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Abstract

The use of nuclear fusion energy via magnetic-confinement tokamaks is one of a few
encouraging paths toward future sustainable energy. Along the way, scientists need to
learn to avoid plasma disruptions: these sudden and unexpected plasma terminations
still represent one of the key challenges for tokamak devices. Forecasting plasma
instabilities and disruptions using first-principle models has been demonstrated to be
extremely difficult, due to the complexity of the problem and the high non-linearity of
the system. To date, disruption and plasma instabilities prediction has been studied
through two main approaches: data-driven versus physics-driven (or model-based).
On the one hand, recent statistical and machine learning (ML) approaches based on
experimental data have shown attractive results for disruption prediction, even in
real-time environments. Different tokamak devices have different operational spaces,
spatiotemporal scales for physics events, and plasma diagnostics. Therefore, most
of these data-driven approaches were developed and optimized specifically for one
device and did not show promising cross-device predictive ability. In addition, the
complexity of these data-driven models limits their physics interpretability. Recent
Deep-Learning (DL) based disruption prediction studies demonstrate the potential
for acquiring a general representation of experimental data that can be used in cross-
machine applications. On the other hand, model-based studies seek to identify event
chains that can lead to disruptions through early event detection, which can help
operators to avoid plasma instabilities disruptions. However, the extrapolation ability
of physics-based models to new devices, especially to new physics regimes is still
unclear.

This thesis demonstrates the application of data-driven methods on plasma insta-
bilities and disruption prediction via four major contributions. First, through explo-
rative data analysis of thousands of shots on C-Mod, DIII-D and EAST tokamaks,
the advantage of sequence-based disruption prediction model was shown. Based on
this finding, a new Hybrid Deep-Learning (HDL) general disruption predictor was
developed using C-Mod, DIII-D and EAST databases and it achieves state-of-the-art
performance on three machines with only limited hyperparameter tuning. Dedicated
cross-machine disruption prediction studies using this HDL model demonstrated that
a significantly boosted accuracy on the target machine was achieved by training on
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20 disruptive shots, thousands of non-disruptive shots from the target machine com-
bined with hundreds of disruptive shots from other devices. In addition, by comparing
the predictive performance of each individual numerical experiment, the disruptive
shots from multiple devices were found to contain device-independent knowledge that
can be used to inform predictions for disruptions occurring in a new device while
non-disruptive shots were found to be machine-specific. Second, the cross-regime
disruption prediction on multiple tokamaks using HDL model demonstrated data-
driven disruption predictors trained on abundant Low Performance (LP) discharges
work poorly on the High Performance (HP) regime of the same tokamak, which is a
consequence of the distinct distributions of the tightly correlated signals related to
disruptions in these two regimes. Moreover, the cross machine experiments suggested
matching operational parameters among tokamaks strongly improves cross-machine
accuracy. Given these conclusions, a scenario adaptive strategy that works for all
data-driven models was proposed for next generation tokamaks, such as ITER and
SPARC, and highlight the importance of developing baseline scenario discharges of
future tokamaks on existing machines to collect more relevant disruptive data. Third,
the powerful HDL model was upgraded to an integrated ML model that can predict
major disruption as well as multiple unstable events in tokamak plasmas that can
facilitate the physics interpretation of output from the black box data-driven models
and enables disruption avoidance by responding to early unstable events of plasmas.
Enhanced cross-machine ability and improved warning time was also observed using
the integrated ML model. Finally, among all different plasma unstable events, the
𝑛 = 1 tearing mode (TM) is considered to be one of the most important disruption
precursors and its predictive ability is strongly desirable for ITER and SPARC. In
the final part of this thesis, an empirical boundary for the 𝑛 = 1 tearing mode (TM)
is developed via data-driven methods and verified on thousands of DIII-D discharges.
The fitted boundary is a linear function of plasma equilibrium parameters such as
collisionality, poloidal beta, and the MHD risk factor (a combination of the normal-
ized electron temperature profile width, q95 and elongation). The boundary indicates
with a value related to the probability of having the TM onset and it achieves 88% of
shot-by-shot accuracy in offline analysis of DIII-D data. Preliminary cross-machine
analysis of TM onset prediction shows potential applicability of the empirical bound-
ary to C-Mod and EAST data as well, but the relative importance of the individual
parameters is different for different devices. This suggests the existence of different
trigger mechanisms for the TMs, implying that the boundary could be generalized
using data from different tokamaks representing different trigger mechanisms to im-
prove its extrapolability. Finally, this new proximity metric to the 𝑛 = 1 TM onset
has been incorporated into the real-time in DIII-D plasma control system (PCS) and
results from real-time experiments will be discussed.

Thesis Supervisor: Earl Marmar
Title: Senior Research Scientist, Department of Physics
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Chapter 1

Introduction

1.1 Nuclear Fusion

There is enormous evidence, including projected near-future energy consumption and
the estimation of fossil fuel reserves that point out the need to develop sustainable
energy resources [1, 2]. In addition, the burning of fossil fuels is known to cause
serious environmental damage and negative impact directly to the earth which, which
produces about 90% of all CO2 emissions [3]. At present, alternative carbon-free
energy resources like hydro power, wind power, solar power and bio-energy already
play important roles in the world’s total energy supplies. However, these technologies
are still limited by various unsolved problems including scalability, stability, supply
and storage difficulties.

Among all possible future energy resources, the large potential of fusion power
makes it hard to be ignored. Fusion energy could provide huge and steady electricity
without producing greenhouse gases compared with fossil fuel. In addition, fusion
power is expected to have great advantages over current fission power including greatly
reduced radioactivity during operation, much less nuclear waste and abundant, widely
available fuel resources. Fusion processes occur when two or more nuclei fuse into
heavier nuclei. For nuclei lighter than iron-56, the produced heavier nuclei will be
slightly lighter than the reactant nuclei. The decrease of mass in the fusion processes,
Δ𝑚, is converted to kinetic energy of the products according to the mass-energy
equation Δ𝐸 = Δ𝑚𝑐2. In order for the occurrence of nuclear fusion, the reactant
nuclei must be given enough kinetic energy to bring them close enough for enough time
such that the strong force pulling nuclei together exceeds the electrostatic repulsion.
The amount of kinetic energy needed in the process is called the Coulomb Barrier. To
provide enough kinetic energy, heating the atoms to high temperatures is one of the
practical ways. Once the atoms are heated to exceed their ionization energy, they will
be ionized to bare nuclei and free electrons. The result is an ionized gas of charged
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Figure 1-1: The helical orbit of an ion (mass 𝑚, charge 𝑞 > 0) moving in a constant
magnetic field B with velocity 𝑣⊥ perpendicular to the field and the resulting Larmor
radius 𝑟𝐿 = 𝑚𝑣⊥

𝑞𝐵
. This is known as the Larmor orbit.

particles known as plasma.
Given the reactant nuclei, the probability of having the fusion reaction is described

by the reaction cross section, 𝜎 which depends on the relative velocity of reactant
nuclei. In a plasma, particle velocity can be described by a probability distribution.
The velocity averaged cross section ⟨𝜎𝑣⟩ that depend on the averaged kinetic energy
of reactant ions in a plasma is introduced to describe the fusion reaction rate. The
highest cross section that can be utilized for fusion energy comes from the reaction
of hydrogen isotopes, deuterium-tritium (D-T) reaction when 𝑇𝑖 ∼15 keV [4]. The
D-T reaction will generate an 𝛼 particle (He2+) and a neutron (𝑛) with energies
𝐸𝛼 = 3.5 MeV and 𝐸𝑛 = 14.1 MeV. Since plasma will lose energy through conduction,
convection and radiation, to sustain thermonuclear fusion, the sum of input power
and the generated fusion power must overcome the loses.

1.2 Magnetic confinement fusion

To sustain the hot plasma cloud, people need to effectively confine the charged par-
ticles. After decades of exploration, two current leading confinement schemes are
magnetic confinement fusion (MCF) using magnetic field and inertial confinement
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fusion (ICF) by lasers. In MCF, the thermalized plasma is confined by carefully
designed magnetic fields. When a charged particle moves in the magnetic fields, its
motion is determined by the Lorentz force. For a particle with charge 𝑞 and velocity
𝑣 and local magnetic field 𝐵, the Lorentz force is 𝐹 = 𝑞�⃗� × �⃗�. If the magnetic field
is uniform, the charged particle will move along the 𝐵 field with helical path, as
shown in Figure 1-1. The gyration radius perpendicular to the field line, known as
the Larmor radius 𝑟𝐿, is determined by the mass 𝑚, charge 𝑞 and the velocity per-
pendicular to the field 𝑣⊥ of the particle as well as the field strength 𝐵 with 𝑟𝐿 = 𝑚𝑣⊥

𝑞𝐵
.

However, this picture becomes much more complex with the presence of electric field
and/or time/space varying magnetic field. These additional complexities usually lead
to the cross-field transport of the particles by inducing various drift that can cause
them leave from the original Larmor orbit and enter the orbit of adjacent field lines.
Therefore, the magnetic configuration of a MCF machine must be carefully designed
to reduce the transport losses.

For a MCF device sustaining fusion plasmas, the amount of input energy plus
generated energy from fusion reaction should overcome various plasma energy losses.
Since the amount of energy released in a given volume is a function of reaction rate and
hence the ion temperature, the density of reactant ions and the energy confinement
time (the length of time that the energy confined in the given volume). Therefore,
an important formula, known as the Lawson criterion was developed by John D.
Lawson in his 1957 paper [5]. Lawson Criterion describes the energy balance for
any fusion device based on a hot plasma. In a plasma, a global energy confinement
time 𝜏𝐸 measures the system’s energy loss rate. It is the internal energy density
𝑊 = 3

2
(𝑛𝑒𝑇𝑒 +

∑︀
𝑖 𝑛𝑖𝑇𝑖) divided by power loss density 𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑖𝑛𝑝𝑢𝑡 − 𝑑𝑊/𝑑𝑡 where

𝑃𝑖𝑛𝑝𝑢𝑡 is the total input power density.

𝜏𝐸 =
𝑊

𝑃𝑖𝑛𝑝𝑢𝑡 − 𝑑𝑊/𝑑𝑡
(1.1)

As mentioned above, the deuterium-tritium (D-T) reaction at 𝑇𝑖 ∼15 keV gives the
highest cross section. For a D-T plasma in the optimum 50-50 mixture and assuming
all species have the same temperature and ion density equals electron density, the
internal energy density 𝑊 is given by 𝑊 = 3𝑛𝑇 where n is the particle density and 𝑇
is the temperature in eV. Given that the produced neutron is electrically neutral, it
cannot be confined by the magnetic field and quickly escapes the plasma. Therefore,
it does not help to heat the plasma. On the contrary, the 𝛼 particle is charged
and is confined in the plasma by magnetic field. Thus, the 𝛼 particle can transfer
its energy to other particles through Coulomb collisions and heat the plasma. The
Lawson criterion requires the fusion heating power (𝑃𝛼 = 𝑛𝐷𝑛𝑇 ⟨𝜎𝑣⟩𝐸𝛼 with 𝑛𝐷, 𝑛𝑇

corresponding to the density of D, T respectively) plus any external heating power
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exceeds the losses. When the fusion heating 𝑃𝛼 is large enough, the external heating
is no longer required and the plasma reaches ignition. The ignition condition from
the Lawson criterion is given by

𝑛𝑖𝜏𝐸 ≳
12𝑇𝑖

⟨𝜎𝑣⟩𝐸𝛼

(1.2)

Based on the above Equation (1.2), an important figure of merit, fusion triple product
𝑛𝑖𝑇𝑖𝜏𝐸, gives the criterion for ignition. For D-T reaction, the minimum required triple
product occurs at 𝑇𝑖 ∼14 keV is about 𝑛𝑖𝑇𝑖𝜏𝐸 ≥ 3× 1021keV m−3 [6]. An additional
important concept of fusion is called breakeven. It is a point at which the fusion power
carried by the neutrons 𝑃𝑓𝑢𝑠 ≡ 𝑛𝐷𝑛𝑇 ⟨𝜎𝑣⟩(𝐸𝑛 + 𝐸𝛼) = 𝑃𝑖𝑛𝑝𝑢𝑡. However, no magnetic
confinement experiment has achieved breakeven yet.

1.3 Tokamak Plasmas

The tokamak is a high-performance magnetic confinement device that confines hot
fusion plasma in a torus with strong magnetic field. As mentioned above, the charged
particle in magnetic field can freely move along the field line and the time/space
varying electromagnetic field can give rise to various drift that allow particles to enter
the adjacent field lines. To solve these problems, the tokamak magnetic configuration
has two key components: a powerful toroidal magnetic field generated by current in
external coils, and a poloidal magnetic field primarily induced by a toroidal current
𝐼𝑝 driven in the plasma. The combination of these two components gives a helical
field line around the torus as shown by Figure 1-2, which overcomes charge gathering
drifts on average.

The tokamak idea was initially proposed by Soviet physicists Igor Tamm and
Andrei Sakharov in the 1950s. The first working tokamak was the T-1 tokamak in
Russia which started operation in 1958 [7]. Since then, many experimental tokamaks
have been built (∼ 35 of them were operating when this thesis was written). Right
now, the Joint European Torus (JET), located at Culham Centre for Fusion Energy
in Oxfordshire, UK is the world’s largest tokamak and it achieved world record fusion
energy of 59MJ for 177MJ of input heating energy. Next generation tokamaks like
ITER [8] and SPARC [9] aiming at exceeding breakeven are currently under design
and construction. SPARC is expected to operate in a burning plasma with significant
𝛼 heating within 10 years.
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Figure 1-2: (a) Toroidal magnetic field 𝐵𝜑 and poloidal magneric field 𝐵𝑝 due to
toroidal plasma current 𝐼𝑝. (b) Combining 𝐵𝜑 and 𝐵𝑝 gives helical field lines winding
around the torus

1.4 MHD equilibrium of tokamak plasma

Magnetohydrodynamics, or MHD is a theory describing the dynamics and electro-
magnetic properties of an electrically conducting fluid. It applies to large scale (char-
acteristic scale ≫ ion Larmor radius and mean free path length) and relatively slow
(characteristic time ≫ ion gyration time and mean free path time, non-relativistic)
plasma which makes it suitable for the global dynamics of tokamak plasmas [10]. The
momentum equation from MHD is

𝜌(
𝜕

𝜕𝑡
+ v · ∇)v = j×B−∇𝑝 (1.3)

where j is the current density in the plasma and v is the bulk plasma velocity. From
the momentum equation, the equilibrium condition from MHD is the balance of
plasma pressure 𝑝 = 2𝑛𝑇 and the magnetic force as

j×B = ∇𝑝 (1.4)

From Equation (1.4), it is clear that magnetic field lines and currents lie on surfaces
of constant 𝑝. Therefore, the coordinate transformation can be applied to Equation
(1.4) by introducing two flux functions 𝜓 and 𝑓 [6] that satisfy

j𝑝 =
1

𝑅
(∇𝑓 × ê𝜑) and B𝑝 =

1

𝑅
(∇𝜓 × ê𝜑) (1.5)

where 𝜑 and 𝑝 denote the toroidal and poloidal directions, respectively (see Figure 1-
2). In the equation Equation (1.5), 𝜓 is proportional to the poloidal magnetic flux
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and 𝑓 is related to poloidal current. Using these two flux functions 𝜓 and 𝑓 , Equation
(1.4) can be expressed as functions of 𝜓. Combining MHD equilibrium function with
Ampere’s law gives the Grad-Shafranov equation

𝑅2∇ ·
(︂
∇𝜓
𝑅2

)︂
= −𝜇0𝑅

2𝑑𝑝(𝜓)

𝑑𝜓
− 𝜇2

0𝑓(𝜓)
𝑑𝑓(𝜓)

𝑑𝜓
(1.6)

characterizing MHD equilibrium in tokamaks and its solution yields reconstructed
pressure, current, and magnetic field profiles [11, 12].

Given an equilibrium tokamak plasma, the ratio of the plasma pressure 𝑝 to the
magnetic pressure 𝐵2

2𝜇0
, 𝛽 = 𝑝

𝐵2/2𝜇0
, characterizes its confinement efficiency where

𝐵2 = 𝐵2
𝑝 +𝐵

2
𝜑. Using large aspect ratio approximation 𝑅 ≫ 𝑎, 𝐵𝜑 ≈ 𝐵0 and the edge

poloidal magnetic field 𝐵𝑝(𝑎)
2 ≈

(︀𝜇0𝐼𝑝
2𝜋𝑎

)︀2 2
1+𝜅2 , 𝛽 can be expressed with the toroidal

and poloidal components 𝛽−1 ≈ 𝛽−1
𝑡 + 𝛽−1

𝑝 where

𝛽𝑡 ≡
2𝜇0⟨𝑝⟩
𝐵2

𝜑

≈ 2𝜇0⟨𝑝⟩
𝐵2

0

(1.7)

𝛽𝑝 ≡
2𝜇0⟨𝑝⟩
𝐵𝑝(𝑎)2

≈ 4𝜋2𝑎2(1 + 𝜅2)⟨𝑝⟩
𝜇0𝐼2𝑝

(1.8)

𝐵0 and 𝜅 are the toroidal field on axis and plasma elongation respectively and ⟨⟩
represents the volume-averaged quantity over the whole plasma. In addition, 𝑊𝑚ℎ𝑑 =
3
2
⟨𝑝⟩ is the the total stored kinetic energy of the plasma.

Another important quantity related to stored plasma magnetic energy is the nor-
malized internal inductance per unit length [10], ℓ𝑖, defined as

ℓ𝑖 ≡
𝐿𝑖/2𝜋𝑅0

𝜇0/4𝜋
=

2𝐿𝑖

𝜇0𝑅0

(1.9)

where 𝐿𝑖 is the plasma internal inductance. In an non-elongated, large aspect ratio
plasma, a vertical magnetic field 𝐵𝑉 given by

𝐵𝑉 =
𝜇0𝐼𝑝
4𝜋𝑅0

(︂
𝛽𝑝 +

ℓ𝑖 − 3

2
+ ln

8𝑅0

𝑎

)︂
(1.10)

must be applied to sustain the MHD equilibrium [12]. Finally, safety factor 𝑞 which
is highly relevant to MHD stability describes the magnetic topology of the plasma.
It can be expressed as

𝑞 =
1

2𝜋

∮︁
1

𝑅

𝐵𝜑

𝐵𝑝

𝑑𝑠 ≈ 𝑟𝐵𝜑

𝑅0𝐵𝑝

(1.11)

where the line integral is defined over one poloidal turn of a magnetic surface and the
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approximation comes from the non-elongated plasma and large aspect ratio limit [6].
Since 𝑞 ∝ 𝑟

𝐵𝜃
≈ 2

𝜇0⟨j⟩𝑟 where ⟨j⟩𝑟 is the bulk-averaged toroidal current density inside

𝑟 and the plasma resistivity 𝜂 ∝ 𝑇
−3/2
𝑒 [6], for inductive drive, j is peaked near the

core (hottest) and thus the 𝑞 profile also reaches minimum at the same region. This
is not necessarily for non-inductive drive.

1.5 The Tokamak Disruption

The tokamak disruption is a dramatic event that suddenly deteriorates the plasma
confinement in an unexpected way. The tokamak disruption is usually initiated from
a chain of unstable events (disruption precursors) that lead to the loss of plasma
confinement. The loss of confinement has two different consequences. In a minor dis-
ruption, the confinement loss is followed by the quick loss of a substantial fraction of
kinetic energy and small fraction of electromagnetic energy. The plasma equilibrium
gradually recovers after this rapid energy loss. In a major disruption, the confinement
loss is unrecoverable and it is followed by the thermal quench and then current
quench in which the plasma quickly loses all its kinetic and electromagnetic energy.
A typical example of disruption which occurs during the flattop on DIII-D is shown
in Figure 1-3 in which 𝑇𝑒 and 𝐼𝑝 goes to nearly zero in just a few milliseconds. Dis-
ruption is a major challenge for tokamak development because it limits the possible
operational region of the tokamak and its deleterious consequences can damage the
whole fusion device and prevent the realization of a functioning plasma reactor. Fur-
thermore, the fact that no first principle modeling of plasma disruption exists makes
disruption a more serious problem. This section reviews several typical events that
can lead to disruptions and the important operational limits related to disruptions.

From decades of tokamak research, several identified unstable events and oper-
ational limits are found to be highly related to disruptions. Operational limits for
steady state are imposed by density limit, pressure limit and 𝑞 limit (low-𝑞 disrup-
tions) [6]. These limits involve a series of different precursors to the final loss of
control. Then the loss of plasma control is always occurring consistently with the
thermal and current quench. For example, when 𝑞95 goes to roughly 2 (low-𝑞 limit),
𝑛 = 1 or 𝑛 = 2 tearing modes can grow to large amplitude. The large rotating mode
will then be decelerated by wall torque and get locked. The large locked mode can
lead to the final loss of control and then the major disruptions happen. Investigating
these operational limit and some relevant disruption precursor can help us under-
stand typical disruptive chain of events. We can then use these information to design
better disruption prediction/avoidance algorithms. These limits and several typical
disruption precursors are reviewed in following subsections.
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Figure 1-3: Plasma current 𝐼𝑝 and central electron temperature 𝑇𝑒0 for a typical
disruption on DIII-D.

1.5.1 Density limit disruption

Observations from various tokamak experiments suggest the maximum density that
can be achieved on tokamaks is limited by the scaled plasma current density. This
phenomenology was first described by Murakami by empirical scaling [13]. Later, the
Greenwald density limit, 𝑛𝐺, was proposed based on experimental data from various
machines, including elongated plasmas [14]

𝑛𝑒 ≲ 𝑛𝐺 ≡ 𝐼𝑝
𝜋𝑎2

(1.12)

where 𝑛𝑒 is the line averaged electron density with unit 1020 m−3, 𝐼𝑝 is the plasma
current in MA and 𝑎 is the minor radius in m. A plot shows this 𝑛𝑒 vs. 𝑛𝐺 scaling
is shown in Figure 1-4. The underlying physics of the density limit has not been
fully understood yet. Perhaps the most important physics of the density limit is
related to the strong onset of particle transport due to increased turbulence at the
edge just as the limit is approached. Then, to get higher density through gas fueling
requires a dramatic non-linear increase in fueling rate, which leads to the power
balance deficit. The increasing density can lead to the increase in impurity radiation
and the balance between Ohmic heating (∝ 𝐼2𝑝 ) and radiation loss from impurities in
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Figure 1-4: Greenwald density limit of Tokamak plasmas.

the cool plasma edge might determine the onset of density limit [15]. Furthermore,
the edge cooling usually causes MARFEs (Multifaceted Asymmetric Radiation From
the Edge) [16], which further strengthen the cooling in the edge region. The plasma
cooling produces a contraction of plasma current profile and then leads to an increased
current gradient and hence MHD destabilization inside the 𝑞 = 2 surface. Eventually,
a major disruption occurs [6, 17].

1.5.2 𝛽 limit

The maximum achievable plasma pressure (i.e. 𝛽 limit) can be formulated as a limit
on 𝛽𝑁 which is the normalized 𝛽𝑡 defined in Equation (1.7), given by

𝛽𝑁 ≡ 𝛽𝑡
𝐼𝑝/𝑎𝐵0

(1.13)

where 𝐼𝑝 is the plasma current in MA, 𝑎 is the minor radius in m and 𝐵0 is the 𝐵𝜑 on
axis. There are two 𝛽 limits. The Sykes limit [18] of 𝛽𝑁 ≤ 0.044, or 4.4% is obtained
from the analysis of largest 𝛽 value stable to high 𝑛 ballooning modes. The Troyon
limit [19] of 𝛽𝑁 ≤ 0.028, or 2.8% comes from the more extensive study of MHD modes
and plasma shapes. The Troyon limit is shown in Figure 1-5. Since Troyon limit is
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Figure 1-5: Troyon limit of Tokamak plasmas.

more limited, it is considered as the primary 𝛽 limit which can also be written as

𝛽𝑁 ≲ 4ℓ𝑖 (1.14)

For highly elongated plasmas, like DIII-D plasma, the Troyon limit can occasionally
be exceeded. A revised formula by Menard [20] shows Troyon limit is still valid for
highly elongated plasmas if we redefine 𝛽𝑡 using ⟨𝐵2

𝜑⟩ instead of 𝐵2
0 .

1.5.3 low-𝑞 disruption

The underlying physics mechanism of low-𝑞 disruption might be the increasing incom-
patibility of 𝑚 = 1 modes and 𝑚 = 2 modes stability as the safety factor near the
edge, 𝑞95, decreases. Since the safety factor at center 𝑞0 is limited by 𝑚 = 1 sawtooth
instability, increasing 𝐼𝑝 and hence decreasing 𝑞95 makes the 𝑞-profile more unsta-
ble. Without sawtooth instability, increasing plasma current will increase the current
density on axis. However, the sawtooth crash limits 𝑞0 by flattening the 𝑞-profile in
the central region. Thus, increasing current eventually leads to the increased current
gradient in the outer region of the plasma, in turn resulting in the growth of a tear-
ing/kink instability. This sets a lower limit on the edge safety factor, 𝑞95 ≥ 2. This
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low-𝑞 limit on tokamak operation can possibly be exceeded by using active control
of the corresponding MHD instabilities, as demonstrated on DIII-D plasma [21]. At
present, most of existing tokamaks (and near future burning plasma tokamaks) tend
to operate with 𝑞95 ≳ 3 to decrease the possibility of having disruptions.

1.5.4 Vertical displacement event (VDE)

Equation (1.10) shows that tokamak plasmas require an external vertical field to
eliminate the horizontal outward expansion in the vessel. An active feedback control
system is needed to sustain the quilibrium of the plasma. Similarly, as shown in [22],
elongated plasmas are unstable to a gross vertical displacement. Due to this instabil-
ity, tokamaks with elongated plasmas need an active feedback control system on the
timescale that allows magnetic field to penetrate the vessel wall to hold the vertical
position of the plasma [23]. If the feedback control system fails to correct a vertical
perturbation, the perturbation grows and might lead to a vertical displacement event
(VDE) in which the whole plasma moves up or down. VDEs usually set the limit
on the maximum achievable elongation. The danger of VDEs became clear on JET
where, in at least one case, forces of several hundred tons were generated on the
vacuum vessel [24].

VDEs can occur before or after the thermal quench. If VDEs happen before
the thermal quench, the hot plasma can make large contact with the wall of vessel
which is called a hot VDE. These events lead to the cooling and recombining of the
edge plasma immediately after it contact with the wall. The recombination process
continues until the plasma shrinks such that 𝑞95 ∼ 2 and then the plasma equilibrium
is quickly destroyed. Once this happens, the toroidal field is trapped between the
wall and the plasma which drives a large poloidal current flow in the conducting
wall. At this stage, the outer flux surfaces intersect the wall over a "halo" region
and the driven current is called the halo currents, as shown in Figure 1-6. The large
electromagnetic force resulting from halo currents can be a threat to the components
inside the vessel as well as to the vessel itself.

1.5.5 Tearing mode and Locked mode

In tokamak plasmas, although magnetic perturbations 𝛿B which bend field lines tend
to be stabilized by magnetic tension force, the MHD equilibrium discussed in Sec-
tion 1.4 can be unstable to some resonant perturbations. 𝛿B can be expressed using
using Fourier components with 𝛿B ∼ 𝑒𝑖(𝑚𝜃+𝑛𝜑). If a particular perturbation and a
magnetic surface 𝜓 satisfy

𝑞(𝜓) =

⃒⃒⃒⃒
𝑚

𝑛

⃒⃒⃒⃒
(1.15)
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Figure 1-6: a VDE coinciding with current quench on Alcator C-Mod, from Bob
Granetz [25]. Magnetic flux surface reconstructions with 1ms time resolution are
shown in the upper plot. The direction of driven halo currents are given by the
arrows in the last two frames. In the lower plot, temporal evolution of several key
plasma signals during the VDE are shown.
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the wavefronts of the mode align along the field lines of the surface and it becomes
resonant to the surface. In Equation (1.15), 𝑞 is the safety factor (Equation (1.11))
and 𝑚 and 𝑛 are the poloidal and toroidal integer mode numbers, respectively, corre-
sponding to the perturbation. Magnetic surfaces satisfying Equation (1.15) are called
rational surfaces and the perturbations resonant on these surfaces are called (𝑚,𝑛)

modes. The (𝑚,𝑛) mode has 𝑚 poloidal wavelengths for every 𝑛 toroidal wavelengths
and thus higher (𝑚,𝑛) mode are more stable due to larger field line bending. The
lowest (𝑚,𝑛) modes are the most dangerous resonant modes.

Among various MHD instabilities, the current driven (2, 1) and (3, 2) tearing
modes [26] are known to be among the most relevant instabilities for tokamak dis-
ruptions. Usually, a slow change in MHD equilibrium pushes the current profile to
marginal stability and finally across the tearing mode onset boundary. At the first
stage, the tearing modes appear as low level oscillations. The phase velocity (i.e.
frequency) of the mode can limit the mode growth as suggested by [15, 27, 28]. How-
ever, when the modes grow large enough, they can interact with external conductors
like the vessel. The interaction between modes and vacuum vessel will add a torque
to the plasma which decelerate and finally halt the mode propagation. When the
frequency of the mode decreases to 0, the mode is locked to the vessel. This process
of removal of the mode oscillation is known as the mode locking [29]. A example of
mode locking on DIII-D is given by Figure 1-7.

Locked modes can sometimes be the result of an initially stationary ‘born’ locked
mode due to the penetration of error fields. Error fields can induced by (a) the winding
structure of coils, (b) the connections to the coils and (c) small misalignment of the
coils [30]. Error fields can introduce perturbing deviations to the toroidal symmetry
of the magnetic field which lead to the growth of (2, 1) tearing modes. Usually error
fields with an 𝑚 = 2 radial component, 𝐵𝑟, of a few gauss can be enough to cause a
locked mode, which presents a challenge for the design of future reactors.

1.5.6 Radiative Collapse and Impurities

Radiation loss of plasma energy can result in several different ways including atomic
processes and the acceleration of charged particles. For the first one, the atomic line
emission and recombination can lead to radiation. In steady state, considering the
plasma with single impurity species, the atomic radiation given by impurities is

𝑃𝑅 = 𝑛𝑒𝑛𝐼𝑅𝐼(𝑇𝑒) (1.16)

where 𝑛𝐼 is the impurity density and 𝑅𝐼(𝑇𝑒) depends on electron temperature as
shown in [6]. The function 𝑅𝐼(𝑇𝑒) reaches maximum at ∼10 eV for lighter impurities
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Figure 1-7: Locked mode lead to a disruption on DIII-D, from Ryan Sweeney [27].
The time traces of the amplitude of both the fast (2, 1) neoclassical tearing mode
(NTM, in black) and low frequency locked mode (LM, in blue) are shown in the
upper plot. The fast NTM is locked at 1978.5ms and the low frequency locked mode
is detected at this point. In the lower plot, the frequency evolution of two modes are
given. The slow down time (interval between mode rotating at 2 kHz) to lock) and
the survival time (interval between mode locking and disruption) are marked in two
plots.
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and ∼1 keV for heavier impurities. Thus, high-Z impurities can radiate significantly
at core region of the plasma and they must be stopped from entering the core. To
this aim, most of modern tokamaks equipped with divertor can reduce the probability
that impurities will penetrate through the scrape-off layer into the core plasma [31].

For the latter way of radiation loss, a mechanism called Bremsstrahlung radiation
plays an important role. The Bremsstrahlung radiation is emitted by the the acceler-
ation of a charged particle deflected by other charged particles. In plasmas, this can
happen when electrons interact with ions through Coulomb collisions. For a plasma
with multiple ion species, the Bremsstrahlung radiation power density is

𝑃𝐵 ∝ 𝑍𝑒𝑓𝑓𝑛
2
𝑒𝑇

1/2
𝑒 (1.17)

where 𝑍𝑒𝑓𝑓 = 1
𝑛𝑒

∑︀
𝑗 𝑍

2
𝑗 𝑛𝑗 is the effective charge [4]. Clearly, the radiation becomes

larger when the heavier impurity ions appear in the plasmas [32, 33].
When radiation power density from 𝑃𝐵 and 𝑃𝑅 is comparable to the input power

densities, plasma energy balance can be broken, leading to a radiative collapse. Since
the radiation power depends on impurity density, the influx of impurities from high-Z
metal vessel wall (sometimes known as UFOs) can result in a rapid radiative collapse
which often leads to quick disruptions. UFOs have been found to account for a
large fraction of disruptions on high-Z metal wall tokamaks like Alcator C-Mod [34].
Impurity accumulation can also cause other radiation effects like the MARFE from
Section 1.5.1.

1.6 Disruption Quench Phases and Consequences

1.6.1 Thermal and current quenches

After the break-up of magnetic surfaces, the final phases of disruptions start from
the thermal quench, at which the plasma quickly loses all its thermal energy and
deposits the energy onto the first wall of the vacuum vessel by conduction. Usually,
a quick positive plasma current spike is observed at this point which is related to
a rapid flattening of the radial plasma current profile. A typical current spike is
shown in Figure 1-8. The sudden loss of thermal energy cools the entire plasma
and significantly increases the resistivity 𝜂 ∝ 𝑇

−3/2
𝑒 which then results in the the

current quench. During the current quench, the plasma current decays to zero on
the timescale 𝜏𝐶𝑄 ∝ 𝑆/𝜂, where 𝑆 is the plasma cross section area [35]. The typical
timescale for both thermal and current quenches on tokamaks is of the order of few
milliseconds [36].

Rapid energy loss due to the thermal and current quench can seriously damage the
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Figure 1-8: The current spike before current quench during a major disruption.

tokamak. Heat deposited to the first wall via thermal quench or hot VDEs becomes
even more damaging when the heat load distribution is asymmetric [37]. Furthermore,
the rapid change of plasma current during the current quench can drive currents like
halo currents and eddy currents in the conducting components of the vessel wall. The
induced currents then give rise to large Lorentz forces which also have the potential
to damage the device. Again, toroidal asymmetries of the induced halo currents can
increase the damage [38, 39].

1.6.2 Runaway Electrons

Another important consequence of disruptions is the potential for the formation of
a large number of relativistic runaway electrons flowing toroidally. The formation of
runaway electrons is discussed in [40]. In short, the Coulomb collisions between elec-
trons traveling along the magnetic field with background electrons add a drag force
to the traveling electrons. When the force due to the parallel component of electric
field 𝐸‖ exceeds the drag force, electrons in the high-energy tail of the velocity distri-
bution can be continuously accelerated and reach relativistic energies. The generated
so-called runaway electrons can transfer energy to background electrons via knock-on
collisions which further gives rise to an avalanche process [41] and finally leading to
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a "runaway beam" of relativistic electrons. The generated runaway beam sometimes
carries a large portion of total plasma current. If the control of beam is lost, the
runaway electron beam can directly hit the plasma facing components locally and
generate a very large volumetric heat in the plasma facing components. This large
heat can then melt the tiles of the first wall and damage plasma facing components
[42–44].

1.7 Disruption Avoidance and Disruption Mitigation

As suggested by [45, 46], near future burning-plasma tokamaks like ITER cannot
withstand more than a few unmitigated, high current, high stored energy disruptions
because such disruptions can threaten the integrity of the facility. Ideally, disruption
frequency can be minimized by avoiding scenarios which come near to operational
limits (as discussed in Section 1.5). Additionally, optimized current and pressure
profiles can minimize the chance of having MHD mode onset [47].

In addition to the passive avoidance strategies mentioned above, disruptions can
be actively avoided using real-time control systems. If the precursor events in the early
stage of a disruption can be detected, the pre-programmed control systems can then
take proper actions corresponding to the detected events which might steer plasma
away from the unstable regime. Previous disruption avoidance studies have included
stabilizing neoclassical tearing modes via electron cyclotron current drive (ECCD) [48]
and preventing tearing mode locking by external driven rotating resonant magnetic
perturbations (RMPs) [49]. However, due to the complexity of disruptions and the
lack of a fast plasma simulator, determining the early unstable events and taking
proper actions in real time can be challenging.

Finally, if the thermal quench cannot be avoided, a disruption mitigation system
(DMS) needs to be triggered to alleviate the consequence of heat and electromagnetic
loads from thermal and current quenches. The idea of most mitigation stategies
is to cool the plasma by radiation which uniformly deposits thermal energy on the
first wall to prevent the concentration of heat loads on the divertor [50]. Given
that the radiation power increases with the density and charge of the impurity ions
(see Section 1.5.6), different quantities and types of injected impurities give different
radiation timescales to address the mitigation needs. Examples include shattered
pellet injection (SPI) [51] which inject impurity pellets that will ionize in the desired
region of the plasma and massive gas injection (MGI) by injection of a large quantity
of deuterium or impurity gas into the plasma [52, 53]. In addition, a previous study
has demonstrate the passive prevention of runaway electron beam formation during
disruptions via a non-axisymmetric in-vessel coil [54].
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Table 1.1: Tokamak design parameters [9, 55]

Parameter Units Alcator C-Mod DIII-D EAST

Major radius, 𝑅 m 0.67 1.66 1.70
Minor radius, 𝑎 m 0.21 0.67 0.40
Elongation𝑎, 𝜅 1.8 2.01 2.0
Maximum toroidal magnetic field, 𝐵0 T 8.0 2.2 3.5
Maximum toroidal plasma current, 𝐼𝑝 MA 2.0 2.0 1.0
Maximum flattop duration𝑏, Δ𝑡𝑓𝑙𝑎𝑡𝑡𝑜𝑝 s 1 6 1000
Average electron density, 𝑛𝑒 (typical) 1020 m−3 ∼ 1 ∼ 0.4 ∼ 0.4
Core electron temperature, 𝑇𝑒0 (typical) keV ∼ 2 ∼ 3 ∼ 2
Auxiliary power𝑐, 𝑃𝑎𝑢𝑥,𝑚𝑎𝑥 MW 6 27 28
First wall material, molybdenum carbon hybrid𝑑

𝑎Elongation is defined at the plasma separatrix
𝑏Flattop is the period of constant plasma current

𝑐Maximum auxiliary heating power coupled to the plasma
𝑑lower divertor: carbon, middle wall: molybdenum, upper divertor: tangsten

1.8 Alcator C-Mod, DIII-D, and EAST

Data driven analysis presented in this thesis is based on the data from three tokamaks,
Alcator C-Mod, DIII-D, and EAST. Alcator C-Mod was a compact, high-magnetic
field, diverted tokamak with a molybdenum first wall, located at the MIT Plasma
Science and Fusion Center. DIII-D is a medium size, diverted tokamak with a carbon
wall, located at General Atomics in San Diego. EAST is a medium size, supercon-
ducting, diverted tokamak with a hybrid first wall (lower divertor: carbon, middle
wall: molybdenum, upper divertor: tangsten), located at Institute of Plasma Physics
Chinese Academy of Sciences. C-Mod stopped operating in 2016 while DIII-D and
EAST are still in operation. The main design parameters of these three tokamaks are
summarized in Table 1.1 and there exists substantial difference in size and magnetic
field between C-Mod and the other two tokamaks. In addition, as mentioned above,
these three devices use different materials for the plasma facing components. The
combination of these different characteristics covers a substantial fraction of ITER’s
features [45], although no existing device can, by itself, fully represent ITER at scale.
In addition, since ITER will operate in a new regime that none of the current machine
can approach, the new physics that will emerge in the ITER operational regime is
not fully considered in present simulation codes and thus the extrapolation of current
codes to ITER situation is uncertain. Different level of fidelity codes exist, but no
whole plant modeling tool is a great challenge. A cross-machine study using data
from these existing devices is nevertheless well-suited for an investigation of possible
disruption prediction/avoidance solutions for ITER.
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1.9 Outline

Magnetic confinement fusion energy via tokamaks is one of the most attractive schemes
for future clean energy production. In order to produce net energy, tokamaks need
to maintain a hot plasma cloud with high pressure and good confinement quantity as
discussed in Section 1.2 which sometimes requires the tokamaks operate near several
operational limits (see Section 1.5). Furthermore, the plasma’s internal pressure and
current profile and the magnetic topology can also give rise to certain plasma insta-
bilities (see Section 1.5). Fast growing plasma instabilities usually lead to disruptions
in which the plasma loses all its thermal and magnetic energy on the order of few
milliseconds. The resulting consequences from disruptions can significantly threaten
the integrity of next-generation reactors like ITER (see Section 1.6) and thus disrup-
tions must be reliably predicted and avoided/mitigated on these next-step machines.
This thesis proposes several data-driven methods for facilitating the prediction and
avoidance of disruptions across multiple tokamaks based on the time traces of signals
characterizing the state of the plasma. It also discusses the possible strategies to
develop disruption prediction systems on future tokamaks.

In chapter 2, several methods proposed in previous studies for predicting and
avoiding disruptions are reviewed with a focus on data-driven and machine learning
methods. Then, in chapter 3, based on the conclusions from an unsupervised data
exploration study, a hybrid deep-learning (HDL) model for general disruption predic-
tion across multiple tokamaks is developed and the performance of the HDL model
and other disruption prediction models are compared highlighting the advantages
of the HDL model. In addition, several device-independent qualitative conclusions
about cross machine disruption prediction are obtained via cross machine numerical
disruption prediction studies with the HDL model using data from several tokamaks.
To facilitate the development of disruption prediction on future machines like ITER,
a scenario adaptive disruption prediction study via the HDL model that aims to
accurately predict disruptions in high performance (HP) regimes using only low per-
formance (LP) data from the target device is discussed in chapter 4. The ability to
identify disruption precursors is important to inform the operator about the triggered
disruption warnings from the predictor and is critical for disruption avoidance. To
this end, an upgraded HDL model that incorporates predictive capability of various
plasma unstable events including rotating modes, locked modes, H-to-L back transi-
tions and radiative collapses is demonstrated in chapter 5. The upgraded HDL model
gives longer warning times and better cross machine ability compared to the base
HDL model and the same upgrading strategy can be applied to any neural network
based disruption predictor. Finally, a symbolic boundary for predicting n=1 tearing
mode (TM) onset across tokamaks, developed by data-driven methods, is discussed in
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chapter 6. In chapter 7, all major results from this thesis and the main contributions
from the author are summarized and the possible future research directions building
on the results of this thesis are discussed.
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Chapter 2

Disruption Prediction and Disruption
Avoidance Models

To implement the avoidance and mitigation strategies discussed in Section 1.7, dis-
ruption prediction models with high accuracy need to be developed. To simply trigger
the DMS, a typical disruption prediction model only has to generate a threshold-based
signal that determines whether or not a mitigation system (like SPI or MGI) should
be fired. To this aim, a successful model needs to achieve both high true positive rate
(TPR, the successfully detected disruptions as a fraction of all disruptions) and high
true negative rate (TNR, the successfully predicted non-disruptive shots as a fraction
of all non-disruptive shots). the model should also give sufficiently long warning time
to enable a successful mitigation (at least a few tens of milliseconds). For the ITER
DMS, the DMS trigger requires a warning time greater than ∼30ms with TPR as
high as ∼ 99% and TNR as high as ∼ 98% during high performance operation [1].

As for the required avoidance system model, it not only needs to forecast the
beginning of instability onset, but also needs to characterize the underlying precursor
events that lead to the unstable phase and automatically choose the proper actions
that can push the plasma back to a safer operational regime. Moreover, the algo-
rithm should give a long enough warning time for chosen actions to be effective such
that the upcoming disruption can be avoided (usually more than a few hundreds of
milliseconds).

Disruption prediction models are required to secure the success of near future
burning-plasma tokamaks, including ITER [2]. To date, disruption prediction has
been studied through two main approaches: data-driven versus physics-driven (model-
based). In this chapter, these two major branches of disruption prediction models
are both reviewed in detail (see Section 2.1 and Section 2.2) and the performance
comparison between them is discussed. The challenge of cross-machine disruption
prediction for data-driven models is then discussed in Section 2.3, motivating the
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studies presented in the following chapters of this thesis.

2.1 Physics-driven Approaches

Developing an integrated physical model based on first principles for disruption avoid-
ance has been shown to be very difficult [1]. For example, a comprehensive physics-
based model for MHD instabilities needs to solve the plasma equilibrium equation
with magnetic islands based on measured magnetic signals as boundary conditions,
and predict the island growth rate with small uncertainties. In addition, all these
calculations must be done quickly enough such that the results can be used for real-
time deployment [3]. Although significant efforts have been made along this direction
[4], a code meeting all such requirements is still unavailable. Moreover, physics un-
derstanding about some transport phenomena is still inadequate. Therefore, most
current model-based approaches for disruption prediction only consider a subset of
disruption related unstable events, as for example described in Section 1.5.

The simplest model-based approach is the threshold-based method. For this ap-
proach, an alarm is triggered if one or more measured plasma signals exceed certain
thresholds. For example, the measured values of relevant parameters like the plasma
current, the electron density, and (2, 1) mode amplitude can be used to initiate a safe
shutdown action [5]. Locked mode amplitude measurements have been used to trigger
MGI on both ASDEX Upgrade [6] and JET [7]. By fitting a scaling law for the locked
mode amplitude prior to the thermal quench time on several existing tokamaks, this
locked mode threshold model can possibly be extrapolated to future devices [1]. Fur-
thermore, a statistical study about mode locking on DIII-D has shown the relation
between ℓ𝑖/𝑞95 and disruptive locked modes [8].

Modular approaches that combine identifiers of several disruption related unstable
events have also been studied. For example, a multi-layered disruption predictor that
combines several independent simple models for multiple unstable events has been
implemented on ASDEX Upgrade [9]. Recently, robust off-normal event handling
algorithms have been developed on DIII-D [10], TCV [11], and ASDEX Upgrade
[12]. These algorithms incorporate multiple event identification modules and send
outputs from event detectors to integrated control and actuator management systems
to ameliorate the detected instabilities.

Models based on path-oriented analysis have also been developed. A recent review
is presented in [4]. These algorithms focus on several common unstable event chains,
as presented in Section 1.5, and output plasma proximity to a disruptive boundary as
a function of time. The state of the art of these path-oriented analysis models is the
Disruption Event Characterization and Forecasting (DECAF) algorithm [13], that
combines several physics-driven models, each detecting different unstable events, and
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generates an overall instability level. The modules incorporated in DECAF include
a resistive wall mode detector [14], a rotating MHD mode detector [15], and an
ELM detector [16]. DECAF has been implemented in real-time on KSTAR [17].
Other examples of path-oriented analysis models include a density limit disruption
avoidance algorithm [18] and a model that focuses on disruptions that are caused
by impurity influx and NTMs [19]. In general, the model-based approaches can
provide early warnings of well studied common unstable events that can lead to
disruptions on existing tokamaks. However, due to the limited knowledge of some
unstable events, and the possible new physics like strong alpha heating on next-
generation devices, the extrapolation of physics-driven approaches to future devices
has significant uncertainty. In addition, the adoption of a physics-driven model is
limited by our understanding of the underlying physics, and so far has not been done
on a fast timescale (inter-discharge adaption).

2.2 Data-driven Approaches

The basic logic of disruption prediction and avoidance models is to construct a func-
tion 𝑓(x) that maps an input vector x representing the current (and/or historical)
plasma state, to an output vector y quantifying the risk level of different unstable
events and/or disruption. For the physics-driven approaches, the mapping function
𝑓(x) is explicitly designed purely based on the knowledge of the relevant plasma
physics equations.

In the case of data-driven approaches, the function 𝑓(x) is chosen from a large class
of functions during a training process based on the functions’ statistical performance
on a large amount of historical data. The function class, also called hypothesis space,
is usually sufficiently large to fit any continuous function closely enough and it is
not limited by the set of functions that relate to physics models. The fitted function
can then be applied to unseen or new data through a testing process to evaluate
its generalization ability. This is the key difference between machine learning and
a traditional optimization approach. For data-driven approaches, finding a proper
model becomes an optimization and generalization problem rather than a physics
problem. Nowadays, data-driven methods are also known as machine learning under
the more general ensemble of artificial intelligence techniques.

The term machine learning was proposed by Arthur Samuel from IBM in 1959.
Since then, this field has greatly advanced with a large variety of machine learning
models and theoretical studies about training, understanding and deploying the mod-
els. Moreover, the roughly one trillion-fold increase in computational power since 1956
further supports the expansion of machine learning studies. Today, machine learning
models are used in nearly every field in science and engineering. Fusion research has
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also taken advantage of progress in machine learning over the past two decades with
lmany fusion problems being studied via machine learning methods [20]. In this sec-
tion, two major branches of machine learning, supervised and unsupervised learning
algorithms are introduced. A representative of machine learning models, theartificial
neural network or simply neural network, is then discussed in detail.

2.2.1 Supervised learning

In the case of supervised learning, the task is to learn a function that maps an input
x to a target output y given example input-output pairs. Depending on the types
of output, the task is called a classification problem if the output space is discrete
(usually finite) or a regression problem if the output space is continuous (like the real
line R). A regression task is typically mapped as follows:

y = 𝑓𝑡𝑟𝑢𝑒(x) + 𝜖 (2.1)

where 𝑓𝑡𝑟𝑢𝑒 is the ground truth function mapping the input vector x to the output
vector y and 𝜖 is an independent random vector describing the noise. The classification
tasks can also be formalized as probabilistic problems trying to find the conditional
probability P(y|x). If this P(y|x) is determined, then the output y = 𝑓(x) is simply
the y that has the largest probability given x, i.e. the y that maximizes P(y|x)
(argmax

y
P(y|x)). Supervised learning algorithms essentially seek a function from

the hypothesis space that can best fit the ground truth 𝑓𝑡𝑟𝑢𝑒 based on the training
examples.

A typical example of supervised machine learning tasks is the handwritten digit
classification (see Figure 2-1) which is discussed in [21]. In the MNIST dataset, the
dataset of handwritten digits, the input x is a 784× 1 vector representing the 28× 28

pixel image of handwritten digit, and the output y is a possible integer from digits
0 − 9. The function 𝑓(x) is chosen by maximizing the classification accuracy over
𝑁 training examples 𝑋 = {(x1,y1), . . . , (x𝑁 ,y𝑁)}. In addition, the raw handwritten
data (pictures) was pre-processed such that the digit is centered in the frame for each
of the images in the dataset (see Figure 2-1) and each digit has roughly the same
width and height with the same pixel intensity range (0 − 255). The pre-processing
of the dataset greatly reduces the difficulty of finding the function 𝑓(x). The pre-
processing of the raw data to extract more differentiable variables (features) is known
as feature engineering [22].

Returning to the disruption prediction problem, different raw plasma signals can
range over many orders of magnitude. Therefore, the raw plasma signals have to be
pre-processed properly before being used in the machine learning algorithms. More-
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Figure 2-1: Examples of handwritten digits from the MNIST [23] dataset
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over, several plasma signals from multiple diagnostics can be combined as a combo
based on the subject matter expert’s knowledge of disruption physics to strengthen
the efficacy of input features. Finally, the target output y of the disruption prediction
task is not uniquely defined. Different models can be trained to predict the time until
disruption of the current plasma state (regression) or to classify the current plasma
state is either stable or unstable (classification).

As mentioned before, the key difference between machine learning and optimiza-
tion can be reduced to consideration of the generalization capabilities. Machine learn-
ing aims at minimizing the loss on unseen test data, while optimization is concerned
with maximizing performance on the training set. Considering a fitted model 𝑓(x),
the mean square error (MSE) of the fitted model on a single test sample x0 can be
defined as

𝐸𝑟𝑟𝑜𝑟(x0) = E[(y − 𝑓(x0))
2] (2.2)

Substituting Equation (2.1) into Equation (2.2), with the assumptions that 𝜖 is in-
dependent of input feature x0, and has mean of zero and standard deviation 𝜎𝜖, the
error can be rewritten as [24]:

𝐸𝑟𝑟𝑜𝑟(x0) =

(︂
E[𝑓(x0)]− 𝑓𝑡𝑟𝑢𝑒(x0)

)︂2

+ E
[︂(︁
𝑓(x0)− E[𝑓(x0]

)︁2
]︂
+ 𝜎2

𝜖 (2.3)

Equation (2.3) is called the bias-variance decomposition of the mean squared error.
The first term in is the squared difference between the true value and estimated
mean (squared bias) and the bias on the training set always decreases with increasing
model complexity, because a more complex model can better fit the training data. The
second term is the variance, which usually grows with increasing model complexity
1. Ideally, machine learning algorithms should find a model that simultaneously
minimizes both bias and variance. However, these two goals usually conflict. High
variance models might fit the training set well but have higher chance to overfit to
noisy or unrepresentative training data. In contrast, high bias models are usually
simpler, but are at risk of missing important structures in the training data (i.e.
underfit). A schematic plot that shows underfitting vs. optimal fitting vs. overfitting
is given in Figure 2-2. In addition, there is an irreducible error of any fitted model
coming from the third term in Equation (2.3), which is due to the measurement errors
and randomness in the input/output data. In practice, another validation set is used
(besides the training and testing sets) to reduce the bias and variance through tuning
the model performance on this third dataset. The final tuned model is then applied to
the testing set to evaluate its performance. An example of a typical general workflow

1models with high variance are ’complex’ to some extent but a complex model does not necessarily
have large variance [25]
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Figure 2-2: This schematic plot demonstrates the problems of underfitting and
overfitting. From left to right, we show the cases of underfit, good fit and normal
fit. The data points, the underlying true function (a cosine function) and the fitted
model are given in each plot. It is clear that a linear function is not sufficient to fit
the data points. This is called underfit. A polynomial of degree 4 approximates the
true function almost perfectly. However, for higher degrees the model leads to an
overfit.

diagram for machine learning is shown in Figure 2-3.
As mentioned before, disruption predictors for next-generation tokamaks like

ITER must achieve very high accuracy to secure the success of the project. So far,
various data-driven disruption prediction algorithms based on supervised machine
learning have been developed on multiple tokamaks and shown attractive prediction
performance. Examples of these algorithms include ensemble learning algorithm [27–
29], support vector machines (SVM) [30–32], logistic regression (LR) [33] and neural
networks (NN) [34, 35]. Several recent studies have incorporated both a physics-
driven paradigm Section 2.1 and a data-driven idea to the same model to achieve
better predictions, as well as improved interpretability [36]. Furthermore, revolu-

Figure 2-3: Example of a general machine learning workflow diagram from [26]
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tionary advances in deep learning and significant expansion in computational power
motivated recent deep neural network based disruption prediction studies [37–40].
These deep learning algorithms not only achieve state-of-the-art prediction perfor-
mance but also are found to show potential for acquiring a general representation
of experimental data that can be used in cross-machine applications. Although sig-
nificant progress has been made in this direction, no data-driven approach has yet
to achieve the prediction accuracy that is required by ITER, and the cross machine
adoption of developed predictors is still a great challenge for both physics-driven and
data-driven methods.

2.2.2 Unsupervised learning

For unsupervised learning, no labels y are given to the learning algorithm. The goal
of unsupervised learning is to find hidden patterns or groupings in the data without
the need for human labelling. Its ability to identify hidden data structures makes it an
ideal method for exploratory analysis of high-dimensional plasma signals; the alter-
native, manual labeling by a fusion expert, is highly labor intensive, and only limited
amounts of data can be practially processed. The unsupervised learning algorithm is
mainly used for three tasks: clustering, association and dimensionality reduction. Ex-
amples of unsupervised learning algorithms previously applied to disruption studies
include: generative topographical maps (GTM) [41]; k-means clustering [42]; t-SNE
based dimensionality reduction [38]; self-organizing maps [43]; and variational au-
toencoders (VAE) based dimensionality reduction [44]. Some of these models have
achieved similar accuracy as compared to the supervised learning algorithm discussed
in Section 2.2.1.

Besides being directly used for disruption prediction, the plasma representations
gleaned from an unsupervised learning algorithm can also be used to facilitate the
design of more accurate supervised learning models. For example, in [38], the t-SNE
clustering of plasma signals has shown the advantage of sequence-based plasma repre-
sentation which further motivates the design of a supervised deep learning model. In
addition, combining the learned ‘latent space’, with labelled unstable event informa-
tion, can provide models for disruption avoidance. For example, the GTM, developed
in [41], has been found to generate a boundary in a transformed 2D latent space
that separates core and edge radiative collapses. The proximity of the plasma to the
identified boundary in the low-dimensional latent space can be used to analyze the
evolution of the risks of growth of certain instabilities over time, and to inform the
plasma control system.
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2.2.3 Artificial Neural Network

An artificial neural network, (or more simply referred to as a neural network), is a
machine learning model that is inspired by, and somewhat analagous to the biological
network of neurons in the animal brain. Neural network models are comprised of
interconnected layers, with each layer consisting of nodes, called artificial neurons,
that mimic neurons in the brain. Most of today’s neural networks use "feed-forward"
models, which means the information moves in only one direction through the net-
works. These feed-forward neural networks typically have one input layer from which
the data is sent into the model, one output layer that generates the final output of
the model, and several intermediate "hidden" layers. Each neuron in the network
is connected to several neurons in the preceding layer, from which it receives data
(except for neurons in the input layer) and in turn is connected to several neurons in
the following layer to which it sends data (see Figure 2-4 for the visualization of this
structure). Each neuron has a number called "bias" and each connection between two
neurons has a number called "weight". In the operation of the network, a neuron re-
ceives the biases from each of its respective preceding neurons, multiplies those by the
respective weights associated with each connection, and summed up by the neuron,
yielding a scalar. This is added with bias of the neuron and then passed through a
predefined nonlinear activation function to get the output value of the neuron which
will be sent out to neurons in the following layers. The typical architecture of a neural
network is shown in Figure 2-4. If the depth of a neural network (number of hidden
layers) becomes large (typically more than three hidden layers), the network is usu-
ally referred to as a deep neural network. T sub-field of machine learning that focuses
on deep neural network studies is known as deep learning. The advantages of deep
neural networks has been shown in a variety of fields, including image recognition,
natural language processing and time series analysis.

Before starting the network training process, all weights and biases are initialized
to random numbers, typically evenly distributed between -1 and 1. During training,
training samples are fed into the neural network and transformed to fitted outputs
via complex calculation of the neural network. Using the fitted outputs and ground
truth targets, the fitting error for the training data set is evaluated via a chosen loss
function. A chosen network optimizer like stochastic gradient descent with momen-
tum [45] and Adam [46] then continually adjusts the learnable weights and biases
based on fitting error to improve goodness of fit until the fitting errors become small
enough. Since the network parameters are optimized on the training set, the trained
parameters can easily overfit the training data if the training set is small and or noisy,
and the capacity of network is large enough to "memorize" the training samples. To
reduce overfitting, several techniques, including weight decay [47], early stopping [48]
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Figure 2-4: A diagram shows the architecture of a simple neural network
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and dropout [49] have been developed over the past 20 years, and the availability of
large labelled datasets,such as ImageNet [50], can be used to help avoid overfitting
with large neural networks.

2.3 The cross-machine adaptation challenge of dis-
ruption prediction/avoidance algorithms

As mentioned in Section 1.7, near-future burning plasma tokamaks like ITER may be
very vulnerable to high current and high stored energy disruptions, and the success
of ITER’s missions demands that a highly reliable disruption predictor be functional
before the beginning of full performance operation. This requirement imposes signifi-
cant challenges to the development of both physics-driven and data-driven disruption
prediction algorithms. For physics-driven models, emergence of new physics on these
burning-plasma machine can make the extrapolation of current models to a next-step
machine very uncertain. For data-driven predictors, a disruption prediction algorithm
with strong cross machine generalization ability needs to be developed and an efficient
cross machine/regime adaptive strategy for training the predictor is also needed to
better extract relevant knowledge from the discharges on existing machines and the
early, low performance discharges on the target near-future device.

Different tokamak devices have different operational spaces, spatio-temporal scales
for physics events, and plasma diagnostic sets, as indicated in Section 1.8. Therefore,
most of these data-driven approaches so far were developed and optimized specifi-
cally for one device and did not show promising cross-device predictive abilities [27–
29, 33, 35]. Specifically, cross-machine studies, such as [35], focused on predictors
that were trained on datasets purely or mostly from one device: these predictors
achieved excellent performance on the training device, but lacked the generalization
capabilities derived from an understanding of the underlying physics, and therefore
tended to fail on new, previously unseen device data. To overcome this difficulty,
several previous studies [51, 52], explored the strategy of building a predictor from
scratch. In these studies, researchers gradually add data in chronological order to
retrain the predictors, and then test on future unseen discharges. However, these
studies are conducted using discharges from similar operational regimes, which im-
plicitly assumes that we can explore and learn on data that have similar parameters
to future ’test’ discharges. Although this assumption is generally valid for existing
machines, the ITER research plan [53] suggests this will probably not be sufficient for
future devices like ITER, because unmitigated disruptions in high performance (HP)
regimes threaten the integrity of the facility, and we have to predict these disruptions
using low performance (LP) data from these devices. A recently published work by
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Kates-Harbeck et al. [37], demonstrated for the first time the potential of predictors
based on deep learning (DL) for acquiring a general representation of experimental
data that can be used in cross-machine applications. Therefore, given all these pre-
vious studies, developing a cross-machine DL based disruption prediction algorithm
and exploring an efficient adaptive training strategy for the cross-machine prediction
algorithm can be a strong candidate for realizing a sufficiently accurate disruption
prediction model.

This thesis demonstrates four data-driven studies to tackle the cross-machine
adaptation challenge of disruption prediction. First, a hybrid deep-learning model
(discussed in chapter 3) for cross-machine disruption prediction is developed us-
ing large disruption databases from Alcator C-Mod, DIII-D and EAST. The HDL
model has shown state-of-the-art performance on multiple tokamaks, with very limited
machine-specific hyperparameter tuning. Second, in chapter 4, a scenario adaptive
study that aims to explore an efficient training strategy for a data-driven disruption
predictor is presented. The main conclusions from this study provide a possible strat-
egy for the development of data-driven disruption predictors on next-step tokamaks.
Third, the upgraded HDL model, that incorporates the predictive capability using
various plasma unstable events, discussed in Section 1.5, is elaborated in chapter 5.
By predicting the event chain towards final disruption, the upgraded HDL model can
facilitate the investigation of disruption causes, and enable the avoidance of impend-
ing disruptions. Finally, a data-driven symbolic boundary, for predicting n=1 tearing
mode (TM) onset across tokamaks, is discussed in in chapter 6, which provides an
example of finding an explicit plasma instability boundary via data-driven methods.
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Chapter 3

Hybrid Deep-Learning Disruption
Prediction Model

The cross-machine disruption prediction studies in this thesis are conducted using the
hybrid deep-learning predictor, a machine learning algorithm based on a deep neural
network (an introduction of neural network model can be found in Section 2.2.3).
The abbreviation HDL, for hybrid deep-learning, is used throughout this thesis. This
chapter describes the design, architecture and test processes of the HDL model in
detail and summarizes the current multi-machine performance of HDL model and the
basic cross-machine numerical experiments using the HDL model.

Section 3.1 gives an introduction to deep neural networks (DNN) and several com-
monly used DNN layers. After this, the disruption warning databases [1–4] that are
used to implement the data-driven studies throughout this thesis are described in Sec-
tion 3.2, and the datasets extracted from disruption warning databases for studies in
this chapter are discussed in detail. Following the description of the datasets, applica-
tion of an unsupervised dimensionality-reduction algorithm to the high-dimensional
plasma data is presented in Section 3.3. Based on several important findings from
the explorative data analysis in Section 3.3, a new HDL disruption prediction model
is developed to yield improved learning from the temporal plasma signals. The de-
sign of the HDL model is presented in Section 3.4, and the performance comparison
between the HDL model and several other data-driven disruption prediction models
is also discussed in Section 3.4. An extensive cross-machine numerical disruption pre-
diction study, based on the HDL model is elaborated in Section 3.5. This includes the
motivation, design and results of the cross-machine numerical experiments, as well
as several important qualitative conclusions drawn from the results that can inform
the development of data-driven disruption prediction for future devices. Finally, a
summary of the HDL model development and the cross-machine experimental results
are given in Section 3.6.
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3.1 Deep Neural Network Model

As mentioned in Section 2.2.3, a neural network is a computational model that con-
sists of several interconnected layers of artificial neurons. Although the universal
approximation theorems [5, 6] imply that a feed-forward neural network, with a sin-
gle arbitrarily wide hidden layer, and non-polynomial activation, can sufficiently fit
any Borel measurable function from one finite-dimensional space to another. How-
ever, such a single layer might be infeasibly large, and thus the training algorithm
could be unable to find the values of the parameters that correspond to the function
we need. In many cases, choosing a deeper neural network model can greatly reduce
the number of neurons required to fit the desired function, and hence decrease the
generalization error [7]. This empirical observation provides the motivation for deep
neural network studies. The deep neural network model is a subset of the neural
network model family, usually having more than three hidden layers. Given the avail-
ability of large labelled databases and powerful computing systems, the deep neural
network model has been shown to significantly outperform other machine learning
models in a variety of tasks, including computer vision [8], natural language process-
ing [9] and recommendation systems [10]. A basic type of deep neural network, the
fully connected (FC) neural network, has already been introduced in Section 2.2.3.
Two other commonly used types of deep neural network, the convolutional neural
network (CNN) and recurrent neural network (RNN), are discussed in this section.

3.1.1 Convolutional Neural Network

The CNN is a class of neural network model that is typically used in computer vi-
sion tasks. The key structure of a CNN, the convolutional layer, is a regularized
version of an FC layer with shared weight across many neurons; it is based on sev-
eral convolution kernels or filters that move along certain axes of the input data,
giving translation-equivariant outputs (i.e. a translation of input features results in
an equivalent translation of outputs). Given an input data matrix, the convolutional
layer performs a Frobenius inner product of the convolution kernel with the input
matrix and then transforms the resultant product using a nonlinear activation func-
tion. One commonly used activation is the rectified linear unit, ReLU [11]. As the
kernel with activation function slides along the pre-set directions of the input ma-
trix, it generates one channel of the output feature map. The outputs from different
kernels of a convolutional layer are stacked to form the final output feature map. A
simple diagram that explains the basic logic of the convolutional layer is shown in
Figure 3-1.

A typical convolutional neural network has three main types of layers: a con-
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Figure 3-1: Simple diagram explains the basic operation of the convolutional layer

volutional layer, a pooling layer and a fully connected layer.The convolutional layer,
shown in Figure 3-1, is the key component of the CNN, and is usually the first layer of
the whole network. The pooling layer, also called the down-sampled layer,can reduce
the number of input parameters by sweeping a kernel/filter across the entire input
matrix. Unlike the convolutional layer, the pooling kernel does not have any free
parameters; it applies an aggregation function to the data in the local receptive field,
and generates a "summary" of the data patch. There are two main types of pooling
kernels: 1) a max pooling kernel that outputs the maximum within the receptive
field; and 2) an average pooling kernel that outputs the average value over the recep-
tive field. Although some information might be lost through the pooling operation,
it helps reduce the complexity and hence reduces the risk of overfitting. The fully
connected layers that are usually the final layers of the CNN can do the classification
or regression tasks to generate the final output of the CNN. A deep CNN can consist
of more than a hundred layers. With each layer, the CNN increases in complexity,
allowing it to detect more abstract and more complex features, and identify greater
portions of the input data. A typical deep CNN architecture is shown in Figure 3-2
[8].

3.1.2 Recurrent Neural Network

A recurrent neural network is a type of feed-forward neural network that is specif-
ically designed for sequence data processing. The connections between nodes of an
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Figure 3-2: Simple illustration of the architecture of AlexNet [8] from [12]

Figure 3-3: Simple illustration of the architecture of basic RNNs. In the left part,
�⃗�, �⃗�, ℎ⃗, �⃗� represent the input sequence, output sequence, hidden state sequence and
information flowing between consecutive time steps respectively. In the right part, a
individual hidden layer of RNNs is unfolded to explain the mechanism of the neural
network

RNN form a graph along input sequences. The key difference between RNNs and
CNNs/dense NNs is that RNNs maintain a hidden state, called memory, which is
calculated from previous inputs. The current outputs of RNNs are derived from both
the hidden state and the current inputs. A simple diagram explaining the mechanism
of an RNN is given in Figure 3-3. The left part shows the compressed/folded visual
of the RNN that represents the whole neural network, and the right part shows the
unfolded visual of the RNN that represents the mechanism of individual RNN layers.

Using the vanilla RNN shown in Figure 3-3, it may be difficult or even impossible
to process the information from the early time steps of the input sequences. When we
backpropagate gradients through layers and also through time, we need to sum up all
the previous contributions until the current one which will introduce the product of
the partial derivative of the hidden state to the gradients and this product can easily
goes to 0 or infinity. From the computational perspective, this means that when
training a basic RNN, using stochastic gradient descent, the long term gradients
usually "vanish" (go to zero) or "explode" (go to infinity) as a result of the recurrent
process shown in Figure 3-3 [13, 14]. To tackle this problem, two commonly used
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Figure 3-4: Simple illustration of the architecture of LSTM cell (left) and GRU cell
(right) from [17]

variants of the basic RNN, long short-term memory (LSTM) and gated recurrent
unit (GRU) were introduced in 1997 [15] and 2014 [16] respectively. LSTMs modify
the simple hidden states to "cells" with three gates—an input gate, an output gate,
and a forget gate, each to control the information flow. These gates allow gradients
to flow unchanged. GRUs are very similar to LSTMs, also using gates to control the
information flow. The difference between LSTMs and GRUs is that GRUs do not
have additional "cell" states, but instead have two gates—a reset gate and an update
gate instead of the three gates found in LSTMs. The schematic structures of LSTM
and GRU nodesare shown in Figure 3-4.

3.2 Dataset Description

The disruption prediction studies in this chapter are conducted on disruption warn-
ing datasets from three machines [4]: Alcator C-Mod (2012-2016 campaigns), DIII-D
(2014-2018 campaigns) and EAST (2014-2018 campaigns). For all three datasets, we
include all types of disruptions except for intentional ones (planned disruptions for
disruption physics study). The choice of which parameters to include in the databases
is guided by our knowledge of the plasma physics mechanisms inherent to disruption
characteristics of the different devices, as well as the availibility and consistency of
these parameters for all three machines. Our choices for many of the disruption-
relevant parameters included in this study are also influenced by several previous
papers and investigations [4, 18, 19]. The signals considered for the predictive mod-
els reported in this thesis, and their definitions, can be found in Table 3.1, while
the composition of the three training datasets is shown in Table 1.1. Given these
databases, we formalize the disruption prediction problem in a sequence-to-label su-
pervised machine learning framework, where we assign a label to each input plasma
sequence, S (a 10-step consecutive sequence in time of 12 plasma signals) and train
an algorithm to learn the functional representation. The input sequences are then
mapped to one of two possible labels, ‘disruptive’ or ‘non-disruptive’. To this aim, we
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Table 3.1: Descriptions and symbols of all considered signals [22]

Signal description Symbol
Plasma current−programmed plasma current

Programmed plasma current ip-error-fraction

Perturbed field of nonrotating mode𝑎, Bn=1

Btor
locked-mode-proxy

Electron density
Greenwald density Greenwald-fraction

Distance between the plasma and the lower divertor lower-gap

Current centroid vertical position error𝑏 z-error-proxy

Plasma elongation kappa

Poloidal beta betap

Radiated power
Input power radiated-fraction

Standard deviation of the magnetic field𝑐

measured from an array of Mirnov coils,
normalized by Btor

rotating-mode-proxy

Loop Voltage Vloop v-loop

Normalized internal inductance li

Safety factor at 95% flux surface q95

𝑎For the C-Mod database, the locked-mode-proxy signal is obtained from a Mirnov coil array
instead of the saddle coil.

𝑏For the DIII-D database, we use current centroid vertical position instead of position error for the
z-error-proxy signal.

𝑐For the DIII-D database, we use n=1 component of magnetic field measured from a Mirnov coil
array normalized by 𝐵𝑡𝑜𝑟 for the rotating-mode-proxy signal.

explicitly defined different time thresholds for each machine to identify the unstable
phase of the disruptive training discharges and assigned the disruptive label to plasma
sequences that intersect the unstable phase of disruptive experimental runs, while the
non-disruptive label is assigned to sequences extracted from the non-disruptive dis-
charges. This classification scheme implicitly assumes that it is possible to detect a
transition in time from a safe operational regime to a disruptive one, and is another
instance of incorporating physics knowledge into the AI workflow [20, 21]. The cho-
sen time thresholds vary for the three devices, depending on the transition points
where some of the plasma parameters exhibit identifiable changes in behavior for a
notable fraction of disruptions before disruptions occurring [4] and the suggestions
from tokamak operators.

The training samples are ordered into sequences of ten time slices extracted from
each shot of the training dataset. For each shot, we randomly select a subset of
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Table 3.2: The dataset composition of the three disruption warning databases [22]

Device
No.

training
shots

No. test
shots

No.
validation

shots

Sampling
rate (ms)

Time
Threshold (ms)

No. samples
per training

shot

C-Mod 3343 (692) 651 (142) 463 (98) 5 75 16
DIII-D 5286 (732) 1085 (157) 734 (107) 10 400 25
EAST 8296 (2301) 1674 (475) 1137 (322) 25 500 20

Values in parentheses give the number of disruptive shots within each dataset.

examples: this is one of the model’s hyperparameters, tuned for each machine. The
disruptive training sequences are randomly extracted from all sequences that inter-
sect the unstable phase of each disruptive shot, while those sequences outside of the
unstable region are not included in the training set. If disruptive patterns are learned
properly, the algorithm will also be able to identify similar trends at times prior to the
formally set time threshold, enabling the detection of early disruptive precursors. The
non-disruptive sequences are randomly extracted from the flattop of non-disruptive
training discharges. It is interesting to note that the database population consists of
mostly non-disruptive data, thus resulting in a dataset imbalanced with respect to
disruptive data which can hamper the training of the disruption predictor.

3.3 Explorative data analysis through an unsuper-
vised learning algorithm

Disruptions are typically well characterized by high-dimensional data from multi-
ple plasma signals, which complicates both analysis and physics interpretation when
studying disruptive events. In this section, we discuss the application of a nonlinear
dimensionality reduction technique called t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [23] (see appendix A.2 of [22] for details of the t-SNE algorithm) to
visualize high-dimensional plasma data in a 2-D plane to study the inherent data
structure of the considered plasma signals. In principle, the t-SNE algorithm can be
applied to any high-dimensional database. However, in this section, we only show
the application to the C-Mod database, as it is considered more difficult to predict
through a data-driven approach than is the case for EAST and DIII-D [1]. The
analysis of the DIII-D and EAST disruption databases can be found in [22].

Figure 3-5 shows the t-SNE algorithm applied to time slice data (left) and ag-
gregated sequence data (right) for the C-Mod disruption warning database. In the
left subplot, each blue point represents a randomly sampled time slice (a 12-element
array composed of the 12 plasma signals from Table 3.1) taken from the flattop of a
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Figure 3-5: t-SNE clustering for visualizing C-Mod data. On the left, t-SNE is
performed on individual disruptive (red) and non-disruptive (blue) time slices. On
the right, t-SNE is performed on 10-step disruptive (red) and non-disruptive (blue)
sequences. Three major clusters of disruptive data can be isolated (as shown by the
dashed circles). The colouring is done a-posteriori.

non-disruptive shot, while each red point represents a time slice randomly sampled
from the last 75 ms of a disruptive shot. On the right, each red point represents
a 10-step (a 10 × 12 element matrix) sequence randomly sampled from the last 75
ms of a disruptive sho, while each blue point represents a 10-step sequence randomly
sampled from the flattop of a non-disruptive shot. We include all disruptions, without
discriminating by the cause. The coloring of each data point in the plots is done a-
posteriori, i.e. it was not provided during the training process, thereby characterizing
the t-SNE as an unsupervised clustering technique.

Several important conclusions can be drawn. First, the clustering of individual
time slices does not isolate clear data clusters in the low-dimensional map. However,
by performing t-SNE on 10-step plasma sequences, it is possible to isolate three major
clusters - identified by dashed circles in Figure 3-5 - which account for approximately
60% of the disruptive data. The improved separation of disruptive and non-disruptive
data, obtained when clustering sequences, highlights the importance of temporal cor-
relation and mutual information among consecutive time slices. This further suggests
that sequence-based classifiers could have a clear advantage over the single time slice
based ones. Secondly, the t-SNE application to C-Mod sequences reveals that a sub-
stantial fraction (≈ 40%) of disruptive sequences remains mixed with non-disruptive
sequences. Further analysis of such data finds that these disruptive sequences are
primarily linked to fast radiative collapses caused by molybdenum impurities. These
disruptions have very short warning time between first identifiable disruption pre-
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cursor and disruption onset, up to a few tens of milliseconds, and we argue that any
data-driven disruption prediction algorithm for C-Mod would struggle to predict such
cases (at least with the current set of input features) and thus be affected by a high
degree of false negatives (missed predictions). The three isolated clusters, identified
by red dashed circles in Figure 3-5, are representative of specific disruption dynamics,
including VDEs, impurity accumulations and MHD-driven disruptions. These pre-
cursors can be identified through inspection of the specific time series. In addition,
the physics insights obtained from t-SNE clustering results suggest that t-SNE can
be used as interpretable "by design" method for analysis of plasma signals, allowing
inspection of complex data structure and patterns and thus obtaining more thorough
physics understanding

3.4 The hybrid deep-learning (HDL) disruption-prediction
model

Based on our findings about the importance of temporal information, we introduced a
Hybrid Deep Learning (HDL) network for time series processing. Figure 3-6(a) shows
the architecture of the network used for the cross-machine disruption prediction ap-
plication reported in this thesis. The HDL network consists of two GRU layers [24],
one fully connected layer and three novel Multi-Scale Temporal Convolution (MST-
Conv) layers, plus the input and classification layers. The MSTConv layer is inspired
from work in machine translation [25], and the detailed structure of one MSTConv
layer is shown in Figure 3-6(b). It consists of six 1-D causal convolution layers [26]
with different window lengths, L, from one to six. The first 1-D convolution layer
can only access the current time step, 𝑡0. The 𝐿𝑡ℎ 1-D convolution layer can look
at L time steps from 𝑡0−𝐿+1 to 𝑡0. This structure enables different 1-D convolution
layers to capture local temporal information at different levels (e.g., 1st order time
derivative, 2nd order time derivative, . . . ). The resulting outputs from these six layers
are concatenated and then processed through a batch normalization layer [27] and a
ReLU (Rectified Linear Unit) activation to develop new features. It is important to
highlight that different parts of the HDL architecture serve different purposes. The
first two MSTConv layers are used to extract local temporal patterns from the input
plasma sequences to form a richer representation of the input space. The following
two GRU layers – with their long-term memory capability - can capture the long-
range dependencies across different signals in the sequences. Then the subsequent
MSTConv and fully connected layers can compress and summarize the output repre-
sentation from the GRU layers to a 12-dimension latent encoding (dimension of the
latent encoding is a tunable parameter) which can be mapped to the output by the
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Figure 3-6: The HDL architecture (a) and the detailed structure of MSTConv layer
(b). Notice that the MSTConv layer consists of 6 1-D causal convolution layers with
window lengths L from 1 to 6.

classification layer.

A shot-by-shot testing scheme was designed following [4] to simulate alarms trig-
gered in the Plasma Control System (PCS) using test shots from different devices.
Given an input plasma sequence S which is a 2D matrix consisting of 10 time steps
and 12 input features (i.e. a 10×12 matrix), the predictor maps S to a ‘disruptivity’
score between 0 and 1 at the last time step of the sequence; here, 1 is the disruptive
class and 0 is the non-disruptive class. During testing, the whole flattop phase of
each test shot is subdivided in batches of 10 step sequences, given the HDL archi-
tecture design. Each neighbouring testing sequence will have 9 overlapping steps,
and there are N-9 sequences for a test shot with N steps. If the disruptivity exceeds
a pre-set threshold – e.g., 0.7 - at any test time step, the test shot is classified as
disruptive and the warning time is recorded for truly disruptive shots, defined as the
difference between the alarm time and the final current quench (𝑡𝑑𝑖𝑠). A successfully
detected disruption on C-Mod is shown in Figure 3-7: under a binary classification
scheme, this is regarded as true positive (TP), while false positives (FP) correspond
to a false warning, or a healthy plasma being declared to be disruptive. This latter
situation can lead to premature plasma termination, but on the other hand, failure
to predict a disruption early enough (false negative, FN) is even more costly, be-
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Figure 3-7: A successfully detected disruption on C-Mod.

cause it prevents any damage control of disruption consequences. A trade-off can
be achieved by adjusting the alarm threshold of the disruptivity, as visually demon-
strated by a receiver–operator characteristic (ROC) curve [28]. The area under the
ROC curve (AUC) is used as performance metric for the HDL predictor. Throughout
this thesis, we evaluate the predictive performances on all tokamaks at 50ms before
the disruption event; this is chosen as the expected minimum warning time required
to successfully trigger disruption mitigation systems on future devices [29].

3.4.1 Training technicalities for the HDL model

Effective training of complex deep neural networks (NN) is a challenging task that
involves several technical details, as described in [30]. Among other things, it is
important to address the proper input feature normalization, and to understand which
tunable parameters can increase the transferrability of the cross machine predictor
while stabilizing its performance. In the following subsections, we will describe the
methods implemented to tackle these challenges for optimally training our deep NN
predictor.

Normalization

NNs usually need all input features to have similar numerical ranges for all training
examples [30, 31]. This makes the use of raw plasma signals as inputs to any NN nu-
merically difficult, as different signals have values that can range over many different
orders of magnitude. To deal with this, all 12 signals should be normalized before
being used in the network. The normalization should ideally be a common transfor-
mation such that it maps a set of signals with the same physical value from different
devices to similar numerical values. Different tokamak devices have different opera-
tional spaces, spatiotemporal scales, and diagnostics. Moreover, different machines
have different event chains in the lead-up to disruptions, and the most important
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Figure 3-8: The ROC curves from test sets for machine specific normalization (blue)
and machine independent normalization (red), for C-Mod (a), DIII-D (b), and EAST
(c).

disruption-relevant physics parameters can be different for each machine. Therefore,
such a physics-based common transformation is difficult to find, and its extrapola-
tion to ITER is uncertain. However, we find that the best-performing method is to
standardize each signal on one machine by its mean and standard deviation across
the entire dataset. For each signal on one machine, its normalized form is obtained
as follows: 𝑥𝑛𝑜𝑟𝑚 = (𝑥−mean(𝑥))/std(𝑥). The comprehensive list of normalization
parameters can be found in appendix A.4 of [22].

The normalization process is independently applied to the data from each of the
three machines, which implies it is machine-specific: this simple normalization scheme
is instead chosen to solve the numerical challenge, leaving the generalized signal trans-
formation to be done by the NN. A machine-independent normalization method has
also been tested for the three datasets: this normalization standardizes all datasets
with a common set of parameters. A performance comparison of HDL predictors
using the two normalizations (machine-specific and machine-independent) is shown
in Figure 3-8. For the machine specific cases (blue curves), the HDL predictor is
trained and evaluated using the training and test sets of each machine normalized
by corresponding normalization parameters. For the machine independent cases (red
curves), the HDL predictor is trained and evaluated using training and test sets of
each machine but normalized by ‘common’ normalization parameters (fixed for all
3 machines), and they give only slightly worse results, implying that the HDL per-
formance is only weakly dependent on the normalization parameters, as long as all
signals have proper numerical ranges (approximately -1 to 1).

Cross Machine Label Smoothing (CMLS)

To train a multi-machine predictor, we combine training data from different machines
to form a new training set. However, direct mixing of data from various devices can
result in a problem: the initial assigned target labels for other devices might not be
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suitable for the new test device. For example, a certain disruptive sequence from
EAST might not be that disruptive to C-Mod when compared to C-Mod’s disruptive
data. Also, a non-disruptive sequence from C-Mod might be slightly unstable to
EAST when compared to EAST’s non-disruptive data. In other words, we need to
take into account the uncertainty associated with running a discharge on EAST or on
DIII-D with similar operational parameters as C-Mod discharges and vice versa. To
deal with this problem, we choose two smoothing parameters 𝜖1, 𝜖2 for each device
(𝜖1 for non-disruptive examples and 𝜖2 for disruptive examples) and use these two
parameters to modify the target value of the training examples from multiple other
machines. When we train the HDL predictor with some data from other machines,
instead of using their initial (0, 1) target values for non-disruptive and disruptive
examples, we modify their target values as (𝜖1, 1 − 𝜖2). The new target values for
non-disruptive examples are 𝜖1, and the target values for disruptive examples are
1− 𝜖2. Notice that this modification is only applied to those training examples from
other devices; those examples from the test device itself are not modified. We refer to
this changing of the ground-truth target values as the cross machine label smoothing
technique, and find that it further improves the cross-machine ability of the HDL
predictor (see Table 3.3).

Hyperparameter tuning and neural networks ensemble

The HDL disruption predictor has fourteen architectural and two labeling hyper-
parameters for each device. Guided by our previous numerical experiments on the
C-Mod dataset, we roughly scanned the hyperparameter space using a random search
for all three machines’ data until finding a plateau where any hyperparameter set in
this region gives high performance for all three devices. Within this region, changes in
hyperparameter choice will only result in minor changes to the model’s performance
for all three devices. Outside this region, performance on at least one device drops
drastically. The hyperparameters of the HDL predictor are therefore selected from
the middle of this plateau, and all following qualitative cross-machine conclusions
consistently hold for all hyperparameter sets existing in this region. Additionally, our
approach includes the adoption of an ensemble of twelve NNs, each one identical in
their HDL architecture and tunable hyperparameters but with different initialization
seeds. The final prediction comes therefore from an ensemble average. This method
is well known in the ML community and has been shown to significantly improve
the accuracy and stability of the predictor [32–34]. A comprehensive list of tunable
hyperparameters for our HDL model can be found in appendix A.5 of [22].
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Figure 3-9: The ROC curves from test sets for HDL model and the Random Forest
(RF) model, for C-Mod (a), DIII-D (b) and EAST (c). We only show the upper left
region of the curves where the predictors have highest performance.

3.4.2 HDL performances on the three devices and benchmark
with Random Forest

The HDL predictor successfully achieves state-of-the-art performance on all three test
sets when compared to other fully-optimized deep NN disruption predictors [30]. To
see this, we trained three HDL predictors (with fixed hyperparameters, as given in
Section 3.4.1) and three Random Forest (RF) predictors [1, 4, 35] using the training
set of each machine, and evaluated their performances on the test set corresponding
to that machine. These results are shown in Figure 3-9. To carry out a fair com-
parison with previous approaches, the RF predictors for each machine are specifically
optimized using the corresponding validation set: we carried out a K-fold cross valida-
tion procedure together with a parallelized grid search to find the optimal set of time
threshold and forest hyperparameters for each machine using a binary classification
performance metric called the 𝐹𝛾-score [1, 4]. The HDL predictor exceeds RF perfor-
mance on all three datasets: it triggers fewer false alarms on good discharges while
missing fewer real disruptions. this shows the strong applicability and generalization
power of the model. This general improvement on multiple machines seems mainly
to come from the advantage of the sequence-based model that is designed for time
series processing, as suggested in Section 3.3. Besides its impressive performance, the
inference time of our model is short, allowing it to make a prediction in roughly 1ms
using an 8-core CPU. The development of this fast and novel model constitutes an
important step toward the prediction requirements of future devices. It also suggests
a powerful conclusion: a common set of model hyperparameters used for three pre-
dictors can achieve high performance on all three machines, suggesting that although
different devices may have disjoint operational regimes, there seems to exist a com-
mon type of discriminant function – with the same model hyperparameters - capable
of separating the disruptive from non-disruptive phases on all these machines.
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3.5 HDL cross-machine study on Alcator C-Mod,
DIII-D, and EAST data

The availability of extensive experimental data sets covering several tokamaks al-
lows us to design numerical experiments to test the transfer learning capabilities of
the HDL architecture. Future reactors like ITER cannot tolerate more than a few
unmitigated disruptions [36], so we must be able to predict their disruptions given
very limited disruptive data from the reactors themselves. Expanding from the cross-
machine DL-based disruption prediction study, we have designed complete numerical
experiments to test the transfer learning capabilities of the HDL architecture. Given
the availability of a large database of aggregated data from very different tokamaks, it
is important to verify if, and how usefully the data from existing devices can be used
to predict unstable plasmas on a new device. In this section, we consider two machines
as ‘existing machines’ and investigate the effect of their data for the HDL disruption
predictor when used on the third machine, chosen as a ‘new device’. We primar-
ily focus on the EAST case (EAST is chosen as the ‘new device’ ) in the following
section. However, all of the resulting qualitative conclusions are machine-
independent. They always hold, no matter which device is selected as the ‘new
device’. Results regarding the other two case permutations can be found in appendix
A.6 of [22].

3.5.1 Cross-machine prediction performance using the HDL
architecture

As a first step, we would like to test the cross-machine performance of the HDL
model. To do this, we train the HDL network using data from two ‘existing devices’,
and test its performance on the third, unseen, ‘new device’. Following the predictors
“with a glimpse” or “from scratch” approaches [30, 37], we then add 10 disruptive and
10 non-disruptive discharges from the ‘new device’ to the training sets and do indeed
observe a boost in the test set performances when using limited data from the target
device. In the context of previous cross-machine studies [30, 37], our HDL framework
shows promising transferrability on these three different devices; these test results can
be found in Table 3.3 (all values reported here are AUCs averaged over the network
ensemble).

Beyond performance, we are interested in investigating how data from different
existing devices influence predictions of disruptions on a new one, and in particular
if any effect can be linked to general, device-independent knowledge. To this aim,
we design two further sets of cross-machine numerical experiments. The training set
composition for each experiment can be found in Table 3.4.
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Table 3.3: Cross machine prediction results of HDL

Training
set

C-Mod
+DIII-D

C-Mod
+DIII-D

+ few EAST
data

EAST
+C-Mod

EAST
+C-Mod

+ few DIII-D
data

EAST
+DIII-D

EAST
+DIII-D

+ few C-Mod
data

Test set EAST EAST DIII-D DIII-D C-Mod C-Mod

HDL
Ensemble 0.788 0.819 0.622 0.741 0.564 0.605

HDL
Ensemble
+ CMLS

0.806 0.837 0.659 0.765 0.588 0.631

Table 3.4: Training set composition of all cross machine experiments using EAST
as the ‘new machine’

Existing machines
(C-Mod+DIII-D) New machine (EAST)

Case NO. Non-
disruptive Disruptive Non-

disruptive Disruptive

1 None All
(692+732) All (5995) 20

2 None All All None
3 None All 50% (2998) 20
4 None None All 20

5 All
(2651+4554) All All 20

6 All All None None
7 None All All All (2301)
8 All All All All
9 None None All All

10 None All ≈ 33%
(1998) All

11 ≈ 20%
(692+732) None ≈ 33% All

12 None None ≈ 33% All

Values in parentheses give the exact number of shots.
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3.5.2 Cross-machine experiments using limited disruptive data
from the ‘new device’

The first set of cross-machine experiments was conducted using limited disruptive
training shots from the new device. The results of these numerical experiments
are shown in Figure 3-10(a)-(b). In the first experiment, the disruption predictor
is trained on 20 randomly selected disruptive training shots and all non-disruptive
training shots from the target new device, plus disruptive shots from two other de-
vices (existing machines). This combination achieves the best performance on the
new device test datasets (AUC=0.959, for the EAST case). In the second and third
experiment, we first remove all new device disruptive shots and then 50% of new
device non-disruptive shots from the first training dataset, separately. In the fourth
experiment, the predictor was trained only using selected new device training data
(20 disruptive training shots, all non-disruptive training shots), this being our lim-
ited data baseline model. In the fifth experiment, we add non-disruptive shots from
two other machines to the first training dataset. In the sixth experiment, the pre-
dictor is trained only on data from ‘existing’ machines (no new device data) and its
low performance highlights the importance of adding non-disruptive data from the
‘new’ target machine. From these numerical experiments, it is possible to draw the
following conclusions:

• HDL achieves relatively good performances for a new device by including a few
disruptive shots and many non-disruptive shots from the new device, plus many
disruptive shots from existing devices. All components mentioned above are
necessary because removing any of them significantly decreases the performance
(cases 1 to 4 in Figure 3-10(a)).

• Non-disruptive data from existing devices is harmful to HDL performance, while
disruptive data from existing devices improves the predictive power (cases 1, 4,
5 in Figure 3-10(b)).

• Non-disruptive data from the ‘new’ target device can substantially improve the
predictive power (case 6 in Figure 3-10(b)).

3.5.3 Cross-machine experiments using all disruptive data from
the ‘new device’

To further investigate the effect of the class imbalance in the training set, we con-
ducted another set of experiments using all disruptive training shots of the new device.
The results are reported in Figure 3-11. In this seventh experiment, the disruption
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Figure 3-10: ROC curves from the EAST test using limited EAST disruptive train-
ing data.

predictor is trained on all disruptive and non-disruptive training shots from the new
device, including disruptive shots from two other machines, and it achieves the best
performance on the new device test dataset (AUC=0.983, for the EAST case). In
the eighth experiment, we add non-disruptive shots from two other machines to the
first training dataset. In the ninth experiment, the predictor is trained only on all
new device training data, comprising the all-data baseline case for comparison. In
experiments 10-12 (Figure 3-11(b)), we randomly remove most of the new device
non-disruptive training shots, thus reducing the new device non-disruptive training
data to be less than new device disruptive training data, i.e. an inversely imbalanced
situation. The test results from Figure 3-11(a)-(b) point to the following further
conclusions:

• Adding disruptive data from existing machines can still slightly improve test
performances on the new device even if you have abundant new machine data
(cases 7, 9 in Figure 3-11(a)). However, adding non-disruptive data from exist-
ing machines is still harmful in this situation (cases 7, 8 in Figure 3-11(a)).

• The effects of disruptive data (positive) and non-disruptive data (negative) do
not result from the class imbalance of the new machine dataset, because disrup-
tive data from existing devices continually have positive effects, while adding
existing device non-disruptive data still has negative effects in the inversely
imbalanced situation (Figure 3-11(b)). This difference between disruptive and
non-disruptive data is machine independent, i.e. a universal conclusion.

• Removing non-disruptive data from the target device always decreases the test
performance, no matter how imbalanced the target dataset is (cases 1, 3 in
Figure 3-10(a), case 9, 12 in Figure 3-11(b)).
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Figure 3-11: ROC curves from the EAST test set using all EAST disruptive training
data.

3.5.4 Summary of Conclusions for Cross-machine Numerical
Experiments

Considering all the conclusions in section Section 3.5.2 and Section 3.5.3, it is possible
to state that knowledge of disruptive data from existing devices improves the perfor-
mance on the new device while the non-disruptive data seem to have negative effects,
which do not result from the label imbalance of training datasets. This suggests that
the non-disruptive data are specific to one device, but disruptive data contain some
general knowledge about disruptions dynamics that could be transferred to a new
device, when using predictive, data-driven models. Indeed, different machines usu-
ally have different operational spaces, spatiotemporal scales for physics events and
plasma diagnostics [1, 4, 30]. In other words, the distributions of plasma signals can
vary significantly from one machine to others. From the data-driven perspective, this
further implies that finding a numerical transformation that maps a set of signals
from one device to a different device can be very challenging without incorporating
machine-specific information, and this might indeed pose a great challenge when com-
paring ITER’s operational space to all existing devices. Due to these considerations,
we conclude that non-disruptive data from existing devices are machine-specific and
will only decrease the accuracy of the predictive models on the new device when they
are directly mixed with data from the target device. Nevertheless, different devices
show similar behavior when operating close to a disruption. For example, the plasma
internal inductance [1], the loop voltage and the locked mode signals [1, 4] have been
observed to consistently increase on multiple machines when disruptions are immi-
nent. These universal trends can be well captured by our time sequence based model
as general knowledge about disruptions hidden beneath the disruptive data, and they
help disruption prediction on new devices.
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3.6 Summary

In this chapter, we have discussed findings from an explorative data analysis study
on a C-Mod disruption database using a dimensionality-reduction technique called
t-SNE, and demonstrated that time sequence data can better separate the disruptive
and non-disruptive behavior compared to the instantaneous plasma state data (i.e.
individual time slices). Based on these findings, we have designed a new, more pow-
erful disruption prediction algorithm based on Deep Learning and also demonstrated
a general, effective way to transfer knowledge from existing devices to new devices
which offers guidelines for disruption prediction for a new device using onlt limited
disruptive data from that device. The cross-machine study on Alcator C-Mod, DIII-
D, and EAST shows that, given the highly elaborated deep learning architecture, it
is not enough to use only data from existing devices to predict disruptions on a new
tokamak device. The numerical experiments discussed in Section 3.5 demonstrate
that, when compared with models using only data from existing devices, the model’s
performance greatly improves if both non-disruptive and some disruptive data are
included from the target device. In particular, the HDL predictors can reach AUC >
0.95 on EAST if trained including only a small set (20) of disruptive discharges from
the target device (EAST), while simultaneously using all available non-disruptive
information from the target machine.

Furthermore, disruptive and non-disruptive data are found to have different im-
pacts on the cross-machine disruption prediction framework, with the implication that
non-disruptive data are machine-specific while disruptive data contain more general
knowledge about disruptions. These results are an important milestone for disruption
prediction research for application to next-generation burning plasma reactors, such
as ITER.
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Chapter 4

Scenario Adaptive Disruption
Prediction

Next generation high performance (HP) tokamaks risk damage from unmitigated
disruptions at high current and power. Achieving reliable disruption prediction for a
device’s HP operation based on its low performance (LP) data is key to success. In
this chapter, through explorative data analysis and dedicated numerical experiments
utilizing data from multiple existing tokamaks, we demonstrate how the operational
regimes of tokamaks can affect the power of a trained disruption predictor. First, our
results suggest data-driven disruption predictors trained on abundant LP discharge
data work poorly for the HP regime of the same tokamak, which is a consequence
of the distinct distributions of the tightly correlated signals related to disruptions
in these two regimes. Second, we find that matching operational parameters among
tokamaks strongly improves cross-machine accuracy, which implies our model learns
from the underlying scalings of dimensionless physics parameters like 𝑞95 and 𝛽𝑝,
and confirms the importance of these parameters in disruption physics and cross
machine domain matching from the data-driven perspective. Finally, our results
show how, in the absence of HP data from the target devices, the best predictivity of
the HP regime for the target machine can be achieved by combining LP data from the
target with HP data from other machines. These results provide a possible disruption
predictor development strategy for next generation tokamaks, such as ITER and
SPARC, highlighting the importance of exploring, on existing machines, baseline
scenario discharges expected in future tokamaks. In this way, it should be possible
to collect the relevant disruptive data which can be used to refine the disruption
prediction models for the future devices.
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4.1 Introduction and Motivation

In chapter 3, we demonstrated that data-driven disruption predictors, especially those
using deep-learning based models, can achieve high accuracy on existing tokamaks.
However, as discussed in Section 3.5, due to the large gap of dimensional and oper-
ational parameters between existing devices and next generation tokamaks, extrap-
olation of these predictors to near-future burning-plasma tokamaks, like ITER [1]
and SPARC [2], is uncertain. For example, the HDL model trained on DIII-D and
EAST data can only achieve AUC=0.588 for C-Mod. So far, significant effort has
been devoted to solving this problem. First, recent deep-learning based predictors
have shown strong cross-machine ability [3, 4] to learn general representations across
tokamaks. Second, the strategy of building a predictor from scratch is proposed by
several existed analysis [5, 6]. These studies explored the strategy of progressively
retraining the predictor on historical data and then testing on future unseen dis-
charges. However, according to our discussion in Section 2.3, the key assumption
of these studies that the parameters of future unseen discharges are included in the
operational regime of historical data might not hold for for future devices like ITER.
During the performance ramp-up phase of these future devices, data-driven predictors
trained on data from initial LP campaigns might not work well on subsequent HP
campaigns, due to the shift of plasma parameters, and thus the predictors trained on
LP discharges are likely to be ineffective for HP discharges. In this chapter, we will
look into how the performance of the trained predictors change when the test scenario
deviates from the scenarios included in the training set. Our goal is to find a training
strategy for a data-driven predictor that works for the HP regime of the target device,
while only using LP data from the target device, combined with selected data from
other tokamaks. The numerical experiment described in this chapter is focused on
ITER, but the final strategy should also be applicable to other future devices.

4.2 Using data from existing machines to simulate
the LP and HP phases on ITER

As currently envisioned, the ITER research plan incorporates a staged approach strat-
egy aiming to increase the experimental capabilities in phases leading up to HP fusion
operation [1, 7]. Following the completion of its first plasma, ITER will increase the
toroidal magnetic field (𝐵𝑡𝑜𝑟), plasma current (𝐼𝑝), density, and input power (𝑃𝑖𝑛)
toward final high 𝐼𝑝, 𝐵𝑡𝑜𝑟 and 𝑃𝑖𝑛 fusion operation. Ramping up these parameters
during ITER’s early operation can pose challenges to the development of disruption
predictors. First, the distributions of operational parameters - such as normalized
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plasma pressure (𝛽𝑝), safety factor at the 95% flux surface (𝑞95), and Greenwald den-
sity (𝑛𝐺) - will change with the increasing 𝐼𝑝, 𝐵𝑡𝑜𝑟 and 𝑃𝑖𝑛 any or all of which might
impact the efficacy of any trained predictor. Second, due to the potentially serious
damage to the device from high-current, high-stored-energy disruptions, the ITER re-
search plan requires developing a reliable Disruption Mitigation System (DMS) trigger
before the beginning of HP operation [7]. This requirement can result in differences
between the training and testing operational regimes of the DMS trigger and may
invalidate the disruption prediction algorithm.

To simulate possible discrepancies between the training and testing domains of the
ITER DMS trigger, we select three parameters: 𝛽𝑝, 𝑃𝑖𝑛 (not a training feature) and
𝑞95 that are closely related to tokamak operation but less significant to disruption pre-
diction for the three tokamaks we studied [4] and calculate their 𝐼𝑝-flattop-averaged
values1 for each plasma discharge in our databases. From the distributions of flattop
averaged parameters, we choose low/high cutoff thresholds for each of the three pa-
rameters (Table 4.1) and select various LP/HP (low/high 𝛽𝑝, low/high 𝑃𝑖𝑛, high/low
𝑞95) datasets on three devices based on the ranges of these three parameters. The
chosen cutoff thresholds vary for different devices and depend on the distributions of
each signal on the different devices as well as typical operational scenarios on these
devices. Notice that the three chosen parameters are a small subset of all signals
used for prediction models [8]. To see how limiting the ranges of the three chosen
parameters affects the distributions of other training features, an orthogonal linear
transformation, called Principal Component Analysis (PCA) [9], is applied to all 12
training features (including 𝑞95 and 𝛽𝑝) of the combined LP and HP datasets for all
three devices. Before applying the PCA transformation, each signal in this combined
dataset is separately normalized to mean= 0, and standard deviation= 1, such that
two principal components are not dominated by 𝑞95 and 𝛽𝑝. In Figure 4-1, each
magenta point represents a 10 time-step sequence of 12 training features, randomly
sampled from the flattop of an HP shot, while each cyan point represents a sequence
randomly sampled from the flattop of an LP shot. The two principal components (x,
y axes) are linear combinations of 12 training features, and our PCA suggests that
the 10 unconstrained features make significant contributions. If the joint distribution
of unconstrained features is not strongly affected by three chosen parameters (similar
for LP and HP plasmas), the distributions of resulting LP and HP plasmas in the
projected 2-D plane should have a large overlap. However, the PCA clustering plots
show that there is only a very small overlap between the resulting LP/HP plasmas
for all three devices, implying thatsignals related to disruption prediction are closely
correlated. Limiting the ranges of a few of the less significant parameters can signifi-

1For 𝛽𝑝 and 𝑃𝑖𝑛, the average is only computed during the flattop 𝐼𝑝 period when external heating
is active
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Table 4.1: Performance cutoff threshold of 𝛽𝑝, 𝑃𝑖𝑛 and 𝑞95 on three devices

Device 𝛽𝑝 low/high
cutoff

𝑃𝑖𝑛 low/high
cutoff (MW)

𝑞95 low/high
cutoff

C-Mod <0.15 >0.25 <1.0 >3.0 <4.0 >4.6
DIII-D <0.60 >0.80 <3.5 >7.5 <4.5 >5.0
EAST <0.55 >0.75 <0.6 >3.0 <5.0 >6.0

Figure 4-1: The PCA clustering plots for: (a) C-Mod; (b) DIII-D; and (c) EAST.
Each magenta point represents a 10 time-step sequence of 12 training features ran-
domly sampled from the flattop of a HP shot while each cyan point represents a
sequence randomly sampled from the flattop of a LP shot. The coloring is done a
posteriori.

cantly change the distributions of other signals related to disruption prediction, and
makes clear the distinction between LP and HP plasmas. This observation further
implies that the LP regime physics is too limited and does not have enough overlap
with the HP regime physics to adequately train the predictor. More PCA plots, for
different subdivisions of HP data, can be found in [10] which further support our
conclusion about the signal correlation.

Another component of our study is the disruption predictor. In our previous re-
search, we have developed a Hybrid Deep-Learning (HDL) disruption predictor that
achieves state-of-the-art accuracy on multiple tokamaks, with only limited hyper-
parameter tuning [8]. Throughout this chapter, we will use the HDL predictor to
conduct all numerical disruption studies, and the result of each experiment is evalu-
ated using the ROC curves at 50ms before the final current quench. However, since
all data-driven methods essentially learn from the empirical distribution of the input
signals, we argue that our analysis is generally applicable to all data-driven methods.
50ms is chosen since it is the warning time required for the ITER DMS [11].
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4.3 Scenario based cross-machine study

Given the fact that unmitigated high-current, high-stored-energy disruptions can se-
riously threaten the integrity of future burning plasma tokamaks, developing a dis-
ruption predictor for HP operations burning-plasma of these devices with only LP
data from themselves, is one of the suggested approaches for future burning plasma
devices. Based on this approach, a “train-on-LP-data” strategy, as described in [5, 6],
consists of training a predictor using data from the early stages of ITER’s opera-
tion, and then applying it to subsequent discharges. If a predictor trained on ini-
tial LP ITER data has sufficient knowledge that is applicable to the HP regime, it
should be able to predict disruptions in the HP regime. Using an HDL predictor, and
various LP/HP datasets from three existing tokamaks, we investigate whether this
“train-on-LP-data” strategy works. If not, given the strong cross-machine potential
of deep-learning-based predictors, we seek to improve target prediction accuracy by
using data from other devices. Here, we consider C-Mod and EAST as ‘existing/other
machines’, with DIII-D chosen as the ‘new/target device’ and conduct numerical ex-
periments to explore the best strategy of developing data-driven predictors that can
predict disruptions in the HP regime of the new device, using only LP data from
the new device, combined with HP data from the existing machines. The training
and testing set compositions of all experiments can be found in Table 4.22 3. In ad-
dition, all following qualitative conclusions are machine-independent: they
always hold no matter which device is selected as the ‘new device’. The other two
permutations are shown in [10].

The first set of numerical experiments is conducted using only data from our target
new device to test the effectiveness of the “train-on-LP-data” strategy. The results
of these experiments (cases 1-5) are shown in Figure 4-2(a)-(b). The training and
testing set composition of these cases can be found in Table 4.2. From the results of
these cases, it is possible to draw the following conclusions:

• Limiting the ranges of chosen parameters in the training set strongly affects the
test performance of a trained data-driven predictor. A predictor trained on a
few hundred high 𝑞95 discharges works poorly for the HP regime of the same
device (case 2 in Figure 4-2(a)). Furthermore, as more parameters (𝛽𝑝, 𝑃𝑖𝑛)
of the training discharges deviate from the target HP regime, the predictor’s

2For case 3, 140 DIII-D HP shots were selected from the total 240 DIII-D HP shots as the test set,
and the remaining 100 DIII-D HP shots were used for the training set. 11 independent experiments
were run for case 3 (11 different random partitions of 240 DIII-D HP shots). The case 3 result,
shown in Figure 3-6, corresponds to the median accuracy among 11 results, making it comparable
with the results for the other cases.

3For cases 4-5, 140 DIII-D HP high 𝐵𝑡𝑜𝑟 shots were selected from 240 DIII-D HP shots as the
test set to evaluate the effect of 𝐵𝑡𝑜𝑟.
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Table 4.2: Training and testing set composition of all experiments using DIII-D as
the ‘new machine’

Case No. Training set Test set

1
209 DIII-D LP (𝛽𝑝 <0.6,

𝑃𝑖𝑛 <3.5MW, 𝑞95 >5) shots
(14% disruptive)

240 DIII-D HP (𝛽𝑝 >0.8,
𝑃𝑖𝑛 >7.5MW, 𝑞95 <4.5)
shots (15% disruptive)

2 209 DIII-D high 𝑞95 (𝑞95 >5)
shots (14% disruptive)

3 100 DIII-D HP shots
(15% disruptive)

140 DIII-D HP shots
(15% disruptive)

4
100 DIII-D HP, low 𝐵𝑡𝑜𝑟

(<1.79T) shots (20%
disruptive) 140 DIII-D HP, high 𝐵𝑡𝑜𝑟

(>1.79T) shots
(12% disruptive)

5
100 DIII-D high 𝛽𝑝 (>0.8), low
𝑞95 (<4.5), low 𝐵𝑡𝑜𝑟 (<1.79T)

shots (14% disruptive)
6 209 C-Mod low 𝑞95 (<4) shots

Same as cases 1-2

7 209 C-Mod high 𝑞95 (>5) shots

8 209 EAST low 𝑞95 (<5) shots

9 209 EAST high 𝑞95 (>6) shots

10 209 EAST low 𝑞95 (<5),
high 𝛽𝑝 (>0.4) shots

11 209 C-Mod low 𝑞95 (<4) shots
plus 209 DIII-D LP shots

12
209 EAST low 𝑞95 (<5),
high 𝛽𝑝 (>0.4) shots plus

209 DIII-D LP shots

13 209 C-Mod high 𝑞95 (>5) shots
plus 209 DIII-D LP shots

14 209 EAST high 𝑞95 (>6) shots
plus 209 DIII-D LP shots
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Figure 4-2: ROC curves from the new device (DIII-D) test set using only new device
data. The training and testing set compositions of all cases can be found in Table 4.2.

accuracy for the HP regime becomes systematically worse (case 1 in Figure 4-
2(a)). Notice that there are different numbers of disruptive discharges in the
different training sets. Although having only a small number of disruptive
samples in the training set can decrease the accuracy of a trained predictor, our
results suggest this is a secondary effect compared with the effects of changing
the operational regime. Despite having the most disruptive training shots ( 30)
in case 1, this case gives the worst test accuracy among cases 1-3. Given these
results, we conclude that a predictor trained only on abundant LP discharges
performs poorly for the HP regime of the same device.

• A data-driven predictor can effectively learn disruption physics if the training
and test data come from similar operational regimes. A predictor trained on
only 100 HP shots of the target device already achieves the best test accuracy
among cases 1-3 (case 3 in Figure 4-2(a)-(b)).

From the first conclusion above, even without other constraints to the training set,
the 𝑞95 discrepancy between the training and testing sets can significantly decrease
the prediction accuracy for the target HP regime. Since high current disruptions
can be dangerous to ITER, we want to develop a predictor using only low current
ITER discharges. Under this constraint, to match 𝑞95 between training and testing
regimes, one approach is to train a predictor on low 𝐵𝑡𝑜𝑟, low current, and thus low
𝑞95, discharges. To test this, we sub-select low 𝐵𝑡𝑜𝑟 shots from the new device HP
database as the training set, and test on the remaining HP high 𝐵𝑡𝑜𝑟 new device data
(case 4). However, selecting high 𝑃𝑖𝑛 shots from low 𝐵𝑡𝑜𝑟 discharges can yield highly
skewed dataset4, in the fifth case, the predictor is trained on low 𝑞95, high 𝛽𝑝 and low

4for example, C-Mod can not run shots with ICRF heating when the 𝐵𝑡𝑜𝑟 is low
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𝐵𝑡𝑜𝑟 new device shots, and tested on HP high 𝐵𝑡𝑜𝑟 new device data. In Figure 4-2(b),
we compare the results of cases 4 and 5 with case 3 (training and testing data from
the same HP regime) which yields the following additional conclusions:

• Although 𝑃𝑖𝑛 and 𝐵𝑡𝑜𝑟 are not training features, predictors trained on HP
(with/without 𝑃𝑖𝑛 constraint) low 𝐵𝑡𝑜𝑟 discharges perform poorly for the HP
high 𝐵𝑡𝑜𝑟 discharges. This implies that the ranges of parameters like 𝐵𝑡𝑜𝑟 and
𝑃𝑖𝑛 can greatly affect the feature space of predictors, even when they are not
training features. This indicates a need for ITER to reach relatively high 𝐵𝑡𝑜𝑟

as early as possible during its LP pre-fusion phase, even with low current and
high 𝑞95 (cases 3-5 in Figure 4-2(b)).

From the existing literature [4] and our previous HDL studies [8], 𝑞95 and 𝛽𝑝 are not
the signals with the most significance for disruption prediction on the three tokamaks
we studied. Therefore, directly learning from these constrained features is not required
for achieving high prediction rate and the discrepancies of 𝑃𝑖𝑛, 𝑞95 and 𝛽𝑝 ranges
between LP and HP data themselves will not lead to significantly worse prediction
accuracy on the test set. Since most of the training features (10/12) are not artificially
constrained, if limiting the ranges of three chosen parameters does not significantly
change distributions of other parameters, the predictor trained on the resulting LP
data (case 1) should work well on HP test set (close to the result of case 3). However,
the above results show that predictor trained on LP data works significantly more
poorly on an HP test set. This observation again suggests signals related to disruption
prediction are strongly correlated. Although the chosen physics-based signals (𝛽𝑝,
𝑃𝑖𝑛, 𝑞95) do not directly contribute significantly to the power of the model, limiting
their ranges can strongly affect the distributions of more important signals and hence
change the prediction results. Thus, without additional data, developing a disruption
predictor that works well for the HP regime of a given tokamak, using only LP data
from that same device, is unlikely to succeed because the LP regime physics is too
limited to yield good predictions for disruptions in the HP regime.

To seek a better strategy, we conducted another set of numerical experiments,
using data from both the new device and existing machines. Given the results from
the first set of numerical experiments, an attempt was made to match parameters
between the new device and the existing machines. The results of these experiments
(cases 6-12) are shown in Figure 4-3(a)-(d). The training and testing set composition
of these cases can be found in Table 4.2. The results of figure 3 point to the following
conclusions:

• A predictor trained on low 𝑞95 data from existing machines performs better than
a predictor trained on high 𝑞95 data from existing machines for the HP regime of
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the new device (cases 6, 7 in Figure 4-3(a), cases 8, 9 in Figure 4-3(b)). Training
a predictor using low 𝑞95 and relatively high 𝛽𝑝 data from existing machines
further increases the accuracy for the HP regime of the new device (case 10
in Figure 4-3(b)). These results demonstrate that training on “matched” data
(with similar operational parameters to those in the test dataset) from existing
machines greatly outperforms the unmatched data, and progressively matching
more operational parameters continuously improves the target performance.
Therefore, developing ITER baseline scenario discharges on existing tokamaks,
and training predictors on these, should greatly improve disruption prediction
for ITER itself.

• In the absence of HP data from the new device, combining “matched” HP data
from existing machines with LP data from the new device gives the best predic-
tion rate for the HP regime of the new device, while adding “unmatched” data
from existing machines to the training set can even decrease prediction accuracy
on the target device (case 11, 13 in Figure 4-3(c), case 12, 14 in Figure 4-3(d)).

Considering the results from these two sets of numerical experiments, we conclude
that, due to the distinct distributions of the tightly correlated signals related to
disruptions in HP and LP regimes, any data-driven predictors trained on early LP
ITER data cannot be directly applied to future HP operation. Our analysis shows
that developing a reliable DMS trigger for ITER’s HP operation, using only LP
data from ITER itself, requires the addition of HP ITER baseline discharges from
existing machines. A possible strategy for ITER DMS trigger development is as
follows: combine ITER LP data (low 𝛽𝑝, low 𝑃𝑖𝑛, high 𝑞95 with relatively high 𝐵𝑡𝑜𝑟)
with HP ITER baseline discharges from other devices to train a predictor with enough
accuracy to help ITER conserve its disruption budget during the early stage of its HP
operation; as ITER’s HP operation proceeds, add HP ITER data to the training set.
Retraining the predictor using these combined datasets should boost the predictor’s
performance towards ITER’s long-term requirements [12].

4.4 Summary and future plans

Given the risks of significant damage to fusion devices from unmitigated high-current,
high-power disruptions, developing a DMS trigger for HP burning-plasma operation
before starting HP campaigns is crucial for the success of next generation tokamaks.
In this chapter, using databases from C-Mod, DIII-D and EAST, we selected three
parameters that are closely related to tokamak operation, but less significant to dis-
ruption prediction on the three tokamaks and built LP/HP datasets that can simu-
late the LP and HP phases on ITER. Our preliminary data exploration using these
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Figure 4-3: ROC curves from the new device (DIII-D) test set using both new
device data and existing machines (C-Mod, EAST) data. The training and testing
set compositions of all cases can be found in Table 4.2.
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datasets finds that limiting the ranges of three chosen parameters clearly separates
the resulting LP/HP plasmas regimes, and we find that using LP regime physics alone
is insufficient for predicting HP regime disruptions. Dedicated numerical experiments
based on these datasets further demonstrate that although a data-driven predictor
can effectively learn when training and testing data come from the HP regime of
the same device, having even one parameter of the training set deviate from the
test operational regime greatly decreases the test performance of the trained predic-
tors. Since 𝑞95 and 𝛽𝑝 are not the most significant signals in the HDL model for the
three machines we studied, the above results suggest that different signals related to
disruption prediction are strongly correlated. Therefore, pushing the limits of less
important signals changes the distributions of more significant signals and thus de-
creases the power of a trained predictor. Any data-driven predictors trained only on
LP discharges perform poorly for the subsequent HP regime of the same tokamak,
which suggests the “train-on-LP-data alone” strategy will not be sufficient for ITER.

Our cross-machine numerical experiments show that matching operational param-
eters among devices can greatly improve prediction accuracy for the target device.
In the absence of HP data from the target device, the best prediction results for the
HP regime of the target device can be achieved by training the predictor on LP data
from the target combined with HP data from other machines. This conclusion implies
that our model learns from the underlying scalings of dimensionless physics parame-
ters, like 𝑞95, and 𝛽𝑝 and confirms the importance of these parameters in disruption
physics and cross machine domain matching from the data-driven perspective. Given
all above findings, we conclude that combining burning-plasma simulation discharges
from experiments on existing tokamaks with initial LP data from the next step device
is a promising strategy for the development of a DMS trigger for next step tokamaks.
Thus, the development of a DMS trigger for future burning-plasma devices requires us
to build comprehensive databases that consist of different kinds of disruptive burning-
plasma baseline scenario discharges from current devices. Developing burning-plasma
baseline scenarios on existing machines and exploring different kinds of disruptions
that can happen during the next step device’s HP operation, in the burning-plasma
baseline scenarios of current devices, to collect relevant data, is crucial for improving
disruption prediction on future devices.
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Chapter 5

Integrated deep learning framework
for unstable event identification and
disruption prediction of tokamak
plasmas

The ability to identify underlying disruption precursors is key to disruption avoid-
ance. In this paper, we present an integrated deep learning (DL) based model that
combines disruption prediction with the identification of several disruption precursors
like rotating modes, locked modes, H-to-L back transitions and radiative collapses.
The first part of our study demonstrates that the DL-based unstable event identi-
fier trained on 160 manually labeled DIII-D shots can achieve, on average, 84% event
identification rate of various frequent unstable events (like H-L back transition, locked
mode, radiative collapse, rotating MHD mode, large sawtooth crash), and the trained
identifier can be adapted to label unseen discharges, thus expanding the original man-
ually labeled database. Based on these results, the integrated DL-based framework is
developed using a combined database of manually labeled and automatically labeled
DIII-D data, and it shows state-of-the-art (AUC=0.940) disruption prediction and
event identification abilities on DIII-D. Through cross-machine numerical disruption
prediction studies using this new integrated model and leveraging the C-Mod, DIII-D,
and EAST disruption warning databases, we demonstrate the improved cross-machine
disruption prediction ability and extended warning time of the new model compared
with a baseline predictor. In addition, the trained integrated model shows qualita-
tively good cross-machine event identification ability. Given a labeled dataset, the
strategy presented in this paper, i.e. one that combines a disruption predictor with
an event identifier module, can be applied to upgrade any neural network based dis-
ruption predictor. The results presented here inform possible development strategies
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of machine learning based disruption avoidance algorithms for future tokamaks and
highlight the importance of building comprehensive databases with unstable event
information on current machines.

As an introduction, Section 5.1 gives a motivation for the integrated DL model.
The dataset used in the development and test of the integrated DL model is then de-
scribed in Section 5.2. Following this, a detailed explanation of the iterative labelling
process for assigning event labels to non-disruptive shots is presented in Section 5.3.
Based on a fully labelled dataset, the development of an integrated DL model is pre-
sented in Section 5.4. Next, the results of cross-machine numerical experiments using
the integrated model are discussed in Section 5.5. Finally, in Section 5.6, we present
a discussion of conclusions and future plans with respect to the integrated DL model.

5.1 Introduction

As shown in chapter 2 and chapter 3, many disruption prediction studies [1–10] have
proven the effectiveness of data-driven prediction methods. Furthermore, recent mod-
eling efforts based on deep learning (DL) algorithms [9, 10] have shown improved per-
formance and the potential cross-machine transferability of such predictive methods.
However, DL approaches often lack the ability to identify disruption precursors, thus
making them less explainable. This not only undermines the confidence of tokamak
opera-tors in the results themselves but also hinders the implementation of disruption
avoidance strategies.

On the other hand, according to our discussion in Section 2.1, there exist outstand-
ing examples of physics-driven approaches to predict disruptions and their precursors
[11–17]: the disruption event characterization and forecasting (DECAF) suite [15]
incorporates various physics-based modules the identification and forecast of tearing
modes, locked modes, resistive wall modes, edge localized modes (ELMs), among
other unstable events. These physics modules are designed for stability boundary
detection on different devices and some modules are accelerated via ML surrogate
models [18]. Building upon these physics models, the DECAF suite can provide
the proximity of plasma state to different disruption precursors and final disruption
which gives it much better interpretability over data-driven methods and enables the
machine operators to avoid disruptions instead of simply mitigating them.

In response to the need for unstable event identification via data-driven models,
a integrated model that can detect several unstable events, and at the same time
predict plasma disruptions, is developed using a manually labelled DIII-D dataset.
Although both our integrated framework and physics-driven models like DECAF can
output unstable levels of various disruption precursor, the data-driven property of our
integrated framework allows it to be straightforward adapted for new devices or new
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unstable events given sufficiently many new devices or new events data (i.e. retrain the
model with new labeled data added to the original database) while the adaptation of
physics-driven model to new operational region or unseen plasma instabilities requires
physics understanding about the new physics and there does not exist a standard way
to do this. Through extensive numerical experiments using data from the C-Mod,
DIII-D, and EAST tokamaks, we demonstrate four major advantages of such an
integrated framework:

• Any DL-based predictor can be adapted to an integrated model that combines
event detector and disruption predictor using our framework with little extra
computation.

• Numerical experiments show that the integrated model gives longer warning
times for predicting disruptions when compared with a baseline disruption pre-
diction model.

• The integrated model is able to identify the whole chain of events leading to the
disruption instead of just predicting the final major disruption. The precursors’
identification allows for implementation of appropriate actuators (a set of con-
trol knobs integrated in plasma control system, e.g. increase electron density or
decrease plasma current.) than can be employed to actively avoid disruptions.
Examples of control knobs that can be incorporated into the real-time plasma
control system include increasing the electron density, or decreasing the plasma
current.

• Finally, our cross-machine numerical experiments suggest that the combina-
tion of unstable events’ identification with disruption prediction can strongly
improve the cross-machine portability of the deep learning model.

5.2 Dataset description

Our disruption prediction and unstable event identification studies are conducted on
disruption warning datasets coming from three experimental devices, i.e. Alcator
C-Mod, DIII-D, and EAST [1]; additionally, a DIII-D dataset with labeled unstable
events manually identified [19] is used. The three disruption warning datasets have
been well described in our previous work [1, 10]. The dataset compositions and
sampling rates of these three databases are shown in Table 5.1 [10]. We interpolate the
signals from DIII-D and EAST onto uniform 10ms and 25ms time bases, respectively.
This is necessary because the DIII-D and EAST disruption warning databases have
nonuniform sampling for disruptive discharges [1, 20], while our DL-based model
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Table 5.1: The dataset composition of the three disruption warning databases [10]

No. shots (No. disruptive shots) Sampling rate (ms)

C-Mod 4457 (932) 5

DIII-D 7105 (996) 10

EAST 11107 (3098) 25

requires uniformly sampled data. The manually labeled event identification dataset
consists of 287 DIII-D disruptive shots (from the DIII-D 2015-2016 experimental
campaigns), with manually labeled start times for different unstable events across
the whole plasma current flattop of each shot [19]. We include 22 classes of different
unstable events when we build this database, and all event names are consistent with
events described in [1]. Given the limited size of the database and the frequency of
different unstable events, we choose 10 classes of unstable events that occur during at
least 10 different shots to include in our unstable event identification study Table 5.2.
The “event occurrence” of a particular is the number of disruptive shots that have that
event during the flattop, divided by the total number of disruptive discharges in the
manually labeled DIII-D dataset (287). Since multiple unstable events can happen
during the flattop of a single disruptive discharge, the sum of the “event occurrence”
fractions can be larger than 1.

As for the selection of plasma signals included in our analysis, we first use all
plasma signals considered in our previous disruption prediction study [10]. Further-
more, to better detect different unstable events, we add two more signals to the origi-
nal list of plasma signals used by our model. The first additional plasma parameter is
Te-width-norm, which is the half width of a parabola fitted to all measurement points
from the core Thomson system, normalized by the minor radius. The core Thomson
laser traverses the plasma vertically at fixed 𝑅, so our 𝑇𝑒 fit is a function of vertical
height, 𝑍. The second additional plasma parameter is Prad-peaking-CVA, which is
the radiation from the central plasma, divided by the total radiated power [21, 22].
The full list of input plasma signals is given in Table 5.3. The set of plasma signals
included in this study is informed by three factors: 1. the suggestions from machine
operators from C-Mod, DIII-D and EAST; 2. the analysis of the non-disruptive and
close-to-disruption distributions of plasma signals included in our databases, as some
signals have different distributions when disruption is imminent. For example, the
normalized internal inductance, li, increases before the final current quench on C-Mod,
DIII-D and EAST [1, 10, 20]; 3. We also take into account the need to characterize
the plasma state and its evolution across the “events” or precursors considered for
event identification. Plasma signals that are closely related to important disruption
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Table 5.2: Event labels, descriptions, and occurrences for the manually labeled
instabilities in the DIII-D dataset. Event labels follow [23]

Event label Event description Event occurrence

HL H-to-L back transition 72%

ML Mode locked 77%

RC Radiative collapse 19%

MHD 𝑛 = 1 or 2 rotating
MHD mode 61%

MAR Multifaceted asymmetric
radiation from the edge 7%

GWL Greenwald density limit 5%

SAW Large sawtooth crash 14%

IMP Impurity influx 7%

IMC Impurity control problem 5%

UFO Unidentified impurity influx
(flying macroscopic particles) 7%

precursors should be included in our analysis. For example, the n=1 locked mode is
needed for detection of locked modes, which often precede disruptions.

The manually labeled database of DIII-D disruptive discharges is then randomly
divided into a training set (160 shots) and a test set (127 shots). Our previous work
[10] suggests that sequence-based models have a clear advantage over models based
on individual time slice categorization. Therefore, we use plasma sequences of 10
consecutive time steps as input to our models. Since prior to each major disruption
there is a sequence of unstable events that finally lead to the final loss of control,
both the disruption prediction and the event detection problems are formalized as
sequence-to-label supervised machine learning tasks. To this end, we need to assign
two labels to each plasma sequence:

1. a disruption label, encoded as 1 if plasma sequences are close to disruption or
0 if the sequences are far from disruption;

2. a 10-dimensional event label vector, where each coordinate is independently
linked to a score for one of the ten unstable precursors considered in Table 5.2.
Each label vector element is encoded as 1 if the training plasma sequences are
unstable with respect to the corresponding event, or 0 if the plasma sequences
are stable.
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Table 5.3: Plasma signals considered in the data-driven studies [10]

Signal description Symbol
Plasma current−programmed plasma current

Programmed plasma current ip-error-fraction

Perturbed field of nonrotating mode𝑎, Bn=1

Btor
locked-mode-proxy

Electron density
Greenwald density Greenwald-fraction

Distance between the plasma and the lower divertor lower-gap

Current centroid vertical position error𝑏 z-error-proxy

Plasma elongation kappa

Poloidal beta betap

Radiated power
Input power radiated-fraction

Standard deviation of the magnetic field𝑐

measured from an array of Mirnov coils,
normalized by Btor

rotating-mode-proxy

Loop Voltage Vloop v-loop

Normalized internal inductance li

Safety factor at 95% flux surface q95

Fitted half width of the Te profile from
Thomson scattering normalized by minor radius

𝑇𝑒-width-norm

Radiation from central plasma divided
by the overall plasma radiation

𝑃𝑟𝑎𝑑-peaking-CVA [21, 22]

𝑎For the C-Mod database, the locked-mode-proxy signal is obtained from a Mirnov coil array
instead of the saddle coil.

𝑏For the DIII-D database, we use current centroid vertical position instead of position error for the
z-error-proxy signal.

𝑐For the DIII-D database, we use n=1 component of magnetic field measured from a Mirnov coil
array normalized by 𝐵𝑡𝑜𝑟 for the rotating-mode-proxy signal.
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For disruption label assignment, we use the same procedure as our previous study
[10]. However, for event label assignment, the procedure is not straightforward: (1)
We only record the start time of each unstable event in our manually labeled dataset,
but the end time of the event is missing. (2) All manually labeled shots are disruptive
shots, but we need both disruptive and non-disruptive training shots for the develop-
ment of our integrated model. In the following we present the solutions to both these
problems.

After testing different label assignment schemes, we find that the best approach
is to label all plasma sequences that encompass the start time (onset point) of the
unstable events as belonging to the unstable category of the corresponding event. All
other plasma sequences that are either before or after the onset time belong to the
stable category of the corresponding event. Under this labeling scheme, our target
is to identify the onset of unstable events instead of the unstable events themselves.
The predicted onset time is the point at which (i) the predicted event’s level exceeds
the threshold corresponding to the unstable event and (ii) this event’s level is larger
than the level of the event on the previous time step.

Finally, in order to complement our disruptive dataset of labeled unstable events,
we randomly select 900 non-disruptive shots from the 2015-2018 DIII-D experimental
campaigns and assign unstable event labels to these 900 non-disruptive shots using
a trained event predictor through an iterative labeling process that will be discussed
in detail in Section 5.3.

By solving these two problems, we construct a database with events and disrup-
tion labels for both disruptive (manually labeled, 160) and non-disruptive (automat-
ically labeled, 900) shots that represent the training set for the development of the
integrated DL model. Notice that 160/900 is close to the ratio of disruptive and
non-disruptive discharges in our DIII-D disruption warning database [1, 10]. In addi-
tion, 700 non-disruptive shots randomly selected from the DIII-D disruption warning
database are combined with 127 manually labeled disruptive shots to form a test set.
Both disruptive and non-disruptive test data are used to evaluate disruption predic-
tion performance of the model while only disruptive test data are used for testing
of disruption precursor detection performance of the model. Finally, 127 disruptive
shots and 700 non-disruptive shots are randomly selected from the DIII-D disrup-
tion warning database as the validation set. For the disruption prediction problem,
the time threshold that determines the unstable phase of each disruptive training
sequence (described in [10]) is uniquely chosen as the time at which the first unstable
precursor event appears.

The training samples are (𝑥, (𝑦𝑑𝑖𝑠, 𝑦𝑒𝑣𝑒𝑛𝑡)) pairs where 𝑥 is a 10-step consecutive
temporal sequence of the 14 plasma signals in Table 5.3, and 𝑦𝑑𝑖𝑠, 𝑦𝑒𝑣𝑒𝑛𝑡 are the
disruption label and event label, respectively. The training samples are extracted
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from each training set via a scheme equivalent to that used in reference [10]. For
each disruptive training shot, 20 disruptive samples are randomly selected from those
sequences that intersect the unstable phase of the shot. For each non-disruptive
training shot, 20 non-disruptive samples are randomly selected from all sequences
during the flattop phase of the plasma current.

5.3 Labeling non-disruptive shots through an itera-
tive labeling process

As mentioned in Section 5.2, assigning event labels to non-disruptive data in the train-
ing set is necessary for the development of the integrated model. A previous study
[19] gives examples of using data-driven methods to generate event labels for unseen
shots, given a very limited number of manually labeled shots. Given a manually
labeled dataset with 300 shots, we want to develop an event identifier to automat-
ically assign event labels to non-disruptive training shots. To this end, we designed
an event identifier and used a trained event identifier to generate event labels for all
900 non-disruptive discharges in the training set via an iterative labelling process.
We note that the size of the manually labeled dataset is relatively small, and it only
includes disruptive shots from DIII-D 2015-2016 campaigns. Given this limitation,
the distribution of different events in this dataset might be incomplete or biased and
it might miss some event chains that can lead to disruption. Generating event la-
bels for non-disruptive discharges, using a model trained on this manually labeled
dataset, can result in biased event labels because the trained model will be affected
by the event occurrence in the training set, and it can only recognize those patterns
of unstable events that appear in the training set. Therefore, the event identification
performance of the final trained model on manually labeled dataset can be exagger-
ated. Nevertheless, adding automatically labeled data to the training set should still
improve the event detection performance of the trained model as long as the gener-
ated labels are accurate enough. In addition, a larger training set provides higher
statistical significance. Furthermore, since the disruption label for each training shot
is already known, and disruption labels are independent from event labels, the biased
event labels should only have small effects on the disruption prediction results. This
is because disruption prediction does not require us to detect all events, but rather
only those typical/frequent events in the event chains that lead to disruptions. As
long as our biased event dataset covers the most frequent unstable events that lead
to disruptions (e.g. HL, ML, MHD on DIII-D), the trained event identifier should
be able to detect these frequent events and give us extra warning time. The biased
event labels, and hence event identifiers, might miss some infrequent events, but these
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missed events should have a negligible effect on disruption prediction. In this section,
the event identifier and iterative labeling process are discussed in detail.

5.3.1 The Hybrid Deep Learning (HDL) event identifier

Modified with respect to our previous work [10, 24], a hybrid deep learning (HDL)
model is developed for unstable event identification. The HDL event identifier (HDL-
EI) consists of six multi-scale temporal convolution (MSTConv) layers and two dense-
bn layers, plus input and classification layers (with sigmoid activation [25] for each
coordinate). A dense-bn layer (Figure 5-1(c)) contains a fully connected layer followed
by a batch normalization layer [26] and a rectified linear unit (ReLU) activation [27].
The MSTConv layer, described in [10], is a novel neural network layer designed for
time-series processing. It contains six 1D temporal convolution layers, as well as
batch normalization and ReLU activation. The architecture of the HDL-EI is shown
in Figure 5-1(a) and the structure of the MSTConv layer is detailed in Figure 5-
1(b). Empirically, the deep neural network is designed to have wider layers in the
middle of the model, which allows the network to identify more complex patterns
within the input data. Accordingly, the third, fourth and fifth MSTConv layers,
in the middle of the neural network, have 15 convolutional filters in each of their
1D temporal convolution layers, while the first, second and sixth MSTConv layers
have 10 convolutional filters in each of their 1D temporal convolution layers. The
wider MSTConv layers in the middle of the neural network allow for more complex
intermediate representation. This architecture gives better performance than the
model that uses 10 filters for each MSTConv layer.

The HDL-EI transforms an input 10-step consecutive temporal sequence of 14
plasma signals to an output 10D event level vector at the last time step of the se-
quence. Each coordinate of the event level vector provides unstable levels for one
event in Table 5.2, with ranges between 0 and 1, where 1 is the unstable class and 0 is
the stable class; the training loss of the HDL-EI comes from an average mean square
error (MSE) of each individual unstable event. To label non-disruptive data, each
shot was divided into batches of sequences, with each neighboring sequence having
9 steps of overlap. Therefore, given a non-disruptive shot, with N flattop time steps
from 𝑡1 to 𝑡𝑁 , the HDL-EI will generate N-9 event level vectors, corresponding to the
time steps between 𝑡10 and 𝑡𝑁 . If one coordinate (e.g. the third coordinate) of the
output event vector exceeds the preset threshold corresponding to that event (e.g.
HL, 0.5) at a flattop time step, while it is less than the event threshold at previous
time step, the time of this step is identified as the predicted onset time 𝑡𝑖𝑜𝑛𝑠𝑒𝑡,𝑝) of
the corresponding event (e.g. HL) and the 𝑡𝑖𝑜𝑛𝑠𝑒𝑡,𝑡) means the manually labeled onset
time of the corresponding event.. A simple illustration of this process is shown in
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Figure 5-1: (a) The HDL-EI; (b) the detailed structures of the dense-bn layer;
and (c) the MSTConv layer. The feature extractor of the HDL-EI is marked by a
green dashed box. Note that the six 1D temporal convolution layers contained in the
MSTConv layer have window lengths L from one to six, to extract local temporal
information at the different levels (see [10] for a detailed explanation).
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Figure 5-2. To evaluate the shot-by-shot performance of the HDL event identifier, we
focus on the first onset of each unstable event during the test shot. If the predicted
first onset time is close (within uncertainty) to the manually labeled first onset time:
|𝑡𝑖𝑜𝑛𝑠𝑒𝑡,𝑡 − 𝑡𝑖𝑜𝑛𝑠𝑒𝑡,𝑝| < 0.03𝑠 , then it is considered a true positive. Different thresholds
were considered and 30ms represents the best trade-off, allowing us to achieve good
average accuracy (above 80%) for the five most frequent events (HL, ML, RC, MHD,
SAW). Furthermore, we find the class membership probabilities for each particular
event (aka instability levels from HDL-EI) corresponding to these five events usually
ramp up within 30ms of unstable event onset .These observations suggest that 30ms

is a good choice for the definition of the TP criterion for these five most frequent
events, and a 30ms time interval is a good match to the time scale of these five
events on DIII-D. If the output event level corresponding to an event does not exceed
the threshold for the whole flattop of a shot, and this event does not happen during
the flattop of this shot, this is regarded as a true negative. HDL-EI is optimized to
achieve the highest TPR at a fixed FPR (typically FPR=0.1). From Table 5.2, it is
clear that, from among the ten selected events, HL, ML, RC, MHD, and SAW have
the highest frequencies. To maximize the overall accuracy of the model, a good model
should give higher weight to the TPR in the ML detection (since the occurrence of
ML is 77%) to avoid missed alarms, and while giving more weight to the FPR for
IMC detection (since the IMC probability is low) to avoid false alarms. Due to these
considerations, when we define the performance metric for each event, we choose dif-
ferent target FPRs for frequent and infrequent events, allowing us to rebalance the
class frequencies for different events.

5.3.2 Iterative labeling process

The iterative labeling process evolves in two stages. During the first stage, the ini-
tial training set, 𝑋1 of the HDL-EI, is constructed by sampling 20 sequences (each
sequence is a 10x14 matrix) from the unstable phase of each manually labeled dis-
ruptive training shot. The HDL-EI is then trained using this initial training set.
The trained model is subsequently applied to manually labeled disruptive test shots,
and the optimal threshold corresponding to each event is obtained by optimizing the
performance of the HDL-EI on the manually labeled test set. The performance of
HDL-EI model in the first stage is given in Table 5.4. After this, the predicted event
labels of all 900 non-disruptive shots are generated using the trained model and op-
timized event thresholds. During the second stage, the training set is obtained by
sampling 20 sequences from the unstable phase of each manually labeled disruptive
training shot, plus randomly sampling 20 sequences from the flattop of each non-
disruptive training shot (with generated event labels). The HDL-EI is then trained
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Figure 5-2: The upper panel shows the output HL back transition level from the
trained HDL-EI. The manually labeled HL onset time is marked by the vertical dashed
line, and the preset HL back transition event threshold is marked by the horizontal
dashed line. The predicted onset time (𝑡1𝑜𝑛𝑠𝑒𝑡,𝑝 = 2.76 s) of HL is marked by a black
X on the output HL level. At this time step, the output HL level (0.633) is greater
than the threshold, while the output HL level at the previous time step (0.357) is
below the threshold. The time trace of a 𝐷𝛼 signalis shown in the lower panel. The
large spikes correspond to type I ELMs; the last ELM occurs just prior to the HL
back transition.
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Table 5.4: HDL-EI performance on test set in stage 1 of the iterative labelling
process

Frequent events
(FPR= 0.15) TPR Infrequent events

(FPR= 0.10) TPR

HL 0.80 MAR 0.75

ML 0.85 GWL 1.00

RC 0.72 IMP 0.33

MHD 0.67 IMC 0.57

SAW 0.59 UFO 0.40

using this combined training set. Given the trained model, the optimized threshold
corresponding to each event, and the predicted label of each non-disruptive training
shot, are obtained using the same method as in stage 1. The second stage of the
labeling process is run iteratively until the obtained thresholds and the performance
on the manually labeled test set converge. The ensemble method is well known in
the machine learning community, and has been shown to significantly increase the
performance and reduce the uncertainty of the model [10, 28–30]. In our previous
work [10], we have shown that using the ensemble method can significantly improve
the performance of a data-driven disruption predictor. Therefore, we independently
trained 10 different HDL-EIs with the same dataset; each HDL-EI has different initial
parameters (i.e. different initialization) and different training random seeds. Then,
we combine these 10 independently trained HDL-EIs into an ensemble. The final
output of our model is the average output from ensemble of 10 HDL-EIs. The fi-
nal event thresholds and generated event label for non-disruptive training shots are
obtained from the average output of an ensemble of ten independently trained HDL-
EIs. The diagram of this iterative labeling process is shown in Figure 5-3, and the
final optimized event thresholds are summarized in Table 5.5. Notice that infrequent
events tend to have lower thresholds. This phenomenon comes from the fact that the
HDL-EI always sees negative samples during training and it learns to always output
a low event level to achieve high accuracy. The low event level leads to a low event
level threshold. An example of automatically labeled non-disruptive training shots is
shown in Figure 5-4.
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Figure 5-3: The diagram of iterative labeling process.

Table 5.5: The optimized event thresholds from iterative labeling process (See
Table 5.2 for event descriptions.)

Event Threshold Event Threshold

HL 0.472 GWL 0.091

ML 0.655 SAW 0.151

RC 0.262 IMP 0.057

MHD 0.570 IMC 0.034

MAR 0.023 UFO 0.053
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Figure 5-4: An example of an automatically labeled non-disruptive shot from DIII-
D. For this shot, the large 2/1 tearing mode happens at 1.60 s, shortly after the plasma
enters H-mode. The 𝑛 = 1 tearing mode onset time is marked as a vertical line in
the plot, and the predicted MHD level exceeds the threshold 15ms after the onset.
Notice that only the predicted label of the MHD event is shown in the plot, as all
other event levels are close to 0 and do not exceed the corresponding event thresholds.
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5.4 The integrated deep learning framework for dis-
ruption prediction and unstable event identifica-
tion

The integrated DL framework combining the predictive ability of disruptions, as well
as several precursors, is developed using the training set that includes manually la-
beled shots and automatically labeled ones. This integrated framework is designed
to map an input plasma sequence to two connected outputs: a scalar indicating the
disruption risk, and a 10-D event level vector that corresponds to the level of all 10
classes of unstable events. The model’s loss function includes two terms that need
to be minimized at the same time. Figure 5-5 shows the architectural details of this
deep learning framework. Since the disruption level is closely related to the unstable
levels of each disruption precursor, we want the intermediate representation of the
input signals to contain information about both the precursors and the major dis-
ruption itself. The integrated model is built on the HDL-EI described in Section 5.3
by adding a separate disruption prediction branch after the intermediate layer of the
original HDL-EI. This allows the model to output both the disruption level, i.e. the
“disruptivity”, and the predicted event level vector based on the intermediate repre-
sentation of the input plasma signals. The integrated model adopts a composite loss
function (a function that measures the difference between predicted label and ground
truth) that includes the contributions from both the unstable event identification and
the disruption prediction branch. This loss function can be represented as:

𝑙𝑜𝑠𝑠𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 = 𝑙𝑜𝑠𝑠𝑑𝑖𝑠 + 𝜆 * 𝑙𝑜𝑠𝑠𝑒𝑣𝑒𝑛𝑡 (5.1)

where 𝑙𝑜𝑠𝑠𝑒𝑣𝑒𝑛𝑡 is the average mean squared error (MSE) loss of the unstable event
task, while 𝑙𝑜𝑠𝑠𝑑𝑖𝑠 is the average negative log-likelihood (NLL) loss of the predicted
disruptivity risk. 𝜆 is the framework’s hyperparameter balancing these two terms,
and we have chosen 𝜆 = 1 for these studies. By removing the event branch of the
integrated model, and setting 𝜆 = 0 in Equation (5.1), we can convert an integrated
DL model into a baseline HDL disruption predictor.

The shot-by-shot testing scheme of the integrated framework follows the two-
staged approach of the HDL-EI iterative labeling. If the level of any unstable event
(e.g. ML) or of the disruptivity exceeds the corresponding preset threshold at any
flattop time step, the whole shot will be classified as unstable (with respect to that
event, e.g. ML) or as disruptive shot. A successfully predicted DIII-D disruptive shot
from the test set is shown in Figure 5-6, and the event identification performance of
the model is given in Table 5.6. The average TPR of the four most frequent unstable
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Figure 5-5: The architecture of the integrated deep learning framework. The de-
tailed structure of the feature extractor is given in Figure 5-1.

events (HL, ML, RC, MHD) achieves 84%, which is significantly better than the
performance of HDL-EI when only trained with manually labeled data (see Table 5.4);
this confirms the effectiveness of using automatically generated event labels.

5.4.1 Comparing the disruption prediction performance be-
tween the integrated model and the baseline predictor

To investigate the advantage of an integrated DL model, we compare the performance
of the integrated model with that of the baseline HDL disruption predictor, using the
same test set for each approach. Both the integrated model and the baseline model

Table 5.6: Event identification performance of the integrated DL model on manually
labeled DIII-D test shots

Frequent events
(FPR= 0.15) TPR Infrequent events

(FPR= 0.10) TPR

HL 0.89 MAR 1.00

ML 0.92 GWL 1.00

RC 0.81 IMP 0.33

MHD 0.73 IMC 0.71

SAW 0.59 UFO 0.60
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Figure 5-6: A successfully predicted DIII-D disruptive shot from the test set. All
the time traces corresponding to the events that pass the event threshold are shown in
the plots with solid lines, and the manually labeled onset time of each unstable event
is also given in the plot as a vertical line with the same color as the corresponding
event level line. The event thresholds are marked as horizontal lines.
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are trained using the same DIII-D training set. The baseline model doesn’t need
event labels from the training shots; it only uses the threshold for major disruption
(disruptivity threshold). The event thresholds are obtained via an iterative labeling
process, and they are fixed during this experiment. The performance metric chosen
for these numerical experiments is the area under the receiver-operator characteris-
tic (ROC) curve (AUC), which is the curve of true positive rate (TPR, the ratio of
correctly predicted disruptive shots to all disruptive shots) and false positive rate
(FPR, the false alarm rate) [31].The disruption prediction performances of all nu-
merical experiments reported here are evaluated at 50ms before the current quench,
as this is the requisite warning time needed to successfully trigger the mitigation
system on ITER [32]. The comparison results are shown in Figure 5-7. To ensure
a fair comparison, the hyperparameters of each disruption predictor are optimized
independently using a separate validation set. To do this, we independently tune the
hyperparameters of the baseline HDL model and the integrated DL model, to maxi-
mize their disruption prediction performance on this validation set. In addition, for
true positive shots, the cumulative distribution of warning times, (i.e. the difference
between the triggered alarm time 𝑡𝑎𝑙𝑎𝑟𝑚 and the disruption time 𝑡𝑑𝑖𝑠), returned by
the two models, are reported in Figure 5-8. Through the comparison, the integrated
DL model gives AUC=0.940 (TPR=0.88 at FPR=0.1) while the baseline HDL model
gives AUC=0.920 (TPR=0.85 with FPR=0.1). Note that the 0.940 AUC achieved by
integrated model is close to the performance of the original HDL model, trained on a
much larger dataset (reported in [10]). There are three major factors that contribute
to this: 1. Adding event information; 2. Improved network design, substituting a
GRU layer with an MSTConv layer and adding short-cut connection; 3. Adding two
useful 1D features (Te-width-norm and Prad-peaking-CVA). If we consider the fact
that the baseline predictor has already achieved high accuracy on DIII-D, the 3%
TPR improvement is significant. By using the integrated DL model, we reduce the
number of the missed alarms by 20% (15 missed alarms to 12 missed alarms every
100 disruptions). The integrated DL model also gives longer median warning times
compared with the baseline disruption predictor. The median warning time increases
by roughly 200ms when we use the integrated DL model, and the longer warning time
could allow the plasma control system to take actions to avoid disruptions, instead of
simply mitigating them. Furthermore, detecting unstable events together with dis-
ruption in plasma experiment operation enables disruption avoidance and analysis of
plasma physics. All these considerations contribute to clarifying the advantage of the
integrated HDL vs the baseline version.

The conclusions above suggest the advantage of providing unstable event informa-
tion to such DL frameworks and verify the close correlation between unstable event
identification and disruption prediction tasks. In Figure 5-8, most of DIII-D shots
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Figure 5-7: The ROC curves from DIII-D test sets for the integrated deep learning
model (using event information, red) and for the baseline disruption predictor (with-
out event information, blue).
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Figure 5-8: The cumulative distributions of warning time from DIII-D test sets
returned by integrated deep learning model (using event information, red) and base-
line disruption predictor (without event information, blue). The vertical dashed line
shows the 50ms warning time threshold.
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that have very long warning time greater than one second usually have locked mode
onset at the early/middle stage of the flattop but the initial locked mode onset does
not result in the large thermal quench of the plasma in next few hundred milliseconds
(either survive with locked modes or locked modes disappear after onset).

Having demonstrated that adding event information helps the integrated model
achieve higher accuracy on disruption prediction, we ask a further question: to im-
prove the disruption prediction, how accurate does the unstable event identifier need
to be? To try to answer this question, we reduced the size of manually labeled train-
ing set (from 160 shots to 110 shots) and used an iterative labeling process on this
reduced training set to label 50 remaining disruptive shots and 900 non-disruptive
shots. Then, we combine these 50 disruptive shots, plus 900 non-disruptive shots,
with generated labels and 110 manually labeled shots to the new “degraded” training
set. Finally, we train a “degraded” integrated DL mode using this new combined
dataset. The event identification performance of the “degraded” integrated DL model
is shown in Table 5.7; the average TPR for the four most frequent unstable events
(HL, ML, RC, MHD) is 0.74. The disruption prediction performance of the degraded
integrated DL model, and the comparison with both the complete integrated DL
model (trained with all event information) and with the baseline HDL model, are
given in the Table 5.8. From the comparison, the “degraded” integrated DL model
gives similar disruption prediction performance compared with baseline HDL model,
which suggests that a bad event identifier might not be able to provide extra informa-
tion for disruption prediction. Results from Table 5.8 show that the event identifier
needs to achieve higher than 75-80% accuracy for the most frequent unstable events in
order to improve the disruption prediction. We need to mention that the 75-80% ac-
curacy estimation is not directly applicable to other devices, because different devices
have different frequent events and different event occurrence. This empirical accuracy
should also depend on the signals considered by model and the accuracy of the base-
line model. The required accuracy will decrease if the baseline model performance is
lower. Knowing the statistics of the root cause of disruptions on the tokamak [23, 33]
might help us obtain an upper bound of this required accuracy. However, since this
value depend on lots of factors, more accurate estimation of the required accuracy
needs to be obtained via numerical experiments.

5.5 Cross-machine performance of the integrated model

Given the fact that a few, or even one unmitigated full current, high stored energy
disruption can significantly damage future tokamaks, including ITER, it is strongly
desirable to develop a disruption predictor that can reliably and accurately operate
before the first high performance operation of the device [34]. Therefore, the disrup-
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Table 5.7: Event identification performance of the “degraded” integrated DL model

Frequent events
(FPR= 0.15) TPR Infrequent events

(FPR= 0.10) TPR

HL 0.78 MAR 0.50

ML 0.82 GWL 1.00

RC 0.69 IMP 0.33

MHD 0.67 IMC 0.43

SAW 0.47 UFO 0.60

Table 5.8: The performance of the integrated DL model trained with “degraded”
event information

AUC TPR at FPR=0.10 Median warning time (s)

Baseline HDL 0.920 0.852 0.898

Degraded integrated DL model 0.916 0.849 0.906

Complete integrated DL model 0.940 0.883 1.087

tion prediction model with better cross-machine transferability represents a suitable
candidate for the DMS trigger algorithm for future devices like ITER, assuming that
enough knowledge from other tokamaks’ data is extracted, and that only a minumal
amount of data from the new machine itself is required. From Section 5.4, we find
unstable event information can provide extra information and improve the disruption
prediction performance of the data-driven model. Next, we would like to investigate
the cross-machine transferability of the integrated framework by setting up extensive
numerical experiments, and comparing disruption prediction performances against
the baseline DL model.

In this section, we consider DIII-D as the “existing” device with C-Mod or EAST
chosen as the “new ” device and investigate how the integrated model (with event
information) and baseline disruption predictor (without event information) trained
on DIII-D data perform on either C-Mod or EAST. The description of the C-Mod
and EAST disruption warning databases can be found in [1, 10].
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5.5.1 Cross-machine prediction performance of the integrated
model and baseline disruption predictor

The cross-machine transferability of the following models is considered in the com-
parison experiments:

• The integrated model trained on the combined DIII-D dataset, including the
event information detailed in Section 5.3 – i.e., all disruptive training shots have
manual event labels and all non-disruptive training shots have generated event
labels, and

• The baseline disruption predictor trained on the exact same training data, but
without event information – i.e., removing all event labels.

The trained integrated model and the baseline model are tested on the EAST and
C-Mod datasets, respectively. Besides the prediction accuracy, we are also interested
in investigating whether providing unstable event information from the “existing”
device allows the trained model to find early precursors of the disruption on a different,
“new ” machine, and hence give longer warning times. To this end, the distributions of
warning times returned by the integrated model and the baseline disruption predictor
are also analyzed. Results on the test set are shown in Figure 5-9 and Figure 5-10.
From these test results, we draw the following conclusions:

• Comparing the ROCs of the integrated DL model (red) and the baseline HDL
model, the integrated DL gives TPR= 0.61 at FPR= 0.20 for EAST, and base-
line HDL gives TPR= 0.50 at FPR= 0.20 for EAST. The integrated model
gives better cross-machine accuracy compared to the baseline disruption pre-
dictor (Figure 5-9(a), Figure 5-10(a)).

• The integrated model provides longer warning times compared to the baseline
disruption predictor, even under the cross-machine scheme. When the FPR is
set to 0.2, the integrated DL gives 120ms median warning time on EAST, while
the baseline HDL gives 50ms median warning time on EAST (Figure 5-9(b),
Figure 5-10(b)).

These two conclusions imply that information about unstable events, i.e. dis-
ruption precursors, contains general, machine-independent knowledge about disrup-
tions. The common physics contained in the event information can be learned by
an integrated model, and gives better transferability across devices when predicting
disruptions.
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Figure 5-9: The ROC curves from the EAST test set for the integrated deep learning
model (using event information, red) and for the baseline disruption predictor (with-
out event information, blue) trained on DIII-D training set. The vertical dashed line
in the upper panel corresponds to FPR=0.2 and the vertical dashed line in the lower
panel shows 50ms warning time threshold.
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Figure 5-10: The ROC curves from the C-Mod test set for the integrated deep
learning model (using event information, red) and for the baseline disruption predictor
(without event information, blue) trained on the DIII-D training set. The vertical
dashed line in the upper panel corresponds to FPR=0.2 and the vertical dashed line
in the lower panel shows 50ms warning time threshold.
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5.5.2 Cross-machine unstable event identification

Beyond the cross-machine disruption prediction transferability, we also want to in-
vestigate whether the integrated model, trained with data from one machine, can
identify disruption precursors on different devices. To this end, we manually labeled
the unstable events of a few shots from EAST and C-Mod, and applied our integrated
model trained on DIII-D labeled shots. While the number of manually labelled EAST
and C-Mod test shots is small, we can still get preliminary cross-machine conclusions
from the test. The test results are shown in Figure 5-11 and Figure 5-12. The results
from these experiments point to the following qualitative conclusions:

• The integrated model trained with data from one device, can qualitatively iden-
tify disruption precursors on different tokamaks. This observation again sug-
gests that the underlying physics driving the unstable events is similar across
tokamaks (Figure 5-12 and Figure 5-11).

• The integrated model trained on data only from one device seems to have large
numerical bias when it is directly applied to another device. This bias can make
the absolute values of disruptivity and unstable event level returned by model
meaningless. Nevertheless, the increases of the output instability levels from
the model still indicate the increasing risks of correspondent plasma instabilities
(Figure 5-11). The underlying reason for this cross-machine bias is that different
machines have very different operational regimes in the parameter space, even
after signal normalization [10]. Therefore, the data-driven model trained on data
from device A can be unconstrained on a disjoint new operational regime (e.g.
the operational regime of a different tokamak, B) because the model has never
seen a sample related to this new regime. The extrapolation of the trained model
to this new regime can result in large numerical bias. This numerical bias can be
greatly reduced by adding a few shots from the target domain/device [9, 10, 24]
and/or by adding some simulation data to the training set. Previous studies [1,
10, 20, 24] have shown that different devices usually have similar behaviors when
a disruption/unstable event is imminent. These similar dynamics among devices
can be captured by data-driven models (especially sequence-based models) and
hence the changes of the output instability levels from the data-driven model
trained on other devices can still reflect the risks of corresponding unstable
events [10].

5.5.3 Summary of Cross-machine numerical experiments

Given all the conclusions in Section 5.5.1 and Section 5.5.2, it is possible to state that
disruption prediction and unstable event identification are two closely related tasks
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Figure 5-11: The output of the DIII-D-trained integrated model applied to a man-
ually labeled C-Mod test shot. The onset time of all unstable events, with color
corresponding to each event, are marked as vertical dashed lines in the plot. Notice
that we only show the predicted levels of those events that actually happened during
the flattop, and we find the predicted levels of other events are almost constant during
the flattop.
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Figure 5-12: The output of the DIII-D-trained integrated model applied to a man-
ually labeled EAST test shot. The onset time of all unstable events, with color
corresponding to each event, are marked as vertical dashed lines in the plot. Notice
that we only show the predicted levels of those events that actually happened during
the flattop, and we find the predicted levels of other events are almost constant during
the flattop.
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from the machine learning perspective. Furthermore, the physics of disruption precur-
sors has large similarity among different tokamaks, and the unstable event information
provides general knowledge about disruptions. Therefore, integrated models trained
with additional disruption precursor information provide better disruption prediction
performance, as well as better cross-machine transferability, compared with baseline
disruption predictors. Given a labeled dataset, this strategy of combining disruption
predictor and disruption precursor identifier to a single integrated framework can be
easily applied to up-grade any neural-network based disruption predictor and improve
its performance.

5.6 Summary and future plans

In this chapter, we have discussed an iterative labeling method to automatically as-
sign event labels to unlabeled shots, using a deep learning based event identifier and
a manually labeled DIII-D database with a few hundred disruptive shots. Given the
fact that all manually labeled shots are disruptive, while we need both disruptive
and non-disruptive shots to train the integrated DL model, we have used the iter-
ative labeling method to construct a training database with 160 manually labeled
disruptive DIII-D shots and 900 automatically labeled non-disruptive DIII-D shots
(with generated event labels). The generated event label might be biased, because the
HDL-EI model used to generate these event labels is trained using only 160 manually
labeled disruptive shots, all from the 2015-2016 DIII-D campaigns. In this context,
we assume that the limited in-formation available on the statistical representation
of DIII-D disruption dynamics might lead to a biased dataset. However, given the
manually labeled disruptive set available together with the automatically generated
labeled non-disruptive discharge set„ we have developed an integrated deep learning
framework that can output the disruptivity score and unstable event levels simul-
taneously. Through numerical experiments, the integrated model is found to give
higher disruption prediction accuracy, as well as longer warning time, compared with
the baseline version aimed solely at predicting disruptions. The cross-machine nu-
merical studies using C-Mod, DIII-D, and EAST data further demonstrate that the
integrated model can provide better cross-machine transferability, and the integrated
model, trained using data from one device, can qualitatively identify disruption pre-
cursors on a different tokamak. All of these conclusions confirm the close correlation
between disruption prediction and disruption precursor identification tasks, and sug-
gest that the physics mechanism of disruption related events shares large similarity
across different tokamaks. Therefore, combining a disruption predictor and disruption
precursor identifier into a single model is a promising strategy for the development of
disruption predictors for future devices, and it highlights the importance of including
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unstable event information when we construct the database for data-driven disruption
prediction studies.
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Chapter 6

Empirical boundary detection of
𝑛 = 1 tearing mode onset for DIII-D

The locked n=1 tearing mode (TM) is one of the key precursors that can lead to
disruptions, and the ability to predict 𝑛 = 1 TMs is highly desirable for ITER and
SPARC. This is supported by the observation that the ITER baseline discharges on
DIII-D are often unstable to 𝑚/𝑛 = 2/1 TMs that quickly lock and cause loss of
confinement [1]. For disruption avoidance purpose, we want to predict the onset of
the TMs since often it is too late to predict it after it developed. In response to this
need for TM prediction, an empirical boundary for the 𝑛 = 1 tearing mode (TM) is
presented in this chapter. This boundary is developed via data-driven methods and
verified on thousands of DIII-D discharges. It is assumed to be a linear function of
plasma equilibrium parameters, including collisionality, poloidal beta, the MHD risk
factor (a combination of the normalized electron temperature profile width, 𝑞95 and
plasma elongation 𝜅). The boundary returns with a value related to the probability
of having the TM onset within 200 ms and it yeilds a shot-by-shot accuracy of about
85% in offline analysis of DIII-D data. Preliminary cross-machine analysis of TM on-
set prediction shows the potential applicability of the empirical boundary to C-Mod
and EAST data as well, but the relative importance of the individual parameters is
different for different devices. This suggests the existence of different trigger mecha-
nisms for the TMs, implying that the boundary could be generalized using data from
different tokamaks, representing different trigger mechanisms, to improve extrapola-
bility. Finally, this newly formulated metric for proximity to 𝑛 = 1 TM onset has
been incorporated into the DIII-D real-time plasma control system (PCS), and results
from real-time experiments will be discussed in Section 6.5.
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6.1 Motivation of our empirical 𝑛 = 1 TM boundary

As described in Section 1.5.5, the current driven (2, 1) tearing mode is one of the most
relevant instabilities leading to tokamak disruptions [2]. Furthermore, The𝑚/𝑛 = 2/1

is the most dangerous island expected to show up in ITER and if it forms and locks
then the plasma loses the confinement [3]. In practice, the ITER baseline scenario
discharges [4] on DIII-D are often unstable to 𝑚/𝑛 = 2/1 TMs that quickly lock and
cause complete loss of confinement [1]. Furthermore, from the manually labelled DIII-
D disruption database [5], that includes all disruptive shots the 2015-2016 campaigns,
roughly 77% of disruptive shots have an 𝑛 = 1 locked mode before final thermal
quench, and roughly 61% of disruptive shots have 𝑛 = 1 TMs before the final thermal
quench (see Table 5.2 for details). To date, we have studied TM prediction through
two main approaches: data-driven versus physics-driven (or model-based). On one
hand, there are many existing theories that describe the seed, onset and growth of
TMs [6–9]. Models based on these theories have been incorporated into the DECAF
algorithm, and they have shown good performance for NSTX-U and KSTAR [10, 11].
However, none of these theories can give a complete understanding of the n=1 TM.
Furthermore, since these theories are usually related to some plasma parameters like
Δ′ that are related to the second derivative of current density and hence are hard to
accurately obtain in real-time, the n=1 prediction models based on these theories are
hard to implement in PCS. On the other hand, given the availability of a large amount
of experimental data from decades of tokamak operation, data-driven models can be
good candidates for developing a TM predictor. For example, a tree ensemble tearing
model predictor has been developed for DIII-D, and has provided > 80% accuracy
in an offline tests [12]. However, these data-driven methods usually don’t have a
closed solution, which makes interpretation difficult from the physics perspective.
In turn, the limited physics interpretability renders extrapolability of these methods
uncertain.

In this chapter, an empirical boundary for 𝑛 = 1 TM on DIII-D prediction is
developed via a data-driven workflow. Two datasets used in the development of TM
boundary, scenario agnostic (SA) and ITER baseline scenario (IBS) 𝑛 = 1 onset
databases, will be introduced in Section 6.2. Then, in Section 6.4, the data-driven
workflow and two important model selection techniques will be discussed. The SA
and IBS 𝑛 = 1 TM boundaries are presented are presented in Section 2.2.1. The
offline accuracy of these two boundaries are evaluated using the corresponding test
sets. Moreover, a preliminary cross-machine 𝑛 = 1 TM prediction study is discussed
in Section 2.2.1 also. Finally, the results of a dedicated TM avoidance experiment on
DIII-D, using IBS TM boundary and the Off Normal Fault Response (ONFR) system
[13], are presented in Section 2.2.
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Table 6.1: The 𝑛 = 1 onset dataset composition

Dataset Num unstable shots Num stable shots

SA training 1214 1264

SA testing 502 617

IBS training 100 90

IBS testing 66 60

6.2 The 𝑛 = 1 TM onset databases

Our empirical 𝑛 = 1 TM boundaries are developed using two 𝑛 = 1 TM onset
databases, the SA database and the IBS database. The IBS discharges on DIII-D
comprise a series of DIII-D experiments in which the ITER shape was scaled to DIII-D
dimensions, while operating with similar normalized current and 𝛽𝑁 as in the IBS [14].
These IBS discharges usually have torque (≈ −0.2Nm∼4.2Nm), 𝐼𝑁 ≡ 𝐼𝑝

𝑎𝐵𝑡𝑜𝑟
= 1.41,

𝛽𝑁 ≈ 1.75 ∼ 2.25 and 𝑞95 ≈ 3.1. For the SA 𝑛 = 1 database, we scan the n1rms
signal (n = 1 rms amplitude of perturbed magntic field measured from toroidal array
of Mirnov probes, a proxy 𝑛 = 1 rotating mode amplitude) for the flattop of all
DIII-D discharges from the 2015 to 2018 campaigns. We label a discharge as 𝑛 = 1

unstable if the n1rms signal exceeds 10 Gauss for at least 25ms during the flattop,
and label a discharge as 𝑛 = 1 stable if the n1rms signal is smaller than 4 Gauss
throughout the whole flattop. The 𝑛 = 1 onset time for each unstable discharge is
set to the first flattop time slice that has n1rms signal greater than 10 Gauss. For
the IBS 𝑛 = 1 database, we manually label the 𝑛 = 1 stability and 𝑛 = 1 onset times
for all IBS discharges from the 2011 to 2021 DIII-D campaigns. The SA and IBS
databases are then divided into training sets and test sets. The dataset compositions
are summarized in Table 6.1. For each unstable shot in the training set, we assign a
label of 1 (close to TM onset) to all time slices that are within 200ms of the 𝑛 = 1

onset. This label assignment scheme fits in a supervised classification framework.
For each stable shot in the training set, we assign a label of 0 to all flattop time
slices. The 200ms time threshold here is chosen based on suggestions obtained from
our communication with tokamak operators that are familiar with TM on DIII-D. In
addition, 200ms is consistent with DIII-D confinement time (≈150ms).

The 14 plasma signals included in the analysis are summarized in Table 6.2. Of
these 14 signals, 10 are dimensionless, and they can be directly compared among the
different tokamaks. Since our goal is to construct an interpretable symbolic boundary,
we want to find the most relevant features from the above parameters, to improve
the model’s ability to be generalized, and to improve its physics interpretability.
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Table 6.2: Plasma signals considered in the data-driven 𝑛 = 1 onset studies [15]

Signal description Symbol
Plasma current−programmed plasma current

Programmed plasma current ip-error-fraction

Electron density
Greenwald density 𝑛𝐺

Plasma elongation 𝜅

Poloidal beta 𝛽𝑝

Radiated power
Input power radiated-fraction

Normalized internal inductance li

Safety factor at 95% flux surface q95

Safety factor at magnetic axis q0

Fitted half width of the Te profile from
Thomson scattering normalized by minor radius

Te-width-norm

Dimensionless collisionality 𝜈*

Loop Voltage amplitude (V) v-loop

Plasma current amplitude (MA)
𝑎

𝐼𝑝

Toroidal magnetic field amplitude (T)
𝑎

𝐵𝑡𝑜𝑟

n = 2 rotating MHD mode (Gauss) n2rms

𝑎We only consider the absolute value of plasma current and toroidal magnetic field. The first 10
signals are dimensionless signals and all remaining signals are dimensional plasma signals
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6.3 The data-driven workflow for 𝑛 = 1 TM bound-
ary discovery

Our data-driven workflow for 𝑛 = 1 TM boundary discovery has three stages. In the
first step, we investigate nonlinear combinations of all available 14 features that have
high predictive power for the n=1 TM onset. In the second step, we add multiple
nonlinear combinations to the original feature list, and fit a baseline logistic regression
model (LR) to all features. In the third step, we use statistical model selection
techniques to simplify the baseline model and get the final symbolic boundary. Two
key model selection techniques, used in both the first and third steps, are backward
feature elimination and probabilistic model selection. In this section, we will first
introduce these two model selection techniques and then describe the details of the
data-driven process.

6.3.1 Backward feature elimination

The backward feature elimination technique is an iterative process; the key metric
used in this process is P-value hypothesis testing [16]. The process starts by testing
the predictive power of each feature under a selected fitting of model criterion. For
this step, all features are included. Then, one by one, it removes the variables that
make the smallest contributions to the predictive model. Elimination is repeated until
all remaining features have P-value greater than a preset significance level. Below are
the steps used to execute the backward elimination:

1. Set a significance level (e.g. 0.05 which is a common practice)

2. Fit an LR model to the initial feature list.

3. Eliminate the least important feature.

• Do the hypothesis test for each feature, and calculate the corresponding
P-values.

• Identify the feature with lowest P-value and check whether its P-value is
above the significance level. If yes, remove the identified feature from the
list.

4. Retrain the LR model using the updated feature list, and repeat step 3.

5. Terminate the whole process when the P-values of all features are below the
significance level, and return the trained LR model.
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Removing irrelevant features via the backward feature elimination technique can
significantly speed up the training time, reduce model’s complexity and improve
model’s generalization ability and interpretability. However, it also has some draw-
backs. Firstly, the backward elimination technique does not consider any co-dependency
between two input features. Secondly, after removing a feature from the list during
the backward elimination process, that feature cannot be selected again. Since we
usually apply backward feature elimination to a initial model with many reluctant
features, the benefits of applying this technique will greatly outweigh its drawbacks.
The co-dependency of features should be considered before applying this technique.

6.3.2 Probabilistic model selection

Probabilistic model selection is an analytical technique for scoring and choosing a
model based on both its performance on the training dataset and the complexity of
the model. Model accuracy is usually evaluated using a probabilistic metric, such
as negative log-likelihood under the maximum likelihood estimation (MLE). Model
complexity is usually evaluated using the number of parameters of the model (degrees
of freedom). Although a major limitation of probabilistic model selection is that it
does not take the uncertainty of the results into account and it tends, in practice,
to choose overly simplified models, a clear advantage of it is that we don’t need a
separate test set, i.e. all of the data can be used to fit the model.

There are three main statistical metrics used in probabilistic model selection for
evaluating the model’s performance and complexity. These three metrics are the
Akaike Information Criterion (AIC) [17], the Bayesian Information Criterion (BIC)
[18] and the Minimum Description Length (MDL) [19]. It can be shown that each of
these three metrics isproportional to the others, making them effectively equivalent.
In this study, we will use BIC, which is derived from Bayesian probability theory and
it works for models fitted under the MLE framework. The BIC metric is calculated
for logistic regression as follows:

BIC = −2 * LL+ k * log(N) (6.1)

where LL is the log-likelihood of the model on the training set, N is the number of
samples in the training set, and k is the number of free parameters in the model. We
want to minimize this metric and the model that has the lowest BIC will be selected.
Note that, given a family of models, including the true model, the probability that
minimizing the BIC metric will yield the true model approaches 1 as the number of
training samples N goes to infinity [20].
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6.3.3 The three stages of the data-driven workflow

The first stage of our data-driven workflow is tailored to find nonlinear combinations
of the 14 original features that have high predictive capability. To do this, we first
set a BIC score threshold. Then, to fit a nonlinear combination of our features
using the linear LR model, we can take the logarithm of each feature, and normalize
these logarithms by their means and standard deviations. After that, we fit an LR
model to these logarithms, prune the model using backward feature elimination and
then calculate the BIC score of the identified nonlinear feature combination. If the
BIC score is higher than our preset threshold, we have successfully found the first
nonlinear combination, and we remove all features included in that combination from
the feature list. If the BIC score is lower than the preset threshold, we consider the
first stage concluded and return all identified nonlinear feature combinations. We
repeat this process until all combinations are explored, after that we consider the
first stage concluded.

As the second stage of our workflow, we first add all identified nonlinear combi-
nations to the original feature list. Then we fit an LR model using this combined
feature list. This is our baseline model. In stage three, we apply the backward feature
elimination and probabilistic model selection techniques to the baseline model, finally
yielding the simplified symbolic TM boundary.

6.4 The symbolic 𝑛 = 1 TM boundaries

6.4.1 The SA 𝑛 = 1 TM boundary

By applying the data-driven workflow, mentioned in Section 6.4, to the DIII-D SA
dataset, we get a symbolic 𝑛 = 1 TM boundary that works for DIII-D SA shots. The
resulting formula for this SA 𝑛 = 1 TM boundary is:

TM risk = 𝛽𝑝 − 0.35𝜈* − 0.09

√
q95 * Te-width-norm

𝜅
+ 2.03

𝐼𝑝
𝐵𝑡𝑜𝑟

− 2.07 (6.2)

To evaluate the performance of the above SA 𝑛 = 1 TM boundary, we want to test
it on the DIII-D SA test set. To this aim, a shot-by-shot testing scheme is developed
to simulate alarms triggered in the DIII-D PCS. For a given a test shot, we can
calculate the TM risk for each time slice during the discharge flattop. If the flattop
TM risk exceeds a preset threshold for at least T ms, the test shot is classified as TM
unstable, and the warning time is recorded for truly 𝑛 = 1 unstable shots, defined
as the difference between the alarm time and the actual 𝑛 = 1 onset time (𝑡𝑜𝑛𝑠𝑒𝑡). A
successfully detected 𝑛 = 1 unstable DIII-D SA test shot is shown in Figure 6-1. If
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the alarm time is greater than 0 for an 𝑛 = 1 unstable test shot, this shot is classified
as a true positive. If the flattop TM risk of an 𝑛 = 1 stable test shot does not exceed
the preset threshold for at least T ms, this shot is a true negative shot. For all of
our offline analysis, we chose T = 25ms. Considering our task is to classify stable vs
unstable to TM time slices, our SA boundary achieves TPR= 0.88 and TNR= 0.89

on the SA test set.
To further evaluate the relation between flattop TM risk and 𝑛 = 1 onset proba-

bility, we calculate the maximum TM risk level for each shot in the DIII-D SA set.
The maximum TM risk level for each shot is defined as the maximum value of TM
threshold that the flattop TM risk exceeds for at least T ms. Given the maximum
TM risk level for each shot, we can divide the SA shots according to their maximum
TM risk level, and calculate the fraction of the unstable shots in each bin. The re-
lation between maximum TM risk level and empirical 𝑛 = 1 onset probability of SA
shots is shown in Figure 6-2. From this figure, we find the empirical 𝑛 = 1 onset
probability goes to 1 when the maximum TM risk level goes above roughly 0.5, while
the empirical 𝑛 = 1 onset probability goes below 0.05 when the maximum TM risk
level goes below roughly (-0.5).

6.4.2 The IBS 𝑛 = 1 TM boundary

If we substitute typical IBS parameters into our SA boundary, we find the resulting
TM levels lie in the range [-0.05, 0.1]. From Figure 6-2, this range corresponds to
TM probability ≈ 0.5 and it agrees with the observed TM frequency in IBS shots,
which suggests that a scenario agnostic boundary doesn’t work in IBS; we need a
new boundary, fitted with IBS specific data. To establish a symbolic TM boundary
for IBS, we applied our data-driven workflow to the IBS training set. The resulting
formula for our IBS 𝑛 = 1 TM boundary is:

TM risk = 0.20𝛽𝑝+0.01𝜈*+1.81

√
q95 * Te-width-norm

𝜅
+1.69

𝐼𝑝
𝐵𝑡𝑜𝑟

− 3.1 (6.3)

Notice that this boundary only works for IBS and the coefficients of IBS TM boundary
are clearly different from SA TM boundary which implies the fact that the prevalence
TM mechanism in IBS is different from typical TM mechanism in other scenarios. To
evaluate the performance of the above IBS 𝑛 = 1 TM boundary, we next test it
on the DIII-D IBS test set, using the same shot-by-shot testing scheme described in
Section 6.4.1. A comparison between a detected 𝑛 = 1 unstable DIII-D IBS shot,
and a true negative DIII-D IBS shot, is shown in Figure 6-3. It is clear that the TM
risk of the unstable IBS shot shown in Figure 6-3 exceeds the threshold for roughly
200ms before the final 𝑛 = 1 onset, while the stable IBS shot shown in Figure 6-3
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Figure 6-1: An example of a true positive shot from DIII-D SA test set. The upper
panel shows the time trace of the calculated TM risk and the preset TM threshold.
The middle panel shows the time trace of the 𝑛 = 1 rotating MHD mode proxy
(normalized n1rms signal). The lower panel shows the time trace of the plasma
current 𝐼𝑝. The TM risk first exceeds the threshold at around 500ms before the
actual 𝑛 = 1 onset, and it goes back below the threshold just before 𝑛 = 1 rotating
mode locks.
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Figure 6-2: The empirical TM probability vs. maximum flattop TM risk level for
all DIII-D SA shots.
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never continuously exceeds the threshold for T = 25ms. Our IBS boundary analysis
achieves TPR= 0.70 and TNR= 0.72 on the IBS test set, which is worse than the
performance of the SA TM boundary on SA test set. The worsening of prediction
performance with respect to IBS comes from the fact that IBS is more unstable to TM
compared to most of other DIII-D scenarios. Indeed, we find the TM risk difference
between TM unstable and TM stable shots is very small in IBS, which means the
margin between TM stable and TM unstable regime is very narrow. This observation
agrees with the fact that predicting TM in IBS is significantly more difficult than in
the SA case.

6.4.3 Preliminary cross-machine 𝑛 = 1 TM boundary study

To test the cross-machine ability of our data-driven workflow, we apply our TM
boundary trained on DIII-D data to other tokamaks. Establishing a cross-machine
TM boundary requires us only to consider those plasma parameters that are compa-
rable among different devices, namely the dimensionless parameters. Therefore, we
remove all dimensional parameters (the last 4 features in Table 6.2) from the orig-
inal 14, and apply our data-driven workflow to the DIII-D SA dataset with the 10
remaining dimensionless features. The resulting cross-machine 𝑛 = 1 TM boundary
formula is:

TM risk = 𝛽𝑝 − 1.14𝜈* − 1.36

√
q95 * Te-width-norm

𝜅
+ 0.51 (6.4)

Again, we find that the coefficients of cross-machine TM boundary are clearly differ-
ent from both SA TM boundary and IBS TM boundary. Considering the fact that the
cross-machine TM boundary is also trained on SA DIII-D data with only dimension-
less features, the large difference in coefficient suggests the large impact of original
feature list to final obtained boundary and it might implies the power of dimensional
features for TM prediction on a chosen device. We applied this boundary to the
EAST disruption warning database described in Section 3.2. The obtained flattop
TM risk distribution, from more than 10000 EAST shots, is shown in Figure 6-4.
As we can see from this plot, the flattop TM risk distribution from EAST is even
more negative than flattop TM risk distribution for DIII-D stable shots, and it has
a very pronounced negative tail. This result suggests that the flattop TM risk rarely
exceeds 0 for EAST, and it implies that 𝑛 = 1 TM onset is much less frequent on
EAST than on DIII-D. This agrees with our observation that EAST discharges rarely
have natural 𝑛 = 1 rotating modes. A similar analysis of C-Mod flattop data shows
that C-Mod also has a more negative TM risk relative to DIII-D,also agreeing with
the observation that 𝑛 = 1 modes are much less frequently seen in C-Mod discharges
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Figure 6-3: A comparison between a detected 𝑛 = 1 unstable DIII-D IBS shot (solid
line) and a true negative DIII-D IBS shot (dashed line). The first panel shows the time
trace of the TM risk, calculated using IBS TM boundary, and the corresponding TM
risk boundary. The remaining panel shows the time traces of other key parameters
included in the IBS TM boundary formula. As can be seen, the TM risk of the
unstable shot exceeds the threshold for roughly 200ms before final 𝑛 = 1 onset, while
the stable IBS shot never continuously exceeds the threshold for T = 25ms. The
differences between stable and unstable shots mainly come from the difference of the
Te-width-norm time traces.
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Figure 6-4: The empirical flattop TM risk distributions for the EAST disruption
warning database (more than 10000 shots, blue), DIII-D 𝑛 = 1 stable shots (≈ 2000
shots, green) and DIII-D 𝑛 = 1 unstable shots (≈ 2000 shots, red). From this plot,
it is clear that the flattop TM risk distribution for EAST is even more negative than
flattop TM risk distribution of DIII-D stable shots. This agrees with the observation
that 𝑛 = 1 TM onset is much less frequent in EAST than in DIII-D

than in DIII-D.

6.4.4 Summary of symbolic 𝑛 = 1 TM boundaries

In this section, we applied our data-driven workflow for 𝑛 = 1 TM boundary discovery
to DIII-D SA, DIII-D IBS and DIII-D dimensionless datasets to obtain the SA, IBS
and cross-machine 𝑛 = 1 TM boundary. The offline analysis of these three boundaries
suggests these boundaries achieve reasonably good performance on the corresponding
test set, and it proves the effectiveness of our data-driven workflow. In addition, we
find the three TM boundaries have very different weights for different parameters (e.g.
the weight of 𝜈* in the SA boundary is much larger than it is in the IBS boundary).
This observation suggests the existence of multiple TM trigger mechanisms, implying
that the boundary could better be generalized using data from different tokamaks

139



representing different trigger mechanisms to improve its extrapolability.

6.5 Real-time 𝑛 = 1 TM avoidance experiments in
IBS

Prediction and avoidance of 𝑛 = 1 TM onset in IBS is a challenging task on DIII-D.
To tackle this problem, our IBS 𝑛 = 1 TM onset boundary has been incorporated
into the real-time DIII-D PCS, and dedicated DIII-D experiments were conducted
in July 2022 to demonstrate the real-time applicability of TM onset prediction and
TM avoidance through the integration of this stability metric with the Off Normal
Fault Response (ONFR) [13]. ONFR is a robust supervisory system implemented
on DIII-D for comprehensive disruption avoidance and machine protection. The key
idea of our experiments was to sweep some of the parameters for the TM risk, both
during and between shots, and scan thresholds in TM risk and time delay (ΔT) to
trigger the ONFR, aiming for TM avoidance or to initiate a soft landing of the shot.
Since 𝜈* shows a large correlation with other plasma parameters (𝑞95, 𝛽𝑝), and it has
a relatively small impact on the tearing mode levels, our basic experimental approach
is to change 𝛽𝑝 and 𝑞95 between shots. To do this, we scanned 𝐵𝑡𝑜𝑟 or and 𝐼𝑝 and
keep 𝛽𝑁 = 2.5 constant. By increasing 𝐼𝑝 or decreasing 𝐵𝑡𝑜𝑟 during the discharge,
we can trigger the 𝑛 = 1 TM onset, and then identify the proper TM risk threshold
and trigger time delay for triggering the ONFR to avoiding TM onset. A successful
TM avoidance experiment is shown in Figure 6-5. In this experiment, we ramped
up 𝐼𝑝 from 1.35MA to 1.5MA to trigger an 𝑛 = 1 TM onset. For the first shot,
the ONFR was disabled; the TM risk exceeded the threshold at ≈ 300ms before
𝑛 = 1 TM onset. For the second shot, we repeated the previous shot, but with the
ONFR enabled. The ONFR is triggered at ≈ 2.1 s resulting an early 𝐼𝑝 ramp-down
(in line with the "soft landing" idea) and the 𝑛 = 1 TM onset is successfully avoided.
Our experiments suggest the real-time IBS TM boundary achieves similar accuracy
compared with the offline tests described in Section 6.4.3, making it a powerful tool for
TM avoidance in DIII-D IBS discharges. By collecting more IBS data, and retraining
the IBS TM boundary, we should be able to continuously improve the accuracy of
our TM boundary.

6.6 Summary and future plans

In this chapter, a data-driven workflow for symbolic 𝑛 = 1 TM boundary detection
is discussed in detail. This data-driven workflow is then applied to DIII-D SA and
DIII-D IBS regimes, to derive corresponding 𝑛 = 1 TM boundaries. These boundaries
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Figure 6-5: A successful TM avoidance experiment is shown in this figure. In this
experiment, we ramp up 𝐼𝑝 from 1.35MA to 1.5MA to trigger 𝑛 = 1 TM onset. From
the top to the bottom panel, we show the time traces of TM risk, 𝐼𝑝, n1rms and 𝑛 = 1
locked mode signal for an ONFR disabled shot (blue) and a repeated shot with ONFR
enabled (magenta). For the ONFR disabled shot, the TM risk exceeded the boundary
≈ 300ms before the 𝑛 = 1 TM onset. For the repeated, ONFR enabled shot, the
ONFR is triggered at ≈ 2.1 s. The system switches the plasma control system to start
an early 𝐼𝑝 rampdown, and the 𝑛 = 1 TM onset is successfully avoided.
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achieves good shot-by-shot accuracy in offline tests. The preliminary cross machine
study using our data-driven workflow, and the DIII-D dimensionless dataset, shows
the promising cross machine potential of our method. In addition, a real-time TM
instability metric for IBS is integrated into the DIII-D PCS. Dedicated DIII-D IBS
experiments using this real-time metric, combined with real-time response from the
ONFR, demonstrate the real-time TM avoidance capability of our IBS TM boundary
approach.
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Chapter 7

Conclusions and Future Work

7.1 Summary and main contributions

This thesis focuses on the data-driven solution of major disruption and plasma insta-
bilities prediction, a topic with implications for the success of future burning-plasma
tokamaks, ITER and SPARC, and the pilot plant reactors that may follow them. The
main contributions of this thesis work are the following:

• The author contributed to the development of a hybrid deep-learning
(HDL) model for cross-machine disruption prediction [1], described in
chapter 3. This included an unsupervised clustering study that highlights the
advantage of the sequence-based model and it also included several qualita-
tive conclusions that can provide guidelines for the development of data-driven
disruption predictor on future devices.

• The author demonstrated a scenario adaptive development strategy of
data-driven disruption predictor for future tokamaks [2], as discussed
in chapter 4. The scenario adaptive disruption prediction studies on C-Mod,
DIII-D and EAST show that data-driven predictors trained only on LP dis-
charges perform poorly for the subsequent HP regime of the same tokamak.
Dedicated cross-machine studies further suggest that matching operational pa-
rameters among devices can greatly improve prediction accuracy for the target
device, which highlights the importance of building comprehensive databases
that consist of different kinds of disruptive burning-plasma baseline scenario
discharges from current devices. A successful strategy for data-driven disrup-
tion prediction on future tokamaks like ITER is to combine ITER LP data
with HP ITER baseline discharges from other devices to train a predictor with
enough accuracy to help ITER conserve its disruption budget during the early
stage of its HP operation; as ITER’s HP operation continues, add HP ITER
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data to the training set. Retraining the predictor using this combined dataset
will boost the predictor performance towards ITER’s long-term requirements
[3].

• The author developed an integrated deep learning framework for unsta-
ble event identification and disruption prediction of tokamak plasmas,
as discussed in chapter 5. The numerical disruption prediction studies demon-
strate that the integrated model gives higher disruption prediction accuracy, as
well as longer warning time, compared with the baseline version aimed solely at
predicting disruptions, and it also has better cross-machine transferability. The
integrated model, trained using data from one device, can qualitatively identify
disruption precursors on a different tokamak. These results suggest that com-
bining a disruption predictor and disruption precursor identifier into a single
model is a promising strategy for the development of disruption predictors on
future devices, and it highlights the importance of including unstable event in-
formation when we construct the database for data-driven disruption prediction
studies.

• The author developed a data-driven workflow for symbolic 𝑛 = 1 TM
boundary discovery, as discussed in chapter 6. The DIII-D SA and IBS
TM boundaries, that show good offline accuracy, are obtained by applying this
workflow to DIII-D SA and DIII-D IBS datasets. The preliminary cross ma-
chine study using this data-driven workflow and DIII-D dimensionless dataset
shows the good cross machine potential of our method. Moreover, a real-time
algorithm based on the IBS TM boundary is integrated into DIII-D PCS. Dedi-
cated DIII-D IBS experiments using this algorithm and ONFR demonstrate the
real-time TM avoidance capability of the IBS TM boundary.

In addition to the above contributions of this thesis, the author’s research has also
supported related projects in disruption prediction, mitigation, and avoidance. This
has resulted in multiple co-authored articles, including one validating the SPARC
physics basis [4, 5] and a second on semi-supervised learning detector for unstable
events in tokamak discharges [6].

7.2 Future efforts

Research efforts to follow up on the results of this thesis can focus in several di-
rections. Firstly, the author wants to extend the deep-learning based disruption
prediction studies (HDL model and integrated DL model) to data from additional
tokamaks, including JET, AUG, JT-60SA and KSTAR. Including more data from
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various tokamaks should further test the cross-machine applicability of the disrup-
tion predictor, and the model’s cross-machine ability can be continually increased
by retraining these model using data from more devices. In addition, the author
wants to extend scenario adaptive study to these additional tokamaks and investigate
whether the findings reported in ?? hold for the ITER baseline discharges on addi-
tional existing tokamaks. Secondly, given a more powerful GPU cluster, the author
plans to fine-tune the hyper-parameters of the deep-learning disruption predictor to
further boost the performance of the model. Thirdly, given the iterative labeling
method described Section 5.3, and considering the value of unstable event informa-
tion, the author plans to manually label unstable events for few hundreds DIII-D,
EAST and C-Mod disruptive and non-disruptive shots. Then the author can further
expand the manually labeled databases by using iterative labeling method with the
original manually labeled datasets, to automatically label more shots. The expanded
DIII-D, C-Mod and EAST databases will allow the author to investigate the disrup-
tion prediction capability limit of integrated model on existing devices. In addition,
cross-machine numerical experiments using these databases and integrated model can
further confirm the efficiency of the labeling method, and also allow the author to
develop a more robust cross-machine integrated model using databases from all three
tokamaks. Fourthly, a real-time test of the integrated model capabilities should be
conducted on an existing tokamak (DIII-D is a good candidate) to further investigate
robust disruption prediction and avoidance strategies, and to facilitate development
of a disruption handling system on future tokamaks. Fifthly, the author wants to
investigate the most dangerous paths to disruptions on future tokamaks, including
ITER and SPARC, and perform tokamak discharge simulations for these conditions
(e.g. MHD simulation). Then the author can try to apply the integrated model to
the synthetic signal and quantify the performance of the predictor. The integrated
DL model can be used together with the tokamak discharge simulator to find a good
operating scenario (stable and high fusion power/fusion gain plasma) for future toka-
maks. Sixthly, given that the IBS TM boundary has already been integrated into
DIII-D PCS and it will continuously run in background during standard operations,
the author wants to collect more data to estimate the aging effect of the IBS TM
boundary. Seventhly, the author wants to include more predictive features like rota-
tion shear and current well information [7] to further boost the performance of our
IBS TM boundary. Eighthly, the author wants to build multi-machine TM database
and develop more robust cross-machine TM boundary using this dataset. Dedicated
experiments can be conducted on both DIII-D and EAST to validate the accuracy of
cross-machine TM boundary. Finally, the author plans to leverage existing code basis
and achievements to develop a robust data-driven disruption predictor for SPARC.
The scenario adaptive strategy and qualitative cross-machine disruption prediction
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conclusions presented in this thesis will facilitate the development of SPARC data-
driven disruption predictor.
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