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ABSTRACT
The experience of what we eat depends not only on the taste of the
food, but also on other modalities of sensory feedback. Perceptual
research has shown the potential of altering visual, olfactory, and
textural food cues to affect flavor, texture, and satiety. Recently, the
HCI community has leveraged such research to encourage healthy
eating, but the resulting tools often require specialised and/or in-
vasive devices. Ubiquitous and unobtrusive, audio feedback-based
tools could alleviate those drawbacks, but research in this area
has been limited to food texture. We expand on prior psychology
research by exploring a wide range of auditory feedback styles to
modify not only flavor attributes but also appetite-related measures.
We present Auditory Seasoning, a mobile app that offers various
curated audio modes to alter chewing sounds. In a Pringles-tasting
experiment (N=37), this tool significantly influenced food percep-
tion and eating behavior beyond texture alone. Based on these
results, we discuss design implications to create custom real-world
flavor/satiety-enhancing tools.

CCS CONCEPTS
• Human-centered computing→ Auditory feedback; Sound-
based input / output; Ubiquitous and mobile devices.
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1 INTRODUCTION
The experience of eating is shared daily amongst most humans as
a social, cultural, pleasurable and live-sustaining activity. A crucial
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part of body weight management, healthy eating involves consider-
ations both in terms of food choice and food intake [37]. In terms of
food choice, avoiding excessive intake of salt [20], sugar [53], and
fat [10] is an important part of dietary recommendations from the
World Health Organization. Behavioral interventions for health-
ier eating practices include eating at a slower rate [14, 66] and
increasing the number of chews before swallowing [120]. When
we eat, our experience of the food is not only dictated by our taste
buds but also by many of our other senses. Perception research has
demonstrated the important role of visual, olfactory, and tactile
cues that can affect our perception of what we eat, in terms of
texture, flavor, and sense of fullness. For instance, brighter or more
contrasted colors make food look more appealing or sweeter [91]
resulting in tools such as projection mapping [59] or AR [79] to
affect eaters’ experience. Satiety has also been shown to be influ-
enced by changing the perceived size of food [76]. Smell can also
shape judgements of food identity [106], taste intensity [42], and
satiety [117]. HCI researchers have designed mixed reality experi-
ences like the MetaCookie [77] or virtual donut [68] to explore how
the addition of aroma alters the eating experience and perceived
fullness. Textural cues also affect our senses of taste and satiety,
with harder food making us feel more full [121]. This has led to the
development of haptic devices to change our experience, including
vibratory devices which attach to the tongue [85] or teeth [52].
Recent fabrication technologies have also opened the door to new
types of food designs informed by perceptual research [69].

However, many of the aforementioned interventions require the
use of cumbersome, invasive external hardware or the use of espe-
cially produced foods. These issues reduce the adoption factor of
the technology and limit their potential as just-in-time interven-
tions. Therefore, crucial questions arise: How can we design easily
deployable, scalable, and ubiquitous interventions that can help
users regulate their eating behavior in real-time, without being
solely based on deliberate self-control? Can the food itself tell us
what to eat and when to stop? Audio-based feedback may offer
a key. In this paper, we lay down the groundwork for develop-
ing audio-based mobile interventions that focus on manipulating -
and bringing attention to - eating sounds, where users are able to
regulate their food perception and cravings, without the need for
additional devices or deliberate self-regulation.

Indeed, contrary to visual, textural, or olfactory approaches,
audio-based applications only require ubiquitous and rather un-
obtrusive hardware such as a simple pair of earphones. Research
indicates that young adults habitually use their phones while eat-
ing [101], further indicating that a phone-based approach could
have a higher adherence rate [87]. Besides, the various sounds we
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produce when eating (chewing, crunching, swallowing, etc.) play
an important role in our perception of the food we eat as well as
our response to it in terms of consumption rates, flavor assessment,
and quantity consumed [89, 92, 93]. The purpose of this work is to
introduce and evaluate the potential of "Auditory Seasoning Filters"
(i.e., changing auditory feedback of chewing sound in real-time
while eating) in influencing eating behavior and flavor perception.
Closed-loop modified auditory feedback has been shown to have
strong subconscious neurological effects during various behavioral
tasks, including speaking [41], singing [56], breathing [43] and eat-
ing [118]. Adding effects such as time delay while speaking has
been associated with slowed speech, slurred speech, reduced stutter-
ing, or increased disfluencies depending on the chosen time delay.
Promising work in the context of food has shown that applying a
high pass filter on chewing sound in real-time has been associated
with a higher sense of crunchiness or freshness in foods [118].

Although previous literature has demonstrated the undeniable
links between sound and food perception, these works have often
focused on single experiential aspects of food perception (flavor
or texture) and have included, for the most part, external auditory
stimuli such as background music. In this study and tool implemen-
tation, we aim to expand on previous crossmodal psychological
research (e.g. [118]) by take a broader view of how modulating
food-intrinsic auditory feedback parameters can influence different
aspects of eating beyond flavor (e.g., deliciousness, fullness, craving,
and eating speed). Our goal is to create a tool that can be easily
used in real-life to augment specific eating parameters. Such a tool
could then be used in various contexts, such as inducing the user
to eat less salty foods, eat more slowly or in smaller quantities, and
to be more present and aware of the food to avoid mindless eating.

Inspired by recent advances in elucidating the role of sound in
food perception, we aimed to fill existing knowledge gaps around
the effect of auditory feedback manipulations on eating sounds and
the impact of sound augmentation on appetite and eating behavior.
From a HCI perspective, we aimed to address the lack of non-
intrusive off-the-shelf eating sound modification tools by designing
an easy-to-use mobile app containing Auditory Seasoning Filters.
After reviewing relevant literature and running a pilot experiment
on eating sounds to inform our audio filter design choices, we
specifically hypothesized that:

• H1: Volume amplification enhances food texture and per-
ceived taste intensity,

• H2: Time delays reduce people’s eating speed, therefore in-
creasing their sense of fullness

• H3: Frequency filtering affects texture, but also flavor and
satiety

• H4: Altering room reverberations affects the sense of fullness
and self-awareness.

The rationale for these four hypotheses is first introduced in
the Background section, then presented in detail in section 3.2. To
test our assumptions, we built a custom iOS app called Auditory
Seasoning that synthesizes various delays, altered room response
reverbs, and filters with various parameters. Using this mobile app,
we ran a pringle-tasting study on 37 subjects to collect self-reported
effects on eating behavior, texture and taste. Our results show that

altered auditory feedback of eating sounds can significantly influ-
ence subjective self-reported ratings as well as different aspects of
eating experience.

Prior works in HCI, HFI (Human Food Interactions), and cross-
modal perception have demonstrated the potential of using various
senses to influence taste and eating experience [108]. From a tool-
building perspective, audio is a particularly promising and under-
explored medium [107], in terms of practicality and accessibility.
Moreover, recent research in neurology and assistive technology
on closed-loop audio systems suggests it may present advantages
for intervention compared to open-loop systems. In this paper, we
connect these fields and present new contributions. Our overall aim
is to assess the feasibility of — and elucidate design parameters for
— feedback-based auditory interventions that can implicitly help
users regulate their eating behaviour. Building on this, our three
main contributions are the following:

– First we present a survey of the fields of psychology, neu-
rology and HCI with a particular focus on the potential of
audio-based closed-loop tool building for food perception.
To our knowledge, no such review has been done in a way
that specifically bridges food perception, HFI, and HCI from
the lens of auditory feedback .

– Second, informed by previous work, we ran a closed-loop
Pringle-tasting experiment evaluating the effects of novel
Auditory Seasoning Filters using a custom-made iOS app.
Those filters include modes that have never been tested on
food perception, as well as control modeswithmore expected
outcomes. The design of the modes derives from the litera-
ture and provides a new perspective in applying knowledge
from environmental auditory influences to food-intrinsic
sound design.

– Third, we present design implications of this work, including
potential intervention tools using custom auditory feedback
filters based on the desired taste or satiety.

There have not been any prior iOS tools developed or tested to
enable users to experience the effect of modulated auditory feedback
on their everyday eating sounds. By providing an easy, scalable,
and accessible tool, we are able to better test and understand the
effect of modulated auditory feedback on the eating experience.
We developed this iOS application containing 9 auditory feedback
modes to test our hypotheses.

2 BACKGROUND
In this section, we review previous work on 1) food-related tools
in the HCI community, 2) psychological research on sound and
food perception, and 3) closed-loop auditory feedback systems and
opportunities for crossmodal closed-loop tool design. Our current
work offers a unique perspective by connecting and applying estab-
lished research dealing with food-extrinsic environmental sounds
to the novel area of food-intrinsic sound augmentation. Moreover,
we situate our research in the theoretical framework of closed-loop
auditory feedback systems, thus extending existing research on
voice feedback to include eating sounds.
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2.1 CHI & Food tools
Recently, the field of technologically-mediated human-food interac-
tion (HFI) has emerged out of the general area of human-computer
interaction, focusing on how technology can best support activ-
ities around food purchase, preparation, consumption, and dis-
posal [5, 19, 32, 44]. HFI encompasses different communities of
researchers from food and interaction design, multisensory human-
food interaction, and AI-food/cooking interactions [5]. More specif-
ically, developments in the area of eating can be broadly divided
into three overlapping categories, a behavior-focused approach
whereby technology is used to change the way people eat, a social
approach that focuses on human-human/robot interactions, and a
multisensory experience approach whereby the sensory experience
of food is altered or augmented.

In the behavioral research approach, tools have been designed
to encourage healthy eating, such as regulating eating speed. Some
examples in this area are the Slowee, a wearable device that delivers
light and vibration cues to the user if they eat too quickly [58].
Another example is the Sensing Fork [54], which vibrates to alert
the user, and has been demonstrated in a small study to increase
awareness and reduce eating speed in self-labeled “fast eaters” [50].

In contrast, social approaches to human-food interaction facili-
tate the user’s interaction with other human diners or robot com-
panions. In the first category, many interactive dining tables have
been proposed over the years which either allow users to eat re-
motely together, such as the CoDine system [115], or enable them
to interact with other co-located diners in new ways [30, 72]. For
example, the Sensory Interactive Table uses embedded LEDs to
allow diners to pass messages and play games with each other, with
games designed to encourage vegetable eating or reduce eating
speed [47]. Since loneliness is an increasing concern in the western
world [49], an increasingly popular area of development is artifi-
cial eating companions, such as the myKeepon toy robot which
mimics proper gaze behavior to either the users head, hand, or the
food [70], or Fobo, a robot companion that mimics the user’s eating
movements [57].

Finally, the third category involves sensory augmentation. As
eating is one of the most multisensory events that we all experi-
ence on a daily basis, human-food interaction is an ideal setting
for the development of multisensory technologies [107]. Existing
HCI research has, for the most part, focused on manipulating the
visual appearance of food, such as color, shape, and visual texture.
For instance, the AR “food changer” by Okajima and colleagues
can identify and modify the appearance of food either using a pro-
jector [79] or a head-mounted display [102]. The findings of their
experiments revealed, for example, a correlation between the color
saturation and the rated sweetness in cake [79]; and between the
visual texture and mouthfeel of sashimi [102]. Smell interfaces have
also been developed to alter the flavor of foods, since smell is the
largest determinant of flavour [90]. For example, the MetaCookie+
system, which combines a Virtual Reality Head Mounted Display
(HMD) with an aroma delivery system, can alter the appearance
and scent of a cookie in real time [77]. The researchers showed
that, without changing the chemical composition of the food itself,
79% of participants experienced a change in the cookie taste using
the pseudo-gustatory display. Going beyond taste perception, AR

has also been shown to modify people’s level of perceived satiety
by altering the apparent size of the food consumed using real-time
shape deformation [76].

It should be noted that all the devices mentioned above, although
effective, often require invasive or additional custom devices. Given
these restrictions, it is difficult for these interactions to be deployed
in the real world on a wide scale [108]. Ubiquitous and unobtrusive,
audio feedback-based tools could alleviate those drawbacks, but
research in this area is limited. A notable example is the Chewing
Jockey [62], a system that uses a bone conduction microphone and
photo-reflector to detect chewing sounds, then plays back trans-
formed sounds via bone conduction speakers. One scenario involved
using a high pass filter to enhance the crispiness of foods, based on
research demonstrating that potato chips are rated to be fresher and
crispy when the chewing sounds from a higher frequency range
are amplified [118]. Such a system has been implemented via EMG
electrodes to make soft foods appear stiffer, which could potentially
be beneficial for those on texture-modified diets to enjoy the eat-
ing experience more [39]. While promising, the Chewing Jockey
system requires a specialized lab-based setup and cannot be easily
deployed in the real world.

2.2 Food and Sounds
To fully capitalize on the potential of sound to alter the eating ex-
perience in HCI, it is important to review psychological research
regarding how sound can influence food perception. The majority
of the work in this area has revolved around sound and tactile
properties, since food-related sound acts as an important guide in
determining food texture [22, 35, 95, 112]. Mastication produces
sounds which are then transmitted via both air and bone conduc-
tion, both of which impact the final texture assessment of food [29].
In a classic study by Zampini and Spence, potato chips were rated
as more crispy and fresh when participants’ chewing sounds were
manipulated, either by raising the overall sound level or only am-
plifying the high-frequency components [118]. Similar effects have
also been observed regarding the hardness and crispness of ap-
ples [31] and the expected carbonation level of soda water [119].

In recent years, a body of work has uncovered an array of sound
attributes that correspond with basic tastes [92, 94]. For example,
sourness is associated with high pitch and dissonant harmonies,
whereas saltiness is associated with staccato articulation and audi-
tory roughness [73, 111]. Going one step further, researchers and
sound designers alike have explored the so-called “sonic seasoning
effect”, by which sounds congruent with a specific taste or flavor
can enhance said taste in the food. For example, soundtracks with
sweetness associations, which feature high pitch and consonant
harmonies, have been shown to enhance the sweetness of various
foods, such as toffee [26], chocolate [113], and beer [21].

Beyond taste or texture, sound can also influence people’s cogni-
tive and behavioral responses to food. For instance, eye-tracking
research has shown that listening to music associated with eating
a healthy meal (jazz, piano, etc.) can lead people to make healthier
food choices, compared to music associated with unhealthy eat-
ing (rock, brass, etc.) [82]. There is also evidence to suggest that
sonic cues can influence appetite; for example, real-world studies
have shown that consumers at a pub tend to drink more and at a
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faster rate, when the volume of background music is louder [45].
In contrast, listening to slower tempo music leads to longer eating
time [71] and presumably greater satiation [64].

Many of the above-cited studies, however, involve playing back-
ground music, which people are explicitly aware of. There is a lack
of research on how findings from such food-extrinsic cues - like
the effect of pitch or timbre - can be translated to auditory manip-
ulations of eating sounds. This is an important area of research
as this will broaden our knowledge of sound-food interactions
and give designers more flexibility to create targeted food-related
auditory experiences. At the same time, aside from food texture
studies [31, 118, 119], there has been little research focusing on
how augmenting natural eating sounds might influence other food-
related factors such as flavor, appetite, and eating behavior. From a
consumer psychology perspective, there is an opportunity to create
auditory feedback tools that manipulate such naturally-occurring
eating sounds in order to promote implicit behavior change.

2.3 Closed-Loop Altered Auditory Feedback
Beyond the use of open-loop systems which produces auditory cues
independent of the user’s action (sonic backgrounds, notes, music,
or soundscapes), the use of closed-loop systems using real-time
Digital Signal Processing (DSP) to directly transform self-produced
sounds, have shown high potential with perception researchers
and across the HCI community to affect different levels of behavior
and deep internal processes. The added value of the closed-loop
approach may come from reaching the right level of incongruence
between internally predicted expected signals, and externally mod-
ified feedback signals. For most voluntary motor commands result-
ing in sound-producing activities, those two signals - the internal
efference copy and external sensory feedback - are constantly com-
pared in the brain. This comparison is hypothesized to take place
in the basal ganglia [15], a group of subcortical nuclei responsible
for motor control and learning, executive functions and behaviors,
and emotions [4, 11]. Although this has not been formally estab-
lished for eating sounds, the critical role of basal ganglia in complex
movement [81] and its connection to motivated behaviors [80] and
food-related disorders [67, 86] open potential avenues for merging
cross-modal and closed-loop auditory feedback research. Exam-
ples of auditory false feedback include cardiac, breathing, body
tapping/stepping sounds, and vocal/buccal/eating sounds. False
heart rate feedback can affect subjects cognitively [104], emotion-
ally [38] and has been shown to manipulate sexual arousal [16].
The HCI community has leveraged these findings in building tools
for emotion regulation for anxiety [24], stage fright [75], or affec-
tion facilitation [78]. In addition to heart rate-based systems, HCI
tools based on altering breathing sound feedback have been used to
increase the sense of calm [43]. Auditory feedback of self-produced
sounds has also been shown to contribute to body representation
and control. Spatial modifications of tapping sounds can influence
subjects’ perception of body lengths [99] and altered footstep sound
can change body weight perception [97] and has been used in tools
to improve walking abilities [8, 23].

In the specific context of vocal sound manipulation, previous
work had shown a wide range of potential effects of changing the
way we hear our own voice, and the HCI community has leveraged

them to create new tools and technologies. These effects range from
mechanical control disturbances, local sensory mechanisms, affect,
emotion, and higher-order neural modulation. Indeed, modulated
voice feedback can cause distraction and has documented effects
on speech control (speed, articulation, and fluency). For instance,
a short delay added to the voice can lead to prolongation of vow-
els, repetition of consonants, higher utterance intensity, and other
articulatory changes [41, 116]. A delay longer than 200ms often
leads to jammed speech [40]. The speech jammer is a well-known
use of these findings [63]. However, a delay of 20 to 150ms can
increase fluency for people who stutter [55] In the case of stutter-
ing, the neural basis for this effect is not completely understood. It
is possible that the creation of large errors between expectations
and modified feedback may alter reliance on the feedback signal
and reduce the excessive motor speech repair mechanisms thought
to underlie speech disfluencies [46] New technologies and devices
have been developed leveraging this effect using simple delays and
shifts in pitch [6] but also more complex musical modulations [60].

Besides speech control and expectation regulation, false voice
feedback has shown potential for emotion and affect regulation.
Study participants whose voices were modified to sound calmer
during couple conflicts reported feeling less anxious [25]. Simi-
larly, covert voice manipulation can significantly affect emotional
states [7] and might even offer potential as a tool to improve ne-
gotiation outcomes [9]. Making the voice feedback sound more
musical has also shown potential in affecting the emotional valence
of the speaker and semantic content of speech as well as prosodic
parameters [61].

Anchored in HCI best practices for building food augmenta-
tion tools, this project thus leverages psychological research from
both the fields of multisensory perception and closed-loop auditory
systems.

3 DESIGN CHOICES AND PRELIMINARY
OBSERVATIONS OF PRINGLES EATING
SOUNDS

This section covers the motivations behind our design decisions,
including 1) the choice of food sample to use for tasting/testing,
2) the design of auditory feedback modes, and 3) initial insights
collected from Pringles eating sound analysis.

3.1 Choice of Food
In this testing experiment, we used sour cream and onion-flavored
Pringles as our unique food sample. This choice was motivated by
several factors. We choose to focus on a crispy food sample because
crispiness is rated as a highly desirable property [88] and is per-
ceived through a combination of auditory and tactile feedback [36].
Various research studies have used chips as food samples [118], and
Pringles offer a particular advantage in their consistency and global
availability. We choose to use the sour cream and onion flavor as it
allows us to decouple the aspects of taste perception into four parts:
texture, saltiness, sourness, and overall flavor intensity (onion). The
sourness was particularly relevant as previous crossmodal corre-
spondences studies have explored the relationship between sound
and sourness perception as well as saltiness perception [73, 111].
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Table 1: Description of auditory modes in terms of implementation and perceptual effects. Literature-based hypotheses refer to
findings based on environmental sounds that we aim to apply to chewing sound modifications.

Label Mode Name Implementation Perception Literature-based hypotheses

A, J, Off No sound - No sound output from the system Sounds slightly dampened from wear-
ing earphones

Less sensory intensity (taste, mouth-
feel, flavor) [31, 118]

B Raw Voice - Passthrough 0dB (Unity Gain)
- Delay 16ms

Playback, quite similar to real-world
hearing experience

baseline

C Amplified - Passthrough 6dB
- Delay 16ms

Four times louder than the Raw
Voice mode

Greater sensory intensity (taste,
mouthfeel, flavor) [22, 31, 118]

D Short Delay - A single delayed copy of mic signal
- Delay 200ms

Barely perceptible delay Slightly greater fullness and less crav-
ing [64]

E Long Delay - A single delayed copy of mic signal
- Delay 400ms

Clearly perceptible delay Greater fullness and less craving [64]

F Small Room
Reverberation

- Open Source Freeverb library
- Room Size = 0
- Damping = 0.5
- Dry/Wet Level = 0.25/0.75
- Stereo width = 0.5

Akin to being in a small cupboard More crispiness and saltiness [111]

G Large Room
Reverberation

- Open Source Freeverb library
- Room Size = 0.9
- Damping = 0.5
- Dry/Wet Level = 0.25/0.75
- Stereo width = 0.5

Akin to being in a very large empty
room (e.g., cathedral), with long re-
verberation time

Less crispiness and saltiness [111]

H Low Pass
Filter (LPF)

- 2-pole low pass filter
- Slope of -12 dB per octave
- Cutoff frequency of 2000 Hz

Only low-frequency sounds are heard Less sourness and crispiness, greater
fullness [27, 84, 118]

I High Pass
Filter (HPF)

- 2-pole high pass filter
- Slope of -12 dB per octave
- Cutoff frequency of 2000 Hz

Only high-frequency sounds are
heard (high pitch noise, cracking
sound, etc)

More sourness and crispiness [27, 118]

3.2 Choice of auditory feedback modes
Amongst the latent space of possible auditory transforms, we fo-
cused on four types of sound transformations: volume, delay, room
response modulation, and frequency filtering. Hypotheses for each
mode are summarized in Table 1.

The influence of volume was motivated by Drake’s suggestions
that the increase in sound amplitude is more apparent to determine
food crispiness than any concurrent changes in the frequency spec-
trum [34]. Beyond louder volume enhancing crispiness [118], we
also expect a louder volume to enhance other food characteristics
including flavor intensity. This is based on the theory of magnitude
framework [110], which suggests that increased magnitude in one
sense modality can lead to higher intensity perceptions in another
modality. For instance, eating in a room with brighter illumination
enhances taste sensitivity [96] and leads to stronger overall flavor
intensity [105].

The potential effect of frequency filtering was motivated by
Darcemont’s observation of frequency characteristics of low-moisture
crisp products [28] and Zampini’s 2004 study [118]. However, the
above-mentioned studies only tested high-frequency amplification
and did not investigate the effect of low-pass filtering. Moreover,
given that sourness is associated with high pitched sounds [114],
we would expect high-frequency filtering to emphasize the sour
taste in the chips. On the other hand, since low pitch is associated

with heaviness [109], which is in turn linked with greater food sat-
isfaction [84], we have a good reason to believe that low-frequency
filtering could also enhance satiety.

Testing the effects of room response was motivated by its
common real-life occurrence and its role in auditory scene analy-
sis [17]. Room response modification has been studied extensively
in the context of speech understandability [12] cognitive perfor-
mance [33], musical hall design [3] and is often used in music
production [103]. Real-time modification of room reverberation
has recently raised the interest of the HCI community and cogni-
tive neurology researchers for its potential to affect unconscious
neuronal processes. Artificial room response manipulations have
indeed been associated with emotional responses, with acoustics
of smaller rooms being considered more pleasant, calmer, and safer
than bigger rooms [98]. By creating a sense of a larger or smaller
space, where sounds are reverberating and we are more or less
likely to be heard and observed, we suspect that we can affect the
sense of fullness and self-awareness.

We chose to evaluate the effects of various Delayed Auditory
Feedback (DAF) because of its known effects on speech and move-
ment control. Depending on the delay length, DAF can lead to dis-
turbed articulation, slowed speech, and greater sound pressure [41].
The disturbance caused by DAF depends on various factors such
as individual variability, delay length [51], action type, and action
trajectory [83]. Although the time ranges for DAF are well estab-
lished for speech sound (effects but no control disturbance below
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50ms, effects and control disturbance and slowed speech between
50 and 200ms, dissociation between feedback and motor action after
200ms) [46], our prior observations suggest that those times thresh-
olds are different for the perceptual processing of eating sounds.
This may be because of the more chaotic aspects of eating sounds
versus organized speech sounds, and also the lower importance
to monitor these sounds in the brain, however, this would require
further validation. Based on our pilot testing (see section 3.3) we
found that 200ms, although very large for speech, is only barely
noticeable when eating. We chose this threshold as our short delay
parameter, where the delayed eating sound still perceptually seems
self-produced. Moreover, we chose 400 as our high delay parameter
because the delayed chewing sounds were clearly disassociated
from the motor movements. We expect that hearing delayed chew-
ing sounds will reduce people’s eating speed, therefore leading to
more fullness [64].

3.3 Chewing sound analysis
To better understand how auditory alteration changes the per-
ceptual experience of chip eating sounds [35], we first created a
database of Pringles eating sounds from 5 people. The database
was used to analyze the diversity of sonic eating behaviors and
frequency composition between users and throughout the eating
experience.

Figure 1: An audio example of eating a single Pringles chip.
The recording is about 13 seconds long and each vertical line
represents 1/2 second. The average RMS power is -40.2 dB. A
rhythmic chewing pattern can be observed.

The recordings were gathered in a quiet room, using a pair of
wired earphones with an embedded microphone (EarPods with
Lightning Connector from Apple) and by asking the subjects to
manually hold the microphone at a distance of 1cm in front of their
mouth while eating one chip at a time. Figure 1 shows an example
of such a recording. We gained several design insights from these
experiments:

• The setup resulted in perceptually similar quality and ampli-
tude recordings confirming that the instruction of holding
the microphone could lead to comparable experiences.

• We validated the choice of 2kHz as a suitable cutoff frequency
for our frequency filter and also observed interesting effects
of low pass filtering under 2kHz of eating sound. Although
less crispy, the chip seemed to have more presence in the
mouth.

• Frequency filtering appears to not only affect texture but
also flavor and satiety

• We noticed low intra-subjects variability in loudness, eating
time, number of chews, and chewing speeds between the
trials. (Intra-subjects CV= 6.% for chewing times, 6.8% for

the number of chews, and 3.6% for chewing speed). People
seem to always eat at roughly the same speed. This suggests
each individual is quite consistent and that if a difference
is individually observed, it would likely result from sound
intervention rather than natural variability.

• In terms of inter-subjects consistency, we observed a good
consistency in loudness. The time it takes to eat one chip
ranges from 9 to 20 seconds, and the tempos range from 1 to
2 chews per second.

4 THE AUDITORY SEASONING APP
To test the effects of various sound alterations on food perception
and eating behaviors, we designed a mobile app, called Auditory
Seasoning, that incorporates the four audio feedback categories
presented in section 3, each with different parameters. The use of
mobile phones and wired earphones makes the system available to a
very large number of people without requiring additional hardware.

4.1 Microphone and earphones
Auditory Seasoning is a mobile app designed to apply Digital Signal
Processing (DSP) to incoming microphone signals and deliver an
augmented audio output to the earphones. For this reason, the app
assumes and recommends the users to be wearing wired earphones
with an embedded microphone to keep tight control over delay
and allow for near-real-time processing. We used EarPods with
Lightning Connector from Apple.

4.2 Mobile phone
The study required the use of an Apple iOS device (iPhone or iPad).
The Auditory Seasoning app designed for these iOS devices can run
on an iOS version 9.3 or above. The app was distributed through
Apple’s App Store so subjects could download it onto their phone
for the experiments. We provided the iOS device for some of the
subjects who did not already own one. We tested the app to run on
iPhone 8 and above.

4.3 Audio processing
The app provided a total of 9 options that represented various audio
transformation modes to the subjects with different parameters.
Table 1 presents a brief description of each mode in terms of how
they were implemented as well as perceptually in regard to how
they sound to the user and how they relate to prior literature. The
overall latency between the sound signal captured by the inline
microphone to the audio signal going out of the earphones was 16
milliseconds across all modes.

4.4 Interface
To design the app, we first implemented each mode with interactive
parameters and had the app tested by three audio experts. After
the experts approved our chosen parameters and the quality of the
audio output, we implemented a blinded version of the tool for use
in our study.

Figure 2 shows the user interface that the subjects used during
the experiment. The interface for the mobile app was kept minimal
to avoid potential visual distraction during the experiments and
to keep subjects blinded as to which mode they were using. For
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Figure 2: Modes mapping and iPhone Interface: We choose and mapped audio feedback effects that could all be combined
into 3 connected modes for each of our four hypotheses (amplitude, delay, room response, frequency filtering). However, the
interface was meant not to reveal the mapping and the order was presented in randomized order to avoid bias.

this reason, the interface is composed of 12 buttons at the left of
the screen to select a current task along with a text at the top
encouraging the subjects to wear earphones while using the app.

5 USER STUDY
5.1 Participants
We recruited 37 subjects (19 females, mean age = 30.9 years, SD
= 8.6) via social media and mailing lists advertised to several uni-
versities. Inclusion criteria included a normal sense of hearing, no
active dental issues, and no dietary restrictions or allergies to the
Pringles flavor used (sour cream and onion). The study protocol
received exempt approval from our institution’s ethics review board
(Exempt ID: E-3343) The study was carried out according to the
Declaration of Helsinki, and all participants gave informed consent
at the beginning of the study. No compensation was offered to
participants.

5.2 Protocol
During the study, subjects were guided through a series of eating
tasks under different auditory feedback testing conditions, each
followed by a short taste-perception self-assessment. The modes
were presented in random order, but the initial mode (A) was always
the same so that all participants had a practice baseline session
with no sound, to get them used to eating with a microphone and
answering questions.

For each mode, participants had to 1) select the mode in the
app as specified by the online questionnaire, 2) eat one chip while
holding the microphone directly in front of their mouth, 3) rate
their eating experience and 4) drink a sip of water before passing
to the next mode. The study concluded with a short demograph-
ics questionnaire with an open comment section. This protocol is
described in Figure 3

The eating experience was evaluated in the following way: Par-
ticipants were asked to first evaluate their tasting experience in
terms of: overall deliciousness, overall flavor intensity, sourness,

saltiness, crispiness, mouth-filling, level of fullness after tasting
the chip, and level of craving for eating another chip. These were
presented on a 1-9 scale (1 = not at all, 9 = extremely). The questions
were asked in the form of: "Please evaluate your tasting experience:
Overall deliciousness" and they were presented with a slider from
1 to 9. Next, participants gave a qualitative free-text description of
how the specific mode changed their eating behavior, if at all (e.g.
eating speed, number of chews). Finally, subjects rated how the au-
ditory mode enhanced their attention in four ways: attention to the
food in general, attention to the flavor of the food, attention to the
texture of the food, and self-consciousness of their eating sounds.
These four measures had good internal consistency (Cronbach’s
alpha = 0.84) so a single averaged index of attentiveness was used
for data analysis.

Figure 3: User Study Protocol

5.3 Setup and procedure
Subjects were asked to participate in a 30-minute session consisting
of eating one Pringle chip at a time while using various modes of
the Auditory Seasoning app. The subjects were guided by explicit
instructions from a Qualtrics survey running on a different device
(laptop or tablet) that also collected their answers. The subjects
were asked to fast at least 2 hours prior to the experiment. The
setup, illustrated in Figure 4, consisted of:
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(1) an iOS device (version 9.3 or above) charged at least 50%
running the Auditory Seasoning Filter app downloaded from
the App Store, volume set up in maximum.

(2) a pair of wired earphones with an embedded inline micro-
phone (EarPods with Lightning Connector from Apple). Dur-
ing eating tasks, subjects were instructed to manually hold
the microphone close to their mouths while eating (approxi-
mately 1 cm).

(3) a laptop/desktop computer connected to the internet to ac-
cess the online questionnaire.

(4) a large glass/bottle of still water
(5) an unopened can/cup of sour cream and onion-flavored

Pringles.

Figure 4: User study setup describing the different elements
needed including earphones, microphone, Pringles, laptop,
iPhone and water. Participants were instructed by the online
questionnaire on the laptop to select a mode on the app, then
eat a potato chip while holding the microphone close to their
mouths.

6 RESULTS
6.1 Effect of auditory modes on potato chip

evaluation
According to our hypotheses, we tested the effect of different modes
grouped thematically: the effect of modulating volume (modes J,
B, C), delay (modes B, D, E), reverberation (modes B, F, G), and
frequency range filtering (modes B,H, I). Mode B (raw voice) was al-
ways included as a baseline comparison. For each group, we applied
a one-way repeated measures multivariate analysis of variance (rm-
MANOVA) with the relevant modes as the within-subject factor,
and evaluation ratings as dependent measures (deliciousness, crispi-
ness, mouth-filling, flavor intensity, saltiness, sourness, fullness,
and craving). A MANOVA was used to correct for multiple tests
among the dependent measures

6.2 The effect of volume modulation
Figure 5A shows the chip evaluation ratings for the three loudness
levels (no sound, baseline, amplified). We found a significant overall
effect of mode (F(16,21) = 3.55, p = .004, partial η2 = 0.73), and
follow-up univariate ANOVAs revealed the effect of mode on the
ratings of deliciousness (F(2,72) = 5.10, p = .008), crispiness (F(2,72)
= 22.82, p = .008), mouth-filling (F(2,72) = 7.79, p = .001), overall
flavor intensity (F(2,72) = 18.92, p < .001), saltiness (F(2,72) = 6.84,
p = .002), sourness (F(2,72) = 12.30, p < .001), and fullness (F(2,72)
= 3.81, p = .027). Significant differences via post-hoc Bonferroni-
corrected tests can be seen in Figure 5A. Overall, compared to
the baseline, amplifying eating sounds leads to higher intensity of
overall flavor and specific tastes (salty, sour), more crispiness and
mouth-filling sensations, and a higher degree of fullness (p < .05
for all comparisons).

6.3 The effect of delay modulation
Figure 5B shows the chip evaluation ratings for the different delay
times (baseline = 0 ms, 200 ms, 400 ms). We did not observe a
significant main effect of mode (F(16,21) = 3.55, p = .004) and thus
did not perform any further follow-up univariate ANOVA tests.

6.4 The effect of reverberation modulation
Figure 5C shows the chip evaluation ratings for the three room
response reverberation settings (baseline, small, and big room).
There was a significant overall effect of mode (F(16,21) = 2.22, p =
.044, partial η2 = 0.63) on ratings of deliciousness (F(2,72) = 3.26,
p = .044), sourness (F(2,72) = 3.36, p = .040), and craving (F(2,72)
= 10.04, p < .001). Significant differences via post-hoc Bonferroni-
corrected tests can be seen in Figure 5C. Compared to the baseline,
applying large room reverberation effects to chewing sounds leads
to decreased sour intensity (p = .049) and decreased craving (p =
.001).

6.5 The effect of frequency filtering
Figure 5D shows the chip evaluation ratings for the three frequency
filtering settings (baseline, low, and high pass filters). There was a
significant overall effect of mode (F(16,21) = 2.17, p = .048, partial η2
= 0.62) on ratings of crispiness (F(2,72) = 13.47, p < .001), mouthfill
(F(2,72) = 4.94, p = .014), salty (F(2,72) = 4.25, p = .018), sour (F(2,72)
= 3.50, p = .035), and fullness (F(2,72) = 7.36, p = .001). Significant
differences via post-hoc Bonferroni-corrected tests can be seen in
Figure Figure 5D. Compared to the baseline, applying a low pass
filter (<2k Hz) to chewing sounds leads to decreased crispiness (p <
.001), increased mouth-filling sensations (p = .033), and increased
fullness (p = .020). In addition, applying a high pass filter (>2k Hz)
also leads to increased fullness (p = .002) compared to the baseline
condition.

6.6 Effect of auditory modes on self-reported
eating behavior

Table 2 shows the number of subjects who reported seeing no
change, a reduction or an increase in their eating speed in the open
comment section. Not all participants reported in this section. We
observed several trends suggesting that in the no sound mode, most
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Figure 5: Pringles evaluation ratings as a result of audio feedback modulation by: A)volume, B) delay, C) reverberation, D)
frequency range. Brackets indicate significant pairwise comparisons with Bonferroni correction (* p < .05, ** p < .01, *** p < .001,
**** p < .0001).

participants reported no change in eating speed. Most other modes
led to a majority of the reported decrease in eating speed with
Long Delay being most reported as inducing slow down (17 people),
followed by Amplified (16), Raw Voice (15), Large Room Reverb
(14), 200ms Delay & Small Room Reverb (both 13).

6.7 Effect of auditory modes on attention to
food

An analysis of auditory modes on the index of attentiveness via
one-way rm-ANOVA revealed a significant effect of mode (F(5, 197)
= 9.34, p < .001, partial η2 = 0.21). As shown in Figure 6, follow-up
post-hoc comparisons with Bonferroni correction illustrated that
attentiveness to eating is significantly lower in the sound-dampened
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Table 2: number of subjects who reported seeing no change,
a slow down, or an increase in their eating speed in the open
comment section
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slower 7 3 15 16 13 17 13 14 12 10

Figure 6: Attention to food (as rated by participants from 0
to 5) as a result of different modes of audio feedback mod-
ulation. * indicates significant differences compared to all
other modes (i.e., comparison against the base mean), * p <
.05, *** p < .001

mode compared to all other modes (p < .001); in contrast, attention
in the amplified sound mode is significantly higher (p = .03).

6.8 Usability and Overall Experience
When asked to report on potential use cases of the tool in their
everyday life, the theme most mentioned by participants was eating
speed with 57% of subjects saying it could help them eat slower.
The next most common theme was mindfulness with 46% of sub-
jects suggesting it could increase awareness or attention to food,
and reduce mindless eating. Another common thread regarded the
quantity of food eaten and cravings with 22% of people saying it
could help reduce cravings and eat less. 22% of people reported
the tool could be used to make more healthy food choices (e.g. less
sugar or salt). Finally, two subjects mentioned eating as a social
experience and potential issues of eating with earphones. Another
two subjects mentioned the potential of the tool for children to
make vegetables taste less bitter or in gamifying eating. Table 3,
summarizes subjects’ comments according to four themes: eating
speed, attention, craving, and healthy food choices.

Table 3: Subjects comments according to four themes: eating
speed, attention, craving, and healthy food choices

Eating speed (57%)
“I could see myself using that to eat slower ” (P30)
“I am pretty sure I was eater slower with some options” (P3)
Awareness and Attention (46%)
"It definitely made me more attentive and also appreciate the food more”
(P2)
“the healthy distraction could bring the focus on different attention could
help to eat less [...] not just mindlessly eating”
“It could be used to make yourself more aware of your chewing speed.
So if you had an ambition to slow your chewing this app could be used
to remind yourself.” (P21)
“I could hear my saliva, and I am never aware of that and it was super
interesting [...] I learned a lot about an everyday common experience
and it made it more interesting” (P10)
Craving/eat less (22%)
“[it] slowed me down [...] With an addictive food like Pringles it would
probably cause me to eat fewer chips” (P7)
“Maybe also eat less even, because it can be an intense experience” (P9)
Healthy foods/ less sugar & salt (22%)
“Some options really changed the taste that it pretty incredible” (P2)
“Overcoming craving for salty/savory food like crisps by ’neutralizing’
their taste” (P6)
“Less sugar/salt while maximising flavour would be great. “ (P8)
“the audio changed my perception of salt quite a lot [...], it could maybe
help eat less salt because it is unhealthy” (P31)
“Could be fun try with different drinks/beers to make you drink slower
and perhaps less” (P13)

When asked to report on the comfort of eating while wearing
microphone and headphones, 7 out of 37 participants reported
extremely comfortable, 14 reported somewhat comfortable, 11 re-
ported neither comfortable nor uncomfortable, and 5 reported it
was somewhat uncomfortable. No participants reported that it was
extremely uncomfortable. 29 out of 37 participants thought the
sounds varied “a great deal” or “a lot” between the different audi-
tory modes, 7 thought the sounds varied “moderately”, and only one
thought the sounds did not vary at all between conditions. When
asked to report their favorite mode, Large Room Reverb and High
Pass Filter ranked equally highest each with 11 points. Small Room
Reverb, Amplify and Delay all obtained 3 points while No Sound,
Raw voice and Low Pass all obtained 2 points.

7 DISCUSSION
In this section, we discuss our findings, summarised in Table 4 and
suggest possible implications for theory and design.

7.1 Interpretation of findings
From the empirical study, we found that amplifying eating sounds
not only increases crispiness [118], but all flavor-related param-
eters including saltiness, sourness, mouth-filling, and overall fla-
vor intensity. Louder eating sounds also led participants to feel
more full. This is consistent with the theory of magnitude frame-
work, since an increase in one sensory modality (sound) led to
subsequent higher ratings in taste, texture, and flavor (smell+taste).
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Participants’ comments reflected this hypothesis of general ampli-
fication: “This sounded great like powerful, I felt like in an ad for
chips”, “ I chewed slower because of the wider variety of the salti-
ness/sweetness/sourness sensations I could feel with my tongue”,
“it felt very surprising, as a new way to discover what I had in my
mouth, I really liked it, it felt really alive and super exciting, as
if someone was helping me to taste it better.” Participants’ reac-
tion suggests major enthusiasm for this mode and positive user
experience: “it’s like those sounds were just for me and this chip
was just for me to enjoy”, “I feel like I wouldn’t mind hearing and
tasting this again, as if I wanted to hear myself bite in the chip
again.”, “This mode was awesome. I was smooshing the chip much
more to enjoy the sounds of myself eating” Overall attention to
food also followed volume levels, with participants in the no-sound
condition reporting the lowest attention to food, and the amplified
sound condition the highest. This has a two-fold implication: first,
attention could be the mediating factor behind the observed effects,
and secondly, auditory feedback could be utilized to modulate the
diner’s attention. Either way, this effect opens the door to various
possible applications. Using carefully curated amplifications could
raise awareness of food and potentially help reduce mindless eating.
If the amplification were to happen gradually, it could also bring at-
tention to overeating. Based on the time of day, a gain factor could
be added to amplify sound when eating between meals making
chewing sounds louder than when eating at regular meal times.

In terms of delay, we did not observe any effects on perceived
texture or flavor. When asked to comment on potential changes
in eating behaviors, participants’ self-reported comments suggest
a decrease in eating speed. Moreover, participants reported out-
of-body experiences where they felt like they were eating with
someone else, or that the chips tasted less flavourful. “It felt like
it had more crunch, like I was eating with others, maybe I chew
longer”, “gave me the sensation that I was listening to someone
else’s eating. The chip became quite bland and it wasn’t a very tasty
experience”, “it felt like I had two chips in my mouth”. These results
could be leveraged for specific applications. Future work on de-
layed auditory feedback could unveil possible thresholds for motor
command disturbance of jaw motion similar to speech production.
Such work would lead to the development of tools that make users
unconsciously slow down their eating, but caution is required to
ensure that motor disturbance won’t lead to swallowing issues.

Large room reverberation made the chips taste less sour and
led to less craving. This may have been due to the unfamiliar/ incon-
gruent nature of the large room, which reduced appetite. Bregman’s
work on auditory scene analysis, mentioned in section 3, suggests
that room reverberations contribute to our ability to make sense
of our environment from an audio stream and affect our overall
sense of space and safety [13]. By informing us about our envi-
ronment in more or less congruent ways, mediated reverberations
affect both perception and response behaviors. [18]. The results
from our study may derive from one of two consequences of this.
First, it may be linked with primitive reactions to environmental
incongruence between sonic and visual/tactile feedback, leading
to increased fight or flight reaction, and a more alert and attentive
behavior less prone to eating. Some of the participants’ comments
lean toward this hypothesis “There was a disconnect between my
mouth and my ears as if they did not belong to the same person.” On

the other hand, the decrease in craving could be linked with more
culturally-informed behavior of restraint in large rooms when one
can be observed and therefore is more self-conscious. This is also
supported by some of the participant’s comments regarding the
large room reverb: “made the eating experience feel performative”,
and “I felt like everybody was looking at me! It made me feel very
exposed [...] so it doesn’t make me want another one.”, or “I felt
like I was in a ceremony of chips eating!” This can be compared
to some comments regarding small room reverb: “I enjoyed this
one, it felt a little intimate and personal, almost like if I were pro-
tected”. These findings could be leveraged in designing curated
eating experiences. Large room responses could be used similarly
as sound amplification, to increase self-awareness when eating and
reduce mindless eating. But by offering more parameters, this effect
could also help transform people’s relationship with their eating
experience. For instance, by reducing sourness, large room rever-
beration could be used to habituate children and picky eaters to
gradually broaden their food spectrum. Small room responses could
help create a sense of comfort and safety and increase food intake
for people with eating disorders, people with cognitive impairment,
or elderly adults who might suffer from appetite loss. Varying room
responses between courses could also create an architectural feeling
of a journey throughout a gastronomic meal to enhance specific
aspects of the food.

As hypothesized, the low pass filter led to less crispiness, more
mouth-filling texture, and more fullness after eating. Interestingly,
both high and low pass filters led to more fullness, which suggests
that fullness may be mediated by attention to the food. Comments
from participants supported this idea of increased attention to the
food, both with the Low Pass Filter: “I ate slower, and felt compelled
to close my eyes,” “It really made me focus on the liquid sounds
within my mouth, so [...] I let the chips remain in my mouth longer”,
“I was more aware of/listening more to the background noise” but
also with the High Pass Filter: “the sound made me more conscious
of the noises in my mouth”, “It made me think more about the
texture and sound of the chips. Probably made me eat slower”.
However, other comments suggest that increased fullness might be
linked to different causes for high versus low pass filters. Indeed,
participants reported their experience with High Pass similar to
the Amplified mode as “crispier” and “more flavorful” suggesting a
similar mechanism as the magnitude framework, whereby attention
to sensory aspects of food led to greater fullness. In contrast, the
low pass filter mode was described as more “liquid”, “wet”, and akin
to a “paste” suggesting a more mouth-filling feeling. If these two
fullness properties of low vs. high pass filters are validated, this
could lead to specific applications. Mouth-filling-based satiety could
be used to reduce the appetite for unhealthy food such as fried food.
In contrast, high-pass filters could lead to more fulfillment from
eating healthy food such as vegetables, apples, carrots, etc.

Put together, we found evidence that even simple auditory filters
had complex effects on the eating experience spanning from the
perception of flavor and texture to fullness and awareness. This
suggests that modifying eating sounds can be used as a tool to
influence complex eating behavior beyond just sensory perception,
for example by altering satiety or promoting mindful eating. On the
flip side, although we see a consistent and significant effect from
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Table 4: Summary of literature-based hypotheses and actual significant findings from the present research, for each auditory
mode tested. Significance based on comparison with baseline (raw voice) mode.

Label Mode Name Literature-based hypotheses Significant findings
A, J, Off No sound

(dampened)
Less sensory intensity (taste, mouthfeel, flavor)
[31, 118]

Tasting less crispy
Paying less attention to food

B Raw Voice baseline (Baseline)
C Amplified Greater sensory intensity (taste, mouthfeel, flavor)

[22, 31, 118]
Tasting more mouth-filling, intense, salty, sour
Feeling more full
Paying more attention to food & eating slower

D Short Delay Slightly greater fullness and less craving [64] No significant effects compared to baseline
E Long Delay Greater fullness and less craving [64] Eating more slowly
F Small Room

Reverberation
More crispiness and saltiness [111] No significant effects compared to baseline

G Large Room
Reverberation

Less crispiness and saltiness [111] Tasting more sour
Feeling less craving

H Low Pass Filter (LPF) Less sourness and crispiness, greater fullness [27,
84, 118]

Tasting less crispy, more mouth-filling
Feeling more full

I High Pass Filter (HPF) More sourness and crispiness [27, 118] Feeling more full

the auditory feedback on people’s eating experience, our study sug-
gests that there isn’t an independent one-to-one straightforward
mapping between simple audio parameters and food perception
parameters. Audio feedback while eating contains a large mix of
information that is not simply separable into independent variables.
For instance, loudness influences both flavor intensity and saltiness.
This justifies the approach of first testing simple filters, and then
implementing richer modes targeting eating features. Future work
can therefore target the creation of richer audio transformations
by combining simple filters to tackle more targeted features of
the eating experience (only satiety, only saltiness, etc.). Moreover,
our dataset provides a jumping-off point for further exploratory
analyses, for example uncovering individual differences in audi-
tory seasoning effects, which can then be validated in subsequent
studies.

7.2 Limitations
First, our experiment was conducted using only one specific type
of food: sour cream and onion Pringles, therefore we are unable to
generalize our findings to a broader variety of foods until further
studies are conducted. Moreover, we did not precisely control how
far our participants held the mic in front of their mouths, which
has implications for the degree of experienced sound amplification
and modulation. With advances in noise cancellation, source sepa-
ration, and selective filtering, the need to hold the microphone will
hopefully not be necessary for the future, which will make data
collection more easily in the wild. Another drawback to our design
of the tool is the need for wearing earphones. As eating can be a
social experience, having to wear earphones while eating might
prevent people from having a conversation with others during a
meal. Therefore, the use case for an Auditory Seasoning app might
be more appropriate in a solo eating setting, unless bone conduction
headphones are used in combination with the app. Further work
could also investigate the difference between using closed vs. open
headphones with the app.

7.3 Design implications
In this section, we discuss design considerations for changing the
self-perception of chewing sounds as a way to regulate the eating
experience. We also propose some potential use cases where this
approach can be used.

7.3.1 Volume, distraction, and misophonia. Although amplification
appears to affect perception parameters most consistently, there
is a balance to find. Audio levels should remain safe not to cause
hearing issues, and increasing volume also increases the risk of
feedback. Further work should evaluate the added value from vari-
ous audio gains to establish the right balance. Chosen volume and
wet/dry mix also influence the naturalness of the sounds and can
cause added distraction. Future work will evaluate the effects of
various time delays on eating speed, perception, and motor control.
Beyond distraction and potential effects on muscle control, the ex-
perience might be unpleasant for people with misophonia who may
have intense emotional reactions in response to specific sounds,
particularly sounds of human origin such as oral or nasal noises
made by other people. [100]

7.3.2 Social vs. Solo eating. As noted by some of the participants,
eating is often a social activity where additional auditory stimuli
might be detrimental to human interaction. Thus, our tool would be
more suited in situations where people already eat alone and plan
to use a device. According to several recent reports, about half of
all adult meals or snacks are taken alone [1, 2]. In addition, people
eating alone often tend to use a device while eating, which can
keep them from feeling lonely but may distract them from satiety
and increase caloric intake [65]. By bringing the attention back to
the act of eating, our tool could alleviate some of the drawbacks of
using a device when eating.

7.3.3 Just-in-time intervention. One common issue in behavior
change in the context of eating is the “adherence problem” [74]. This
is the case with any approach that requires implicit decision-making
or even the use of a technological assistant. Other approaches use
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nudging with regular phone notifications to remind users about
eating strategy regularly, but they may lack immediacy. One ad-
vantage of using ubiquitous hardware that people are often already
using when eating is to trigger the experience as a just-in-time in-
tervention. For instance, the phone could listen in the background
for eating sounds and turn on the system when eating activity
is detected [48]. Even though the trigger could be automatic, the
purpose or requested experience modification could be done pur-
posefully by the user prior to the intervention. This strategy is also
in line with behavior change theory that supports planning ahead
of time, such as through the use of smaller plates.

7.3.4 Interface Design. In order to pre-program the type of effects
desired, the interface design could propose several dimensions for
desired targets. One issue from our results is the interconnectedness
of the modes and effects. Future work will assess the feasibility of
decoupling effects by combining auditory modulations. The objec-
tive would be to put together combinations of auditory filters to
build interfaces that act on three levels: 1) Muscle control: Regulat-
ing eating speed and chewing force. This could involve auditory
modulations based on time delays. 2) Flavour augmentation: Mod-
ulating the level of taste/flavor intensity, and crispness. It could
be done through layering filters and pitch shifts. 3) Appetite reg-
ulation: Changing the level of fullness and craving. This may be
done by changing room reverberations while also modulating the
frequency balance to normalize the effect on sourness and flavor.

7.3.5 Learning to listen. One major impact of the Auditory Season-
ing approach is to bring attention to the sounds of eating by unveil-
ing an existing experience that we do not generally pay attention
to. Although not asking for conscious attention and self-regulation
from users, the experience may offer a frame for introspection, that
might help regulate eating in an implicit way. Regarding the role
of technology in mindful eating when compared to low-tech mind-
fulness exercises, we believe that–at least in part–our system acts
as a catalyst for mindfulness that could potentially be achieved by
other means. However, the profoundly surprised and amazement
expressed by subjects, even some older participants, suggested that
only a few people appear to be exposed to such other approaches
during their lives. The ubiquitous and accessible nature of our
phone-based approach did appear, in contrast, to make an effect.
Indeed, many subjects suggested that it could potentially affect
their eating experience positively in the long term and several of
them reported six months later that they never ate chips the same
way again and are now much more prone to listen to the sound of
their food, in a playful, candid, and ingenious way, thanks to this
one-time exposure to our system. Longitudinal testing would be
required for rigorous testing of such lasting effects.

8 CONCLUSION
Throughout this paper, we contributed a first exploration of how
closed-loop auditory feedback can be used to manipulate flavor
perception, eating behavior, and appetite. We extend prior work
on sound-taste interactions, demonstrating on a theoretical level
that enhanced chewing sounds can influence more than tactile
evaluations, and from a design perspective, showcasing a mobile
tool that is easily accessible and usable without specialist equipment.

Our work therefore sits squarely in the recommended areas of
future HFI development, specifically digital augmentation of eating
experiences which can be used to highlight specific food features
and influence appetite [108]. For future work, we plan to develop
new interfaces with customizable functions, deploy them to a wider
audience, and conduct full meal eating studies to validate the use
of auditory seasoning in the real world.
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