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ABSTRACT 
We demonstrate a novel and democratized blow molding technique, 
PneuFab, enabled by FDM 3D-printed custom structures and tem-
poral triggering methods. Access to computer-aided fabrication 
tools, such as 3D printing, empowers various craft techniques to 
democratize the creation of artifacts. To aford new blow molding 
techniques in the feld of Human-Computer Interaction, we make 
eforts to simplify this challenging handy fabrication and enrich 
the design space of blow molding by taking advantage of the ther-
moformability and heat deformability of 3D printed thermoplastics. 
Showcasing design spaces, including artifacts with complex geome-
tries and tunable stifness, we hope to expand access and dive into 
what more the digital blow molding fabrication can be. 
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• Human-centered computing; • Human computer interac-
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1 INTRODUCTION 
Fused deposition modeling (FDM) 3D printing, as accessible and ad-
ditive fabrication technology, has gained a central place in today’s 
making trends, from rapid prototyping [10, 11] to creative expres-
sion [13, 17], even building interactive devices [5–7, 15, 18]. Beyond 
solely for fnalized production, 3D printing with smart materials 
(e.g., biomaterial [21, 22] and thermoplastic [1, 4, 16, 19, 20]) enables 
shape-changing interfaces in response to environmental triggers. 
Taking advantage of automatic and semi-automatic custom design 
in controlling, 3D printing can also serve as an augmented-craft 
tool to achieve complex aesthetics by lowering the threshold of the 
craftsmanship [3, 9], which empowers a wide range of possibilities 
for crafting artifacts. Therefore, we see an opportunity to introduce 
blow molding techniques that have existed for a long history but 
not fully been explored in the feld of Human-Computer Interaction 
(HCI) community. 

Blow molding can produce hollow structures with large vol-
ume, light weight, and complex curvature surfaces, which is widely 
used in the mass manufacture of plastic [24] and glass [8, 12] for 
aesthetics or utility. Recently, artists have experimented with cus-
tomizing blow-molded products using digital tools [2, 14]. How-
ever, the limited exploration of controllability and predictability 
of blowing shape-changing restricts its personalization and de-
mocratization. We present PneuFab, a novel and low-cost hybrid 
fabrication workfow that allows normal users to design and create 
hollow volumetric shape changes through blowing simple FDM-
printed thermoplastic structures. PneuFab programs and prints 
thermoplastic composite structures as parisons, which can morph 
into target shapes with thermo-pneumatic triggering. With metic-
ulously designed composite structures, we can fabricate objects 
with orientational morphing and transformative texture. Beyond 
the form factors, PneuFab imparts 3D-printed objects with tunable 
stifness, ranging from rigid objects to dynamic structures. 

2 PNEUFAB FABRICATION WORKFLOW 
© 2023 Copyright held by the owner/author(s). We design PneuFab composite structure that comprises two types ACM ISBN 978-1-4503-9422-2/23/04. 
https://doi.org/10.1145/3544549.3583938 of components in terms of signifcantly diferent thicknesses: the 

https://doi.org/10.1145/3544549.3583938
https://doi.org/10.1145/3544549.3583938


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Guanyun Wang et al. 

Figure 1: PneuFab fabrication workfow. 

membrane and the frame. While the membrane (i.e., the thinner 
component) tends to be spherical like a balloon with air pressure 
loaded, the frame is meant to constrain the expansion. Thus, the 
nonuniform expansion can be leveraged to generate controlled 
expandable shapes. The fabrication process of PneuFab artifacts 
occurs in 3 stages: 1) designing a parison with our simulation tool, 
2) 3D printing the infatable structure, and 3) blow molding artifacts 
with thermo-pneumatic triggering (Figure 1). 

3 TRIGGERING TECHNIQUES 
Leveraging the heat transference lag between thermoplastics of 
various thicknesses, we further design a set of thermo-pneumatic 
triggering methods. Inspired by the shape-changing principle of 
prior work [23], we leverage the thermal lag which is due to the 
signifcant diference in thickness between the membrane and the 
frame to control the shape changing. We control the infated shape 
by adjusting heating times and alternating the heating, infating, 
and cooling processes. To clearly demonstrate the workfow of 
PneuFab triggering method, we assume a signifcant thermal lag 
between the frame and the membrane and denote their expansion 
starting time as �� and �� in a water bath environment. After the 
thermoplastic is heated thoroughly, we infate the parison using 
an electric vacuum pump for infating and a 3-way solenoid valve 
which is controlled by an Arduino board. When target shapes are 
achieved, we can simply leave them at room temperature with 
constant internal pressure to cool down or submerge them into 
cold water for quicker cooling. As shown in Figure 2, we demon-
strate how multi-phase shape-changings with signifcantly diferent 
results are achieved with the step-by-step workfow. 

Figure 2: (a) Temporal triggering process and techniques with 
four phases; (b) Physical fabrication results in four phases. 

Figure 3: User interface workfow: (a) drawing curves as the 
frame on the selected basic model as membrane; (b) struc-
ture geometry customization; (c) simulation with selected 
triggering phase. 

Figure 4: (a) Structures of grapes; (b) Printed grapes modules 
and stem; (c) Triggering process; (d) Assembly process; (e) A 
sculpture of grapes. Scale bar: 20 mm. 

4 USER INTERFACE 
To help users understand PneuFab workfow and support design 
iteration, we developed a parametric design tool, with which users 
can program the target shape of the infatable structure by manipu-
lating geometry parameters (Figure 3). The visualized simulation of 
chosen triggering methods facilitates the design iteration. Finally, 
a model for 3D printing and practical instructions for physical 
triggering can be generated based on the previously user-defned 
parameters. 

5 BLOW MOLDING ARTIFACTS 
To illustrate the potential of PneuFab technique for creative ex-
pression, prototyping, and tangible interaction, we designed and 
created several artifacts in application domains: sculptures, jewelry, 
illuminations, and haptic devices. 

5.1 Modular Sculpture 
Modular Design for Grapes. To illustrate PneuFab’s ability to 
complement 3D printing, we created a bunch of grapes by means 
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of modular assembly (Figure 4). While the grape stem can be eas-
ily printed in a planar shape with the conventional FDM method, 
printing spherical grape berries is challenging for FDM printers, 
which require plenty of supporting structures and may end up with 
rough surfaces. Therefore, we designed the grape berry modular 
with PneuFab method. After all the prints are ready, we infate all 
the berries and connect them to the stem. 

Modular Designed Balloon Dog. We infated a balloon dog 
sculpture, a common fgure in balloon art (Figure 5). The design 
consists of two units: three pairs of parallel balloons for ears and 
legs and four units of balloons in a folded shape for the head and 
body. The compact design also saves space for packaging and trans-
porting. 

Figure 5: (a) Two modular structures of balloon dog; (b) 
Printed modules; (c) Preview before triggering; (d) Triggering 
process; (e) A sculpture of balloon dog. Scale bar: 20 mm. 

5.2 Jewelry Design 

Figure 6: (a, b) PneuFab jewelry on display; (c) A ring; (d) A 
necklace; (e) An ear pendant. 

The PneuFab artifacts are lightweight organic and unique shapes 
with only a few grams. From opaque to translucent, the pleasing 
waxy texture, alluring roundedness, and radiance were what makes 
them ideal for use as jewelry (Figure 6). We hope PneuFab can 
facilitate the fabrication of wearables and inspire design in the DIY 
community. 

5.3 Ambient Lights 
Lampshades are generally large and fragile, which take up much 
storage space and are inconvenient for transportation. PneuFab 
provides designers and artists with a new method for producing 
illuminations. In this application, we show how PneuFab innovates 
illumination design with transformative shapes and delicate tex-
tures (Figure 7). 

Figure 7: (a) Transformative lamp; (b) A lantern; (c) Ambient 
lights with various textures; (d) Campfre light. Scale bar: 20 
mm. 

5.4 Tangible Devices 
Leveraging the fexibility and tunable stifness of thermoplastic 
artifacts made with PneuFab, we can create devices for tangible 
interaction. 

Pneumatic Keyboard. We fabricated the pneumatic buttons in 
one piece with homogenous material by designing concentric planer 
structures. By connecting them to pressure sensors, information 
can be input when we interact with PneuFab keyboards (Figure 8). 

Figure 8: (a) Structure of a button unit; (b) Transformation 
process for making a button; (c) Assembled keyboard; (d) 
Keyboard input for a calculator. Scale bar: 20mm. 
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Pneumatic Joystick. Similarly, we designed a pneumatic joy-
stick structure with tunable stifness, as shown in Figure 9. The 
as-printed parison of the joystick is designed in a cylinder shape, 
and the quadrature points of the frame curves are shifted up and 
down to contact the adjacent ones. The fabricated piece is like a 
spring for pressing, stretching, and bending at all degrees of free-
dom. 

Figure 9: (a) PneuFab joystick; (b) A deactivated joystick with 
internal air pressure; (c) Pushing the joystick to light up 
LEDs. 

6 CONCLUSION 
We present PneuFab as a novel hybrid fabrication technique which 
combines the advantages of 3D printing and blow molding for 
making artifacts with complex geometries and haptic properties. 
We meticulously design composite geometry structures and apply 
controllable trigger techniques. We demonstrate the potential of 
PneuFab, from decorative sculptures to interactive devices. We also 
propose an instructive design tool to facilitate the iterative design 
with visualized simulation. As a democratized method, PneuFab 
hopes to inspire and invite creative expression to push beyond the 
boundary of 3D printing. 
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