
MIT Open Access Articles

Modular-Things: Plug-and-Play with Virtualized Hardware

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Read, Jake, Mcelroy, Leo, Bolsee, Quentin, Smith, B and Gershenfeld, Neil. 2023.
"Modular-Things: Plug-and-Play with Virtualized Hardware."

As Published: https://doi.org/10.1145/3544549.3585642

Publisher: ACM|Extended Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems

Persistent URL: https://hdl.handle.net/1721.1/150647

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/150647

Modular-Things: Plug-and-Play with Virtualized Hardware
Jake Robert Read∗
Leo McElroy∗

jake.read@cba.mit.edu
leomcelroy@gmail.com

MIT Center for Bits and Atoms
Cambridge, Massachusetts, USA

Hack Club
Shelburne, VT, USA

B. Smith
Hack Club

Shelburne, VT, USA

Quentin Bolsee
quentinbolsee@hotmail.com

MIT Center for Bits and Atoms
Cambridge, Massachusetts, USA

Vrije Universiteit Brussel
Brussels, Belgium

Neil Gershenfeld
ng@cba.mit.edu

MIT Center for Bits and Atoms
Cambridge, Massachusetts, USA

Figure 1: A xylophone music machine built with the Modular-Things framework, comprising four modules: two stepper motors
for motion, and two DC load drivers for triggering the mallets with electric coils.

ABSTRACT
We present a collection of tools for building plug-and-play modu-
lar physical computing systems that we call Modular-Things. Our
tools consist of a set of single purpose embedded devices, a link
layer agnostic message passing system for communication between
devices, and a web-based programming environment. The devices
are dynamically discovered and virtualized into software objects
that can be programmed in the web IDE. We tested Modular-Things
in a classroom setting where groups of novice machine builders
constructed custom machines that integrated embedded systems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3585642

modules with high-level responsive interfaces built with web and
computer vision technologies. Users also extended our system by
constructing new customized devices.

CCS CONCEPTS
• Networks → Programming interfaces; • Computer systems
organization → Embedded systems; • Human-centered com-
puting → User interface toolkits.

KEYWORDS
modular physical systems, virtualization, composability, prototyp-
ing frameworks
ACM Reference Format:
Jake Robert Read, Leo McElroy, Quentin Bolsee, B. Smith, and Neil Gershen-
feld. 2023. Modular-Things: Plug-and-Play with Virtualized Hardware. In
Extended Abstracts of the 2023 CHI Conference on Human Factors in Comput-
ing Systems (CHI EA ’23), April 23–28, 2023, Hamburg, Germany. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3544549.3585642

https://orcid.org/0000-0003-4422-5837
https://orcid.org/0000-0002-0969-514X
https://orcid.org/0000-0003-1367-6416
https://doi.org/10.1145/3544549.3585642
https://doi.org/10.1145/3544549.3585642
mailto:ng@cba.mit.edu
mailto:quentinbolsee@hotmail.com
mailto:leomcelroy@gmail.com
mailto:jake.read@cba.mit.edu

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Read et al.

1 INTRODUCTION
The design and assembly of physical computing systems is chal-
lenging. Creators have to navigate a broad set of skills that cut
through disciplines in design, mechanical, electrical, and software
engineering. Consequently HCI researchers and developers have
created a collection of physical computing and electronic proto-
typing systems that aim to reduce complexity, increase speed of
integration, and lower barriers to entry [12] [15]. Platforms like
Arduino aimed to do this by making embedded programming easier
with an abstraction layer across systems that allowed users to write
portable embedded code.

This has been highly successful in making embedded program-
ming more accessible, and has created ecosystems of breadboards,
breakout boards, and libraries. But there remains room for improve-
ment in the development process of physical computing systems.
We see three main issues with the single microcontroller compiled
frmware approach:

(1) Compiling and fashing frmware limits the interactive po-
tential of the development process, because it inserts a delay
between writing and testing code.

(2) Single-microcontroller projects lead to the creation of mono-
lithic systems where individual functions are tightly coupled
across design, mechanical, electrical, and software layers.

(3) Monolithic systems can present bottlenecks when a single
microcontroller’s available physical resources are used up
(i.e. GPIO pins are all occupied or I2C address collisions
occur).

One emerging approach to remediating the frst issue is to embed
high-level language interpreters into devices to create interactive
development environments that run on microcontrollers [19]. This
technique is seen in MicroPython on the Raspberry Pi Pico [7]. We
implement an alternative approach to creating responsive develop-
ment tools. Instead of trying to put high-level programming into
devices, we lift devices into high-level programming environments
by way of virtualization.

Virtualization (akin to the paradigm of Object Oriented Hard-
ware, [16]) means each hardware module is represented to an ap-
plication programmer as a unique software object that can be ma-
nipulated in a high-level programming environment (in our case
JavaScript). Because this approach allows functionality to be broken
out at a device level, monolithic systems ordinarily composed of one
MCU with many peripherals can be recomposed as heterogeneous
systems of many devices each with dedicated functionality.

In this paper we present our approach to improved prototyping of
cyber-physical systems with virtualized modules, Modular-Things.
Modular-Things consists of a web-based programming environment
that we explain in Section 3.4, a small message passing library that
supports a variety of link layers [10] and topologies (Section 3.6),
and a collection of single purpose boards (or "things") which can
be easily extended by users (Sections 3.1 and 3.3). In Section 4 we
present a limited user trial, and in Section 5 we describe some
limitations of our approach and plans for future improvements.

2 RELATED WORK
Our work builds upon developments in accessible physical comput-
ing systems [12] and extensible hardware construction kits [17] [8].

Over the last decade the most popular accessible physical comput-
ing tools have included Arduino [3], micro:bit [1], mini-computers
from Raspberry Pi [20], and more recently the Raspberry Pi Pico [7].
These tools are all based on singular development boards, where
users compile frmware for a single MCU and attach peripherals
through exposed GPIO pins.

Some kits are designed with modularization in mind as is the
case with SEEED Studio’s Grove [5], Adafruit’s STEMMA, Spark-
fun’s Qwiic [6] and LittleBits [4]. These modularized circuits treat
the entire kit as a library of functionalities embodied in each circuit
which can be composed to build complete systems. This composi-
tion occurs by connecting circuits together in a consistent manner.
Sadler et al. [18] emphasize how this interfacing step must be a one
step process.

In order to simplify the interfacing process, construction kit
developers use intra-board communication systems. Notably with
Grove, STEMMA, and Qwiic I2C is used for this purpose. I2C is
an on-circuit bus protocol for talking to a large number of devices,
but most commonly sensors [9]. One disadvantage of I2C is that
devices require unique addresses, which limits the discoverability
of the system because users must know addresses beforehand.

Recently Microsoft Research developed a modular system similar
to our own, Jacdac [11] [2]. Jacdac also ofers an extensible physical
computing system. We share similar design goals of creating easy
hardware composition, plug-and-play software abstractions, and
low cost systems. Superfcially our work varies by opting to use
USB as the communication link layer rather than a custom commu-
nication protocol and connector. In our system however USB is only
one choice of embodiment among available link layers which the
underlying networking system supports. We further diferentiate
ourselves from Jacdac by demonstrating the ease of developing
new modules. In workshops new users created new modules by
rapidly fabricating boards, hacking existing boards, and using our
provided breadboard Modular-Thing. Figure 2 shows three such
ad-hoc boards that were included into the Modular-Things system
by their developers.

Figure 2: Our circuit kit, including boards designed by begin-
ners and generic development boards. Each embeds a USB-
capable microcontroller for easy interfacing with a host com-
puter. Top row left to right: potentiometer, RGB LED and
button, capacitive touch sensor, accelorometer/gyroscope,
DC load driver, LED/button/I2C/Serial Port homemade. Bot-
tom row left to right: SAMD21 H-bridge stepper motor dri-
ver, Xiao RP2040 H-bridge stepper motor driver, breadboard,
servo, homemade CNC milled LED/button.

Modular-Things: Plug-and-Play with Virtualized Hardware CHI EA ’23, April 23–28, 2023, Hamburg, Germany

3 DESIGN GOALS AND IMPLEMENTATION
The Modular-Things framework comprises three main elements. (1)
An Arduino library that allows embedded programmers to rapidly
turn any Arduino project into a new Modular-Thing. This library
provides naming, routing and discoverability layers that allows
modules to be found on simple or complex network topologies, and
which enables inter-device message passing. (2) A web-based inter-
active development environment that presents available devices to
user-programmers, and allows them to quickly write new programs
with those modules. (3) A set of purpose-built Modular-Things
(circuits and frmwares) that can be easily extended.

Collectively these elements allow developers of physical com-
puting systems to rapidly assemble modules of hardware into new
systems using a high-level programming language. In this section,
we go into more detail on each aspect.

Figure 3: User interface for editing the project’s JavaScript
code (upper left), with a dynamic listing of connected mod-
ules (middle) along with their APIs. An optional HTML view
can be defned by the user for making custom interfaces (bot-
tom left).

3.1 High-Level Application Programming for
Embedded Devices via Virtualization

There are a number of reasons why development in high-level
languages is seen to be preferable to development in the low-level
languages used in microcontrollers. (1) High-level languages are
easier to learn. (2) The delay between writing and testing code is
brief and interactive. (3) There are rich debugging tools in high-
level languages. (4) There is a broad set of available libraries and
packages in high level languages (i.e. the commons of PIP and
NPM).

Only two of these points (1, 2), actually pertain to the language
itself. The rich debugging tools and availability of libraries both
depend on the context in which those languages are deployed. For
example much of the value in JavaScript is in the browser and its
litany of tools. Much of the value of Python is in the availability of
PIP packages.

In order to leverage the full value of high-level programming, our
system opts to adopt a strategy of virtualization. In this strategy
function-specifc frmwares are built ahead of time into composable
modules, and those modules are remotely operated in a high-level
language (JavaScript) which is running in a high-level context (the
browser). Rather than "embedding" a high-level language into hard-
ware, we are "lifting" hardware modules into a high-level language.
This lift allows us to shift application-specifc code out of hardware

systems and into a friendlier programming environment. It also
afords a straightforward way of composing multiple modules, by
maintaining that each unique module is addressable as a unique
software object.

3.2 User Workfow
With Modular-Things, users can assemble new physical computing
systems in a plug-and-play manner, such as the example machine
illustrated in Figure 1. When users plug devices into a network,
they are automatically discovered, and their unique name, along
with their API, is presented to the programmer as a virtualized
software object. The device can immediately be used by calling the
functions presented in its API. Since multiple things can be plugged
in to the same network, composition of systems is just as simple
as building a program that uses multiple software objects. To the
programmer, the only substantive diference is that these software
objects are remotely operating real hardware modules.

3.3 Rapidly Virtualizing Embedded Codes

Figure 4: Integrating a new embedded device as a Modular-
Thing means defning an embedded API, and describing that
API in a matching JavaScript fle. Modules extend the Ar-
duino framework, and the programming burden can be as
small as 50 lines in total for simple modules.

Using existing modules makes it possible to build new physical
computing systems without engaging in any embedded program-
ming or device design. However, creating new modules is also
simple, as shown in Figure 4. First, device authors write frmwares
that operate their module, and design an API. They they install
OSAP (a library which is explained in Section 3.6), which they can
use to name their device and instantiate a link layer that allows the
device to connect to the Modular-Things network. Next, authors
write message handlers in their frmware that operate their API, and
write a matching fle in JavaScript that serves as an intermediary
between the high-level API and their device frmware. At runtime,
the JavaScript object is dynamically paired with a data channel to
the device, and the device is then virtualized.

3.4 Aligning Code and Reality
A primary goal of our system design was to automatically reconcile
misalignments between the programmers’ code and the physical re-
ality of the system. Generally, embedded devices must know ahead
of time what type of messages to expect and high-level programs
must know ahead of time what the devices are and where they
will be located. We address this issue by dynamically presenting
a list of available devices, which each maintain individual device
identities with in-device non-volatile names. This list is seen in the
side panel of the web IDE in Figure 3. This allows users to easily

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Read et al.

switch between writing code, adding/removing devices, and testing
devices.

3.5 Built-in UI Development
Physical computing systems often require the integration of user
interfaces. This was a strong factor in our choice of the browser as
a high-level computing environment. In order to rapidly combine
controllers with UIs, our web IDE allows programmers to switch
from a programming view to a rendered view, as diagrammed in
Figure 3. UI-defning JavaScript simply lives alongside machine
controller code.

3.6 Discoverability, Scalability and Extensibility

Figure 5: Modular-Things can be attached to one another
using a wide range of link layers, and network topologies
using a message-passing, source-routed scheme.

Many prototyping tools for physical computing systems are char-
acterized by the link layer across which they operate; for example
STEMMA and Qwiic systems are fundamentally based on I2C in-
terconnect and Jacdac is characterized by the Jacdac bus. While
we primarily developed USB-based devices, we wanted to enable
Modular-Things to be discovered across any potential link layers,
even those that have not yet been designed. Moreover, we wanted to
be able to combine link layers with one another to form ad-hoc net-
works. To do so, we implemented a small interconnect system called
“OSAP” (Open Systems Assembly Protocol) that provides naming,
routing, and discoverability services to our application. A complete
description of this layer is outside of the scope of this paper, but
we provide a summary of its operation here.

3.6.1 Packetized, Source-Routed Message Passing. OSAP’s primary
function is to route messages throughout graphs of various topology.
To do so, it uses source routes that are embedded within the packet
header itself. This is important because each OSAP device is also
an OSAP router, and source routing means that routers can remain
simple and stateless even in the context of messy graphs.

3.6.2 Link-Layer Agnostic Graphs. OSAP’s own runtime knows
nothing about the link layers it uses to form a graph: it merely dif-
ferentiates between one-to-one and one-to-many links (ports and
busses, respectively). To attach OSAP devices to one another, link
layers are interfaced to the OSAP runtime through a simple API that
hands of outgoing messages and uses a callback for incoming mes-
sages. This means that almost any packetized transmission device
can be integrated with OSAP: to date we have used WebSockets,
USB Serial, UART and UART-based busses.

Because OSAP devices are also routers, building an OSAP bridge
layer (between a WebSocket and USB Serial Ports - for example),

can be done by attaching multiple link layers to the same OSAP
runtime. We show a diagram of the types of device graphs that are
possible using this scheme in Figure 5.

3.6.3 Graph Discovery. OSAP contains afordances for automated
graph traversal, in the form of a special packet that queries a device’s
neighbourhood for active links. Devices can also respond to queries
about their name and their contents. Using these packets, our web
IDE can build a map of the device graph, and use that map to identify
new devices and pair them with their JavaScript APIs.

3.7 Motion Controllers
We found it was possible to implement synchronized motion with-
out motors being directly connected to one another. We did so
using a pure software object called a "synchronizer" that operates
multiple motor modules simultaneously. This was enabled by a per-
formant transport layer, that delivers packets to up to seven devices
within 5�� of one another in worst case measurements, and most
often within 500�� . Because packet arrival is nearly synchronous,
and the motor controllers are sophisticated enough to run entire
segments of motion, it is feasible to remotely operate a group of
motors as if it were one cohesive machine.

This strategy is akin to virtual machines [14], though our syn-
chronization strategy is less sophisticated, and our modularization
strategy is more extensible. Because these systems are modular by
nature, users can assemble new machine systems that have wide
and varying numbers of peripheral devices.

4 APPLICATION, USE AND EVALUATION
We did not conduct a full user study, though we did deploy Modular-
Things in a classroom setting and during a fve day workshop
with instructors in digital fabrication. Approximately 60 students
were broken into groups of 15 and tasked with building complete
machines (including mechanism, actuation, automation and ap-
plication) over the course of one week. Each group designed and
constructed a unique machine with custom controls and high-level
graphical interfaces. Some of these machines can be seen in Figure
6, and included a sand art drawing machine, a pancake plotter, a
CoreXY[13] pen plotter, and an auto-aiming toilet paper throwing
machine that integrated computer vision libraries to recognize faces
and auto-aim the machine towards them. This level of system inte-
gration was made possible through Modular-Things because motor
control was available in the same computing environment as the
facial recognition software. Some students found Modular-Things
intuitive to use and elected to reuse it for their fnal projects in the
class. One of these students (a frst time machine builder) developed
a machine for photopolymerization of photo-responsive liquid crys-
tal elastomers by direct laser writing. We observed users were able
to easily replicate the work of others by copying code, plugging in
the required modules, and renaming devices to match the naming
scheme of their example snippets. Users did this to rapidly recreate
motion systems which would have been difcult to recreate at a
frmware level.

Successful development of these machines demonstrated it was
possible for novice users of Modular-Things to create non-trivial
integrated physical computing systems, with demanding coordi-
nation among devices. Additionally it was possible for users to

Modular-Things: Plug-and-Play with Virtualized Hardware CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: Machines made or modifed by students as part of
the digital fabrication class. Modular-Things were used to
develop these machines’ control systems, including impro-
vised devices with custom frmware and APIs.

leverage existing knowledge of high-level technologies (i.e. HTM-
L/CSS/JS stack and computer vision libraries) to create responsive
interfaces for these machines which would generally be difcult to
integrate with low-level devices.

We found that during this machine building week and our fve
day workshop many testers wanted to develop their own custom
devices which could be integrated with Modular-Things. This was
demonstrated by users constructing custom electronics from our
"breadboard-thing", hacking DC motors with encoders to be used
with "stepper-things", and fabricating their own "things" by writing
custom frmware with the networking library, one of which is
pictured in Figure 2.

5 LIMITATIONS AND FUTURE WORK
The version of Modular-Things presented here has a few limitations.
Notably, most single purpose devices we developed relied on USB
for communication with the high-level programming environment,
which can be expensive and unwieldy as systems scale. Besides
including lower-level UART-based link layers that we have already
developed in our basic set of boards, we plan to include lightweight
link layers for I2C, SPI, and wireless links like BLE and LoRA.

It could be seen as burdensome that each module requires its
own microcontroller and data link. Currently these costs are on the
order of $5 USD per module; we suggest that they are outweighed
by the value provided by virtualization in prototyping contexts.

Another limitation is that systems are tethered to high-level
computing devices in which they are programmed, normally user
laptops. We also plan to develop design patterns for stand-alone
systems that replace the high-level desktop computer with an em-
bedded device which can exist within the system, or simple methods
for the deployment of Modular-Things onto smaller, stand-alone
computers that can be permanently integrated with projects.

Operating modular devices over a network also presents timing
challenges. Although our system can provide order-of-operation
guarantees (using asynchronous programming patterns in JavaScript),
function calls to remote modules can take up to 10ms to complete.
This means that user-created real-time feedback applications are
not possible, although feed-forward applications (like most machine
controllers) can be implemented (as demonstrated). Our approach
relies on module authors to implement tightly timed system aspects
(like motor controllers) in their frmwares, that can be combined
at a high level by user-programmers. It seems likely that the incor-
poration of lower-level link layers and deployment on i.e. single-
board-computers may improve this performance bottleneck, but
much future work lays in this direction.

6 CONCLUSION
In this work we presented Modular-Things. It consists of a collection
of single purpose boards and frmwares, but more importantly,
a toolkit for building extensible virtualized physical computing
systems. The toolkit consists of a networking and discoverability
layer to connect modules together, a library for the authorship of
new modules, and a Web IDE for their integration. In the future
we plan to develop a wider variety of link layers, and methods
to allow Modular-Things to operate independently of the high-
level computing environments in which they are developed and
confgured.

With our system users were able to rapidly create machines with
rich features and interfaces without writing embedded frmwares.
This demonstrated the viability of using virtualized hardware in
discoverable interactive development environments to prototype
cyber-physical systems. Importantly, we found that providing the
tools to develop new Modular-Things allowed users to integrate
their own virtualized devices, which greatly extended the capabili-
ties of the overall system.

REFERENCES
[1] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney, Peli

De Halleux, Steve Hodges, Michał Moskal, and Gareth Stockdale. 2020. The
BBC micro: bit: from the UK to the world. Commun. ACM 63, 3 (2020), 62–69.

[2] Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michal Moskal.
2023. Jacdac: Service-based Prototyping of Embedded Systems. Technical Re-
port MSR-TR-2023-4. Microsoft. https://www.microsoft.com/en-us/research/
publication/jacdac-service-based-prototyping-of-embedded-systems/

[3] Massimo Banzi and Michael Shiloh. 2022. Getting started with Arduino. Maker
Media, Inc.

[4] Ayah Bdeir. 2009. Electronics as material: littleBits. In Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction. 397–400.

[5] Charles Bell. 2021. Introducing Grove. In Beginning IoT Projects. Springer, 481–
509.

[6] Charles Bell. 2021. Introducing Qwiic and STEMMA QT. In Beginning IoT Projects.
Springer, 217–258.

[7] Charles Bell. 2022. Introducing the Raspberry Pi Pico. In Beginning MicroPython
with the Raspberry Pi Pico. Springer, 1–42.

[8] Paulo Blikstein. 2013. Gears of our childhood: constructionist toolkits, robotics,
and physical computing, past and future. In Proceedings of the 12th international
conference on interaction design and children. 173–182.

[9] Peter Corcoran. 2013. Two wires and 30 years: A tribute and introductory tutorial
to the I2C two-wire bus. IEEE Consumer Electronics Magazine 2, 3 (2013), 30–36.

[10] John D Day and Hubert Zimmermann. 1983. The OSI reference model. Proc. IEEE
71, 12 (1983), 1334–1340.

[11] James Devine, Michal Moskal, Peli de Halleux, Thomas Ball, Steve Hodges,
Gabriele D’Amone, David Gakure, Joe Finney, Lorraine Underwood, Kobi Hartley,
et al. 2022. Plug-and-play physical computing with Jacdac. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3 (2022),
1–30.

[12] Mannu Lambrichts, Raf Ramakers, Steve Hodges, Sven Coppers, and James
Devine. 2021. A Survey and Taxonomy of Electronics Toolkits for Interactive and
Ubiquitous Device Prototyping. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 5, 2 (2021), 1–24.

[13] IE Moyer. 2012. Core xy.
[14] Ilan Ellison Moyer. 2013. A gestalt framework for virtual machine control of

automated tools. Ph. D. Dissertation. Massachusetts Institute of Technology.
[15] Nadya Peek, James Coleman, Ilan Moyer, and Neil Gershenfeld. 2017. Cardboard

machine kit: Modules for the rapid prototyping of rapid prototyping machines. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
3657–3668.

[16] Nadya Nadya Meile Peek. 2016. Making machines that make: object-oriented hard-
ware meets object-oriented software. Ph. D. Dissertation. Massachusetts Institute
of Technology.

[17] Mitchel Resnick and Brian Silverman. 2005. Some refections on designing
construction kits for kids. In Proceedings of the 2005 conference on Interaction
design and children. 117–122.

[18] Joel Sadler, Kevin Durfee, Lauren Shluzas, and Paulo Blikstein. 2015. Bloctopus:
A novice modular sensor system for playful prototyping. In Proceedings of the

https://www.microsoft.com/en-us/research/publication/jacdac-service-based-prototyping-of-embedded-systems/
https://www.microsoft.com/en-us/research/publication/jacdac-service-based-prototyping-of-embedded-systems/

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Read et al.

ninth international conference on tangible, embedded, and embodied interaction.
347–354.

[20] Eben Upton and Gareth Halfacree. 2014. Raspberry Pi user guide. John Wiley &
Sons.

[19] Nicholas H Tollervey. 2017. Programming with MicroPython: embedded program-
ming with microcontrollers and Python. " O’Reilly Media, Inc.". Received 19 January 2023

	Abstract
	1 Introduction
	2 Related Work
	3 Design Goals and Implementation
	3.1 High-Level Application Programming for Embedded Devices via Virtualization
	3.2 User Workflow
	3.3 Rapidly Virtualizing Embedded Codes
	3.4 Aligning Code and Reality
	3.5 Built-in UI Development
	3.6 Discoverability, Scalability and Extensibility
	3.7 Motion Controllers

	4 Application, Use and Evaluation
	5 Limitations and Future Work
	6 Conclusion
	References

