[Schu] was apparently the first to prove this formula using
the combinatorial definition of the Schur functions, although it was probably
known to Littlewood, who seems to have worked primarily with determinantal
expressions analogous to equations (1.6)-(1.8). e

Remark 2.23 In Chapter 3 we present a bijection {(Theorem 16.11) which in
effect establishes (1). We have chosen to postpone the discussion of this bijection
because we feel the techniques are more relevant to the development of our other
results in Chapter 3.
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Corollary 2.24

A 2
Cuv = Cup

Proof: Immediate from (1) of Theorem 3.44 and the commutativity in the ring
AlE). @

3 The Knuth-Schensted correspondence

In this section we discuss a procedure of paramount importance in the com-
binatorics of tableaux and symmetric functions; we shall find that this process
appeais naturally with startling ubiquity in the theory of syrametric functions,
yielding elegant bijective proofs of many classical identities.

Notation. For a positive integer n, we shall denote by [n]| the set of integers

{1,...,n}.

Definition 3.1 (Row-insertion)(Schensted) [S] Given a column-strict tableau
T of shape A, we define row-insertion of a number z into T, denoted (T « z),
to mean the following process which results in a new column-strict tableau 7! of
shape A! containing )\, where A'/X = (1):

(1) Insert z into the first row of T either by displacing ("bumping") the left-most
number which is larger than z, or, if no number is larger than z, by adding z to
the end of the first row (note that if the row is empty, this means z is added to
the first column, thereby creating a new row);

(2) If z did "bump” an element z' from the first row, then insert z' into the
second row exactly as above, either by displacing the left-most number which is
larger than z', or if no number is larger than 2/, by adding z' to the end of the
row.

(3) Continue in this manner, row by row, until some number is added to the end
of a row.

We define column insertion of a number z into a tableau T, written (z — T),
similarly, by replacing the word "row"” in the above description by the word
"column”, and vice versa.

Remark 3.2 We remark that Schensted, in [S], defined these algorithms in the
context of permutations, so that his tableaux were standard, i.e., had distinct
entries.
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Example 3.3 Row-inserting 1 into the tableau

112
T= 33
gives the sequence of steps
1121 111 r1i1t 11l ,
33 s 33 238, 23 =(Te1)
-3 3

Theorem 3.4 (Knuth [Kn1], Schensted [S]) If T is a column-strict tableau, then
(T « z) and (T — z) are also column-strict tableaus.

Now consider the effect of successively row-inserting the sequence of letters
in a word w; ...w,. If we keep track of the sequence of shapes, we find

Lemma 3.5 ((...(0 « wy) « wy) «— ... « w,) yields a pasr
(Pr,(A'=(1) CX...C A" = }))

where X' 1, 1 =1,...n, and P, is a column-strict iableau of shape ) - n.

Definition 3.8 ( essentially Schensted[S])

The P-tableau corresponding to a sequence of integers w; ... w, is the column-
strict tableau ((...(0(+— wi(— w3)... < w,). The Q-tableau corresponding to
the same sequence is the array obtained by putting ¢ in the square which is added
to the shape of the P-tableau when w; is inserted in the P-tableau.

By Lemma 3.5 above, the Q-tableau of any word w is always a standard
Young tableau. We can now state

Theorem 8.7 (essentially Schensted [S])

Row-snsertion defines a bijeciion between the set of all words w of length k on
the alphabet [n] and the set of ail pairs (P», Q) of tableauz of the same shape

AFk, L)) <n,

where P) 18 a column-strict tableau and Q, 15 a standard Young tableau .

Proof: (See Schensted [S], Knuth [Kn1]) We need only take care of the reverse
direction, i.e., given a pair (P, Q.) as described in the statement of the theorem,
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to retrieve the word w such that row-inserting w produces the pair (P, Q,).
This essentially amounts to reversing the row-insertion at each step.

The position in Q) containing the largest digit n indicates the culmination of
the "bumping path” of the insertion of the last letter, w,, into the P-tableau. If
the tableau P, contains z where @) contains n, £ must have been bumped down
into its present position from the preceding row by y, the right-most letter in the
preceding row which is smaller than z. Likewise, y was in turn bumped down
from the preceding row. We can thus work our way up the tableau P, to the
first row, where we ultimately "bump out” the letter w,. (In doing this we are
traversing, in reverse order, the bumping path created by inserting w,). Note
that this leaves us with a new P-tableau P', of shape A"~1 I (n —1). Now repeat
with P', using Q, restricted to [n — 1] as the new Q-tableau.

To understand the "unbumping” procedure, we recommend working backwards

through the sequence in Example 3.8 below. ©

We shall refer to the process of traversing a bumping path in reverse or-
der, beginning at a corner square (of the tableau) containing an entry z, as
"(row—)unbumping” z, or, less familiarly, as row-removal of z.

Notation.In the situation of the Theorem 3.7 above, we write
(0 — ‘lU) = (PA,QA)-
Also, we shall frequently write

@ —w); =P, and (0 w); =Q,.

Exampie 3.8
(@ « 31121) gives the following sequence of P— and Q—tableaux :
f3 1 11 112 ;11__1,\
3 3 3 -
3
1 13 134 134
1 9 2 2 2 =@
\ 5 )
g0
111 134

@e—31121)=]| 2 ,2
3 5
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All of the above being true for column-insertion, we have in particular the
analogue of Theorem 3.7:

Theorem 3.9 (essentially Schensted[S]) Column-insertion defines a bijection
between the set of all words w of length k on the a'phabet [n] and the set of all
pairs (P, @,) of tableauz of the same shape

Ak, £(A) < n,

where P, 8 a column-strict tableau and @, 8 a standard Young tableau .

Notation.In the situation of the Theorem 3.9, we write
(w 4 @) = (PA,Q,\).
Also, we shall frequently write

(w—0)1=P, and (w—0)2=Q,.

Example 3.10

(31221 — @) gives the sequence of column-strict tableaux

, 1 12 112 ;12
b b 3 b
2° 2 ° 2 3
SO
112 134
(31221 -0)=| 2 , 2 )
3 5

As a first application of Schensted insertion, we have, by restricting either of
Theorems 3.7 and 3.9 to words which are permutations on [r], a bijective prcof
of the following enumerative resulit:

Theorem 3.11

nl= Y () (1.11)

Aln

It is natural to ask whether there is any relation between the results of row-
inserting a word w and column-inserting w. The first step in this direction is the
following remarkable fact:
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Lemma 3.12 ( essentially Schensted[S/)Let S be a column-strict tableau, =,y
any two positive integers. Then

((z = 8) —y) =(z = (5 —y)).
An easy induction now gives

Theorem 3.13 Let w be any word in the positive sntegers P. Then
(ﬂ — w)l = (w —> 0)1.

That 15, the P-tableau corresponding to row-insertion of w cotncides with the
P-tableau corresponding to column-insertion of w.

We shall be able to say something about the two Q-tableaux in Section 5.

Motivated by the observation that Schensted insertion of a row (respectively,
column) produces a column-strict tableau consisting of a single row (respectively,
column), we have

Definition 3.14 (Schiitzenberger) Call a word w = w;...w, a row-word if
w; <...< w,. Likewise, w is a column-word if w; > ... > w,.

By analysing bumping paths we find:

Lemma 3.15 Let T be a column-strict tableau, z, y positive sntegers.

(1) In the sequence of insertions (T «— z « y), the bumping path of x ends
strictly to the left of the bumping path of y

<< z<y.

(In particular, if z < y then the bumpting path of z lies to the left of the bumping
path of y. That ss,

o the bumping path of z is at least as long as the bumping
path of y, and

e in each row of ((T « z) «— y), the entry bumped into
the row by the snsertion of z lses strictly to the left of the
entry bumped into the row by the subsequeni snsertion

of y.)
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(2) In the sequence of insertions (z — y — T), the bumping path of = ends
strictly to the left of the bumping path of y

< z<y.

(In particular, if < y then the vur:ring path of z lies above the bumping path
of y.)

An immediate consequence of this is:

Lemma 8.16 Let T be a column-strict tableau, w a row-word. Then

(1) sh(T «— w)/sh(T) is = horizontal strip; furthermore, sf we number the new
squares consecutively (w:  :he numbers 1...¢(w)) as they are added to sh(T),
then the resulting filling <, the skew-shape sh(T «— w)/sh(T) is a column-strict
tableau (in which i appears to the left of s + 1 for all i.)

(2)sh(w — T)/sh(T) is c horizontal strip; furthermore, if we number the new
squares consecutively (with the numbers 1...¢(w)) as they are added to sh(T),
then the resulting filling of the skew-shape sh(T +— w)/sh(T) is a column-strict
tableau (in which i appears to the left of i + 1 for all s.)

Example 3.17

Let T = ;23, w=1123

Computing (T + w) gives the sequence of column-strict tableaux

113 111 1112 11123
22 223 223 223

80, writing in the order in which the new squares are added to sh(T'), we have

123 11123 senld
(2 "1123)‘(223 ' al2 )

Likewise,

113 11113 anud4d
(1123—’ 2 )= 22 , 22

3 1

Lemma 3.16 provides a bijective proof of formula for the expansion of the
product of a Schur function and a homogeneous symmetric function h,:
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Theorem 3.18 (Pieri’s rule)

Sy « hp= > 8x (1.12)
Apisa kon’sontal
atripof sisen

Donald Knuth [Kn1] introduced what proved to be an extremely useful equiv-
alence relation on words of a fixed length k in the positive integers. By way of
motivating the following definition, notice that

(0 «— 211) and (@ « 121)

both have the same P-tableau
i1
9 -

Definition 3.19 Let z, ', z", be positive integers. We define an elementary
Knuth transformation to be esther of the following:

(1) if z < 2’ < 2", the transformation from the word =" z =’ to the word z 2" z';
(2) if £ < ' < 2", the transformation from the word ' z z" to the word =’ =" z.

If two words w, w' differ only by a subword of three (consecutive) letters, with
the differing subwords being as in (1) or (2),we say w, w', are elementary
Knuth equivalent; if w' can be obtasned from w by a series of elementary
Knuth transformations, we say w' and w are Knuth equivalent, and we write

[w] = [w'].

of all

(3

Clearly, Knuth-equivalence defines an equivalence relation on the se
words on a fixed alphabet.
The theorem which makes this notion worthwhile is:

Theorem 3.20 (Knuth)(/Kn1], Theorem 5)

Let w, w' be words of the same length. Then w and w' are Knuth-equivalent

= P—w)=(0uw),

( <= the P-tableau of w coincides with the P-tableau of w'. )
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Thus any column-strict tableau determines a unique word, up to Knuth-
equivalence. For instance, given a column-strict tableau P with m rows and
n columns, if we denote the row-word of the sth row of P by w(R;}), and the
column-word of the jth column of P by w(C}), then clearly

P={(..0 — w(Rp)) « w(Rn-1) +— ... w(Ry))
= (w(C) = (w(C3) = ...w(Cp) = 0)... )y
=(...(0 « w(C1)) « w(C3) — ... w(Cm))1,

SO

[w(Rm) w(Rm-1)....w(R)] = [w(C).w(C,)....w(Ch)]

Notation. We call w(Ry,).w(Rm—1). ... w(R;) the (row-)word of the tableau
P, denoted word(P), and w(C,).w(C3)....w(Cpn) the column-word of the
tableau P.

Before going on to Knuth’s generalisation of Schensted insertion, we make a
definition:

Definition 3.21 Call a two-line array

T = U ... Uy
V1 ... YUn
a Knuth two-line array if

(1) u; < iy for all 4.

(2) if u; = ui4y then v; < vy,

Theorem 3.22 (Knuth)/Kn1/

(1) There is a bijection between nonnegative integer matrices A = (a; ;) with row
sum vector a (i.e., a; = ¥; a; ) and column sum vector B (defined likewise) and

Knuth two-line arrays
T = ( Uy .. Up )
U oo Upn

where there are o; 1's among the u's, and ezactly f; 1's among the v's.

(2) There is a bijection between Knuth two-line arrays

. Uy ... Uy
T—(Ul e v,.)
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where there are o; i's among the v's, and ezactly §; ¢'s among the u's and pasrs of
column-strict tableauz (P, Q) of the same shape, with type(P) = a, type(Q) = 3.
This establishes the Schur function identity (often referred to as the Cauchy
sdentity (cf. [Macd p.88, Ez. 6))):

H(l —-ziy;) " = ; ax(z)sx(y) (1.13)

Proof: See Knuth’s well-written paper [Kn1].
We content ourselves with a brief description of the bijection here.

We may view the present situation as a generalisation of the setting of Theorem
3.7, (the Knuth-Schensted algorithm), whose input is a set of words y;, ...y, , or

equivalently, two-line arrays
T ( 1 ... k ) ’
Vi, ... ¥,

where the top row consists of distinct, strictly increasing labels.

Thus our input is now in the form of two-line arrays

T = i, ... Xy )
Yi, - Yi,
where the top row has labels which may be repeated, but are still in increasing

order; in addition, the array is written so that zi; = xi;,, implies y;; < yi_,,.

We begin by applying the row-insertion algorithm to the word y;, . ..y;,. Starting
with j = 0 and a pair of empty tableaux, if at the jth step we have built up a
sequence of pairs of tableaux (P;, Q;), at step 5 + 1 we set

Piyi =Py —yi,0
and Qj41
= Q; with ¢;,  added in the unique position so as to force sh(Q;+1) = sh(Pjy1)

To go backwards from a pair of column-strict tableau (P, @) of the same shape,
we follow the same idea as in the description of Schensted row-removal:

The position in Q containing the largest and right-most letter y indicates the
culmination of the "bumping path” of the insertion of the previous letter, z, into
P. If the tableau P contains z' where Q contains y, z' must have been bumped
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down into its present position from the preceding row by z", the largest and
right-most letter in the preceding row which is smaller than z'. Likewise, z" was
in turn buraped down from the preceding row. We can thus work our way up
the tableau P to the first row, where we ultimately "bump out” the letter z.
(In doing this we are traversing, in reverse order, the bumping path created by
inserting z). Note that this leaves us with a new P', whose shape is the same as
that of Q', where Q' is Q without its largest and right-most letter.

See the example which follows. ®

Example 3.23

The Knuth two-line array
11223
23141
yields the sequence of column-strict tableaux

13 134 114

2 23 2 2 23 P
11 112 112
11 2 2 23 Q

corresponding to the pair of column-strict tableaux
114 112
23 ’ 23

We shall refer to the bijection in (2) of Theorem 3.22 as the Knuth corre-
spondence.

Remark 3.24

(1) Observe that if we restrict the Knuth correspondence to Knuth two-line arrays
T where the top row contains each integer at most once, (equivalently, to G-1
matrices A with at most one nonzero entry in each column) the correspondence
reduces to Schensted row-insertion of the word in the bottom row of T, as defined
in Theorem 3.7.

(2) In particular, by further restricting to permutation matrices, the correspon-
dence reduces to Schensted’s original row-insertion algorithm (which applied to
permutations).
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In view of the above remark, we introduce the following
Notation. If w is a word on [n], write

w &5 (P,Q)

if the Knuth correspondence applied te the two-line array

i ... k
w ... Wy !

or equivalently, Schensted row-insertion applied to w, yields the pair of column-
strict tableaux (P, Q).

Corollary 3.26 Knuth’s correspondence, when restricted to nonnegative snteger
matrices with row-sum vector u for a partition u, gives a bijective proof of the
Schur function sdentity

hy=Y_ Kiyu 8. (1.14)
Akju

There is also a dual Knuth correspondence which establishes the following
enumerative result:

Theorem 3.26 (Knuth) There is a one-to-one correspondence between 0-1 ma-
trices with row-sum vector a and column-sum vector B and paire of column-
strict tableauz (P,Q) where sh(P) is the conjugate of sh(Q), type(P) = a and
type(Q) = B. This in turn yields the formula (the dual Cauchy identity)

T + zy;) = %_jsx (z)sa(y) (1.15)

5
Knuth’s correspondence has the following remarkable properties:

Theorem 3.27 (Knuth)

(1) If the nonnegative matriz A corresponds to the pair of column-strict tableauz
(P,Q), then the transposed matriz A* corresponds to (Q, P).

(2) The Knuth correspondence yields a bijection between symmetric nonnegative
integer matrices A with column-sum vector a, and column-strict tableauz P of
type a, such that the number of columns of P of odd length is the trace of A.
This sn turn establishes the following identity:

1 —gz) (A — iz;) ! = ;qu"’*" isodd}| g, (z). (1.16)

] i<jy
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Corollary 3.28 (1) Let o be a permutation on [n], such that o is an snvolution.
Then (@ «— o) = (P, P) (where sh(P) \- n).

Thus there 58 a bijection between involutions on [n] and column-strict tableauz of
shape A in Par,, yielding the formula:

S ={o€Sa:o=0""} (1.17)

AR

(2) If o is an involution on [n] without fized points, (so n is even) then
o &5 (P, P)

where sh(P) I n has even columns. This in turn establishes

2 ff=(n—-1)(n-3)...531 (1.18)
pleven

Proof: (1) follows easily, recalling Remark 3.24(2).

For (2), simply observe that involutions on [n] without fixed points (i.e., products
of 3 disjoint transpositions) correspond to n by n permutation matrices with
trace zero; hence P has no odd columns. e

We shall be dealing extensively with a particular kind of Knuth two-line array,
which we define next:

Definition 3.29 Call a two-line array

o #  d
8 ...
a Burge two-line array (after William Burge, cf. [Bu]) if
WMn<spi...<in
(2) jk = jk-i-l impliee ig < ik+l’ for all k = 1,. S

() e >t forallk=1,...,r.

Notice that (1) and (2) are simply the conditions for L to be a Knuth two-line
array.
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Thus, applying the Knuth correspondence to eymmetrised Burge two-line
arrays (i.e., Knuth arrays in which each occurrence of a pair (f) i accompanied
by the pair (;)) establishes a bijection between symmetric nonnegative integer
matrices with trace zero and column-strict tableaux of shape with even columns.
This in turn is a bijective proof of the Schur function identity:

Theorem 3.30 (Littlewood)
[Ma-tty) = 3 spltsts,-.) (1.19)

i<y B! euen

This is one of six identities discovered by Littlewood, for which he supplies
algebraic proofs in [Lil,p.235]. Equation 1.14, with the specialisation ¢ — 1, is
another of these.

William Burge, in [Bu], gives direct bijective proofs of four of these identities;
we shall be especially interested in (1.19) above. We describe what we shall
henceforth refer to as the Burge correspondence in

Theorem 3.31 The followirng procedure is a bijection between Burge two-line
arrays and column-strict tableauz of even-columned shape:

L=(J.'1 ’."),
31 .o 3y

construct a single column-strict tableau T (instead of a pair), with columns of
even length, as follows.

(1) Set k=0, T, = 0.

(2) Set k — k + 1. T, is obtained from T}_, in two steps:

Given a Burge two-line array

(n) S = (Th-1 + 13); suppose the square in S containing 1,
18 tn position (8;,1;) (i.c.,row s, column t;).
(b) Te=(S with j; placed in position (s + 1,i;)),
t.e., S with 5. placed tmmediately below
the new square created by snserting 1 into Ti_,.

(8) If k =r, set T = T, and stop; otherwise, go back to step (2).

Proof: It is not hard to show that this actually produces an even-columned
column-strict tableau; we recommend that the reader try to coavince himself
that this is in fact a bijection. Burge’s lucid paper [Bu| supplies all the details.
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Since we shall need to know how to recover the two-line array, given an even-
columned tableau T°, we describe the inverse of above insertion process:

(1) Set k=r, T, =T;
(2) Remove largest entry z in T}; set j; = z.

(3) Row-remove ("unbump”) entry y < z immediately above former position of
z in T, bumping out an element z (note z < y < z) and leaving a tableau S. Set
‘i;,-—-z,k‘—k—l,Tg:S.

(4) If k = 0, stop; otherwise, go back to step (2). ©

Example 3.32 The Burge array

111

L_(33344) 223

{12211 33

44

via the sequence of insertions

112 111

1 12 122 233 223
s’ 3s’ 33s” 3 ' 33 °

4 44

Lemma 3.33 Let ] .
L= ( B dr )
. 81 .. By
be a Burge two-line array, and let
T = U, ... ¥, ... Y,
v, .. Y, ... Ug,
be the symmetrisation of L, so that u;, < ... < w;, <...< uy,, 15 a rearrangement
of the multiset {t,5s : k=1...r}, end (:) appears sn T once for each occurrence

of (:) in L and once for each occurrence of (:) stn L. Then
L— P
under the Burge correspondence

< T+~ (P,P)
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under the Knuth correspondence.

Proof: See [Bu). (It is not too difficult to establish this result by a careful
induction argument.) We point out that both L and T, as described above,
represent the same monomial in the left-hand side of the identity (1.19).e

We will have occasion to refer to another bijection in [Bu], which establishes
the symmetric function identity

Theorem 3.34 (The dual Burge correspondence)

[[a-tt;)7 = 3 a() (1.20)

<3
o A even

Proof: This time the left-hand side counts dual Burge two-line arrays

Lx = jl v jr
il ) ir

where

Mn<...<s.

(2) e >ty all k=1,...,r.

(3) J& = Jk+1 implies 1) > 1p41.

The insertion process works essentially as in Theorem 3.31, except that it now

produces a row-strict tableau with even columns, the conjugate of which then
yields the contribution to the right-hand side of equation (1.18).

The algorithm proceeds exacily as in Theorem 3.31, with one change: we replace
ordinary row-insertion, where t, inserted into T, bumps the left-most element
larger than itself, by requiring that each element heing inserted into a row bump
the first element larger than or equal to itself. (This immediately guarantees
row-strictness.) ®

There is one final identity, (also belonging to Littlewood’s half-dozen, men-
tioned previously) which we shall need in Chapter 4:

Theorem 3.35 (Burge)/Bu/ There is a bijection establishing the following sym-
metric function identity due to Littlewood [Lil, p.238, (11.9;1)]:
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T +tt5) = > 87(a) (1.21)

i<y r20
a=(ay>..>a,>0)
where F(a) = (a1 —1,...,a,—1|ay,...,a,) in Frobenius notation. (Note ¥ (a) =
Oifa=0iffr=0.)

Remark 3.38 Macdonald observes [Macd,p.46] that this is essentially Weyl’s
identity for the root system D,.

4 Jeu de Taquin

We now describe an operation on skew-tableaux invented by Schiitzenberger,
which turns out to have extraordinary connections with Knuth-Schensted inser-
tion. For an entertaining account of the procedure called jeu de taguin, we refer
the reader toc Chapter 3 of Lynne Butler’s thesis [But|.

Definition 4.1 The jeu de taquin algorithm transforms a column-strict tableau
of skew-shape A/u into a column-strict tableau of shape v for some partition v, by
a sequence of slides (Schiitzenberger’s glissements, [Schul). This involves push-
ing the entries of the skew-tableau T into the north-west corner, or, equivalently,
sliding out the empty squares in the north-west corner to the outer boundary
of the diagram. A slide is an exchange between an empty square and an adja-
cent square of the skew-tableau, performed so as to preserve column-strictness
and weak increase along rows. In the simplest instance we have the following
situation:

o ‘; °, ifa<b;
_’
b :a, ifa>b.

. : , ifa<b
b a, fa>b.
Observe that the column-strictness requirement forces « unique exchange, in spite
of the two possibilities.

In the general case, given a column-strict tableau T}/, of skew-shape A/, the
algorithm proceeds as follows:
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(1) Choose an empty square s in the north-west corner that is adjacent to the
skew-tableau T);,, such that no square of the skew-tableau lies above or to the
left of s. (We call s a corner square of T)/,.)

(2) Move {s} south and east by a sequence of slides, until no square of T}/,
lies east of s, south of s, or in between these two directions, yielding a new
column-strict tableau T}, juwr of skew-shape Al/ul; where p! C u, and in fact

|t| = |u] ~ 1.
(3) Return to step (1) with T}, /ut» Tepeating until there are no empty squares
left, and we have a column-strict tableau T} of shape v, for some partition v.

Theorem 4.2 (Schiitzenberger)/[Schu/
(1)(Also Thomas[Th])

Jeu de taquin 18 well-defined, i.c., for a prescribed skew-tableau T);,, the algo-
rithm, as described above, results in the same final tableau, no matter what the
choice of corner squares in Step (1).

(2) Given the skew-shape A\/u, the number of tableauz of shape v obtasned from
the set of column-strict tableauz of shape A /u via jeu de taquin is the Littlewood-
Richardson coefficient c:’,,, and hence depends only on the shapes A, u, v (and
not on (the entries in) the tableauz).

Proof: For (1), we highly recommend Thomas’ extremely lucid paper [Th] on
the subject. ®

Example 4.3

We shall have occasion to use slides primarily in the case of punctured!
tableaux, viz., tableaux with a single empty square. We illustrate with an exam-
ple:

Example 4.4

Consider the punctured tableau

CT Q) O ke
O A W =
Tt N

1This terminology appears in Allan Berele’s paper [Be].
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The following unique sequence of slides moves the hole out to the boundary of
the tableau:

11 2 4 112 4 112 4
33 3 . 3 33 5 3 33
o 4 5 4 o § 4 5 o i
5 6 5 6 5 6
leaving the column-strict tableau

112 4

3 3 3

4 5

5 6

A special case of the jeu de taquin operation, when performed on a standard
Young tableau, defines another standard Young tableau of the same shape :

Definition 4.5 Let @), be a standard Young tableau of shape A - n. We define
the evacuated tableau associated to Q,, denoted Q,°**°, to be the tableau
obtained by the following procedure (essentially due to Knuth |]):

(1) Set ¢ =0, Q; = Q», ul = A,

(2) Set # — 1+ 1. Remove the square containing ¢ in Q;_;, obtaining a punctured
tableau @Q;_;°, with the puncture in position {1,1). Apply jeu de taquin to Q;_,°
to get an ordinary standard Young tableau Q;.

(3) Set p' = sh(Q:). Note |u| = |u*~?| — 1. In fact, a stronger statement is true:
I"" C '-"—10
(4) If £ = n = |)|, stop; otherwise go back to step (2).

Finally, the sequence of shapes (u® = § C p™! C ... C u® = 1) is the standard
Young tableau @Q,°"*.

Exawmple 4.8
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then evacuation gives the sequen:e of standard tableaux

1223
33440
4 4

and hence, reading the sequence of shapes backwards, the evacuated tableau is

14
2
3

A few remarks about this definition of evacuation? are in order.
Schiitzenberger [Schu| defined ar operation "J" on standard tableaux, as in

Definition 4.7 Let P, be a standard Young tableau of shape A - n. Define (PA)"
by setting

(0 — pop)y = (P2)7,
where

(1) o 18 any permutation on [n] such that the P-tableau of o is P,, i.e.,
(0 — o)1 = B,
and
(8) p=(nn—1...1) is the reverse of the identity permutation.
The following observation was then made3:
Theorem 4.8 (Schiitzenberger)

choac — P‘\J

Theorem 4.9 (Schiitzenberger[Schu))

The operation J is an snvolution on the set of standard Young tableauz of the
same shape.

Proeof: The fact that J is an involution follows immediately from the definition
of J and the observation that g = 1. We refer the reader to [] for the fact that
J preserves shapes. @

3We thank Professor Adriano Garsia for introducing us to the notion of evacuation; the definition
we give above is essentially equivalent to his explanation.

3We thenk Lynne Butler for bringing this to our attention.



44 CHAPTER 1 THE COMBINATORICS OF SYMMETRIC FUNCTIONS

Remark 4.10 We have an induction argument to show that evacuation, as de-
fined in Definition 4.5, is an involution.

Recall Theorem 3.13, in which we were able to establish a partial connec-
tion between row- and column-insertion. We now present the promised result
concerning the Q-tableaux:

Theorem 4.11 (Schiitzenberger)[Schu] Let o be a permutation on [n]. Let

(@ o) = (P, Q).

Then
(6 —0) = (P, QJ) = (P, Q).

Proof: We refrain from presenting our own rather uninspiring induction argu-
ment, which is based on Definition 4.5. @




Chapter II

Representations of the
symplectic group

In this chapter we explain briefly how the interaction between symmetric
functions and the representations of the classical Lie groups comes about. A
nodding acquaintance with the representation theory of finite groups on the part
of the reader would be helpful, but is not necessary. A more complete exposition
can be found in [Ste]. Both [Stal] and [Ha] are good surveys of the subject.

5 The general linear group

Definition 5.1 Let V be a vector space of dimension n over the complex num-
bers C. The general linear group GI(V) is the group of all invertible linear
transformations V +— V. We also write Gl(n,C) for GI(V), where Gi(n,C) is
the group of all invertible n by n matrices over C.

Definition 8.2 A representation ¢ of Gl(n,C) is a group homomorphism ¢ :
Gl(n,C) — GI(V) for some vector space V over C. We say V affords the
representation ¢.

Notice that a representaion ¢ afforded by V', makes V into a Gl(n, C)-module
in a natural way.

We shall only be concerned with finite-dimensional representations:

Definition 5.3 The degree of a finite-dimensional representation ¢ : Gl(n,C) —
Gl(V)isdeg ¢ =dim V.

45
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Definition 5.4 ¢ is 2 polynomial (respectively rational) representation of
Gl(n, C) if (there is an ordered basis for V such that) the entries of #/ ** .re poly-
nomial (respectively rational) functions of the entries of A, for ali .. in Gl(n,C).

Definition 5.5 The representation ¢ is homogeneous of order m if each entry
of ¢(A) is a homogeneocus function of degree m of the entries of A in Gl(n,C),
ie., if §(tA) =t™ ¢(A), for all ¢ in C.

Example 5.6
(1) The trivial representation is defined by
¢:Gl(n,C) —» C,¢ (A) =1, all 4;

this is a polynomial representation of degree 1.

(2) The natural or defining representation

is polynomial of degree n.

(3) The contragredient representation

¢ (4) = (a7
is rational of degree n.
(4) The representation
_ [ 1 In(|det A|)
¢ (A) - ( 0 1

is not rational.

Definition 5.7 For any representation ¢ of Gl(n, C), the character of ¢ is the
function

char ¢ : Gl(n,C) —- C

defined by
(char ¢)(A) = trace (¢(A)).
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It is an immediate consequence of this definition that characters are constant
on conjugacy classes. Also, recalling that two representations ¢, p, afforded by
Gl(n,C)-modules V, W, .re equivalent if there is a Gl(n,C)-module isomor-
phism T : V — W such that T p(4A) = ¢(A) T, all A € Gl(n,C), we observe
that char ¢ completely determines the representation ¢ up to equivalence.

I. Schur, in his 1901 dissertation[Schur, pp. 68-85], discovered the connections
between symmetric functions and the rational representations of Gl(n,C):

Theorem 5.8 (Schur)
(1) Every rational representation of Gl(n,C) is completely reducible.

(2) Irreducsble rational representations ¢ are homogeneous, so that the character
char ¢(A) is a symmetric Laurent polynomial (an ordinary symmetric polynomial
if ¢ is polynomial) in the eigenvalues of A in Gl(n,C).

(3) Write z1,...,Z, for the eigenvalues of an arbitrary A in Gl(n, C); then for
each raisonal representation ¢ there 18 a multiset My of integer n-tuples such that
the eigenvalues of ¢(A) are {z* = [}, z:% : a € M,}. That s, every rational
representation ¢ has character

(char ¢)(z1,...,20) = D z°,

a € My

for a uniquely defined multiset My of snteger n-tuples.

(4) If ¢ is a homogeneous representation of Gl(n,C), of order m for some m > 1,
then

char ¢ =ch x

for some characier x of the symmetric group S, on n letters, where ch is Frobe-
nius’ characteristic map [Macd, p.61/:

. 1
ch : {character ring of S,} — A,, ch(x) = o " X(0) Peyso-type of o(ZT1s- - - s Tn)-
* UESu

(pu 18 the power-sum symmetric function, for u € Par, c¢f. Chapter 1.)

(5) The irreducible polynomsal representations of Gl(n,C) are indezed by parts-
tions X\ of length at most n.

(6) If ¢* is the srreducible polynomial representation indezed by X, £()) < n, then
char ¢* is the Schur function s, (Z1y-+ -5 Zn).

(7) Every rational representation ¢ is of the form
$(A) = (det(A4))™ $(4)
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where (@) 15 a polynomial representation. Also ¢ is srreducible sff ¢ ss srreducible.

Proof: Besides going back to Schur’s original paper, we highly recommend the
extremely readable and careful account in [Ste, pp.46-55]. @

Example 5.9 (1) The trivial representation corresponds to the empty partition,
since its character is

1 = 8y(z1,...,2n).
(2) The defining representation ¢(A) = A has character
ot e+ Ty = 8(1)(31a- .o szn)s

so is indexed by the single-part partition (1) of 1 and is thus irreducible.

(3) The one-dimensional representation ¢(A) = det(A) has character
zl e e x”’
which we observe is the Schur function s(;»), so this is also an irreducible repre-

sentation.

(4) The contragredient representation ¢(A) = (A~!)" has character

n
char¢=z;" '+ 42,71 = (H z.-‘l) 8(1n-1).

=1

(5) If ¢* : Gl(n,C) — GI(V) is the irreducible representation corresponding to
the partition A, £()) < n, then the kth tensor power of ¢* is the representation
: Gl(n,C) — GI(V®*), defined in the obvious way, and clearly has character

charV® = (char ¢*)* = s)\%(zy,...,2,).

Schur also discovered the connection between the representations of Gl(n, C)
and those of the symmetric group Si; his famous "double centraliser theorem"
concerning the kth tensor power of the defining representation of Gl(n, C) follows:

Theorem 5.10 (Schur) Let V be a vector space of dimension n over C. Con-
sider the kth tensor power Ve, Then

(1) the symmetric group Sy cnd the group GI(V) each act on V®*, and the two
actions commute, making V®* an (S, x GI(V))-module;

(2) the decomposition of V®* into srreducible sub-modules under this action is
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V@h —_ H (SA®NA)
A&
¢{A)<n

where S* is the irreducible Sy—module sndezed by A + k, and N* is the irreducible
Gl(V) = Gl(n, C)-module indezed by A, (¢L()) < n).

Proof: See [Ste]. @

In particular, considering the action of G!(V) (which is embedded as the
subgroup {1} x GI(V) in S; x GI(V)) alone on V®*, we have

Theorem 5.11 Under the action of GI(V) = Gi(n,C), V® decomposes into
srreducsbles as follows:
vet= T[ () N? (2.1)
Ak
LA)<n
where f2, the multiplicity of the irreducible Gl(n,C)-module N* in the above
decomposition, is the number of standard Young tableauz of shape A - k.

Proof: We need only remind ourselves that f* is in fact the dimension of the
irreducible S;-module S*. o

Taking the characters of the representations occurring in (2.1), we have the
Schur function identity

(zl +...+x“)k = Z ‘fA s,\(zl,...,z,‘). (2.2)
Ak
Yr)<n
Remark §.12 Observe that this identity has already been established combina-
torially in Theorem 3.7, via Knuth-Schensted insertion, since clearly the left-hand
side of (2.2) enumerates k-words on the alphabet [n], while the right-hand side

counts pairs (Py, Q,) of tableaux of the same shape A I k, with P, column-strict
and Q) standard.

8 The symplectic group

For the remainder of this chapter, V will denote a complex vector space
of even dimension 2n. We shall also assume that V is equipped with a non-
degenerate bilinear skew-symmetric form <, > (ie., < z,y >= — < y,z > for
all z, y in V).
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Definition 6.1 The symplectic group Sp(2n,C) =Sp(V) is the subgreup of
Gl(2n,C) which preserves the form <, >, i.e.,

Sp(2n,C) = {A € GI(2n,C) :< Az, Ay >=< z,y > forallz,y € V}.

We need to introduce a group that will be playing a réie analogous to that of
the symmetric group in the case of GI(2n,C) :

Definition 8.2 The hyperoctahedral group is the group B, of n by n signed
permutation matrices, that is, matrices where, in each row and each column, we
allow exactly one nonzero entry, which can only be +1. Thus the order of the
group B, is Z° ni.

Remark 6.3

(1) The symplectic group Sp(2n, C) is one of the classical Lie groups (cf. [Hum]),
with Lie algebra corresponding to the root system C,.

(2) The Weyl group (cf. [Hum)]) of Sp(2n,C) is the hyperoctahedral group B,.
As in the previous section, we have

Definition 6.4 A (continuous) polynomial representation of Sp(2n,C) is a
group homomorphism

¢ :Sp(2n,C) — GI(W)
for some complex vector space W, such that the entries of ¢(A) are polynomials
in the entries of A (A € Sp(2n,C) ).

Note that this makes W into an Sp(2n,C) -module affording the representa-
tion ¢.

Definition 8.5 The character of a polynomial representation ¢ of Sp(2n,C) is
the function ckar ¢ :Sp(2n,C) — C such that char ¢(A) = trace ¢(A).

We list some general facts about characters of Sp(2n,C) in

Theorem 6.8 Let G = Sp(2n,C) .

(1) The Lie group Sp(2n, C) is reductive; that is, all polynomial representations
of G are completely reducsble.

(2) If A is in G, its eigenvalues are of the form {z;*! : z; € C,i =1,...,n}.
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(8) With a sustable chosce of bastis, the subgroup T = {diag(z;,z:7},...,2,,2,71) :
z; € C,z; # 0} is the set of diagonal matrices in G (the mazimal torus (cf.
[Hum]) in G).

(4)

U ¢T¢?

§EG
18 dense in G, s.e., the diagonalisable matrices of G are dense in G. Consequently
the value of the character char ¢ (of a representation ¢) at an element A of G,
depends only on the zigenvalues of A in G /by the invariance of char ¢ on conju-

gacy classes). Hence char ¢ may be viewed as a function of z,,7,72,...,2,, 2,7}

(5] For any poiynomiai represeniaiion ¢, ihe characier char ¢ is a Laureni poiy-
nomial in z,,...,Z,, which ss tnvariant under the action of the Weyl group B,
of G.

(6) In fact, for each polynomsal representation ¢, there is a multiset of integer
n-tuples My such that

char §(zy,...,z,) = D z°
aEif;

where as before z* = [I%., ;%.

Hence char ¢ is in the ring Z[z,,z,7,...,z,, 2, 1|B~, the Laurent polynomials
in z,,...,T, which are tnvariant under the action of B,,.

(7) The srreducible polynomial representations of G are indezed by partitions A
of length at most n.

Definition 6.7 For ) of length at most n, the symplectic Schur function sp,
is the character of the irreducible representation of Sp(2n,C) which is indexed
by the partition A. Thus sp, is a function in the ring Z[z;, 2,7}, ..., z,, 5,7 1|B".

Notice that spy = 1.

Notation. We write A, for the ring Z[zy, 2170, ..., Za, zn 1] Pm.

In order to study the representations of Sp(2n,C) combinatorially, we need
an analogue of the combinatorial definition of the ordinary Schur functions. From
(6) of the above theorem, for A in Par of length at most n, there is a multiset
M, of nonnegative integer n-tuples such that

DA (Z1y...,2Zn) = Z I"Iz._c.-

ael\-l; =1
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Hence, we would like to be able to define a set of weighted objects T}, such that
there is a weight-preserving bijection between M, and T,. Not surprisingly, it
transpires that the objects we seek are a subset of the ordinary column-strict
tableaux of shape A.

We choose an alphabet 1 <1<2<2<...<n<f.

Definition 8.8 A symplectic tableau T} of shape ), £()) < n, is a filling of the
Ferrers diagram of A with the letters of the alphabet 1 <1 <2< 2 < ... < n < f,
such that:

(1) the entries are weakly increasing along rows and strictly increasing down the
columns

(2) all entries in row ¢ are larger than, or .qual to, 2.

Observe that (1) simply requires that the tableau be column-strict. We shall
often refer to (2) as the symplectic condition. We remark that (2) automat-
ically forces the shape of a symplectic tableau in the alphabet 1,1,...,n,7 , to
have length at most n.

Example 6.9
Let n =5,A=(3,2,2) + 7.
Then o
i 111
Tis22)= 2 3
4 4
is symplectic, but
111
Tis22y= 1 2
2 3

is not.

The next step is to specify a suitable weighting scheme for these tableaux.
We do this simply by assigning a weight to each entry of the tableau according
to the rule

t =z, Tzt

Then the weight of a symplectic tableau 7" is

wt(f‘) = ﬁ z..""mb" of i's inf‘(x._—l)uumber ofVsinT

=1

b
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a monomial in A,,. _
In Example 6.9 above, wt((T)(s2,2)) = z1(z171)2z2 " 1zsz4z4 1.
We are now ready for the combinatorial definition of the symplectic Schur
function:

Theorem 8.10 (King)[Ki2] For all partitions A of length at most n,

spa(ztl,. .., 231 = Z: wt(T)) (2.3)
aymplec:tlh: tableau
of shape A

Remark 8.11 The first combinatorial definition (in terms of Gelfand patterns,
Geifand (155G]), of ihe irreducidic characiers of Sp(2n,T) essentiaily joiiowed
from the branching rules of Zhelobenko (1962); it is this formulaion which was
later converted to semi-standard tableauz by R.C.King (1975). See [Ki2] for more

detasls.

It is actually possible to show, starting with the above combinatorial defini-
tion, that spy(zfl,...,z!) is invariant under the action of B,. As promised in
Chapter 1, we now give Bender and Knuth’s[BKn| elegant proof:

Theorem 6.12 The ezpression

3 wt(T)) (2.4)

T)
symplectic tableau
of shape A
in {1,1,...n,A}

defines a function in the ring /~\,,.

Proof: It suffices to show that the expression (2.4) is invariant under transpc-
gitions (¢,¢ + 1) and (5,7). If we represent the weight of a symplectic tableau T}
by the 2n—tuple (ay, dy, ..., an, &), then we must show that

(1) there are exactly as many symplectic tableaux T of weight

(o1, @y vey Oy Aty oy Oy i),y

as there are of weight
(ala Apyeney Ofy1,04,...,0p, a-n);
(2) there are exactly as many symplectic tableaux T, of weight

(ahdlv"aal'adl”"'aanta_n)s
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as there are of weight
(alaa—la'-°’&iaais'--aan’dn)-

Consider the statement (1) first.

The idea is that, thanks to the column-strictness of the tableau, we can isolate
occurrences of ¢+ and ¢ + 1 into segments of the tableau as pictured below, con-
taining a contiguous portion of a row, consisting of r 3’s followed by s (¢ + 1)’s,
such that the entries above this strip of length (r 4 s) are all strictly less than
t except for the element above the sth (i + 1), which is equal to i; while the
entries below the (r + 8) strip are all strictly larger than 1 + 1, except for the one
immediately below the first ¢, which is equal to ¢+ + 1.

{entries <1} t
) i (1+1) ... (f+1)
(+1) {entries >¢+1}
Now simply replace the (r + s)-strip by one consisting of s i’s followed by r
(£ + 1)’s. We have, at least locally, succeeded in exchanging the number of #’s

and ¢ + 1’s. It remains to observe that repeating this procedure over the whole
tableau establishes (1).

The same trick may be applied to (2): we look for contiguous segments of ¢’s and

1’s. Since our switching takes place within the original row, there is no possibility
of violating the symplectic condition. ®

Example 6.13 The defining representation of Sp(2n,C) is obtained by consid-

ering the natural action of Sp(2r, C) on GI(V) (dim V=2n)¢:4— A

Clea.rly, 1f the engenva.lues of A are zi1,...,z2!, then char ¢(A) = trace A =
l=1 z‘ = 8p1) (z il)

Lemma 8.14 (Littlewood)[Lil]Consider the defining representation of Sp(2n,C) ,
afforded by V = N (dmV = 2n). Let N? be an srreducible module affording
the representation of Sp(2n,C) indezed by A, £(A) < n. Then the tensor product

N*e@ N0
decomposes into srreducibles as
I & [ &
7))

\ pCo\l e
res v)<n
Ju=(1) v/X—"—(l)
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We can now state the analogue of the decomposition of the kth tensor power
of t. . defining representation of Gl(n,C):

Theorem 6.16 Let V afford the defining representation for Sp(2n,C) . Then
the kth tensor power of V decomposes snto srreducesble Sp(2n,C) -modules N* as
follows:

vet= I fk(n) N®
“
Yp)<n
where }','f (r) is the number of sequences of shapes (8 = u°,u,...,p* = u) such
that

(1) two consecutive shapes differ by ezactly one boz, i.c., for all s = 1,...,k,
either 4 [ul—Y = (1) or u6-V/uf = (1).
(2) L) <n, foralli =1,...,k.

Proof: This follows easily by successive applications of Lemma 6.14. ®

Taking the characters of the representations involved in the above decompo-
sition, we get the symplectic Schur function identity:

(zr+z 4tz +z, W = 2 7E(n) spu(ad,...,zH) (2.5)
l(#)Sn

This in turn begs the question of whether there is a bijective proof.
As we shall see in the next section, the answer is in the affirmative:

7 Berele’s algorithm

Theorem 7.1 (Berele)(Be| There is a bijection between the set of all k-words w
on 1,1,...,n,7 and the set of all pairs (P, , Sk 4 (n) ), where P is a symplectic
tableau of shape u and S"(n) 8 a k-sequence of shapes satwfymg the condstions
described sn Theorem 6.15.

Proof: We describe Allan Bereie’s ingenious aigorithm: the idea is to follow
the usual Knuth-Schensted row-insertion scheme as long as the resulting tableau
is symplectic; if it happens that the symplectic condition may be violated, the
procedure is suitably modified.
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Given a word w = w,y,...,w; in 1,1,...,n,7 , to produce a symplectic tableau
and a k-sequence of shapes satisfying the conditions of Theorem 6.15:

(1) Set r = 0; u" = 0; P = 0.
(2) Set r = r+1, P= (P! w,).
(3) If P is symplectic, then set Pr=P u = sh(P).

If P is not symplectic, then there is a symplectic violation in P, i.e., at some
point in the insertion process in step (2), an entry z smaller than j was bumped
into row 7, for some j. It is not hard to see that the first time this happened
must have been in the following situation: an 7 was bumped out of row ? into
row ¢ + 1, by an ¢. (For suppose tke first time was when z smaller than ; got
bumped into row j; then the element y which displaced z, was smailer than z,
and went into row 7 — 1. Since the latter move did not violate the symplectic
condition, we have y > (5 — 1). On the other hand, y < z < 7, so we are forced
to conclude y = (j — 1) and z = (7 — 1)).

Having identified the unique row in the bumping path of w, prior to which the
symplectic condition is satisfied, but at which it is violated, we interrupt the
insertion of w, at this point, where an ¢ is about to displace an 7 into row ¢ + 1,
and instead do the following:

(3.1) Replace the first 7 in the (ith) row by the 1;

(3.2) Remove the first s in the row (note there is at least one 1, thanks to step
(3.1); this yields a punctured tableau with a hole in row 1;

(3.3) Slide the hole out via jeu de taquin east and south, until a normal tableau
P remains.

Observe that (3.3) does not cause any symplectic violations: as the hole migrates
to the boundary of the tableau, it is exchanged with elements either to the right
or lower, so only elements larger than j move up into any row 5 (5 > ¢).

Finally, set P* = P, u* = sh(P).
Notice that the weight of the tableau has been preserved: to check that

weight(P) = weight(P*~!) . weight(w;),

it suffices to observe that at the point where the usual inser‘ion was interrupted,
an z; was about to be added to the weight; but the modification resulted in first
contributing z;? (step (3.1)), then removing an z; (step (3.3)), which clearly has
the same net effect.

(4) If ¢ < k, go back to step (2); otherwise, stop.
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Finally, P, =P*, and the sequence of shapes is (B =uop, ..., 05 =p).

Notation. Write
(0 & w)

to denote Berele insertion of the word w.
We illustrate with :

Example 7.2 Take w = 221211.

Then (@ L w) gives the sequence of symplectic tableaux

2 12 o2 22 12

1
2 .22 5, 23 2373 o, 12
= wa T um = -

Hence

(a45_w)=(12,(- o % o A U ))

To reverse the bijection, given a pair (f’,. , S:(n) ), we need to work our way
backwards to reconstruct the sequence of symplectic tableaux, and hence retrieve
the letters inserted at each step. We describe the passage from an arbitrary step
Jtostep y —1:

We are given shapes u’~! and u/, which differ by exactly one square, and a
symplectic tableau P; of shape u’; we have to reconstruct from this information,
a symplectic tableau P;_; and a letter w; such that (Pj_, L w;) produces P;.
Clearly, two cases arise:

(1) ##~* C pf; this saye
(P12 w)) = (1 < wj) = B,
so the (5 —1)st tableau is obtained by the usual Schensted row-removal, unbump-
ing the letter w;; or
(2) W C W so (Pj; « w;) resulted in a symplectic violation, and thus

(P;j-1 +2- w;) resulted in a cancellation. We reverse the jeu de taquin moves as
follows:
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Place a "hole” in the missing square in 13,-; slide this hole to the first column in
the highest possible row, say row ¢, without violating the symplectic condition.
This restores the situation of step (3.2) in the insertion process. Now it is simply
a matter of reversing the instructions of (3.2): place an ¢ in the empty square
(which is in column 1), change the last ¢ in the row to an %, and bump up an
i (row-remove, beginning with row ¢ — 1). This eventually bumps oui w;, and
clearly leaves a symplectic tableau of the required shape u’~!, by construction.

[ )
Example 7.3
it W
ann ana
-1 | | [ 4.1 ]
as a8
a8 =
112
- 234
Fi = 34
4o
l
122 1 112 112
P 224 2242 o024
i-17 33 33 33
44 44 44
and thus
w,-=i.

In the next chapter we shall see that Berele’s algorithm possesses remarkable
properties.



Chapter III

Properties of the Berele
algorithm

8 Up-down tableaux

This section studies the combinatorial object which appears as the second
component in the image of Berele’s correspondence, playing the role of the stan-
dard Young tableau in the Knuth-Schensted algorithm. Recall that the for-
mer objects are sequences of shapes, like the latter, with, in some sense, fewer
"growth” restrictions imposed. The aim of this section is to recast these ob-
jects in terms of the more familiar standard Young tableaux, leading up to a
reformulation of the Berele algorithm which will then hint strongly at possible
connections with Knuth-Schensted.

Recall that we write [n] for the set of integers {1,...,n}, for a positive integer
n.

We begin with

Definition 8.1 An up-down tableau of length k is a k-sequence of shapes
Sk =(0 = % u',...,p* = p) such that two consecutive shapes differ by exactly
one box, i.e., for all § = 1,...,k, either '/ul~? = (1) or ul-V/y’ = (1). We
will see shortly that any such sequezce of shapes may be encoded as a sequence
of tableaux in the entries [k]; hence our choice of terminology. We call u the
shape of the up-down tableau.

Example 8.2

S(s:.l) = (0,(1),(2), (1), (1,1),(2,1))
is an up-down tableau of length 5 and shape (2,1).
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Set Ff ={all up-down k-tableaux of shape pu}.

Set }',f = | F¥|. Clearly a SYT is a particular case of an up-down tableau,
since it may be viewed as a sequence of shapes such that each shape is one box
larger than its predecessor.

Lemma 8.3
= (25 — 1)" (3.1)

Proof: Giver 25 points on a line, the number of ways of pairing them up (we
draw an arc between two points to indicate a pair) into j disjoint pairs is clearly
(27 —1)!1. Call such a way of pairing up 2; points an arc diagram on [2j], denoted
Az . We construct a bijection between the set of (25 — 1)!! arc diagrams A;; and
the set F, as follows! At this point we urge the reader to consult the example
below.

Example 8.4
e Y ax Y
4 1 3 1 2 2 3 4535 w
2 o
1 1 3 o 3 o
4 3 3 o 50
4 4 4 4 4 4
1 1 3 3 2 3
4 4 4 4 2 4 4 ﬂ 5 0 (Tl,...,T10=ﬂ)
- 1L m L e 0e bSO, s0=0)

If A,;is an arc diagram on 2j points, label the right end-points of the arcs with the
barred integers 1,...,7 consecutively, reading from left to right. (See Example
8.4). Next, assign the label 1 to the left end-point of the (unique) arc whose right
end-point has label 1. This encodes the arc diagram as a permutation w on the
27 letters 1,...,7,1,...,7 with the property that every 1 is preceded by an 1. We

1We thank Professor Richard Stanley for sharing his idea of using arc diagrams for this bijection.
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now construct a sequence of shapes from the word w = w,,...,w;; by forming
a sequence of 2j tableaux Ti,...,T5; :

At the first step, T} is the tableau obtained by row-inserting w; (note that wy is
always an unbarred letter).

For the tth step, if w; is unbarred, then T; is the tableau obtained by row-inserting
w; into T;_;. Otherwise, we have a situation as in the figure below:

[ ] ©
w.-==3
125 126 126 125 126
Ti1 = s34 o4 4o 47 47 =T;
67 67 67 6o 6

If w; is barred, say w;=p, then p is an entry of T;_;( because p must be preceded
in w by p). Erase the entry p from 7T;_, to get a tableau witk a hole in it; now
play jeu de taquin to slide the hole out to the boundary of T;_,. The resulting
tableau T; has one less square than T;_,.

Set u' = sh(T;) for all ¢ = 1,...,25. Note that u? = @, since, when we have ar-
rived at the end of the word w, we have gone through all the barred letters 1,...,7
and consequently have removed every possible contribution to the tableau. Tius
S:’ = (u% p,...,p¥ = 0) is an up-down tableau of length 25 and shape 9.

To reverse the bijection, start with an up-down tableau .S':j = (p!,...,u% = 0)
of empty shape. We suggest following Example 8.5 along with the text.

Example 8.5
e LIl a e 0e0 P u0=0)
1 2 3 4 5
1 13 3 2 3
4 4 4 4 i 4 4 0 5 Q (Tl,...,Tm=0)
4 1 3 2 5

TS OV A
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Label each of the 25 shapes 4, t = 1,...,25, so as to produce a permutation w
as described above (which encodes an arc diagram). Reading the sequence from
left to right, label the tth removal of a square with a barred s, placing ¥ under
the shape resulting from the removal. See the example above. Observe that the
label assigned to u?/ will always be a barred j since the last shape is empty, and
so is the consequence of removing a square. Now we work backwards from the
empty shape u?’, filling each shape to get its associated tableau as constructed
in the first half of the bijection. In the process we retrieve the unbarred labels,
and hence the whole word. Moving back one step from u?/ to u?-! is easy: the
associated filling is simply j (i.e., j was removed from u?~! to give the empty
shape u%). Assume ' has already been filled, giving a tableau 7T} (so the last
(27 —1+1) labels have been determined). To find the filling for x*~1, we consider
the two possible cases:

(i) either u'/u'~! is a box, in which case we simply bump out the extra entry
of T; (invert Schensted row-insertion) to get a tableau T;_; of shape p*!; this
bumped-out entry is then the label (unbarred) for the shape u';

#i—l ”n'
L] L]
= ]

- 1 — 18
1‘1'—1""‘ ‘-1"-'_‘

wg = 3
or,

(ii) #*/u*~! is a box, so there is a barred letter k under u'. In terms of the first
half of the bijection, this says that the required filling T;_; of #*~! is such that on
evacuating (cf. Section 4) the entry k from it we get the tableau T;. The reverse
process is clearly to place a k in T}, in the position of the square by which it
differs from T;_,, and to perform jeu de taquin moves to slide this k into T} to
the unique final position that leaves a valid tableau T;_, of shape ;1. See the
example which follows.

b K
' ]
(] ]

1

—_ 18 — 8
1}—1_4 *_T‘I'-' 4l
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Remark 8.6 The procedure described above in fact gives a bijection between
F:’ and involutions in S,; without fixed points (or, j producte of disjoint trans-
positions), since another way of encoding an arc diagram A,; is easily obtained
by simply labelling the 25 pcints with the integers 1,...,2;5 from left to right,
and then forming the product of disjoint transpositions [[(a;,a:) over all 5 arcs
with end-points a;, a;.

Lemma 8.7

k= (K — 1\ —
fa (Iul)&' nnfe, uk (k- 2r). (3.2)

Proof: We set up a bijection between up-down tableaui £ and pairs (L,Q,)
where @, is a standard Young tableau of shape x and L is a two-line array

L= (, J.'r)
41 .o 3
with the j’s in the top row written in increasing order; the ¢’s in the bottom row
are such that j; > 1, foreach k = 1,...,r, and the j’s and ¢’s are all distinct and

{entries in Q, } U {entries in L} = [k]. The latter observation will account for
the binomial coefficient (I:I)‘

Start with a sequence S:j ; the idea is to build up an associated sequence of
tableaux, one for each shape of the sequence. As long as the sequence is increas-
ing, we follow the usual labelling of a standard Young tableau, placing a 7 in the
box of u’ that was added to u/~!. (u! is always a single box, sc we can start off
the process). In general, at step j, given that we have the SYT T;_, associated
with 4/, and p’ is one box larger than u/~1, T; is simply the SYT obtained by
adding 2 j to Tj_; in the position of the added box (in the skew-shape ./ /ui~1).

Now suppose u’ is one box less than u’~!; let T; be the SYT corresponding to
#'. To get T;, we do the following:

(1) bump out the extra entry of T;_; (the one in the unique square of x/~! which
is not a square of u’) by columns (i.e. inverse Schensted column-insertion) to get
a tableau T of shape u’, and a letter z. This means that by column-inserting
z into T; we would retrieve the previous bigger SYT T;_, , and hence its shape
w1, See the following example.
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pit W
ums (] ]
na (.1}
.1 ] [ 1]
128 12
Tjox= 84 345 =T;
67 67
i
{,}eL

(2) record the fact that a removal occurred at step j by putting the pair (j, z)
into a two-line array L, with j on top. Note that since the z was bumped out at
step j, it must have been inserted in an earlier step, so z < j.

We continue this process to the end of the sequence. Arranging the two-line
array L so that the top row is in increasing order, we clearly end up with the
requisite two-line array L and a SYT Q, of shape u (the (final) shape of S} ).
The process clearly reverses: we work our way backwards from Q, , which is
the kth step of the sequence, reconstructing the preceding SYT’s and hence the
sequence of shapes. If we have the SYT T; for the jth step, and wish to get the
SYT T;_1, again two cases arise:

(1) 7 does not appear in the top row of the two-line array L, indicating that u’
was not the result of removing a box from p’~!, but rather came about by adding
a box labelled j to u’~!. Thus deleting the box labelled j from T} will retrieve
an SYT T; of the correct shape (one box less than u?).

(2) 7 does appear in the top row of L, i.e. a pair (,¢) is in L. This says that Tj
was obtained from T;_; as a result of an inverse column-bumping which knocked
out the ¢, or, equivalently, T;_; = (i — T;). (In the previous example, work
backwards, i.e., right to left). ®

An exampie should make the bijection transparent:

Example 8.8

£ 1] [ ] [ 1] =a

- [ ] aa e - a 1] =a =a -

= [ ] ] ] as

[ ] [ ] | ] a

10 _ i3 1 17 17
Saay = 1 113 s 3T ar s s

4 4 9 9
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Lemma 8.9

= % () (33
pr{k—u) #

Proof: We need only refine the bijection of Lemma 8.7, which associates to
the up-down k-tableau S} a pair (L,Q, ) where L is a two-line array of distinct
integers (j,¢) such that the j’s are written in increasing order in the top row and
each j is stricitly greater than the corresponding ¢ below it. L may consequently
be viewed as a product of disjoint transpositions (1, 5), and as such, Schensted
row-insertion applied to the resulting permutation produces a pair of identical
SYT’s Qg of shape [ where 8 has even columns (cf. Corollary 3.28); conversely,
since Schensted insertion is a bijection, the permutation, and thus the two-line
array L, are uniquely recoverable from a SYT Qg of shape 8 with even columns.
For our purposes it will be more convenient to use the Burge correspondence (cf.
Theorem 3.31) between two-line arrays and tableaux with even columns (in this
case, restriction to the distinct eatries in the two-line array produces the SYT).
We remind the reader that (cf. Lemma 3.32) the tableaux produced by the two
correspondences coincide, so this does not affect the output of our bijection. We
conclude by noting that the binomial coefficient in (3.3) is accounted for by the
fact that the construction in effect splits the integers |k] into two disjoint sets,
one contributing to the entries of @, and the other to those of Q4 .®

Example 8.10 In the previous example,

3
g 5610 2345810 \ Ks 8
L={ 243 }— (25){46)(310) — (5106243 ) —

s 7
S(l;:p) — ( 6 : )
0 ]

Our next result is a bijection which effectively establishes the Littlewood-
Richardson rule for multiplying two Schur functions (see Chapter 1, Theorem
2.22). ?

[ W ]

0

Thus

" A

3We thank Professor Richard Stanley for a comment which gave us the idea of inserting cne
tableas into anotler.
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Theorem 8.11 Let P, , P, be tableauz of shapes v, u, respectively. Let w(P, )
denote the word of P,. Then column-insertion of w(P, ) into the tableau P, (i.e.
(w(P, ) — P, ) gives a tableau P) of shape A D u, and a filling of the skew-shape
A/u, which may be encoded as a lattice permutation of weight v by the following
scheme:

(1) column-insert the word w(P, ) into the tableau P, ;

(2) keep track of the successive additions to the shape p by starting with a sh.eleton
Ferrers diagram of p; when w; of w(P, ) 18 inserted, the shape u ts augmented
by a boz b, say; we add to the skeleton shape the boz b filled with the row number
of w; sin P, .

Conversely, given a tableau Py and a lattice permutation T, (V) of weight v which
fits the skew-shape A/ u, the lattice permutation specifies a unique order sn which
the entries in the skew-sub-shape A/ of P\ may be un-bumped, yielding a pasr of
tableauz (P, , P, ) of shapes u,v respectively.

Before verifying that this scheme produces the stated objects, we illustrate the
mechanics of the procedure with an example:

Example 8.12

183

Let P,= %, P="1°
35

Then w(P,) — P, gives

4.35.24.133 — :’

=4352413— 2% °F
85

al

=4.35.24.1 — >2° "%!
33

&1

= 4.35.24 — 1225 =mmel1l
oo 3s

al

1225 =m11
=4.35.2 — ss , =1
4 2
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1225 =mm11
_ | 233 =12
Tl se ?oas

45 34

=(PA 9 Txl(n)((322l))),
where T (21)((3221)) is the lattice permutation 11213243.

Proof: v It is clear that (w(P,) — P,) produces a tableau P, of shape A D
u#; we need to show that the filling of the skew-shape A/u is indeed a lattice
permutation, has weight v, and that the procedure is reversible.

To show that the skew-filling is a lattice permutation :

First, the word obtained by reading the skew-filling in lattice permutation fashion
evidently has weight v (it has as many i’s as there are entries in row 1 of v).
Working through the example above should convince the reader that it suffices
to look at shapes v of length at most 2: we need only examine the effect of
inserting two consecutive rows of a shape in succession (equivalently, the lattice
permutation condition need be checked only for consective entied 3, 5 + 1).

The situation is trivial if v consists of one row: our filling is simply a string of
1’s (a horizontal strip by Lemma 3.16). So assume v has two rows. We write the
word of P, as b,,b,,_;...b; a,,a,,_,...a;, where 13 < 1. See the figure below.

P — ay‘ ayl._l ses ayl_m+2 ayl_y’.'.l e ag al
v =
bh bv,—l cse b2 bl

(bra,, ...a; — P, ) adds squares to the shape u as follows:

a2 . ] ] a B 1 ... lpl
? 8 a a 1

L] a L] a

. a a lvl-u,-H

[ ] ] L]

2 8 2
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By Lemma 3.16, the path traced by the 1’s produced by inserting a,,a,,;...a;
proceeds from left to right and upwards, since the row is weakly increasing, and
is a horizontal strip. For clarity label the 1’s with subscripts, 1; indicating that it
was created by insertion of a;. Then our previous remark may be restated by the
observation that 1;;; appears strictly to the right of, (in the same row or above),
1;. On the other hand, since b, > a,,_,, > a, and b; gets inserted immediately
after a,,, (see the above figure) the first "2" produced in the skew-shape must
appear below or to the left of the last 1; i.e. 2, appears below or to the left of
1,, (cf. Lemma 3.15). The path of 14 2’s again proceeds npwards and rightwards
from this point, since row 2 of P, is weakly increasing; we must make sure, then,
that at the box containing 2,,, there are still at least v; 1’s above or to the right,
or equivalently, that 2,, bypasses at most (v; — v;) 1’s on its way up.

Consider first what happens when we insert b;,. We claim 2, is to the left of or
below 1(,,_,,+1) (wWhich is stronger than saying it lies to the left of or below 1,,,).
Let

pP= {(il’ 1); (iza 2)’ ceey (ih k)}

be the bumping path of a(,,—,,+1), and suppose it bumped z; out of position
(¢#1,1) in column 1, z, bumped 2, out of position (52,2) in column 2,..., and
finally 2;—; bumped z; out of position (§x-1,k — 1) in column {(k — 1) and into
position (s, k) in column k.

Thus (#x,k) is labelled 1,,_,,4; in the figure. Then ¢; > 13 > ... > ;. Now
observe that a,,_,,+2 < a,,—,,4+1 8G its bumping path is, by Lemma 3.16, of the
form

P =(1),...,(hpk+7),r > 1,

where i_f,- < ijfory = 1,...,k. Thus insertion of a,,_,,+2 does not affect the
portion of the tableau below p. If o’ and p de intersect at some point, and p'
deposits a 2} , say, in the common position (1;,7), then clearly 2z} < 2z;. The
same may be said for each of the remaining entries of row 1 of P,. So after
insertion of row 1, the (last bumping) path might contain entries u,,...,u, where
t; S @y —py41,%2 < 215000, U1 < 2.

Now b; > a,,—.,,+1 80 its bumping path lies (not necessarily strictly) below p
(even if a,,_,,+1 is no longer in column 1, its position is occupied by a smaller
entry) at least up to column k. We claim i% cannot go beyond column k, since for
any ¢ < k the entry v;, bumped out of column s by insertion of b,, is > u;,;. Thus
if the path does get to column (k — 1), it bumps out vi_; > u,. But we know u,
is at the foot of a column (subsequent insertions from row 1 went strictly to the
right, and possibly above) so v;_; takes its final position under u,, i.e. the path
of b, ends below that of a,,—,,+1, or to its left.
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Now consider b;. By a similar argument, observing that its bumping path p" lies

(1) above and to the right of the path p' of its immediate predecessor b, (b2 < b,)
and that

(2) ¢’ (from above) lies below and to the left of the path of e,,_,,+1, hence below
and to the left of the higher path p” of a,,_,,,s which is less than or equal to
@y, —v,+1 We see that 2; does not bypass 1,,_,,+1.

Repeating the above argument down to b,,, the last entry of row 2 of P, , we
see that 2,, lies below or to the left of 1,,_,,+:, as long as v; < vy, which is of
course the case if v is a shape . We have shown that if we read the skew-filling
in lattice permutation fashion, every 2 (created by inserting some b; of row 2) is
preceded by a different 1 (the one created by inserting a; which appears directly
above b; in the tableau P, ). Thus we have a lattice permutation .

It remains to show that the comstruction reverses. That is, starting with a
tableau P, of shape A and a lattice permutation of partition weight 1 C A which
fits the skew-shape A/u, we must recover a tableau P, of shape v and a tableau
P, of shape u. As in the above, we represent the lattice permutation by the
corresponding filling T;, of the skew-shape A/u. Now consider the pair (P, , T,).
Again invoking Lemmas 3.15-16, the lattice permutation tells us the order in
which the squares were added to the shape u: the squares with the same entry
1, which came from insertion of row 1, form a horizontal strip which was created
beginning with the lowest and left-most square, and proceeding north-east. See
the following example.

Example 8.13 If

1225 2 Elzls

283 1,2
PX= ’ np= 9

34 2,37

48 36 4s

then T}, specifies the order in which elements of P, should be colum-removed,
as the reverse of the order indicated by the subscripts (so column-remove entry
in the square of P, with subscript 8 first, then the square with subscript 7, and
80 on).

We simply use this information to invert Schensted column insertion on the
tableau P, . Observe that if we unbump the positions corresponding to the y;
occurrences of ¢ in T}, starting with the right-most 1 (which was created the most
recently) we get a weakly increasing sequence of numbers of length v;. Since the
lattice permutation has weight v, which we know to be a partition, we can fit
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the unbumped sequences into the rows of the shape v to get a legal tableau P, .
Of course what remains of P, is the tableau P, . o

Theorem 8.14 There 15 a bijection from Fj c .io the set of pairs (Qx, Ty/u(8))
where |A| = k, Q, 18 an SYT of shape A, B is a shape with even columns, and
T»/u(B) i2 a lattice permutation of wesght 8 which fits the skew-shape \/p.

This gives us the formula
=01 X e (34)
A=k BH(E—|u])
Bleven
where c;‘,,p = |{lattice permutation of shape \[pn, weight B}|.

Proof: All the work has essentially been done in Lernmas 8.7, 8.8 and Theorem
8.11. By Lemma 8.8, an up-down k-tableau S,’f corresponds to a unique pair
(Qs s Qu) where f has even columns and |f| + |#| = k. Theorem 8.11 provides
a reversible way of constructing out of (Qs ,Q, ) a pair (@ ,T)/,(8)) with the
stated properties. ®

Example 8.15 Continuing with example 8.8, we have

(1] ] [ 1] [ 1]
10 —_ a au ] (1] an
S(z.l.l) =" a2 = : : = = an :' :
23
17
4 6
[
10
137 mm1
268 212
> 49 n2
5 3
10 4

We now return to discuss the arc diagrams A,;, introduced in Lemma 8.3, and
the corresponding permutations on unbarred and barred letters in [25]. First:

Definition 8.18 Given an arc diagram A;; on 27 points, the reverse of Aj; ,
denoted A3? , is simply the arc diagram obtained by reflecting A; about its
centre, i.e., by reading Aj; from right to left.
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Example 8.17

N\

Aze= 12 3 45 67 8 9 10 11 12

A A TSN

w=123456789 10 11 12

Lemma 8.18 (1) If wy,...,wy; is the permutation of barred and unbarred leiters
[2j] describing the arc diagram A, , then the reverse Az 18 described by the
permutation uy,...,u,; obtained as follows: Reading w,,...,ws; left to right, if
wj 18 the sth unbarred letter of w (corresponding to the ith left end-posnt of an
arc) write a barred j + 1 — { under w; (i.e., we map the unbasred letters of w
onto the berred numbers 3,5 —1,...,1 in that order, reading w from left to right).
Let ly,...,l; be the subsequence of [2j] for which w,,... , Wy, are unbarred; then
under w;, is a barred (j — 1+ 1).

Example 8.19

w w; ws “_’_4 'l_’s We !{7 Wg "jo w_lO wyy w_lz
1 4 2 1 2 2 3 5 4 3 6 6
6 35 4 3 2 i

6 4 3 5 2 1

Uz Uy U U Ug U7 U U Uy UF U2 Uy

Now under each barred § in w,,...,w; (these are the right enc-points of the arc
Az; ) write an unbarred j+1—k sf § = wy,. In other words, the image of a barred
¢ of w is the unbarred image (determined above) of the unbarred i of w. Finally,
read the resulting image word from right to left to get uy...uz = u.

(2) Recall that A3;also corresponds to a unique two-line array L formed by writing
the numbers of the positions of the right end-points in increasing order in ti : top
row, and the posit.ons of the lefi end-points tn the bottom row, with each left
end-point | going under sts right end-point r, so that L has the property that
every entry in the top row ss strictly larger than the corresponding entry sn the
bottom row. This in turn encodes a permutation o on [25] which is @ product of j
disjoint transpositions, namely the vertical pasrs appearing in L. We record here
the effeci of reversing Az; on sts two-line array encoding L and on o:

a5 corresponds to L™ where L""is obtained by replacing each entry z of L by
27 + 1 — z, then swiiching the top and bottom rows and re-arranging the new
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top row so that it is sn increassing order. o 18 consequently transformed into pop,
where p 18 the reverse of the sdentity permutation, p =25 27 —1 ... 1.

Proof: (1) It is obvious, once an example is worked out, that in forming v we
are encoding the reversed arc diagram A3’ .

(2) Clearly to specify A3 in terms of the positions 1,...,25, we need only re-
label the points from right to left with 1,...,25. This clearly has the stated effect
on the entries of L, and evidently changes ¢ from a product of ; transpositions
12, (%, 4) to the product ITi_;(25 + 1 — 4,25 + 1 — ji). We need only observe
the following elementary facts about p =25 25 -1 ... 1}:

i) p =0
(ii) p(z(§)) = 25 + 1 — (i) Vs € S

(iii) if y(e) = b then zyz~!(z(a)) = z(b) ®

Lemma 8.20 The construction of Lemma 8.5, when restricted to a SYT @, of
shape A, may be used to produce the evacuated tableau (Q,)*"".

Proof: Restricting the bijection described in Lemma 8.3 to a SYT produces as
the image, an arc diagram on 2j points such that the last j points are the right
end-points of the arcs, or equivalently, in terms of permutations on the 2j letters
1,...,5,1,...,7, those permutations whose last j letters are precisely the barred
letters 1,...,7 in that order. These in turn correspond exactly to permutations
on 1,...,7. The bijection then operates on such a word w by inserting the first
J letters into a SYT @, and then successively removing the entries 1,..., .

Consequently given a SYT @, , if we successively remove 1,...,5 and keep track
of the shapes, and then read the resulting sequence of shapes in reverse order, it
is clear that this sequence is precisely the tableau produced on evacuating @, .
e

Example 8.21

124
Let Q)= se
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\
(4 e e e
a 2
124 134 124
12 12 124 34 438
— S' =] 1 112 3  ss e 56 ¢ 0
s s 56 6
5 5 5
1 2 3 458686
EER [ F ]
]
\ :. :.B::-..Bﬂ)
80
Q;"GC
=tableau formed by sequence of last seven shapes in S3?, read right to left
126
= s34

Lemma 8.22

S fE =Y {SYTQs: Qs =(Qs)"}
“ A2k
{ul<k Bleven

= |{w € By : w® = 1 and w has no fixed points as an element of Sz }|
(3.5)

Proof: Given an up-down k-tableau S} , append the reverse of S¥ to itself so as
to get an up-down 2k-sequence S’g" which is symmetric about its middle;

if S: =(0 = “0,“1’ so a/"k = I‘)’

then So” = (0 = “0’”1, <o a“k = “,I‘k-ly vee ’“l,”ﬂ = 0)-

Now apply the bijection of Lemma 8.3. By the remark at the end of Lm 1, we
can associate to Sj* a permutation o on [2j] which is a product of j disjoint

transpositions . By Lemma 8.18(2), the reverse sequence is encoded by pop ,
where p is the reverse of the identity permutation.

Recall fromn Chapter 1 that if 0 «— (P, Q) then pop «— (Pv%, Q).
Clearly
{8}} «— {symmetric S}*}

— {6 o= pdp}
«—— {all SYT Qg of shape § : ' even,Qp = (Qp)***}
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Finally, observe that as a subgroup of Sy, B, is characterised by the condition

{w € Bzf iff w(2k -1+ l) =2k — w(i)}.

9 n-Symplectic up-down tableaux

Recall that for the group Sp(2n,C), the multiplicity of the representation
corresponding to the partition g, (€(u) < n), in the k-th tensor power of the
defining representation, counts only a subset of S"f (cf. Theorem 6.15). This
motivates the following

Definition 9.1 An up-down k-tableau S} is n-symplectic if
L) <nVi,0<i<k.
Set F¥(n) = {Sk € F*: Sk is n-symplectic}.
Let f (n) =| F¥(n)|.
Example 9.2
}'(31)(1) = 2, the 1-symplectic tableaux being ((1),9, (1)) and ((1),(2), (1));
f3(2) = 3, counting in addition ((1), (1?), (1)).

Clearly }"f (n) = }"'f forn > k.

We shall find it useful to characterise an n-symplectic up-down tableau S}(n)
in terms of its encoding (Qs, Q. ) (|8] + |#| = k) of Lemma 8.8, and especially
in terms of its encoding (Q» ,T%/4(8)) of Theorem 8.11.

Lemma 9.3

Sk «— (Qp, Qu ) 18 n-symplectic iff,
(#1...%, — Q, ) produces a shape of length at most n, where 1,,...,i, i8 the
bottom row sn the two-line array representation L of Qp .

Proof: Recall that if Qg is encoded in the form of a two-line array

(i

1 ... 8
then j;,...,J, indicate those stages of the sequence S: where the shape lost a
box, and that at step ji, 1 was column-bumped out of the previous tableau.



9. N-SYMPLECTIC UP-DOWN TABLEAUX 75

Let {T},...,T: =Q, } be the sequence of tableaux associated with S¥ via the
bijection of Lemma 8.7. Then T,_, = (¢, — T,), for s € {J1,..., 2} We proceed
by induction on the number of removals r.

If r = 0, the statement is clear.

If r =1, by definition S} is n-symplectic iff £(T;) < nVi=1,...,k, 80 Tj,_, =
(8, — T_") can have length at most n. This ensures that all prevnoua tableaux,
(which are smaller in weight), will not exceed n rows. But all succeeding tableaux
must also satisfy the same condition, and since the entries added after step j;
are strictly larger than j; > 1), this is true iff £(¢; — T,) < n for all s between
J1 and k, hence iff £(i; — Tk = Q,) < n, since the tableaux between the unique
removal and the final shape are all contained in the final shape u.

Now assume the statement holds when there are less than r removals, and let
«— (L, Q, ) have r removals {(5,%1),...,(s,¢)}. Then S} is n-symplectic

4=> S,’;,(,‘. ) is n-symplectic and ¢(T,) < n for s > j,_4,

<> {(81...6-1—>T;_,) <nand {T,) <n,s >z,

(since the tableaux between Tj,_, and Tj, are contained in Tj,, there being only

additions in the interim)

<> Liy...5, > T;) <n (since T},_, C T,

<> £(i;...5, > Q,) <n,sinceT;, CQ,. ®

Theorem 9.4 S} «— (Qx,Ts/u(B) ) is n-symplectic iff,

in the lattice permutation filling T/,(B) of the skew-shape A/u, the (26 + 1)’
appear in row (n + 1) or above for ali s =0,1,...,1¢(p).

Proof: Let Q 1p = (§1...4, — @). It is clear from the description of the Burge
correspondence (Theorem 3.31) that

(1) Q 1s occupies a lefi-hand sub-shape of Qg .

(2) If 5, appears in row s, then 1, is smaller than any j; appearing in a higher
row (since such a j has an 1; above it; if §; > 1, we are done, since j; > {; if not,
ix must have been inserted prior to 1, 80 j; < j; implies i;(< ji) < j).

Now suppose the condition on the lattice permutation holds. We argue that
inserting Q;, by rows into Q, produces a tableau of length at most n. We
write R.(T) to mean the ¢th row of the tableau T. R,(Q 1p ) is contained in
R1(Qp ), and since all the 1's in the lattice permutation are no lower than row
n, inserting R, (Q 1p ) certainly does not produce more than n rows. R;{Q. \g ) is
contained in Rz(Qp ), and the lowest 2 in the lattice permutation can at worst be
in row n + 1; if this happens, we claim that it must have resulted from inserting
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a 7 and not an s. (Otherwise, there are two more rows of the same length as
the common length of rows 1 and 2 in Q4 , and these will also produce entries
in the lattice permutation in consecutive rows, forcing a contradiction to the
hypothesis.) Then all subsequent (reading right to left) ¢’s contribute to squares
in rows higher than (n +1) .

The arsument continues, using fact (2) above: if all 3’s in the lattice permutation
are in "ow n+1 or higher, when row 3 of Q 1p is inserted into @Q,, the new squares
occur in row (n + 1) — 1 or higher, since each 3 is preceded by at least one 2 in
a higher row. This reasoning works as long as Qg is such that for any ¢ below
row 1, there is a j in a higher rw. (For then we argue that the bumping path
of this ¢ ends in a higher row than that of the j: fact (2) comes in here). Now
suppose this is not the case, so that we have the first k rows of Q4 being the
same as the first k rows of Q15 . We may assume without loss of generality
that we are looking at an odd row 2k + 1 of t’s only; now observe that if any
of these 1’s created squares in Q, lower than row n, say in row n + s for some
s > 0, then eventually this forces, in the lattice permutation , the occurrence of
a2k+1+2inrown+s8+!>k+1sincen>k (le certainly has length at
most n), contradiction.

Thus the lattice permutation condition implies £ (Q 19 = Qu) =L(ir...3, —
Qu )< n, which implies S} is n-symplectic by the preceding lemma.

Conversely suppose S:is n-symplectic, so that the condition of Lemma 9.3 holds,
i.e.,

UQyp — Qu) < n.

Since row 1 of @4 coincides with row 1 of Q4(cf ch1), clearly all the 1’s in T5/,(5)
are no lower tha.n row n. Consequently, all the 2’s of the lattice permutation
appear no lower than row (n + 1). Thus any 3 in the lattice permutation is, at
its lowest, in row (n + 2), and is then preceded by a 2 in row (n + 1). Suppose
this was the case.

Then it is clear that when R;=(row 2 of Q 1p ) is inserted, the first entry (i.e.
the right-most entry in R;) goes into the position occupied by the 2 above the
“bad” 3 in the lattice permutation , i.e., into row (n + 1), (since the 2 arose from
inserting an entry z strictly larger than the first entry in row 1 of Qg , viz., the
first entry in row 1 of Q%, ). But this contradicts the assumption that S",‘ is n-
symplectic. Thus any 3’s in the lattice permutation are in row (n + 1) or higher,
so, as hefore, the corresponding 4’s are no lower than row (n + 2). Consequently,
any 5’s in the lattice permutation can be no lower than row (n + 3). However,
repeating the above argument we see that a 5 in row (n + 3) would mean that
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the right-most entry in row 3 of Q 15 when inserted into Q, , would go in row
((n + 3) — 2)=row (n + 1), again a contradiction.

The argument clearly extends to the entire length of the lattice permutation , so
that £(Q 1p Qu) < n implies that, in the lattice permutation T)/.(8), (2i + 1)
appears no lower than row (n +1). @

Since the condition on a lattice permutation which characterises n-symplectic
tableaux will prove to be especially important in the next chapter, we make one
more definition:

Definition 9.5 A lattice permutation of partition weight # where B has even
columns, fits the skew-shape A/u n-symplectically, if in the filling of )\/y,
(21 + 1) appears no lower than row (n +1) of A\,Vi=1,...,1¢(B).

The above lemma is clearly a bijective proof of the following enumerative
result:

Theorem 9.6 .
fit)= 3271 3 cisn) (3.6)

A=k AF(k=|u])

Bleven

where ¢ 4(n)
= |{ Ty/u(B) :lattice permutation of shape \/u, weight B, which fits the skew-
shape A/p n-symplectically}|

As a corollary to the lemma, we immediately deduce

Proposition 9.7 . .
() = 3+ (3.7)
for all u of length at most n.

Equivalently, for shapes i of length at most n, all up-down tableauz of length
(n + 1) and shape u are n-symplectic.

Proof: Let S;*! be an up-down tableau of length (n+1) and shape u, let its
encoding as a pair of SYT’s be (Q,Q,) where S F (n + 1 — |u|) and has even
columns, and corresponds to the two-line array

L=(J..l T Jr);
81 .. 3

let its encoding as a SYT and a lattice permutation be (Qx ,T5/.(8)).
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Then in any event it is clear that
£{iy...4, = Q,) <n--1, since £(A) <n + 1.

Consequently S7+! would fail to be n-symplectic only if £(s; ...5, — Q%) < n+1,
which in turn means that some 1 in the lattice permutation T),,(3) appears in
row n+1 of A. But since every 1 in the lattice percutation must be accompanied

by a matching 2 in a lower row, and A has at most n + 1 rows, this is impossible.
®

Remark 9.8 As a result of the two different encodings of up-down tableaux
presented in this section, we may restate Berele’s theorem (Theorem 7.1) in
either of the following forms:

Berele’s algorithm is a bijection between k-words w on {1,1,...,n,#} and each
of the following:

_ (1) triples (Pu, Qs> Qu)
where P, is a symplectic tableau of shape 4,
Qu > Qp are respectively standard Young tableaux of shape u, 3, such that the
corresponding up-down tableau S} «— (Qp, Q,) is n-symplectic, and
p is a partition of (k — |u|) with even columns;

(2) triples (P, @x s Ta/u(B))
where A -k, A2 pu, fleven, Bt (k— |ul),
P, is a symplectic tableau of shape 4,
Q, is a standard Young tableau of shape A, and T)/,(5) is a lattice
permutation of weight § which fits A/u n-symplectically.

10 The link between Berele and Schensted

Before plunging into the technical aspects of Berele’s algorithm, we work out
an example computing (# «>- w) and (# — w); this will serve to summarise our
results so far.

Example 10.1 Pick w = 3132123221. Then computing
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gives the sequence of symplectic tableaux

12 3 22
I 1s 2 23 2%
A T RS- S PR
Thus
@ w)=| 2" s8
1 (211)
where S(l.‘?u) is the up-down tableau of Example 8.8.
13 5610 17
“‘( s ] {248 }7 o )
28
_ ;: ‘e ;1
] 6 ?
s 1o 9
187 el
12 268 ®12
= 1, 49 , w2
s 3 s
10 4
while
(@ —w)
gives the sequence of ordirary tableaux
(g 13 12 138 123 1332
3 1 1s 3 1 12 12 13s 123
3 85 5 s 3 s s 3s
8 S 3 § .
so that
%I; 137
3 288
@—w)=]| 3s , 45
3 3

0 DN Pt

Qo CO B b=t}

[ ]

[ SN

79
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Now notice that

©CoOw
® ~

b
oA N

appears as the Schensted Q-tableau of w, as well as the second component in the
lattice permutation reformulation of the Berele algorithm. This is no accident;
the main result of this section states that this connection between the Berele and
Knuth-Schensted algorithms holds in general.

We now begin this section in earnest, by presenting some rather technical
properties of the Berele algorithm. The reader is warned that the proofs unavoid-
ably consist of checking tedious details about bumping paths and jeu de taquin
paths; he may consequently wish to skip to the end of the section, where the tech-
nicalities obligingly culminate in the rather surprising connection between the re-
formulation (Remark 9.8(2)) of the Berele algorithm, and the Knuth-Schensted
insertion scheme.

The first lemma is an obvious bui nonetheless important observation about
Berele insertion, which we state separately only because it is invoked so often:

Lemma 10.2 Suppose Berele insertion (P L z) of a letter z in
1,1,...,n,# into a symplectic tableau P causes a cancellation. Then Knuth-
Schcnatcd insertion (I",, «— z) results in augmenting the shape u of 13,, by a square
in column 1.

Lemma 10.3 Let w be a word of length k sn1,1,...,n,7 and let z,x' be consec-
utive letters sn w, with = preceding z' sn w, such that z < . Then in applying
the Berele algorithm to the word w, if inserting z' (i.c., ((P, L z) - z'))
causes a cancellation, so did the (prior) insertion (P, <z ) of z.

Proof: For suppose not; let the symplegtic tableau built up prior to inserting
z be P ; then Berele insertion of z into P is the same as Knuth-Schensted row
insertion of z into P and produces some larger tableau P'. On the other hand
Berele insertion of z' into P’ results in a cancellation, so that Schensted row
insertion of z' into P! must yield a tableau P " whose shape differs from that
of P! by an extra square in column one (since the Schensted bumping path of
(P' « z') must end in column one). But by Lemma 3.15 of Chapter 1, z < 2’
implies that the Schensted (row-insertion) bumping path of z' lies to the right
and ends no lower than that of z, so we have a contradiction.
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Lemma 10.4 Lei w be a k-word sn 1,1,...,n,i and let z,2' be consecutive
letters in w with = preceding ' and z < z'. Suppose Berele snsertion performed
on w causes cancellations at = and at z'; then the taquin path followed by the
hole created upon inserting = ends sn the same row as, or higher than, the taquin
path of the hole created by the subsequent snsertion of ='.

Proof: We refer to the figure below in the course of our argument. Suppose
P is the symplectic tableau built up prior to insertion of z, and let z cause a
cancellation in row ¢ of P, so that Berele insertion of z before the jeu de taquin
step results in the punctured tableau

(Puqa—z)z e ©¢ ¢ 6 © o o @
® e € © o o &
¢ ©e¢ e ¢ 0 o o
o a © © g, @
b ©¢ o b, o
c; o @
o e
®

Let r be the smallest index such that b, < a,; consider now the effect of jeu de
taqusn on P'. In row i the hole slides out to the space above b,, then swaps
positions with b,; again in row ¢ + 1 it slides rightwards until it stops above c,,
where s is least such that ¢, < b, (clearly s > r). This continues until it hits

the boundary of P’, leaving a tableau P’ of smaller shape.

Now consider the Berele insertion of =’ into P'. Since ' > z, it is clear that
the cancellation caused by z' occurs in a row no higher than row s, where the
cancellation caused by z occurred (cf. Lemma 3.15). Thus prior to jeu de taquin,
we have a punctured tableau as in the figure above, with the hole in row ¢ or
lower. To perform jeu de taqusn, in each row we look for the smallest index r in
the row below such that the rth element in it is less than or equal to the (v +1)st
element in the current row, as before. It is clear that the new hole must migrate
to a pesition which is (weakly) to the right of the old hole produced by =z, if we
are dealing with a row which was affected by the taquin path of insertion of z.

The statement of the Lemmma follows. @
The converse of the above lemma is also true:

Lemma 10.5 Let w be a k-word sn 1,1,...,n,7i and let z,2' be consecutive
letters in w with = preceding z'. Suppose Berele insertion performed on w causes
cancellations at £ and at =’ , such that the taqusn path followed by the hole created
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upon inserting £ ends in the same row as, or higher than, that of the hole created
by the subsequent insertion of ©'. Then z < 7.

Proof: Suppose to the contrary that z > 2. Consider the results of ordinary
Schensted insertion (P « z « z'), where as usual P is the initial tableau. Then
both bumping paths end in column 1, since z must do so, and that of ' must
end below it. Also the path of z' lies strictly above that of = until it reaches
the first column (Lemma 3.16), so the symplectic violation due to ' is in a row
r(«') > r(z), if r(z) is the row of the hole produced upon (Berele) insertion of
z. But by the arguments in the previous lemma, this contradicts the hypothesis
about the culminating squares of the two taquin paths. e

Lemma 10.86 Let w be a k-word in 1,1,...,n,7 and let =,z be consecutive
letters sn w with z preceding z' . Suppose Berele snsertion performed on w causes
a cancellation at = but not at '. Thenz < 2'.

Proof: Suppose to the contrary that 2 < z. Then considering the effect of
ordinary Schensted insertion of z,z' into the symplectic tableau created up to
the insertion of z, the bumping path of z’ lies strictly to the left of that of z until
it hits column 1 (which must happen since it does for z by Lemma 10.2). Suppose
inserting z caused a symplectic violation in row ¢; thus the (Schensted-insertion)
path of z bumps an 7 cut of row s. Consequently the path of ' bumps the entry
a; out of row &, where a; < 7, contradicting the hypothesis that £ does not cause
a cancellation (the tableau is symplectic up to row t).e

The next lemma is crucial to our proof of the n:ain theorem of this section.

L= Jl cee jr
11 o i'

be a Burge two-line array, (cf. Definition 3.29) so that j; < ... < j, and ji > i,
allk=1,...,r. Let Qgbe the SYT produced by applying the Burge correspondence
of Theorern .91 to L (so B is a shape with even columns). Then

Lemma 10.7 Let

Qs = (n, e J'l.*'l .5, — 0)
=0« .. a,5-.-5)

where ly,...,l, are such that 5}, < ... <1,,.

Proof: Consider the effect of the Knuth-Schensted correspondence on L: this
yields a pair of SYT (P(s;...4,),Q(s1...5)) of the same shape 18, say, where
P(il...if) = (tlt' — 0)1 = (0 — il...i,-)l,
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and Q(7...5) is a SYT with entries j;...J,, where j. occupies the position
created by insertion of 1, after ¢;...8;,_;.

Recall chat under the Knuth-Schensted bijection, the pair (Q, P) corresponds to
the inverse array L™!, where L™! is obtained from L by switching the top and
bottom rows of L, and then re-arranging the vertical pairs so that the (new) top
line is in increasing order. Thus,

L_l — 3::1 cae ?l'
( J‘l cae Jlr !

where 4, < ... <74,. It follows that Q(s1...5) =0 — 5, ... 2 )1-

Now consider what happens when we reverse the Burge correspondence to re-
trieve L from Qg . Recall that this is done as follows:

(1) Set k=r. Set T, = Qp -
(2) Set jy = largest entry in T;.

(3) Remove j; from T}; unbump the element immediately above ji by rows. This
resuits in 1, being bumped out of the tableau. Call the resulting tableau T;_,.

(3) Set k =k — 1.

(4) If k = 0, stop, else go to Step (2).

Suppose we modify this process slightly. replacing (2) and (3) by

(2’) Set j,+1' = 0o; ji = largest entry in T} which is smaller than jj,;.

(3’) unbump element a; immediately above ji by rows; slide j} up into position
occupied by a;. This results in ¢} being bumped out of the tableau. Call the
resulting tableau T}_,.

It is not hard to see that at each step of thie new process, the element being
bumped out is the same as that in the inverse Burge process: t} = ¢, all k£ =
1...r. (Also clearly j; = ji). This follows since at step (k — 1), we unbump from
the element a;_; directly above jy_; : @31 < Jz—1 < Ji, 80 @33 is to the left
or above the starting point a, of the kth bumping path (which was the element
directly above ji). Thus the (k — 1)st bumping path lies to left or above the kth
bumping path, and is unaffected by the presence of j; in the tableau.

This means that at the end of the modified procedure, we are left with some SYT
T in the entries j ...J, and we have bumped out 4,,s,_;...4; (in that order),
so that Qs = (T « 4;...4,). However, the nature of the modification is such
that at each step when 1; is bumped out, j; moves up one box, i.e., j; occupies
the position that would be created by re-inserting ¢, into the tableau. In other
words, T = Q(J: ... J)-
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Consequently

P(il...i,-) =(i1...£f_’ﬂ)1=(04—£1...i,)1,
Q0 = (QUit -+ -3e) = 1eeris) = (B = iy oy — 2. -eir)e

where 3}, < ... < 4, as required.

Note that it also follows from this argument that the common shape %/3 of
P(i;...1,) and Q{j;...5 ) is precisely "half” the shape of the even-columned

B, ie., 38 = (Ba2,B4,-..,Ba) if {(B) = 2l (remembering that By_1 = B3,V i =
1...0).

We can now present the main result of this section, demonstrating the close
connection between the Berele algorithm and Knuth-Schensted insertion:

Theorem 10.8 Let S¥(n) be an n-symplectic up-down tableau of length k and
shape u, and let its encoding as a standard Young tableau and a lattice permuta-
tion be the pair (Qi ,T5/.(B)) where as usual A D u and § is a shape with even
columns. Then

a k-word win 1,1,...,n,7
fits the sequence of shapes S:(n) in the sense of Berele
tff w fits Q) in the sense of Schensted.
Egqusvalently, if

W (Pv, Qv)
where Q, 18 an SYT and

w > (P, Qx, Tou(B))
where Q) 18 an SYT and
T»/u(B) 18 a lattice permutation of weight B which fits A/p n-symplectically,
then
A=vand Q,\ = Qy .

Proof: Recall that in the Berele process, if

w «2 (B, ,S5(n)),
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then the up-down tableau S}(n) corresponding to w may be represented by a
pair (L, Q, ) where L is a Burge two-line array

Juoeee
o 8 )0

so that j; < ... < j,and jy > 4, all k=1,...,r, and Q, is  standard Young
tableau of shape i, the shape of the symplectic tableau corresponding to w.

We shall first show how the right Schensted tableau of w can be reconstructed
from the information contained in Q,and L. Our procedure will turn out, (thanks
to Lemma 10.7) to be equivalent to column-inserting (the Knuth-equivalent word
of) Qp (the even-columned tableau corresponding to L under the Burge algo-
rithm) into Q, , which establishes the statement of the theorem (by Remark
9.8(2)).

Clearly we can partially reconstruct the right Schensted tableau by column re-
inserting the ¢ ’s in the order

(3.1...2.,.—’ Q“).

We break up the word w into segments w!z;w?...z;_, w'zj,...z; w" where
{Zj,,...,z;,} are the letters whose insertion causes symplectic violations, i.e.,
cancellations in the Berele scheme.

Now observe that at any cancellation step in the Berele algorithm, say step jj,
where we kept track of the jith shape by column-bumping an f; out cf the
previous tableau, the effect of ordinary Schensted insertion of z; on the right
(@—)tableau would have been to add a square labelled j; to the bottom of the
first column of the previous tableau (by Lemma 10.2). Thus at the very fir:t
cancellation, the right Schensted tableau is easily recovered by column-inserting
j18'1 into Q“ .

Also note that for any 8 = 1...r, the subword w® of w between two successive
cancellations z;,_,,z;, consists only of letters strictly larger than z;, (by Lemma
10.3) and larger than or equal to z;,_, (by Lemma 10.4). This means that the
bumping paths of z;,_,,z;, lie to the left of tne portion of the tableau affected
by w’.

Consequently, it must be possible to recreate the right Schensted tableau from
the partial reconstruction achieved by (f;...:, — Q, ), by column-inserting the
Jk’s in a suitable order.
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We now go about determining the correct insertion order for the j’s. Observe
that if tag(z;) denotes the row in which the taguin path of insertion of z; ends,
then

‘.a—l S ia - t‘zQ(xa—l) S tGQ(:t,)
(by Lemma 3.15(2))
= z;,_, < Z;,
(by Lemma 10.5)
==> j,—1 appears to the left of j, in Q,
(the right Schensted tableau of w)

Thus in the correct column-insertion order of the two j’s in recreating the right
Schensted tableau, j, is inserted before j,-;.

Similarly,
t-1 > 1, = tag(z,-1) > tag(z,)
(by Lemma 3.15(2))
== I,_, > I,
(by Lernma 10.3)
=3 j,—1 appears above j, in Q,
(the right Sch....:ted tableau of w)

Thus in the correct column-insertion order of the two 7’s in recreating the right
Schensted tableau, j,-; is inserted before j,.

Clearly then, if l,,...,l, is the permutation of [r] such that ¢, < ... < 1, then
the right Schensted tableau @, of w is recreated by column-inserting the ;7 ’s in
the order 3, — ... — 3, —, i.e.,

Qv =(---at,) = (1.5 — Qu))
= (G- ety = (f1...%)) = Q)
= (Ui o 10 50) = Qu)
= (word(Qp) — Q,) by Theorem 3.20
= P, (by Remark 9.8(2))

11 Knuth transformations

In this section we study the effect of the Knuth-transformations (described
in Chapter 1) on the Berele algorithm. The technical lemmas appearing in the
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previous section, as well as the main theorem, are invoked to yield a complete
characterisation of the notion of Knuth-equivalent words in the symplectic con-
text.

Theorem 11.1 Let w and w' be words on 1,1,...,n,# of the same length which
are Knuth-equivalent (i.e., (0 — w), = (# « w');). Then

@ - w); = (0 w'),
and (0 &= w)s = (0 &~ w')s.

That is, w,w' give the same symplectic tableau under Bereie insertion, as well as
the same lattice permutation under the reformulation 9.8(2).

Proof: We must show that, given a symplectic tableau P , the following two
statements hold:

(1) z < 2' < z" implies (P— 2" — 2z o) = (P — 2 2" « 2)
(2) z< ' <z"implies (P2 —z2") = (P2 2" 1)

For the sake of completeness, we reproduce Knuth’s original proof for ordinary
tableaux (taking care of the case when the Berele algorithm on w does not result
in cancellations), proceeding by induction on £(P ).

Now assume (1) and (2) hold for symplectic tableaux of length < £ (P). Consider
(1) with regard to P.

If z does not bump z", we have, assuming no cancellations due to any of the z’s
occur in row 1,

(Pe2") = @ o0 @& ' o @ 0 ¢
e e © ¢
z" bumps y" > 2" into row 2
((i’«-—:c")*—z)= e z 9 ¢ ' @ @ @ @
o e o o
zbumpsy < z'' intorow 2,y > z
(Pe—2")—2)—2'= e z 6 o ' @ o o
o o 0 o

T bumps y' < 2",

since ¢ = first element > ' > zs0y >=y > z.

Thus we find ourselves inserting into the tableau P, which has one row less than
P, the sequence y",y,y’ where y <y’ < z* < ¢".
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On the other hand,
(P‘—z)= © 9 e ¢ r ® o @
@ o o o
zbumpsy > =z
(Pe—1z)2z"= e z @ o ! e @ ©
e @ o o
z fumpa g >y >y
((Pe—z)e—z")e—2z'= © z ' ® 1" © @ o
o ® o o

bumpsy' >z' >y
so y <= y' <= y"; however ' < z" < y" s0 z' bumps y' <==z" < ¢".

This time we are inserting the sequence y,y",y' into P, and y <= ¢' < y" as
before.

Consequently induction hypothesis applies in this case.

Now suppose z does bump z":

Then .

(P+2")= ©e e 6 ¢ ' @ @

o ® 0 o

z" bumps first y"' > z"

(Pe—2z")—z= ® e ¢ 06 1 0 o

e © 0o o

z bumps z"

((134—:1:")<—:c)4—x' e 0o ¢ @ z o I

7 bumps firsty' > z', s0y' > z

and y' having been to the right of y" in the original row, is > 3", so that we
are reduced to inserting into the shorter tableau P, the sequence y", ",y' where
<y <=y.

while

(Pe2zx)= ¢z © 9 6 & ©
e o e o
z bumps the firsty > z

where y = y" above since z bumps z", so the first thing > z" coincides with the
first thing > z;

(P—z)—2"= oz © 9 o ' o
® o o o
z" bumps the first y' > z"
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so y' >=y (v having been bumped by z);

(P+2)—2") 2= ® r e 0 © ' e
© o 0 e
z' must bump =" since z would have done so.

Thus we are reduced to inserting into P the sequence y = y", v, z" where 2" <
¥ <= (y =)y".
Again induction hypothesis applies.

We have shown that when there is no possibility of a cancellation, (1) may be
reduced to performing the sequence of insertions (1) or (2) into a shorter tableau.

It remains to verify that cancellations do not change the results of the two inser-
tions of (1).

The result holds if P = @, for then

(2" — z2') = { ;, z , if (2" # 1 or £ # 1) (i.e. no cancellations occur)

=1, else (ie.ifz"=1,z=1, soz' =1)

and
g =
(z+—z"z')=[ :i, s lf(z"#lor:c'aél)
z=1, celse (e.ifz"=1,2=1,s0z=1)
Similarly
"
(x'«-a:"z):{ :, z , if(#Torz#1)
7, else
and
"
(' « 2"z) = :' “, if (¢ #1orz#1)
7", else

In the general case it suffices to look at the first instance of a cancellation. It is
clear that during the insertion of any element into a tableau, the first cancellation
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occurs when, at some point of the bumping path, we find ourseives attempting
to insert an ¢ into row ¢ which contains at least; one 7.

Consider the subwords z"zz' and zz"z' . We make the following observations:

(1) If 2" causes a cancellation, so does z, in the subword z"zz' by Lemma 10.6,
and in zz"z' by Lemma 10.3. Furthermore, Lemma 10.6 says that z' also causes
a cancellation in zz"z' if " does, so by considering the identical left Schensted
tableaux for the two subwords it follows that all three letters cause cancellations
if the largest one does, in both subwords.

(2) If =’ causes a cancellation, so does z, in z"zz’ by Lemma 10.3, and in zz"z'
by Lemma 10.3 and Lemma 10.6 (noting that the intermediate insertion of z"
creates a bumping path to the right of the bumping paths of z,z'.)

Thus in both subwords either z alone causes a cancellation, or both z,z" do, or
z,z' do. Suppose the subwords occur in positions 7,7 + 1,7 + 2.

Let S} =(L, Q,) be the up-down tableau for w with the subword z"zz' and let
S"f ' =(L',Q, ) be the up-down tableau for the subword zz"z'

If only z causes a cancellation , then in the encoding of the up-down tableau, if
an ¢, is column-bumped out at step (5 +1) for the first subword z"zz', clearly the
same entry t. is column-bumped out when z causes a cancellation in zz"', since
the bumping path of z” lies to the right of the portion of the tableau affected by
z.

Clearly the symplectic tableau is unaffected by the transformation, since r causes
a symplectic violation in the same row for both subwords, and thus (1 = v) while
the up-down tableaux are affected as follows:

The pair (5 + 1,1;) appears in L, as opposed to (j,¢;) in L', while j appears in
Quwhere j +1 appears in Q, . Since Theorem 10.8 tells us that the shape A D u,
(» F €(w)) corresponding to the two up-down tableaux is the same (being the
shape of the ordinary Schensted tableaux: recall that the left Schensted tableau
is invariant under Knuth transformations), it is clear that the lattice permutation
obtained upon inserting (the Burge tableau corresponding to) L into Q, is the
same as that obtained when L' is inserted into Q, .

If z,2",z' all cause cancellations, column-bumping out i.,1",s, respectively in
the subword z"zz’, then it follows, again by considering the relative positions
of the bumping paths, that the same entries are bumped out of the up-down
tableau for the transformed subword zz"z'. As before, this implies no changes
to the symplectic tableau of w, while the up-down tableaux are affected only in
their two-line arrays: the pairs (j,1.#), (7 +1,1;), (7 -+2,4») in L' are replaced by
(4,82), (7 + 1,3z0),(J + 2,4x) in L. Bat since t;n > 1,1, < i» (by Lemmas 10.4,
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10.5) this means the bottom rows of L and L' differ precisely by a Knuth trans-
formation, and consequently the corresponding even-columned Burge tableaux
are identical, which in turn implies the lattice permutations coincide.

Finally if z,z' are the only ones causing cancellations, it follows as before that
for both subwords, the up-down tableaux encoding results in column-bumning
out the same entries 1,3, at steps 7 + 1, 7 + 2 respectively for the subword z"zz'
and at steps j,j +2 respectively for the subword zz"z'. Once more it is clear that
the symplectic tableau is the same in both cases, while the up-down tableaux
differ as follows:

The pairs (5 + 1,4.), (5 + 2,3=) in L are replaced by (5,1:) ( + 2,¢=) in L',
while the entry j in @, is replaced by the entry j + 1 in Q, (recall that g = v
since the symplectic tableaux are the same). Invoking Theorem 10.8 once more,
the equality of the two Schensted (Q—)tableaux forces the lattice permutations

obtained by inserting the (Burge tableaux corresponding to the) two-line arrays
L into Q,, L' into @, , to be identical.

The argument for the second Knuth transformation being identical in ail signif-
icant details, we have shown that

If w and w' are words on 1,1,...,n,fi of the same length
which are Knuth-equivalent then

@ <= w) =0 < w),

and (0 - w)s = (0 = w')s.

Towards the goal of achieving as complete a characterisation as possible of
words (of a fixed length k) which correspond to the same symplectic tableau, we
have

Theorem 11.2 Let w,w' be two words of the same lengthin 1,1,...,n,ii . Then

w and w' are Knuth-equivalent iff
@ < w), =0 <& w),
and
(0 - w)s = (8 & w')s.

Proof: The only if part has been demonstrated in the previous theorem.

Since the two lattice permutations are the same, and the corresponding skew-
shapes are the same, so that the SYT’s
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(0 «— w2, (B« w'),

and have the same shape A, say. Thus we may assume (0 £ w) = (P, Qx,

Ty/u(B)) and (9 L w') = (13,, » @1, Taju(B)) where only the SYT’s Q,, @)’
differ. (Note that by Theorem 18.1, this says at least that the two left Schensted
tableaux of w and w' hbave the same shape A.)

We now claim that the left Schensted tableau of w can be uniquely recovered
from (P, , Ty/u(B)). The Berele algcrithm essentially removes all "bad” pairs
(#,3) from the left Schensted tableau of w. Our strategy will thus be to restore
these pairs ( an ¢ in row 1, and the 7 in row (i + 1)) to P, , in the right order, so
as to retrieve the left Schensted tableau. We proceed as follows.

First, for convenience, we represent the information contained in the pair (13“ ,
T/u(B)) in a single Ferrers diagram of shape A, where the squares which make
up the shape u are filled to give the symplectic tableau 13,, , and the squares
corresponding to the skew-shape A/u are filled with the lattice permutation of
weight 8. Since 8 is a shape with even columns, the lattice permutation is such
that to every 2¢ + 1 in the lattice permutation there is a matching 2i + 2. We
propose to augment the tableau P » by adding back at each step, a pair of squares
numbered (2s + 1,2¢ +2), taking the lowest and left-most square numbered 27 4 1
and the lowest and left-most square marked 21 + 2, for 1 = 0,1, 2,....

Thus we order the pairs of squares marked (2:+1, 2¢42) in the lattice permutation
by associating to the lowest and left-most 2¢ + 1, the lowest and left-most 2: + 2
and then repeating with the next occurrence. Also, any pair (2¢ + 1,2 + 2)
precedes a (2t + 3,21 + 4). Note that this is exactly the reverre of the order in
which the cancellations occurred (it corresponds to column-inserting the bottom
line in the two-line array scheme.

Example 11.3 Take

= 11
P, = 2 ’ Ta\/u(ﬂ):‘

NN 8
W = a
N

Now order the pairs (2¢ + 1,21 + 2) in the lattice permutation as follows:

2
2

¢ = B

T’\/u(ﬂ) =

“w - B B
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Next, replace each pair of squares in order:

11 11 11
P“—>2o — 0 2 — 2 2
c o 2
11o0 o1 1 111
—+ 2 20 — 022 5122
2 2 2
i11 111 111
_);22_’1‘2_.’2_’ig2
2 o o 2 2 2
o o 2

Example 11.4 Now take the same symplectic tableau as before, but let the
lattice permutation be

e s 1
a 1 2
T"/I‘(ﬂ)— 1 2
2
The order of reconstruction is now
| . |
" 2
D) = |
1
So this time we have:
11 11
~ 2 2
Py — o - 3
° 3
11 11 11
R 2 o L ° 2 R 2 2
3 o o 3 2 3
3 3 3
11o0 o1 1 111
_ 2 2 o L, ° 2 2 R i22
2 3 2 3 2 3
3 3 3
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Certainly this reconstructs the correct shape A. We now need to specify how
to label the pair of squares at each step, so as to end up with a column-strict
tableau at the end . The idea is essentially to replace the removals in the reverse
of the order in which the Berele algorithm caused them to cccur. From previous
arguments, (as in the proof of the main theorem) we know that adding the first
pair of squares, labelled (1,1), to the shape u restores what would have been the
shape of the tableau if ordinary Schensted insertion had been performed instead
of a Berele cancellation. But a little reflection on the modus operandi of the
Berele algorithm shows us that this must mean that

(*) it is possible to play jeu de taquin on these two blank squares to get them to
occupy the first column in two consecutive rows.

This really amounts to reversing the Berele cancellation step, so it is clear that
what needs to be done is the following: slide the higher empty square correspond-
ing to a '1’, via jeu de taquin, to the highest possible row of P,, without creating
any symplectic violations, and then into column 1, ending in position (j, 1),say.
Now slide the empty square corresponding to 2’ in the lattice permutation into
column 1 below it. Thus the two empty squares now occupy the first column in
rows j and j + 1. Clearly the correct labels for these squares are 5 and 7, giving
a tableau P, with exactly one symplectic violation.

Now repeat with the next pair of squares in the ordering, and with the new
tableau P, . This time we are replacing the penultimate Berele cancellation; by
Theorem 10.8, this augmented shape u? is precisely the shape we would end up
with if the last two Berele cancellations had been replaced by ordinary Schensted
insertion, so as before

(**) it should be possible, via jeu de taquin, to slide the higher empty square
to some row j and column 1, (and again this is to be done without causing any
symplectic violations), and then to slide the lower square into row (5 + 1) and
column 1.

Note that since we are now adding to a tableau that already has a symplectic
violation, these squares do not get the labels j, 7, but k, k where the previous
pair in violation is k — 1, k — 1.

Clearly this may be continued until all the pairs in the lattice permutation are
exhausted; the resulting non-symplectic tableau of shape ) is precisely what the
outcome of the ordinary Schensted algorithm performed on w would be.

We remind curselves of the two crucial points of the argument convincing us that
this procedure works, and with the desired result:

(1) Theorem 19.8, which says that adding back pairs of squares of the lattice
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permutation in the order described above replicates the shape of the Schensted
tableau at each step,

(2) The above process essentially replaces each Berele cancellation (in reverse
order) by the corresponding Schensted insertion.

Thus we have shown that
P,=(0 L w); and

Tyu(B) = (0 <= w)s

uniquely determine the left Schensted tableau of w', and hence two words w and
w' giving the same symplectic tableau and the same lattice permutation of the
same skew-shape, must be Knuth-equivalent. @

Remark 11.5 Note that st does not suffice to assume that w and w' give the
same symplectic tableau and the same lattice permutation; we also need to know
that the skew-shapes are the same, or equivalently, that the shapes of the Schen-
sted tableauz of the two words are the same.

Example 11.6

The pair
a e 1
= 11 s 2
Bu= o v Tp=,
2
determines the Knuth class of the tableau
' 111
12
3
3
while the pair
- a 1
=~ 11
P“ = 2 , ,'p = un 1 2
2

determines the Knuth class of the tableau

bO| =i

1
2

Di ] pet
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Using the invariance of the symplectic tableau of a word under Knuth trans-
formations, we can establish the following

Proposition 11.7 Let w be a word of length 2k on 1,1,...,n,n such that its
associated symplectic tableau (under Berele insertion) is empty. Then the left
Schensted tableau 1s of the form

| et

o B B |
S RN

k ... k
E ... k

In partseular, the resulting shape under Schensted insertion has even columns.

Proof: Observe first that if B(w), = 0 then every occurrence of ¢ in w is
accompanied by an 1. This is clear from the nature of the algorithm and the fact
that every letter of w eventually must succumb to a cancellation.

Let i be the largest letter appearing in w. That n and 7 ultimately disappear
signifies that at some point in the insertion a column of length n is constructed
, with n and #i at the foot of the column, so that the next insertion affects this
column in such a way as to knock the fi into row (n + 1), and thus annihilate
the pair (n,71)). We conclude that either 1 or ¥ appears in this column,for each
+ = 1,...,n, and therefore that 1,7 are letters of w for each 1 = 1,...,n. Now
consider a slight modification to the Berele algorithm, in the form of allowing
the first occurrence of a symplectic violation in each row. Then clearly a parallel
Schensted algorithm produces a left tableau P whose first column has length 2n
and consists of the entries 1,1,...,n,# .

Denote the columns of P by C},...,C,, say. Let w(C;) be the word obtained
by reading the tth column C; from the bottom up. Then by Theorem 3.20, w is
Knuth-equivalent to

w(Cy)w(C,) ... w(C,).

We proceed by induction on r, the number of columns of the left Schensted
tableau of w. The result clearly holds if r = 1, by the preceding remarks.

Assume it is true for words whese left Schensted tableau has < r columns.
Then by Theorem 11.1, w(C;).{w(C3) ... w(C,)} also gives the empty symplectic
tableau under Berele insertion. But clearly so does w(C;) = fn...11. Thus
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the symplectic tableau corresponding to the word w(C;)...w(C,) must alse be
empty. But now induction hypothesis applies, since the left Schensted tableau P’
of this word by construction has (r — 1) columns. Since P consists of C) pasted
to the left edge of P', we are done. @






Chapter IV

Symplectic Schur functions

In this chapter we use the combinatorial results developed so far to derive
identities involving the characters of the symplectic group. The formulas (4.2)
and (4.7) are classically known, although we believe our combinatorial approach
to be new. Equation (4.1), which gives the complete decomposition of an arbi-
trary irreducible character of Gi(2n, C) restricted to Sp(2n, C), is, to our knowl-
edge, new.

12 Restriction from GI(2n,C) to Sp(2n,C)

We begin this section with a combinatorial presentation of a classical result
on the restriction of irreducible representations of Gl(2n,C) to Sp(2n,C) . Lit-
tlewood|Lil](ch XI, pp 233-240;eq II, p.240 (11.9)) algebraically develops parallel
formulas for the orthogonal groups, using symmetric function identities. A sub-
case of equation (4.2) is stated in the appendix of his book(p.295), as is equation
(4.7). In [Li2] Littlewood uses Corollary (11.5) below in his computation of the
Poincaré polynomial of Sp(2n,C) . (Later in this chapter we present cur own
calculation, which does not differ substantially.)

We recall the following definitions from Chapter 2:

For any partition A, the Schur function s, corresponding to )\ is defined to be

8 (T1ye ey Tmy...) = > wt(T)

T column—strict tableau
shape(T)=

where
wt(T) — zv-mmber of i'sin T
I i f .

L]

99
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For any partition u of length at most n, the symplectic Schur function
spu(ztl,...,z!) is defined to be

spu(zft,...,zE) = > wt(T)

T column—astrict
symplectic tableau

shape(T)=p
where "
wt(f‘) — l‘I z:mmbcr of i's in T—number of ¥s in f‘.
=1

Theorem 12.1 For all partitions X of length at most 2n,

iz, zf) = Y spu(atl,..., 2zt ( > 02.p(n)) (4.1)

t(“% é\ fleven
¢¥)<n

Proof: We give what is essentially a combinatorial proof.

The left-hand side enumerates the set

L ={P, : column-strict tableau of shape A}, while the right-hand side counts
pairs in the set _

R ={(Py ,T>/u(B)) : P.is a symplectic tableau of shape p in 1,1,...,n,7 and
T/u(B) is a lattice permutation of weight 8 which fits the skew-shape A/ n-
symplectically}.

Fix any standard Young tableau Q, of shape A. Define a mapping ¢ : L — R by

$(Pr) = (0 = w)1, (@ - w)s)
where
(PM QA) ‘f—s’ w

By Theorem (10.8), if w LR (P, Q) then (8 L w)z = @,, so ¢ is well-defined
and in fact a bijection. @

KN A is the irreducible G!(2n,C) -module corresponding to the partition X,
and N* is the irreducible Sp(2n,C) -module corresponding to the partition ,
then in representation-theoretic terms, the above theorem says that

A Gi(2n,C) _ A Nru
N4 Sp(2n,C) G‘? (ﬂ%ncu.ﬁ(")) N

Yu)sn
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i.e., the multiplicity of the irreducible representation N* of Sp(2n,C) in the
representation N? restricted from G!(2n,C) to Sp(2n,C) is

(£ )

Fleven

We now give an example to illustrate the computational value of the preceding
theorem:
Example 12.2 n = 2; Sp(4,C) < GI(4,C).
Take A = (2%,12).
We have, listing each occurrence of an sp, by enumerating all possible lattice per-

mutations of shape A/u and even-columned partition weight, and then discarding
the non-2-symplectic ones:

s (i, z3") =sp | +sp, +ep_ O+sp_ 0
22 a2 u2 na
s ) 1 1
. s 2 2
= spg + 8p13;

(the last two lattice permutations fail to be 2-symplectic because of the 1 in row
3).

Corollary 12.3 If £(A) < n +1, then

s{zd, .., zE) = Y spu(zil,..., 2 ( > c:'ﬂ) (4.2)

t(p%é Bleven
p)<n

Proof: If £(A) < n then any lattice permutation (of even-columned partition
weight) which fits a skew-shape A/pu, trivially fits it n-symplectically; for £()\) =
n + 1 the same is true by Proposition (9.7) of Chapter 3. e

The equivalent of formula (4.2) above for shapes A of length at most n seems
to appear in [We] (p.222, eqn(8.15). See also (8.8)).

Remark 12.4 Our proof of Theorem (11.1) above is not as combinatorial as one
could hope for, in the sense that we have not provided a direct bijection between
the objects enumerated by each side. Note however that such a bijection must
necessarily exist, since by our results on Knuth-equivalence, specifically Thm
(10.1), the mapping ¢ defined in the proof of Theorem (11.1) above is independent
of the choice of the standard Young tableau Q,.
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Corollary 12.5 The multiplicsty of the trivial representation of Sp(2n,C) in
the irreducible representation N* of Gl(2n,C) (€(\) < 2n) is nonzero iff X' is
even, in which case the mulisplicity ¢s 1.

Proof: The multxphcxty of the trivial representation of Sp(2n,C) in N? is the
coefficient of spg in s)(zi?, ..., zE!), which is T prepen c} p-

Clearly there is exactly one lattice permutation fitting the shape A\/@ = X, and
it has even columns iff A does. So assume A = f has even columns. It remains
to observe that the unique lattice permutation filling of 8 is n-symplectic as
long as £(\) < 2n, since the only way it can fail to be so is if for some ¢ =

,30(2),2 +1 > n + 4. But then £(}) > 21+ 2 > 2(n—1) + 2 = 2n,
contradiction. e

Corollary 12.8

sgeany (23, ..., Z2t) = spy(zEl,...,zEY) =1 (4.3)

That is, the irreducible representations (k") of Gl(2n,C) restrict to the trivial
representation of Sp(2n,C) .

Proof: This is of course immediate if we use Theorem 10.8 and the fact that
Knuth transformations preserve symplectic tableaux under Berele insertion (The-
orem 11.1), since there is a unique column-strict tableau of shape (k?"). It is also
quite trivial character-theoretically, since s(kzn)(zfl, .,z¥1) = 1. Finally, it is
a pleasantly easy exercise to consider the possible n-symplectic lattice permnta-
tions of even-columned weight:

To show that c(k )(n) = 0 unless u = @, simply observe that if £(;z) = r < n,
then the first column of (k*") must contain the entries 1,...,2n —# in the lattice
permutation filling, (and 2n — r must be even, being the last letter in the lattice
permutation ). Observing thzt n-symplectic failures must appear in the first
column if they appear at all, any lattice permutation filling is n-symplectic iff
(r+2{+1) < (n+¢) for all ¢ such that § < pL'—’l , (since 2¢ + 2 must be in
[2n — r}).

But for ¢ such that 2t +2 =2n —r,
r+2t+1<n+1 < 1<n-r-1

<> 2n—r—-2<2n—-r—1) < r<0 <= u=40.
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Corollary 12.7
1.

s(k)(zfl, ey T = spwy (i, ..., oY)

Equivalently, hy(zf!,...,z%1) = hy(z).
2,

L
l) = sp(lu-z.-)(:cfl, ceey .'L'fl)
0

J»ln-
[ S

+1 +
8(11;)(31 geees Iy

for k <n.
Equsvalently, e, (z7!,...,z5') — ep_a(zf?,...,2%1) = 8p(1t) = &.
3S.
3(1n+r)($;{:l, ceey xfl) = 8(111—')(.'1:;_!:1, ceay Z'i‘:l)
forr=1,...,n.

Proof: Only 8. requires comment. Let A = (1') C (1?"). Clearly for k < n,
there is a unique lattice permutation ¢ of shape (1')/(1*), whose column is even
iff | — k is even. We claim that ¢ is n-symplectic iff k < 2n — [. Consider the
filling T, of ¢ into the skew-shape (1')/(1*). In checking that this is n-symplectic,
it suffices to look at the lowest odd entry of 7T,. This is k + 2t + 1 where 1 is
determined by the observation that

l—k=2i+2.

Thus T, is n-symplectic
ifl-1<n+1s
iff I —1<n 02522
iff £ <2n-—1.

Consequently we have

a(ln+')(z'fl, ezl = > 8P(1t)
k<nk<(n-r)
n+r—k even

= 2 3P(a*)
kL(n-r)
n—r—k even

= s(n-ny(z3),..., 2EY)
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Coroliary 12.8

;‘#(x:lﬂa“' VTn') = Z SPy (2 Ky Z c;\fﬁ(n)) (4.4)

)
twr<n Adv B even

Proof: This is immediate from (4.1), and the well-known expansion of the
homogeneous symmetric function h, in terms of Schur functions, in the ring
A(zEl,...,zEY), (cf. equation (1.14)).

However, a direct combinatorial proof in the style of Chapter 1, Corollary 3.25,
is also possible. We shall discuss this viewpoint in section 14, where it appears
naturally as a special case of the bijection establishing the Cauchy identity. o

We now consider the coefficients appearing in the expansion (4.2) a little more
closely. Recall from Chapter 1, equation (1.19) that

Ft) =][0a-tt)™?

<y

= > sp(ts,tay-..).
B8

Aleven

Taking the inner product of the symmetric function F'(t)s,(t) with the Schur
function s, (t), and using the expansion above, we get:

<80 F(t)sy> = ) <8),858,>
B

Bleven

— Y
- Z Cup
)
B'even
= coefficient of sp,(z3!,...,zE!) in s\ (z}!,..., 22,

for L(A), (i) <n

Let us call this coefficient d}. Let D(n) be the matrix whose rows and columns
are indexed by partitions of length at most n, ordered lexicographicaily, say (any
total order will do), such that the (A, u)-entry of D(n) is

{# if A2 u
0 else.

The following result will enable us to write down the inverse D(n)™! of D(n):
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Proposition 12.9 Let F(t) be sn A(t), the ring of symmetric formal power series
(over Z) in the n variables t,,...,t,, such that F(0) = 1 (so F~'(t) is also in
A(t)). Then the matrices (< 8x/u, F(t) >)r4 and (< 834, F71(t) >)y,, (rows and
columns indezed by Par, = {v € Par : £(v) < n} with some total ordering) are
inverses of each other.

Proof: We compute

Yo < sy, F(t) >< 8., F7(t) > .

Recall that in the ring A(t) ® A(s) of formal power series (over Z) in two sets
of variables {t} and {s} which are separately symmetric in {t} and {s}, the
following identity holds [MacD, Chapter 1, p.41, (5.10)]:

svu(tss) = D san(s)su/u(t). (4.5)

Advp

Consequently, in A(t) ® A(s),

< 85(t,8),8,4(8)s.(t) > = zr: < 8x/r(8)8,(2), 8u(8)s,(t) >

= Z': < 8x/:(8), 8u(8) > < 5.(2), su(t) >

=< 8/y(8),8,(s) >
({sa(t)} being an orthonormal basis for A(t))

=< 8afuySu >
A

= c“.y
Since the functions {s,(t)s,(s)},,. clearly form a basis for the ring A(t) ® A(s),

this means
< h(t’ 3): f(t)g(s) >=<h, fg> (4'6)

for all symmetric functions f,g and all h(t, s) in A{¢, s)( jointly symmetric in {t},
{s}).

Consider < sy/,(t,8), F(t)F~'(s) >.

By (4.6), this equals
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< 8a/uis FF' >=< 8/,,38 >= 6y,
On the other hand, by (4.5) we have

<onults8), FOF(s) > = Y < sa/s(t)ss/u(s), F(£)F~(s) >

T
A2rdu

= 2 <&(t) F(t) > <srpu(s), F'(s) >

T
A2r2u

We can now write down the expansion of spy(z) in terms of s,(z7’,...,z3?),
for partitions A of length at most n: (An analogous expression for the characters
of the orthogonal group appears in [Lil p.240, eqn II]; see also the appendix,
p.295 of the same reference.)

Theorem 12.10

@t zd) = Daattomd) | D ()| @)
BCA r>0

a=(a;>...>a,>0)
where F(a) = (ay—1,...,0, — 1ley,...,a,) sn Frobenius notation (cf. Definition
1.6),
and |a| = 7_, a;. (Note F(a) =0 ifa=0 iff r =0.)

Proof: We need only recall a well-known identity [Lil p.238], [Macd pp. 46-47]
(see also Theorem 3.34):

I -tt;) = Y (F1)llsgg (4.8)

i<jy r>0
a=(a;>..>a,>0)

Now observe that for the matrix D(n) = (d}), (£(}),2(r) < n), taking

Fit)= JI (-tt)™?

1<i<ji<n

gives
d) =< 83/, F(t) >,
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so that, applying Proposition (11.9) to this choice of F, we get

(D(n)_l)x,“ =< 8)/“,.F_l(t) >

> ()M by (47)
r>0
a=(ai>...>a,>0)

Treating (4.1) as a matrix equation, inverting the matrix on the right-hand side
gives the desired result. ®

Corollary 12.11 The symplectic Schur functions {spx(zy’,...,z) : £(X) < n}

Bt / }

form an integral basis for the ring A, of Laurent polynomsals with integer coeffi-
cients in {z3!,...,22'} which are invariant under the action of the hyperoctahe-
dral group B,,.

Proof: (1) shows the {spa(z}!,...,z2") : £()) < n} span A,, since the ordinary
Schur functions certainly do;

(2) shows they are linearly independent, since the Schur functions
sa(zfl,...,z21) are so. ®

Definition 12.12 For X of length at most 2n, define spy(zi?,...,z!) to be

spa(zEl, ..., 25 = Y s (2F, ..., ) > (——1)'“Icz.7(a) (4.9)
uCA r>0

a=(a;>...>a,>0)
Lemma 12.13 If £(\) = n + 1, then spy(z7,...,zE!) = 0.

Proof: From Corollary (11.3) above, for any u of length at most n + 1, the
partitions v for which sp, appears in the decomposition of s, have length at
most n. That is, we have

su(zfly...,zf) = ) d¥sp (st .., 2E)

vCu
Yv)<n

Consequently, substituting in (4.9):
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spa(zr .. zxt) = )0 su(ath. ., 22 (D(n)
Cx
¢(‘:55n
= Z E (D(n)_l),\,“ d, sp,,(xlﬂ, oy ,xfl)
#CA vCp
Yv)<n

= 2 | X (D) hudl| spu(sity..., 23
t(vs’sn HEA

uIv
_ +1 +1
= O spu(zys. . 0Z)

v
L(v)<n

=0 since &) >n

We would now like to mention R.C. King’s "modification rule” ! for defining
spa(z3?,...,z!) when £()) > n, for Sp(2n, C) . The rule has the effect of setting
spx to be 0 or +3p, for some u of length at most n, and is apparently derived
[Ki2] from the Weyl character formula for sp, (the analogue of the Jacobi-Trudi
identity (cf. Theorem 2.13) for ordinary Schur functions s,).

We state the latter below:

Theorem 12.14 Weyl/We p.212, THEOREM (7.8.E)/(The Weyl character for-
mula for Sp(2n,C) ) If {A) < n,

- 1 ~ ~
8p;(zfl, ceny z‘:') = Edet(h)“—i—j_z + hk;-i+j) (4.10)

where hy(z}!,. ..,zfll 18 the kth homogeneous symmetric function in 2n vars-
ablee, specialised to z7',...,z31.

Proof: [Li p.233] Littlewood’s derivation of the analogue of this formula for
the character of the orthogonal group, goes through for the symplectic group,
mutatis mutandis. e

1We thank Professor Richard Stanley for drawing our attention to this topic.
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By manipulating rows and columns in the above determinant, and in the
equivalent expression (which is the analogue of equation (1.8))

1
spx(z:fl, ceey a:,fl = Edet(e;:__.-_,-.-g + 6,\:_-;+j) (4.11)

where e(zf!,...,z2?) is the kth elementary symmetric function in 2n variables,
specialised to z7',...,z%!, and X' denotes the conjugate of A, King [Ki2] obtains

the following rule:

Theorem 12.15 King[Ki2] Suppose that for £(\) > n, spy(zf!,...,zEY) is de-
fined by the right-hand side of the Weyl character formula (4.10). Then the fol-
lowing combinatorial rule for computing spy holds : Let h = 2{¢()\) - (n +1)}.
Then

spa(zl, ...,z

(—1)**'sp, (25, ..., zE),
— if , starting from the bottom row of A, removing a connected (4.12)
border strip of iength h, occupying z rows, leaves the shape p;
0, otherwise.

Successive applications of this rule clearly reduce any "virtual” character Spa
to a legal one sp,, i.e., one with £(u) < n.
It is also immediate from this definition that

Corollary 12.18 With sp,(zf!,...,z%!) defined as in Theorem (11.5),
spa(zit,...,23) =0 if £(0) =n + 1.

Example 12.17 Take n = 2, = (3,2%),50 £(\) = 5 and h = 4. Then
8P(s,2¢) = +8P(3,2,12) = —8P(3,2)-

Remark 12.18 We should also mention the work of Koike and Terada in this
regard; in [KT] they derive what seems to be a different combinatorial rule for
the value of spy, £(A) > n, defined as in (4.10). Their techniques, however, do
not seem to diverge substantially from King’s, in that they, too, use both the
definition (4.10) in terms of the A’s, and the expression (4.11) in terms of the e’s.

With this extended definition of the sp,’s, another uniform formula for de-
composing the ordinary Schur function s, for all partitions A of length at most

2n holds:
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sa(zfl, ..., zit) = Y spu(zft,. .., 22 ( > cz'ﬁ) (4.13)
uCa Bleven

Recall our extension (4.9) of the definition of the symplectic Schur function to
shapes of length between n and 2n, via our inversion of (4.1). We have verified
computationally that (4.1) agrees with (4.13) and King’s "modification” for a
large number of examples, one of which we work out below. Since our extension
of the definition of sp) can probably be shown (by purely algebraic means) to
coincide with the extension provided naturally by the Weyl character formula,
this immediately suggests the problem of uncovering the precise combinatorial
connections between the formula (4.9) and King’s rule (Theorem 12.15).

Example 12.19 In this example we compute the decomposition of the character
5(4,22,12) of GI(6,C) when restricted to Sp(6,C) in two ways: first using our
result (4.1), which involves identifying the 3-symplectic lattice permutations to
compute the multiplicities of valid symplectic characters, and then using King’s
modification rules and equation (4.13), which allows the occurrence of the virtual
characters,and does not discriminate against any lattice permutation of the right
weight and skew-shape. Clearly for the two methods to yield the same outcome,
some cancellations must take place; as we shall see at least in this example,
the correct number of virtual characters, corresponding to negative symplectic
Schur functions, occurs in King’s scheme, so as to cancel out precisely those
contributions to the multiplicities made by allowing every lattice permutation,
instead of just the n-symplectic ones. Note that in both calculations we can
exploit Lemma (11.13) and Corollary (11.16) to ignore symplectic Schur functions
corresponding to partitions of length n + 1.

Set A = (4,2,2,1,1), 80 £(A) = 5.
We choose to enumerate every even-columned lattice permutation which fits a

skew-sub-shape of A, and discard (in our schematic representation, multiply by
0) those which are not 3-symplectic. According to (4.1), we have

Sannn " %P guma +ap ms11 +sp T3 +sp as11 +ap CTT 3
as 11 as [ B =2 as
an 22 32 22 S @2
[ ] S 3 ] 2 3
a 4 4 4 4 4

+ap maml 0 +sp sumas 0 tsp essa 0 +sp TT1]
[ 1] aa [ B n]
w2 an n2 m2
1 1 1 3

2 2 2 4



12. RESTRICTION FROM GL(2N,C) TO SP(2N,C) 111

= 8p(4) + 8P(2,2) + SP(3,1) T SP(2,1,1) T SP(3,2,1) + SP(4,1,1)

On the other hand, using the formula (4.13) and King’s modification rule we get

S anss ~ 5P qums +sp =11 +sp sEal +sp BB11
as 11 as 21 @2
am 22 22 22 ms
[ ] S s s 2
s 4 4 4 4
+sp canm1l +sp mam1 (*) +8p cunm (**) +sp smma (* * *)
an aa [ 1 ] al
=2 2 an n2
S 1 1 1
4 2 2 2
+sp asna +ap maal (*) +sp nmge (* * *) +sp oEEN (**)
al as [ B [ 13
a2 "2 a2 [ T°]
3 ] [ [ ]
4 [} - a

which has the same result, since the terms with the same number of asterisks
cancel out according to King’s rule; here h = 2{{())—(3+1)}, so from the shapes
of length > 3 we try to remove a connected border-strip of length 2:

3P paal*) = —58P(32,)

5P quun (#%4) = ~8P(4,1,1)

sp *¥) = —8D(4,2,2)

L1 1] (* )
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13 A Pieri rule for Sp(2n,C)

In this section we appeal once more to the technical properties of Berele
insertion developed in Chapter 3 to derive a rule for decomposing the product

spa(z3t, ..., ) spuy (25, . . ., ) = spa(zd, ..., 2F ) (2, .., ozl

as an integer combination of symplectic Schur functions?. Ultimately we hope to
be able to use this result, in conjuction with the techniques of Theorem (8.11),
towards the larger goal of discovering a combinatorial rule for multiplying two
symplectic Schur functions.

Theorem 13.1 (A Piers rule for symplectic Schur functions) Let A be any par-
tition of length at most n; k any nonnegative integer. Then

spa(zE),. .., 22 hy(zf, 20
\ (4.14)
= Y sp(et,...,z2) [ DD > Ca (1) (12)
v r=0 »
(v)<n uCA, uCv
IA/MI".IV/#I--"—

Proof: The left-hand side enumerates pairs (13,\, ) where P, is a symplectic
tableau of shape A and w is a k-word in zi’,. ., 21 which is a row-word, i.e.,
(cf. Definition 3.14) w; < ... < w. Recall from Chapter 1, Theorem 3.18,
that the Pieri rule for ordinary Schur functions is essentially a combinatorial
statement about the effect of Schensted insertion of a row-word into 2 column-
strict tableau: the added squares form a horizontal strip. It is a tribute to the
power of the Berele algorithm that the effect of Berele insertion of a row-word

into a symplectic tableau may be described just as elegantly.
So let us consider the situation }"’A 2 w where w; <...< w. Observe that

(1) The letters of w which cause cancellations must form an initial segment of
w, 50 there is some r > 0 such that w,,...,w, cause cancellations, but w; does
not for ¢+ > . This follows from Lemma (10.2).

(2) If for s = 1,...,r, inserting w; results in the loss of a square in row p;, then
p1 <... < p,, by Lemma (10.4).

2We thank Professor Adriano Garsia for a discussion which set us thinking about this problem.
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(3) By Lemma (10.6), if r is the cut-off point as above, so that w, is the last
cancellation and w,,, starts off a sequence of additions to the tableau, then
w, < Weyq.

(4) If the letters whose insertion results in additions to the tableau are, as above,
Wyy1,. .., Wk, With respective added squares in rows ¢;,...,qx_,, then ¢, > ... >
qx—r- This is precisely the statement of Lemma 3.8 of Chapter 1 which ensures
that the squares so added form a horizontal strip (i.e., no two in a column).

Thus Berele insertion of a row into a symplectic tableau P, produces a
pair (P,,,S"A_w)), £(v) < n, where the second component is a k-sequence of
shapes of the form

k—

A=pop'o...op cu=vtcitc..." =),

such that:
e the difference between two consecutive shapes is exactly one box;

e if we label, in order, the boxes lost in the shape A by 1,...,r (see eg) then
these filled boxes form a column-strict skew-plane partition of shape A/u, (since
t + 1 appears strictly to the left of ¢ (by (2) above)), so in particular A/u is a
horizontal strip;

o if we label the boxes added to u in the remaining k — r steps, these form a
column-strict skew-tableau of shape v/u, so in particular v/u is a horizontal
strip.

Conversely, given a symplectic tableau of shape v and a k-sequence of shapes
starting at A and ending in v, both shapes having length at most n, with the
properties described in the preceding paragraph, it is clear that reversing the
Berele insertion results in a row-word of length k: this follows from Lemma 3.8,
observation (2) above (Lemma 10.4), and Lemma (10.6).

Thus the coefficient of sp, in spy sp() is
{u: Cv,u C A v/u, /1 are horizontal strips, and |v/u| + |A/p| = k}|.

We now remind the reader that the Littlewood-Richardson coefficient ¢}, ;. is
nonzero only when A/u is a horizontal strip, in which case it is 1. @

Example 13.2 We compute

+ + + + 7
8P o0 (1%, 22%, T3, 247) . ks,
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by listing all the possible up-down sequences of shapes of length 3 which begin
with the shape A = (2,1,1).

We need to find all sequences ending in some shape v, characterised by u C
A, 1 C v, such that

A/p and v/p are horizontal strips, and |v/u| + |A/u| = 3.

For |A/u|=0:

The shapes v are simply the ones which are 3-Pieri over A, and these are
ma111 ol S E
= . -
[ -] ] 1 1

For |A/u|=1:
For u = (13), the shapes v which are 2-Pieri over u are:

@11 1

-~ 8 @ae

For u = (2,1), the shapes v which are 2-Pieri over u are:

w11 en1 :'1 ::
9 9 ]
a n1 ! :

For |A/p| = 2: The only p such that A/u is 2-Pieri is p = (1?)

the sequence « , "
| ]

.’ U

is not allowed, since condition 3. in the proof of Theorem 13.1 would be violated.)

The shapes v which are 1-Pieri over u = (12) are

a1l -

Finally, observe that there are no shapes u such that A/u is 3-Pieri.

Thus :
3P pa (21*, 22*, 25%, 2,%) . ha,
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= 8P(5,13) + SP(4,2,1) T SP(4,13) T 3PD(3,2,13)
+8p(s,12) + 8P(4,1) + 3P(s,2) + 8P(3,12) + SP(23,1)
+8p(2,1) + 8P(12)-

As a speciai case which follows by a trivial computation, we have:

Corollary 13.3 If m > k then

E i

spm)(2) P (2) = DD SP(mer-i-jizi) (217, -, 2") (4.15)
t=15=0

As a corollary, we deduce

Corollary 13.4 In the ring /~\,,, the coefficient of sp, in the expression of i;'z‘
(k > 0) as a linear combination of the basis elements {8pu}e(u)<n 18 zero unless
AF2m for some m > 0.

(In representation-theoretic terms, this says the following: Suppose the srreducible
Sp(2n,C) -module N* appears in the decomposition of the kth tensor power of
the adjoint action of Sp(2n,C) . Then |A| is a multiple of 2.)

Proof: Let 13,‘ be any symplectic tableau of shape u. By the Pieri rule, it is clear
that if the up-down sequence produced by

(P u - w)
for an increasing word w of length 2, has shape ), then |}| is equal to |u| or

|#| £ 2. Thus if u is even, so is |A|.@

14 The Poincaré series for Sp(2n,C)

In this section we consider the character of the adjoint action of Sp(2n,C) on
its Lie algebra ¢p(2n), and give an easy computation of the Hilbert series of the

symmetric and exterior algebra invariants.
Recall

Definition 14.1 The adjoint action of Sp(2n,C) on ¢p(2n) is defined by

9.X =gXg~'Vge€ Sp(n,C), X € sp(2n).
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We first record the computation giving the character of the adjoint represen-
tation of Sp(2n,C) :

Proposition 14.2 The charactcr of the adgomt representation of Sp(2n,C) is
the symmetric function hy(zE,...,z1) in A,.

Proof: Let ¢;; be the 2n by 2n matrix with a 1 in position (1, j) and 0’s elsewhere;
then these {e;;} form a basis for the Lie algebra of all 2n by 2n matrices §/(2n).

Recall [Hum, p.4] that the (2n? + n)-dimensional Lie algebra ¢p(n) has basis

Xi=3i' Cniintis £=1’-“9n
Xij = & j en+:,n+u 1<t1#353<n
Yi=¢€inti, t=1,...,n
Yy =¢tintit i, 1<58<5j<n
Z; = Cntiis t=1,...,n
Zij = entij t €ntji, 151 <3< n.

To compute the character of this action, it suffices to compute the eigenvalues of
an arbitrary diagonal matrix g =diag(z{?,...,z%!) € Sp(2n,C) : We have

9Xig'=X;, i=1,...,n
9Xii97 = (ziz; M) Xy, 1<i#j<n
gYig ' =z?Y;, i=1,...,n
9Yi;97! = (ziz;)Ye5, 1<i<j<n
gZ.-g"l = z.-"Z.-, t=1,...,n
9297 = (27 '2;7 ") Zij, 1<i<j<n

The character of the adjoint representation of Sp(2n,C) is thus
char(ad)(z)

=n+ Y mz '+ Y (zl+mN+ Y (mizp 4z lzY)
1<i#i<n 1<i<n 1<i<j<n

= 3 (mzi'tmzi+xnTlg T+ Y n7y

1<i<i<n 1<i<s<n

= iig (z)

(= ha(ai™,...,237))
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Recall [Macd, Chapter 1, Section 7|

Definition 14.3 If f,g are symmetric functions in A(t) and g is written as a
sum of monomials, the plethysm of f with ¢ is defined to be the symmetric
function obtained by substituting the monomials of ¢ in f:

flgl = F({z°}aem,)
if g = Laem, ta %
We need one more fact from representation theory :

Theorem 14.4 [ ¢f. Ste2] If G ts a Lie group, V a G-module affording the
representation p with character char(p), and 0,,...,0,, are the eigenvalues of p
(i.e., the eigenvalues of p(g) for an arbitrary g € G), then

(1) the character char(S*p) of the kth symmetric power S*(V) is hy(9y,...,0m),
where h; 1s the complete homogeneous symmetric function of degree k;

(2) the character of the kth exterior power A¥(V') is char(A* p) = er(0y,...,6,),
where e, 18 the elementary symmeirsc function of degree k.

Corollary 14.5 For the adjoint representation ad of Sp(2n,C) :

(1) The character char S*(ad) is the plethysm hy[hy(2F2, ..., zE1)].

(2) The character char A*(ad) is the plethysm ex[hq(zF?, . .., z2Y)).

Proof: This follows immediately from the preceding theorem, Proposition 13.2,

and the definition of plethysm, since the eigenvalues of the character of ad are
precisely the monomials of ;lz. °

Definition 14.8 The space of invariants of a G-module V affording the repre-
sentation p of the group G is the @-isotypic component of G:

InnV=Invp={veV:gv=vVge G}

Clearly if V = [Ix»o V* is a graded ring, so is Inv V,

Iny(V) = [] Inv*(Vv).

k20
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Definition 14.7 Let R = [I;50 R* be any graded ring. The Hilbert series
(Poincaré series) of R is the power series defined by

F(R,q) =)_¢* dim R*.

k>0

Remark 14.8 We have

F(Invp,q) = ) ¢* dim (Inv* p)

k>0

= Z g dim(@ th — isotypic component of kth graded piece p* of p)
k>0

=Y_¢* < char(p*),char(B) >=< Y_ ¢* char p*,char(0) >

k>0 k>0

Proposition 14.9
g, )
F(Inv S(ad)),q) = [[(1 - ¢**)*
k=1

(2)[We,p.] [Li](The Poincaré series for Sp(2n,C) )

F(Inv \(ad),q) = [1(1 + )

i=1
Proof:
(1):
F(char S(ad),q) = Y_ ¢* dim ckar S*(ad)
20
But

Zq" char S*(ad) = > g hz[’;z] = JI @-awy)™
1<i<j<n

k>0 k>0

. —_ — _l s
fyi=Ti Ynri=2z; ', s=1,...,n

P 1
Y 8,(a%y1s-- 593 Y20)

~ even
¢v)<2n
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= z g sa(zf, ..., 2%
2)
¢(r)<an
where for A in Par, 2] is the even-rowed partition such that (2)); = 2. ).

By Corollary 12.5, the coefficient of spy in s2:(z,...,z31)
(= dimension of (@ — isotypic component) in

l Gi(3n,C) )

the representation N?*
sp(an,C)

{ 1, if 2\ has even columns;
0, else

Thus the Hilbert series of S(ad) = 150 S*(ad) is

S5 =Ygt AR kA= (An A A0 N), = €(0) < n}
N k20

TN ORD S MLE [T-g

k>0 =1
L>)<n

(2) A*(ad) has character e,[k,]; thus
k ~
>_ 4" char N(ad) =3 q* exlha) = [I (1+quy))
>0 >0 1<i<;i<2n

if yi = =, yn+i=z,7'l, t=1,...,n,

1 1
= Z 3?(a)'(q’ylv-'sq’y2n)
a=(ay>...>a,>0)

(recall Fla) = (q — 1,...,0, — 1]|@y,...,q,))

= 3 PEEOF s5(ap(zEl,. .., ztY)
a=(a>...>a,>0)

= Z: Z qlal sf(a)’(lehl’ ceny z:l

2n2r20 a=(a;>...>a,>0)

As before, the coefficient of spg in 8(ay,...ar|ar~1,...a,~1) IS NONZETC

<= (ay,...,arJay —1,...,a, — 1) has even columns
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<= (a) 2|(a; —1) 4+ 1V iand (b) |(26 — 1)st row| = |(2:)th row|V ¢
<= o1+ (2¢ — 1) = az + 21 and ay_; even, ay; odd

<=> r = 23 i8 even, (since az;_, = ay; + 1 is even implies ay; > 1), and
aissuchthat2n > a3 > o> ... > a3, >0, 38>0, ay 0dd V.

Note that for such a, |a| =23, az; + s.

Thus
n
F'(Inv A(ad), q) = Z: E qz :.'=1 @i+
#=0 (2n>az>aq>v...>az,>0)
agqs 0
n
=3 > g2l +elw)
=0 HEPar
Yp)=s
# has distinct odd parts
between 1 and (2n—1)
= Z qzlulql(u)
u€Par
{u)<n
p has distinct odd parts
between 1 and (2n—-1)
n n
=1+ (@)*'.q) = [T+ ¢*7Y).
=1 =1
®

15 The Cauchy identity for Sp(2n,C)
In this section we state a symplectic analogue of the Cauchy identity (1.13)

TI(2 - ziy;) ™! = 3" sa(2)an(v)

iy A
of Chapter 1, and give a bijective proof. The identity, which holds in the ring
Z(ty...ta)% ® Z[z7,...,z1|B~, is as follows:
Theorem 15.1

n
H (1 - t.'t,‘) II (1 - t.-a:,-)‘l(l - t,-x,-'l)‘l

. 1<i<i<n i§=1
(4.16)

= Y spu(afl,...,zE)s,(ts,. .- t,)
¢(u‘)‘$n
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Proof: We remark that this may be obtained algebraically by using Theorem
12.1 to substitute for s\(zf,...,z%!) in the Cauchy identity for ordinary Schur
functions; writing s,(t) for s)(t1,...,t,) and sp,(z) for sp,(zfl,...,z21), we
have n
T -tiz))™ (1 - tiz;™) !

1

i,5=
= Y s(zfh...,tEY)s\(t)

A
¢2)<n

- Y Y @ ( 5 c:,,,) ()

A CA f
t)<n t(’:JSn Aleven

Y ez} X | X cﬁlps,\(tl ootn)

l(p‘;Sn pleven C(A?Sn
= Zﬂ: spu(z) Z su(t)sp(t)
t(u)<n Bleven

= 2 spu(@ault) | 3 8p(t))

“
tp)<n
= 3 spu(z)su(t) J[ (1-tit;)™* by equation (1.19)
< 1<i<j<n
B)sn

In order to give a bijective proof of this identity, it clearly simplifies matters
to re-write it as (cf. above proof)

£,5=1 Bleven

ﬁ (1—tiz)) (1 - tiz;7) ' = 2“: spu(zis ... 23" 8u(t) ( 2. Bp(t))
Hu)<n

We may enumerate the left-hand side by means of Knuth two-line arrays (cf.

Definition 3.21)
T ( ti, ... b, )
Vi, -+ Yy
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where the y; ’s are in the set {zlﬂ, ...,zE1}; such a two-line array would corre-
spond to the term (¢;, ...¢:, %, ...y, ) in the expansion of the left side as a formal
power series. We impose the usual lexicographic ordering (cf. Definition 3.21)
on the arrays, viz., t;, <...<¢,;,, and ti; =t;;,, implies y;. <. .

The right-hand sxde clea.rly counts the set of all triples (P, (z),P, (t),Ps (t)),
where P (z) is a symplectic ta.biea.u of shape p with entries in 1,1,...,n,% ,
correspondmg to the variables {zf’,...,z%}, P, (t) is an ordinary tableau with
entries in [n]| of the same shape u as P,, , and Pp (t) is an ordinary tableau of
shape § with entries in [n], where § has even columns.

We now demonstrate a correspondence between these two sets of objects, in
the proof of

Theorem 15.2 There is a bijection establishing the identity :

II @ —tiz)7(1 - tiz;70) !

i,5=1

(4.17)
= Z 3p“(x’f1, ceey $nil)8“(t1, e ,t,‘) ( E 8p(t1, ceny t"))
B

H® feven
Yu)<n

Proof The basic idea is to use the Berele algorithm on the bottom row of z’s and

~Dg in the two-line array T , thereby obtaining a symplectlc tableau P, which
contrlbutes to the symplectic Schur function sp,(z7?,...,z%'), and keepmg track
appropriately with the t’s in the top row of the array. The remaining output of
the original Berele algorithm was an up-down tableau S* +(n) . However, one of
the reformulations presented in Chapter 3 (Lemma 8.7) encoded this as a pair
(Qu ,L) where Q, is a standard Young tableau of shape u and L is a two-line

array
jl soe jr
il "o ir

with 51 < ... < j and 5, > &, all k =1,...,r. L was in turn converted into a
SYT Qp of shape 8 with even columns (Lemma 8.9).

By following exactly the same algorithm as in Lemma 8.7, we can go from the
two-line array T to a triple (P, , P,, L), where P, , which takes the place of
Qu in Lemma 8.7, is no longer necessarily standard, but is an ordinary tableau
of shape 4 in [n], and £ is a two-line array with repeated entries, coming from

the top row of t’s, £ =
o-ee I
7 ... ¢,
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such that j; < ... < 5. To be able to apply the general form of the Burge
correspondence to £, with the aim of converting it into a tableau of shape 3
with even columns, £ must be a Burge two-line array, or equivalently, must have
the following properties:

(1) je >, allk=1,...,r.
(2) £ is in lexicographic order, i.e., jy = ji4) implies 15 < §;,,.

Before verifying that (1) and (2) hold, we review the procedure of Lemma 8.7 by
describing it in the present context of repeated labels (the ¢’).

We may view the present situation as a generalisation of the setting of the Berele
algorithm, whose input is a set of words y;, ...y, in 1,1,...,n,% , or equiva-

lently, two-line arrays
T ( 1 ... k ) ,
Yi, - yig

where the top row consists of distinct, strictly increasing labels. Thus our input
is now in the form of two-line arrays

T=. i, ... t,
Yi, --- Y,

where the bottom row is a word in 1,1,...,n,7 and the top row has labels which
may be repeated, but are still in increasing order; in addition, the array is written
so that ¢;; = ¢, implies Yi; < Yiy,-

We begin by appplying the Berele algorithm to the word y;, ...y;,. As long
as there are no cancellations, this is the same as the Knuth-Schensted process;
consequently we can mimic the Knuth correspondence (Theorem 3.22) for the
two-line array up to this point, so that if at the jth step we have built up a
sequence of pairs of tableaux (f’,, P;), at step j + 1 we set

~

Py =B & Yi;;, (Bereleinsertion).
If Berele insertion does not result in a cancellation, set
Fip1=F;
with ¢;.. . added in the unique position so as to force sh(Pj;,) = sh(P;1);

otherwise, sh(Pj;1) = u'*1, say, has one box less than sh(P;) = u?, and we get
P;,; from P; as follows:

e bump out the extra entry of P; (the one in the unique square of u/ which is not
a square of p'*!) by columns (i.e. inverse Schensted column insertion) to get a
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tableau P;,, of shape u*!, and a letter z. This means that by column-inserting
z into P;;; we would retrieve the previous larger tableau P; of shape u’.

e We record the fact that a removal has occurred at step j by putting the pair
(ti;,z) into a two-line array £, with t;, on top. Note that since z was already
present in the tableau at step ¢;,,z < ;..

We continue this process to the end of the word y;, . ..y;,, arranging the two-line
array L so that the top row is weakly increasing.

Example 15.3 The word t1$1_1t122t2$1_1t332(t4zl)zt4$1_lt5$1 corresponds to

the two-line array
(11224445
“\12121111
We proceed with Berele insertion of the word in the bottom row of T, from left
to right as usual. In the schematic that follows, the computation is arranged so
that:

¢ the first row contains the successive symplectic tableaux, ending in the final
tableau P, ,

o the second row encodes the up-down tableau resulting from the Berele inser-
tion, ending in the final tableau P, ,

o the third row encodes the removals in the form of pairs which, at the end of the
process,may be put together into a Burge two-line array £, so that ultimately
the pair (P,, L) contains all the information to completely and uniquely specify
the up-down tableau.

3} {3} ¢}
4
2
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We have thus shown that a two-line array T above may be mapped to a triple
(Py, Py, L) where P,is a symplectic tableau of shape u, P,is an ordinary tableau
of the same shape, and [ is a two-line array

jl s jr

81 ... 8,
such that j; < ... < j, and jp > 4, all k = 1,...,r, with entries from the top
row of labels ¢, such that j; > 5. (We will see shortly that in fact j,. > 1;.)

If £ has no repeated entries in its top row, we could apply the argument of
Lemma 8.7 to conclude that this mapping is reversible, that is, that the pai
(Py s L) contains all the information necessary to recover the up-down tableau
arising from applying Berele to y;, ...y;,. Recall that the essential observation in
this case is that £ enables us to locate uniquely the labels (= steps of the Berele
algorithm) at which the removals occurred.

If, on the other hand, there are repeated entries z among the top row of £, and
there are more 2’s in the original two-line array, then we need to know which
of the labels z resulted in removals. This ambiguity is conveniently resolved by
Lemma 10.3, which tells us the following:

If a letter y in the bottom row, corresponding to some repeated label z, in the
top row of T caused a cancellation, so did all letters preceding y and having the
same label z in the top row, since, in the chosen ordering for T, all such letters
are < y.

Thus a segment of T consisting of equal labels z in the top row, whose corre-
sponding y’s cause cancellations upon Berele insertion, is an iritial segment of
the sub-array of T consisting of all pairs with the label z, thereby enabling us
to associate the removals with the correct labels uniquely, and consequently to
retrieve the associated up-down tableau.

Example 15.4 Conversely, given (i’(z), P3), Ps 3)) as above, to retrieve T: First,
observe that the top row of T is distributed between the entries of P, and those
of L «— Pg. Also from the arguments in the text, we know where to place each
removal pair (7,1) of £; thus we have

1122 4 4 4 5

{1y {3y
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We can therefore reconstruct the up-down tableau, workmg backwards from
P, and the removal pairs above:

1 1 2 2 4 4 4 5

1 11 A 11z 12 45 12 43 p,

tity L

o if T;4y D T;, then T; is the tableau obtained by deleting right-most entry ¢,
in 1'6+l’

In general, to go from

e otherwise, there is a pair

{1}
under this t;44, 80 T; = (z — T;44).
This gives the up-down tableau
S: = = awn :- :" :. T :' TR

Finally the word forming the bottom row of T,
12121111,

is recovered from the pair ;
(P = 22,8f).

Lemma 10.3 also establishes property (1) for T: no j, can equal an 1, since all
labels equal to j; and preceding it also caused cancellations and therefore are
already in the top row of L before j;.

To verify that property (2) holds, we invoke Lemma 10.4. Suppose z, z' are two
consecutive letters in the bottom row of T, both of which have the same label
z, say, in the top row, and suppose z < z’ and both z,2’' result in cancellations
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on Berele insertion, contributing labels 1, $,;, to the bottom row of the two-line
array L (with the same top label 2). Suppose the ordinary tableau prior to
insertion of z was P, , and became P, ' after inserting z, and P, " after inserting
z'. (Thus (¢p41 — P,") = P,"; ¢, — P,’ = P,). By Lemma 10.4 , the taquin path
for z' ends in a weakly lower .ov. ‘han that of z, so that the bumping path of
(fp+1 — P,") ends in a weakly lower row than that of ({, = P,’)= (f, — tp41 —
P,"), and thus Lemma 3.15 of Chapter 1 immediately yields $;41 > 1,

We have shown how to construct, from the two-line array T, a triple (13“ y Py
L). Because of properties (1) and (2) of L, it is clear that (P,, L) encodes the
up-down tableau resulting from the Berele algorithm applied to the lower row of
T; thus this up-down tableau is uniquely recoverable from (P, , £). Now it is
simply a matter of reversing the Berele bijection, starting with the symplectic
tableau P, , to retrieve the word forming the lower row of T. The top row of
T, of course, is just the set of entries in P, and L, arranged in increasing order.
We note that the two-line array T recovered in this manner obeys the ordering
defined above, as can be seen by reversing the preceding arguments.

The final step is to exhibit a bijection between two-line arrays £ and ordinary
tableaux with even-columned shapes. But this is precisely what the Burge cor-

respondence of Chapter 1 achieves: L is the right type of two-line array because
of (1) and (2). ®

As a special case of this bijection, we can give a purely combinatorial proof
of Corollary 12.8:

Corollary 15.5 There is a bijectior. establishing

et = T o (S T o)

v
t)<n Adv B even

Proof: If £ = {(p),

~ -~

h, = i‘m i‘m ceohy,

thus we may think of the left-hand side as counting Knuth two-line arrays
1...1 ... ¢...¢
T_( w! ... w )
where each w’ is an increasing word in 1,1,...,n,# of length u;, which, when

weighted under the usual symplectic scheme, contributes a monomial to the
symmetric function h,,.
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Applying the bijection of the previous thecrem to such a two-line array, we obtain
a triple (B,, P,, Ps), where as usual |v| + |3 = |u| (the length of the word), and
[ is a partition with even columns. The pertinent observation at this point is
the following:

{entries in P,} U {entries in Pg} = {1**,...,£"}( as a multiset).

Consequently, if we take the correspondence one step further by using Theorem
8.11, we have . .
T (Pw Ppr) = (Pw P, TA/v(ﬂ))

where P, is & column-strict tableau of shape A I- u|, and weight u by the above
remark, and T, (G) is, as usual, an n-symplectic lattice permutation of shape
A/v and weight §. We now remind the reader that the Kostka number K, ,
counts precisely the number of column-strict tableaux P, of shape A and weight
U. ®

By using the Littlewood-Richardson rule, we may further rewrite the Cauchy
identity as

f[ (1 —tizy) (1 - tiz;7Y) !

i,5=1

= Y Y spu(zl,...,zE)8a(tyy .. -5 t0) ( > c"\,_ﬁ)
I,(u‘)‘Sn A Aleven
Now consider the product

m n

I - tiz)7 (1 - tiz;™)

i=1j5=1
where m, the number of ¢’s, is not necessarily equal to n. From our work in
Chapter 3, it is clear that the above bijection, when applied to two-line arrays
enumerating this product, produces triples (P,, Py, T)/,(8)) where (P, T),.(8))
corresponds to an n-symplectic up-down tableau, with the added restriction:

£(n),¢()) < m, the maximum number of distinct t’s that can appear as labels.
Thus for general m and n we have the identity

ii li(l - t.-z,-)'l(l - t,'.‘t,'—l)_l
(4.18)

= z Z spu(zsl, ..., 2285 (t1y- - - »tm) ( > cﬁlp(n))

A CA feven
€)<m efjen g




15. THE CAUCHY IDENTITY FOR SP(2N,C) 129

In this form the identity immediately lends itself to a representation- theoretic
interpretation:

If V and W are vector spaces over C of dimensions m and 2n, respectively, the
left side of the identity is precisely the character of the action of GI(V) x Sp(W)
on the symmetric algebra S(V ® W), while the right side gives the decompo-
sition of this action into irreducible modules, each irreducible representation
N> ® N#,(where N is the irreducible representation of Gl(m,C) correspond-
ing to the partition A,£(A) < m, and N# is the irreducible representation of
Sp(2n, C) corresponding to the partition u, () < n)) occurring with multiplic-

ity
Z cf,',(n).

Bleven

If m < n + 1, by Proposition 9.7, all up-down tableaux that arise in the
bijection of Theorem 15.2 must be n-symplectic, (since £(A\) < m < n + 1} and
we have

II H(l - t.'Zj)_l(l - t;:l:j_l)_l

i=1y=1

. 2 spul(t. . zRY)aa (b st ( )3 °§\4.ﬂ\
A BCA Bleven ;
r)Sm ¢(u)<n

Note that various specialisations in the formula (4.8) are now possible. Equat-
ing coefficients of the square-free term ¢, ...¢,, in the t’s we get, for m < (n+1),

5} m\ (2k) k!
e e R S "(zk)(k)z‘k

k=0
(4.19)

Y. fapa(ztl,..., 7Y,
Al-m
¢A)<n

and further substitution of z; = 1, for all 1, in this gives, for m < (n + 1),

S (1) an) ™ () )

k=0
(4.20)
= f* dim N
f>)<n
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where N* is the irreducible S p(2n, C) -module for .
Specialising to z; = 1 in (4.19) gives, for n. < (n + 1)

II a-uty) ﬁ(l — ;)"

1<i<i<m i=1
(4.21)
= Z 8a(t1s...stm) dim N,
t(.\?ﬁn

a formula involving the dimensions of the irreducible representations
of Sp(2n,C) .

16 A dual Berele algorithm

By using the formula of Theorem 12.1 ir the dual Cauchy identity
H(l + z;y;) = Z 8x(z)sxn(y)
o, A

of Chapter 1 (equation (1.15)) we get an analogous dual Cauchy identity for
Sp(2n,C) :

II Q+tz)(1+tz7) = 3, spw()sult) 2. s (t) (4.22)

1<ii<n " Yeven
Yu')<n

Using the identity (1.20) of Chapter 1, we obtain
Theorem 16.1 (The dual Cauchy sdentity for Sp(2n,C) )

II (-tt;) II +tz;)(@+tiz™?)
1<i<i<n 1<ij<n
(4.23)
= > spu(zfl, ..., zE)s,(tr, ... tn)

i(ugsn

Equation (4.23) immediately suggests the existence of a dual to the Berele
correspondence, in the spirit of the dual Knuth correspondence (cf. Theorem
3.26). Before proceeding to present this, we adopt the following
Notation. In this section we denote the conjugate of a tableau P, by P!, and
the conjugate of a shape u by uf.

First, a definition:
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Definition 16.2 Call & iableau P, of shape A row-symplectic sf
(1) P, is strictly increasing along rows, weakly increasing down columns

(2) every entry in column i of P, is larger than or equal to s.

Clearly P, is row-symplectic iff its conjugate P§ is symplectic.

Theorem 16.3 There is a bijection B* between words of length k ¢n the al-

phabet 1,1,...,n,/A and pairs (P %, S“(n) *) where P, % 18 a row-symplectic

tableau of ahape u, and S"(n) * £8 an up-down k- tableau of shape u , S"(n) *
= (0, ut,. = u), uch that each u' has at most n columns.

Proof: Let w = w,;...w,; be a word of length k. The bijection is nothing but
a column-insertion version of the Berele algorithm: Column-insert w (w — 0)
from the right end leftwards, with the bumping rule being as follows: an element
z about to be inserted into column ¢ bumps the first (highest) element in column
¢ which is strictly larger than itself. (This ensures row-strictness). If at some
stage of the column-insertion, an ¢ is about to displace an T from column ¢ into
columns+1,

o replace the first (highest) 7 in column i with an ¢; remove the first (highest) ¢
in column ¢ (which must be in row 1), thereby creating a punctured tableau with
a hole in position (1,1);

e slide the hole in row 1, column ¢ out to the right boundary of the tableau via
jeu de taquin, leaving a row-symplectic tableau whose shape has one box less
than the previous shape.

It is clear that continuing in this manner produces a row-symplectic tableau of
some shape ux, where 4 has < n columns, and a k-sequence of shapes culminating
in the shape u, such that two consecutive shapes differ by exactly one box, and
each shape has at most n columns.

It is not difficult to see that the process reverses, in complete analogy with the
Berele algorithm. Example 16.4 shouid make this clear.®

We shall refer to this bijection as the dual Berele insertion algorithm, writing
(w 22 @) to signify applying the insertion to the word w.

Example 16.4 We compute

(31231112 2% ¢) :
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Recall that this means column-insertion, beginning with the right-most letter
and working leftwards.) We obtain the sequence of row-symplectic tableaux

5 . 13
5 s 5 _ 5 5 12 12 1o _ 13
2 12 2=2 12 23  13= 1 %

In the reverse direction, in general we have a row-symplectic tableau T;,; and a
shape u* which differs from sh(T;,,) by exactly one box; we need to retrieve the

tableau T; and the letter w; such that (w; LN T;) yields T;,,. As usual, the two
cases are:

e u' C 8h(Ti41), in which case simply column-remove the entry in T;,; in the
extra box (remembering to bump equal elements); the letter which is bumped
out is w;.

e i O sh(Ti41); place an empty box (circle) in the missing position in Tj4y; slide
this via jeu de taquin moves (preserving row-strictness) to the left-most column,
say column j, in row 1, without violating the row-symplectic condition; now put
a J in position (1,7) and column-bump out a j, remembering to bump equal
elements. Again, the bumped-out letter is w;.

To illustrate, consider going from

an
]
13
1
to a row-symplectic tableau of shape
[ 1]
am
We have _ _
13 13 _ lo _ 1?2 _ 12
1 lo 13 1 3 1./23

so w;=1 in this case.

In order to apply this to obtain a bijective proof of (4.22), it is clear that we
need an encoding of up-down tableaux similar in spirit to Lemma 8.7:
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Lemma 18.5 There i3 a another bijection S* between up-down k-tableauz S}f of
shape i and the set of all pairs (Q,, L*) such that Q,ss a standard Young tableau
of shape 4 and L* 8 a two-line array with entries

o Je
il s ir

suchthat j; <...<j andjfy > 4, allk =1,...,r, and {entries in Q,}U{entries
in L+}=[k]. The image of an up-down k-tableau Sf = (0 = p°...pu* = p) « Jer
S* i3 as follows:

Busld up a sequence of SYT’s, one for each shape in S,'f , a8 in Lemma 8.7: as
long as the shapes are sncreasing, follow the usual labelling of an SYT. In general,
at step j + 1, given that we have the SYT T; associated with u?, and u'*' is one
boz larger than u’,T;,, is simply the SYT obtained by adding a j+1 to T; in the
position of the added boz (in the skew-shape pi*'/uf).

Now suppose u*! is one boz less than p?; let T; be the SYT corresponding to u.
To get Ti*1, we do the following (sce Ezample 16.6):

(1) bump out the extra entry of T; (the one in the unique square of u’ which
i8 not a square of u’*!) by rows (i.e. inverse Schensted row insertion) to get a
tableau Ty of shape u'*', and a letter x. This means that by row-inserting =
into T4y we would retrieve the previous bigger SYT T;(Tj41 = (T; « z)), and
hence sts shape u’.

Example 16.8

y . um i+1 __ =ma
“,—ll w ]

- 12 . — 16
1}— S$s I"‘*‘l—s

{31}

(2) We record the fact that a removal occurred at step 5 by putting the pair (j,1)
tnto a two-line array L*, with 5 on top. Note that since the s+ was bumped out at
step 3, st must have been inserted tn an earlier step, so 1 < j.

We continue this process to the end of the sequence. Arranging the two-line array

Lx so0 that the top row s in sncreasing order, we clearly end up with the requisite
two-line array L+ and a SYT Q,, of shape p (the (final) shape of S} ).

Proof: That this is a bijection follows exactly as in Lemma 8.7. Example 16.7
should make this clear.®
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Example 16.7

[ 1] a a8 as
[} (1} [ an [ 1]
a a [ ] ag B
a ] s a a L] ae - a
0 _ 13 1 27 28
Sgany=1 1} ;’ 2 2 : :7 :: 48 4
‘ 4 9 )
5 6 10
(5 (%) ()

- 1)

By using the dual Burge correspondence on the two-line array L*, we can
convert it into an even-rowed SYT Q. of shape v, as illustrated in Example 16.8
below.

Example 186.8 In the preceding example, the array

t
5610 17
— 810 138588
Lx* -{ }4—» s “— a1

317
8

Consequently we have

Lemma 16.9 There 18 a bijection between up-down tableauz S: of length k and
shape u, and pasrs (Q, , Q.) of standard tableauz where Q, has shape pu and Q.
has shape ~, v with even rows, and k = |u| + |v|.

We now state an analogue of Theorem 8.11:

Theorem 18.10 Let P,, P, be column-strict tableauz of shapes p, v, respectively.
Let we(P, ) be the word of P, read column-wise, s.e. wc(P, ) is the word obtasned
by reading P, by columns, from bottom: to top and left io right. (Thus @ «— we(P, )
gives P, ). Now row-insert we(P, ) into Py, producing a tableau P of shape A D p,
and a filling of the skew-shape A D u obtained as follows: (see eg) each time an
entry is added to the tableau P, as a result of row-inserting a letter = of we(P, )
, add the corresponding square to the Ferrers diagram of u, and label the square
with the column-number of z in P, .
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Then this filling of A1, when read from bottom to top and left to right, s in
fact a lattice permutation Tye;u (V') of weight vt which fits the skew-shape A*/ut.

Conversely given the pair (P, , T/, (1*)), the lattice permutation Toeyue{v')
uniquely specifies an order in which to row-unbump elements on the boundary
of P, so as to reirieve a pair of tableauz (P, ,P, ).

Hence the above process establishes a bijection between pasrs of column-strict
tableauz (P, , P, ) and pairs (Px ,Ta/u(v*)), where P, is a column-strict tableau
of shape A D u, and the second component is a lattice permutation which fits the
skew-shape \' /' and has weight v*.

Proof: We spare ourselves what is essentially a repetition of the tedious details
in the proof of Theorem 8.11. @

Finally we have the analogue of Theorem 8.14:

Theorem 16.11 There is a bijection between up-down k-tableauz S* of shape p
and pairs (Qx , Tae/ue(n')) where A& k,A D p, v+ (k — |u|) and ~ has all rows
of even length and T/, (7') ts a lattice permutation of weight +* which fits the
skew-shape A*/u’.

Definition 16.12 Call an up-down k-tableau dual n-symplectic sf no shape
in the sequence has a row of length larger than n.

These are precisely the up-down tableaux appearing in the dual algorithm
for Sp(2n,C) as stated in Theorem 16.3. Recall the work done in section 8,
characterising n-symplectic tableaux.

In similar fashion, we have

Theorem 16.13 The pasr (Qx, Ty u(7')) as in Theorem 16.11 represents an
n-symplectic tableau iff , in the representation of Tre /(') as in Theorem 16.10,
(i.e. 8o that the skew-tableau of shape \/u, when read from left to right and
bottom to top, gives a lattice permutation of weight ~*), the (2i + 1)’s do not
appear to the right of column (n +1), for any occurrence of (2¢ + 1) in the lattice
permutation , £ > 0.

We also have

Theorem 16.14 Let w be a k-word sn 1,1,...,n,7 , and suppose the dual Knuth
correspondence applied to w fi.e., (w K @) where we bump equal elements to
produce a row-strict tableau) yields the pair (P, ,Q, ) where A & k, P, s row-strict
and Q, 18 a standard Young tableau . Suppose the dual Berele correspondence
gives w «— (P, *, Qs , Tae/us(v*)). Then
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v=J\and Qy = Q,\ .

We now present the bijective proof of the dual Cauchy identity:

Theorem 16.15 (The dual Cauchy identity for Sp(2n,C) ) There is a bijection
establishing

H (1 + t.‘.'t,')(l + t.-:t,'-I)

(4.24)
= 5 spul(zl,...,zE)su(ts,. .- tn) ( 3 a4t atn))

m yeven
p')<n

Proof: The right side of the identity counts triples (P,, *, P, ¥, P,) where f’,, % is
a row-symplectic tableau (so that its conjugate is a symplectic tableau of shape
©*), P,is a column-strict tableau of shape x and P, is a column-strict tableau of
shape 4 where 4 has even rows.

We may enumerate the left-hand side as two-line arrays T * consisting of vertically
arranged pairs
e[t o H
Y, --- Y

where the y’s are in 1,1,...,n,# ; clearly each pair occurs at most once. We
choose to write T * by ordering the top row of ¢’s in decreasing order from left to
right, and then placing the corresponding y’s so that if ¢;; = ¢;_,, then y;; < i, ,.
For instance, the word tyz; 'tz 22 tsTst 422 1t 2at5z, ! is represented by

Teo 5443211
“\2223112

Now we apply the dual Berele correspondence of Theorem 16.3 to the bottom
row of z’s and z~!’s, replacing the resulting up-down tableau by a sequencz of
column-strict tableaux and a two-line array

Lee (3t - %
81 ... 2

constructed as in Lemma 16.5, and arranged so that the top row is increasing
from left to right. Note that the only difference from the situation of Lemma
16.5 is that instead of using distinct labels we now have possibly repeated labels.
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Example 16.18 Consider the two-line array

5 554433
1121213

T =

2 2
1 2

211

4

1

2

Working from right-to-left, dual Berele-insertion on the bottom row gives:

5 5 5 4 4
1 1 2 1 2
_ - 1331 134 123 133
;34 i is 1 23
1 2 3 3
125 124 124 123
225 2 25 2 24
3 3 3 3
5 5 4
{;} {,} {31}
134
H(i ,
134
— i N

3 3 2
1 3 1
i34 31 .
3 3 §4
3 3
123 12 12
2 2 2
3 3
2
{1
225 2455
3 {1341 })
134
225 145
3
295 1125
3 , 34
45

}

[ )

[ S|
¥l NI

22

N )

Wl ]
(S]]

1
1

=di
(-]

11

137

[S-1

Let us first observe that the procedure of Lemma 18.5 will indeed replace the
sequence of shapes with column-strict tableaux: since the possibility of equal
elements one above the other can only arise if, in the course of building up the
row-symplectic tableau, we inserted first a y, then a y' > y (take conjugates in
Lemma 3.15). But then the associated labels t,t' are unequal, by our ordering

of T=.

We now claim that the two-line array L+ (whose entries are a subset of the top

row of T *) is such that
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(1) if an entry y with label ¢ causes a cancellation upon dual Berele insertion,
so do all subsequent y’s with the same label t. (Observe that "subsequent” now
means "to the left” in T+). (2) L* is in "dual Burge" lexicographic order: if
Jp = Jp+1 then §p > $p.4; note that j, < jp+1 by construction.

As in the proof of Theorem 15.2, to show (1) we need:

Lemma 16.17 Let f’“# be a row-symplectic tableau of shape p, let z,z' be letters
in 1,1,...,n,7 such that z < z'. Suppose dual Berele insertion of z' into P, «
causes a cancellation. Then so does the subsequent snsertion of z.

Proof: Suppose not. Since dual Berele insertion of z' into 13,, * causes a cancella-
tion, this means that when replaced by ordinary Schensted dual column-insertion,
the bumping path of 2’ ends in row 1. But (by taking conjugates in Lemma 3.15)
subsequent insertion of the strictly smaller z must produce a bumping path that
ends strictly above that of z', contradiction. ®

Now (1) follows easily, since a y' following a y with the same label ¢ is, by our
ordering of T *, strictly less than y.

To show (2) we need:

Lemma 16.18 Let f’“ * be a row-symplectic tableau of shape u, and let z,z' be
such that £ < 2’ and dual Berele insertion of =’ into P, * causes a cancellation,
as does the subsequent snsertion of x. Then the taquin path of x ends in the same
row as, or lower than, that of z'.

Proof: Simply take conjugates in the proof of Lemma 10.4. @

To see why this gives us (2), observe that if j, = j,+1, and the label j, was for
an element z/, and j,;, was for z, then since insertion of z' preceded insertion
of z, we must have z < 2’ according to the ordering chosen for T*. Also both
z and z' caused cancellations (j,,J,+1 both appear in the top row of L), so
Lemma above applies. But this means that if j, resuited in row-unbumping an 1,
from the column-strict tableau P, * constructed up to this point, and then jp41
resulted in row-unbumping ¢,.1, then re-inserting s,,; row-wise recovers the end
of the taquin path of z, and subsequently re-inserting s, reproduces the end of
the taquin path of z’. Consequently the bumping path of s,,, ends below or in
the same row as that of s,, which implies s, + 1 > 3,,. '

It remains to observe that properties (1) and (2) of L* ensure that the labels
corresponding to cancellations can be uniquely identified from L#, and hence,
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using P, , the up-down tableau is recoverable as before, thereby leading to the
retrieval of the word forming the bottom row of T*. The top row consists of the
entries in P, and L+, written in the pre-determined order. (Note that reversing
the above arguments shows that the recovered two-line array T * will obey the
correct ordering relations).

Example 16.19 Continuing with Example 16.8, given the triple
134 225 1125
i ’ 3 ’ 34 ’
45
we know the top row of T and we know precisely at which of these labels the re-
moval pairs corresponding to the even-rowed tableau are located. Thus, working

backwards (i.e., left-to-right ) from the tableau

225
3

?

we get the up-down tableau whose shapes are those of the sequence below:

5 5 5 4 4 3 3 2 2 2 1 1
5 5 4 2
{1} {3} {7}
125 124 124 123 123 12
: 25 2 25 2 24 2 2 ; 2 ; ; ; 1 11 1
3 3 3 3 3 3
(m1) (et ekt (%) ikt vigkt ikt (1) vkt ekt vieht
—mosi 8 —most 4 —~most 3 —most & —vaoet 3 —most 3 ~most 1

Finally, because of (1) and (2), L* is precisely the type of two-line array to which
the dual Burge correspondence applies, producing an even-columned row-strict
tableau, and thus (by taking conjugates) an even-rowed column-strict tableau.
°

Using Theorem 16.10 and Theorem 16.13 in the dual Cauchy identity (4.24),
for general m and n we have the identity
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m n

I IIQ + tiz)v(1 + tiz;7Y)

i=1j5=1
(4.25)

- T T et oa)on(tneentn) (3 o)

yeven
t())<m g(,,')(n

Ir this form the identity lends itself to a representation-theoretic interpreta-
tion:

IfV and W are vector spaces over C of dimensions m and 2n, respectively, the
left side of the identity is precisely the character of the action of GI(V) x.Sp(W) on
the exterior algebra A(V ®W), while the right side gives the decomposition of this
action into irreducible modules, each irreducible representation N* ® N*' (where
N? is the 1rreduc1ble representation of Gl(m, C) corresponding to the partition A,
2(A) < m, and N*# is the irreducible representation of Sp(2n,C) corresponding
to the partition u', &(u') < n)), occurring with multiplicity

Z c:‘:n.(n) .

yeven

17 An inner product on A,

Define an inner product or A, by making the basis {sp,(zt!,...,z!)} or-
thunormal, i.e., set

<< SPus SPv >>= 6#.”

The mapping

¢ : spr(zi!, L TN (7T

defines a linear transformation of vector spaces in Hom(A,., An). The following
result characterises dual bases in A, :(cf.[Macd, p.34, (4.6)] for the Schur function
analogue)

Proposition 17.1 The following are equsvalent:

(1) The bases {fr}er)<ns {guteu)<n are dual with respect to the snner product
defined above.
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(%) )
II (1 - t.'tj) H (1 - t.-x,-)"(l - t.':l:;l')—l
= Z f;(zfl, cer 22 o(2) (tr - - tn)
C(A’)\Sn

Proof: Let " 1 \
Lz . z7) = Z a,”sp,(z);
Yv)<n

.
?

a(zf...,z2) = Y bl sp(z)
Yv)sn

Since the {sp,(z)} are orthonormal,

<< fuogu>>= Y. alb*
l(us‘sn
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which is clearly also the coefficient of spy(z)s,(t) in the right-hand side of (2).

But by the Cauchy identity (4.16), (2) is equivalent to
2 HE)eNE) = 2 spa(2)sa(t),

2 A
Yr)<n Yr)<n

and hence to

which is (1). @







Open Problems

We conclude with a discussion of some open problems suggested by this thesis.

PROBLEM 1: Recall our "essentially” combinatorial proof of equation (12.1) in
Theorem 11.1: For all partitions A of length at most 2n,

a(zl,...,z3Y) = z spu(zity. .., 237) ( Z c;\;,p(n))

t(u%é B'even
B)<n

We would like to find a direct bijection ¢ between the set of column-strict
tableaux P, of shape A and the set of pairs (P, , T)/.(8)), where u(C }) is a
partition of length at most n, 8 I |A| — || and has even columns, and the lattice
permutation T)/,(8) is n-symplectic. Theorem 11.2 shows that such a bijection
must coincide with the result of Berele insertion on the word of the tableau P, .
¢ will probably involve a selective jeu de taquin process on P, .

PROBLEM 2: Another open problem already mentioned in Chapter 4 is that of
combinatorially reconciling our extension (equation(4.9)) of the definition of sp\
with King’s modification rule (4.12).

PROBLEM 3: Is there a "nice” combinatorial rule for multiplying two symplectic
Schur functions? The simplicity of the Pieri rule (Section 13) suggests that the
answer is in the affirmative.

PROBLEM 4: Find a combinatorial proof of the Weyl character formula (4.10).
Note that this is related to Problem 2.

PROBLEM 5: Is there a naturally occurring, useful notion of symplectic skew-
Schur functions? Recalling [Macd, p.40 (5.4)] the determinantal expression for
the ordinary skew-Schur functions in terms of the homogeneous symmetric func-
tions, perhaps an elucidation of Problem 4 might lead to the formulation of such

143
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a notion. After considering a possible definition for a "skew-symplectic” tableau,
we are inclined to think that . symplectic Schur function of skew-shape A/p
would depend on both A and u.

PROBLEM 6: The characterisation of the inner product of Section 17 deserves
to be further investigated; we hope to exploit it to discover new identities.

PROBLEM 7: Do all the work in this thesis for the orthogonal groups! The im-
mediate open problem here is to find an insertion algorithm analogous to Berele’s
scheme for the orthogonal groups. We point out that at least two definitions of
"orthogonal” tableaux exists. The first is due to R.C. King; the second we were
able to obtain by converting a formulation in terms of Gelfand patterns due to
Robert Proctor.

The insertion scheme should give the right decomposition when restricting
from the general linear group to its orthogonal subgroup, i.e., the analogue of
Theorem 10.8 must hold. Clearly, as a combinatorial tool, the power of such an
algorithm cannot be overstated.
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