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In this paper, we present “BIKED,” a dataset comprised
of 4500 individually designed bicycle models sourced from
hundreds of designers. We expect BIKED to enable a variety
of data-driven design applications for bicycles and support
the development of data-driven design methods. The dataset
is comprised of a variety of design information including
assembly images, component images, numerical design pa-
rameters, and class labels. In this paper, we first discuss
the processing of the dataset, then highlight some prominent
research questions that BIKED can help address. Of these
questions, we further explore the following in detail: 1) How
can we explore, understand, and visualize the current de-
sign space of bicycles and utilize this information? We apply
unsupervised embedding methods to study the design space
and identify key takeaways from this analysis. 2) When de-
signing bikes using algorithms, under what conditions can
machines understand the design of a given bike? We train
a multitude of classifiers to understand designs, then exam-
ine the behavior of these classifiers through confusion matri-
ces and permutation-based interpretability analysis. 3) Can
machines learn to synthesize new bicycle designs by study-
ing existing ones? We test Variational Autoencoders on ran-
dom generation, interpolation, and extrapolation tasks after
training on BIKED data. The dataset and code are available
at http://decode.mit.edu/projects/biked/

1 Introduction
Rapid advancements in machine learning research fields

are often catalyzed by the introduction of quality publicly
available datasets. Open source datasets often serve as
benchmarks to evaluate the performance of different algo-
rithms on a level playing field. In computer vision, for ex-
ample, a set of well-known datasets (Imagenet [1], CIFAR-

10 [2], MNIST [3], etc.) serve as the standard benchmarks
for evaluating new techniques and methods and determining
the state of the art. Data-driven design is a growing field that
has increasingly tapped into machine learning and other data-
driven methods to realize design goals, including automated
design. New methods in data-driven design research are of-
ten tested on existing datasets like 3D model datasets and
topology optimization (TO) datasets, however, these have
drawbacks that limit the scope of their applications. We in-
troduce the BIKED dataset with the primary intent of sup-
porting new data-driven design methods both in general and
in bicycle design specifically. In particular, we support the
development of methods that can leverage detailed paramet-
ric design information, such as explicit dimensions and com-
ponent categories.

Data-driven methods have the potential to enhance bi-
cycle design exploration and generation, just as they have in
other fields. We found the bicycle (bike) design problem to
be an ideal domain for the testing and development of data-
driven methods. Bicycles are machines with hierarchies of
subcomponents, complex part dependencies, and large vari-
ations between designs. This variation largely stems from the
broad set of use cases (road races, stunts, cargo transporta-
tion), physical considerations of the rider (body dimensions,
flexibility, posture), and human preferences (style, aesthet-
ics, budget). Due to this diverse set of constraints, bikes
greatly benefit from customization. This makes the bicy-
cle an excellent candidate for data-driven design, which typ-
ically leverages the design expertise contained in previous
products, studies the diversity of existing designs, and cap-
tures the statistical trends of human preference. Compared
to a manual design process, which is common in the bicy-
cle industry, data-driven approaches can accelerate new bike
design tasks and lead to novel and high-performing designs.
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Significant advancements to the bicycle design field also
have the potential to positively impact society. As of 2015,
there were estimated to be at least 580 million privately
owned bikes worldwide [4]. Despite the continued popu-
larity of bicycles, further increasing bicycle use and own-
ership can improve public health [5], reduce traffic conges-
tion [6], and positively impact the environment [7]. We hope
that by developing new data-driven bicycle design methods,
advancements in the field of bicycle design can be realized
and bicycles can subsequently be made more accessible to
more people. This impact will be especially pronounced if
data-driven design methods can enable increased customiz-
ability for particular user groups for whom bicycles may not
presently be a competitive transportation option.

BIKED—a dataset of bicycle models–is organized and
curated specifically for data-driven design of bicycles1. Data
is sourced from a rich archive of CAD files from the special-
ized BikeCAD software, which is primarily used by profes-
sional frame designers and bicycle enthusiasts. A sequential
data curation process was carried out as detailed in Section 3
to extract parametric design data. As we demonstrate in Sec-
tion 4.1, this parametric data captures the rich variations be-
tween designs in the dataset and is highly revealing of many
parameters of interest like bicycle type.

While we present the dataset itself as the key contribu-
tion of this work, we also outline and explore several key
research questions that BIKED may address: How can we
explore, understand, and visualize the current design space
of bicycles and utilize this information? When designing
bikes using algorithms, under what conditions can machines
understand the design of a given bike? Can machines learn
to synthesize new bicycle designs by studying existing ones?
We dedicate the latter portion of this paper to exploratory
work on these research questions.

In Section 4.1 we consider the question of how we can
explore, understand, and visualize the current design space
of bicycles and furthermore utilize this information. We ap-
proach this problem through unsupervised embedding meth-
ods. These methods can generate easy-to-visualize low-
dimensional maps of the design space. By studying the dis-
tribution of bicycles across the space, especially with bicycle
class annotations, we can understand trends in the data such
as what classes tend to overlap or distance from one another.
By identifying sparse regions in the design space, we can
potentially even identify design opportunities that are under-
represented in the current bicycle industry.

In Section 4.2 we explore the conditions necessary for
machines to understand the design of a given bike. We
formulate a classification problem to evaluate this question.
Specifically, we investigate what quantity of data, type of
data, and algorithm yields high classification performance.
To do so, we evaluate and provide baseline results for 12
classification algorithms on several training set sizes. We
then construct, tune, and train three deep neural networks to
predict class results based on different types of input data

1Dataset and code available at: http://decode.mit.edu/
projects/biked/

provided within BIKED. These neural networks provide a
baseline for higher performance models and yield valuable
insight into the predictive information contained within the
parametric and image data. In addition to maximizing per-
formance, practitioners must understand the patterns identi-
fied by machine learning. We examine the behavior of the
classifiers by generating and analyzing confusion matrices.
Furthermore, to understand what design attributes are im-
portant for each bike style, we pose this problem as an inter-
pretability analysis problem for a classification model. Using
Shapley Additive Explanations [8], we explore how individ-
ual parameters impact class predictions and discuss the de-
sign implications of our results.

Finally, in Section 4.3, we address the last of our three
big questions: When designing bikes using algorithms, can
machines create a unique bicycle design that they have not
seen before? We present applications and baseline results of
two Variational Autoencoders (VAEs) applied to the para-
metric and image data respectively. VAEs support a host
of applications including dimensionality reduction and novel
data synthesis. We explore several types of data synthesis:
random sampling (exploring the design space), interpolation
(synthesizing new designs between two existing designs),
and extrapolation (synthesizing new designs away from an
existing design) in both the original parameter space and the
latent space of the VAEs.

Inspiring other researchers to use standardized problems
and datasets for data-driven design applications and algo-
rithm development is one of the key goals of BIKED. To
that end, we provide a suite of algorithms (Variational Au-
toencoders, convolutional neural networks, Gaussian pro-
cesses, ensemble classifiers, etc.) and their performance
values throughout our exploration of the aforementioned re-
search questions.

2 Background and Previous Work
In this section, we discuss the background and related

work in bicycle design optimization, compare BIKED to
other datasets commonly used for data-driven design, and
discuss the BikeCAD software and design archive. We also
note that this paper is primarily an expansion of previous
work [9].

2.1 Bicycle Design and Optimization
Bicycle design and optimization is a well-researched

field. Numerous treatises have explored principles of bicy-
cle design in the centuries since the earliest predecessors to
the modern bicycle [10, 11]. Today, significant research ef-
fort is dedicated to improving bicycle aerodynamics [12–14]
and structure [15]. Other studies explore practices of bicycle
sizing and fitting [16, 17]. While some make use of the wide
availability of anthropometric data, many are limited by the
availability of bicycle design data. We expect that a quality
dataset of bike designs including comprehensive parametric
information will enhance future simulation-based bicycle de-
sign studies.
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2.2 Comparison to Other Datasets
Research in this domain of data-driven design often taps

into 3D model datasets like Shapenet [18] and Princeton
ModelNet [19]. These datasets are particularly useful in 3D
shape synthesis applications. Though some of this shape
synthesis research considers adherence to physical laws, the
nature of these datasets tends to emphasize research focused
on visual fidelity rather than physical function [20–23]. In
contrast, BIKED contains thousands of design parameters
that explicitly specify design information ranging from local
component geometry to overall design layout. Certain design
information can be extracted from 3D models, but the level
of detail falls short of the comprehensive numerical design
parameters that BIKED provides.

Data-driven design research frequently uses Topology
Optimization (TO)-based approaches, which often depend
on TO datasets. While TO datasets can provide extensive
information for models learning to optimize local geome-
try [24, 25], approaching full design synthesis tasks using
TO is often impractical, and generalizing TO datasets to
new design domains poses an additional challenge. As such,
BIKED enables methods and functionality that would not be
feasible to develop using TO datasets.

2.3 BikeCAD
BikeCAD is a parametric computer-aided design (CAD)

software optimized for bicycle design. It features a live-
updating model and numerous design menus that help users
customize bicycle geometry and features, as shown in Fig-
ure 1. The BikeCAD website features an open archive of
user-submitted BikeCAD designs [26]. As of July 2020, the
archive had accrued roughly 5000 bicycle designs since its
inception in 2011. Figure 2 shows tile images of several ran-
domly sampled bikes from the dataset. Since designs span
many iterations of the BikeCAD software, the advancement
of the program over the years has enabled increased com-
plexity in more recent designs on the archive. Each entry
in the dataset contains the BikeCAD file, an image, a rat-
ing out of 5, the BikeCAD version used to create the design,
and a design identification number (ID). Additionally, some
designs in the archive contain the ID that they are based on
and several parametric dimensions. Of this information on
the archive, only the BikeCAD files themselves were used
in BIKED. Rating information was not included since most
designs are unrated and few designs have more than a sin-
gle rating. Additionally, though tracking the design IDs that
each design is based on would make for an interesting graph
of design progression, many design ID links are no longer
functional since their referenced designs have been removed
from the archive.

Since BikeCAD’s primary user base is comprised of
frame builders and bicycle enthusiasts, many designs are
high-quality and are furthermore self-selected as showcase
designs. We also note that the BikeCAD software promotes
quality through realistic default values, comprehensive de-
sign and analysis tools such as toe overlap and lean angle
analysis, as well as a suite of tools to check the design’s

Fig. 1: Screenshot from BikeCAD software showing active
model with some dimensional labels and an open menu.

Fig. 2: Tile images of sample bike designs. Backgrounds and
dimensional labels are removed for visibility.

adherence to Union Cycliste Internationale (UCI) standards.
All in all, this combination of factors suggests a reasonably
high quality for the majority of dataset designs.

3 Methodology
In this section, we discuss the various steps taken to gen-

erate and process the dataset. An overall flow diagram of the
data curation progression is shown in Figure 3 and the fol-
lowing labeled sections correspond to the processing opera-
tions listed.

3.1 Sourcing from Design Archive
To process the dataset locally, we downloaded designs

from the BikeCAD design archive. We were able to down-
load 4800 of the designs posted on the archive as of July
2020. Original ordering on the design archive was preserved
in the subsequent processing of the data.

3.2 File Standardization in BikeCAD
BikeCAD files are XML files structured as a collection

of data parameters with corresponding values. Certain pa-
rameters have different meanings depending on flags in other
parts of the file. To ensure that the parameters in the files re-
ferred to the same geometric dimensions across different de-
signs, BikeCAD’s internal conversion formulas were applied
using a custom version of the BikeCAD software developed
by one of the authors. 9 files were corrupt or unprocessable
leaving 4791 successfully standardized designs.
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Fig. 3: Flow diagram of dataset curation process. Process-
ing steps (gray boxes) are labeled according to the section in
which they are discussed. Data snapshots (right) demonstrate
sample data generated by the previous processing step.

3.3 Bicycle Assembly and Component Image Exports
To remove dimensioning lines and backgrounds from

the bike models’ corresponding images, we directly edited
label visibility and set plain backgrounds in the BikeCAD
files, then exported these clean bike images. Next, seg-
mented component images were rendered for 5 essential
components (frame, saddle, handlebars, wheels, cranks) and
two nonessential components (cargo racks, bottles) that only
appeared in some designs. BikeCAD models are structured
as a collection of component parts that form an assembly.
Each component image was rendered and exported from
BikeCAD after editing the BikeCAD files to hide all other
components. 4510 bikes were compatible with this pro-
cess, yielding 5 sets of 4510 component images (essential
components), one set of 965 (bottles), and one set of 346
(racks). An example segmentation on one bike design is
demonstrated in Figure 4. The components in the segmented

(a) Full Bike (b) Image Segmentation

(c) Exploded View

Fig. 4: Segmentation of a bicycle into 7 component parts. Figure
4a shows the bike assembly image and Figure 4b shows a seman-
tic mask of its segmentation into components. Figure 4c demon-
strates an exploded view showing the 7 component groups. Observe
that portions of the bike that were covered in the original image are
present in the component images, such as the portion of the wheels
that were covered by the stem, chainstays, and racks. Exploded
views are not included in the dataset.

images maintain the same position and scale as the original
assembly images. In this sense, the segmented images can
be interpreted as a “layering” of the full assembly image into
bicycle component image slices. Semantic masks of the seg-
mentation are also included.

3.4 Data Extraction from BikeCAD Files
For ease of processing, we parsed the individual stan-

dardized BikeCAD files and compiled all parameter data in a
tabular data structure. In total, 23818 unique parameters (or
features) were collected from the files, though many param-
eters were quite sparse across the design space since certain
designs had no entries for many parameters.

3.5 Parameter Space Reduction
Lowering the dimensionality of a dataset can help re-

duce computational cost and memory requirements when ap-
plying data-driven models. Given that our original data was
23818 dimensional, dimensionality reduction was critical for
efficient data-driven analysis. To reduce the dimensionality
of the parameter space, several parameters were removed
from consideration. First, parameters with no bearing on
bicycle function such as color, text, and positioning of di-
mensional labels were identified and dropped from the data.
Next, parameters defining additional non-standard tubes, wa-
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ter bottles, or tandem features were removed, and any bike
with a data value under one of these fields was dropped. This
removed some unique designs but drastically reduced the di-
mensionality of the data by dropping sparsely inhabited pa-
rameters. Additionally, each design was manually consid-
ered and any designs that were not bikes (scooters, motorcy-
cles, wheelchairs, etc.) were dropped. Finally, any param-
eters that were empty for every design or for which every
design had the same value were dropped. After these steps,
4512 bikes of 4791 and 1314 parameters of 23813 remained,
resulting in a 94.5% reduction in dimensionality. We note
that these 4512 designs constitute a different subset of the
original 4800 than the 4510 designs compatible with the seg-
mentation process.

Approximately 5% of designs lacked one or more essen-
tial components, which in practice implied that the designer
turned off the visibility of said components in the software.
For example, some designs originally had only a frame vis-
ible, presumably implying the designer was only intending
to design a frame. Since we did not want incomplete de-
signs in the dataset, critical components of bike designs were
used in the processing of the dataset regardless of whether
they were hidden or not. In other words, visibility parame-
ters of critical components were dropped from the parame-
ter space. In cases like the standalone bike frame designs,
it was unclear if the hidden components like wheels, sad-
dle, and handlebars received any design consideration, but
were included nonetheless. As such, some designs may in-
clude components not intended to be part of a final design. In
contrast, non-essential features like bottle holders and fend-
ers were included or excluded in the parameter space based
on the visibility in the original design. We acknowledge
that manually overriding component visibility of critical de-
sign components could have unintentionally included com-
ponents that were not intended to be part of the designer’s
vision, however, the number of affected designs was mini-
mal. In these rare cases, the bicycle model could have one or
more components whose parameters were not adjusted from
the defaults or were set in an earlier draft of the model.

3.6 Other Processing Steps
Following the parameter space reduction, the parame-

ter space consisted of four types of data: continuous, dis-
crete, boolean, and categorical. Continuous and discrete pa-
rameters reflect some ordinal significance (i.e. similar nu-
merical values imply actual real-world similarity in that pa-
rameter). In contrast, categorical values such as numerical
class labels imply no such ordinal significance even if repre-
sented numerically. Some example parameters of each type
are included in Appendix A1, and we refer the reader to
the project page for a full list. Most data types in the pa-
rameter space could be easily classified (i.e. floating-point
numbers are continuous). However, integer-valued param-
eters had to be individually considered and manually clas-
sified as categorical or discrete. Additionally, certain vari-
ables that would ideally be continuous had to instead be
treated as categorical. For example, the bike “size” param-

eter was treated as categorical since it contained a medley
of words and measurements with varied or ambiguous units
(“xxl”,“623EET”,“Huge”,“52cm”,“26”, etc.). Since many
standard machine learning methods do not support categor-
ical data, we applied a commonly used method called one-
hot encoding, which converts a categorical variable with n
unique categories into a set of n boolean parameters. These
steps left us with the distribution of variables shown in Ta-
ble 1.

Table 1: Assortment of types of parameters present in dataset
before and after one-hot encoding

Original One-Hot
Parameter Type Num. Perc. Num. Perc.
Cont. Variables 635 48.3% 635 26.5%
Discrete Variables 424 32.3% 424 17.7%
Booleans 148 11.3% 1336 55.8%
Catg. Variables 107 8.1% 0 0%

Next, missing and unknown values were imputed using
k-nearest-neighbors imputation with k = 5 neighbors.2 Val-
ues with a magnitude above a selected threshold were also
discarded and then considered to be missing, as they were
likely caused by corrupted data or data type issues. A cut-
off magnitude of 100,000 was selected since most units were
in millimeters or inches, and bikes were unlikely to be de-
signed with component dimensions over 100 meters. Other
outlier removal methods such as z-score cutoffs were exam-
ined and found to exclude quality designs without any dis-
cernible corrupted data. The final imputed data is the version
of the data used in the discussion and sample applications
discussed henceforth.

3.7 Image Regeneration
Because parametric data is difficult to quickly interpret,

we developed a method to regenerate images from paramet-
ric data, as shown in Figure 5. We use this method to gener-
ate corresponding images from the fully processed parameter
data. This method also applies to newly generated paramet-
ric data, which can assist in visualizing interpolation or novel
bike generation results as we demonstrate in Section 4.3.
In this process, the one-hot encoding is reversed by taking
the most probable category to be the absolute truth. In the
original dataset, one-hot vectors are populated with boolean
values, but the method also supports probabilistic values to
better accommodate generative methods. Next, bike data
is inserted into a BikeCAD file template to generate new
BikeCAD files from the standardized parametric data. Any
fields from the template file that are present in the paramet-
ric data are overwritten and any absent fields are left at de-
fault values. These BikeCAD files are then opened in the

2Other imputation strategies such as mean imputation and median im-
putation are also provided as options in the associated code, but a detailed
investigation contrasting imputation methods and hyperparameters was not
performed in this study.
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software to export corresponding images. Since certain fea-
tures like component colorings were dropped as described
in Section 3.5, this regeneration process yields images with
standardized colors as dictated by the template file.

Fig. 5: Process to generate images from parametric data

3.8 Dataset Feature Summary
The data curation process yields several types of data at

various levels of processing. The fully processed data con-
sists of tabular parametric data after the processing steps de-
tailed above and standardized images regenerated from cu-
rated parametric data. We also provide minimally processed
data to support unforeseen applications that may require spe-
cialized curation steps. This data consists of raw tabular
parametric data sourced directly from BikeCAD files with no
processing and original bicycle images after background and
dimensional label removal. Finally, we provide segmented
bicycle component images to support component-wise learn-
ing tasks on images. We also note that the tabular data con-
tains several parameters that can be used as labels for dif-
ferent learning tasks, such as bike class, model year, or in-
dividual component types. Note that these labels are neither
rigorous nor standardized since all values are reported under
the individual designers’ discretion. For instructions on us-
age, we again refer the reader to the BIKED’s project page,
which links to a comprehensive usage guide.

4 Data-driven Design Applications
In this section, we consider three main research ques-

tions: How can we explore, understand, and visualize the
current design space of bicycles and utilize this information?
When designing bikes using algorithms, under what condi-
tions can machines understand the design of a given bike?
Can machines learn to synthesize new bicycle designs by
studying existing ones? We address these research questions
one by one in the following three subsections. While ad-
dressing these questions, we simultaneously hope to accom-
plish three goals:

1. Provide a starting point and inspiration for researchers
interested in using BIKED to expand upon one of these

research questions or pursue new research directions
supported by BIKED.

2. Give baseline performance values for a variety of com-
mon data-driven tasks.

3. Uncover patterns, relationships, and trends within the
various forms of data included in BIKED.

Discussion of other research questions that BIKED may help
address are discussed in Section 7.

4.1 Bicycle Design Space Exploration and Visualization
Extensive design data can open doors to better under-

stand, visualize, and explore a design domain. We consider
methods to uncover these insights and discuss how to fur-
thermore utilize this information in making design decisions.
By visualizing the relationships between different classes of
bicycles, designers can identify trends, patterns, and poten-
tial gaps in the design space. To meet a broader set of cus-
tomer needs, new classes like hybrid bikes are often intro-
duced. Understanding what new classes can be introduced in
the market or what features from one class can be incorpo-
rated in another class of bicycle can help designers efficiently
target underrepresented segments of the industry.

To explore and visualize the bicycle design space, we
use unsupervised embedding algorithms on BIKED. Design
space embeddings can allow researchers to visually identify
groups of similar designs in a dataset or identify areas of the
design space that are sparse or completely empty. Design
space embeddings can also be helpful for designers to place
their own designs within the context of existing ones.

Bicycle Class Labels: To assist in visualization, we label
designs using the bicycle “style” parameter, which we refer
to as the bicycle “class.” Table 2 shows the distribution of
bicycle classes in the dataset. We observe that road bikes are
by far the most prevalent class (40.56%) as labeled by the
designers. We note that using bicycle “styles” as class labels
has several drawbacks. Labels are reported by designers and
are subjective and unstandardized. Classes are also not mu-
tually exclusive: bike designs may potentially fit into more
than one class, and several of the classes are conventionally
considered subclasses of others (e.g. cyclocross, time trial,
and touring bikes are subclasses of road bikes) [27]. Despite
this fact, each design in BIKED is assigned to exactly one
class. Furthermore, several of the classes, like “hybrid” or
“other” are not necessarily descriptive of an individual class
of bike. Discovering new ways to represent bikes at a high
level besides through mutually exclusive classes is a poten-
tial research direction that BIKED may support.

T-SNE embedding of full dataset: To visualize the de-
signs, we apply a t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) method [28] to the parameter space of the pro-
cessed dataset. t-SNE is a dimensionality reduction algo-
rithm that projects samples onto a lower-dimensional em-
bedding space while keeping similar designs together and
distancing dissimilar ones. An annotated plot of such an em-
bedding is included in Figure 6. The tendency of classes to
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Table 2: Assortment of bike classes present in the processed
dataset. Mountain bikes are abbreviated as ”MTB.” Bikes
classified as “OTHER” are labelled as such by the designer.
The “Remaining Label Categories” group contains the re-
maining 10 explicit categories in descending order of preva-
lence: BMX, CITY, COMMUTER, CRUISER, HYBRID,
TRIALS, CARGO, GRAVEL, CHILDRENS, FAT.

Bike Class Count Percent
ROAD 1865 41.33
MTB 616 13.65
TRACK 470 10.42
OTHER 315 6.98
DIRT JUMP 293 6.49
TOURING 201 4.45
CYCLOCROSS 151 3.35
POLO 128 2.84
TIMETRIAL 89 1.97
Remaining Label Categories 384 8.51

overlap illustrates the aforementioned non-mutually exclu-
sive property of the bike classes and this embedding helps
reveal the extent of the overlap and affected classes. We can
also identify several unique clusters of bike designs.

PCA embedding of median designs: Next, we consider a
more targeted approach by eliminating all parameters except
the 50 deemed to be most impactful on bicycle classification.
These specific parameters were determined using a SHAP
analysis as discussed in Section 4.2. To better visualize the
relationship between classes of bikes, we plot only the “me-
dian” bike of each class as a representative. We determine
this “median” bike by applying min-max normalization to
every parameter, taking the median of each normalized pa-
rameter over all bikes of that class, and finding the nearest
design to this median value by euclidean distance. The re-
sults of a Principal Component Analysis (PCA) under these
conditions are included in Figure 7. In this plot, we can ob-
serve several trends. For example, bikes with components
and structure more similar to a conventional road bike tend
towards the bottom right corner. Bikes with large wheels rel-
ative to absolute size tend toward the top.

We have demonstrated 2-Dimensional embedding ex-
amples that are particularly conducive to design space visu-
alization, however, for tasks like identifying sparse regions in
the design space, higher dimensional PCA embeddings may
be more effective. In combination with the generative pro-
cess described in Section 3.7, PCA can be a powerful tool.
Designers can manually select points of interest in the em-
bedding space, decode latent vectors, then directly generate
full bicycle CAD models and images to evaluate these de-
signs. We evaluate a similar generative process in Section
4.3 using the latent space of Variational Autoencoders, albeit
using automated sampling instead of manual selection.

4.2 Bicycle Classification
To create meaningful designs, generative machine learn-

ing models must identify key characteristics which define a

Table 3: Classification accuracy for various classification
models using differing quantities of training data points. Av-
erage scores are determined over 10 instantiations.

Model Train Size
200 600 1200 2000 3000

Support Vector Clf. 57.4% 63.4% 66.3% 68.5% 69.6%
K-Neighbors 47.9% 52.3% 55.9% 58.3% 60.3%
Depth 8 Dec. Tree 52.1% 57.9% 61.9% 65.5% 66.5%
Random Forest 59.0% 64.0% 65.3% 66.5% 66.8%
AdaBoost 48.1% 50.1% 48.9% 49.8% 50.4%
Gaussian Pr. Clf. 47.9% 62.5% 66.7% 69.5% 72.0%
3-layer Neural Net 54.9% 61.6% 63.9% 66.8% 68.7%
6-layer Neural Net 55.3% 59.7% 62.7% 65.5% 68.7%

bicycle model and accurately predict which real-world class
of design best describes it. In this section, we explore the
conditions under which machines can understand the design
of a previously unseen bike. Moreover, we examine how in-
telligent algorithms selectively process data to gain this un-
derstanding. To address these questions, we design a classifi-
cation problem, experiment with various methods, document
their performance, and analyze their behavior. In particular,
we seek to understand how the algorithm, type of data, and
quantity of data impact classification performance, as well as
understand the behavior of high-performing classifiers.

Baseline Classification Performance: In the first part of
this study, we explore how algorithm selection and dataset
size impact classification performance on BIKED’s paramet-
ric data. Table 3 presents an excerpt of a study contrasting
12 untuned models and 5 train set sizes, with each combina-
tion instantiated 10 times. We report top and average perfor-
mance for four classification metrics: Accuracy, precision,
recall, and F1. Full results and further details about this study
are included in Appendix B1.

We find that certain methods drastically outperform oth-
ers in the classification task. Overall, the smaller neural net-
work (3 layers) performs the best in the F1 metric and the
Gaussian Process Classifier (GPC) performs best in overall
accuracy. We note that the success of the GPC comes at
the cost of significantly higher computational expense and
this method would not be viable on a significantly larger
dataset. Overall, the classification performance may seem
underwhelming, but we discuss the challenges that come
with this classification formulation later in this section.

Another key takeaway is the improvement of both ac-
curacy and F1 score with increased dataset size, a trend
that remains clear into training sizes on the order of thou-
sands. This suggests that additional bicycle designs would
allow machines to better understand the bicycle design space
and continue to provide valuable information to classifica-
tion models. As such, a future expanded dataset with new
BikeCAD archive designs would likely be valuable.

Comparison of classification using image and parametric
data: Next, we seek to understand how different varieties
of data impact an algorithm’s ability to understand a design.
In particular, we examine the relative value of images and
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Fig. 6: Visualization of the 2-dimensional embedding generated through t-Distributed Stochastic Neighbor embedding of
parametric data. Horizontal and vertical axes denote the two embedding dimensions.

Table 4: Classification accuracy and F1 scores for three cus-
tom deep networks. Top and average scores are determined
over 10 instantiations.

Model Average Top Train
Time (s)Acc. F1 Acc. F1

Parametric DNN 72.0% 48.0% 73.1% 51.6% 149.0
Image CNN 65.6% 44.6% 66.8% 47.9% 96.0
Combination NN 71.0% 47.8% 72.5% 50.0% 30.6

parametric data. Three deep neural networks are all trained
for the bicycle classification task, however, the first uses only
BIKED’s parametric data, the second uses only BIKED’s im-
age data, and the third uses both simultaneously. Network
architectures, training details, and training plots are included
in Appendix B2. In this study, the average and highest clas-
sification accuracies and F1 scores over ten instantiations are
reported in Figure 4. The parametric deep neural network’s
classification performance is notably better than the previ-
ous study’s neural networks, primarily due to the custom ar-
chitecture, which includes dropout and batch normalization
layers to correct for overfitting. While the three-layer archi-
tecture was found to perform best in the previous study, a
five-layer network is found to be preferable once measures
to combat overfitting are imposed.

The classification accuracy using only parametric data is
superior to the accuracy using only images, suggesting that

the parametric data is richer in meaningful information than
the image data. This is expected since the images are de-
terministically generated from the parametric data so should
have strictly less information. In other words, different para-
metric vectors may map to the same image, but different im-
ages will never map to the same parametric vector. Though
we would expect the classifier using both images and para-
metric data to have comparable performance, it ended up
falling slightly short of the parametric classifier due to over-
fitting, which can be observed in the training plots included
in Appendix B2. This overfitting may be explained by the
drastically higher input dimensionality of the combined data
over the pure parametric data.

Analysis of Classification Results with Confusion Matri-
ces: Of the classifiers tested, none attained classification
accuracy higher than 75% or F1 higher than 55%. For this
reason, claiming that machines can truly understand the de-
sign of bicycles requires further justification. The formulated
problem of bicycle classification is challenging because of
the previously mentioned overlapping class labels and im-
balance of classes. While aggregate metrics are handy for
benchmarking algorithms, examining their exact behavior
often requires a more detailed performance analysis. Con-
fusion matrices are often used to report and visualize clas-
sification performance. We include confusion matrices that
show the proportion of test set designs of a particular class

8 Copyright © by ASME



Fig. 7: Visualization of “median” bikes of each class in a 2-
dimensional Principal Component Analysis embedding gen-
erated using the 50 most significant parameters. The prin-
ciple PCA component is shown on the horizontal axis and
secondary component is shown on the vertical axis.

(vertical axis) that are classified into a particular classifica-
tion (horizontal axis). A perfect classifier’s confusion matrix
is the identity matrix. Shown in Figure 8 is the confusion ma-
trix for the highest performing deep neural network trained
on parametric data from the previous subsection. Confusion
matrices for the deep image classifier and hybrid classifier
are included in Appendix B3.

Fig. 8: Confusion matrix of parametric DNN predictions on
a previously unseen test set. Actual classes are shown on
the vertical axis and predictions are shown on the horizontal
axis. Classes are sorted from most prevalent (top left) to least
prevalent (lower right).

Examining the confusion matrix, we see that the classi-

fier indeed seems to be struggling due to the overlap and poor
definition of some class labels as well as significant class
imbalance. Classes with very few designs (fat, children’s,
cargo, and gravel with 1, 10, 14, and 19 designs respectively)
do not have enough training data to be classified well. In ad-
dition, three of these classes do not have a single represen-
tative model in the test set. This phenomenon significantly
impacts F1 scores, which are calculated with macro averag-
ing (see Appendix B1) and primarily explains the poor F1
performance. Subclasses of road bikes, like ‘gravel’, ‘time-
trial’, ‘cyclocross’, and ‘touring’ are often categorized into
the general ‘road’ class. Additionally, ambiguous classes
like ‘hybrid’, ‘other’, and arguably ‘city’ and ‘commuter’
pose challenges for the classifier since a variety of bicycle
styles may fit into these classes. This indicates that the clas-
sifier is struggling due to the overlap and poor definition of
class labels. From these observations, we can conclude that
the classifier’s moderate performance is more an indication
of the challenges brought about by the construction of the
classification problem, rather than a difficulty to understand
the design of the bicycle.

Interpretability analysis to identify design attributes:
While we have demonstrated that neural networks can under-
stand the design of bikes and predict class fairly well, they
still act as black-box function approximators. Understand-
ing the classification impact of individual parametric features
can help designers appreciate the particular factors that de-
fine a specific class of bike. For example, one may question
what specific features cause the network to assign a particu-
lar model to the road bike class instead of the mountain bike
class. To study such questions, the final part of this classifica-
tion study examines the results of a Shapley Additive Expla-
nations (SHAP) analysis [8]. SHAP locally approximates
model predictions over individual input values, effectively
capturing the predictive significance of each input parame-
ter. This analysis shows the average impact of a particular
feature on the classification probability for each class type.

Figure 9 shows the results of the SHAP analysis on the
highest performing deep neural network which scores 73.1%
classification accuracy. We observe that each of the most sig-
nificant parameters besides the number of cogs is a boolean
type. Many directly relate to the style of a particular com-
ponent. The significance of many of these parameters makes
intuitive sense. Handlebar, fork, and dropout style are major
distinguishing factors between bike classes and most design-
ers of a particular class of bike will choose to use correspond-
ing classes of components for their design. Humans would
probably not immediately consider the number of cogs, ma-
terial, presence of derailleur, or curvature of the fork when
classifying bikes, but would likely acknowledge their signif-
icance. We can also observe that a few features have a par-
ticularly large impact on the probability that a bike is clas-
sified as a particular class, like track style dropout spacing
for track bikes or suspension forks for mountain bikes. Such
SHAP Analyses are reasonably consistent between different
instances of the same network architecture, but the impor-
tance ranks of the top 20 parameters often fluctuate in rank-
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ing by 3-5 places.

4.3 Bicycle Synthesis using Variational Autoencoders
In this section, we consider the question of how al-

gorithms can generate previously unseen bicycle designs.
While generative methods have been used extensively on
images, BIKED’s parametric data opens possibilities to di-
rectly synthesize designs in the parameter space. We aim
to contrast the two methods by considering a variety of bi-
cycle synthesis methods including random generation, inter-
polation, and extrapolation using Variational Autoencoders
(VAEs) [29, 30]. VAEs encode input data samples into a low
dimensional latent space and subsequently decode samples
from latent space vectors [29, 30]. The VAEs can be used
for design synthesis by generating new latent space vectors,
either through random sampling, interpolation, or extrapola-
tion, then decoding the generated latent space vectors to syn-
thesize new designs. We train two VAEs, one on images and
one on parametric data. Since parametric design synthesis
results are difficult to qualitatively evaluate, images are gen-
erated from synthesized parametric data using the method
discussed in Section 3.7. Appendix C1 explains the architec-
ture and training details of the VAEs in detail.

Evaluating trained VAEs using reconstruction quality:
Examining a VAE’s reconstructive ability by encoding and
subsequently decoding samples is a common way to eval-
uate its performance. Figure 10 shows the trained VAEs’
performance on a reconstruction task on previously unseen
data. Compared to the slightly blurry images generated by
the image VAE, the parametric VAE tends to generate more
realistic images, largely due to the image generation process
in BikeCAD. On the other hand, the image VAE tends to re-
construct the input more accurately. This is largely because
the image VAE is directly trained to reconstruct visual ap-
pearance while the parametric VAE is only trained to do so
indirectly. Critical to this observation is the fact that the para-
metric VAE knows no weighting of the relative importance
(or particularly visual importance) of features. For example,
the number of teeth on the third rear cog is just as important
to the parametric VAE as the handlebar type. Weighting for
this relative importance could be a future line of inquiry. Fi-
nally, we note that both VAEs struggle to reconstruct bikes
with very unconventional features like the inverted handlebar
and extra tube of the third bike on the right. This may be a
limitation of the quantity of data—when an unconventional
feature is present in extremely few designs, the VAEs do not
have enough training data to learn to reconstruct these fea-
tures, especially if these features do not appear in the training
set. It may also be a limitation of the VAE model itself, since
we experience that the parametric VAE sometimes struggles
with training issues like posterior collapse, which can be sen-
sitive to initialization and reduce reliability.

Bicycle synthesis through interpolation and random gen-
eration: Next, we consider the task of bicycle synthesis.
Full design synthesis is a problem with many possible con-

siderations and objectives, but as a starting point, we attempt
a qualitative comparison of randomly generated designs from
our machine learning models. We test two synthesis methods
on each of the trained VAEs. The first of these is randomly
sampling a vector from the latent space of the VAE and de-
coding this vector using the decoder. The random selection is
performed by generating a probability distribution function
for each value of the encoder’s output based on the test data,
then sampling from each distribution independently to gener-
ate a random latent vector. An alternate approach is to inter-
polate some arbitrary fraction of the distance between latent
vectors encoded from existing designs in the dataset instead
of sampling randomly. Finally, we also consider interpola-
tion between dataset designs in the original parameter space.
Several designs synthesized using each of these methods are
shown in Figure 11. Though quantitative evaluation of syn-
thesized designs is not considered in this work, future work
may leverage quantitative evaluation metrics that have been
used to evaluate Generative Adversarial Networks [31, 32].
We discuss other next steps in generative methods for bicy-
cle design later in this section.

Comparison of interpolation and extrapolation in origi-
nal parameter space and VAE latent spaces: Next, we
dive deeper into interpolation options and further consider
extrapolation for the three methods considered above (orig-
inal parameter space, parametric VAE latent space, and im-
age VAE latent space). We manually select a particularly
demonstrative example to showcase, interpolating between a
dirt jump and road bike design and extrapolating from the
road bike away from the dirt jump bike3. Results are shown
in Figure 12. In the first two columns, we note the disconti-
nuities in the interpolation of categorical components which,
due to the nature of the image regeneration process, abruptly
switch styles as soon as one style’s probability supersedes
another. Interpolation between two designs in the parame-
ter space typically works well, but extrapolation quickly be-
comes unrealistic, generating bikes that are sometimes dis-
connected, as shown in the bottom two images on the left.
Interpolation and extrapolation both work well in the latent
space of the parametric VAE, with extrapolation results gen-
erally being quite realistic. In the example shown, extrapolat-
ing on the road bike in a direction opposite the dirt jump bike
shifts the design to begin resembling a timetrial (triathlon)
bike. However, the limited reconstructive capability of the
parametric VAE detracts from the fidelity of the newly gen-
erated designs with respect to the original designs. Extrap-
olation based on the image VAE is very poor and is further
exacerbated by the limited fidelity of the image VAE’s re-
construction, which is particularly poor in this example. In-
terpolation in the image VAE’s latent space has other unde-
sirable properties, such as the visual overlap of the source
designs rather than a gradual change in geometry. Based on
these qualitative results, interpolation based on a simple im-
age VAE does not seem to be an effective method for quality
bicycle synthesis.

3Interpolation/Extrapolation formulation included in Appendix C2
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Fig. 9: Shapley Additive Explanations analysis of feature significance on design classification result. The top 10 most
significant features are shown on the vertical axis and the mean impact to classification probability is shown on the horizontal
axis. Since parameters are one-hot encoded, we list boolean values describing whether or not a categorical parameter falls
into a particular class as “Parameter: Class.” Note that a high significance does not imply a positive correlation.

(a) Images of
Original Designs

(b) Parametric VAE
Reconstruction

(c) Image VAE
Reconstruction

Fig. 10: Original bike images and images reconstructed by the two
Variational Autoencoders.

Further advancement of Generative Methods for Bicy-
cles We envision many opportunities for further develop-
ment of generative methods for bicycles. Other generative
methods like Generative Adversarial Networks (GANs) [33]
may be promising alternatives to Variational Autoencoders
(VAEs). BIKED’s component labels and images also open
possibilities for hierarchical design methods or approaches
based on symbolic reasoning. Conditional approaches based
on bike class may also be viable. We also note that reliable
synthesis of designs will likely require rule-based feasibil-
ity checking of geometric validity and manufacturing con-
straints in a sort of “expert-system-based” approach. In ad-
dition to feasibility checking, performance evaluation of con-
siderations like structural stiffness, aerodynamics, weight,
and ergonomics will be important in any performance-aware
synthesis method and will be an interesting avenue for future
research. Incorporating BIKED-based automated feasibility
checking, performance evaluation, and optimization meth-
ods with advanced generative methods is a promising avenue
towards the ultimate goal of full performance-aware bicycle
synthesis.

Random Sampling of
Original Designs

Original Parameter
Space Interpolation

Parametric VAE
Random Sampling

Parametric VAE Latent
Space Interpolation

Image VAE
Random Sampling

Image VAE Latent
Space Interpolation

Fig. 11: Bike Images randomly generated through random latent
space sampling, random latent space interpolation, and random pa-
rameter space interpolation.

5 Strengths and Novelty
Compared to existing 3D model and topology optimiza-

tion datasets that are commonly used in the data-driven de-
sign field, BIKED emphasizes comprehensive design infor-
mation. This makes BIKED well suited to a multitude of
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Fig. 12: Interpolation and extrapolation results between a
road bike and dirt jump bike. The left side of the figure
shows interpolation and extrapolation results carried out in
the original parameter space between original designs. The
center and right show results from interpolation and extrap-
olation carried out between latent space representations of
the original designs encoded by the two Variational Autoen-
coders, then decoded and reprocessed (when applicable) into
images.

data-driven design tasks that would not be feasible using
other datasets. BIKED’s detailed component images and
parametric data may furthermore support hierarchical meth-
ods that would not be supported by other datasets.

BIKED’s designs are all hand-designed and, as dis-
cussed in Section 2.3, the inbuilt software features help en-
sure that the majority of BIKED designs are of good quality.
BIKED is extensively processed, organized, and documented
to make BIKED as user-friendly as possible.

6 Limitations
As is the case in most datasets, BIKED has several

sources of bias to note. The fact that all designs were
modeled in BikeCAD is a potential source of bias, since
BikeCAD’s design tools and parameterization scheme might

make certain designs more or less easy to model. Further-
more, there is a bias towards the default bike designs that of-
ten serve as the starting point in a user’s design process. This
bias may be noticeable at a high level in overall design char-
acteristics, or at a low level with users leaving certain dimen-
sions at their default values. This is especially true for more
niche parameters that have little to no visual impact on the
appearance of the bike model, where novice users may not
even understand the parameter’s meaning. This bias causes
many parameters to have uniform values across the vast ma-
jority of designs, which can then cause issues, such as poste-
rior collapse while training Variational Autoencoders. Addi-
tionally, BIKED has a temporal bias which is demonstrated
and discussed in more detail in Appendix D1. Since model
numbers largely correlate to the BikeCAD version originally
used to create the design, updates to the software that in-
troduced new parameters or updated old default values are
likely the root cause.

We also reiterate some of the potential biases discussed
in Section 3.5. Dropping bikes with particular features like
tandem components or extra nonstandard tubes may have in-
troduced biases. Additionally, manually overriding compo-
nent visibility of critical design components could have un-
intentionally included components that were not intended to
be part of the designer’s vision. We have worked closely
with bicycle experts to use domain knowledge to alleviate as
many sources of bias as possible and plan to continue refin-
ing our methods and dataset to provide a rich and accurate
resource to inspire research on data-driven bicycle design.

We also note that, although BikeCAD is used by many
experienced designers, there is no guarantee of quality or
performance of any bike design. Some designs are created
to be facetious or highly unrealistic. We would also advise
users that the raw unprocessed dataset may contain offensive
or proprietary imagery and language since designers are free
to use terminology and graphical designs of their choice.

7 Future Research Directions
Aside from the three key research questions discussed,

we envision many exciting ways to harness BIKED in data-
driven design research and bicycling science beyond the ini-
tial research presented in this paper. Researchers studying bi-
cycle performance can leverage BIKED’s parametric data as
an input to multi-physics simulations or develop data-driven
regression models. Surrogate models of bicycle frame stiff-
ness or aerodynamic drag could accelerate an iterative design
process by eliminating computational bottlenecks caused by
Finite Element Analysis (FEA) or Computational Fluid Dy-
namics (CFD) simulation. Efficient surrogate models can
enable high-level optimization tasks like Multidisciplinary
Design Optimization (MDO). Rapid performance evaluation
methods would be an integral component of any comprehen-
sive performance-aware bicycle synthesis process. BIKED’s
diversity of bicycle designs also lends itself to studies of cus-
tomer preference and modeling of this data in conjunction
with bicycle classes and parametric properties. The fact that
BIKED designs were created largely by bike enthusiasts and
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tradespeople may be of intrinsic use as a study of customer
preference. A more advanced study may expand on BIKED’s
models with further customer preference surveys for a more
detailed study of customer preference in the bicycle market.

8 Conclusion
In this paper, we have presented BIKED, a dataset for

data-driven bicycle design. BIKED features 4500 bicycle
designs providing full bicycle assembly images, segmented
component images, and extensive parametric data to enable
various data-driven design approaches. Throughout the pa-
per, we discussed the various processing steps taken to curate
the data, and discussed key data-driven applications that we
expect BIKED to facilitate. We demonstrated some initial
exploration in these directions while simultaneously uncov-
ering features of the dataset and providing baseline perfor-
mance for common machine learning methods. In the first
of these studies, we considered unsupervised dimensionality
reduction methods to gain various insights about the dataset.
In the second, we trained numerous classification models
to predict bicycle class, including 10 baseline models using
parametric data and 3 tuned deep neural networks to con-
trast classification performance using different types of input
data. Using one of these classification models, we performed
a Shapley Additive Explanations analysis to understand the
impact of individual parameters on classification predictions.
Next, we trained two Variational Autoencoders to perform a
variety of different tasks on both parametric and image data,
including design reconstruction, latent space random sam-
pling, interpolation, and extrapolation. Finally, we discussed
key strengths and novelty as well as potential limitations and
biases in the dataset.

BIKED goes above and beyond existing datasets, pro-
viding extensive design information of various types and
promising to enable a slew of novel data-driven design ap-
plications. In our discussion, we documented the process to
curate the dataset, explored BIKED’s features, demonstrated
baseline performance for common algorithms, and attempted
to inspire researchers with sample applications. We hope that
BIKED will prove a valuable resource to researchers in the
data-driven design community and will support novel and in-
novative approaches in this rapidly growing field.
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A Appendix A1: Dataset Details
We include a table listing a few sample parameters from

each type in Table 5. We note that any of these can be used as
the labels in regression or classification tasks, depending on
the researcher’s goals, though certain parameters like “bike
style” may make intuitive sense for many applications.

Appendix B1: Training Details and extended results of
Simple Classifiers

We include a more detailed study of classification per-
formance on BIKED’s parametric data for a baseline set of
12 classifiers with 5 sizes of training data. For each classifier
and train set size, we record the average and top accuracy, re-
call, precision, and F1, as well as the average evaluation time
over 10 instantiations. Each classification model is trained on
200, 600, 1200, 2000, and 3000 randomly sampled designs,
leaving the remainder of the 4512 processed designs for test-
ing. We do not include a validation set since no tuning is
performed. Only parametric data is used in this study. Each
of the 10 instantiations consists of a new model initializa-
tion and a different random train-test split. Precision, recall,
and F1 are calculated using macro averaging, i.e. calculating
recall, precision, and F1 for each individual class and subse-
quently performing an unweighted average over the classes.
If no representative models of a class appear in the test data,
we set precision, recall, and F1 to 0 for the class. Table 6
contains the results of this study. The training was performed
on a computer with Xeon Silver 4215R CPU, 64 Gb RAM,
and two NVIDIA Quadro RTX4000 GPUs. Key parameters
of classification models are listed below. For further imple-
mentation details of the methods tested, we refer the reader
to our provided code.

1. Neural networks tested have 200 neurons per layer, use
Rectified Linear Unit (ReLu) activation functions, and
are trained using the adam optimizer [34].

2. K-Neighbors-Classifier uses 5 neighbors
3. Random Forest Classifier uses 50 estimators and a max-

imum depth of 7
4. Gaussian Process Classifier uses the Radial-basis func-

tion kernel with a length parameter of 1 and scaling fac-
tor of 1

5. SVC classifier uses a linear kernel

Appendix B2: Architecture and training details of deep
classifiers

The architectures of the three custom neural networks
are shown in Figure 13. The number of neurons in every
fully connected layer is labeled in the diagram. Similarly,
the number of filters (f), kernel size (k), and stride size (s)
are shown for every convolution layer. Dropout layers are la-
beled according to dropout probability. Models were trained
using the Adam optimizer [34] with a learning rate of 10−4

using a categorical cross-entropy loss. A batch size of 100
was used for all models. The 4512 models were split into
training, validation, and test sets with a ratio of 70:15:15

(3158:677:677). Unlike the study in B1, only one train-
test-validation set was used for every instantiation of every
model. The training was performed on a computer with
Ryzen 9 5950x, 32 GB RAM, and Nvidia RTX3080 GPU.
Training plots of the top-performing instantiations of the net-

Fig. 13: Network diagrams of the three classification net-
works implemented.

works are included in Figures 14 and 15. The training was
halted after 100, 20, and 10 epochs without improvement for
the parametric, image, and combination classifiers respec-
tively.

Appendix B3: Classification Confusion Matrix
Shown in Figures 16 (repeated from the main text)

through 18 are confusion matrices of the classification per-
formance of the three custom-built deep classifiers. We can
appreciate that all three deep classifiers struggle with the
class imbalance and class overlap issues discussed in Sec-
tion 4.2. We also note that classes of bikes that are visually
similar to others are more difficult for the image-based CNN
to classify. For example, track bikes are primarily identifi-
able by their single-speed drivetrain, but since the cassette of
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Table 5: Example parameters of each of the four datatype present in BIKED.

Continuous Discrete Categorical Boolean

Top tube length Number of rear cogs Wheel type Include racks (Y/N)

Bottom bracket drop distance Number of teeth on first rear cog Handlebar style Symmetric chain stays (Y/N)

Saddle height Number of spokes on front wheel Bicycle style Include fenders (Y/N)

Fig. 14: Accuracy vs training epoch (log scaled) for the three
tuned classification networks implemented.

Fig. 15: Loss vs training epoch (log scaled) for the three
classification networks implemented.

the bike is not visually prominent, track bikes are more chal-
lenging for the CNN compared to the other two classifiers.

Fig. 16: Confusion matrix of Parametric DNN predictions

Fig. 17: Confusion matrix of Image CNN predictions

Appendix C1: Architecture and training details of VAEs
Figures 19 and 20 show the architecture of the image

VAE and parametric VAE respectively using the same label-
ing scheme as the classifiers in Appendix B1. The top portion
of each diagram represents the encoder that maps a design to
a latent space vector. The bottom represents the decoder that
maps a latent vector to a design. Models were trained us-
ing the Adam optimizer [34] with a learning rate of 10−3 for
the parametric VAE and 10−4 for the image VAE. Training
is halted after 200 consecutive training epochs with no im-
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Table 6: Classification accuracy, precision, recall, and F1 for 12 classifiers using BIKED’s parametric data.

Average TopTrain Size Model Accuracy Recall Precision F1 Accuracy Recall Precision F1
Average

Train Time (s)
Support Vector Clf. 57.4% 16.3% 33.8% 17.0% 59.9% 18.3% 41.3% 20.2% 9.3
Naı̈ve Bayes 43.7% 9.3% 30.7% 9.8% 46.9% 11.5% 41.0% 12.3% 4.3
K-Neighbors 47.9% 13.3% 19.4% 12.8% 51.4% 17.1% 23.4% 15.2% 11.8
Depth 5 Dec. Tree 52.0% 19.3% 22.4% 19.2% 55.7% 23.1% 30.4% 22.1% 0.2
Depth 8 Dec. Tree 52.1% 20.9% 22.4% 20.7% 57.4% 28.0% 27.2% 26.5% 0.2
Random Forest 59.0% 18.6% 43.0% 19.6% 61.8% 21.0% 48.9% 21.6% 0.4
AdaBoost 48.1% 10.4% 10.7% 7.8% 51.1% 13.0% 18.3% 9.9% 4.7
Gaussian Pr. Clf. 47.9% 9.9% 8.4% 7.9% 58.8% 23.5% 29.0% 21.4% 122.8
3-layer Neural Net 54.9% 19.8% 32.7% 21.0% 56.2% 21.6% 40.0% 22.5% 4.2
4-layer Neural Net 54.8% 19.5% 30.0% 20.6% 56.9% 22.5% 37.6% 23.1% 2.7
5-layer Neural Net 54.6% 20.0% 27.5% 20.9% 56.9% 23.4% 32.5% 24.0% 2.5

200

6-layer Neural Net 55.3% 21.2% 28.7% 22.2% 57.1% 25.4% 33.2% 25.5% 2.3
Support Vector Clf. 63.4% 23.4% 45.4% 25.6% 64.7% 25.9% 54.7% 28.7% 23.6
Naı̈ve Bayes 43.3% 14.7% 37.6% 16.8% 45.0% 16.9% 44.2% 19.0% 4.3
K-Neighbors 52.3% 18.1% 27.9% 19.1% 53.9% 20.2% 34.9% 21.8% 34.3
Depth 5 Dec. Tree 59.0% 24.1% 29.1% 23.9% 62.3% 28.5% 37.0% 27.6% 0.2
Depth 8 Dec. Tree 57.9% 26.9% 30.2% 27.3% 59.6% 29.3% 36.4% 31.4% 0.3
Random Forest 64.0% 23.6% 50.3% 25.5% 65.4% 27.1% 57.8% 28.5% 0.4
AdaBoost 50.1% 10.8% 9.2% 8.2% 53.9% 15.9% 13.8% 12.3% 4.7
Gaussian Pr. Clf. 62.5% 25.1% 39.9% 25.6% 65.0% 27.6% 61.1% 29.0% 454.8
3-layer Neural Net 61.6% 29.0% 43.0% 31.6% 62.7% 30.9% 48.3% 34.5% 14.5
4-layer Neural Net 60.8% 29.0% 42.1% 31.4% 61.7% 32.0% 47.7% 33.7% 10.1
5-layer Neural Net 58.6% 27.4% 35.0% 28.7% 62.4% 30.7% 43.7% 32.9% 8.5

600

6-layer Neural Net 59.7% 29.0% 38.3% 30.7% 62.0% 31.1% 46.6% 33.9% 8.5
Support Vector Clf. 66.3% 28.5% 49.1% 31.4% 68.4% 31.9% 60.5% 36.0% 40.7
Naı̈ve Bayes 41.8% 20.8% 32.2% 22.2% 42.8% 22.7% 40.8% 23.8% 3.6
K-Neighbors 55.9% 23.5% 37.3% 25.4% 56.7% 26.5% 43.6% 29.3% 59.1
Depth 5 Dec. Tree 62.8% 26.3% 30.0% 26.1% 64.3% 28.6% 33.8% 29.5% 0.3
Depth 8 Dec. Tree 61.9% 32.7% 38.3% 33.6% 63.5% 36.1% 42.7% 36.7% 0.3
Random Forest 65.3% 25.2% 51.6% 26.8% 67.0% 26.3% 59.4% 28.8% 0.4
AdaBoost 48.9% 10.5% 7.5% 7.8% 51.1% 12.0% 9.9% 9.1% 4
Gaussian Pr. Clf. 66.7% 32.2% 46.4% 33.8% 67.8% 35.5% 59.2% 37.1% 1204.8
3-layer Neural Net 63.9% 34.7% 50.4% 38.4% 65.9% 37.9% 53.0% 41.8% 28.9
4-layer Neural Net 63.2% 34.7% 45.8% 37.6% 64.0% 37.5% 49.8% 40.5% 19.7
5-layer Neural Net 63.3% 34.9% 45.3% 37.1% 64.9% 37.5% 53.1% 40.1% 16.3

1200

6-layer Neural Net 62.7% 34.2% 43.1% 35.7% 65.1% 38.4% 51.2% 40.3% 12.7
Support Vector Clf. 68.5% 31.9% 54.9% 35.6% 69.9% 33.8% 67.0% 38.9% 54.1
Naı̈ve Bayes 40.0% 24.8% 29.6% 24.4% 41.8% 26.4% 35.7% 26.4% 2.2
K-Neighbors 58.3% 27.3% 43.0% 30.2% 60.2% 29.7% 48.4% 33.6% 78
Depth 5 Dec. Tree 63.7% 26.7% 32.6% 26.7% 66.3% 30.9% 40.2% 31.1% 0.3
Depth 8 Dec. Tree 65.5% 32.8% 41.1% 34.8% 67.0% 35.2% 48.8% 38.2% 0.3
Random Forest 66.5% 26.6% 51.3% 28.5% 67.7% 27.3% 60.9% 29.4% 0.4
AdaBoost 49.8% 11.0% 7.9% 8.2% 52.9% 17.6% 13.7% 12.9% 4.1
Gaussian Pr. Clf. 69.5% 37.9% 54.6% 39.7% 71.8% 43.3% 62.8% 46.2% 2686.4
3-layer Neural Net 66.8% 41.0% 55.3% 44.8% 67.7% 43.5% 64.2% 47.8% 47
4-layer Neural Net 65.7% 40.1% 53.1% 43.4% 67.6% 43.4% 62.0% 48.0% 26.1
5-layer Neural Net 65.4% 38.3% 50.1% 40.6% 69.5% 42.8% 56.7% 45.3% 20.1

2000

6-layer Neural Net 65.5% 38.8% 48.0% 40.5% 68.4% 46.5% 53.0% 46.2% 20.1
Support Vector Clf. 69.6% 34.3% 55.7% 38.0% 70.7% 37.8% 68.3% 43.1% 58.7
Naı̈ve Bayes 38.3% 31.5% 28.5% 27.9% 40.9% 36.3% 33.1% 32.3% 1.4
K-Neighbors 60.3% 30.8% 45.2% 32.9% 61.4% 35.5% 52.1% 35.7% 64.3
Depth 5 Dec. Tree 64.6% 29.9% 35.4% 29.7% 65.7% 32.6% 40.9% 31.1% 0.3
Depth 8 Dec. Tree 66.5% 34.6% 43.6% 36.3% 67.3% 39.0% 47.2% 40.7% 0.4
Random Forest 66.8% 27.2% 50.5% 28.9% 69.6% 31.5% 58.5% 33.9% 0.5
AdaBoost 50.4% 10.6% 7.6% 7.8% 55.0% 14.0% 15.7% 11.4% 4.3
Gaussian Pr. Clf. 72.0% 42.7% 63.2% 47.3% 74.4% 47.7% 73.3% 53.0% 5250.4
3-layer Neural Net 68.7% 45.6% 60.6% 49.9% 71.2% 51.2% 66.4% 55.0% 50.9
4-layer Neural Net 67.5% 44.1% 57.1% 47.4% 69.5% 49.8% 68.1% 53.5% 28.5
5-layer Neural Net 68.6% 44.6% 55.0% 47.5% 69.9% 51.6% 62.2% 52.0% 31.7

3000

6-layer Neural Net 68.7% 47.2% 54.0% 48.7% 70.9% 51.5% 59.5% 53.2% 29.3
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Fig. 18: Confusion matrix of Combination NN predictions

provement for the parametric VAE and after 20 for the image
VAE. Data dimensionality and train, validation, and test set
splits are identical to the classifiers described in B2. The
training was performed on a computer with Ryzen 9 5950x,
32 GB RAM, and Nvidia RTX3080 GPU. Training plots of

Fig. 19: Model architecture of Variational Autoencoder for
images.

the image and data VAEs are included in Figures 21 and 22.

Appendix C2: Interpolation Setup
We define the interpolation and extrapolation vectors

(in) and (en), respectively in terms of two original design vec-
tors m1 and m2 as follows:

ik = m1 + k(m2−m1)∗ si, ∀ k ∈ [1,ni] (1)

Fig. 20: Model architecture of Variational Autoencoder for
parametric data.

Fig. 21: Training of Parametric VAE

ek = m2 + k(m2−m1)∗ se, ∀ k ∈ [1,ne] (2)

Here, si and se are the interpolation and extrapolation step
sizes and ni and ne are the number of interpolation and ex-
trapolation steps respectively. In this demonstration, we se-
lect ni = ne = 3. In the case of interpolation, our step size
is determined by the number of interpolation steps, while in
extrapolation, we choose to select the step size such that our
last extrapolation point is equally far from m2 as the distance
between m1 and m2:

si =
1

ni +1
(3)

se =
1
ne

(4)

Using this formulation, the results in Figure 12 are generated.
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Fig. 22: Training of Image VAE

Appendix D1: Temporal Bias
Figure 23 contains a 2-Dimensional PCA embedding

with models colored by model number. Clearly, there is a
strong bias in the dataset based on model number, which
is caused by the ”status quo” of bike parameters evolving
as new versions of the software were developed. This bias
would not be apparent had we shuffled the data, and we in-
tentionally left the data unshuffled in case the ordering of
models proves valuable in future research.

Fig. 23: PCA embedding with designs labeled by model
number illustrating the temporal bias in the dataset
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