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Figure 1: A xylophone music machine built with the Modular-Things framework, comprising four modules: two stepper motors 
for motion, and two DC load drivers for triggering the mallets with electric coils. 

ABSTRACT 
We present a collection of tools for building plug-and-play modu-
lar physical computing systems that we call Modular-Things. Our 
tools consist of a set of single purpose embedded devices, a link 
layer agnostic message passing system for communication between 
devices, and a web-based programming environment. The devices 
are dynamically discovered and virtualized into software objects 
that can be programmed in the web IDE. We tested Modular-Things 
in a classroom setting where groups of novice machine builders 
constructed custom machines that integrated embedded systems 
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modules with high-level responsive interfaces built with web and 
computer vision technologies. Users also extended our system by 
constructing new customized devices. 

CCS CONCEPTS 
• Networks → Programming interfaces; • Computer systems 
organization → Embedded systems; • Human-centered com-
puting → User interface toolkits. 

KEYWORDS 
modular physical systems, virtualization, composability, prototyp-
ing frameworks 
ACM Reference Format: 
Jake Robert Read, Leo McElroy, Quentin Bolsee, B. Smith, and Neil Gershen-
feld. 2023. Modular-Things: Plug-and-Play with Virtualized Hardware. In 
Extended Abstracts of the 2023 CHI Conference on Human Factors in Comput-
ing Systems (CHI EA ’23), April 23–28, 2023, Hamburg, Germany. ACM, New 
York, NY, USA, 6 pages. https://doi.org/10.1145/3544549.3585642 

https://orcid.org/0000-0003-4422-5837
https://orcid.org/0000-0002-0969-514X
https://orcid.org/0000-0003-1367-6416
https://doi.org/10.1145/3544549.3585642
https://doi.org/10.1145/3544549.3585642
mailto:ng@cba.mit.edu
mailto:quentinbolsee@hotmail.com
mailto:leomcelroy@gmail.com
mailto:jake.read@cba.mit.edu


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Read et al. 

1 INTRODUCTION 
The design and assembly of physical computing systems is chal-
lenging. Creators have to navigate a broad set of skills that cut 
through disciplines in design, mechanical, electrical, and software 
engineering. Consequently HCI researchers and developers have 
created a collection of physical computing and electronic proto-
typing systems that aim to reduce complexity, increase speed of 
integration, and lower barriers to entry [12] [15]. Platforms like 
Arduino aimed to do this by making embedded programming easier 
with an abstraction layer across systems that allowed users to write 
portable embedded code. 

This has been highly successful in making embedded program-
ming more accessible, and has created ecosystems of breadboards, 
breakout boards, and libraries. But there remains room for improve-
ment in the development process of physical computing systems. 
We see three main issues with the single microcontroller compiled 
frmware approach: 

(1) Compiling and fashing frmware limits the interactive po-
tential of the development process, because it inserts a delay 
between writing and testing code. 

(2) Single-microcontroller projects lead to the creation of mono-
lithic systems where individual functions are tightly coupled 
across design, mechanical, electrical, and software layers. 

(3) Monolithic systems can present bottlenecks when a single 
microcontroller’s available physical resources are used up 
(i.e. GPIO pins are all occupied or I2C address collisions 
occur). 

One emerging approach to remediating the frst issue is to embed 
high-level language interpreters into devices to create interactive 
development environments that run on microcontrollers [19]. This 
technique is seen in MicroPython on the Raspberry Pi Pico [7]. We 
implement an alternative approach to creating responsive develop-
ment tools. Instead of trying to put high-level programming into 
devices, we lift devices into high-level programming environments 
by way of virtualization. 

Virtualization (akin to the paradigm of Object Oriented Hard-
ware, [16]) means each hardware module is represented to an ap-
plication programmer as a unique software object that can be ma-
nipulated in a high-level programming environment (in our case 
JavaScript). Because this approach allows functionality to be broken 
out at a device level, monolithic systems ordinarily composed of one 
MCU with many peripherals can be recomposed as heterogeneous 
systems of many devices each with dedicated functionality. 

In this paper we present our approach to improved prototyping of 
cyber-physical systems with virtualized modules, Modular-Things. 
Modular-Things consists of a web-based programming environment 
that we explain in Section 3.4, a small message passing library that 
supports a variety of link layers [10] and topologies (Section 3.6), 
and a collection of single purpose boards (or "things") which can 
be easily extended by users (Sections 3.1 and 3.3). In Section 4 we 
present a limited user trial, and in Section 5 we describe some 
limitations of our approach and plans for future improvements. 

2 RELATED WORK 
Our work builds upon developments in accessible physical comput-
ing systems [12] and extensible hardware construction kits [17] [8]. 

Over the last decade the most popular accessible physical comput-
ing tools have included Arduino [3], micro:bit [1], mini-computers 
from Raspberry Pi [20], and more recently the Raspberry Pi Pico [7]. 
These tools are all based on singular development boards, where 
users compile frmware for a single MCU and attach peripherals 
through exposed GPIO pins. 

Some kits are designed with modularization in mind as is the 
case with SEEED Studio’s Grove [5], Adafruit’s STEMMA, Spark-
fun’s Qwiic [6] and LittleBits [4]. These modularized circuits treat 
the entire kit as a library of functionalities embodied in each circuit 
which can be composed to build complete systems. This composi-
tion occurs by connecting circuits together in a consistent manner. 
Sadler et al. [18] emphasize how this interfacing step must be a one 
step process. 

In order to simplify the interfacing process, construction kit 
developers use intra-board communication systems. Notably with 
Grove, STEMMA, and Qwiic I2C is used for this purpose. I2C is 
an on-circuit bus protocol for talking to a large number of devices, 
but most commonly sensors [9]. One disadvantage of I2C is that 
devices require unique addresses, which limits the discoverability 
of the system because users must know addresses beforehand. 

Recently Microsoft Research developed a modular system similar 
to our own, Jacdac [11] [2]. Jacdac also ofers an extensible physical 
computing system. We share similar design goals of creating easy 
hardware composition, plug-and-play software abstractions, and 
low cost systems. Superfcially our work varies by opting to use 
USB as the communication link layer rather than a custom commu-
nication protocol and connector. In our system however USB is only 
one choice of embodiment among available link layers which the 
underlying networking system supports. We further diferentiate 
ourselves from Jacdac by demonstrating the ease of developing 
new modules. In workshops new users created new modules by 
rapidly fabricating boards, hacking existing boards, and using our 
provided breadboard Modular-Thing. Figure 2 shows three such 
ad-hoc boards that were included into the Modular-Things system 
by their developers. 

Figure 2: Our circuit kit, including boards designed by begin-
ners and generic development boards. Each embeds a USB-
capable microcontroller for easy interfacing with a host com-
puter. Top row left to right: potentiometer, RGB LED and 
button, capacitive touch sensor, accelorometer/gyroscope, 
DC load driver, LED/button/I2C/Serial Port homemade. Bot-
tom row left to right: SAMD21 H-bridge stepper motor dri-
ver, Xiao RP2040 H-bridge stepper motor driver, breadboard, 
servo, homemade CNC milled LED/button. 
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3 DESIGN GOALS AND IMPLEMENTATION 
The Modular-Things framework comprises three main elements. (1) 
An Arduino library that allows embedded programmers to rapidly 
turn any Arduino project into a new Modular-Thing. This library 
provides naming, routing and discoverability layers that allows 
modules to be found on simple or complex network topologies, and 
which enables inter-device message passing. (2) A web-based inter-
active development environment that presents available devices to 
user-programmers, and allows them to quickly write new programs 
with those modules. (3) A set of purpose-built Modular-Things 
(circuits and frmwares) that can be easily extended. 

Collectively these elements allow developers of physical com-
puting systems to rapidly assemble modules of hardware into new 
systems using a high-level programming language. In this section, 
we go into more detail on each aspect. 

Figure 3: User interface for editing the project’s JavaScript 
code (upper left), with a dynamic listing of connected mod-
ules (middle) along with their APIs. An optional HTML view 
can be defned by the user for making custom interfaces (bot-
tom left). 

3.1 High-Level Application Programming for 
Embedded Devices via Virtualization 

There are a number of reasons why development in high-level 
languages is seen to be preferable to development in the low-level 
languages used in microcontrollers. (1) High-level languages are 
easier to learn. (2) The delay between writing and testing code is 
brief and interactive. (3) There are rich debugging tools in high-
level languages. (4) There is a broad set of available libraries and 
packages in high level languages (i.e. the commons of PIP and 
NPM). 

Only two of these points (1, 2), actually pertain to the language 
itself. The rich debugging tools and availability of libraries both 
depend on the context in which those languages are deployed. For 
example much of the value in JavaScript is in the browser and its 
litany of tools. Much of the value of Python is in the availability of 
PIP packages. 

In order to leverage the full value of high-level programming, our 
system opts to adopt a strategy of virtualization. In this strategy 
function-specifc frmwares are built ahead of time into composable 
modules, and those modules are remotely operated in a high-level 
language (JavaScript) which is running in a high-level context (the 
browser). Rather than "embedding" a high-level language into hard-
ware, we are "lifting" hardware modules into a high-level language. 
This lift allows us to shift application-specifc code out of hardware 

systems and into a friendlier programming environment. It also 
afords a straightforward way of composing multiple modules, by 
maintaining that each unique module is addressable as a unique 
software object. 

3.2 User Workfow 
With Modular-Things, users can assemble new physical computing 
systems in a plug-and-play manner, such as the example machine 
illustrated in Figure 1. When users plug devices into a network, 
they are automatically discovered, and their unique name, along 
with their API, is presented to the programmer as a virtualized 
software object. The device can immediately be used by calling the 
functions presented in its API. Since multiple things can be plugged 
in to the same network, composition of systems is just as simple 
as building a program that uses multiple software objects. To the 
programmer, the only substantive diference is that these software 
objects are remotely operating real hardware modules. 

3.3 Rapidly Virtualizing Embedded Codes 

Figure 4: Integrating a new embedded device as a Modular-
Thing means defning an embedded API, and describing that 
API in a matching JavaScript fle. Modules extend the Ar-
duino framework, and the programming burden can be as 
small as 50 lines in total for simple modules. 

Using existing modules makes it possible to build new physical 
computing systems without engaging in any embedded program-
ming or device design. However, creating new modules is also 
simple, as shown in Figure 4. First, device authors write frmwares 
that operate their module, and design an API. They they install 
OSAP (a library which is explained in Section 3.6), which they can 
use to name their device and instantiate a link layer that allows the 
device to connect to the Modular-Things network. Next, authors 
write message handlers in their frmware that operate their API, and 
write a matching fle in JavaScript that serves as an intermediary 
between the high-level API and their device frmware. At runtime, 
the JavaScript object is dynamically paired with a data channel to 
the device, and the device is then virtualized. 

3.4 Aligning Code and Reality 
A primary goal of our system design was to automatically reconcile 
misalignments between the programmers’ code and the physical re-
ality of the system. Generally, embedded devices must know ahead 
of time what type of messages to expect and high-level programs 
must know ahead of time what the devices are and where they 
will be located. We address this issue by dynamically presenting 
a list of available devices, which each maintain individual device 
identities with in-device non-volatile names. This list is seen in the 
side panel of the web IDE in Figure 3. This allows users to easily 
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switch between writing code, adding/removing devices, and testing 
devices. 

3.5 Built-in UI Development 
Physical computing systems often require the integration of user 
interfaces. This was a strong factor in our choice of the browser as 
a high-level computing environment. In order to rapidly combine 
controllers with UIs, our web IDE allows programmers to switch 
from a programming view to a rendered view, as diagrammed in 
Figure 3. UI-defning JavaScript simply lives alongside machine 
controller code. 

3.6 Discoverability, Scalability and Extensibility 

Figure 5: Modular-Things can be attached to one another 
using a wide range of link layers, and network topologies 
using a message-passing, source-routed scheme. 

Many prototyping tools for physical computing systems are char-
acterized by the link layer across which they operate; for example 
STEMMA and Qwiic systems are fundamentally based on I2C in-
terconnect and Jacdac is characterized by the Jacdac bus. While 
we primarily developed USB-based devices, we wanted to enable 
Modular-Things to be discovered across any potential link layers, 
even those that have not yet been designed. Moreover, we wanted to 
be able to combine link layers with one another to form ad-hoc net-
works. To do so, we implemented a small interconnect system called 
“OSAP” (Open Systems Assembly Protocol) that provides naming, 
routing, and discoverability services to our application. A complete 
description of this layer is outside of the scope of this paper, but 
we provide a summary of its operation here. 

3.6.1 Packetized, Source-Routed Message Passing. OSAP’s primary 
function is to route messages throughout graphs of various topology. 
To do so, it uses source routes that are embedded within the packet 
header itself. This is important because each OSAP device is also 
an OSAP router, and source routing means that routers can remain 
simple and stateless even in the context of messy graphs. 

3.6.2 Link-Layer Agnostic Graphs. OSAP’s own runtime knows 
nothing about the link layers it uses to form a graph: it merely dif-
ferentiates between one-to-one and one-to-many links (ports and 
busses, respectively). To attach OSAP devices to one another, link 
layers are interfaced to the OSAP runtime through a simple API that 
hands of outgoing messages and uses a callback for incoming mes-
sages. This means that almost any packetized transmission device 
can be integrated with OSAP: to date we have used WebSockets, 
USB Serial, UART and UART-based busses. 

Because OSAP devices are also routers, building an OSAP bridge 
layer (between a WebSocket and USB Serial Ports - for example), 

can be done by attaching multiple link layers to the same OSAP 
runtime. We show a diagram of the types of device graphs that are 
possible using this scheme in Figure 5. 

3.6.3 Graph Discovery. OSAP contains afordances for automated 
graph traversal, in the form of a special packet that queries a device’s 
neighbourhood for active links. Devices can also respond to queries 
about their name and their contents. Using these packets, our web 
IDE can build a map of the device graph, and use that map to identify 
new devices and pair them with their JavaScript APIs. 

3.7 Motion Controllers 
We found it was possible to implement synchronized motion with-
out motors being directly connected to one another. We did so 
using a pure software object called a "synchronizer" that operates 
multiple motor modules simultaneously. This was enabled by a per-
formant transport layer, that delivers packets to up to seven devices 
within 5�� of one another in worst case measurements, and most 
often within 500�� . Because packet arrival is nearly synchronous, 
and the motor controllers are sophisticated enough to run entire 
segments of motion, it is feasible to remotely operate a group of 
motors as if it were one cohesive machine. 

This strategy is akin to virtual machines [14], though our syn-
chronization strategy is less sophisticated, and our modularization 
strategy is more extensible. Because these systems are modular by 
nature, users can assemble new machine systems that have wide 
and varying numbers of peripheral devices. 

4 APPLICATION, USE AND EVALUATION 
We did not conduct a full user study, though we did deploy Modular-
Things in a classroom setting and during a fve day workshop 
with instructors in digital fabrication. Approximately 60 students 
were broken into groups of 15 and tasked with building complete 
machines (including mechanism, actuation, automation and ap-
plication) over the course of one week. Each group designed and 
constructed a unique machine with custom controls and high-level 
graphical interfaces. Some of these machines can be seen in Figure 
6, and included a sand art drawing machine, a pancake plotter, a 
CoreXY[13] pen plotter, and an auto-aiming toilet paper throwing 
machine that integrated computer vision libraries to recognize faces 
and auto-aim the machine towards them. This level of system inte-
gration was made possible through Modular-Things because motor 
control was available in the same computing environment as the 
facial recognition software. Some students found Modular-Things 
intuitive to use and elected to reuse it for their fnal projects in the 
class. One of these students (a frst time machine builder) developed 
a machine for photopolymerization of photo-responsive liquid crys-
tal elastomers by direct laser writing. We observed users were able 
to easily replicate the work of others by copying code, plugging in 
the required modules, and renaming devices to match the naming 
scheme of their example snippets. Users did this to rapidly recreate 
motion systems which would have been difcult to recreate at a 
frmware level. 

Successful development of these machines demonstrated it was 
possible for novice users of Modular-Things to create non-trivial 
integrated physical computing systems, with demanding coordi-
nation among devices. Additionally it was possible for users to 
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Figure 6: Machines made or modifed by students as part of 
the digital fabrication class. Modular-Things were used to 
develop these machines’ control systems, including impro-
vised devices with custom frmware and APIs. 

leverage existing knowledge of high-level technologies (i.e. HTM-
L/CSS/JS stack and computer vision libraries) to create responsive 
interfaces for these machines which would generally be difcult to 
integrate with low-level devices. 

We found that during this machine building week and our fve 
day workshop many testers wanted to develop their own custom 
devices which could be integrated with Modular-Things. This was 
demonstrated by users constructing custom electronics from our 
"breadboard-thing", hacking DC motors with encoders to be used 
with "stepper-things", and fabricating their own "things" by writing 
custom frmware with the networking library, one of which is 
pictured in Figure 2. 

5 LIMITATIONS AND FUTURE WORK 
The version of Modular-Things presented here has a few limitations. 
Notably, most single purpose devices we developed relied on USB 
for communication with the high-level programming environment, 
which can be expensive and unwieldy as systems scale. Besides 
including lower-level UART-based link layers that we have already 
developed in our basic set of boards, we plan to include lightweight 
link layers for I2C, SPI, and wireless links like BLE and LoRA. 

It could be seen as burdensome that each module requires its 
own microcontroller and data link. Currently these costs are on the 
order of $5 USD per module; we suggest that they are outweighed 
by the value provided by virtualization in prototyping contexts. 

Another limitation is that systems are tethered to high-level 
computing devices in which they are programmed, normally user 
laptops. We also plan to develop design patterns for stand-alone 
systems that replace the high-level desktop computer with an em-
bedded device which can exist within the system, or simple methods 
for the deployment of Modular-Things onto smaller, stand-alone 
computers that can be permanently integrated with projects. 

Operating modular devices over a network also presents timing 
challenges. Although our system can provide order-of-operation 
guarantees (using asynchronous programming patterns in JavaScript), 
function calls to remote modules can take up to 10ms to complete. 
This means that user-created real-time feedback applications are 
not possible, although feed-forward applications (like most machine 
controllers) can be implemented (as demonstrated). Our approach 
relies on module authors to implement tightly timed system aspects 
(like motor controllers) in their frmwares, that can be combined 
at a high level by user-programmers. It seems likely that the incor-
poration of lower-level link layers and deployment on i.e. single-
board-computers may improve this performance bottleneck, but 
much future work lays in this direction. 

6 CONCLUSION 
In this work we presented Modular-Things. It consists of a collection 
of single purpose boards and frmwares, but more importantly, 
a toolkit for building extensible virtualized physical computing 
systems. The toolkit consists of a networking and discoverability 
layer to connect modules together, a library for the authorship of 
new modules, and a Web IDE for their integration. In the future 
we plan to develop a wider variety of link layers, and methods 
to allow Modular-Things to operate independently of the high-
level computing environments in which they are developed and 
confgured. 

With our system users were able to rapidly create machines with 
rich features and interfaces without writing embedded frmwares. 
This demonstrated the viability of using virtualized hardware in 
discoverable interactive development environments to prototype 
cyber-physical systems. Importantly, we found that providing the 
tools to develop new Modular-Things allowed users to integrate 
their own virtualized devices, which greatly extended the capabili-
ties of the overall system. 
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