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Abstract

Transport of strongly interacting fermions is crucial for systems as varied as high-𝑇𝑐
superconductors, twisted bi-layer graphene, nuclear fission, and neutron stars. In this
thesis, I will describe the experiments we performed to measure the transport prop-
erties of a strongly-interacting atomic Fermi gas. This system features interactions
as strong as allowed by quantum mechanics and features one of the highest pairing
strength, with a superfluid transition temperature on the order of the Fermi tem-
perature. Moreover, it is also scale-invariant, making its properties directly relevant
for systems with many order of magnitude higher densities. We trap these atoms in
a uniform box potential made from repulsive laser light, the key experimental ad-
vancement that makes the transport experiment presented here possible. Here, we
observe a very low, universal, Heisenberg-uncertainty limited diffusion of both sound
and heat by studying the propagation of sound waves and conduction of heat in a
uniform gas. Similar to a growing number of high-𝑇𝑐 superconductors, we observe
anomalous transport properties, like the viscosity and thermal conductivity, that
cannot be explained by a Fermi-liquid theory. We show the temperature dependence
of all non-zero transport properties, which constitutes a complete characterization
of transport phenomena in the spin-balanced, strongly-interacting Fermi gas. Our
findings inform theories of fermion transport, with relevance for hydrodynamic flow
of electrons, neutrons, and quarks.

Thesis Supervisor: Martin W. Zwierlein
Title: Thomas A. Frank (1977) Professor of Physics
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Chapter 1

Introduction

Quantum mechanics is perhaps the most successful theory ever produced. Its appli-

cation to single or few particle systems produces results that have been verified by

experiments with extreme precision. However, the complexity in this theory grows

many-fold when inter-particle interactions are added or when a system of many par-

ticles is considered. The problem is even more intractable for strongly-interacting

fermions. First, strong-interactions often lead to strong-correlations, which inval-

idate any theoretical approach based on a perturbative expansion starting from a

non-interacting system, and second, Fermi statistics lead to a so-called ‘sign problem’

which plagues computational efforts. Theoretical calculations of both equilibrium

and non-equilibrium properties based on first-principles are often not possible, and

instead, they rely on approximate methods based on a heuristic approach. Here, ex-

perimental determination of physical properties is of crucial importance since they

inform and validate theoretical models.

We strive to experimentally study these strongly-interacting fermionic systems

using an analog quantum simulator made from ultracold atoms [19]. The experimental

realization of Bose-Einstein condensation (BEC) in dilute atomic gases of 87Rb by Eric

Cornell and Carl Wieman at JILA [4] and of 23Na by Wolfgang Ketterle at MIT [43]

in 1995 opened the door to a wide range of new novel experiments [92, 20, 145]. A few

years later, dilute gases of fermionic atoms were cooled to quantum degeneracy using

the BEC as a refrigerant [93, 44, 182, 163, 88, 73, 66, 151]. Over the years, physicists
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have figured out a wide range of experimental techniques to simulate, among many

others, crystalline structure using optical lattices [23, 36, 120], strong interactions

using Feshbach resonances [38], an-isotropic interactions using polar molecules [153,

191, 194], long-range interactions using Rydberg atoms [113, 15, 72], quantum hall

physics using artificial gauge fields [63, 110, 58, 64] or rotating traps [200, 181, 7],

low-dimensional systems using tight optical traps. These quantum systems also offer

a very high degree of both control and access to almost all physical aspects like

temperature, density, disorder, interactions, trapping potentials, etc., making them an

ideal system for quantum simulators [20, 29, 70, 19, 190, 158]. Additionally, different

components of some complicated system, like disorder or strong-interactions, can be

individually turned on or off, and complexities can slowly be added, to systematically

investigate the properties of the underlying system. These are truly dream systems

for experimental and theoretical physicists alike.

A resonantly interacting ultracold sample of fermionic atoms, often known as the

unitary Fermi gas, can be made using Feshbach resonances, where inter-spin inter-

actions are as strong as allowed by quantum mechanics [201, 96, 10]. This system

features interactions with a range that is much smaller than all other length scales,

making it possible to confidently replace the complicated inter-atomic potential with

a simplified zero-range contact interaction. The Hamiltonian of this system is then

exactly known, a statement that cannot always be made about most real-world sys-

tems. In absence of any interaction related length scale, it is described by the two

remaining length scales, corresponding to the density and the temperature of the

gas. Here, all thermodynamic and transport properties are described by universal

functions of ratio of the two remaining length scales, often written as the ratio of the

temperature to the Fermi temperature 𝑇/𝑇𝐹 . In other words, this is scale-invariant

system, whose properties can directly be compared to systems with many orders of

magnitude different densities. With its properties independent of all microscopic de-

tails like the interaction range, density or even the type of particles, the unitary Fermi

gas provides a unique testbed to study strongly interacting Fermi systems in general.

For example, it was recently proposed to use the unitary Fermi gas as a simu-
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Figure 1-1: Neutron star equation of state. (a) Reproduced from [183]. The
predicted equation of state for the neutron matter in the crust of a neutron star [183] is
shown in red line. It was calculated using the properties of an ultracold atomic Fermi
gas [82], shown in blue shaded region. (b) The superfluid transition temperatures
predicted for a neutron star [5] and measured in a strongly-interacting unitary Fermi
gas [102] are shown. Here, blue, orange, and green lines correspond to neutron-single,
neutron-triplet, and proton-singlet pairing, respectively, while the black dashed line
corresponds to the unitary Fermi gas. A similarity between these two systems exists
because they both feature strong 𝑠-wave interactions with a scattering length that is
much larger than interparticle spacing.

lator for the study of neutron-star equation of state, specifically in its ‘low-density’

crust [183]. With a radius of only about 10 km, but the mass of an entire sun, a

neutron star is quite possibly the densest object in the universe [165]. Just a few me-

ter below the surface lies a sea of neutrons, which are expected to be in a superfluid

phase, and thought to be responsible for cooling the neutron star [136] and producing

glitches in its rotation [34]. This is an exotic system with a superfluid transition tem-

perature predicted at 1010 K [5], but, it is not experimentally accessible. However, a

connection between the unitary Fermi gas and neutron matter is possible because they

both feature similar 𝑠-wave interactions with a scattering length that is much larger

than the inter-particle spacing. The scale-invariance of the unitary Fermi gas makes

it possible to use it as a simulator for the neutron matter at more than 18 orders of

magnitude higher densities. Fig. 1-1 (a) shows the equation of state predicted for the

neutron star (red line) using the Fermi gas’s properties and a comparison between

their superfluid transition temperatures in (b).

The strong interactions in the unitary Fermi gas leads to a superfluid phase [200]
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Figure 1-2: Comparison of superfluid critical temperature. Reproduced
from [31]. The critical temperature 𝑇𝑐 for superfluidity/superconductivity is shown
for various materials as a function of their Fermi temperature 𝑇𝐹 . Notably, the scale-
invariant unitary Fermi gas, with one of the highest 𝑇𝑐/𝑇𝐹 = 0.167 [102], is shown in
black dashed line, the magic-angle twisted bi-layer graphene is shown in red circle,
and a collection of high-𝑇𝑐 cuprate superconductors lie in the blue-shaded region.

with one of the highest relative pairing-gap of any known fermionic system and a

superfluid transition temperature 𝑇𝑐 = 0.167(13) 𝑇𝐹 [102] on the order of the Fermi

temperature 𝑇𝐹 . In contrast, most conventional BCS superconductors, for example

Zn and Nb, feature orders of magnitude lower transition temperature 𝑇𝑐 ∼ 10−5 𝑇𝐹 .

Other systems that have come the closest to the unitary Fermi gas are ‘unconven-

tional’ superconductors, for example cuprate, heavy-fermion, and organic supercon-

ductors, with 𝑇𝑐 = 0.01−0.05 𝑇𝐹 , and, more recently, the magic-angle twisted bi-layer

graphene [31], with 𝑇𝑐 ≈ 0.08 𝑇𝐹 . If an electronic system, with its high 𝑇𝐹 ∼ 104 K,

were engineered to interact resonantly similar to the Fermi gas, then it would fea-

ture a superconductor transition temperature 𝑇𝑐 ≈ 1600 K much higher than the

room-temperature, achieving a long-standing goal in modern physics.

There are some features that are common among all of these ‘unconventional’

high-𝑇𝑐 superconductors. First, they display an anomalous linear-in-temperature re-

sistivity [78, 109] and other transport properties [147, 188, 124]. However, this can-

20



(a) (b)

Figure 1-3: Viscosity of liquid-3He and liquid-4He. Measured kinematic viscos-
ity 𝜂/𝜌 of (a) liquid-3He [75] and (b) liquid-4He [45] near the superfluid transition
temperature are shown in units of ℏ/𝑚, where 𝑚 is the mass of 3He and 4He atom
respectively.

not be explained by the Fermi-liquid theory [78], a description of interacting fermions

based on perturbative expansion about the ideal Fermi gas, applicable to most metals

at low temperatures, hinting that electrons in these systems are strongly-interacting

and strongly-correlated. The origin of this behavior is still an open question, but

new theories based on quantum critical fluctuations [50, 42] and incoherent trans-

port [76] might offer an explanation. And second, their superconductivity is thought

to originate from strong electron correlations instead of the weak electron-phonon cou-

pling [59, 196], making the unitary Fermi gas, with its quantum limited interactions,

an ideal platform to investigate strongly correlated quantum matter.

Liquid-3He and liquid-4He are two other quantum fluids whose equilibrium and

transport properties are well studied [13, 16, 187, 117], and may shed some light on

transport properties of quantum matter. In particular, let’s consider their viscosity,

shown in Fig. 1-3, in units of ℏ/𝑚, where𝑚 is the mass of either 3He or 4He atom. The

viscosity of the fermionic 3He in its normal phase is well described the Fermi-liquid

theory, seen as 𝜂 ∝ 1/𝑇 2 divergence at 𝑇/𝑇𝑐 > 1. The applicability of the Fermi-

liquid suggests that the normal phase of 3He is well understood by weakly-interacting,

long-lived, quasi-particles. Upon transitioning to a superfluid state, 𝜂 suddenly falls

by more than a factor of 10, and saturates to values ∼ 2000 ℏ/𝑚. In contrast, the

viscosity of the strongly-interacting, bosonic 4He is already very low ∼ ℏ/𝑚 in its
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normal phase and drops by less than a factor of 2 upon crossing to a superfluid state.

Notably, it does not feature any divergent behavior near 𝑇𝑐 nor in its normal phase.

Apriori, it is not clear whether the transport properties of a strongly-interacting,

fermionic, gas of atoms, electrons, or neutrons should resemble that of a quantum

liquid, and if so, whether it corresponds more closely to the strongly interacting, but

bosonic, liquid 4He or to the fermionic, but weakly interacting, liquid 3He.

While the field of strongly-interacting Fermi gases is vast, here we focus on their

transport properties with hopes of answering a few basic questions.

1. what are the transport properties of a spin-balanced, resonantly interacting

Fermi gas? While their equilibrium properties have been fully characterized by

measuring the equation of state [131, 102], their transport properties are largely

unknown, partly due to the lack of uniform samples [3].

2. is it possible to describe the transport properties of this system using well-

defined quasi-particles? This questions is more for theorists, but the experimen-

tal measurements presented here could serve as a benchmark. One possibility is

a pseudo-gap phase where fermion pairs exist without long range order [86, 149].

3. do new theories developed to explain the anomalous transport properties of

unconventional superconductors, like quantum critical transport and incoherent

transport, also apply to the strongly-interacting Fermi gas?

4. are there common features in the transport properties of all strongly interact-

ing quantum matter?, hinting at the possibility of describing them all with a

universal theory.

Overview of transport properties and ways to measure them. Transport

physics aims to describe the out-of-equilibrium dynamics of a system. If perturba-

tions are small enough and interactions are large enough to maintain a local ther-

mal equilibrium, then transport physics is conveniently described by hydrodynamics.

At its heart lies conservation laws. For one-component gas or liquid, these are the

conservation of mass, momentum, and energy. Combined with the thermodynamic

relations, these conservation laws describe the dynamics of any physical quantity, like
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local density, current, or temperature, after an arbitrary perturbation of the system.

Additionally, internal friction damps the flow of momentum and heat, leading to two

transport phenomena; viscous flow and heat conduction. The flow of heat from re-

gions of higher to lower temperatures is quantified by the thermal conductivity 𝜅.

Momentum, being a vector quantity, damps due to shear forces, quantified by the

shear viscosity 𝜂, or due to compression, quantified by the bulk viscosity 𝜁. These

three transport properties constitute a complete characterization of transport phe-

nomena in one-component systems. In two-component systems, an imbalance in the

concentration of two components leads to an irreversible flow of particles, quantified

by a diffusion constant. For example, the transport of spin concentrations after some

spin-imbalance in a spin-1/2 Fermi gas is quantified by the spin diffusivity [171, 27, 99].

However, if the two spin concentrations are kept equal, spin transport does not play

a role in the dynamics of the gas.

Determination of these transport properties from first principles for strongly-

interacting quantum matter is a very difficult task. For classical systems like the

ideal gas, kinetic theory provides the tools necessary to compute transport proper-

ties, but it requires the gas to be composed of particles that freely travel through

the system, expect during perfectly elastic collisions. Here, all transport properties

are given by some characteristic relaxation time and average velocity of the particles.

For example, 𝜂 = 𝜌𝑣2𝜏𝜂 and 𝜅 = 𝜌𝑐𝑃𝑣
2𝜏𝜅, where 𝜌 is the mass density and 𝑐𝑃 is

the specific heat at constant pressure of the system. A similar approach is possible

for interacting quantum systems, but only if the excitations of the system can be

well-described by weakly-interacting and long-lived quasi-particles [12]. For example,

both the equilibrium and transport properties of most metals and liquid Helium are

very well described by the Fermi liquid theory. It is based on the assumption that

an interacting Fermi gas behaves similarly to a non-interacting gas, but with parti-

cles replaced by long-lived quasi-particles with renormalized properties like mass. In

contrast, typical excitations in the strongly-interacting Fermi gas have a mean-free-

path as short as inter-particle spacing with a mean-lifetime much shorter than their

inverse-energy. Apriori, it is unclear if the same perturbative Fermi-liquid theory
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will hold in the strongly-interacting regime, and, if not, is it possible to describe the

system using other quasi-particles or a completely new approach is required.

Experimental determination of transport properties often entail measuring the

response of a system to some external perturbation. Perhaps the simplest example is

conduction of heat. Heating one side of a sample creates a gradient in its temperature

and forces heat to flow. This flow of heat is directly proportional to the thermal

conductivity. Therefore, a measurement of the flow of heat provides a direct access

to 𝜅. Similarly, the measurements of the local momentum of a fluid confined between

two parallel plates, one of which is forced to move tangentially, gives a direct access

to the shear viscosity. However, physical limitation often make it impossible to make

such a direct measurement or create such an idealistic perturbation. Fortunately,

time evolution after a perturbation in any of the system’s properties is determined

by a combination of the same fundamental transport phenomena, often referred to as

the diffusion constants.

Consider, for example, sound waves. They are ubiquitous in nature; from ripples

in a pond to waving of a flag and phonons in a crustal. They are easy to create

since any perturbation in the density of a fluid inevitably results in sound waves.

Along with the density, sound waves are also accompanied by oscillations in both

the local momentum and temperature, which are attenuated by the viscous flow and

heat conduction. The specific combination of the transport properties responsible

for sound attenuation is known as the sound diffusivity 𝐷𝑠 = 4𝜂
3𝜌

+ 𝜁
𝜌
+ (𝛾 − 1) 𝜅

𝜌𝑐𝑃
,

where 𝛾 = 𝑐𝑃
𝑐𝑉

is the ratio of specific heats of the fluid. Therefore, by studying the

attenuation of sound, we can measure the coupled transport of momentum and heat.

Note that, in general, three independent measurements involving the transport

properties 𝜂, 𝜁, and 𝜅 are necessary to uniquely determine their values. However,

in scale invariant systems like the unitary Fermi gas, the bulk viscosity is identically

zero. This follows from the fact that the entropy of a scale invariant system does

not change under a uniform expansion. Here, a second, independent measurement of

transport is enough to characterize transport phenomena. Consider a temperature

perturbation, which, unlike sound waves, attenuate only because of the irreversible
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flow of heat, quantified by the thermal diffusivity 𝐷𝑇 = 𝜅
𝜌𝑐𝑃

. Determination of both

𝐷𝑠 and 𝐷𝑇 constitute a complete characterization of transport phenomena in spin-

balanced unitary Fermi gases.

A crucial tool required to make these measurements is an access to a uniform

sample. This might sound like a trivial request for most condensed matter physicists,

but ultracold atomic gases have historically been trapped using magnetic fields or at

the focal point of an attractive laser beam. Both of these methods create a sample

whose density varies across space. The propagation of sound is completely different

in such inhomogeneous samples, where the speed of sound itself varies across space.

Here, instead of traveling plane waves, one observes collective oscillations, with prop-

erties that are very different from typical sound waves. Moreover, the varying density

implies that atoms at different locations in the trap experience different points in the

phase space. It is even possible for the atoms near the center of the trap to be in a

superfluid phase, while the atoms near the edges are normal. This makes it difficult

to extract the properties of a homogeneous system from trap averaged measurements.

Nevertheless, experiments have measured some trap averaged transport properties

using inhomogeneous samples of the unitary Fermi gas. From the dynamics of a con-

trollably imprinted spin-imbalance, the diffusive transport spin concentrations was

observed enabling the experimental determination of the corresponding spin diffusiv-

ity [171, 172, 99, 9]. Here, a Heisenberg-uncertainty limited diffusivity was observed

where 𝐷 ≳ ℏ/𝑚 is given only by the reduced Planck’s constant and particle mass.

Apart from the harmonically trapped gas, experiments have used terminal configura-

tions, where two separate reservoirs containing ultracold fermionic atoms are linked

with a small 2D or 1D channels. Here, the transport of heat [25], particles [26, 174],

and spin [100, 108] were measured. A comparison between the transport of particles

and heat through a very small 1D channel suggests a breakdown of the Wiedman-

Franz law [85] in the unitary Fermi gas. From collective oscillations [184, 119], hy-

drodynamic damping rates were observed [97, 96, 179, 71]. From the hydrodynamic

free-expansion of trapped Fermi gases [134], the trap-averaged shear viscosity was

measured [30, 49]. While it is possible to extract the viscosity of a homogeneous
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system from their trap averaged values, see for example [89, 21], it requires a very

careful treatment of the dilute corona [3]. Another approach is to selectively probe

the nearly homogeneous center of harmonically trapped gases. Here, experiments

have excited sound waves using focused-beam Bragg-spectroscopy and measured the

density response function [81, 103].

In this thesis, for the first time, we directly trap an ultracold gas of fermionic atoms

inside a box, a technique first pioneered by Z. Hadzibabic for bosonic atoms [62]. The

box is made from repulsive laser beams that keep the atoms trapped inside, where

they experience zero external potential. This creates a homogeneous, constant-density

sample of ultracold atoms ideal for transport experiments. We have developed several

techniques to locally excite sound waves and inject heat to measure the transport

properties of this system.

1.1 Thesis outline

In chapter 2, we begin by describing the physics background needed to understand

the experiments presented in this thesis. We review the equilibrium properties of

both the non-interacting and strongly-interacting Fermi gases. The experimentally

measured equation of state of the unitary Fermi gas is provided, which enables us to

interchange thermodynamic state variables, useful for converting the measured tem-

perature into pressure, heat capacity, etc. With regard to transport physics, we derive

the hydrodynamic equations from conservation laws, specifically for a one-component,

or spin-balanced, fluid. We provide two applications of these equations, one for the

propagation and attenuation of sound, and other for attenuation of temperature per-

turbations.

In chapter 3, we provide the experimental tools necessary to create and probe a

homogeneous Fermi gas. We describe how to create, load, align, and characterize the

uniform box potential. Several methods developed to measure the temperature of a

homogeneous gas are then given. Extracting quantitative information from images of

a very dense clouds of a light atoms like 6Li turned out to be tricky as well. We find
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the Doppler correction for the usual absorption imaging and describe phase contrast

imaging for 6Li at high magnetic fields.

Chapter 4 presents the study of sound which attenuate through a coupled trans-

port of momentum and heat. We begin by describing a little mystery that lead us to

sound waves. From traveling waves of sound, we measure a remarkably linear disper-

sion, and from resonant sound modes, we measure the density response function. We

demonstrate the scale invariance of the unitary Fermi gas and demonstrate the ap-

plicability of hydrodynamics using the speed and attenuation of sound. And, finally,

we provide the measurements of the sound diffusivity.

Chapter 5 presents the study of heat transport followed by the determination

of both transport properties. We have created a temperature gradient by locally

injecting heat into the system. The subsequent time evolution allows us to measure

the thermal diffusivity. By combining the sound and thermal diffusivities, we uniquely

determine both the shear viscosity and the thermal conductivity, painting a complete

picture of transport properties of the strongly-interacting unitary Fermi gas. We

compare these results to other quantum systems.

Appendix A presents the schematics for the Zeeman slower and the magnetic TOP

trap used to rotate quasi-two dimensional gases of 23Na and 6Li.

The remaining appendices present the publications relevant to this thesis, includ-

ing the first realization of the homogeneous atomic Fermi gas [128] (presented in

Ch. 3), measurements of the spectral response and contact of unitary Fermi gas [126]

(presented in B. Mukherjee’s thesis [125]), measurements of the Fermi Polaron in

highly spin-imbalanced gases [193] (presented in Z. Yan’s thesis [192]), observation

of sound and measurements of the sound diffusivity [139] (presented in Ch. 4). We

have also included results from the new apparatus, first on geometric squeezing a

BEC into lowest Landau level through rotation [53] and second on the spontaneous

crystallization of a BEC near the lowest Landau level [127].
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Chapter 2

Strongly interacting Fermi systems

This chapter presents the physics background needed to understand the experiments

presented in the rest of this thesis. Our goal is to better understand the transport

properties of strongly interacting Fermi systems. We begin by reviewing the ideal

Fermi gases, including their anti-symmetric exchange statistics and thermodynamic

properties. Quantum scattering theory, in particular the 𝑠-wave scattering prominent

at ultracold temperatures, provides a description for interacting particles, and scat-

tering resonances set a quantum limit for the strongest possible interactions. These

are realized in the experiment using a magnetic Feshbach resonance to produce the

strongly-interacting unitary Fermi gas. This is a scale-invariant system similar to the

ideal Fermi gas, making its properties relevant to other fermionic quantum systems.

Its equilibrium properties are compared to those of non-interacting, ideal Fermi gas,

and the experimentally measured equation of state is presented.

Transport physics describes the response of a system to external perturbations.

Its results are summarized by a set of hydrodynamic equations presented here. They

relate perturbations in various physical quantities, for example the local density, tem-

perature, velocity, etc., and are quantified by a set of transport properties like the

viscosity and thermal conductivity. We provide a general solution to hydrodynamic

equation in the limit of small amplitude perturbations, and provide two specific exam-

ples. First, we find the attenuation of sound, a propagating density wave supported

by the hydrodynamic equations, determined by the coupled transport of momentum
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and heat, and, second, we solve the time evolution after an arbitrary temperature

perturbation determined by the transport of heat.

2.1 Ideal fermions

Quantum statistics of identical particles. Every fundamental particle, for ex-

ample an electron, is identical to all other particles of the same type. This basic

idea has a profound consequence in physics. Consider an ensemble of these identi-

cal particles described by a many-particle wavefunction Ψ(𝑟1, 𝑟2, ..., 𝑟𝑖, ...). Exchang-

ing any two, for example 𝑖 ←→ 𝑗, must produce the same physical state, requiring

|Ψ(𝑟𝑗, 𝑟𝑖)|2 = |Ψ(𝑟𝑖, 𝑟𝑗)|2. This leads to two possibilities,

Ψ(𝑟𝑗, 𝑟𝑖) = +Ψ(𝑟𝑖, 𝑟𝑗), (2.1a)

or Ψ(𝑟𝑗, 𝑟𝑖) = −Ψ(𝑟𝑖, 𝑟𝑗), (2.1b)

corresponding to a symmetric (+) or an anti-symmetric (−) exchange. All parti-

cles in three dimensions must correspond to one of these two categories. In 1940,

Wolfgang Pauli proved [140], based on postulates of relativity and quantum mechan-

ics, that bosonic particles have an integer spin and must follow the Bose-Einstein

statistics while fermionic particles have a half-integer spin and must follow the ex-

clusion principle. Suppose that two fermions are in the same quantum state |𝑛⟩
with a wavefunction Ψ(𝑟1, 𝑟2) = Ψ(𝑛, 𝑛). Exchange symmetry of eq. 2.1b requires

Ψ(𝑛, 𝑛) = −Ψ(𝑛, 𝑛), which is only possible if Ψ(𝑛, 𝑛) is identically zero, implying

that two fermions cannot occupy the same quantum state. This is Pauli’s exclusion

principle. It plays a dominant role in fermionic systems, makes the periodic table of

elements possible, and stabilizes the neutron star against its immense gravity.

Thermodynamic properties of ideal Fermi gases. Before we introduce interac-

tions between particles, it is educational to understand the thermodynamic properties

of an ensemble of non-interacting fermions in a box. At zero temperature, 𝑁 fermions
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(a) (b)

Figure 2-1: Fermi-Dirac distribution. (a) A cartoon depicting Fermi-Dirac dis-
tribution. Each state is occupied by at most one fermion. At zero temperature, 𝑁
fermions occupy the 𝑁 lowest quantum state. The highest occupied state has a en-
ergy 𝐸𝐹 , the Fermi energy. (b) Fermi-Dirac distribution is shown at 𝑇 = 0.02 𝑇𝐹
(blue) and 𝑇 = 0.13 𝑇𝐹 (red). A sharp Fermi surface is visible in blue, while a Fermi
surface broadened by ∼ 𝑘𝐵𝑇 is visible in red.

in box of length 𝐿 and volume 𝑉 = 𝐿3 occupy the 𝑁 lowest eigenstates of the system,

namely the momentum eigenstates |𝑘⟩, with each state having at most one fermion.

This forms a ‘Fermi sea’ with a Fermi surface located at the highest occupied state

with momentum ℏ𝑘𝐹 , the Fermi momentum, and energy 𝐸𝐹 =
ℏ2𝑘2𝐹
2𝑚

, the Fermi en-

ergy, see Fig. 2-1 (a). We find the Fermi momentum by equating the total number of

states below 𝑘𝐹 to the number of particles 𝑁 ,

𝑁 =

𝑘𝐹∑︁

𝑘=0

1 =

∫︁ 𝑘𝐹

0

𝑑3𝑘

(2𝜋/𝐿)3
=

𝑉

(2𝜋)3

∫︁ 𝑘𝐹

0

𝑑𝑘 4𝜋𝑘2 =
𝑉 𝑘3𝐹
6𝜋2

, (2.2)

resulting in

𝑘𝐹 =
(︀
6𝜋2𝑛

)︀1/3
, 𝐸𝐹 =

ℏ2 (6𝜋2𝑛)
2/3

2𝑚
, (2.3)

where 𝑛 = 𝑁/𝑉 is the number density of fermions. If the Fermi gas is composed

of an equal mixture of two spins, each having 𝑁↑ = 𝑁↓ = 𝑁 atoms, with total

atom number 𝑁𝑡 = 2𝑁 and total density 𝑛𝑡 = 2𝑛, then the Fermi momentum is

𝑘𝐹 = (6𝜋2𝑛)
1/3

= (3𝜋2𝑛𝑡)
1/3. The momentum distribution is exactly 𝑓(𝑘) = 1 below

the Fermi surface, at 𝑘 ≤ 𝑘𝐹 , and 𝑓(𝑘) = 0 elsewhere.

The qualitative effects of finite temperature is to excite some fermions close to
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the Fermi surface, within ∼ 𝑘𝐵𝑇 of 𝐸𝐹 , from below the Fermi surface to above,

effectively softening the sharp Fermi surface as shown in Fig. 2-1 (b). The exact

probability distribution is easily computed in the grand canonical ensemble, where

one finds a grand partition function 𝒬,

ln𝒬 =
∑︁

k

ln
[︁
1 + 𝑒

𝜇−𝜖𝑘
𝑘𝐵𝑇

]︁
, (2.4)

where 𝜇 is the chemical potential and 𝜖𝑘 = ℏ2𝑘2
2𝑚

is the energy of a state |𝑘⟩. Eq. 2.4 is

derived in most statistical mechanics textbooks, see for example [91]. All thermody-

namic quantities are easily calculated from various combinations of 𝒬. For example,

the exact probability of occupying a state |𝑘⟩ is

𝑓(𝑘) = − 𝜕 ln𝒬
𝜕 (𝜖𝑘/(𝑘𝐵𝑇 ))

=
1

𝑒(𝜖𝑘−𝜇)/(𝑘𝐵𝑇 ) + 1
, (2.5)

also known as the Fermi-Dirac distribution, shown in Fig. 2-1(b). Note that 𝜇 co-

incides with the Fermi energy at zero temperature. Number density, energy density,

and pressure are given below,

𝑛 =
𝑁

𝑉
=

∑︀
1 · 𝑓(𝑘)
𝑉

= − 1

𝜆3
Li3/2

(︁
−𝑒

𝜇
𝑘𝐵𝑇

)︁
, (2.6a)

𝜖 =
𝐸

𝑉
=

∑︀
𝜖𝑘𝑓(𝑘)

𝑉
= −3

2

𝑘𝐵𝑇

𝜆3
Li5/2

(︁
−𝑒

𝜇
𝑘𝐵𝑇

)︁
=

3

2
𝑃, (2.6b)

𝑃 =
𝑘𝐵𝑇

𝑉
ln𝒬 = −𝑘𝐵𝑇

𝜆3
Li5/2

(︁
−𝑒

𝜇
𝑘𝐵𝑇

)︁
=

2

3
𝜖, (2.6c)

where we have used the thermal wavelength 𝜆 =
√︁

2𝜋ℏ2
𝑚𝑘𝐵𝑇

, replaced the
∑︀

k =
(︀

𝐿
2𝜋

)︀3 ∫︀
𝑑3𝑘 and used polylogarithm of order 𝑚, Li𝑚, defined as −Li𝑚(−𝑧) ≡ 𝑓𝑚(𝑧) =

1
(𝑚−1)!

∫︀∞
0
𝑑𝑥 𝑥𝑚−1

𝑧−1𝑒𝑥+1
.

Scale invariance of the ideal Fermi gas. Another important characteristic of the

ideal Fermi gas is its scale-invariance, which will become even more relevant when

discussing the strongly-interacting Fermi gas. Let’s consider a general Hamiltonian

𝐻 = 𝑝2

2𝑚
+ 𝑉int representing a system of particles with arbitrary interparticle interac-
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(a) (b)

Figure 2-2: Ideal Fermi gas equation of state. (a) The total energy is shown as
a universal function 𝐸/𝐸0 = 𝑓𝐸(𝑇/𝑇𝐹 ), independent of the scale, i.e. the density, of
the gas, and 𝐸/𝐸0 = 𝑃/𝑃0 follows from 𝐸 = 3

2
𝑃𝑉 . Here, 𝐸0 = 3

5
𝑁𝐸𝐹 is the total

energy and 𝑃0 = 2
5
𝑛𝐸𝐹 is the pressure of an ideal Fermi gas at zero temperature.

For reference, the energy of a classical ideal gas 𝐸 = 3
2
𝑁𝑘𝐵𝑇 → 𝐸/𝐸0 = 5

2
𝑇/𝑇𝐹 is

shown in black dashed line. (b) The heat capacity at constant volume is shown as a
universal function 𝐶𝑉 /(𝑁𝑘𝐵) = 𝑓𝐶𝑉

(𝑇/𝑇𝐹 ). For reference, its value in the limit of
zero temperature, 𝐶𝑉 → 𝜋2

2
𝑇/𝑇𝐹 and its value for an classical gas 𝐶𝑉 = 3

2
𝑁𝑘𝐵 are

shown in black dashed line.

tions 𝑉int. Upon rescaling of space by a factor 𝜉, such that 𝑟 → 𝜉𝑟 and 𝑝 ∝ 𝑑
𝑑𝑟
→ 1

𝜉
𝑝,

the kinetic energy 𝑝2

2𝑚
→ 1

𝜉2
𝑝2

2𝑚
while the scaling of interaction term depends on its

specific form. If 𝑉int ̸→ 1
𝜉2
𝑉int, then the energy, and other thermodynamic properties,

of the system depends on the specific scale of the system, and cannot be determined

from its value at different scales. In contrast, if 𝑉int → 1
𝜉2
𝑉int, then 𝐻 → 1

𝜉2
𝐻, the

system energy 𝐸 → 1
𝜉2
𝐸, and all other properties of the system can be found by

simple rescaling. Meaning that, measurement of thermodynamic properties at a spe-

cific density are enough to completely characterize the system and their value at any

other densities are found by simple rescalings. Here, it is convenient to write the

thermodynamic quantities as dimension-full constant times a universal function that

only depends on dimensionless ratios of different length-scales of the system. Some

examples of systems with scale-invariance include the classical ideal gas and ideal

Fermi gas where 𝑉int = 0, and any system with 𝑉int ∝ 1/𝑟2 → 1
𝜉2
𝑉int.

Let’s consider the specific example of ideal Fermi gas. The only two length scales

present in this system, the interparticle spacing 𝑙 ∼ 𝑛−1/3 ∝ 𝑇
−1/2
𝐹 (𝑇𝐹 ≡ 𝐸𝐹/𝑘𝐵) and
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the thermal wavelength 𝜆 =
√︁

2𝜋ℏ2
𝑚𝑘𝐵𝑇

∝ 𝑇−1/2, are set by the density and temperature

respectively. Therefore, all thermodynamic properties can be written as universal

functions of the ratio 𝑙/𝜆, or more conveniently the ratio 𝑇/𝑇𝐹 , where 𝑇 and 𝑇𝐹 are

set by the temperature and density respectively. For example, instead of defining the

energy 𝐸 = 𝑓(𝑇 ), with some function 𝑓 that depends on the specific density of the

gas, it is more useful to provide 𝐸
𝐸0

= 𝑓𝐸

(︁
𝑇
𝑇𝐹

)︁
, where 𝐸0 is a dimension-full constant,

typically the energy of the Fermi gas at zero temperature, and the function 𝑓𝐸 is

a universal function valid at all scales of the system, i.e., at all temperatures and

densities. The dimensionless functions for the energy (or equivalently the pressure)

and heat capacity are shown in Fig. 2-2.

To demonstrate the power of scale-invariance, let’s consider the isotropic speed of

sound 𝑐. In an arbitrary system, 𝑐 is given by the equation

𝑚𝑐2 =
𝜕𝑃

𝜕𝑛

⃒⃒
⃒⃒
𝑆

=
𝑉 2

𝑁

𝜕2𝐸

𝜕𝑉 2

⃒⃒
⃒⃒
𝑆

, (2.7)

where 𝑃 = − 𝜕𝐸
𝜕𝑉

⃒⃒
𝑆

is the pressure. In scale-invariant systems, this derivative can be

calculated purely based on scaling arguments. We already saw that 𝐸 → 1
𝜉2
𝐸 under

a dilation of space, requiring 𝐸 ∝ 𝐿−2 ∝ 𝑉 −2/3 for a system with a characteristic size

𝐿 = 𝑉 1/3. Therefore, 𝜕𝐸
𝜕𝑉

= −2
3
𝐸
𝑉
∝ 𝑉 −5/3 and 𝜕2𝐸

𝜕𝑉 2 = 10
9

𝐸
𝑉 2 , and

𝑚𝑐2 =
10

9

𝐸

𝑁
. (2.8)

This is a universal relation, applicable for all scale-invariant systems, independent of

their equation of state, temperature, or even their phase.

2.2 Strongly interacting fermions

While the ideal Fermi gas displays some non-classical behavior, like the Fermi sur-

face and quantum pressure, interactions are required to realize exotic features and

phases of matter like superfluidity [8], strange-metals [114], and fractional quantum

hall states [180]. In this section, we describe the interactions experienced by neutral

34



ultracold atoms, and describe the experimental tool used to tune its strength. This

produces a strongly-interacting Fermi gas with a collision cross-section as high as

allowed by quantum mechanics [38]. We discuss the properties of this strongly inter-

acting gas based on its scale-invariance, and provide the experimentally determined

equation of state, fully characterizing its equilibrium properties.

Quantum scattering theory. We begin with a quick review of quantum scattering

theory, a framework to describe all interactions in quantum mechanics. Detailed

derivation can be found in most quantum mechanics texts, see for example [68, 157].

Interactions between particles can be described in terms of scattering events, where

one particle is a stationary target for the other. The moving particle is assumed to

be freely propagating towards the target, with a momentum ℏ𝑘 and a wavefuntion

∝ 𝑒𝑖𝑘𝑧. Suppose that two particles interact with an arbitrary conservative potential

𝑉 (𝑟), where 𝑟 is the relative distance. The incoming particles interact with this

potential in some complicated way, however, in the far field, away from the effective

range of this potential, they are again free with the same kinetic energy as before.

The effects of the potential is to scatter more or less particles in different directions

with different phase shifts, summarized by the scattering amplitude 𝑓(𝜃, 𝜑) and the

outgoing spherical wavefunction 𝑓(𝜃, 𝜑)𝑒𝑖𝑘𝑟/𝑟. Therefore, the differential cross-section

𝑑𝜎 to scatter particles in some solid angle 𝑑Ω is given by this scattering amplitude as

𝑑𝜎 = |𝑓(𝜃, 𝜑)|2 𝑑Ω.

In the case of a spherically symmetric interparticle potential, 𝑉 (𝑟)→ 𝑉 (𝑟), angu-

lar momentum is conserved, and it is best to solve for 𝑓 using partial wave analysis.

Here, both the incoming and outgoing wavefunction are separable and re-written as
∑︀

𝑙𝑅𝑙(𝑟)𝑌
0
𝑙 (𝜃, 𝜑), where the spherical harmonics 𝑌 𝑚

𝑙 (𝜃, 𝜑) account for the angular de-

pendence while the radial wavefunction 𝑅(𝑟) = 𝑢(𝑟)/𝑟 satisfies the radial Schrödinger

equation − ℏ2
2𝑚

𝑑2𝑢
𝑑𝑟2

+
(︁
𝑉 (𝑟) + ℏ2

2𝑚
𝑙(𝑙+1)
𝑟2

)︁
𝑢 = 𝐸𝑢. Conservation of angular momentum

implies that the amplitude of 𝑙th partial wave remain the same before and after scat-

tering and all that can happen is a relative phase shift, 𝛿𝑙 between the incoming

and outgoing wavefunctions. Intuitively, 𝑙th partial wave comes in, interacts with the

potential, and comes back out with the same amplitude, but with a different phase.

35



The set of 𝛿𝑙 completely determine the scattering properties, and their values

depend on the details of the interaction potential 𝑉 (𝑟). For example, the total collision

cross-section is

𝜎 =
4𝜋

𝑘2

∞∑︁

𝑙=0

(2𝑙 + 1) sin2(𝛿𝑙). (2.9)

Another useful quantity related to the phase shift for the 𝑠-partial wave (𝑙 = 0) is the

scattering length 𝑎 ≈ − tan(𝛿0)/𝑘. It measures the effective range of the potential

and is often used to quantify the strength of interactions.

Scattering resonances in ultracold gases. Neutral atoms interact with each other

through the Van der Waals force at long range and experience a hardcore repulsion

at short range. In general, characterizing these interactions would require many par-

tial waves and values of many 𝛿𝑙’s. However, at ultracold temperatures, the kinetic

energy of particles is much lower than the energies required to overcome the centrifu-

gal barrier ℏ2
2𝑚

𝑙(𝑙+1)
𝑟2

, therefore, only the lowest energy 𝑠-wave scattering is present,

significantly simplifying the interactions. At the 𝑠-wave scattering resonance, where

𝛿0 → 𝜋/2 and 𝑎 → ∞, the atoms interact with the strongest possible interactions

with a collision cross-section 𝜎 = 4𝜋/𝑘2. For more details, see [38, 14].

In the case of fermionic atoms like 6Li, even the 𝑠-wave scattering is forbidden

between identical particles owing to the Pauli-exclusion principle. In fact, a spin-

polarized ultracold gas of fermionic atoms is perhaps the best realization of an ideal,

non-interacting gas across all of physics. Mixture of two or more internal states of a

fermionic atom are necessary for them to interact, where their interactions are again

described by 𝑠-wave scattering.

While the exact inter-spin interaction potential 𝑉int has a complicated form, hard

core repulsion plus a weak Van der Waals attraction, its effects are completely de-

termined by a single parameter, the 𝑠-wave scattering length, at ultracold tempera-

tures. Meaning that, any other potential that produces the same scattering length

is indistinguishable from the exact interaction potential. The most commonly used

pseudopotential is the Fermi pseudopotential [83] 𝑉int(𝑟) = 4𝜋ℏ2𝑎
𝑚

𝛿3(𝑟) 𝜕
𝜕𝑟
𝑟, where 𝑟

is the relative position between two atoms, 𝑎 is the 𝑠-wave scattering length, and
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Figure 2-3: Feshbach resonances in 6Li. The 𝑠-wave scattering length between
the three lowest hyperfine states, |1⟩, |2⟩, and |3⟩, of 6Li are shown. The 𝑎12, 𝑎13,
and 𝑎23 feature Feshbach resonances (solid vertical lines) at 832.18 G, 809.76 G, and
689.68 G, respectively, feature zero-crossings (i.e. zero interactions, dashed vertical
lines) at 527.3 G, 568.1 G, and 588.8 G, respectively. The background scattering
lengths at zero magnetic field are ≈ −1 𝑎0, −820 𝑎0, and 24 𝑎0, respectively.

features a zero-range contact interaction. Now, the Hamiltonian

𝐻 =
∑︁

𝑖

𝑝2𝑖
2𝑚

+
∑︁

𝑖<𝑗

4𝜋ℏ2𝑎
𝑚

𝛿3(𝑟𝑖𝑗)
𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗 (2.10)

of the strongly interacting Fermi gas is completely known; a statement which cannot

always be said for many real-world systems.

Feshbach resonance. Under normal conditions, ultracold alkali atoms interact

with a scattering length 𝑎 ∼ 100 𝑎0, where 𝑎0 is the Bohr radius. While this is strong

enough for sympathetic cooling or studying weakly interacting Bose-Einstein conden-

sates, we desire to study the strongly-interacting Fermi gases where the scattering

length is much larger than all other length scales of the system. Luckily, ultracold

alkali atoms also feature Feshbach resonances, which allows the interparticle interac-

tions to be changed with an external bias magnetic field. Essentially, the external

magnetic field changes the difference in energies between a molecular bound state and

two colliding atoms, owing to their differential magnetic moment. When the molec-

ular state is brought in resonance, the atoms experience a resonant scattering where
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the phase shift 𝛿 → 𝜋/2 and the scattering length 𝑎→∞ diverges. Close to this res-

onance, the scattering length is given by 𝑎 = 𝑎bg (1−∆𝐵/(𝐵 −𝐵0)), parametrized

by the background scattering length 𝑎bg, the width ∆𝐵 and the center 𝐵0 of the

resonance. For more details, see [38].

Fermionic 6Li features several broad Feshbach resonances that are easily accessible

in our experiments shown in Fig. 2-3. The ground state manifold of 6Li has six states,

labeled |1⟩, |2⟩, etc. We typically work with a mixture of states |1⟩ and |3⟩ which

feature a resonance at 689.68 G, or with a mixture of states |1⟩ and |2⟩, featuring

a resonance at 832.18 G [164, 198]. This produces a two spin mixture of ultracold

Fermi gas with inter-spin interactions as strong as allowed by quantum mechanics,

often called the unitary Fermi gas.

Properties of the strongly-interacting, unitary Fermi gas. While the prop-

erties of an ideal Fermi gas can easily be calculated, solving for the properties of a

strongly-interacting Fermi gas is an extremely hard problem. However, the unitary

Fermi gas is a unique system. Similar to the non-interacting Fermi gas, it also fea-

tures scale-invariance, where upon a rescaling of space by 𝑟 → 𝜉𝑟, the Hamiltonian

shown in eq. 2.10 scales as 𝐻 → 1
𝜉2
𝐻. This scale-invariance can rigorously be proved

using a wavefunction of the form 𝜓 ∝ 1/𝑎−1/𝑟𝑖𝑗 and Wigner-Bethe-Peierls boundary

condition, see for example [33, 199, 133].

At the scattering resonance the only interactions related length scale diverges

𝑎 → ∞, meaning that the properties of this system cannot explicitly depend on

𝑎. Here, similar to the non-interacting Fermi gas, all thermodynamic and transport

properties must be given by universal functions of the ratio of the two remaining length

scales, corresponding to the density 𝑛 and temperature 𝑇 . It is often convenient to

use the ratio 𝑇/𝑇𝐹 where 𝑘𝐵𝑇𝐹 = 𝐸𝐹 = ℏ2(6𝜋2𝑛)2/3

2𝑚
to write these universal functions.

At zero temperature, the situation simplifies significantly, where all properties must

be proportional to a dimension full constant involving the density, with a universal

prefactor. For example, the energy of the gas must be 𝐸 = 𝜉 3
5
𝑁𝐸𝐹 ≡ 𝜉𝐸0, where

we have used the energy 𝐸0 of a non-interacting Fermi gas as the dimension full
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(a) (b)

Figure 2-4: Experimentally measured equation of state of the unitary Fermi
gas. The measured energy equation of state (a) and the entropy equation of state
(b) are reproduced here from [102]. Similar to the ideal Fermi gas, the unitary Fermi
gas is also scale-invariant, making it possible to show these equations of state as
dimensionless functions of 𝑇/𝑇𝐹 . The energy of the unitary gas near 0.25 ≲ 𝑇/𝑇𝐹 ≲ 1
is well approximated by the ideal gas energy, but shifted by 𝜉𝑛− 1 (black line), where
𝜉𝑛 ≈ 0.45, because of interactions. The heat capacity features the iconic 𝜆−shape
near the superfluid phase transition at 𝑇𝑐 = 167(13) 𝑇𝐹 . The heat capacity of an
ideal Fermi gas is shown in black line.

constant, with a universal constant 𝜉1 known as the Bertsch parameter [77]. The

value of this universal constant was experimentally measured 𝜉 = 0.376(4) [102]. At

finite temperatures, this prefactor becomes a universal function of the ratio 𝑇/𝑇𝐹 ,

with energy 𝐸 = 𝑓𝐸(𝑇/𝑇𝐹 ) 𝐸0. Other thermodynamic properties are also given by

similar functions, for example the entropy 𝑆 = 𝑓𝑆(𝑇/𝑇𝐹 ) 𝑁𝑘𝐵, the chemical potential

𝜇 = 𝑓𝜇(𝑇/𝑇𝐹 ) 𝐸𝐹 , the heat capacity 𝐶𝑉 = 𝑓𝐶𝑉
(𝑇/𝑇𝐹 ) 𝑁𝑘𝐵, etc. These equations of

state were measured by [102], reproduced here in Fig. 2-4. They are very powerful,

completely characterizing all thermodynamic properties of the unitary Fermi gas, and

are used through out this thesis to interchange thermodynamic state variables.

2.3 Transport phenomena

In this sections, we provide a review of transport physics relevant to measurements

presented in this thesis. Transport physics concerns with the out-of-equilibrium dy-
1Please note that the Bertsch parameter 𝜉 is not related to the previously used symbol 𝜉 to

demonstrate scale invariance.
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namics of physical systems. At first, predicting the time evolution of a system after

an arbitrary perturbation seems like a daunting task, however, if the system is only

slightly perturbed from a state of equilibrium, then the subsequent dynamics are

beautifully described by hydrodynamics reviewed below. For detailed description see

books [168, 106, 107] and seminal papers [80, 95, 90].

In one-component fluids, there are only two types of transport phenomena, the

viscous flow and heat conduction. They are described by a set of hydrodynamic equa-

tions (reviewed below) and quantified by three transport properties. The viscosity

measures the resistance of a fluid resulting from gradients in local velocity. There are

two types of gradients: shear gradients, for example 𝑑𝑣𝑥/𝑑𝑦, are damped by the shear

viscosity 𝜂, while compression gradients, for example 𝑑𝑣𝑥/𝑑𝑥, are damped by the bulk

viscosity 𝜁. The irreversible flow of heat is quantified by the thermal conductivity

𝜅, responsible for removing gradients in local temperature. A determination of all

three of these transport properties constitute a complete characterization of transport

phenomena of a system2.

Their measurements typically require measuring the response of a system after

some perturbation. For example, an ideal measurement of the thermal conductiv-

ity would be to create a gradient in the temperature and measure the subsequent

flow of heat; the proportionality constant between the two is defined as the thermal

conductivity. However, such idealistic measurements are not always possible due to

physical limitations, and one needs to rely on indirect measurements. In general, the

time evolution after a perturbation in arbitrary quantity can be computed using the

set of hydrodynamic equations and transport properties, and often feature a decay

rate Γ = 𝐷𝑘2 with a characteristic wavevector squared dependence and a diffusion

constant 𝐷 that depends on some combinations of the three transport properties.

We first derive the hydrodynamic equations from conservation laws, followed by

its application in two specific cases. We calculate the dynamics after a perturbation

in, first, the local density, and second, the local temperature of the gas. Later, in

2We are only considering perturbations that are small in amplitude such that hydrodynamics is
applicable.
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Chapters 4 and 5, we experimentally create these perturbations, demonstrate the

applicability of hydrodynamics, and measure the relevant transport properties.

2.3.1 Hydrodynamics

Let’s consider perturbations that are small in amplitude and slowly varying over space

and time (long wavelength and small frequency). If the interparticle interactions are

sufficiently large to locally maintain thermal equilibrium, subsequent time evolution

is beautifully described by hydrodynamics.

At its heart lies conservation laws; particularly the conservation of mass, mo-

mentum, and energy for one-component fluids and gases. They all take the form of

continuity equations. Consider, for example, a general conserved quantity 𝑞. Conser-

vation of 𝑞 requires 𝜕𝜌/𝜕𝑡+∇ · 𝑗 = 0 since any change in its volume density 𝜌 = 𝑞/𝑉

must flow through some surface accounted by gradient of its flux density 𝑗 = 𝜌𝑣. If

the quantity 𝑞 is being created or destroyed at a rate 𝑄, then

𝜕𝜌

𝜕𝑡
+∇ · 𝑗 = 𝑄. (2.11)

The unitary Fermi gas is a prototypical strongly interacting fluid with mean free

path as small as the interparticle spacing. In its normal regime, it is convenient to

write the conservation laws for mass density 𝜌, momentum current density 𝑗 = 𝜌𝑣,

and entropy density 𝑠 = 𝑆/𝑉 , instead of energy. If we only consider changes in one

dimension, say along 𝑧, then the three conservation laws for 𝜌, 𝑗, and 𝑠 are

𝜕𝜌

𝜕𝑡
+
𝜕𝑗

𝜕𝑧
= 0, (2.12a)

𝜕𝑗

𝜕𝑡
+
𝜕𝑃

𝜕𝑧
= 0, (2.12b)

𝜕𝑠

𝜕𝑡
+
𝜕(𝑠𝑣)

𝜕𝑧
= 0, (2.12c)

where flux density corresponding to 𝑗 is the pressure 𝑃 . Note that we are only consid-

ering the normal phase of the unitary Fermi gas here. In the superfluid phase, gradient

of the phase of the emergent macroscopic wavefunction Ψ𝑒𝑖Φ is also conserved, leading
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to a conservation law for the superfluid velocity 𝑣𝑠 = (ℏ/𝑚)∇Φ.

While mass is never destroyed in our system, momentum and entropy may change

due to dissipation. Non-zero shear viscosity 𝜂, bulk viscosity 𝜁, and thermal conduc-

tivity 𝜅 will damp momentum current and increase entropy. Note that the uni-

tary Fermi gas is a scale-invariant system where the bulk viscosity is identically

zero [173, 51, 56], we therefore do not include it in the equations below. Furthermore,

any changes in the external potential 𝑈 can also generate momentum current. Note

that one can also increase the entropy by directly injecting heat at a rate 𝜕𝑆
𝜕𝑡

= 1
𝑇

𝜕𝑄
𝜕𝑡

,

however, for the sake of simplicity, we omit adding this term here and directly cal-

culate the response of a system to heat using the definition of 𝜅 in section 2.3.3.

Including these effects, the conservation laws are

𝜕𝜌

𝜕𝑡
+
𝜕𝑗

𝜕𝑧
= 0, (2.13a)

𝜕𝑗

𝜕𝑡
+
𝜕𝑃

𝜕𝑧
=

4

3

𝜂

𝜌

𝜕2𝑗

𝜕𝑧2
− 𝑛𝜕𝑈

𝜕𝑧
, (2.13b)

𝜕𝑠

𝜕𝑡
+
𝜕(𝑠𝑣)

𝜕𝑧
=
𝜅

𝑇

𝜕2𝑇

𝜕𝑧2
. (2.13c)

In principle, we can stop here. This set of equations, plus thermodynamic re-

lations, are complete. Using them, we can calculate the time evolution in density,

current, temperature, entropy, etc. after an arbitrary perturbation. However, it is

often convenient to analyze arbitrary perturbations using Fourier analysis, therefore,

we try to find plane wave solutions next.

Plane wave solution. We consider plane wave perturbations of form 𝜌 = 𝜌0 +

𝛿𝜌 𝑒𝑖𝑘𝑧−𝑖𝜔𝑡 for all quantities. Using eqs. 2.13, our goal is to find relations between

physical quantities and find the dispersion relation 𝜔(𝑘).

Inserting the plane wave assumption into the hydrodynamic equations 2.13, we
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get

−𝑖𝜔 𝛿𝜌+ 𝑖𝑘 𝛿𝑗 = 0 =⇒ 𝑢 𝛿𝜌− 𝛿𝑗 = 0, (2.14a)

−𝑖𝜔 𝛿𝑗 + 𝑖𝑘 𝛿𝑃 = −4

3

𝜂

𝜌
𝑘2 𝛿𝑗 − 𝑖𝑘𝑛 𝛿𝑈 =⇒ 𝑢 𝛿𝑗 − 𝛿𝑃 + 𝑖𝑘

4

3

𝜂

𝜌
𝛿𝑗 = 𝑛 𝛿𝑈, (2.14b)

−𝑖𝜔 𝛿(𝜎𝜌) + 𝑖𝑘𝜎 𝛿𝑗 = − 𝜅
𝑇
𝑘2 𝛿𝑇 =⇒ 𝑢𝜌 𝛿𝜎 + 𝑢𝜎 𝛿𝜌− 𝜎 𝛿𝑗 + 𝑖𝑘

𝜅

𝑇
𝛿𝑇 = 0,

(2.14c)

where we have used 𝑗 = 𝜌𝑣 to replace 𝛿𝑣 = 𝛿𝑗/𝜌 in favor of 𝛿𝑗, used the definition

for phase velocity 𝑢 = 𝜔/𝑘, and replaced the entropy density 𝑠 = 𝜎𝜌 in favor of

entropy per total mass 𝜎 = 𝑆/(𝑚𝑁). So far, we have five unknowns3, 𝛿𝜌, 𝛿𝜎, 𝛿𝑗, 𝛿𝑃 ,

and 𝛿𝑇 and only three equations. However, since local thermal equilibrium is always

maintained, we can use thermodynamics to relate 𝛿𝑃 and 𝛿𝑇 to 𝛿𝜌 and 𝛿𝜎.

𝛿𝑃 =
𝜕𝑃

𝜕𝜌

⃒⃒
⃒⃒
𝜎

𝛿𝜌+
𝜕𝑃

𝜕𝜎

⃒⃒
⃒⃒
𝜌

𝛿𝜎 =
1

𝜌𝜅𝑆
𝛿𝜌− 𝜌

𝛼𝑆

𝛿𝜎, (2.15a)

𝛿𝑇 =
𝜕𝑇

𝜕𝜌

⃒⃒
⃒⃒
𝜎

𝛿𝜌+
𝜕𝑇

𝜕𝜎

⃒⃒
⃒⃒
𝜌

𝛿𝜎 = − 1

𝜌𝛼𝑆

𝛿𝜌+
𝑇

𝑐𝑉
𝛿𝜎, (2.15b)

where 𝜅𝑆 is the isentropic compressibility, 𝛼𝑆 is thermal expansivity at constant en-

tropy, and 𝑐𝑉 is the specific heat at constant volume. We now have five equations

(eqs. 2.14 and 2.15) with five unknowns to fully solve for all quantities and the dis-

persion relation.

Here, we only highlight the results relevant for this thesis. For a complete deriva-

tion see work by P. Hohenberg, P. Martin, and L. Kadanoff [90, 80]. Since the system

responds to an external perturbation 𝛿𝑈 , it is best to find the density and entropy

response functions 𝜒𝜌𝜌 and 𝜒𝜎𝜌 defined as

𝛿𝜌 = −𝜒𝜌𝜌 𝛿𝑈, (2.16a)

𝛿𝜎 = −𝜒𝜎𝜌 𝛿𝑈, (2.16b)

3Note that 𝛿𝑈 is an external input and not an unknown.
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with

𝜒𝜌𝜌(𝜔, 𝑘) =
𝜌

𝑚
𝑘2

−𝜔 − 𝑖𝑘2𝛾𝐷𝑇

(𝜔2 − 𝑐2𝑘2 + 𝑖𝐷𝑠𝑘2𝜔) (𝜔 + 𝑖𝐷𝑇𝑘2)
, (2.17a)

𝜒𝜎𝜌(𝜔, 𝑘) =
𝛼𝑆

𝑚𝜌𝜅𝑆
𝑘2

−𝑖𝑘2(𝛾 − 1)𝐷𝑇

(𝜔2 − 𝑐2𝑘2 + 𝑖𝐷𝑠𝑘2𝜔) (𝜔 + 𝑖𝐷𝑇𝑘2)
, (2.17b)

where 𝛾 = 𝑐𝑃/𝑐𝑉 , and the isentropic speed of sound 𝑐, thermal diffusivity 𝐷𝑇 , and

sound diffusivity 𝐷𝑠 are given by

𝑐 =

√︂
1

𝜌𝜅𝑆
, (2.18a)

𝐷𝑇 =
𝜅

𝜌𝑐𝑃
, (2.18b)

𝐷𝑠 =
4

3

𝜂

𝜌
+ (𝛾 − 1)

𝜅

𝜌𝑐𝑃
, (2.18c)

=
4

3

𝜂

𝜌
+

4

15

𝜅𝑇

𝑃
.

The last simplification in 𝐷𝑠 is possible because of the scale invariance of the unitary

Fermi gas.

These response functions allow for an oscillating sound mode given by the pole

𝜔2 = 𝑐2𝑘2 − 𝑖𝜔𝐷𝑠𝑘
2, discussed in the next section. The density response function

is shown in Fig. 2-5 using typical experimental values at 𝑇 = 0.5 𝑇𝐹 . Here, the

pole corresponding to the sound waves appears as a peak at 𝜔 = 𝑐𝑘 with a width

Γ = 𝐷𝑠𝑘
2, while the broad peak located at zero frequency with a width Γ = 2𝐷𝑇𝑘

2

corresponds to the slow diffusion of heat.

2.3.2 Attenuation of sound waves

Sound waves are traveling perturbations in the local density. They are easy to create

since any perturbation in the external potential will inevitably result in sound waves,

and, on ultracold gases, where the primary source of information is absorption images,

they are equally easy to observe, making them an ideal experimental tool to study

the transport.

In hydrodynamics, sound appears as a pole in the density response function, lo-
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(a)

(b)

Figure 2-5: Density response function 𝜒𝜌𝜌. The imaginary part of the density
response function (a) Im [𝜒(𝜔, 𝑘)] and (b) Im [𝜒(𝜔, 𝑘)] /𝜔 are shown at a fixed value
of 𝑘 and as a function of 𝜔 using the thermodynamic and transport properties of the
unitary Fermi gas at 𝑇 = 0.5 𝑇𝐹 . The peak in (a) at the sound resonance condition
𝜔 = 𝑐𝑘 is well approximated by a Lorentzian function with a full-width at half-
maximum of Γ = 𝐷𝑠𝑘

2, shown in blue dashed line. (b) Im [𝜒(𝜔, 𝑘)] /𝜔 is useful when
computing the response of a system to a step-function perturbation in the potential.
Here, the density responds at two different time scales; the fast response is again
characterized by sound waves, the peak near 𝜔 = 𝑐𝑘, while the slow relaxation of the
density coming from the diffusion of heat is seen as a peak at zero frequency. It is
well approximated by a Lorentzian function with a Γ = 2𝐷𝑇𝑘

2, shown in red dashed
line.

cated at 𝜔2 = 𝑐2𝑘2 − 𝑖𝜔𝐷𝑠𝑘
2. Solving for 𝜔, we find

𝜔 =

√︁
(𝑐𝑘)2 − (Γ/2)2 − 𝑖Γ/2 ≡ 𝜔′ − 𝑖Γ/2, (2.19)

where Γ = 𝐷𝑠𝑘
2 is the decay rate of sound. Here, the density evolves in time as

𝛿𝜌 ∝ 𝑒−𝑖𝜔𝑡 = 𝑒−𝑖𝜔′𝑡𝑒−Γ𝑡/2. (2.20)

This is identical to a classical harmonic oscillator, including the modified oscillation
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frequency 𝜔′ and decay of the sound amplitude at a rate Γ/2. Similarly, the evolution

of the density in space is 𝛿𝜌 ∝ 𝑒𝑖𝑘𝑧 = 𝑒𝑖𝜔
′𝑧/𝑐𝑒−Γ𝑡/(2𝑐). This pole appears as a Lorentzian

peak in 𝜒𝜌𝜌 with full-width at half-maximum width of Γ. We have observed sound

waves and determined Γ using all three of these methods shown in chapter. 4.

As postulated at the beginning of this chapter, perturbation in an arbitrary quan-

tity decays at a rate Γ = 𝐷𝑘2 with the diffusion constant given by some combination

of the transport properties. Since sound waves contain oscillations in both the local

velocity and temperature, they decay with a rate Γ = 𝐷𝑠𝑘
2 and a diffusion constant

𝐷𝑠 =
4𝜂
3𝜌

+ (𝛾 − 1) 𝜅
𝜌𝑐𝑃

containing both 𝜂 and 𝜅. Using sound waves, we measure the

coupled transport of momentum and heat.

2.3.3 Attenuation of temperature gradients

Notice that sound waves alone are not enough to uniquely determine both non-zero

transport properties. We need another, independent, measurement to decouple 𝜂 and

𝜅 from 𝐷𝑠. Here, we describe the attenuation of temperature perturbations carried

out by transport of heat.

The flow of heat from regions of higher to lower temperatures is governed by the

Fourier’s law, the defining equation for the thermal conductivity,

q = −𝜅∇𝑇, (2.21)

where 𝑞 is the heat current density (or heat flux). This flow of heat is often difficult to

measure directly, however, we can convert it to changes in local temperature. First,

the conservation of energy, 𝜕𝑢
𝜕𝑡

+ ∇ · 𝑞 = 0, relates the heat current to the energy

density 𝑢, and second, the specific heat at constant pressure 𝑐𝑃 relates the change in

energy density to the temperature, 𝑑𝑢 = 𝜌𝑐𝑃 𝑑𝑇 . Taking a gradient of the Fourier’s

law, ∇ · 𝑞 = −𝜕𝑢
𝜕𝑡

= −𝜌𝑐𝑃 𝜕𝑇
𝜕𝑡

= −𝜅∇2𝑇 , we find the heat equation

𝜕𝑇

𝜕𝑡
=

𝜅

𝜌𝑐𝑃
∇2𝑇 ≡ 𝐷𝑇∇2𝑇, (2.22)
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where we again find the thermal diffusivity 𝐷𝑇 = 𝜅
𝜌𝑐𝑃

.

This heat equation describes the time evolution of the local temperature 𝑇 after an

arbitrary perturbation also in 𝑇 . It is most easily analyzed in Fourier space, where a

perturbation with wavevector 𝑘 decays at a rate Γ = 𝐷𝑇𝑘
2. Notably, it does not allow

an oscillating mode, as was seen for sound waves. We again find the characteristic

𝑘2 dependence expected from hydrodynamics. Here, the thermal diffusivity is only

given by 𝜅 because temperature gradients diffuse because of transport of heat alone.

The measurements of 𝐷𝑠 from attenuation of sound waves and of 𝐷𝑇 from atten-

uation of temperature gradients constitute a complete characterization of transport

properties in the spin-balanced unitary Fermi gas, as long as hydrodynamics is appli-

cable.
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Chapter 3

Homogeneous unitary Fermi gas of
6Li atoms

Ultracold atoms experiments have traditionally used optical dipole traps, where the

atomic density varies across the trap. This is very unusual when compared to ‘con-

ventional’ systems like liquid helium, superconductors, graphene, etc. At first, the

varying density was turned into a unique feature. By considering an inhomogeneous

system as an ensemble of many local homogeneous systems, experiments can simulta-

neously make measurements that span a wide range of phase space [79, 129, 129, 195,

102, 171, 169]. However, for studies of transport properties or critical behavior, such

local approaches do not work. For example, the properties of sound waves, which

travel through the entire system, are completely different in a harmonically trapped

gas, and requires complicated theories and assumptions to extract local measure-

ments [3, 21]. Several experiments have measured local properties by probing a small

central region of harmonically trapped gases, for both thermodynamic [46, 155, 32]

and transport [103] measurements. However, the best approach is to trap ultracold

atoms in a uniform box potential made from repulsive laser light [62, 128].

Advances in the production and implementation of homogeneous box potentials [62,

128] paved the way for new measurement techniques that allowed for the study of

transport properties in Fermi gas experiments. This section describes the ‘bread and

butter’ behind all of the measurements performed using the homogeneous atomic
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Fermi gas. We begin by describing the optical box potential, followed by its align-

ment procedure and characterization. We then describe various ways used to probe

the homogeneous atomic Fermi gas, from absorption and phase-contrast imaging to

thermometry and momentum distribution in the box.

An optical box was first pioneered by Z. Hadzibabic at Cambridge for an ultracold

Bose gas [62]. This new experimental tool made a wide range of experiments possible,

including the measurements of thermodynamic properties of the weakly-interacting

Bose-Einstein condensate [162, 65], quench-dynamics through a phase transition [132],

strongly-interacting Bose gas [47, 111, 48], quantum depletion [112], transport prop-

erties [60], and sound waves [39]. J. Dalibard at ENS trapped an ultracold Bose gas in

a 2D uniform box [185], where they have also observed sound propagation [186] and

interesting far-from-equilibrium dynamics resulting from scale-invariance [156]. Soon

after our first realization of homogeneous atomic Fermi gases [128] presented here,

H. Moritz at University of Hamburg realized a homogeneous Fermi gas in 2D [84],

where they’ve studied the sound propagation [22], Josephson oscillations [116], and

superfluidity [170] in 2D Fermi gases and single particle excitation spectrum [17] in

3D Fermi gases. Very recently, J. E. Thomas at North Carolina State University

also realized a 3D homogeneous Fermi gas [6] and used it to study the hydrodynamic

linear response [6] and relaxation [189].

3.1 Uniform box potentials

Producing ultracold atomic Fermi gases. The first step in creating homoge-

neous Fermi gases is to create an ultracold gas of 6Li atoms. Here, we only give

a brief overview of the steps involved in creating an ultracold gas, for more details

see previous thesis cited below or the book [123]. This work was performed in a

dual-species 23Na-6Li experiment, referred to as ‘BEC1’ at MIT. At first, BEC1 was

designed to only produce ultracold gases of bosonic 23Na, described in the theses of

A. Chikkatur [37] and D. Stamper-Kurn [175]. Fermionic 6Li was later added in the

early 2000’s to study ultracold Fermi gases. The atoms begin their journey in the oven
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(described in C. Stan [176]), where solid rocks of 23Na and 6Li are heated to ∼ 400∘C.

The resulting atomic vapors are guided in a straight line through the Zeeman slower,

where they are slowed from ∼ 600 m/s all the way down to ∼ 10 m/s, and loaded

into the magneto-optical trap (MOT) with a dark spot [94]. After a few seconds of

loading, we turn the MOT off, pump the both atoms into their magnetically trappable

stretched states, and move them to a magnetic trap made using cloverleaf coils. Here,
6Li atoms are sympathetically cooled to quantum degeneracy with 23Na atoms using

evaporative cooling. In absence of 6Li atoms, we generate Bose-Einstein condensate

of about 10 million 23Na atoms, which is enough to cool about 20 million 6Li atoms

to quantum degeneracy. For more details see PhD thesis of Z. Hadzibabic [74] and M.

W. Zwierlein [202]. The remaining ultracold 6Li atoms are transferred into an optical

dipole trap, at the focus point of a 1064 nm laser beam, where their internal state

can now be manipulated. A microwave Landau-Zener sweep transfers the atoms from

the stretched state |6⟩ = |𝐹 = 3/2,𝑚𝐹 = 3/2⟩ to the ground state |1⟩ = |1/2, 1/2⟩.
The bias magnetic field is now increased to ∼ 500 G where the three lowest states

display weak inter-spin interactions. We now convert some of the state |1⟩ atoms

into |3⟩ using a pair of radio-frequency sweeps, clean the leftover atoms in |2⟩, and

finally increase the bias magnetic field to ≈ 690 G where states |1⟩ and |3⟩ resonantly

interact. Here, another quick evaporation is performed by reducing the intensity of

the optical dipole trap to cool the spin mixture all the way to superfluidity. For more

details see PhD thesis of M. Ku [101].

This strongly-interacting, degenerate, inhomogeneous, atomic Fermi gas is now

transferred into a cylindrical box described in the next section.

3.1.1 Cylindrical box potential

A box potential is conceptually not any more difficult than the standard optical dipole

trap. It is based on dipole forces [54, 69]; an atom with a resonance frequency 𝜔0 is

attracted to any light with a frequency lower than 𝜔0 and is repulsed by any light

with a frequency higher than 𝜔0. 6Li has a 𝜔0 ≈ 2𝜋𝑐/(671 nm), meaning that the

readily available high-power 1064 nm infrared (532 nm green) laser is an ideal source
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Figure 3-1: Homogeneous Fermi gas in the optical box trap. Optical box traps
are made from a set of repulsive laser beams, typically a green 532 nm laser. (a) A
square box is created from 6 intersecting sheets of laser light. (b) A cylindrical box
is created by intersecting a ring-shaped beam with 2 sheets of laser light. Absorption
images taken along two different axis of the box show homogeneous density profiles.

for attractive (repulsive) potential. In order to create an attractive optical dipole

trap, one simply needs to focus an infrared laser beam onto the atoms. The laser

intensity is highest at its focal point, attracting the atoms towards it, and falls off

with a Gaussian profile, creating an approximately harmonic, attractive trap along

all three directions.

Creating a uniform box potential using laser beams is similar in concept to the

dipole trap, but requires tailoring specific intensity profiles. While creating a uniform

box potential from the attractive infrared laser light is possible, there are two major

downsides. First, in order to create a uniform potential for the atoms, the intensity

of the laser beam must be uniform in space as well. This cannot be easily done using

standard optical elements and requires tools like digital mirror devices (DMD) or

spatial light modulators (SLM). Even if this was easily possible, the second issue is

that atoms spend most of their time in presence of high-intensity laser beams, where

the background scattering with photos could heat up the ultracold gas.

A much better solution is to create a box potential using the repulsive green laser

beam. The idea behind it is the same as a cardboard box, where the walls keep the

contents inside. The cardboard box can be mimicked for the atoms by replacing the 6

sizes of a cardboard box with 6 sheets of light; 4 traveling along one direction forming
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Figure 3-2: Optical setup for cylinder-shaped trap. From left to right: A
Gaussian beam propagates through an axicon resulting in a Bessel beam in the near
field. Subsequently the Bessel beam is focused through a microscope objective. In the
focal plane, the resulting intensity pattern is a ring with Gaussian rim. A matched
circular opaque mask is used to block out residual light in the center of the ring.
Finally the mask is projected through an imaging system onto the atoms, creating the
cylinder-shaped trap for the atoms. A small variation of cylinder radius is unavoidable
when using a single axicon [61].

a square-shaped tube, and other 2 traveling in a perpendicular direction, serving as

endcaps, i.e. closing the top and bottom of a box, see Fig. 3-1(a). Another, optically

simpler, configuration is a cylindrical box shown in Fig. 3-1(b). It is composed of

only three laser beams; a cylindrical tube trapping the atoms radially, and two sheets

of light serving as endcaps. Note that atoms spend most of their time away from the

high-power green laser beams and only interact with it for a short amount of time

while reflecting off of the walls. This is ideal for two reasons; first it reduces the

background scattering and the associated heating, and second any imperfections in

the optical potential does not directly effect the homogeneity of the contained gas.

We have implemented the cylindrical box in the experiment because of its relative

simplicity. All three beams are generated by passing Gaussian laser beams through

off-the-shelf optical elements. A sheet of light is constructed by squeezing a Gaussian

beam along one direction using a pair of elliptical lenses by about a factor of 8. A ring

of light, while it may seem complicated at first, is constructed by passing a Gaussian

beam through an ‘axicon’ [121, 118], an off-the-shelf optical element with a conical

surface, which creates a Bessel intensity profile in the near-field and a ring-shaped
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intensity profile in the far-field. In the experiment, this is achieved by stacking (1) a

fiber out-coupler delivering a green Gaussian beam, (2) a pellicle beam-sampler for

intensity stabilization, (3) an axicon, and (4) a microscope objective to convert the

near-field Bessel- into far field ring-shaped intensity profile, into a single lens tube

assembly, see Fig. 3-2.

Directly imaging these ring and elliptical beams onto the atoms would work, but

produce a potential with relatively soft edges. It is better to shine these beams onto a

mask first, a circular one for the ring beam and a rectangular one for the two endcaps,

with roughly the same dimension, and image this mask onto the atoms. This way the

edge sharpness of the potential at the atoms is only limited by the optical resolution of

the imaging optics and independent of the width of the ring and elliptical beams. In

principle, one could avoid the beam shaping completely and directly shine a Gaussian

laser beam on these masks, however this method would waste too much power, for

example the circular mask would eat away most of the light located at the center of a

Gaussian beam, and create a box wall with uneven height, making the beam shaping

a crucial first step.

The diameter of the ring is ≈ 120 𝜇m while the separation between two endcap

beams is easily changeable. For the data presented in this thesis, we worked with a

separation of ≈ 100 𝜇m. We will comment on our reasons behind picking these values

in the next section.

It is crucial to detune the light frequency of any intersecting beams if the same

coherent light source is used. This ensures that the final potential is void of any

interference pattern and avoids Bragg diffraction which could significantly heat up

the atoms. In our case, we make sure to use opposite orders of the 80 MHz AOM

used for intensity stabilization of the ring and endcap beams.

3.1.2 Loading and alignment

Atoms are transferred from the optical dipole trap to box with the aid of an additional

crossed dipole beam (using the same 1064 nm laser). In our setup, the ring beam is

co-propagating with the optical dipole trap, and the endcap beams are co-propagating
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with the cross dipole beam. To transfer the atoms, one simply needs to increase the

intensity of both dipole beams until atoms squeeze into a region smaller than the size

of the box, then turn the box potential on, and dipole beams off. However, we do not

have enough power in the dipole beams to simultaneously squeeze the atoms along

both radial and axial directions, so, instead, we transfer the atoms in several steps.

First, the intensity of the dipole beam is increased until the radial size of the atoms

is smaller than the diameter of the ring beam, ≈ 120 𝜇m. Second, the intensity

of the ring beam is increased and the optical dipole beam is subsequently turned

down and off. At this point, the atoms are radially held by the ring potential. Now

similar two steps are performed with the crossed dipole beam and the endcap beams

to completely transfer the atoms to the box. Note that all changes in the intensity

are made adiabatically to avoid heating the gas.

One of the reason for picking a 120 𝜇m diameter and 100 𝜇m length is apparent

here. It would be difficult to load atoms into a much smaller box, while a much larger

box might dilute the atomic density. Suppose we could load the atoms into a smaller

box and we desired higher atomic densities. Even then, it might be a bad idea to

reduce the size of the box by too much, because the ratio of the effective volume

occupied the the edges to the volume of the box itself increases significantly as the

box size is reduced. This, in turn, makes a larger fraction of the gas inhomogeneous,

defeating the purpose of making a uniform box potential. The experimental measure-

ment of the fraction of atoms that experience a uniform density is shown in the next

section.

Apart from aligning the optical dipole beams with the green beams, one needs to

cancel the gravity. This can easily be done using a magnetic field gradient where the

gravitation force 𝑚𝑔 is compensated by the magnetic force 𝜇𝐵𝑔𝑖𝑚𝑖𝐵
′, where 𝐵′ is the

gradient in the magnetic field, 𝜇𝐵 is the Bohr magneton, and 𝜇𝐵𝑔𝑖𝑚𝑖 is the magnetic

moment of a particular atomic state. At low magnetic fields, it becomes difficult to

exactly cancel the gravity for multiple atomic states simultaneously because they often

have different magnetic moments. However, at ≈ 690 G, the Zeeman structure of 6Li

atom is in the high-field regime, where magnetic moment for the three lowest states
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Figure 3-3: Characterizing wall steepness. (a) A cartoon depicting the depen-
dence of the radius 𝑅 of a cloud with its Fermi energy 𝐸𝐹 in an imperfect box. The
box potential is modeled as a high order polynomial 𝑉 (𝑟) ∼ (𝑟/𝑟0)

𝑙. (b) Radius of
the cloud as a function of the Fermi energy. The dotted black and dashed red lines
correspond to a perfect box potential and a harmonic potential, respectively, and are
scaled to converge at the highest 𝐸𝐹 . The blue solid line corresponds to a power law
potential 𝑉 ∼ 𝑟16.

is approximately the same, 𝑔𝑖𝑚𝑖 ≈ 1 with deviations much smaller than a percent.

In the experiment, we use the gradient present in a saddle potential produced by the

magnetic fields. We align the atoms to its center until the effects of gravity visually

disappear.

The saddle potential also produces a residual trapping along the axial direction

of ≈ 2𝜋 · 23.4 Hz, and an anti-trapping along the radial direction of ≈ 2𝜋 · 16.5 Hz.

The radial anti-trapping is canceled by using the attractive optical dipole beam (very

small intensities are required). We have left the axial trapping on since it only amount

to a maximum of 1
2
𝑚(2𝜋 · 23.4 Hz)2(50 𝜇m)2 ≈ 2𝜋 · 400 Hz at the edges of the box at

±50 𝜇m, which is only ≈ 4% of the Fermi energy. In fact, a combination of this axial

trapping and ring potential creates a hybrid trap, having two homogeneous and one

harmonic axes, convenient to study thermodynamic properties.

3.1.3 Characterization

We measure two important quantities to characterize the homogeneity of the box,

first measures the steepness of the wall and second measures the uniformity of the

potential.
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Figure 3-4: Characterizing potential uniformity. (a) A box potential with noise
is shown, which could result in inhomogeneous density. Measurements presented in
Fig. 3-3 are not sensitive to this noise, but, a probability distribution 𝒫(𝑛) that
measures the fraction of atoms at a particular density 𝑛 will show the inhomogeneity
as a broad peak. (b) Measured radial probability density 𝒫(𝑛2𝐷) for the column
integrated density 𝑛2𝐷, averaging about 20 in-trap images. The blue solid and red
dashed lines correspond to the uniform and Gaussian traps, respectively. Absorption
images are taken along the symmetry axis (z-axis according to Fig. 3-1) of the box.
(c) Similar data as in (b), but with absorption images taken along an orthogonal
radial (x-axis) of the box. Here, the red solid lines correspond to the hybrid trap,
where two axes are homogeneous while the third axis is harmonic.

Wall steepness. To measure the steepness of the walls of the box, we measure the

effective radius of the cloud 𝑅 as a function of its Fermi energy 𝐸𝐹 . In a perfectly

sharp box, the cloud radius 𝑅 should be independent of 𝐸𝐹 and any deviations must

come from soft edges of the box. The measured 𝑅 is shown in Fig. 3-3.

To quantify the edge sharpness, we model the trapping potential as 𝑉 (𝑟) ∝ (𝑟/𝑟0)
𝑙,

where 𝑟0 is the radius of the box. A perfectly sharp box corresponds to 𝑙→∞ while

a harmonic trap corresponds to 𝑙 = 2. At zero temperature, the atoms are filled up

to the chemical potential 𝜇0 implying 𝜇0 = 𝑉 (𝑅) ∝ (𝑟/𝑟0)
𝑙 and 𝑅 ∝ 𝜇

1/𝑙
0 ∝ 𝐸

1/𝑙
𝐹 . A

fit to the data suggests 𝑙 = 16(2) for the radial direction and 𝑙 = 15(3) for the axial

direction.

Uniformity of the potential. The steepness of the walls doesn’t tell us about

the inhomogeneity present near the center of the box. Even though we are imaging

perfectly dark masks onto the atoms, there is always some amount of light inside the

box caused by imperfect optics, limited resolution of the imaging setup, or diffraction

and back-reflections. To quantify these, we measure the fraction of atoms that expe-
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rience a uniform density, shown in Fig. 3-4 as the probability 𝑃 (𝑛) to find an atom

at a density 𝑛. In a perfectly homogeneous system, all 100% of the atoms are at the

mean density 𝑛0, seen as a delta function at 𝑛0. Any small leakage light will make

the potential inside the box non-zero, and slightly reduce the atomic density. This is

seen as a broadened peak near the mean density. We estimate that about 80% of the

atoms experience a density within 20% of 𝑛0. In contrast, atoms in a harmonic trap

feature a uniform 𝑃 (𝑛), meaning that only 20% of the atoms experience a density

within 20% of 𝑛0. The long tails observed at lower densities come from the edges of

the box.

3.2 Thermometry

In a typical ultracold experiment, temperature of the gas is measured by turning

all trapping potentials off and letting the gas expand in free space. After some

time-of-flight (tof) 𝜏 , the position of the atoms reveal their initial velocity given by

𝑟(𝜏) = 𝑟0+𝑣𝜏 . If the 𝜏 is large enough such that 𝑣𝜏 is much larger than the initial size

of the cloud, then the velocity distribution can be calculated by 𝑣 ≈ 𝑟/𝜏 . However,

this requires a ballistic expansion of the atoms which is not possible in strongly

interacting systems like the unitary Fermi gas. Here, instead of a ballistic expansion,

the atoms go through hydrodynamic expansion [122], and display features, like the

inversion of aspect ratio, that are far from a free expansion.

The usual solution for this problem is to place the strongly interacting gas in

a harmonic trap, for example the optical dipole trap, and extract the temperature

from the density distribution 𝑛(𝑧) or 𝑛(𝑈) where, for a harmonic trap, 𝑈 ∝ 𝑟2. If

the equation of state of the system is known, then one can directly fit the 𝑛(𝑈) and

extract a temperature. Even if the equation of state is not known, it is possible

to get the global temperature from the tails of 𝑛(𝑧). Sufficiently far into the tails,

in the region where the local chemical potential is larger than its global value, the

density should be well approximated by the non-interacting equation of state, namely

the Boltzmann distribution, where 𝑛(𝑈) ∝ 𝑒−𝑈/(𝑘𝐵𝑇 ). However, this method doesn’t
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work in our case either. In a box, all atoms are at the same density, and there are no

tails.

We’ve found several methods to determine the temperature of a strongly-interacting

uniform gas described below. First, the shot noise in the atom numbers is related

to the temperature of the gas [67]. One can calculate the atom shot noise from a

single image by assuming a homogeneous gas, or from repeated images of identically

prepared clouds. While feasible, we did not explore this route in details.

Adiabatic transfer from the box to a harmonic trap. One thing was clear from

the beginning: the inhomogeneous density of a harmonic trap is ideal for thermometry.

We adiabatically transferred atoms from the box to the optical dipole trap. This

was accomplished with the aid of two attractive, crossed dipole beams, which would

allow us to squeeze the atoms into a region smaller than the size of the box. Once

in a harmonic trap, we can easily measure the temperature and the Fermi energy

of the harmonically trapped gas, convert it to entropy using the equation of state,

and, finally, estimate the temperature in the box by assuming the same entropy and

an independently measured Fermi energy in the box. To our surprise, this method

worked. We moved the cloud back-and-forth between the box and harmonic trap

up to five times, and found the entropy to remain unchanged after subtracting the

increase in entropy due to typical background heating. However, it requires precise

alignment of the crossed dipole beams with the center of the box. Furthermore, we

lacked the laser power for the crossed dipole beam to completely squeeze the atoms

when working with typical Fermi energies of ≈ ℎ · 10 kHz.

Isoenergetic expansion from the box to a harmonic trap. An alternate so-

lution is to forgo adiabatic transfer in favor of an isoenergetic one. Since the walls

of the box potential are sharp, there is minimal potential energy stored in the gas.

Therefore, suddenly releasing the atoms from the box into a hybrid trap does not

change the total energy of the system. Here the hybrid trap refers to the combination

of green ring light providing the radial confinement and a magnetic harmonic trap

providing the axial confinement. Going from the box to the hybrid trap only requires

turning the two endcap beams off. Once in the hybrid trap, we can easily measure
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(a)

(b) (c)

Figure 3-5: Isoenergetic expansion for box thermometry. (a) Atoms are release
from the box trap into a harmonic trap by suddenly removing the endcaps. Atoms
move around in the harmonic trap, eventually reaching a thermal equilibrium. After
some evolution time, the energy of the gas is measured 𝐸/𝑁 = 2𝑚𝜔2 ⟨𝑧2⟩ from the
second moment ⟨𝑧2⟩ of the density 𝑛(𝑧), where 𝜔 ≈ 2𝜋 · 23 Hz is the frequency of the
harmonic trap. The complete time evolution is shown in (a), while the first period
is shown in (b). The background heating rate in the harmonic trap is calculated by
fitting the data after 1.5 seconds, shown in black line, which yields a heating rate of
≈ ℎ · 0.1 kHz/s.

the total energy of the gas using equipartition theorem described below. Assuming

an isoenergetic expansion, we can calculate the temperature in the box using the

equation of state and an independent measurement of the Fermi energy in the box.

This is ideal compared to the adiabatic transfer, because it is independent of any

alignments, and only relies on the walls of the box being sharp. This is the primary

method we have used to measure the temperature of the gas for the data presented

in this thesis. A sample of the complete time evolution is shown in Fig. 3-5. We

releasing the atoms in to the hybrid trap, we wait ≈ 1.5 seconds before measuring

the energy, which is found to sufficient to reach thermal equilibrium, see Fig. 3-5(b).

From the measured 𝐸/𝑁 , we subtract ≈ ℎ · 0.1 kHz/s × 1.5 s to account for the

background heating, which is calibrated from data shown in Fig. 3-5(b). In principle,

the pressure of the Fermi gas can be calculated from the early time expansion shown

in Fig. 3-5(c), however we did not investigate this in details.
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The walls of the box are of course not perfectly sharp. There is a small amount

of potential energy that gets lost when suddenly removing the walls of the box. We

experimentally investigate the effects of this by first removing only one of the endcaps.

Here, one half of the cloud is in a harmonic trap while the other half is still in the

box. We measure the energy from the harmonic side, and then remove the second

endcap to let the atoms expand into the hybrid trap. Here, we re-measure the total

energy and compare it to the first measurement. If the potential energy stored in the

endcaps were significant, then the energy of the fully expanded gas would be lower

than partially expanded gas. In contrast, we find the two energies to agree with each

other, within the shot-after-shot fluctuations, leading us to conclude that internal

energy, the sum of kinetic and interaction energy, far outweighs the small amount of

potential energy.

Total energy in the hybrid trap.

The total energy 𝐸 of a gas trapped in an external potential 𝑈(r) is the sum of

its internal energy density 𝜖(r) and potential energy,

𝐸 =

∫︁
𝑑3r [𝜖(r) + 𝑛(r)𝑈(r)] , (3.1)

where 𝑛(r) is the number density. First, in a hybrid trap with 𝑥 and 𝑦 directions

homogeneous, and a cross-sectional area 𝐴, the integral simplifies to

𝐸 = 𝐴

∫︁
𝑑𝑧 [𝜖(𝑧) + 𝑛(𝑧)𝑈(𝑧)] . (3.2)

While we can measure the atomic density and calibrate the trapping potential, it is

typically not possible to measure the internal energy. However, for the scale invariant

unitary Fermi gas, 𝜖 = 3
2
𝑃 . Furthermore, the condition of mechanical equilibrium

requires ∇𝑃 = −𝑛∇𝑈 , which, for a harmonic trap 𝑈(𝑧) ∝ 𝑧2, implies 𝑑𝑃
𝑑𝑧

= −𝑛𝑑𝑈
𝑑𝑧

=
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−2𝑛𝑈(𝑧)
𝑧

. Let’s first calculate the total internal energy 𝐸int

𝐸int = 𝐴

∫︁
𝑑𝑧 𝜖(𝑧) =

3𝐴

2

∫︁
𝑑𝑧 𝑃 (𝑧),

= 3𝐴

∫︁
𝑑𝑧 𝑛(𝑧)𝑈(𝑧), (3.3)

where we have used integration by parts in the last step. The total energy is then

𝐸 = 𝐴

∫︁
𝑑𝑧 [𝜖(𝑧) + 𝑛(𝑧)𝑈(𝑧)] = 𝐴

∫︁
𝑑𝑧 [3𝑛(𝑧)𝑈(𝑧) + 𝑛(𝑧)𝑈(𝑧)] ,

= 4𝐴

∫︁
𝑑𝑧 𝑛(𝑧)𝑈(𝑧) = 4𝑁 ⟨𝑈⟩ , (3.4)

where we have used the definition for mean potential energy

⟨𝑈⟩ =
∫︀
𝑑3r 𝑛(r)𝑈(r)∫︀
𝑑3r 𝑛(r)

=
𝐴
∫︀
𝑑𝑧 𝑛(𝑧)𝑈(𝑧)

𝑁
. (3.5)

Surprisingly, we find that the total energy of the unitary gas in a hybrid trap is

simply 4 times its potential energy. This is similar to the equipartition theorem,

which states that the energy is equally distributed among all degrees of freedom that

appear quadratically in the Hamiltonian. Assuming a potential 𝑈(𝑧) = 1
2
𝑚𝜔2𝑧2, we

can rewrite eq. 3.4 using the second moment of the density

⟨𝑧2⟩ =
∫︀
𝑑3r 𝑛(r)𝑧2∫︀
𝑑3r 𝑛(r)

=
𝐴
∫︀
𝑑𝑧 𝑛(𝑧)𝑧2

𝑁
, (3.6)

𝐸/𝑁 = 4 ⟨𝑈⟩ = 2𝑚𝜔2 ⟨𝑧2⟩ . (3.7)

With the measurements of the atomic density and a calibration of the trapping po-

tential, the total energy is simply proportional to the second moment of the density.

3.3 Imaging 6Li

Imaging is the primary way we collect information about the state of the atoms. Typ-

ically, these images only reveal the atomic density; however, by clever preparations,
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like time-of-flight and radio frequency spectroscopy, we can measure anything from

the momentum distribution and condensate fraction to sound waves.

In this section, we start by reviewing the atomic structure of 6Li, particularly

at high magnetic field, followed by reviewing the properties of near resonant light-

atom interaction that make both absorption and phase contrast imaging possible.

Imaging lighter atoms, such as 6Li, posses additional challenges because they can get

Doppler shifted by more than a linewidth during absorption imaging. We discuss

these subtleties and their solutions for absorption imaging of 6Li. While absorption

imaging is broadly used, it has limitations when imaging very dense clouds (𝑜𝑑≫ 1).

To overcome this we have implemented phase contrast imaging, where the phase shift,

rather than the absorption caused by atom-light interactions, is measured. With this

technique, it is possible to maximize the measurement sensitivity at a desired density

or directly measure the spin imbalance.

3.3.1 Atomic structure of 6Li at high magnetic fields

We want to review the atomic structure of 6Li relevant for atom cooling, trapping,

and imaging.

General structure. For 6Li atoms, the outer shell electron with spin 𝑆 = 1/2,

nucleus with total nuclear spin 𝐼 = 1, and their bound state with principal quantum

number 𝑛 and orbital angular momentum 𝐿 determine the good quantum numbers

and the state of the atom. So, 7 quantum numbers are needed to completely define

the state of the atoms, including 𝑛, 𝑆, 𝐼, 𝐿, and projection of three angular momenta,

𝑚𝑆,𝑚𝐼 , and 𝑚𝐿. For simplicity, we will omit 𝑛 = 2, 𝑆 = 1/2, and 𝐼 = 1 when writing

atomic states, since their values are fixed at ultracold temperatures. A general state

of the atom can then be defined by specifying |𝐿,𝑚𝐿,𝑚𝑆,𝑚𝐼⟩. However, the spin-

orbit interactions couple 𝐿 ·𝑆 to form 𝐽 = 𝐿+𝑆 (fine structure), and electron-nucleus

interactions couple 𝐽 · 𝐼 to form the total angular momentum of the atom 𝐹 = 𝐽 + 𝐼

(hyperfine structure). In absence of any external fields, the energy eigenstates of the

atoms are therefore defined by |𝐿, 𝐽, 𝐹,𝑚𝐹 ⟩, where we have replaced 𝑚𝐿,𝑚𝑆,𝑚𝐼 in

favor of their sum 𝐽, 𝐹,𝑚𝐹 .
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(a)

(b) (c)

M

G

Figure 3-6: Useful transitions in 6Li. (a) Transitions for optical pumping. All tran-
sition connecting |6⟩ and any excited state in the 𝐷2-manifold are shown. The shapes
(up arrow, circle, down arrow) refers to the polarization of light required (𝜎+, 𝜋, 𝜎−).
The brightness of the point indicate the coupling strength for that transition. Add
2𝜋 · 305.66 Hz, the detuning between the 𝐷2 line and main laser lock in Fermi 3 lab,
from these values to find the detuning specifically for the lab. (b) Frequency required
for the RF-transitions, blue line for |1⟩ → |2⟩ and orange line for |2⟩ → |3⟩, are shown.
(c) Frequency required for the MW-transition |6⟩ → |1⟩ is shown.
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Zeeman structure. External magnetic field, for example 𝐵 = 𝐵𝑧, couple to the

magnetic moment 𝜇 of the atom and induce a magnetic dipole moment with energy

𝐻𝐵 = −𝜇 ·𝐵 =

(︂
𝜇𝐵

𝑔𝐿𝐿+ 𝑔𝑆𝑆 + 𝑔𝐼𝐼

ℏ

)︂
·𝐵, (3.8)

where 𝜇𝐵 = 𝑒ℏ/(2𝑚𝑒) is the Borh magneton (in SI units), 𝑒 is the elementary charge,

𝑚𝑒 is electron mass, and 𝑔’s are 𝑔−factors corresponding to different angular mo-

menta. Notice that 𝐻𝐵 is easily diagonalized in |𝐿,𝑚𝐿,𝑚𝑆,𝑚𝐼⟩ basis while the

energy eigenstates of the atoms are defined using the total angular momentum in

|𝐿, 𝐽, 𝐹,𝑚𝐹 ⟩ basis. When the strength of the magnetic field is lower than that of

the hyperfine structure, 𝐻𝐵 can be treated perturbativly to find the Zeeman en-

ergy shift 𝐸𝑍 = 𝜇𝐵𝑔𝐹𝑚𝐹𝐵 of energy eigenstates, where 𝑔𝐹 comes from the sum

𝑔𝐿𝐿+𝑔𝑆𝑆+𝑔𝐼𝐼 [54]. However, as the strength of the magnetic field increases beyond

hyperfine splitting, 𝐹 stops being a good quantum number in favor of |𝐿, 𝐽,𝑚𝐽 ,𝑚𝐼⟩
basis, where the energy shifts are ≈ 𝜇𝐵𝑔𝐽𝑚𝐽𝐵. At even stronger magnetic field,

beyond fine structure splitting, 𝐽 stops being a good quantum number in favor of

|𝐿,𝑚𝐿,𝑚𝑆,𝑚𝐼⟩ basis, where the energy shifts are ≈ 𝜇𝐵(𝑔𝐿𝑚𝐿 + 𝑔𝑆𝑚𝑆)𝐵.

Exact determination of energies require diagonalizing the full Hamiltonian, in-

cluding fine- and hyperfine structure terms, and the Zeeman term 𝐻𝐵. Some of the

useful transitions for optical pumping and state preparation are shown in Fig. 3-6.

3.3.2 Near resonant light-atoms interactions

As light travels through a piece of semi-transparent glass, two things happen: the

phase velocity of light gets reduced and a fraction of light gets scattered or absorbed.

The same thing happens when near-resonant light travels through a gas of atoms.

Both of these effects are quantified by the real and imaginary parts of the index of

refraction1, 𝒩 = 1+𝒩 ′ + 𝑖𝒩 ′′. Inside the cloud, the electric field of the light evolves

1To avoid confusion with the atomic number density 𝑛, we are using the symbol 𝒩 for index of
refraction.
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with a modified wavevector 𝑘 = 𝜔/𝑣 = 𝒩𝜔/𝑐 as

𝐸(𝑧) = 𝐸0𝑒
𝑖𝑘𝑧 = 𝐸0𝑒

𝑖(𝜔/𝑐)𝑧𝑒𝑖𝒩
′(𝜔/𝑐)𝑧𝑒−𝒩 ′′(𝜔/𝑐)𝑧. (3.9)

Here, 𝑒𝑖𝒩 ′(𝜔/𝑐)𝑧 accounts for the additional phase shift resulting from the modified

velocity and 𝑒−𝒩 ′′(𝜔/𝑐)𝑧 accounts for the reduction in electric field amplitude resulting

from absorption or scattering. These two effects serve as the basis for phase contrast

and absorption imaging described in sections below. However, for them to be useful

for imaging, we first need to explicitly show their density dependence.

In general, for any linear dielectric material, the index of refraction is

𝒩 = 𝑐/𝑣 =

√︀
1/𝜖0𝜇0√︀
1/𝜖𝜇

≈
√︀
𝜖/𝜖0 =

√︀
1 + 𝜒𝑒 =

√
1 + 𝑛𝛼 ≈ 1 +

𝑛𝛼

2
, (3.10)

𝒩 ′ ≈ 𝑛Re[𝛼]

2
, 𝒩 ′′ ≈ 𝑛Im[𝛼]

2
, (3.11)

where 𝑣 (𝑐) is speed of light in the dielectric material (in free space), 𝜖 (𝜖0) is electric

permittivity (in free space), 𝜇 (𝜇0) is magnetic permeability (in free space), 𝜒𝑒 is

electric susceptibility, 𝑛 is atomic number density, and 𝛼 is the polarizability. Here,

we are assuming that the material is non-magnetic, 𝜇/𝜇0 ≈ 1, and atomic density is

small enough2 such that 𝑛𝛼≪ 1.

Incident electric field of the laser induces a dipole moment, 𝑑 = 𝛼𝐸, with a pro-

portionality constant 𝛼, the electric polarizibility. The exact solution for 𝛼 involves

solving a Hamiltonian for the atom + quantum radiation + laser field system. Quan-

tum radiation includes all modes of electromagnetic waves and is responsible for the

decay of the excited state. The laser field is treated classically since it contains macro-

scopic number of photons in a single mode. The solution to this Hamiltonian is known

as the optical Bloch equations, see [41] pgs. 604-606 or chapter V for derivation. For

a dilute ensemble of two level atoms, polarizibility is

𝛼 =
2𝑐

𝜔
𝜎

(︂
− 𝛿
Γ
+ 𝑖

1

2

)︂
, (3.12)

2This condition may be violated for clouds with very high density.

66



with absorption cross-section

𝜎 =
𝜎0

1 + (2𝛿/Γ)2 + 𝐼/𝐼sat
, (3.13)

where 𝜔 is laser frequency, 𝜔0 is atomic resonance frequency, 𝛿 = 𝜔0 − 𝜔 is laser

detuning, Γ is atomic linewidth, 𝐼sat = (ℏ𝜔3
0Γ)/(12𝜋𝑐

2) is saturation intensity, 𝜎0 =

6𝜋𝑐2/𝜔2
0 is the maximum absorption cross-section. Another useful quantity is the

photon scattering rate

𝛾 =
Γ

2

𝐼/𝐼sat

1 + (2𝛿/Γ)2 + 𝐼/𝐼sat
. (3.14)

The electric field then evolves as

𝐸(𝑧) = 𝐸0𝑒
𝑖(𝜔/𝑐)𝑧𝑒−𝑖𝑛𝜎(𝛿/Γ)𝑧𝑒−𝑛𝜎𝑧/2. (3.15)

After travelling through a uniform ensemble of atoms of length 𝐿, the laser light

acquires an additional phase shift of −𝑛𝜎𝐿𝛿/Γ and its amplitude reduces to 𝐸0𝑒
−𝑛𝜎𝐿/2

(or intensity to 𝐼0𝑒−𝑛𝜎𝐿 ∼ |𝐸|2). In a general, non-uniform sample, it is possible for

𝑛, 𝜎, and 𝛿 to be a function of 𝑧. In this case, column integrated values are used,

where the additional phase shift ∆𝜑 and final intensity 𝐼𝑓 are found by solving

∆𝜑 = −
∫︁
𝑑𝑧 𝑛𝜎𝛿/Γ (3.16a)

𝐼𝑓 = 𝐼0𝑒
−

∫︀
𝑑𝑧 𝑛𝜎 or

𝑑𝐼

𝐼
= −𝑛𝜎 𝑑𝑧. (3.16b)

These two effects are now explicitly density dependent and serve as the basis for phase

contrast and absorption imaging.

3.3.3 Absorption imaging with Doppler correction

Absorption imaging works by measuring the fraction of light scattered by an atomic

cloud and converting it into atomic density using eqs. 3.16. We shine resonant (𝛿 =

0) light, 𝐼0(𝑥, 𝑦), at an atomic cloud with number density 𝑛(𝑥, 𝑦, 𝑧) and image the

transmitted light, 𝐼𝑓 (𝑥, 𝑦), on a camera. Light scattered by the atoms appear as
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missing light (or a shadow) on the camera and is proportional to the density of

atoms. Below, we will look at solutions to eq. 3.16b in different regimes.

Low intensity imaging: Beer-Lambert law. In this simple scenario, we assume

𝐼 ≪ 𝐼sat and 𝛿 = 0, resulting in 𝜎 ≈ 𝜎0. With this, the exponential in eq. 3.16b

simplifies to −𝜎0
∫︀
𝑑𝑧 𝑛, and we can easily solve for the column density

𝑛2𝑑(𝑥, 𝑦) =

∫︁
𝑑𝑧 𝑛(𝑥, 𝑦, 𝑧) = − 1

𝜎0
ln
𝐼𝑓
𝐼0
. (3.17)

Since only the ratio of intensities appear, we don’t need to calibrate the counts on the

camera (𝑁𝑓 and 𝑁0) to absolute intensity, and 𝐼𝐴/𝐼0 = 𝑁𝐴/𝑁0. The usefulness of this

method lies in the optical density 𝑜𝑑0(𝑥, 𝑦) ≡ 𝑛2𝑑𝜎0 = − ln𝑁𝐴/𝑁0, which requires no

additional inputs or calibrations to interpret absorption images.

While this regime is simple and widely useful, corrections to it are necessary when

higher imaging intensities (𝐼 ≳ 𝐼sat) or optical densities (𝑜𝑑0 ≫ 1) are necessary.

High intensity imaging: saturated Beer-Lambert law. Often, it is necessary

to use higher imaging intensities to improve the signal to noise ratio of the camera. If

𝐼0 ≳ 𝐼sat, the absorption cross-section 𝜎(𝐼, 𝛿=0)=𝜎0/(1+𝐼/𝐼sat) reduces significantly

due to saturation of the excited state population. We can still solve the differential

form of eq. 3.16b exactly by utilizing separation of variables.

For simplicity, let’s first convert all intensities into a unitless form 𝑠 ≡ 𝐼/𝐼sat,

𝑠0 ≡ 𝐼0/𝐼sat and 𝑠𝑓 ≡ 𝐼𝑓/𝐼sat, then solve the differential equation using separation of

variables.

𝑑𝑠

𝑠
= −𝑛𝜎0

1

1 + 𝑠
𝑑𝑧,

∫︁ 𝑠𝑓

𝑠0

𝑑𝑠
1 + 𝑠

𝑠
= −

∫︁ 𝐿

0

𝑑𝑧 𝑛𝜎0,

ln
𝑠𝑓
𝑠0

+ (𝑠𝑓 − 𝑠0) = −𝑛2𝑑𝜎0,

𝑛2𝑑 = −
1

𝜎0

(︂
ln
𝐼𝑓
𝐼0

+
𝐼𝑓 − 𝐼0
𝐼sat

)︂
. (3.18)

While eq. 3.18 is not much more complicated than the Beer-Lambert law, there is one
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important distinction: using it requires absolute calibration of the imaging intensity.

This can be done in two ways. First, we can directly convert the electron counts

reported by the camera to an intensity if camera’s gain and efficiency are calibrated,

losses along the imaging path are known, and magnification of the imaging system is

calibrated. Alternatively, we can directly measure the saturation count 𝑁𝑠𝑎𝑡 ∝ 𝐼𝑠𝑎𝑡 by

scanning the imaging intensity and measuring the observed 𝑜𝑑 on identically prepared

clouds.

Including the Doppler shift crucial for lighter atoms. Let’s first see how

much of a problem Doppler shift would pose under typical imaging conditions. Each

scattered photon with momentum ℏ𝑘𝐿 increases the atom’s momentum by the same

amount and velocity by 𝑣 = ℏ𝑘𝐿/𝑚; which, in turn, Doppler shifts the imaging light

by 𝛿𝐷 = 𝑘𝐿𝑣 = ℏ𝑘2𝐿/𝑚. For 6Li, the Doppler shift per photon is 𝛿𝐷 ≈ 2𝜋 0.15MHz

≈ 1
40

Γ, where Γ ≈ 2𝜋 6MHz is the natural linewidth of the excited state. At 𝐼 ≈ 1𝐼𝑠𝑎𝑡,

a resonant atom would absorb photons at a rate Γ
2

𝐼/𝐼𝑠𝑎𝑡
1+𝐼/𝐼𝑠𝑎𝑡

= Γ
4
≈ 9 photons/𝜇s.

During a typical 10 𝜇s imaging pulse, this would amount to 90 scattered photons or

≈ 2.3Γ of Doppler shift! Under these conditions, it is absolutely necessary to account

for the Doppler shift. For the same imaging conditions, 23Na, the next heavier alkali,

would be detuned by approximately 𝑚6Li/𝑚23Na ≈ 0.26 times less, i.e., ≈ 0.6Γ.

A typical solution to this problem is to change the imaging frequency during the

imaging pulse such that atoms are perfectly on resonance with the light. However,

such a scheme only works for either 2D gases or when atomic densities are low (𝑜𝑑0 ≪
1). In a dense 3D gas, atoms closer to the beam absorb a larger fraction of the light

compared to atoms away from the beam. This causes the Doppler shift to vary

across the cloud, hence, changing the imaging frequency doesn’t completely solve the

problem.

Instead, we include this Doppler shift in eq. 3.16b and exactly solve the resulting

coupled differential equations shown below. Atoms absorb or scatter photons at a

rate 𝛾 and experience an average force 𝐹 = 𝑚𝑑𝑣/𝑑𝑡 = 𝛾 × ℏ𝑘𝐿. This results in

an increase in velocity 𝑣, which in turn increases the detuning to 𝛿 = 𝑘𝑣. The two
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(a) (b) (c)

Figure 3-7: Doppler correction for absorption imaging. We solve the coupled
differential equation 3.20 for varying combinations of initial intensity 𝑠0 = 𝐼0/𝐼sat
and 𝑜𝑑 to find 𝑠𝑓 − 𝐼𝑓/𝐼sat. (a) Typical solution for the reduced intensity 𝑠(𝑧, 𝑡) and
atomic density 𝑛(𝑧, 𝑡) are shown for 10 𝜇s of imaging time. Towards the end, atoms
are Doppler shifted by more than a linewidth, resulting in a larger transmission. (b)
The results of many solutions are summarized as 𝑠𝑓 (𝑠0, 𝑜𝑑). (c) From these results,
we form a lookup table, 𝑜𝑑(𝑠0, 𝑠𝑓 ) shown here, to easily calculate the optical density
from the measured initial and final imaging intensities.

coupled differential equations for reduced intensity 𝑠 ≡ 𝐼/𝐼sat and velocity 𝑣 are

𝑑𝑠

𝑠
= −𝑛 𝜎0

1 + (2𝑘𝑣/Γ)2 + 𝑠
𝑑𝑧, (3.19a)

𝜕𝑣

𝜕𝑡
=

Γℏ𝑘𝐿
2𝑚

𝑠

1 + (2𝑘𝑣/Γ)2 + 𝑠
. (3.19b)

It is convenient to rewrite these equations using the reduced velocity 𝑢 ≡ 2𝑘𝑣/Γ and

Doppler shift per photon 𝛿𝐷 ≡ ℏ𝑘2𝐿/𝑚,

𝜕𝑠

𝜕𝑧
= −𝑛𝜎0

𝑠

1 + 𝑠+ 𝑢2
, (3.20a)

𝜕𝑢

𝜕𝑡
= 𝛿𝐷

𝑠

1 + 𝑠+ 𝑢2
. (3.20b)

Unfortunately, it is not possible to solve these equations analytically; however, we

numerically solve them for different initial imaging intensities 𝐼0 and optical densities

𝑜𝑑 ≡ 𝑛𝜎0 to generate a ‘lookup table’ shown in Fig. 3-7(b). Using it, we create a

function which translates the measured intensities 𝐼0 and 𝐼𝑓 to optical density 𝑛𝜎0,
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Figure 3-8: Verification of the lookup table. Apparent atom count for the spin
up component (𝑁↑) measured at different imaging intensities (𝐼↑). A reference atom
count (𝑁↓) is obtained by subsequently imaging a second spin component at a fixed
imaging intensity (𝐼↓ = 0.23 𝐼sat). Red circles, blue circles, and green circles are
obtained using Beer-Lambert, saturated Beer-Lambert, and Doppler Beer-Lambert,
respectively. Spin balanced clouds are used for these measurements.

shown in Fig. 3-7(c). Fig. 3-8 compares observed density using these three methods.

It is absolutely necessary to include these corrections if quantitative atom numbers

are needed.

Issues at higher densities, re-absorption of scattered photons. We often

found discrepancies between the expected atom numbers (for example from the equa-

tion of state) and the measured atom numbers, even after including the effects of

high intensity and Doppler shift. Furthermore, the discrepancies seemed to be larger

for high density clouds. To quantify this effect, we make two measurements of the

atom numbers of an identically prepared clouds, first in-situ and second after a 5 ms

time-of-flight (tof). The atomic density in the tof images is at least a factor of 5 lower

than in-situ, where we expect the high intensity and Doppler shift corrected ‘lookup

table’ to work. Fig. 3-9 shows these two measurements for a range of different atomic

densities up to ≈ 1.2 𝜇m−3. It is clear from this data that the ‘lookup table’ only

works well for densities ≲ 0.2 𝜇m−3. At a density of ≈ 1.0 𝜇m−3, insitu measurements

are about 66% lower than ones from tof, meaning that the insitu densities need to be

multiplied by a factor of ≈ 1.5 to get the true atomic densities. The density depen-
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Figure 3-9: High density imaging. Atom numbers in the box are measured in
two different ways, first in-situ (y-axis) and second, after a 5 ms time-of-flight (x-
axis). These numbers are calculated using the lookup table, and converted into a
density using the volume of the box. A non-linear dependence is observed, suggesting
presence of effects that are not accounted by the lookup table. We fit the data with
a polynomial of order 2 (black line).

dence of this multiplicative factor makes the situation even worse for measurements

that require a change in density, for example 𝑑𝑛
𝑑𝑧

. An insitu measurement of 𝑑𝑛
𝑑𝑧

would

need to be multiplied by a factor of ≈ 2.5 in order to get the true slope of the density.

Our best guess for the cause of this effect is the so far ignored re-absorption

of an already scattered photon. We expect re-absorption to be more significant at

higher densities, consistent with our measurements. Including these effects through

equations similar to 3.19 or even simulating this system is a difficult task because the

scattered light propagates in all directions. Instead, we fit the data shown in Fig. ??

with a polynomial 𝑛insitu = 1.0 𝑛 + 𝑎2𝑛
2, where 𝑛insitu is the density observed insitu

and 𝑛 = 𝑛tof is the true density as measured after a 5 ms tof, yielding 𝑎2 = −0.29(2).
We convert insitu densities to true densities using this equation whenever necessary.

For measurements that require the most accurate atom numbers, phase contrast

imaging described in the next section is ideal.

3.3.4 Phase contrast imaging

Phase contrast imaging (or polarization rotation imaging) works by measuring the

atom induced phase shift of the transmitted light and converting it into atomic density
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using eqs. 3.16. Here, we utilize off-resonant 𝛿 ≳ Γ imaging light to enhance the atom

induced phase shift ∝ 𝛿/Γ and to minimize absorption.

Since CCD cameras only measure the intensity of light, we first need to convert

the phase information into intensity. Simplest approach would be to construct an

interferometer by splitting the imaging light in two, one goes around and other goes

through the atoms, and merging them before the camera. Any phase shift induced

by the atoms will be mapped onto the intensity because of interference.

Instead of two separate beams, we form the two arms of the interferrometer with

two orthogonal polarizations of a single imaging beam, ensuring that only one of which

is in resonance with the atomic transition. Note that this is not always possible to

do. Often, the second polarization still connects to another atomic transition, making

this approach challenging. For 6Li at high magnetic fields, and imaging perpendicular

to the quantization axis, it is possible. Here, only one of the polarization gets a phase

shift, while the other serves as a reference. Interference between the two polarizations

can be performed using a circular polarizer as shown below.

Jones calculus provides a convenient way to manipulate polarization of any laser

field where polarization is a length 2 column vector and operators like waveplates and

polarizers are 2 × 2 matrices. Suppose that the laser is traveling along 𝑧-direction;

linear polarizations along 𝑥 and 𝑦 are |𝐻⟩ = ( 1
0 ) and |𝑉 ⟩ = ( 0

1 ), respectively, diagonal

(+45∘) and anti-diagonal (-45∘) polarization from 𝑥-axis are |𝐷⟩ = 1√
2
( 1
1 ) and |𝐴⟩ =

1√
2
( 1
−1 ), and finally, right- and left-circular polarizations are |𝑅⟩ = 1√

2
( 1
−𝑖 ) and

|𝐿⟩ = 1√
2
( 1
𝑖 ).

We use an imaging beam with a diagonal polarization |𝐷⟩, where the atoms only

interact with the |𝐻⟩ component while |𝑉 ⟩ serves as a reference. The atoms can

impart a phase shift and reduce the light amplitude quantified by eqs. 3.16a and b.

It is convenient to define the intensity and detuning dependent optical depth,

𝑜𝑑 ≡
∫︁
𝑑𝑧 𝑛𝜎 =

∫︁
𝑑𝑧

𝑛𝜎0

1 + (2𝛿/Γ)2 + 𝐼/𝐼sat
≈ 𝑜𝑑0

1 + (2𝛿/Γ)2 + 𝐼/𝐼sat
. (3.21)

Here, the last step is only possible for 𝛿/Γ ≳ 1, where absorption of photons is
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suppressed and 𝛿, 𝐼 can safely be assumed to be independent of 𝑧. In terms of this

𝑜𝑑, the phase shift and absorption simplify to

∆𝜑 = − 𝛿
Γ

∫︁
𝑑𝑧 𝑛𝜎 = − 𝛿

Γ
𝑜𝑑, (3.22a)

𝑎 ≡ 𝐸𝑓

𝐸0

= 𝑒−
1
2

∫︀
𝑑𝑧 𝑛𝜎 = 𝑒−𝑜𝑑/2. (3.22b)

The action of the atoms can then be accounted by an operator

𝐴 ≡

⎛
⎝𝑎 𝑒

𝑖Δ𝜑 0

0 1

⎞
⎠ =

⎛
⎝𝑒

− 𝑜𝑑
2 𝑒−𝑖 𝛿

Γ
𝑜𝑑 0

0 1

⎞
⎠ . (3.23)

Using a right circular polarizer, RCP = 1
2
( 1 𝑖
−𝑖 1 ), we can interfere the two |𝐻⟩ and |𝑉 ⟩

polarizations. Putting it all together, the initial polarization state |𝐷⟩ transforms to

RCP · 𝐴 · |𝐷⟩ at the camera, which measures an intensity

𝐼𝑓 = 𝐼0 |RCP · 𝐴 · |𝐷⟩|2 . (3.24)

Large detuning limit. It is fruitful to first consider a simple situation where

𝛿/Γ≫ 1 such that the absorption is negligible and phase shift is non-zero, ideally

close to 1. This is only possible for large 𝑜𝑑0 ≫ 1 by picking 𝛿/Γ ≈ 𝑜𝑑0; here,

𝑜𝑑 ≈ 𝑜𝑑0
(𝛿/Γ)2

→ 1
𝑜𝑑0
≪ 1 ensures that the absorption is negligible while the phase shift

𝛿
Γ
𝑜𝑑 ≈ 𝑜𝑑0

𝛿/Γ
→ 1. The action of the atoms then simplifies to 𝐴 ≈

(︀
exp[𝑖Δ𝜑] 0

0 1

)︀
and

camera measures an intensity

𝐼𝑓 =
𝐼0
2

[︂
1− sin

(︂
𝛿

Γ
𝑜𝑑

)︂]︂
. (3.25)

After removing the background intensity 𝐼0/2, the signal sin
(︀
𝛿
Γ
𝑜𝑑
)︀
≈ 𝛿

Γ
𝑜𝑑+𝒪(𝑜𝑑2) is

linearly proportional to the atomic density. Moreover, we can maximize the signal to

noise ratio at a desired 𝑜𝑑 by simply changing the detuning. In contrast, the signal

in absorption imaging, 𝑒−𝑜𝑑 ≈ 1− 𝑜𝑑+𝒪(𝑜𝑑2) is always only sensitive at low 𝑜𝑑 ≲ 1.

Analyzing these images is straightforward. Using eq. 3.25, laser detuning 𝛿 =
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𝜔0 − 𝜔, and measured 𝐼𝑓 , 𝐼0, we can calculate the 𝑜𝑑 = Γ
𝛿
sin−1(1− 2𝐼𝑓/𝐼0) and

𝑜𝑑0 =
1

𝛿/Γ

(︃
1 +

(︂
2𝛿

Γ

)︂2

+
𝐼0
𝐼sat

)︃
sin−1

(︂
1− 2𝐼𝑓

𝐼0

)︂
. (3.26)

Exact solution. Including the absorption effects can also be done analytically.

According to eq. 3.24, the intensity at the camera is

𝐼𝑓 =
𝐼0
2

[︂(︂
1

2
+
𝑒−𝑜𝑑

2

)︂
− 𝑒−𝑜𝑑/2 sin

(︂
𝛿

Γ
𝑜𝑑

)︂]︂
. (3.27)

The signal 2𝐼𝑓/𝐼0 ∝ 𝑜𝑑
2
+ 𝛿

Γ
𝑜𝑑+𝒪(𝑜𝑑2) is still linearly proportional to the density with

the freedom of maximizing sensitivity at a particular 𝑜𝑑. Unlike the large detuning

limit (eq. 3.26), we cannot analytically solve for 𝑜𝑑 here, however, it is efficiently done

with a numerical solver.

Considering experimental imperfactions. The main challenge with phase con-

trast imaging is ensuring that none of the optical elements on the imaging path are

birefringent. For example, dielectric mirrors add a differential phase shift to the

horizontal and vertical polarizations of the reflected beam. This could produce a

signal that is indistinguishable from atoms. It is crucial to properly correct these

imperfactions for an accurate measurement of the atomic density.

One part of the solution is to use optical elements with minimal birefringence such

as metallic mirrors. In a typical experiment, it may not be possible to completely

remove all birefringent optical elements. However, we can characterize the total

differential phase shift in absence of atoms and remove it from the imaging beam by

replacing the last RCP with with a quarter waveplate (QWP) plus a linear polarizer

(LP).

QWP(𝜃) = 𝑒−𝑖𝜋/4

⎛
⎝ cos2 𝜃 + 𝑖 sin2 𝜃 (1− 𝑖) sin 𝜃 cos 𝜃
(1− 𝑖) sin 𝜃 cos 𝜃 sin2 𝜃 + 𝑖 cos2 𝜃

⎞
⎠ , (3.28a)

LP(𝜃) =

⎛
⎝ cos2 𝜃 sin 𝜃 cos 𝜃

sin 𝜃 cos 𝜃 sin2 𝜃

⎞
⎠ . (3.28b)
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First, note that replacing RCP in eq. 3.24 with LP(𝜃 = 0) ·QWP(𝜃 = −𝜋/4) produces

the same 𝐼𝑓 . Suppose the combined effect of all optics is to add a differential phase

shift 𝜖 captured by the operator 𝑆 =
(︀
exp(𝑖𝜖) 0

0 1

)︀
. This unwanted phase can be removed

with LP(𝜃 = 𝜖/2) · QWP(𝜃 = −𝜋/4). Here, the quarter waveplate converts the

diagonal polarization with both the unwanted (𝜖) and atoms induced (𝜑) phase shift

(polarization state 𝐴 ·𝑆 · |𝐷⟩) into a linear polarization at an angle −(𝜑
2
+ 𝜖

2
+ 𝜋

4
) from

the x-axis. Changing the angle of the linear polarizer to LP(𝜃 = 𝜖/2) both removes

the effects of 𝑆 while ensuring that the atoms induced phase shift gets converted to

an intensity signal identical to eq. 3.24 and eq. 3.27.

Imaging two spin states. Typically, we want to simultaneously image two atomic

states. Luckily, for Lithium at 690 Gauss, the desired states |↑⟩ = |1⟩ and |↓⟩ = |3⟩
are detuned by ≈ 120 MHz, much larger than the laser linewidth and Γ. This makes

it possible to quickly change the imaging frequency and take two consecutive images,

𝐴 and 𝐵. For absorption imaging, each image is decoupled from the other and

shows the signal from a single atomic state. In contrast, for phase contrast imaging,

things are a little more complicated. We would still need to take two images, and

change the imaging frequency in between, however, each image would contain a signal

coming from both atomic states. These two images need to be analyzed together to

independently calculate the atomic density of both states.

Let’s label all atoms related quantities with ↑/↓ (𝑛↑, 𝑛↓, 𝑜𝑑↑0, etc.), all image

related quantities with 𝐴/𝐵 (𝜔𝐴, 𝐼𝐵0 , 𝐼𝐴𝑓 , etc.), and quantities that depend on both

atoms and images with their combination (𝛿𝐴↑ = 𝜔↑
0 − 𝜔𝐴, 𝑜𝑑𝐴↓ =

∫︀
𝑑𝑧 𝑛↓𝜎0/(1 +

(2𝛿𝐴↓ /Γ)
2+ 𝐼𝐴0 /𝐼sat) ≈ 𝑜𝑑↓0/(1+ (2𝛿𝐴↓ /Γ)

2+ 𝐼𝐴0 /𝐼sat), 𝑜𝑑𝐵↓ , etc). These images measure

the response from both atomic states with individual phase shift and attenuation

given by eqs. 3.22a and b. The total phase shift and attenuation for the two images

are

𝜑𝐴 = −
𝛿𝐴↑
Γ
𝑜𝑑𝐴↑ −

𝛿𝐴↓
Γ
𝑜𝑑𝐴↓ , 𝑎𝐴 = 𝑒−𝑜𝑑𝐴↑ /2𝑒−𝑜𝑑𝐴↓ /2, (3.29a)

𝜑𝐵 = −
𝛿𝐵↑
Γ
𝑜𝑑𝐵↑ −

𝛿𝐵↓
Γ
𝑜𝑑𝐵↓ , 𝑎𝐵 = 𝑒−𝑜𝑑𝐵↑ /2𝑒−𝑜𝑑𝐵↓ /2, (3.29b)
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and intensities at the camera are

𝐼𝐴𝑓 =
𝐼𝐴0
2

[︂(︂
1

2
+
𝑎2𝐴
2

)︂
− 𝑎𝐴 sin (𝜑𝐴)

]︂
, (3.30a)

𝐼𝐵𝑓 =
𝐼𝐵0
2

[︂(︂
1

2
+
𝑎2𝐵
2

)︂
− 𝑎𝐵 sin (𝜑𝐵)

]︂
. (3.30b)

Even though there are a lot of variables, only two are unknown, 𝑜𝑑↑0 and 𝑜𝑑↓0 (or,

alternatively, 𝑛↑ and 𝑛↓). With the two measured intensities, we can solve the system

of equations to find the two densities. While it is not possible to analytically solve

these equations, it is efficiently done with a numerical solver.
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Chapter 4

Sound waves, measuring the coupled

transport of momentum and heat

The study of non-equilibrium physics is typically closely linked to the study of sound

waves. They are ubiquitous in nature from ripples in a pond, waving of a flag to

phonons in a crystal. They are the first things that show up when a system is

perturbed and their properties dictate the low-energy excitations of materials.

Our goal is to study the non-equilibrium, transport properties of strongly inter-

acting Fermi gases using sound waves. We will first discuss how to create and observe

sound waves, followed by measuring its fundamental property, the linear dispersion.

The attenuation of sound provides a direct route to measure transport properties

of this system. We study this attenuation rates’ dependence on sound frequency

and gas temperature. At low frequencies, the attenuation of sound is governed by

hydrodynamics, where we measure the sound diffusivity.

But first, I want to tell the story of how we came across sound waves.

4.1 Mysterious resonances while heating the gas

Among countless other topics, non-equilibrium transport physics was always on top

of our list of things to study in the box. However, we didn’t have a set path to tackle

this problem. So, after creating and characterizing the box, we began to explore equi-
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(a) (b)

Figure 4-1: Signature of resonant sound modes of the box. The intensity of
the endcaps of a cylindrical box is modulated at a drive frequency 𝜔 for 150 cycles.
This induces density waves in the Fermi gas, which travel through the box, reflect
off of the box walls, and eventually dissipate into heat. The final internal energy per
particle 𝐸/𝑁 is shown for a Fermi gas in both the superfluid phase (a) and in the
normal phase (b). This data is fit (black line) with a sum of five Lorentzian functions
with independent widths and centers.

librium physics, specifically thermodynamics and radio-frequency spectroscopy. This

required producing homogeneous gases with temperatures ranging from the deeply

degenerate limit 𝑇/𝑇𝐹 ≲ 0.1 to high-temperatures 𝑇/𝑇𝐹 ≫ 1. However, our box load-

ing procedure always produced deeply degenerate clouds, and getting hotter gases re-

quired some way to inject heat into the system. We employed the simplest approach;

modulating the intensity of one of the trapping light for a variable amount of time.

This would create density ripples (i.e. sound waves) which would decay and convert

input energy into heat. On a particular day and at a particular modulation frequency

(typically 1 kHz), we could reliably and reproducibly heat the Fermi gas. However,

from day to day, especially if the box size had changed due to mask alignment, we

found the same modulation to result in different final temperatures. At first, we just

ignored this, thinking it must be just one of those days! Until, we became curious

enough and decided to closely inspect the heating rate as a function of the modulation

frequency shown in Fig. 4-1.

To our surprise, we found several resonances in the heating rates. While we knew

that we were injecting sound waves, seeing these resonances made it clear to us that

these sound waves were reflecting off of the walls and interfering with themselves to
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(a) (b)

Figure 4-2: Properties of sound from resonant heating. The Lorentzian fits
shown in Fig. 4-1 give access to the resonance frequency (a) and attenuation rates
(b) of five resonant modes of the box. Blue data are for a Fermi gas in the superfluid
phase while red data are in the normal phase. The dispersion relation is fit with
a linear function 𝜔 = 𝑐𝑘 which yields a speed of sound 𝑐 = 18.1(1) mm/s and
18.2(2) mm/s for the two datasets. The attenuation rates are fit with a quadratic
function, Γ = 𝐷𝑠𝑘

2 which yields a sound diffusivitiy 𝐷𝑠 = 0.8(2) ℏ/𝑚 (below 𝑇𝑐) and
1.9(1) ℏ/𝑚 (above 𝑇𝑐).

create standing waves of sound. The distinct resonances were coming from different

harmonic modes, or resonant modes, of the box. They are evenly spaced and feature

a linear dispersion shown in Fig. 4-2 (a), a telltale sign of sound waves. The widths

of these resonances gave us direct access to the attenuation rate of sound shown

in Fig. 4-2 (b). While we cannot definitively claim, at this point, that we see the

characteristic Γ = 𝐷𝑠𝑘
2 ∝ 𝑘2 scaling expected from hydrodynamics, we nonetheless

estimate a sound diffusivity 𝐷𝑠 ≈ 1 ℏ/𝑚 below 𝑇𝑐 and ≈ 2 ℏ/𝑚 above 𝑇𝑐. Even

though this method provides us a quantitative tool to study the transport of sound,

we quickly abandoned it after seeing the potential of in-situ observations of sound

waves presented in the rest of this chapter.

This little mystery opened the door to several projects in our lab, starting with the

sound waves presented in this chapter, heat transport presented in the next chapter

and second sound presented in Z. Yan’s thesis [192].
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Figure 4-3: Creating sound waves. Sound is excited by sinusoidally modulating
the intensity of the left endcap wall. The endcap potential’s sharpness is ≈ 3 𝜇m.
Therefore, increasing its intensity imparts an inward force on atoms closest to the
walls and causes a local increase in gas density. This perturbation subsequently
propagates through the box.

4.2 Traveling sound wave and its dispersion relation

4.2.1 Creating and imaging sound waves

Creating sound waves is probably the easiest thing one can do; any perturbation in

the external potential will inevitably result in sound waves. Here, changes in external

potential (de)compresses the density, which in turn travel as a wave and eventually

decay to reach thermal equilibrium.

We create sound waves using the same principle; by modulating the intensity

of one or both of the endcap beams, as shown in Fig. 4-3. Note that if the endcap

beams were to produce an infinitely sharp trapping potential, modulating its intensity

wouldn’t cause a change in density. However, the sharpness of the edge of the endcap

beam is limited by the optical resolution ≈ 3 𝜇m. This produces a trapping potential

with an edge that can be approximated by an error function of a width ≈ 3𝜇m. With

this finite width, increasing the intensity of the endcap beams does push the atoms

inwards, creating a density perturbation.

In a non-interacting gas, this density perturbation would slowly disappear (wash
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(a) (b) (c)

Figure 4-4: Imaging sound waves. Absorption images without (a) and with (b)
intensity modulation, along with their difference (c) are shown. Optical densities
averaged over the homogeneous axis are shown in the bottom panel of (a) and (b),
while their difference, normalized by the average density, is shown in the bottom
panel of (c). Propagating density perturbation is visible in (b), but it is made clearer
by subtracting the background density shown in (c). Here, the intensity of the left
endcap beam was modulated at 2𝜋 · 600 Hz for ≈ 5 ms before taking an absorption
image.

out) as particles travel ballistically throughout the fluid. In contrast, the unitary

Fermi gas is a strongly interacting system with mean free path as small as interparticle

spacing [14]. Here, particles quickly transfer their momentum to their neighbors,

resulting in the imprinted density perturbation to travel as a wave across the box.

These density waves are directly observed in absorption images, see Fig. 4-4 (b),

where the bottom panel shows the density integrated over the homogeneous axis of

the box. Subtracting the background density taken without any modulation (Fig. 4-4

(a)) makes the density wave clearer, see Fig. 4-4 (c). These images were taken after

≈ 5 ms of intensity modulation at 2𝜋 · 600 Hz frequency. Modulating the endcaps of

a cylindrical box, as opposed to the cylindrical walls, was ideal because it produced

sound waves that travel along the symmetry axis of the cylinder. These sound waves

are essentially one dimensional in nature and allows us to integrate the density along

the two radial axes of the box, one of which is naturally performed by the absorption

imaging along 𝑥-direction, to generate one dimensional traces shown in the bottom
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panel of fig. 4-4.

When subtracting the background density or averaging repeated experimental

runs, it is crucial to align the box of individual run to each other. This is best

performed by fitting the integrated density 𝑛(𝑧) with

𝑛0

2

(︂
erf

(︂
𝑧 − 𝑧𝐿√
2𝜎𝐿

)︂
+ erf

(︂
−𝑧 + 𝑧𝑅√

2𝜎𝑅

)︂)︂
+ polynomial, (4.1)

where 𝑛0, 𝑧𝐿, 𝜎𝐿, 𝑧𝑅, 𝜎𝑅 are fit parameters, and a slice 𝑛(𝑦, 𝑧 ≈ 0) of the box taken

along the center of the box with 𝑛0− 𝑛0 ((𝑦 − 𝑦0)/𝑅)2, where 𝑛0, 𝑦0, 𝑅 are fit param-

eters. The polynomial part of 𝑛(𝑧) is there to account for either the slight inhomo-

geneity in the box or density oscillation resulting from sound waves. For sound waves

with wavelength ≳ 𝐿 or for densities without any modulation, a simple 2nd order

polynomial is optimal. The center of the box fluctuates by ≈ 3 𝜇m with a drift of up

to 8 𝜇m over a period of an hour.

4.2.2 Dispersion relation

The dispersion relates the frequency 𝜔 of an excitation to its spatial wavenumber

𝑘. The characteristic dependence of 𝜔 on 𝑘 determines the nature of excitations;

for example, free particle excitations feature a quadratic dispersion while phonons,

or sound waves, display a linear dependence. Here, the dispersion relation is best

measured using traveling waves void of any interference effects. We create them at

a particular frequency by modulating the intensity of one of the endcap beams for

a time long enough such that sound waves reach the other side of the box but not

reflect off of it. Taking an absorption image reveals the traveling waves in position

domain, shown in the inset of fig. 4-5 (a) at 𝜔 = 2𝜋 · 600 and 850 Hz. We fit a

decaying sinusoidal

𝑎0𝑒
−𝛼𝑧 sin

(︁√
𝑘2 − 𝛼2𝑧 − 𝜑

)︁
(4.2)

to find the corresponding wavenumbers 𝑘 = 2𝜋/(25.9(3) 𝜇m) and 2𝜋/(18.8(2) 𝜇m).

In addition to 𝑘, 𝑎0, 𝜑, and 𝛼 are fit parameters for the amplitude, phase, and decay
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(a) (b)

Figure 4-5: The dispersion and attenuation rate of traveling sound waves.
Sound waves are produced at a frequency 𝜔 and the corresponding wavenumber 𝑘
(shown in (a)) and attenuation rate Γ (shown in (b)) are measured from a sinusoidal
fit to the density waves shown in inset of (a). The insets display sound waves observed
at 𝜔 = 2𝜋·600 Hz and 850 Hz. The fitted slope (black line in (a)) provides the speed of
sound, while a quadratic fit (black line in b) provides the sound diffusivity. Statistical
errors are shown in both (a) and (b), however they are smaller than the point size for
(a).

constant of sound waves. The decay constant enables us to measure the attenuation

rate of sound Γ = 2𝑐𝛼, which should display a ∝ 𝑘2 scaling in the hydrodynamic

regime. The
√
𝑘2 − 𝛼2 term accounts for the effective wavenumber in heavily damped

sound waves present at 𝜔 ≳ 2𝜋 · 1000 Hz. For under-damped sound, 𝛼≪ 𝑘, resulting

in sin
(︀√

𝑘2 − 𝛼2𝑧 − 𝜑
)︀
≈ sin (𝑘𝑧 − 𝜑)

The dispersion relation 𝜔(𝑘) is shown in fig. 4-5 (a) for frequencies 2𝜋·400−1300 Hz

corresponding to 0.04 − 0.13 𝐸𝐹 . It is linear within our measurement errors in the

explored region, allowing us to measure the speed of sound 𝑐 = 15.6(1) mm/s from its

slope. At wavelengths approaching the interparticle spacing, and thus at momenta

approaching the Fermi momentum 𝑘 ≈ 𝑘𝐹 , deviations from linear dispersion are

expected for the unitary Fermi gas [104]. The lowest order expansion of the dispersion

is

𝜔 = 𝑐𝑘

[︃
1 +

𝛾

8

(︂
ℏ𝑘
𝑚𝑐

)︂2
]︃
. (4.3)
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A fit to the data yields an upper bound for |𝛾| ≤ 0.88, consistent with theoretical

prediction of 𝛾 ≈ +0.08 [104]. Measurements of the dispersion relation close to

the Fermi momentum are required to better estimate the sign and strength of this

concavity.

The attenuation of sound is already apparent in traveling waves shown in Figs. 4-4

and Fig. 4-5. By fitting 𝑛(𝑧) with the decaying sinusoidal, we also measure the sound

attenuation rate Γ = 2𝑐𝛼, shown in Fig. 4-5 (b). While these fits give excellent results

for the wavenumber, they are very finicky in determining attenuation rates, especially

for highly damped sound at higher frequencies. We nevertheless determine a sound

diffusivity using a robust fit Γ = 𝐷𝑠𝑘
2 with an arctan loss function shown in Fig. 4-5

(b). For a Fermi gas at ≈ 0.1 𝑇𝐹 , we find a 𝐷𝑠 ≈ 0.8(3) ℏ/𝑚.

While traveling waves enable us to measure the attenuation rate of sound, for a

precision measurement, we turn to resonant modes described in the next section.

4.3 Sound diffusivity from the resonant modes

If we continue to modulate the intensity for a time longer than 𝐿/𝑐, sound waves

would reflect off of the second endcap and interfere with itself, eventually reaching

some steady state oscillations. If the wavelength of sound wave is close to 2𝐿/𝑗 (or

frequency close to 𝜔𝑗 = 𝑗𝜔0 = 𝑗𝑐𝑘0 = 𝑗𝑐 𝜋
𝐿
), for any integer 𝑗, then the reflected waves

constructively interfere to produce large amplitude resonant modes, while away from

it, destructive interference will lead to complete or partial cancellation of sound waves.

This is similar to sound waves produced by musical instruments like a flute, where

the column of air amplifies sound at a specific resonance frequency and its multiples,

i.e. harmonics, determined by the length of the flute and speed of sound in air. We

will first calculate the exact steady state response of the system using the density

response function and then describe our methods to measure it.

86



4.3.1 Steady state response

A classical damped driven harmonic oscillator with a resonance frequency 𝜔0 and

damping rate Γ responds to an external sinusoidal potential ∼ sin(𝜔𝑡) at exactly the

drive frequency 𝜔, but with an amplitude 𝐴 and phase shift 𝜑 that are determined

by the detuning 𝜔 − 𝜔0. The amplitude 𝐴(𝜔) features a Lorentzian peak centered at

𝜔0 while the phase shift goes from 0 to 𝜋 across the resonance, with 𝜑 = 𝜋/2 at 𝜔0.

The unitary Fermi gas in a box potential responds similarly to a collection of classical

oscillators, with 𝑗th oscillator having a resonance frequency 𝜔𝑗 = 𝑗𝜋𝑐/𝐿 and decay

rate Γ𝑗.

We quantitatively find the steady state solution using the density response func-

tion 𝜒𝑛. It relates the perturbation in fluid’s density to the external potential,

𝛿𝑛(𝑘, 𝜔) = 𝜒𝑛(𝑘, 𝜔) 𝛿𝑉 (𝑘, 𝜔), see eq. 2.17a. We can find the density response to an ar-

bitrary external potential with Fourier components 𝛿𝑉 (𝑘′, 𝜔′) =
∫︀
𝑑𝑧 𝑒−𝑖𝑘′𝑧

∫︀
𝑑𝑡 𝑒−𝑖𝜔′𝑡𝛿𝑉 (𝑧, 𝑡)

by solving

𝛿𝑛(𝑧, 𝑡) =

∫︁
𝑑𝑘′

2𝜋
𝑒𝑖𝑘

′𝑧
∫︁
𝑑𝜔′

2𝜋
𝑒𝑖𝜔

′𝑡 𝜒𝑛(𝑘
′, 𝜔′) 𝛿𝑉 (𝑘′, 𝜔′),

=
∑︁

𝑘𝑗=𝑗 𝜋
𝐿

cos(𝑘𝑗𝑧)

∫︁
𝑑𝜔′

2𝜋
𝑒𝑖𝜔

′𝑡 𝜒𝑛(𝑘𝑗, 𝜔
′) 𝛿𝑉 (𝑘𝑗, 𝜔

′), (4.4)

where the last step assumes a box with endcaps located at 𝑧 = 0 and 𝐿. If the endcaps

were located at 𝑧 = −𝐿/2 and 𝑧 = 𝐿/2, the cos(𝑘𝑗𝑧) would need to be replaced by

sin(𝑘𝑗𝑧) for odd 𝑗’s.

We sinusoidally modulate the intensity of an endcap beam using a 𝛿𝑉 (𝑡) ∼ sin(𝜔𝑡)

drive. A sine, as opposed to cosine, drive avoids sudden jumps in the potential when

the drive is first turned on. Its Fourier amplitude is 𝛿𝑉 (𝜔′) ∼
∫︀
𝑑𝑡 𝑒−𝑖𝜔′𝑡 sin(𝜔𝑡) =

𝑖𝜋(𝛿(𝜔′+𝜔)−𝛿(𝜔′−𝜔)), where 𝛿(𝜔) ≡ 1
2𝜋

∫︀
𝑑𝑡 𝑒𝑖𝜔𝑡 is the Dirac delta function. Unlike

in the experiment, here we are assuming the drive to be on at all times in order to find

the steady state solution. If the transient part was also desired, we would multiply

the drive by a Heaviside step function.

The spatial Fourier amplitude of the drive is determined by the shape of the
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modulating potential, i.e. the endcap potential, 𝑉 (𝑧). The endcap beams are well

modeled by a Gaussian error function with an edge sharpness of ∼ 3𝜇m, resulting in

a Fourier amplitude with a Gaussian shape of width ≈ 𝜋/(3𝜇m). For 𝑘 ≪ 𝜋/(3𝜇m),

it is safe to assume 𝛿𝑉 (𝑘) ∼ 𝑉0 to be uniform. Plugging the drive

𝛿𝑉 (𝑧, 𝑡) = 𝑉 (𝑧) sin(𝜔𝑡), (4.5a)

𝛿𝑉 (𝑘′, 𝜔′) = 𝑖𝜋𝑉 (𝑘′) (𝛿(𝜔′ + 𝜔)− 𝛿(𝜔′ − 𝜔)) , (4.5b)

into eq. 4.4, we find the density response

𝛿𝑛(𝑘𝑗, 𝑡) = 𝑉 (𝑘𝑗) (− sin(𝜔𝑡) Re[𝜒𝑛(𝑘𝑗, 𝜔)] + cos(𝜔𝑡) Im[𝜒𝑛(𝑘𝑗, 𝜔)]) , (4.6a)

𝛿𝑛(𝑧, 𝑡) =
∑︁

𝑘𝑗=𝑗𝜋/𝐿

𝛿𝑛(𝑘𝑗, 𝑡) cos(𝑘𝑗𝑧). (4.6b)

In general, the system responds at a range of 𝑘𝑗 for any particular 𝜔, however, 𝜒𝑛

is strongly peaked at the sound resonance 𝑘𝑗 = 𝜔/𝑐. Consequently, if 𝜔/𝑐 is away from

any 𝑘𝑗’s, the response will be very small. These are precisely the resonant modes of the

box potential. Furthermore, the in- and out-of-phase amplitudes of the response are

given by 𝑉0(𝑘𝑗) Re[𝜒𝑛(𝑘𝑗, 𝜔)] and 𝑉0(𝑘𝑗) Im[𝜒𝑛(𝑘𝑗, 𝜔)], which can easily be measured

by imaging the density when either cos(𝜔𝑡) = 0 or sin(𝜔𝑡) = 0, respectively.

4.3.2 Imaging the resonant box modes, the sonogram, and 𝜒𝑛

Resonant modes are best observed in frequency and position domain by measuring

the density after a steady state is reached at varying drive frequencies. Notice that

in the steady state, the density oscillates at 𝜔, meaning that at different times during

the drive cycle, we would observe different amplitudes of the sound wave. However,

it is not necessary to measure the density response at all times; only two independent

variables, the amplitude and phase shift of the response, or, equivalently, the real

and imaginary parts of 𝜒𝑛, completely characterize the response. Furthermore, the

density at 𝑡 = 𝑁 2𝜋
𝜔

and 𝑡 = (𝑁 +1/4)2𝜋
𝜔

, for any integer 𝑁 , is proportional to Im[𝜒𝑛]

and Re[𝜒𝑛] respectively, providing us a direct route to measure 𝜒𝑛.
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(a) (c)(b)

Figure 4-6: Resonant modes of the cylindrical box. The steady-state density
response of the gas is obtained by modulating the endcap wall at a frequency 𝜔 for
30 cycles of the drive. Standing waves of the sound corresponding to the resonant
modes in the box are observed at frequencies 𝜔𝑗 = 𝑗𝜋𝑐/𝐿 ≈ 2𝜋 · 77 Hz (where 𝑗 is
any positive integer), the first five of which are shown in (a). The full sonogram is
shown in (b). Here, each row of pixels corresponds to a particular realization of the
experiment at a given frequency. (c) The spatial Fourier transform directly yields the
density response Im[𝜒𝑛(𝑘, 𝜔)]. It reveals well-defined resonance peaks exhibiting both
the linear dispersion of sound (shown in black line) and increasing widths if frequency
at higher wave numbers, corresponding to increased rates of sound attenuation.

We image the density after 30 complete cycles at 𝑡 = 302𝜋
𝜔

of a sin(𝜔𝑡) drive. This

time was experimentally confirmed to be long enough to reach a steady state at all

frequencies explored. These measurements are summarized in Fig. 4-6 for a unitary

Fermi gas at 𝑇/𝑇𝐹 ≈ 0.1 in a box of length 𝐿 ≈ 95 𝜇m. Each row of fig. 4-6 (b)

shows the fractional density modulation at a particular drive frequency, 𝛿𝑛(𝑧, 𝜔)/𝑛.

This is the ‘sonogram’ of the unitary Fermi gas in a cylindrical box. Here, discrete

resonant modes of the box are easily visible, the first five of which are shown in fig. 4-

6 (a). A spatial Fourier transform extracts the response 𝛿𝑛(𝑘𝑗, 𝜔)/𝑛 at a particular

𝑘𝑗, enabling us to find the density response function Im[𝜒𝑛(𝑘𝑗, 𝜔)] = 𝛿𝑛(𝑘𝑗, 𝜔)/𝑉 (𝑘𝑗)

shown in Fig. 4-6 (c) and again in Fig. 4-7.

Each resonant mode of the box with a wavenumber 𝑘𝑗 features a peak in Im[𝜒𝑛](𝜔)
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Figure 4-7: Density response function 𝜒𝑛. The imaginary part of the density
response function at each resonant mode wave number 𝑘𝑗 is obtained from a spatial
Fourier transform of the steady-state response. It displays a well-defined peak in
frequency, whose full-width at half-maximum yields the mode damping rate Γ. This
is obtained from a Lorentzian fit, shown by solid lines.

(see Fig. 4-7) at 𝜔𝑗 = 𝑐𝑘𝑗 with a full width at half maximum Γ𝑗, enabling us to measure

the dispersion, speed, and attenuation rates of sound. We fit a Lorentzian

𝑎0
(Γ𝑗/2)

2

(𝜔 − 𝜔𝑗)
2 + (Γ𝑗/2)

2 (4.7)

to each of the resonant modes to find the speed 𝑐 = 𝜔𝑗/𝑘𝑗 from the center and sound

attenuation rate Γ𝑗 from the width of the peaks. The sound attenuation rate can

be seen to increase with 𝑘, revealed in both a broadened frequency response as well

as a reduced peak height. This spectroscopic method of measuring Γ produces much

higher quality data than traveling waves or heating rate shown before. From the speed

of sound, we test the universality of the unitary Fermi gas, and from the attenuation

rates, we test the applicability of Hydrodynamics and measure the sound diffusivity.

4.3.3 Speed of sound

The precise determination of the speed of sound enable us to test the scale invariance

of the unitary Fermi gas. In general, the speed of sound in a particular system de-

pends on its specific equation of state; however, for all non-relativistic, scale-invariant

systems in three dimensions, a universal relation emerges, 𝑚𝑐2 = 10
9

𝐸
𝑁

, relating the
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Figure 4-8: Scale invariant speed of sound. Measurement of the universal relation
between the speed of sound and the energy-per-particle 𝐸/𝑁 . The speed of sound is
measured from the peak of the second resonant mode of the box while the energy is
measured from an isoenergetic expansion of the homogeneous gas from the box to a
harmonic potential. The black solid line shows the predicted linear dependence for
any nonrelativistic scale-invariant system in three dimensions: 𝑚𝑐2 = 10

9
𝐸/𝑁 . Data

are shown for both the normal (red) and the superfluid (blue) phase.

speed of isentropic sound 𝑐 to system’s energy per particle 𝐸/𝑁 as described below.

For any system, the speed of isentropic sound is given by

𝑚𝑐2 =
𝜕𝑃

𝜕𝑛

⃒⃒
⃒⃒
𝑆

=
𝑉 2

𝑁

𝜕2𝐸

𝜕𝑉 2

⃒⃒
⃒⃒
𝑆

, (4.8)

where 𝑚 is particle mass, 𝑁 is number of particles, 𝑛 = 𝑁/𝑉 is number density, 𝑉 is

system volume, 𝑆 is entropy, 𝐸 is total internal energy, and 𝑃 = − 𝜕𝐸
𝜕𝑉

⃒⃒
𝑆

is pressure.

Let’s consider a non-relativistic scale-invariant system. Under dilation of space by a

factor 𝜆, its position 𝑥 → 𝜆𝑥, momentum 𝑝 → 𝑝/𝜆 and energy 𝐸 → 𝐸/𝜆2. Such a

scaling for the energy is only possible if 𝐸 ∝ 𝐿−2 ∝ 𝑉 −2/3, where 𝐿 = 𝑉 1/3 is the

size of the system, resulting in 𝜕𝐸
𝜕𝑉

= −2
3
𝐸
𝑉
∝ 𝑉 −5/3 and 𝜕2𝐸

𝜕𝑉 2 = 10
9

𝐸
𝑉 2 . This yields the

universal relation

𝑚𝑐2 =
10

9

𝐸

𝑁
, (4.9)

independent of the equation of state, temperature, or even the phase of the system.

In fig. 4-8, we show the measured 𝑚𝑐2 as a function of the gas energy per particle
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𝐸/𝑁 . The speed of sound is calculated from the peak of the lowest symmetric resonant

mode (𝑗 = 2) of the box and 𝐸/𝑁 is measured from an isoenergetic expansion of the

gas from the box into a harmonic trap (described in sec. 3.2). In both the superfluid

(blue circles) and normal (red circles) phases, and for varying temperatures and Fermi

energies, the scale invariant prediction (black line) captures our data well with no free

parameters. With this verification, speed of sound provides us a convenient tool to

measure the energy and therefore the temperature of the gas using the equation of

state.

4.3.4 Attenuation of sound in the hydrodynamic and collision-

less regime

The qualitative dependence of the sound attenuation rate Γ on its wavenumber 𝑘

is intricately dependent on the underlying interactions between phonons and other

thermal excitations in the fluid and reveals the nature of transport. A classic example

is hydrodynamic damping of sound where Γ ∝ 𝑘2 with proportionality constant being

the sound diffusivity 𝐷𝑠. Here, sound oscillations are assumed to be slow enough

to maintain local thermal equilibrium. This is the case when the sound frequency is

small compared to scattering rates of thermally excited phonons Γt.ph and other quasi-

particles. Once the frequency of sound waves 𝜔 = 𝑐𝑘 ≳ Γt.ph, hydrodynamic damping

becomes invalid and sound waves enter a ‘collisionless’ regime. Here, the qualitative

scaling of Γ(𝑘) depends on the specific form of interactions between phonons and

other thermal excitations, and on the concavity of the dispersion relation [105].

In Fig. 4-9, we show Γ(𝑘) at various gas temperatures in both linear and log

scale. Here, Γ is the measured full-width at half-maximum of the Lorentzian peaks

located at each of the resonant modes, see Fig. 4-7. In the normal phase, for 𝑇 >

𝑇𝐶 ≈ 0.17 𝑇𝐹 , we find a quadratic scaling Γ ∝ 𝑘2 for the range of wavenumbers

explored, 𝑘 ≲ 0.3 𝑚𝑐/ℏ ≈ 0.1 𝑘𝐹 , validating hydrodynamic transport. In contrast,

at 𝑇 ≈ 0.1 𝑇𝐹 , we observe a departure from the quadratic scaling for wavenumbers

𝑘 ≳ 0.15 𝑚𝑐/ℏ, indicating a departure from the purely hydrodynamic transport at
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(a) (b)

Figure 4-9: Sound attenuation rate in the hydrodynamic and collisionless
regimes. Sound attenuation rate Γ(𝑘) for gas temperatures /𝑇𝐹 = 0.36(5) (red
circles), 𝑇/𝑇𝐹 = 0.21(3) (green squares), and 𝑇/𝑇𝐹 = 0.13(2) (blue triangles) are
shown in both a linear scale (a) and in log-log scale (b). For all temperatures, Γ(𝑘)
displays a quadratic scaling at low momenta characteristic of diffusive damping and
predicted by hydrodynamics. This is clearly seen in log-log space, where Γ ∝ 𝑘2 (solid
lines in (b)) at low momenta. For our coldest samples, as 𝑘 increases, we observe a
deviation from this behavior. Here, we observe Γ ∝ 𝑘 (blue dashed line in (b))
expected from collisionless damping [105]. At all temperatures and wavenumbers,
our data are well captured by the model of [142] (solid lines in (a)), which connects
the hydrodynamic and collisionless regimes by including the finite relaxation rate of
the fluid. Error bars represent 1𝜎 statistical uncertainty.

higher wavenumbers.

In the collisionless regime, non-linearities arising from the kinetic energy carried

by sound waves and the density dependence of the speed of sound lead to phonon-

phonon scattering and decay of sound. To lowest order, three-phonon collisions are

considered where the injected phonon either combines with a thermal phonon (Landau

process, Γ ∝ 𝑘 [142, 105]) or decays into two thermal phonons (Beliaev process,

Γ ∝ 𝑘5 [105]). For 𝑘 ≪ 𝑘𝐵𝑇/ℏ𝑐, or equivalently 𝑘 ≪ 0.6 𝑚𝑐/ℏ at 𝑇 = 0.1 𝑇𝐹 ,

Landau damping process is prominent, consistent with the measured Γ(𝑘) shown in

Fig. 4-9. The crossover from the hydrodynamic to collisionless regime is smooth and

well characterized by Γ(𝑘) = 𝐷𝑠𝑘
2 𝑓(𝑐𝑘/Γt.ph) with 𝑓(𝑥) = tan−1(𝑥)/𝑥 [142]. A

fit (solid lines in (a)) yields a Γt.ph ≈ 0.027 𝐸𝐹/ℏ ≈ 0.27 𝑘𝐵𝑇/ℏ at 𝑇 ≈ 0.1 𝑇𝐹 ,

meaning that sound waves with 𝜔 = 𝑐𝑘 << Γt.ph ≈ 2𝜋 · 270 Hz decay according
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Figure 4-10: Temperature dependence of the sound diffusivity. For tempera-
tures comparable to the Fermi temperature, the sound diffusivity (𝐷, normalized by
ℏ/𝑚; blue circles) approaches the expected high temperature scaling of 𝑇 3/2 (solid
black line). As the temperature is lowered, 𝐷 decreases monotonically and attains
a quantum-limited value close to ℏ/𝑚. Below the superfluid transition (vertical red
line, from [102]), 𝐷 is observed to be almost independent of temperature and conden-
sate fraction (𝑛𝐶/𝑛, red circles in inset). From the transition temperature (𝑛𝐶/𝑛 = 0)
to the coldest temperatures (𝑛𝐶/𝑛 ∼ 0.8), the changes in 𝐷 are within the standard
error of the measurements. Theoretical predictions for 𝐷: the dashed orange line is
from the sound attenuation length calculated in the framework of kinetic theory [24]
and the dashed green line is from a calculation of shear viscosity [51] assuming a
Prandtl number of 2/3. Bars denote statistical error arising from the uncertainty in
Γ. Additionally, the dominant systematic uncertainty in D is an error of 13% arising
from the non-zero width of the endcaps.

to hydrodynamics. At higher temperatures, 𝑇 ≳ 0.17 𝑇𝐹 , the fit yields a Γt.ph much

higher than the frequency of the highest measured resonant mode of the box, implying

that the sound waves are always well described by hydrodynamics.

4.3.5 Sound diffusivity

In Fig. 4-10, we show the sound diffusivity as a function of temperature, where both

the 𝐷𝑠 and 𝑇 are measured from the lowest symmetric resonant mode of the box

(𝑗 = 2). The peak frequency of the resonance is converted into the temperature

using 𝑐 = 𝜔𝑗/𝑘𝑗, 𝐸/𝑁 = 9
10
𝑚𝑐2 and the equation of state 𝑇

𝑇𝐹

(︁
𝐸/𝑁
𝐸𝐹

)︁
(see Fig. 2-4
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and [102]), while the width of the resonance is converted into the sound diffusivity

using 𝐷𝑠 = Γ𝑗/𝑘
2
𝑗 . The lowest symmetric mode is ideal for this measurement because

it is void of imperfections plaguing the fundamental mode while having a frequency

that is at least< 0.5 Γt.ph. Below, we will analyze this data, from the high temperature

regime to the superfluid phase.

While it is difficult to theoretically calculate transport properties, like the sound

diffusivity, for a strongly interacting system, we can gain insight by considering its

value at limiting temperatures or in simpler systems. The basis for these calculations

is kinetic theory which yields an estimate 𝐷 ≈ 𝑙𝑣 where 𝑙 = 1/(𝑛𝜎) and 𝑣 are the

mean free path and average velocity of (quasi-) particles responsible for transport

with a number density 𝑛 and collision cross-section 𝜎 [107, 168].

At very high temperatures 𝑇 ≫ 𝑇𝐹 , the unitary Fermi gas is predicted to be

composed of well-defined quasi-particles [14, 199]. Here, the thermal wavelength

𝜆 =
√︁

2𝜋ℏ2
𝑚𝑘𝐵𝑇

sets the scale of both 𝑙 ∼ 1
𝑛𝜆2 and 𝑣 ∼ ℏ

𝑚𝜆
, resulting in a 𝐷 ∼ 𝑙𝑣 ∝

1/𝜆3 ∝ 𝑇 3/2. The solid black line in Fig. 4-10 shows this scaling quantitatively,

𝐷 = 6.46 ℏ
𝑚

(︁
𝑇
𝑇𝐹

)︁3/2
, with the prefactor calculated using the high-temperature values

for 𝜂, 𝜅, and equation of state [102]. It begins to capture our data well without any

free parameters at temperatures beyond 𝑇𝐹 . However, as the gas cools and enters the

degenerate limit, this simple model underestimates the measured sound diffusivity.

In this regime, the existence of the Fermi surface suppresses scattering which in turn

reduces the scattering cross-section and increases the sound diffusivity, consistent

with our observations.

The nature of the unitary Fermi gas in the deeply degenerate normal phase

(0.17 𝑇𝐹 < 𝑇 ≪ 𝑇𝐹 ) is still unclear [55, 50, 154, 130, 152]. Typically the normal

phase of degenerate Fermi gases, like 3He, is described by the Fermi liquid theory,

where the velocity of the quasi-particles is restricted to 𝑣 ∼ 𝑣𝐹 because of the Fermi

surface and scattering cross-section is heavily suppressed at low temperatures because

of Pauli blocking with 𝜎 ∝ 𝑇 2. It predicts a diverging diffusivity 𝐷 ∝ 1/𝑇 2 observed

in 3He [75], and most metals [98]. In contrast, we find the sound diffusivity to mono-

tonically decrease all the way into the superfluid phase, suggesting that the Fermi
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Figure 4-11: Sound diffusivity of liquid helium. The measured sound diffusivity
of the unitary Fermi gas (blue circles), along with the previously measured sound
diffusivity of the liquid-3He [75] (red line, rescaled by a factor of 104) and liquid-
4He [45] (blue line) are shown as a function of 𝑇/𝑇𝑐. Here 𝑇𝑐 and 𝑚 are the critical
temperature and mass of the corresponding system. Sound diffusivity of the unitary
Fermi gas closely follows that of liquid-4He.

liquid description is not adequate to model the normal phase of the unitary Fermi

gas. In this regime, a pseudo-gap phase is also predicted to exist, where the existence

of pre-formed pairs could alter transport properties [87, 197]. Furthermore, the scale

invariance of the unitary gas leads to a quantum critical point at 𝜇 = 0, 𝑇 = 0,

separating the zero-density superfluid phase from zero-density normal phase at zero

temperature [50, 55]. Above this point lies a finite-density quantum critical regime

𝑇 ∼ 0.4 𝑇𝐹 , where the presence of critical fluctuations lead to a universal Planckian

scaling for the decay and scattering rates ∝ 𝑇 . This is consistent with the linear in

𝑇 resistivity measured in ‘strange metals’ [109]. Here, we do not directly measure

the scattering rates and cannot comment on the applicability of this theory for the

unitary Fermi gas.

Upon crossing the superfluid transition temperature, we do not observe any sudden

change in 𝐷𝑠. This is further demonstrated in Fig. 4-10 (b), where we find the 𝐷𝑠 to

remain approximately constant as the temperature is reduced, despite a rise in the pair

condensate fraction. This is in contrast to the liquid 3He, where the sound diffusivity

features a steep drop from ∼ 50, 000 ℏ/𝑚 to ∼ 5000 ℏ/𝑚 [75]. In the superfluid phase,

as the temperature is further reduced, the sound diffusivity remains approximately
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constant. Despite being a Fermi-liquid in the normal phase, the superfluid phase

of the weakly interacting liquid 3He features a sound diffusivity that is similar to

one observed here. Such a behavior in the superfluid phase can qualitatively be

understood by realizing that the viscosity arises entirely from the normal component,

yielding 𝐷 ∼ 𝑛𝑛

𝑛
𝑙𝑣 where 𝑙 = 1

𝑛𝑛𝜎
is the mean free path of a typical excitation

with density 𝑛𝑛. Note that the strongly temperature dependent normal fraction 𝑛𝑛

cancels and 𝐷 ∼ 𝑣/(𝑛𝜎). At the temperatures studied here, the normal component is

composed almost entirely of broken pairs [14] formed close to the Fermi surface with

𝑣 ∼ 𝑣𝐹 = ℏ𝑘𝐹/𝑚. In absence of a Fermi surface, these quasiparticles would have a

cross-section 𝜎 ∼ 𝑘−2
𝐹 , however, in the presence of a Fermi surface broadened by the

pairing gap ∆, Pauli blocking reduces the cross-section to 𝜎 ∼ 𝑘−2
𝐹 (∆/𝐸𝐹 )

2, yielding

a 𝐷 ∼
(︀
𝐸𝐹

Δ

)︀2 ℏ
𝑚

. The strongly interacting unitary Fermi gas features a pairing gap

as large as the Fermi energy, ∆ ≈ 0.4𝐸𝐹 [81, 161], yielding 𝐷 ∼ ℏ/𝑚. In contrast,

the weakly interacting liquid-3He, features a small pairing gap, ∆ ∼ 10−3𝐸𝐹 [187],

leading to a much high diffusivity, 𝐷 ∼ 5000 ℏ/𝑚 [52, 135].

In general, diffusivity varies by many orders of magnitude across different liquids

and gases, however, the Heisenberg uncertainty principle, ∆𝑥∆𝑝 ≈ 𝑙𝑚𝑣 ≳ ℏ, may

impose a universal limit on all strongly interacting quantum fluids. Here, the mean

free path becomes as small as interparticle spacing, requiring the average velocity 𝑣 ∼
ℏ/(𝑚𝑙) and diffusivity 𝐷 ∼ ℏ/𝑚 to take on Heisenberg-limited values, independent

of the scale of the system. Such values are observed in systems at many length

scales, from the unitary Fermi gas [171, 9, 115] and liquid Helium [45] to quark-gluon

plasma [160, 3, 178]. Here, we also observe a Heisenberg-limited value for the sound

diffusivity with 𝐷𝑠 ≈ 1.3 ℏ/𝑚 close to 𝑇 ≈ 0.1 𝑇𝐹 .

Sound waves are composed of perturbations in both momentum and heat; there-

fore, the measurements of 𝐷𝑠 presented here constrains the values of 𝜅 and 𝜂 accord-

ing to 𝐷𝑠 = 4𝜂/(3𝜌) + 4𝜅𝑇/(15𝑃 ). Another independent measurement is required to

uniquely calculate both transport properties. In the next chapter, we describe our

measurement of the thermal diffusivity and independent determination of 𝜂 and 𝜅.
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Chapter 5

Transport Properties of a Strongly

Interacting Fermi Gas

While particle number, total momentum, and total energy are conserved in all mi-

croscopic collisions in fluids, internal friction leads to viscous flow and heat conduc-

tion, the only two irreversible transport phenomena present in one-component (or

spin-balanced) fluids. If perturbations are sufficiently small, and interaction are suffi-

ciently large, to maintain local thermal equilibrium, then these transport phenomena

are described by a set of hydrodynamic equations (eqs. 2.13) and quantified by the

shear viscosity 𝜂, bulk-viscosity 𝜁, and thermal conductivity 𝜅. With the knowledge of

these transport properties, time evolution after an arbitrary perturbation in density,

momentum, or heat can be calculated. While measurements of the sound diffusivity

(sec. 4.3.5) constrained the values of 𝜅, 𝜂, and 𝜁, it is our goal here to make other

independent measurements to uniquely determine each of the transport properties

and fully characterize the transport phenomena of a spin-balanced unitary Fermi gas.

This chapter present the study of heat conduction in the normal phase of the

unitary Fermi gas, accomplished by measuring the relaxation of a controllably im-

printed temperature gradient (sec. 5.1). The study of heat conduction and sound

diffusion (ch. 4.3), combined with the equation of state of the spin-balanced unitary

Fermi gas (ch. 2.2, [102]), provide a complete picture of transport phenomena in this

system. We present all non-zero transport properties in sec. 5.2 and compare them
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with transport properties of other strongly interacting quantum systems like, liquid

helium and high-Tc superconductors.

5.1 Measuring the Thermal Diffusivity

The time evolution after an arbitrary temperature perturbation is described by the

heat equation 𝜕𝑇
𝜕𝑡

= 𝐷𝑇∇2𝑇 (see eq. 2.22) and quantified by the thermal diffusivity

𝐷𝑇 . For example, the amplitude of a spatially sinusoidal temperature perturbation

∼ sin(𝑘𝑧) relaxes exponentially in time ∼ 𝑒−Γ𝑡 with a decay rate Γ = 𝐷𝑇𝑘
2. In a

box trap, the heat equation is optimally analyzed in the Fourier space, where the 𝑗th

spatial Fourier component of an arbitrary temperature perturbation decays in time

at a rate Γ𝑗 = 𝐷𝑇𝑘
2
𝑗 , where 𝑘𝑗 = 𝑗 𝜋

𝐿
. A direct measurement of the thermal diffusivity

only requires two things: the ability to locally and non-uniformly inject heat into the

system and a way to measure the subsequent time evolution of the local temperature.

We utilize high-frequency sound waves with a very low quality factor to locally inject

heat into the system and infer the local change in temperature from the accompanying

change in density given by the thermal expansivity.

5.1.1 Local heater

We imprint a temperature gradient across the sample by locally heating one side of

the gas. This is accomplished by selectively injecting sound waves with a quality

factor ∼ 1 on one side of the box which quickly dissipate into heat.

Sound waves with a wavenumber 𝑘 = 𝜔/𝑐 attenuate at a rate give by Γ = 𝐷𝑠𝑘
2 =

𝐷𝑠𝜔
2/𝑐2 and have a quality factor 𝑄 = 𝜔/Γ = 𝑐2/(𝐷𝑠𝜔), see Ch. 4. A unitary Fermi

gas with a Fermi energy 𝐸𝐹 ≈ ℎ · 10 kHz at a temperature 𝑇 ≈ 0.2 − 1.0 𝑇𝐹 has

a speed of sound 𝑐 ≈ 16 − 30 mm/s and sound diffusivity 𝐷𝑠 ≈ 2 − 8 ℏ/m. Sound

waves with a wavenumber 𝑘 ≈ 2𝜋/(10 𝜇m) in this gas have a resonance frequency

𝜔 ≈ 2𝜋 ·1500−3000 Hz and a quality factor 𝑄 ≈ 0.5−1.2, indicating that they decay

within one to two oscillations and dissipate into heat.

To locally create these high-frequency sound waves, we imprint a blue-detuned
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Figure 5-1: Local heater. (a) Fermionic 6Li atoms are trapped in a three-
dimensional cylindrical box made from green laser beams. A perspective seen along
the axial direction is shown here. (i) A fraction of the box is illuminated by an optical
lattice formed from blue-detuned 589 nm laser with a spacial period ≈ 10 𝜇m. The
lattice intensity is modulated at frequencies ranging from 2𝜋 · 1500 − 3000 Hz for a
short amount of time (iv) to excite sound waves (ii) with a quality factor ≲ 1. These
sound waves dissipate into heat within one to two oscillations (ii), causing the local
temperature of the gas to rise (iii). Increase in the local temperature is accompa-
nied by a proportional decrease in the local density (iii) according to the thermal
expansivity of the gas. (b) (i) Atomic optical depth (OD) (serving as the background
OD) in presence of the cylindrical box potential and the 589 nm optical lattice. For
demonstration purposes, we have used a much higher intensity of the optical lattice in
(i) than the rest of the experiments. The background subtracted optical depth right
after injecting the heat (ii) and after 100 ms of equilibration time (iii) are shown.
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optical lattice with a wavelength ≈ 10 𝜇m on one half of the box (Fig. 5-1 (a-i)).

Its intensity is first turned on adiabatically to avoid sloshing the density, and then

sinusoidally modulated with a frequency that closely matches the resonance frequency

𝑐𝑘, typically between 2𝜋 · 1500 − 3000 Hz (Fig. 5-1 (a-iv)). The modulation is left

on for a time that is long enough for heat to flow to the other side of the box and is

between 30 and 50 ms for data shown here. This predominantly creates a gradient in

temperature across the length of the box (Fig. 5-1 (a-iii)), which has Fourier amplitude

that is largest for the lowest mode with 𝑘 = 𝜋/𝐿. The amplitude of the intensity

modulation is chosen to create a small but measurable perturbation in temperature,

typically between 5 to 10% of the gas temperature.

Typically, absorption imaging is not sensitive to the temperature of the gas1, mak-

ing it difficult to measure the temperature gradient. However, we exploit the coupling

between changes in the local temperature and density arising from the non-zero ther-

mal expansivity at constant pressure, 𝛼 = 1
𝑉

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃
. For example, at 𝑇 ≈ 0.5𝑇𝐹 and

𝐸𝐹 ≈ ℎ · 10 kHz, a temperature perturbation of ∼ 7 % results in a density perturba-

tion of ∼ 5 %. Fig. 5-1 (b) shows the measured change in density accompanying the

imprinted temperature gradient, where a local increase in temperature manifests as a

local density depletion. This density perturbation decays over ∼ 100 ms, indicating

a relaxation towards thermal equilibrium (Fig. 5-1 (b-iii)).

Our local temperature probe developed to study the second sound (a wave in

temperature or entropy rather than the usual density) [192] would be ideal to study

the thermal diffusion as well. There, a radio-frequency (rf) pulse mapped the local

temperature of the gas into the density of a third spin state. This mapping relied on a

strong dependence of the rate of rf transfer on the local temperature of the gas. For the

unitary Fermi gas, the rf response has a peak with a center and a width that strongly

varies with the gas temperature, but only for 𝑇 ≲ 0.4𝑇𝐹 , resulting in an rf transfer

rate that is approximately linearly dependent on the gas temperature [126]. At higher

temperatures, the peak has a center that is approximately constant at the bare atomic

1At ultracold temperatures, the thermal Doppler shift is much smaller than the linewidth of the
imaging transition.
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(a) (b) (c)

Figure 5-2: Time evolution of temperature perturbations. Data is shown for
a Fermi gas in the superfluid phase at 0.1 𝑇𝐹 (a) and in normal phase at 0.25 𝑇𝐹
(b) and at 0.69 𝑇𝐹 (c). Top row shows the time evolution of density perturbations
averaged over the homogeneous axis of the box and the bottom row shows the am-
plitude of the first spatial mode of these density perturbations with 𝑘 = 𝜋/𝐿. In the
superfluid phase, oscillations in the temperature gradients are observed. In contrast,
temperature gradients are observed to decay exponentially in the normal phase.

resonance and a width that is only weakly dependent on the temperature, resulting

in a weak dependence of the rf transfer rate on the gas temperature. Therefore, for

the range of temperature studied here, 0.2 𝑇𝐹 ≲ 𝑇 ≲ 1.0 𝑇𝐹 , the density probe is

more useful than the rf probe.

5.1.2 Temporal evolution of heat

Fig. 5-2 shows the measured time evolution of the temperature gradient both below

and above the superfluid transition temperature. Here, we wait a variable time after

heating the gas before taking an absorption image. We subtract a background image

taken without any temperature perturbation from these images and average the frac-

tional change in density over the homogeneous axis. The resulting ∆𝑛/𝑛 is shown as

a function of evolution time in the top row of Fig. 5-2. We quantify the gradient in

the temperature using the amplitude of the first spatial Fourier mode (∆𝑛/𝑛)1 with

𝑘1 = 1 𝜋/𝐿, shown in the bottom row of Fig. 5-2.

The qualitative behavior is strikingly different above and below the superfluid

transition. In the superfluid phase, at 𝑇 ≈ 0.1 𝑇𝐹 , we find the temperature perturba-
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Figure 5-3: Decay rate of temperature gradient and thermal diffusivity. The
decay rate Γ (red circles, left y-axis) of the first spatial mode with 𝑘 = 𝜋/𝐿 is shown
for temperatures ranging from the critical temperature 𝑇𝑐 ≈ 0.17 𝑇𝐹 to ≈ 1.0 𝑇𝐹 .
The extracted thermal diffusivity 𝐷𝑇 = Γ/𝑘2 (blue circles, normalized by ℏ/𝑚, right
y-axis) for the same temperature range is also shown. The small differences in Γ and
𝐷𝑇 are from small variations in the length of the box. Near the Fermi temperature,
the measured 𝐷𝑇 begins to approach the high temperature prediction [28, 51] (black
dashed line).

tion to oscillate in time (Fig. 5-2 (a)), indicating that the injected heat travels like as

a wave in this fluid. This heat wave is known as the second sound, a unique feature

originating from the out-of-phase oscillation between the superfluid- and normal-

components of the fluid. In the normal phase, the temperature perturbation decays

exponentially in time, indicating that the injected heat diffuses from the hotter to

colder region of the fluid similar to the flow of heat in air or in metals. The decay rate

of the temperature perturbation is seen to increase with the gas temperature when

comparing Fig. 5-2 (b) at ≈ 0.25 𝑇𝐹 with Fig. 5-2 (c) at ≈ 0.69 𝑇𝐹 .

5.1.3 Thermal Diffusivity

The observation of diffusion of heat permits us calculate the thermal diffusivity 𝐷𝑇 =

Γ𝑗/𝑘
2
𝑗 from any Fourier component of the temperature perturbation with a decay rate

Γ𝑗 and spatial wavenumber 𝑘𝑗. We use the lowest (𝑗 = 1) Fourier component since

our local heater predominantly creates a temperature perturbation resembling it with

a 𝑘 ≡ 𝑘1 = 𝜋/𝐿. We measure Γ ≡ Γ1 by fitting the time evolution of (∆𝑛/𝑛)1 with
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an exponential function ∼ 𝑒−Γ𝑡, shown in Fig. 5-2 (b, c). The thermal diffusivity 𝐷𝑇

is shown in Fig. 5-3 as a dual axis to emphasize that 𝐷𝑇 immediately follows from Γ.

The small differences between Γ and 𝐷𝑇 arise from small variations in the effective

length of the box.

Notice that the determination of 𝐷𝑇 from the decay rate Γ also requires a precise

determination of the length 𝐿 of the box. While there is no ambiguity in the length

of a perfect box, here we have a box with soft edges whose length depends on a

particular definition. Typically, we define the length to be the distance between two

points where the density is 50% of its mean value. However, it is apriori not clear if the

same definition should be used when calculating 𝐷𝑇 = Γ/𝑘2 ∝ 𝐿2. The systematic

error in 𝐿 arising from this uncertainty can be approximated as the total thickness

of both edges of the box and is approximately 𝛿𝐿 ≈ 10 𝜇m or 𝛿𝐿/𝐿 ≈ 0.1, resulting

in a systematic uncertainty 𝛿𝐷𝑇/𝐷𝑇 ≈ 0.2.

We can reduce these systematic uncertainties by independently measuring the

thermal diffusivity using techniques that do not require the length of the box. For

example, the flow of heat arising from a temperature imbalance also results in a flow

of particles as described below. The flow of heat is conveniently described by the

Fourier’s law 𝑞 = −𝜅∇𝑇 , where 𝑞 is the heat current density (see eq. 2.21). The

non-zero thermal expansivity 𝛼 of the gas converts the temperature gradient into

a density gradient according to 𝑑𝑇 = −1
𝑛𝛼
𝑑𝑛, while the heat current gives rise to a

particle current according to 1
𝜌𝑐𝑃

𝑞 = −1
𝑛𝛼
𝑗. Here, we have used the conservation of

energy density 𝑢, 𝜕𝑢
𝜕𝑡

+ ∇ · 𝑞 = 0, conservation of particle number, 𝜕𝑛
𝜕𝑡

+ ∇ · 𝑗 = 0,

thermal expansivity 𝛼 = 1
𝑉

𝜕𝑉
𝜕𝑇

⃒⃒
𝑃

= −1
𝑛

𝜕𝑛
𝜕𝑇

⃒⃒
𝑃
, and specific heat 𝑐𝑃 = 1

𝜌
𝑑𝑢
𝑑𝑇

. The

resulting particle current is 𝑗 = −𝐷𝑇∇𝑛, also known as the Fick’s law of diffusion.

Determining the thermal diffusivity using Fick’s law of diffusion only requires the

gradient in density and current at some location in the box and is independent of the

length of the box. We measure both of these quantities from the time evolution of

heat shown in Fig. 5-2. While Fick’s law is satisfied at all locations in the box, we

specifically measure 𝑗 and 𝑑𝑛/𝑑𝑧 at the center of the box where their amplitude is

the largest. The current is calculated from the change of number imbalance between
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Figure 5-4: Thermal diffusivity measured from the Fick’s law of diffusion.
Comparison between the thermal diffusivity measured using the heat equation (blue
circles, from Fig. 5-3) and using the Fick’s law of diffusion (red circles).

the left (𝑁𝐿) and right (𝑁𝑅) half of the box (measuring the flow of atoms through an

imaginary boundary at 𝑧 = 0) 𝑗 = 1
𝐴

𝑑
𝑑𝑡

𝑁𝑅−𝑁𝐿

2
. The gradient in density is measured by

fitting a polynomial to 𝑛(𝑧) in a small region around 𝑧 = 0. The 𝐷𝑇 = −𝑗/(𝑑𝑛/𝑑𝑧)
is shown in Fig. 5-4. While this method of determining 𝐷𝑇 produces larger statistical

errors, it can be compared with the previous method to limit the systematic errors in

the length of the box. Such a comparison suggests that the length of the box relevant

for thermal transport is the distance between two points where the density falls to

≈ 90% of its mean value. Data shown in Fig. 5-3 use this definition of the length.

5.2 Viscosity and Thermal Conductivity

For any normal one-component (or spin-balanced) fluid, there are only two transport

phenomena; viscous flow and heat conduction corresponding to the conservation of

momentum and energy, respectively [168, 107]. They are characterized by three un-

derlying hydrodynamic transport parameters, the thermal conductivity 𝜅, the shear

viscosity 𝜂, and the bulk viscosity 𝜁. Therefore, a complete characterization of trans-

port phenomena in fluids would typically require three independent measurements.

However, in any scale invariant system, such that the internal energy 𝐸 → 𝐸/𝜉2

under a spatial rescaling 𝑟 → 𝜉𝑟, the ratio 𝑇/𝑇𝐹 , and thus 𝑆/𝑁𝑘𝐵, is preserved under
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symmetric rescaling of space. This means that a uniform dialation or contraction of

the fluid does not change entropy, and the bulk viscosity 𝜁 is identically zero at all

temperatures [173]. Therefore, measurements of sound attenuation and heat diffusion

are sufficient to uniquely determine shear viscosity and thermal conductivity in the

normal phase of the unitary Fermi gas.

Note that diffusion of particles does not correspond to a proper transport phe-

nomena in one-component fluids because transport of particles is related to the free

movement of the center of mass of the system [168, 107]. Instead, transport of parti-

cles is already accounted in heat conduction and in viscous flow. In two-component

fluids, such as the spin-balanced Fermi gas considered here, an imbalance in spin

concentration leads to a diffusion of particle until equilibrium is reached. This does

correspond to a new transport phenomena, the irreversible flow of concentrations, de-

scribed by the spin diffusivity studied in unitary Fermi gases trapped in a harmonic

potential [27, 171, 99, 9, 115].

In Fig. 5-5, we show the extracted values of 𝜅 and 𝜂 as a function of gas temper-

ature. The thermal conductivity is directly proportional to the thermal diffusivity

(eq. 2.22), 𝜅 = 𝜌𝑐𝑃𝐷𝑇 , where we have used the previously measured specific heat [102]

shown in Fig. 2-4. Since sound waves attenuate due to gradients in both temperature

and momentum, the sound diffusivity 𝐷𝑠 =
4𝜂
3𝜌
+ 4𝜅𝑇

15𝑃
(eq. 2.18, [139]) contains contri-

butions from both 𝜂 and 𝜅. Determining 𝜂 = 3𝜌
4

(︀
𝐷𝑠 − 4𝜅𝑇

15𝑃

)︀
is then straightforward

using 𝐷𝑠, 𝜅, and the pressure from the equation of state [102] shown in Fig. 2-4. To

gain a better understanding, we will consider values of these transport properties in

different regimes and systems, starting with the high temperature 𝑇 ≫ 𝑇𝐹 regime.

Kinetic theory is perhaps the simplest model that can describe transport phe-

nomena. It assumes that the particles in a gas move ballistically with minimal inter-

actions and constantly collide with each other like hard spheres (elastic collisions).

In interacting systems, kinetic theory is only applicable if the excitations of the sys-

tem can effectively be described by an ensemble of long-lived quasi-particles [159].

At high temperatures, atoms in the unitary Fermi gas have an energy ∼ 𝑘𝐵𝑇 and

a scattering rate Γ ∼ 𝑛𝜎𝑣 ∝ 1/
√
𝑇 (or lifetime ∼ 1/Γ), where 𝜎 ∝ 1/𝑇 is the
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Figure 5-5: Transport properties of the spin-balanced, unitary Fermi gas.
By combining our measurements of thermal- and sound diffusivities [139], and the
equation of state [102], we calculate the thermal conductivity 𝜅 and shear viscosity 𝜂.
Temperature dependence of (a) 𝜅 divided by the number density 𝑛 and Boltzmann’s
constant 𝑘𝐵 (blue circles, normalized by ℏ/𝑚) and (b) 𝜂 divided by the mass density
𝜌 = 𝑛𝑚 (blue circles, normalized by ℏ/𝑚) are shown. Both transport properties
approach the expected high temperature scaling of 𝑇 3/2 (dashed black line [24]) close
to 𝑇𝐹 . In the normal phase of the degenerate regime 𝑇𝑐 < 𝑇 ≪ 𝑇𝐹 , we do not
observe any divergence expected from the Fermi liquid theory [2, 12], instead, as the
temperature is lowered, both transport properties monotonically decrease and attain
a Heisenberg limited value close to ℏ/𝑚. Previous measurements of 𝜅 in a uniform
box (red diamond [6]) and of 𝜂 in harmonic trap (pink line [89], cyan line [21]), as
well as theoretical predictions for 𝜂 (orange line [51]) and for 𝜅 (green line [55]) are
shown.

unitarity-limited collision cross-section and 𝑣 ∝
√
𝑇 is the thermal velocity. Since

the ratio ℏΓ
𝑘𝐵𝑇
∝ 𝑇−3/2 → 0 at very high temperatures, atoms in the gas constitute

well-defined quasi-particles and the kinetic theory description is applicable. In this

theory, 𝜂 ≃ 𝜌𝜏𝜂𝑣
2 and 𝜅 ≃ 𝑐𝑃𝜌𝜏𝜅𝑣

2 are determined by the typical quasiparticle veloc-

ity 𝑣 ∝
√
𝑇 and the mean-free-time of momentum and energy changing collisions 𝜏𝜂

and 𝜏𝜅 ∼ 1/(𝑛𝜎𝑣) ∝
√
𝑇 , yielding a scaling 𝜂 ∝ 𝑇 3/2 and 𝜅 ∝ 𝑇 3/2. An exact calcula-

tion using the Boltzmann equation yields 𝜅/(𝑛𝑘B) = 10.38 (ℏ/𝑚) (𝑇/𝑇F)
3/2 [24] and

𝜂/𝜌 = 2.77 (ℏ/𝑚) (𝑇/𝑇F)
3/2 [28, 51], shown in black dashed line in Fig. 5-5, which

captures our measurements well without any free parameters.

As the gas cools and becomes degenerate 𝑇 ∼ 𝑇𝐹 , Pauli blocking and the emerging

Fermi surface begins to play an important role. While the quasi-particle description

108



may not hold at these temperatures, we can continue to use the kinetic theory equa-

tions to estimate the effects of Pauli blocking on transport properties. In this regime,

we expect both the mean velocity and mean-free-time to be larger than their high

temperature scaling because Pauli blocking limits the mean velocity to the Fermi

velocity and reduces the phase space available for momentum and energy exchang-

ing collisions. Since 𝜂, 𝜅 ∝ 𝜏𝑣2, we expect their values to be higher than the high

temperature predictions, consistent with our observations at 𝑇 ≲ 1.0 𝑇𝐹 .

The normal phase of a typical fermionic system in the deeply degenerate limit

𝑇 ≪ 𝑇𝐹 is often described by the Fermi liquid theory [12, 2]. A Fermi liquid contains

quasiparticles whose mean velocity 𝑣 ≈ 𝑣𝐹 is saturated at the Fermi velocity and

scattering rate Γ ∝ 𝑇 2 displays a paradigmatic quadratic scaling with temperature.

It shares a lot of thermodynamic properties with the non-interacting Fermi gas, but

with a modified mass 𝑚*, for example a temperature dependent heat capacity 𝐶 ∝
𝑇/𝑇𝐹 , where 𝑇𝐹 =

ℏ2𝑘2𝐹
2𝑚* . Its transport properties are calculated using kinetic theory,

which predicts diverging shear viscosity 𝜂 ∼ 𝜌𝑣2/Γ ∝ 1/𝑇 2 and thermal conductivity

𝜅 ∼ 𝑐𝑃𝜌𝑣
2/Γ ∝ 1/𝑇 , observed in liquid helium 3 [75, 187]. However, we do not observe

these diverging transport properties, instead, both 𝜂/𝜌 and 𝜅/(𝑛𝑘𝐵) monotonically

decrease and attain values ∼ ℏ/𝑚.
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Chapter 6

Summary and Outlook

In previous chapters, we have described two experiments performed on the spin-

balanced, strongly-interacting, homogeneous Fermi gas to completely characterize its

transport properties in the small-amplitude and low-frequency limit where linear-

hydrodynamics is applicable. First, the coupled transport of momentum and heat

was measured from the properties of sound waves. A precise measurement the speed

of sound made it possible to test the scale-invariance of the unitary Fermi gas. The

attenuation rate of sound waves displayed the characteristic ∝ 𝑘2 scaling expected

from hydrodynamics, from which we measured the sound diffusivity 𝐷𝑠. Second, the

transport of heat was independently measured from the thermal evolution of temper-

ature perturbations. They were observed to decay exponentially in time, indicating

the diffusion of heat expected from hydrodynamics. Their decay rate enabled us to

measure the thermal diffusivity 𝐷𝑇 . And last, by combining the measurements of 𝐷𝑠

and 𝐷𝑇 , we calculated the two non-zero transport properties of this system, the shear

viscosity 𝜂 and the thermal conductivity 𝜅.

Their values at high-temperatures 𝑇 ≫ 𝑇𝐹 can be understood from kinetic theory

where the relevant quasi-particles are the resonantly interacting fermions. However,

as the temperature is reduced, Pauli blocking and the emerging Fermi surface beings

to play an important role and the underlying transport theory becomes less and

less clear. The degenerate regime of typical fermionic systems are well described by

the Fermi-liquid theory, which assumes long-lived quasi-particle excitations near the
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Fermi surface. However, here, strong-interactions lead to strong-correlations, placing

a doubt on the applicability of theories based on quasi-particles. We do not observe

diverging 𝜂 ∝ 1/𝑇 2 and 𝜅 ∝ 1/𝑇 expected from the Fermi-liquid theory, instead, they

monotonically decrease and attain values ∝ ℏ/𝑚. These measurements provide a

benchmark for transport properties of strongly-interacting Fermi systems and inform

theories.

We had began this thesis with a goal to measure the transport properties of the

strongly-interacting Fermi gas and posed a few basic questions in the introduction.

We would like to address them here.

1. What are the transport properties of a spin-balanced, resonantly interacting

Fermi gas?

I would claim that we have successfully measured them, summarized above.

The realization of a homogeneous unitary Fermi gas trapped in a uniform box

potential was crucial for this task.

2. Is it possible to describe the transport properties of this system using well-defined

quasi-particles?

I had indicated in the introduction that this questions is more for theorists, but

the experimental measurements presented here could serve as a benchmark. One

thing is clear from the data presented here; the Fermi-liquid theory, based on

quasi-particles near the Fermi surface, without any modification, is not adequate

to describe the normal phase of the unitary Fermi gas. In contrast, a forced

normal state at 𝑇 < 𝑇𝑐, made stable by spin-imbalance, was previously observed

to be described by a Fermi-liquid theory [130]. This question deserves further

investigation described in the outlooks. Another possibility is the existence

of a pseudo-gap phase where pair-excitations could exist without long range

order [86, 149, 197].

3. Do theories developed to explain the anomalous transport properties of uncon-

ventional superconductors, like quantum critical transport and incoherent trans-

port, also apply to the strongly-interacting Fermi gas?
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These theories are based on the idea that the dissipative timescales in transport

processes are universal, 𝜏 ∼ ℏ/(𝑘𝐵𝑇 ), and scale inversely with the temperature.

However, we do not directly measure these time scales and cannot comment on

their validity without further investigations. A recent theoretical prediction [55]

based on quantum critical transport agrees well with the measured 𝜅, but only

at 𝑇 ≳ 0.5𝑇𝐹 and fails at lower temperatures.

4. Are there common features in the transport properties of all strongly interact-

ing quantum matter?, hinting at the possibility of describing them all with a

universal theory.

Interestingly, yes. For example, we have found the sound diffusivity of the

unitary Fermi gas to closely resemble the properties of a strongly-interacting,

but bosonic liquid 4He, instead of a fermionic, but weakly-interacting liquid 3He.

Implying that strong-interactions are taking a precedence over the quantum

statistics of the particles with regards to their transport properties. Another

example is the fact that most strongly interacting quantum systems feature

anomalous transport properties that are not described by existence of quasi-

particles.

With these measurements, we have demonstrated the power of uniform traps.

There is a lot more that we would have liked to do, here are a few examples.

Transport beyond linear-hydrodynamics. In this thesis, we have mainly focused

on perturbations that are small in amplitude, low in frequency, and low in wavenum-

ber, which are described by linear hydrodynamics. While this is a good start, it is

far from a complete characterization of all non-equilibrium properties of this system.

We have already seen two signatures of transport that cannot be described by hy-

drodynamics. First, increasing the amplitude of a sound wave makes it decay at a

faster rate, prominently evident at lower temperatures and for the lowest two resonant

modes of the box. Here, we observe an spontaneous generation of higher harmonics,

observed as non-sinusoidal spatial profiles visible in both position and Fourier space.

This could result from the non-linear terms in the energy of a sound wave [1], the
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density dependence of the speed of sound [18], or phonon-phonon interactions [105].

The fact that we observe these non-linearity more prominently at lower tempera-

tures, especially 𝑇 ≲ 0.2 𝑇𝐹 and in the superfluid phase, may signal some interesting

physics. And second, perturbations with a frequency higher than the relaxation rate

of typical thermal excitations featured Γ ̸∝ 𝑘2. Here, transport physics is described

by a collisionless transport [184, 105], where interactions between phonons and other

thermal excitations need to be considered, and the specific concavity of the dispersion

relation may play an important role [104].

Properties of a spin-imbalanced strongly-interacting Fermi gas. One of the

main motivations for creating a uniform trap was to study the spin-imbalanced Fermi

gas. Superfluidity in spin-imbalance systems is an interesting problem. Standard

cooper-pairing happens between two atoms of opposite spins and opposite momenta

near their common Fermi surface. However, in a spin-imbalanced system, the two

Fermi surfaces are located at different energies and pairing between opposite momenta

is not possible. This puts the stability of a superfluid in presence of spin-imbalance

into question [11, 150, 141, 137], and, at a sufficiently high spin-imbalance, known as

the Chandrasekhar-Clogston limit [35, 40, 11], requires superfluidity to breakdown.

Below this limit, a superfluid state might be described by pairing between opposite

spin atoms with different momenta, i.e., pairs with a finite momentum, known as the

Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [137, 57, 148]. Here, the superfluid

order parameter oscillates in space at the pairing momentum, which might be observed

as an oscillation in the spin imbalance. While the FFLO state has been extensively

studied, it has yet to be confirmed experimentally in 3D [148]. Apart from the FFLO

state, the phase diagram of a spin-imbalanced Fermi gas in general is an interesting

topic of study.

Studying spin-imbalanced gases in a harmonic trap is challenging because the

minority atoms preferentially accumulate at the center of the trap, creating a nearly

spin-balanced Fermi gas, while the access majority atoms live outside, creating a

nearly spin-polarized gas. At 𝑇 < 𝑇𝑐, this results in a phase separation, where the

center is spin-balanced superfluid while the outer shell is a spin-polarized, ideal Fermi
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gas [138, 166, 167, 203]. In contrast, spin-imbalanced Fermi gases in an uniform

box necessarily have to remain spin-imbalanced, opening the possibility to further

investigate the strongly-interacting Fermi gases in presence of spin-imbalance and to

look for the FFLO state.

Ultracold atoms experiment provide a highly tunable and accessible system whose

Hamiltonian is exactly known, with the ability to precisely control, and even turn

off, its complexities. These are ideal systems for the study of strongly-interacting

quantum matter. The addition of homogeneous samples opens the door to many

new types of experiments that look for new phases of matter and shed light on their

properties. I truly believe that we are only at the dawn of understanding many-body

quantum physics, with a future powered by unimagined quantum devices.
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Appendix A

New apparatus to study ultracold

atoms under rapid rotation

In this chapter, I want to present some of the tools we have made for a new experiment

called Fermi 3, with a goal to study two and three dimensional quantum gases under

rapid rotation.

A.1 Zeeman slower

Zeeman slower is the first in a series of tools used to cool atoms down to nano-Kelvin

temperatures. It cools atoms from ∼ 650 K down to a few mK by repeatedly bouncing

resonant photons against an atomic beam. We will begin with the basics of a Zeeman

slower followed by its design and construction.

Basics of a Zeeman slower The main idea behind a Zeeman slower is to slow

an atomic beam using a laser beam traveling in the opposite direction. The main

challenge is to keep the laser beam on resonance as the Doppler shift reduces with

the atomic velocity. A simple approach is to chirp the laser frequency as the atoms

slow [146], however this produces bunches of atoms rather than a continuous stream.

In a Zeeman slower, the reducing Doppler shift from slowed atoms is compensated by

the Zeeman shift from an increasing magnetic field strength [144]. If 𝐵(𝑧) is chosen

such that it exactly compensates the Doppler shift, the atoms experience a constant
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decelerating force. This serves as the starting point to designing a Zeeman slower.

We begin by assuming an ideal situation with a constant force −𝛾 (ℏ𝑘𝐿Γ/2) and

deceleration 𝑎 = 𝛾ℏ𝑘𝐿Γ/(2𝑚) ≡ 𝛾𝑎max (see Sec. 3.3.2 or [54, 41] for details). Here

𝛾 is a tuning parameter that multiplies the maximum possible force at saturated

intensity. Selecting a smaller value of 𝛾 allow for larger imperfections in the magnetic

field. Assuming the atoms start with an initial velocity 𝑣𝑐 (the capture velocity of

the Zeeman slower) at 𝑧 = 0, the equation of motion is 𝑧(𝑡) = −𝛾𝑎max𝑡
2/2 + 𝑣𝑐𝑡

and 𝑣(𝑡) = −𝛾𝑎max𝑡 + 𝑣𝑐. The atoms slow from velocity 𝑣𝑐 to close to zero in time

𝑇 = 𝑣𝑐/(𝛾𝑎max) and in distance 𝐿 = 𝑣2𝑐/(2𝛾𝑎max). Finally, by combining 𝑧(𝑡) and

𝑣(𝑡), we find the position dependence of the velocity,

𝑣(𝑧) = 𝑣𝑐
√︀
1− 𝑧/𝐿. (A.1)

In a Zeeman slower, the reducing Doppler shift, 𝜔𝐷 = 𝑘𝐿𝑣(𝑧), is exactly compen-

sated with a Zeeman shift, 𝜔𝑍(𝑧) = (𝜇𝐵/ℏ)𝑔𝐹𝑚𝐹𝐵(𝑧), such that the total detuning

𝜔𝐷 + 𝜔𝑍 = 𝜔0 − 𝜔𝐿 stays constant and independent of 𝑧. It is typical to perform

Zeeman slowing on stretched states where 𝑔𝐹𝑚𝐹 = 1 and to red detune the slower

laser by the maximum Doppler shift, 𝜔0 − 𝜔𝐿 = 𝑘𝐿𝑣𝑐. With these assumptions, the

ideal magnetic field is

𝐵(𝑧) =
𝜔0 − 𝜔𝐿

𝜇𝐵/ℏ
− 𝑘𝐿
𝜇𝐵/ℏ

𝑣(𝑧),

= 𝐵0

(︁
1−

√︀
1− 𝑧/𝐿

)︁
, (A.2)

where 𝐵0 = ℏ𝑘𝐿𝑣𝑐/𝜇𝐵. Here, the magnetic field steadily increases from 0 to 𝐵0 over

the length 𝐿 of the slower. This is known as an increasing field Zeeman slower.

There are other types of slower suited for different systems. In a decreasing field

Zeeman slower, the magnetic fields start from 𝐵0 and go down to 0. This type of

slower is usually ill suited for experiments with a MOT. It requires the slower laser

to be near resonant with the MOT, possibly causing undesirable heating. Another

example is a spin-flip Zeeman slower. For experiments that require high capture
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value for 23Na D2 Description

constants
& atomic
properties

𝜇𝐵 ℎ·1.3996 MHz/G Bohr magneton
𝑚 3.8175 ·10−26 kg atomic mass
𝜔0 2𝜋 ·508.849 THz resonance frequency
Γ 2𝜋 ·9.795 MHz decay rate

inputs 𝑣𝑐 589 m/s capture velocity
𝛾 0.417 tuning parameter

useful
quantities

𝑎max ℏ𝑘𝐿Γ/(2𝑚) 906533 m/s2 max. deceleration
𝐿 𝑣2𝑐/(2𝛾𝑎max) 45.9 cm slower length
𝑣(𝑧) 𝑣𝑐

√︀
1−𝑧/𝐿 atoms’ velocity

𝛿𝜔 −𝑘𝐿𝑣𝑐 -2𝜋 ·1.0 GHz laser detuning
𝜔𝐿 𝜔0 − 𝑘𝐿𝑣𝑐 laser frequency
𝑘𝐿 𝜔𝐿/𝑐 ≈ 𝜔0/𝑐 laser wavenumber
𝐵0 ℏ𝑘𝐿𝑣𝑐/𝜇𝐵 714.3 G max. magnetic field
𝐵(𝑧) 𝐵0(1−

√︀
1−𝑧/𝐿) magnetic field

Table A.1: Zeeman slower. Natural constants and atomic properties are from [177].
We have omitted standard error and provided reduced precision here.

velocity, the standard increasing field slower may require too high of magnetic field

than desired. In this situation, it is better to use a spin flip slower where the magnetic

fields first decrease in magnitude, got to zero and change direction, and then increase

in magnitude.

In summary, designing an increasing field Zeeman slower begins by first determin-

ing the desired capture velocity 𝑣𝑐 and tuning parameter 𝛾. These, combined with

physical properties of the atom, determine everything about the slower as summarized

in Table A.1.

23Na-6Li Zeeman slower. Now, we will describe the specific design and considera-

tions used for the Fermi 3 Zeeman slower.

Capture velocity 𝑣𝑐 = 589 m/s: Ideally, we would like a very high capture velocity

to increase the flux of slow atoms. However, this may require unfeasibly high magnetic

field, oven temperature, and long slower. For ≈ 650K oven, 𝑣𝑐 = 589 m/s is optimal.

Tuning parameter 𝛾 = 0.417: Ideally, we would like 𝛾 ∼ 1 to minimize the length

of the slower. However, this requires a very high slower laser intensity and a near-

perfect electromagnet. In practice, we can expect a laser intensity 𝐼 ∼ 𝐼sat (already

limiting 𝛾 ≲ 0.5) and an electromagnet with magnetic field deviations 𝛿𝐵 ≲ ℏΓ/𝜇𝐵.
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We find 𝛾 ∼ 0.4 to be a good balance between slower length and electromagnet

requirements. Specifically, we use 𝛾 = 0.4173 with slower length of 45.9 cm.

In the new experiment, we use a dual species slower, where both the 23Na and 6Li

are slowed in the same slower. This is typically possible between any two atoms if they

have somewhat similar capture velocities and deceleration, and they are chemically

stable enough to create a dual species oven. It is sufficient to design the slower for

the heavier atoms with its lower deceleration, 23Na in our case.

A.2 Time-averaged orbiting potential

Magnetic time-averaged orbiting potential (TOP) was first introduced to remove Ma-

jorana losses caused by the zero of the magnetic field of a quadrupole magnetic

trap [143]. In a TOP trap, the atoms experience an effective harmonic potential.

Since this harmonic trap is made from magnetic fields, it is void of many imperfec-

tions that typically arise in optical traps. Hence, TOP trap can be tuned to create

a remarkably circular and imperfection free harmonic trap useful for studying atoms

under rotation.

In this section, we will begin with the basics of a TOP trap and its implementa-

tion. We will examine various experimental imperfections and ways to resolve them.

Finally, we will describe the alignment procedure and characteristics.

Experimental implementation The basic working principle of the TOP trap is

summarized. The atoms are subjected to a force whose direction is rapidly rotating

in a circle but its magnitude is kept constant. The frequency of this rotation is kept

high enough such that the atoms experience a time averaged force. It is easy to see

that an atom at the center experiences a net zero force. When an atom moves away

from the center, it experiences the inward force for a longer period of time than the

outward force, resulting in a net restoring force towards the center. The exact nature

and position dependence of this restoring force is described below.

In the experiment, the constant magnitude force is provided by a set of anti-

Helmholtz coils producing a gradient in magnetic field {𝑏′𝑥, 𝑏′𝑦,−2𝑏′𝑧}. The center of
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this magnetic field gradient is moved around in the 𝑥𝑦-plane by two bias coils. The

net magnetic field is

𝐵 (𝑟, 𝑡) =

⎛
⎜⎜⎜⎝

𝑏′𝑥

𝑏′𝑦

−2𝑏′𝑧

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

𝑏0 cos (𝜔𝑇 𝑡)

𝑏0 sin (𝜔𝑇 𝑡)

0

⎞
⎟⎟⎟⎠ , (A.3)

and the potential energy is 𝑈 = −𝜇𝐵 ·𝐵 = 𝜇𝐵𝑔𝐹 (𝐹 /ℏ) ·𝐵. At ultracold tempera-

tures, the atoms move slow enough such that their spin adiabatically follows the local

magnetic field direction, i.e. 𝐹̂ ‖ 𝐵̂, resulting in 𝑈 = 𝜇𝐵𝑔𝐹𝑚𝐹 |𝐵|. We first find the

magnitude of the magnetic field,

|𝐵| = 𝐵 =
√︁
𝑏′2 (𝑥2 + 𝑦2 + 4𝑧2) + 𝑏20 + 2𝑏′𝑏0 (𝑥 cos𝜔𝑇 𝑡+ 𝑦 sin𝜔𝑇 )

= 𝑏20
√︀
1 + (𝑥2 + 𝑦2 + 4𝑧2) /𝑅2 + 2 (𝑥 cos𝜔𝑇 𝑡+ 𝑦 sin𝜔𝑇 𝑡) /𝑅,

where we have defined the characteristic length 𝑅 = 𝑏0/𝑏
′. Note that for typical

gradient 𝑏′ ∼ 100 g/cm and bias 𝑏0 ∼ 10 g, this length 𝑅 ∼ 10 cm is much larger than

the typical size of the BEC ∼ 100 𝜇m. By substituting 𝑥𝑖/𝑅 = 𝑥𝑖 and expanding for

small 𝑥𝑖 ≪ 1, we get

𝐵 ≈ 𝑏0

(︃
1 +

𝑥̃2 + 𝑦2 + 4𝑧2

2
+

2𝑥̃ cos𝜔𝑇 𝑡+ 2𝑦 sin𝜔𝑇 𝑡

2
− (2𝑥̃ cos𝜔𝑇 𝑡+ 2𝑦 sin𝜔𝑇 𝑡)

2

8

)︃

(A.4)

Finally, assuming that the atoms are in the stretched state with 𝑔𝐹𝑚𝐹 = 1, the

time-averaged potential experienced by the atoms is

𝑈TOP(𝑟) =
2𝜋

𝜔𝑇

∫︁ 2𝜋/𝜔𝑇

0

𝑑𝑡 𝜇𝐵 |𝐵(𝑟, 𝑡)|

≈ 𝜇𝐵𝑏0

(︂
1 +

𝑥̃2 + 𝑦2 + 4𝑧2

2
+

0

2
− 2𝑥̃2 + 2𝑦2

8

)︂

= 𝜇𝐵𝑏0 +
𝜇𝐵𝑏

′2

4𝑏0
(𝑥2 + 𝑦2 + 8𝑧2), (A.5)

where we’ve only kept terms up to 𝒪(𝑥𝑖)2. Comparing Eq. A.5 to a hamronic po-
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tential, we find the effective trapping frequency of 𝜔𝑟 =
√︀
(𝜇𝐵𝑏′2) / (2𝑚𝑏0) along the

radial 𝑥 and 𝑦 directions and 𝜔𝑧 =
√
8𝜔𝑇𝑟 along the 𝑧 direction. The radius of the

trap is 𝑅 = 𝑏0/𝑏
′ and the trap depth is 𝜇𝐵𝑏0/4.

Experimental imperfections We discussed the ideal case of the magnetic TOP

trap above. There are several things that can be misaligned from this ideal case.

First, it is possible that the angle between the two bias coils is not perfectly 𝜋/2.

This will admix a small fraction of one bias into the other. Second, the bias coils may

have different impedances, resulting in a different phase shift and amplitude between

the drive voltage and magnetic fields. We will show how these imperfections can be

fixed by fine-turning the amplitude and phase shift of the two drive signals.

Suppose the two drive voltages for bias coils are 𝑉1 cos (𝜔𝑇 𝑡) and 𝑉2 sin (𝜔𝑇 𝑡).

This will induce current in two coils, 𝐼1 cos (𝜔𝑇 𝑡) and 𝐼2 cos (𝜔𝑇 𝑡+ 𝜑), where 𝜑

takes into account the possible phase difference resulting from different impe-

dences. The resulting magnetic fields in the two bias coils are 𝐵1 cos (𝜔𝑇 𝑡)𝑥̂ and

𝐵2 sin (𝜔𝑇 𝑡+ 𝜑) (𝑥̂ sin 𝜃 + 𝑦 cos 𝜃), where we have allowed the second coil to be off by

an angle 𝜃.

A perfectly circular TOP trap requires 𝐵1/𝐵2 → 1 and 𝜑, 𝜃 → 0. Any deviations

will result in an elliptical trap. For example, a trap with ellipticity smaller than 1%,

i.e. 𝜔𝑇𝑥/𝜔𝑇𝑦 ∼ 0.99, requires 𝐵1/𝐵2 ∼ 0.96 and 𝜑, 𝜃 ≲ 2.4 deg. While the amplitude

of the bias magnetic field can be made equal by fine tuning 𝑉1 and 𝑉2, it is often not

possible to fine tune the impedance and angle of the coils. An alternate approach it

to compensate for their effect by introducing an additional phase shift 𝛽 between the

two drive voltages, 𝑉2 sin (𝜔𝑇 𝑡+ 𝛽). By setting 𝛽 = 𝜃 − 𝜑, we can exactly remove

these imperfections.
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Figure A-1: Schematics for the Zeeman slower. Black square, orange circles,
and green diamonds correspond to winding with unit density, half density, and a
third density, respectively. Red dashed lines separate the four sections of the slower.
Blue and yellow lines show the direction of coil winding, where the blue circle marks
the starting point.
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Appendix B

Homogeneous Atomic Fermi Gases

This appendix contains a reprint of Ref. [128]:
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We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the
momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the
saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in
momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create
homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measure-
ments, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two.
The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas,
saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially
polarized Fermi gas.

DOI: 10.1103/PhysRevLett.118.123401

Ninety years ago, Fermi derived the thermodynamics of
a gas of particles obeying the Pauli exclusion principle [1].
The Fermi gas quickly became a ubiquitous paradigm in
many-body physics; yet even today, Fermi gases in the
presence of strong interactions pose severe challenges to
our understanding. Ultracold atomic Fermi gases have
emerged as a flexible platform for studying such strongly
correlated fermionic systems [2–6]. In contrast to tradi-
tional solid state systems, quantum gases feature tunable
spin polarization, dimensionality, and interaction strength.
This enables the separation of quantum statistical effects
from interaction-driven effects, and invites the exploration
of rich phase diagrams, for example bulk Fermi gases in the
BEC-BCS crossover [3–10] and Fermi-Hubbard models in
optical lattices [11–20].
So far, Fermi gas experiments have been performed in

inhomogeneous traps, where the nonuniform density leads to
spatially varying energy and length scales. This poses a
fundamental problem for studies of critical phenomena for
which the correlation length diverges. Furthermore, in a gas
with spatially varying density, a large region of the phase
diagram is traversed, potentially obscuring exotic phases that
are predicted to occur in a narrow range of parameters. This is
most severe for supersolid states, such as the elusive FFLO
state [21–23], where the emergent spatial period is well
defined only in a homogeneous setting. A natural solution to
these problems is the use of uniform potentials, which have
recently proved to be advantageous for thermodynamic and
coherence measurements with Bose gases [24–27].
Here, we realize homogeneous Fermi gases in a versatile

uniform potential. For spin-polarized gases, we observe
both the formation of the Fermi surface and the saturation at

one fermion per momentum state, due to Pauli blocking.
Spatially uniform pair condensates are observed for
spin-balanced gases, offering strong prospects for the
exploration of long-range coherence, critical fluctuations,
and supersolidity.
In cases where the local density approximation (LDA)

is valid, the spatially varying local chemical potential in
an inhomogeneous trap can be utilized for thermodyna-
mic [28–31] and spectroscopic [7,32,33] measurements.
However, reconstructing the local density from line-of-
sight integrated density profiles typically increases noise,
while spatially selecting a central region of the gas reduces
signal. A potential that is uniform along the line-of-sight is
the natural solution. Combining the desirable features of
homogeneous and spatially varying potentials, we intro-
duce a hybrid potential that is uniform in two dimensions
and harmonic in the third. The line-of-sight integration
is now turned into an advantage: instead of averaging
over a wide region of the phase diagram, the integration
yields a higher signal-to-noise measurement of the local
density. Using this geometry, we observe the characteri-
stic saturation of isothermal compressibility in a spin-
polarized gas, while a strongly interacting spin-balanced
gas features a peak in the compressibility near the super-
fluid transition [31].
In our experiment, we prepare atoms in the two lowest

hyperfine states of 6Li near a Feshbach resonance, and load
them into the uniform potential of the optical box trap
depicted in Fig. 1(a), after evaporative precooling in a crossed
dipole trap.We typically achieve densities andFermi energies
of up ton ≈ 1012 cm−3 andEF ≈ h × 13 kHz, corresponding
to ∼106 atoms per spin state in the box. The lifetime of the
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Fermi gas in the box trap is several tens of seconds. The
uniform potential is tailored using blue-detuned laser light for
the confining walls. The sharp radial trap barrier is provided
by a ring beam generated by an axicon [34,35], while two
light sheets act as end caps for the axial trapping [36].
Furthermore, the atoms are levitated against gravity by a
magnetic saddle potential [3]. The residual radial anticonfin-
ing curvature of the magnetic potential is compensated
optically, while an axial curvature results in a weak harmonic
potential described by a trapping frequency of ωz ¼ 2π×
23.9 Hz. This typically results in a variation of the potential
along the axial direction that is less than 5% of the Fermi
energy. Note that themagneticmoments of the two spin states
of 6Li differ by less than 0.1% at unitarity, resulting in a
negligible difference in trapping potentials. We characterize
the steepnessof the trapwalls bymeasuring the radial extentR
of the cloud as a function of Fermi energy [see Fig. 1(b)].
Modeling the trapwallswith a power law potential, we obtain
VðrÞ ∼ r16.2�1.6 [36].
A stringent measure of the homogeneity of the gas is the

probability distribution PðnÞ for the atomic density n.
Imaging along the z and x directions yields the radial and
axial probability distributionPðn2DÞ for the column density
n2D (see Fig. 1(c) and Ref. [36]). The distribution for the

homogeneous gas is sharply peaked near the trap average
density n2D. For comparison, we also show Pðn2DÞ for an
optical Gaussian trap, which is spread over a large range of
densities.
Fermions at low temperatures are characterized by Pauli

blocking [1]. Consequences of Pauli blocking have been
observed in ultracold gases, for example, in nondegenerate
samples, the reduction of collisions in spin-polarized gases
below the p-wave threshold [2,37] and, upon entering
degeneracy, Pauli pressure [38,39], reduced collisions
[40,41], antibunching in noise correlations [42], and the
reduction of density fluctuations [43,44]. In optical lattices
under microscopes, Pauli blocking has been observed in
real space through observations of band insulating states
[16,17,45] and of the Pauli hole in pair correlations [20].
Typically obscured in the time of flight expansion of an
inhomogeneous atomic gas, the Fermi surface has been
observed by probing only the central region of a harmoni-
cally trapped gas [46]. Now, the uniform box potential
enables us to directly observe the consequence of Pauli
blocking in momentum space for degenerate gases: the
Fermi-Dirac momentum distribution, featuring the emer-
gence of a Fermi surface near the Fermi wave vector kF and
the saturated occupation of momentum states below kF to
one particle per momentum cell.
To measure the momentum distribution fðkÞ, we release a

highly spin-imbalanced gas (n↓=n↑ < 0.05, wheren↑ andn↓
are the densities of the majority and minority spin compo-
nents, respectively) from the uniform potential into the small
residual axial harmonic potential (along the z axis). To ensure
the ballistic expansion of the gas, the minority component is
optically pumped into a weakly interacting state within 5 μs
[36]. After a quarter period of expansion in the harmonic trap,
the axial momenta kz are mapped into real space via z ¼
ℏkz=mωz [47–50]. In contrast to conventional time of flight
measurements, thismethod is unaffected by the in-trap size of
the gas. The measured integrated density profile n1DðzÞ ¼
∬ dxdynðx; y; zÞ reflects the integrated momentum distribu-
tion f1DðkzÞ ¼ ð2πÞ−2∬ dkxdkyfðkx; ky; kzÞ via

f1DðkzÞ ¼
2πℏ
Vmωz

n1DðzÞ: ð1Þ

Here, V is the volume of the uniform trap. Figure 2(a)
shows the integrated momentum distribution for dif-
ferent temperatures. Assuming a spherically symmetric
momentum distribution, fk ≡ fðkÞ ¼ fðkÞ. Noting that
R
dkxdkyf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q �
¼ π

R∞
k2z
dðk2ÞfðkÞ, the three-

dimensionalmomentumdistribution can beobtained from the
integrated momentum distribution by differentiation:

fk ¼ −4π
df1DðkzÞ

dk2z
: ð2Þ
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FIG. 1. Homogeneous Fermi gas. (a) Schematic of the box trap
and cuts through the column-integrated density profiles along the
axial and radial directions. (b) Radius of the cloud as a function of
the Fermi energy. The dotted black and dashed red lines
correspond to a perfect box potential and a harmonic potential,
respectively, and are scaled to converge at the highest EF. The
blue solid line corresponds to a power law potential VðrÞ ∼ r16.
(c) Measured radial probability density Pðn2DÞ for the column-
integrated density n2D, averaging about 20 in-trap images. The
blue solid and red dashed lines correspond to the uniform and
Gaussian traps, respectively.
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As the temperature is lowered, the momentum distribution
develops a Fermi surface, and we observe a momentum state
occupation of 1.04(15) at lowmomenta [see Figs. 2(b)–2(d)],
where the error in fk is dominated by the systematic
uncertainties in the box volume and the imaging magnifica-
tion [36]. This is the direct consequence of Pauli blocking and
confirms saturation at one fermion per momentum state.
An important motivation for the realization of a homo-

geneous Fermi gas is the prospect of observing exotic
strongly correlated states predicted to exist in narrow parts
of the phase diagram, such as the FFLO state [21,22]. In a
harmonic trap, such states would be confined to thin
isopotential shells of the cloud, making them challenging
to observe. We observe pair condensation in a uniformly
trapped strongly interacting spin-balanced Fermi gas
through a rapid ramp of the magnetic field during time
of flight [3,51,52], as shown in Figs. 3(a)–3(c). The pair
condensate at the end of the ramp barely expands in time of

flight. As a result, the in-trap homogeneity is reflected in a
flat top profile of the condensate [see Fig. 3(f)].
Although a fully uniform potential is ideal for measure-

ments that require translational symmetry, a spatially vary-
ing potential can access a large region of the phase diagram
in a single experimental run. To harness the advantages of
both potentials, we introduce a hybrid geometry that
combines the radially uniform cylinder trap with an axially
harmonic magnetic trap along the z direction [see Fig. 4(a)].
As a benchmark for the hybrid trap, we perform a thermo-
dynamic study of both a strongly spin-imbalanced and a
spin-balanced unitary gas. Figures 4(c)–4(e) display for both
cases the y-axis averaged local density, temperature, and
compressibility. The data shown in Fig. 4 are extracted from
an average of just six images per spin component. For
comparison, precisionmeasurements of the equation of state
at unitarity, performed in conventional harmonic traps,
required averaging of over 100 absorption images [31].
The temperature is obtained from fits to the known equations
of state of the noninteracting and spin-balanced unitary
Fermi gas, respectively. From the local density in the hybrid
trap, we determine the normalized isothermal compressibil-
ity ~κ ¼ κ=κ0 ¼ −∂EF=∂UjT for the spin-imbalanced and
the spin-balanced gas. Here,U is the external potential, and
κ0 ¼ 3

2
ð1=nEFÞ is the compressibility of the noninteracting

Fermi gas at zero temperature [31].
The strongly spin-imbalanced cloud features two distinct

regions in the trap. The center of the cloud is a partially
polarized region in which ðn↑ − n↓Þ=ðn↑ þ n↓Þ > 0.64,
well above the Clogston-Chandrasekhar limit of super-
fluidity [53–55]. Surrounding the center is a fully polarized
region, where the compressibility is seen to saturate: the
real space consequence of the Pauli blocking in momentum
space demonstrated in Fig. 2.
The majority spin component in the partially polarized

region is affected by the presence of theminority spin compo-
nent. We measure the compressibility ~κ↑ ¼ −∂EF↑=∂U in
the partially polarized region, and observe an increase
compared to the fully polarized gas. This is expected as
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FIG. 2. Momentum distribution of the homogeneous spin-polarized Fermi gas. (a) Doubly integrated momentum distribution f1D
for different temperatures in the uniform trap. In order of decreasing temperature: red dotted line, orange dashed line, and blue solid
line. Each line corresponds to averages over seven images. The optical density after momentum space mapping along z is shown in the
inset. (b),(c),(d) Momentum distribution fk ¼ −4πdf1D=dk2, showing Pauli blocking and Fermi surface formation. Fermi-Dirac fits
(solid line) give (b) T=TF ¼ 0.49ð2Þ, (c) T=TF ¼ 0.32ð1Þ, and (d) T=TF ¼ 0.16ð1Þ, with kF ranging between 2.8 μm−1 and 3.7 μm−1.
The estimated systematic error in the measurement of fk is 15%.
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FIG. 3. Pair condensation in the uniform trap. (a), (b), and
(c) Absorption images after a rapid ramp of the magnetic field and
10 ms of time of flight. The temperature of the gas is lowered (left
to right) by evaporation in the uniform trap. The onset of a
bimodal distribution signals the formation of a pair condensate.
(d), (e), and (f) show cuts through the images in the top row.
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the minority atoms in the center of the trap attract majority
atoms and form polarons [7,8]. The effect is indeed predicted
by the polaron equation of state [29,30,56]. The observation
of this subtle effect highlights the sensitivity of the hybrid
potential for thermodynamic measurements.
In the spin-balanced case, κ=κ0 is significantly larger than

for the ideal Fermi gas due to strong interactions. The two
prominent peaks in the reduced compressibility signal the
superfluid transition at the two boundary surfaces between
the superfluid core and the surrounding normal fluid. Near
the center of the trap, the reduced compressibility agrees
with the T ¼ 0 equation of state κ=κ0 ¼ 1=ξ ¼ 2.65ð4Þ,

where ξ is the Bertsch parameter. The shaded region in the
right column of Fig. 4 shows the superfluid part of the gas,
where the temperature is below the critical temperature for
superfluidity Tc ¼ 0.17TF [31].
The realization of uniform Fermi gases promises further

insight into phases and states of matter that have eluded
observation or quantitive understanding. This includes the
observation of the quasiparticle jump [57] in the momentum
distribution of a Fermi liquid, critical fluctuations in theBEC-
BCS crossover, and long-lived solitons [58]. Of particular
interest are spin imbalanced mixtures that have been studied
extensively in harmonic traps [29,30,55,59–62], where the
trap drives the separation of normal and superfluid phases into
a shell structure. This phase separation should occur sponta-
neously in a uniform spin-imbalanced gas, possibly forming
domains of superfluid and eventually ordering into an FFLO
state. In addition, the hybrid potential is a valuable tool for
precision measurements that rely on an in-trap density
variation. For example, spatially resolved rf spectroscopy
[32] in the hybrid potential would measure the homogenous
response of the system over a large range of normalized
temperatures T=TF in a single experimental run.
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CYLINDER-SHAPED TRAP

For the repulsive optical potential, we use laser light
that is blue detuned with respect to the D-lines of 6Li at
671 nm. The laser source is a multi-mode 10W laser at
532 nm. Figure S1 shows the optical setup that is used to
shape the beam into a hollow core cylinder. A collimated
gaussian beam propagates through an axicon and a mi-
croscope objective, generating a hollow cylindrical beam
in the Fourier plane [S2, S3]. An opaque circular silver
mask is placed in the focal plane to block the residual
light inside the ring and provide a sharper inner edge.
The resulting intensity distribution at the focal plane is
imaged onto the atoms along the z-axis. This confines the
atoms into a cylinder oriented along the axial direction
(z-axis).

In addition to the radial cylinder-shaped trap, the uni-
form trap requires sharp end cap walls that confine the
atoms along the axial direction. For the endcaps, we use
second 532 nm beam from the same laser source and de-
tuned it by 160 MHz to avoid interference between the
beams. The end cap beam is split into two elliptically
shaped beams with opposite polarizations, which are fo-

FIG. S1. Optical setup for cylinder-shaped trap. From left to
right: A gaussian beam propagates through an axicon result-
ing in a Bessel beam in the near field. Subsequently the Bessel
beam is focused through a microscope objective. In the focal
plane, the resulting intensity pattern is a ring with gaussian
rim. A matched circular opaque mask is used to block out
residual light in the center of the ring. Finally the mask is
projected through an imaging system onto the atoms, creat-
ing the cylinder-shaped trap for the atoms. A small variation
of cylinder radius is unavoidable when using a single axicon
[S1].
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FIG. S2. Determination of the power law exponent of the
radial wall potential. Log-log plot of the data shown in Fig.
1(b). The blue dotted line is a linear fit, with a slope of
m = 16.2± 1.6 for the power law exponent.

cused onto the edges of a rectangular opaque mask. The
intensity distribution at the mask is projected onto the
atoms and provides two sharp confining walls.

TRAP CHARACTERIZATION

Radial Trap Wall: Power Law Potential

To describe the radial extent of the gas as a function
of the Fermi energy, we model our radial potential with a
power law U(r) = αrm. Within the local density approx-
imation, the local chemical potential is then determined
by µ(r) = µ0 − αrm, where µ0 = µ(r = 0). The radius
measurements have been performed with a spin-balanced
superfluid. Assuming T = 0, the cloud has a well defined
Thomas-Fermi radius R, where the density drops to zero:

µ0 = ξEF = αRm, (S1)

with the Bertsch parameter ξ. Fitting the data shown
in Fig. S2 with a power-law gives m = 16.2± 1.6.
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FIG. S3. Axial probability distribution. The blue solid line
(red dashed line) shows P(navg) for the uniform (hybrid) trap.
Absorption images are taken along x-axis. The line of sight
averaged local density navg is calculated assuming a uniform
cylindrical trap.

Probability Distribution for the Atomic Density

The density distribution P(n) describes the probabil-
ity P(n)dn to find an atom at a density between n and
n + dn, and is normalized to unity. We evaluate the
probability distribution from absorption images by bin-
ning the measured column integrated density n2D, and
weighting each bin by the number of atoms representing
the bin.

To extract information about the axial homogeneity of
the gas, we image the atoms along the x-axis. We obtain
the line-of-sight averaged local density navg from the col-
umn density by dividing by the local column length. Fig-
ure S3 shows the probability distribution P(navg) for the
line-of-sight averaged density of the uniform and hybrid
trap. The axial probability distribution shows a narrow
peak similar to the one observed for the radial distribu-
tion. The probability distribution for the hybrid trap
is broadened due to the harmonic trapping along the z
direction.

OPTICAL PUMPING OF THE MINORITY
ATOMS FOR MOMENTUM-SPACE MAPPING

The measurement of the momentum distribution re-
lies on ballistic expansion of the gas immediately after
release from the trap. However, the expansion of the
atoms is strongly influenced by a small minority frac-
tion (< 5%) of strongly interacting atoms admixed to
ensure the thermalization of the gas. To eliminate the
interactions between the two spin states during the ex-
pansion, the minority atoms are optically pumped into
the hyperfine state |mJ = +1/2, mI = 0〉 that is weakly
interacting with the majority cloud. The 5µs pumping
pulse is applied right before the release of the atoms into
the harmonic trap. On average, 1.5 photons are required
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FIG. S4. Influence of the minority atoms on the expansion
of the majority cloud. The blue (red) line corresponds to the
observed integrated momentum distribution without (with)
optical pumping of the minority atoms. The dashed line is
a guide to the eye. The inset displays the level scheme for
the optical pumping at a magnetic field of B = 832G. The
yellow ellipse marks the two strongly interacting spin states,
where the minority is in |mJ = −1/2, mI = 0〉. The pumping
transition is shown as the blue line and the spontaneous decay
channels with red curvy lines.

to pump an atom into the weakly interacting hyperfine
state. The transitions involved in this pumping scheme
are shown in the inset of Fig. S4. Figure S4 shows the in-
tegrated momentum distribution of the gas obtained us-
ing momentum-space mapping with and without pump-
ing of minority atoms. Note that without the optical
pumping of the minority atoms, f1D is distorted from the
triangular shape expected for a low temperature Fermi
gas.

DENSITY MEASUREMENT WITH
ABSORPTION IMAGING

For heavy atoms, such as Rb and Cs, and imaging in-
tensities that are small compared to the saturation inten-
sity (Isat), the column density ncol = −(1/σ0) log (If/Ii)
is determined by the Beer-Lambert law. Here, Ii and If
are the intensities of the imaging beam before and after
the atoms, respectively, and σ0 is the absorption cross-
section. However, for light atoms such as Li, the Doppler
effect plays a dominant role in realistic experimental sce-
narios, where a low imaging intensity and short expo-
sure time is in conflict with a high signal to noise ratio.
For our experiment, depending on the column density
of the sample, preferred values for the imaging intensi-
ties are 0.1 − 0.5 Isat at an exposure time of 4 − 10µs.
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FIG. S5. Apparent atom count for the spin up component
(N↑) measured at different imaging intensities (I↑). A refer-
ence atom count (N↓) is obtained by subsequently imaging
a second spin component at a fixed imaging intensity (I↓ =
0.23Isat). Red circles, blue squares, and green triangles are
obtained using Beer-Lambert, saturated Beer-Lambert, and
Doppler Beer-Lambert, respectively. Spin balanced clouds are
used for these measurements.

Under these conditions, each 6Li atom scatters up to 35
photons. The corresponding photon recoil results in a
Doppler shift of up to 6 MHz, which is comparable to
the natural linewidth of 6Li.

In order to account for the Doppler and saturation ef-
fects, we numerically solve two coupled differential equa-
tions for the local, time-dependent saturation parameter
s(z, t) = I(z, t)/Isat and velocity v(z, t);

∂s

∂z
= −nσ0

s

1 + s+ (2kv/Γ)
2 . (S2a)

∂v

∂t
=

~kΓ

2m

s

1 + s+ (2kv/Γ)
2 . (S2b)

Here, σ0, k, m and Γ are the bare scattering cross-
section, photon wave vector, atomic mass and natural
linewidth.

In the limit where the Doppler effect is negligible
(v = 0), the analytical solution of Eq. S2 is ncolσ0 =
− log (sf/si) − (sf − si). Here, si and sf are reduced
imaging intensities before and after the atoms, respec-
tively. This is the modified version of the Beer-Lambert
law that includes saturation of the atomic transition. For
the general case, we numerically solve Eq. S2 to find the
Doppler-corrected relation between Ii and If (which we
call the “Doppler Beer-Lambert” law).

We compare these aforementioned methods by subse-
quently imaging the two spin states of a spin-balanced
gas with a fast SCMOS camera. The first image is taken
with fixed saturation intensity of s↓ = 0.23 and serves as
the density reference. The second absorption image for
the other spin component, with a variable s↑, is obtained
15µs after the first image. Figure S5 shows the differ-
ences in the measured total atom numbers between two
spin components for various s↑ calculated using the Beer-
Lambert law (red circles), the saturated Beer-Lambert
law (blue squares) and Doppler Beer-Lambert (green tri-
angles). For the atom number differences calculated us-
ing the Doppler Beer-Lambert law, the mean deviation
from the reference density is only 3% compared to 27%
and 46% for the saturated Beer-Lambert and the basic
Beer-Lambert law, respectively.

[S1] A. L. Gaunt, Degenerate Bose Gases : Tuning Interac-
tions & Geometry, PhD, University of Cambridge (2014).

[S2] J. H. McLeod, Journal of the Optical Society of America
44, 592 (1954).
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We measure radio frequency (rf) spectra of the homogeneous unitary Fermi gas at temperatures ranging
from the Boltzmann regime through quantum degeneracy and across the superfluid transition. For all
temperatures, a single spectral peak is observed. Its position smoothly evolves from the bare atomic
resonance in the Boltzmann regime to a frequency corresponding to nearly one Fermi energy at the lowest
temperatures. At high temperatures, the peak width reflects the scattering rate of the atoms, while at low
temperatures, the width is set by the size of fermion pairs. Above the superfluid transition, and approaching
the quantum critical regime, the width increases linearly with temperature, indicating non-Fermi-liquid
behavior. From thewings of the rf spectra, we obtain the contact, quantifying the strength of short-range pair
correlations. We find that the contact rapidly increases as the gas is cooled below the superfluid transition.

DOI: 10.1103/PhysRevLett.122.203402

Understanding fermion pairing and pair correlations is of
central relevance to strongly interacting Fermi systems such
as nuclei [1,2], ultracold gases [3–6], liquid 3He [7], high
temperature superconductors [8], and neutron stars [9].
Strong interactions on the order of the Fermi energy
challenge theoretical approaches, especially methods that
predict dynamic properties such as transport or the spectral
response at finite temperature [10]. Atomic Fermi gases at
Feshbach resonances realize a paradigmatic system where
the gas becomes as strongly interacting as allowed by
unitarity [3–6,11]. Here, the system becomes universal,
requiring only two energy scales: the Fermi energy EF and
thermal energy kBT, where kB is the Boltzmann constant
and T is the temperature. The corresponding length scales
are the interparticle spacing λF ¼ n−1=3 and the thermal de
Broglie wavelength λT ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
, where m and n are

the mass and number density of the atoms, respectively.
When the two energy scales are comparable, the system
enters a quantum critical regime separating the high
temperature Boltzmann gas from the fermionic superfluid
[12]. Quantum criticality is often associated with the
absence of quasiparticles [10,12,13], spurring a debate
on the applicability of Fermi liquid theory to the degenerate
normal fluid below the Fermi temperature TF ¼ EF=kB but
above the superfluid transition temperature Tc ≈ 0.167TF
[14–16]. It has been conjectured that preformed pairs exist
above Tc, up to a pairing temperature T� [3,5,11,17–21].
Radio frequency (rf) spectroscopy measures the momen-

tum integrated, occupied spectral function, providing a
powerful tool for studying interactions and correlations in
Fermi gases [22–27]. Here, a particle is ejected from the

interacting many-body state and transferred into a weakly
interacting final state. Shifts in rf spectra indicate attractive
or repulsive interactions in the gas. At high temperatures,
the width of the rf spectrum reflects the scattering rate in the
gas, while at low temperatures, the width has been used to
infer the pair size of superfluid fermion pairs [26].
The high frequency tails of the rf spectra are sensitive to

the spectral function at high momenta and, therefore, are
governed by short range correlations quantified by the
contact, which also determines the change of the energy
with respect to the interaction strength [28–30]. From the
momentum distribution within nuclei [1,2] to the frequency
dependence of the shear viscosity in ultracold fermionic
superfluids [31,32], the contact is central to Fermi gases
dominated by short-range interactions. Since the contact is
proposed to be sensitive to the superfluid pairing gap, it
could signal a pseudogap regime above Tc [32–35].
Although the temperature dependence of the contact near
Tc has been the subject of many theoretical predictions, a
consensus has not been reached [32,36–38].
Initial studies of unitary Fermi gases using rf spectroscopy

were affected by inhomogeneous densities in harmonic traps,
yielding doubly peaked spectra that were interpreted as
observations of the pairing gap [25,39], and from the
influence of interactions in the final state, which caused
significantly narrower spectra and smaller shifts than
expected [22,39–41]. Measurements of the contact, made
using both rf [42,43] and Bragg [44–46] spectroscopy, were
also broadened by inhomogeneous potentials. To avoid trap
broadening, tomographic techniques have been used to
measure local rf spectra, yielding measurements of the
superfluid gap [47], the spectral function [17,18], and the
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contact [48]. A recent advance has been the creation of
uniform box potentials [49–51]. These are ideal for rf
spectroscopy and precision measurements of the contact:
since the entire cloud is at a constant density, global probes
such as rf address all atoms, andbenefit froma stronger signal.
In this Letter, we report on rf spectroscopy of the

homogeneous unitary Fermi gas in a box potential. A
single peak is observed for all temperatures from the
superfluid regime into the high temperature Boltzmann
gas. The tails of the rf spectra reveal the contact, which
shows a rapid rise as the temperature is reduced below Tc.
We prepare 6Li atoms in two of the three lowest hyper-

fine states j↓i ¼ j1i and j↑i ¼ j3i at a magnetic field of
690 G, where interspin interactions are resonant. A uniform
optical box potential with cylindrical symmetry is loaded
with N ∼ 106 atoms per spin state (with Fermi energies
EF ∼ h × 10 kHz), creating spin-balanced homogeneous
gases at temperatures ranging from T=TF ¼ 0.10 to 3.0
[50]. A square rf pulse transfers atoms from state j↓i
into state jfi ¼ j2i. Final state interactions between
atoms in state jfi and atoms in states j↑i and j↓i are
small (kFaf ≲ 0.2, where af is the scattering length
characterizing collisions between atoms in the final and
initial states, and ℏkF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEF
p

is the Fermi momentum)

[26]. After the rf pulse, we measure the atom numbers
N↓ and Nf in the initial and final states. Within linear
response, according to Fermi’s golden rule, Nf is propor-
tional to the pulse time TPulse, the square of the single-
particle Rabi frequencyΩR, and an energy density of states.
Thus, we define a normalized, dimensionless rf spectrum as
IðωÞ ¼ ½NfðωÞ=N↓�ðEF=ℏΩ2

RTPulseÞ [52,57]. Because of
the scale invariance of the balanced unitary Fermi gas,
this dimensionless function can only depend on T=TF
and ℏω=EF.
For thermometry, we release the cloud from the uniform

potential into a harmonic trap along one direction [57].
Since the cloud expands isoenergetically, the resulting
spatial profile after thermalization provides the energy
per particle, which can be related to the reduced temper-
ature, T=TF, using a virial relation and the measured
equation of state [14]. To clearly identify the superfluid
transition, we measure the pair momentum distribution by
a rapid ramp of the magnetic field to the molecular side of
the Feshbach resonance before releasing the gas into a
harmonic trap for a quarter period [50,52].
Initially, we focus on changes in the line shape for rf

frequencies within ∼EF=ℏ of the bare (single-particle)
resonance [see Fig. 1(a)], and follow the changes in

(a) (b)

(c)

FIG. 1. (a) Thermal evolution of rf spectra. The Rabi frequency is ΩR ¼ 2π × 0.5 kHz and the pulse duration is TPulse ¼ 1 ms. The
solid lines are guides to the eye. (b) Frequency of the peak (Ep ¼ −ℏω) of the rf spectra as a function of temperature shown as white dots
on an intensity plot of the rf response. The grey solid line is a solution to the Cooper problem at nonzero temperature [52]. (c) The full
width at half maximum Γ of the rf peak as a function of T=TF. The black dotted-dashed line Γ=EF ¼ 1.2

ffiffiffiffiffiffiffiffiffiffiffiffi
TF=T

p
shows the temperature

dependence of the width due to scattering in the high-temperature gas [32,60]. The grey triangles are the corresponding width
measurements of a highly spin-imbalanced gas [57]. The horizontal black dotted line represents the Fourier broadening of 0.1EF [52].
The vertical dashed red line in both (b) and (c) marks the superfluid transition [14].
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the peak position Ep [shown in Fig. 1(b)]. As the hot spin-
balanced Fermi gas is cooled below the Fermi temperature,
the peak shift decreases from roughly zero for temperatures
T ≳ TF, to Ep ≈ −0.8EF for temperatures below the super-
fluid transition temperature [see Fig. 1(b)]. At high temper-
atures, one might naïvely expect a shift on the order of
Ep ∼ ℏnλT=m due to unitarity-limited interactions in the
gas. However, there exists both an attractive and a repulsive
energy branch, which are symmetric about zero at unitarity
[58], and when T ≫ TF, their contributions to the shift
cancel [32,59,60]. As to the interpretation of the peak shift at
degenerate temperatures, a solution to the Cooper problem in
the presence of a T > 0 Fermi sea shows that it is
energetically favorable to form pairs when T ≲ 0.5TF
[52], and the resulting pair energy agrees qualitatively
with the observed shifts [grey line in Fig. 1(b)]. However,
it is known that fluctuations suppress the onset of pair
condensation and superfluidity to 0.167ð13ÞTF [5,11,14,61].
In a zero-temperature superfluid, BCS theory would
predict a peak shift given by the pair binding energy
EB ¼ Δ2=2EF, where Δ is the pairing gap [3]. Including
Hartree terms is found to result in an additional shift of the
peak [27,47].
Now, we turn to the widths, Γ, defined as the full width at

half maximum of the rf spectra [see Fig. 1(c)]. As the gas is
cooled from the Boltzmann regime, the width gradually
increases, and attains a maximum of Γ ¼ 1.35ð5ÞEF near
T ¼ 0.44ð4ÞTF. For temperatures much higher than TF,
the system is a Boltzmann gas of atoms scattering with a
unitarity limited cross section σ ∼ λ2T . Transport properties
and short-range pair correlations are governed by the scatter-
ing rate Γ ¼ n↓σhvreli ∼ ℏn↓λT=m and a mean-free path
l ¼ ðn↓σÞ−1 ∼ ðn↓λ2TÞ−1, where n↓ is the density of atoms in
j↓i, and hvreli ∼ ℏ=mλT is the thermally averaged relative
velocity. This leads to a width that scales as Γ ∝ 1=

ffiffiffiffi
T

p
,

shown as the dotted-dashed line in Fig. 1(c) [32].
As the cloud is cooled below T ≈ 0.5TF, the width

decreases linearly with temperature to Γ ∼ 0.52EF=ℏ in the
coldest gases measured [T ¼ 0.10ð1ÞTF]. For temperatures
below Tc, we expect the gas to consist of pairs of size ξ.
The rf spectrum will be broadened by the distribution of
momenta ∼ℏ=ξ inside each pair, leading to a spread of
possible final kinetic energies ℏ2k2=m ∼ ℏ2=mξ2 and a
corresponding spectral width ℏ=mξ2. At unitarity and at
T ¼ 0, the pair size is set by the interparticle spacing λF
[3,5,26]. Thus, the rf width at low temperatures
is Γ ∼ ℏnλF=m.
For temperatures above Tc, it has been suggested that

the normal fluid can be described as a Fermi liquid
[15,62]. This would imply a quadratic relation between
the peak width and the temperature [63], as observed in the
widths of the rf spectra of Fermi polarons at unitarity [57].
However, the measured width of the spin-balanced Fermi
gas changes linearly in temperature, implying non-Fermi

liquid behavior in the normal fluid. In addition, Γ > EF=ℏ
for 0.3≲ T=TF ≲ 1.2, indicating a breakdown of well-
defined quasiparticles over a large range of temperatures
near the quantum critical regime [10,12,13].
We now consider the rf spectrum at frequencies much

larger than EF=ℏ, where the rf-coupled high-momentum
tails reveal information about the short-range pair correla-
tions between atoms. In a gas with contact interactions,
the pair correlation function at short distances is
limr→0hn↑ðr0 þ r=2Þn↓ðr0 − r=2Þi ¼ C=ð4πrÞ2. The con-
tact C connects a number of fundamental relations, inde-
pendent of the details of the short-range interaction
potential [28]. In particular, the contact governs the
momentum distribution at large momenta: limk→∞nðkÞ ¼
C=k4. For rf spectroscopy, the density of final states scales
as

ffiffiffiffi
ω

p
, and the energy cost to flip a spin at high momenta is

limk→∞ℏω ¼ ℏ2k2=m. Thus, the number of atoms trans-
ferred by the rf pulse at high frequencies in linear response
is ∝ C=ω3=2 [5,27]. Including final state interactions, the
general expression for the rf transfer rate in a gas with
unitarity-limited initial state interactions is [64]

lim
ω→∞

IðωÞ ¼
�

C
NkF

�
1

2
ffiffiffi
2

p
πð1þ ℏω=EbÞ

�
EF

ℏω

�
3=2

; ð1Þ

FIG. 2. Rf spectrum at high frequencies. Here, the temperature
of the gas is T=TF ¼ 0.10ð1Þ, the pulse duration is TPulse ¼ 1 ms,
and the Rabi frequencies are 2π × 536 Hz (light blue circles),
2π × 1.20 kHz (medium blue triangles), and 2π × 3.04 kHz
(dark blue squares). The black solid line shows a fit of Eq. (1)
to the data, while the grey dashed line shows the fit neglecting
final state interactions. The contact can be directly obtained from
the transfer rate at a fixed detuning of 60 kHz (ℏω=EF ∼ 7.1)
(dotted-dashed vertical line). Inset: we vary the pulse time at this
fixed detuning, and extract the initial slope (dashed line) of the
exponential saturating fit (solid line). The rf transfer rate obtained
from the initial linear slope is shown as the red diamond in the
main plot. Here, ΩR ¼ 2π × 1.18 kHz.
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where N ¼ N↑ þ N↓ is the total number of atoms, and the
final state molecular binding energy is Eb ¼ ℏ2=ma2f ≈
h × 433 kHz ≈ 40EF. Figure 2 shows a typical rf spectrum
at T=TF ¼ 0.10, with a fit of Eq. (1) to data with detunings
ℏω > 3EF, using the dimensionless contact C̃ ¼ C=NkF as
the only free parameter. At detunings larger than about
10 EF, the data deviate from a typical ω−3=2 tail, and are
better described by the full expression Eq. (1) including
final state interactions. Here, the Rabi frequency was varied
across the plot to ensure small transfers near the peak and a
high signal-to-noise ratio at detunings up to ℏω=EF ¼ 31.
The fit of Eq. (1) to the data gives a low-temperature
contact of C̃ ¼ 3.07ð6Þ, consistent with a quantum
Monte Carlo result C̃ ¼ 2.95ð10Þ [65], the Luttinger-
Ward (LW) calculation C̃ ¼ 3.02 [27], as well as previous
measurements using losses C̃ ¼ 3.1ð3Þ [66] and Bragg
spectroscopy C̃ ¼ 3.06ð8Þ [46].
For a more efficient measurement of the contact

across a range of temperatures, we vary the pulse time
at a fixed detuning of 60 kHz (ℏω=EF ≳ 6) that is large
compared to the Fermi energy and temperature. [52].
Deviations from linear response are observed for transfers
as small as 5% (see inset of Fig. 2). We fit the transfers to an
exponentially saturating function A½1 − expð−TPulse=τÞ�,
and find the initial linear slope A=τ in order to extract
the contact for each temperature using Eq. (1). This ensures
that every measurement is taken in the linear response
regime.
In Fig. 3(a), we show the temperature dependence of the

contact. As the gas is cooled, the contact shows a gradual
increase down to the superfluid transition Tc. Entering the
superfluid transition, the contact rapidly rises by approx-
imately 15%. The changes in the contact reveal the
temperature dependence of short-range pair correlations
in the spin-balanced Fermi gas. At temperatures far above
TF, the contact reflects the inverse mean free path in the gas
1=l ∼ 1=T. At lower temperatures, the behavior of the
contact is better described by a third-order virial expansion
[see inset of 3(a)] [36]. Near Tc, predictions of the contact
vary considerably. In the quantum critical regime, a
leading-order 1=N calculation (equivalent to a Gaussian
pair fluctuation or Nozières–Schmitt-Rink method) results
in a prediction C̃ðμ ¼ 0; T ≈ 0.68TFÞ ¼ 2.34 [10], which
is consistent with our measurement of C̃½T¼0.65ð4ÞTF�¼
2.29ð13Þ. For temperatures above the superfluid transition,
our data agree well with both a bold diagrammatic
Monte Carlo calculation [38], and, especially near Tc,
the LW calculation [32]. The contact rises as the temper-
ature is decreased below Tc, a feature captured by the LW
formalism, in which the contact is directly sensitive to
pairing: C̃ ∼ ðΔ=EFÞ2 [27,33]. While short-range pair
correlations do not necessarily signify pairing [35], the
rapid rise of the contact below Tc is strongly indicative of
an additional contribution from fermion pairs, as predicted

by LW. At temperatures T ≪ Tc, below the reach of our
experiment, phonons are likely the only remaining excita-
tions in the unitary Fermi gas, and are expected to contribute
to the contact by an amount that scales as T4 [67].
In conclusion, rf spectroscopy of the homogeneous

unitary Fermi gas reveals strong attractive interactions,
the non-Fermi-liquid nature of excitations in the gas across
the quantum critical regime, and a rapid increase in short-
range pair correlations upon entering the superfluid regime.
The strong variation with temperature of the position
of the spectral peak may serve as a local thermometer in
future studies of heat transport in ultracold Fermi gases.
Furthermore, these measurements of the contact provide
a benchmark for many-body theories of the unitary
Fermi gas. The uniform trap enables direct access to
homogeneous measurements of thermodynamic quantities,

(a)

(b)

FIG. 3. The dimensionless contact C=NkF (a) and condensate
fraction N0=N (b) of the unitary Fermi gas as a function of the
reduced temperature T=TF. Our measurements of the contact
(red points) are compared with a number of theoretical estimates:
bold-diagrammatic Monte Carlo (BDMC) [38], quantum
Monte Carlo (QMC) [37], Luttinger-Ward (LW) [32], large N
[10], and Gaussian pair fluctuations (GPF) [36]. Also shown is
the homogeneous contact obtained from the equation of state at
the École normale supérieure (ENS-EOS) [62], from loss rate
measurements (ENS-L) [66], and from rf spectroscopy by the
JILA group [18] across a range of temperatures. The vertical
blue dotted lines and light blue shaded vertical regions mark
Tc=TF ¼ 0.167ð13Þ [14]. The inset of (a) shows the contact over
a wider range of temperatures and marks the high-temperature
agreement with the third order virial expansion. The error bars
account for the statistical uncertainties in the data.
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and increases sensitivity to abrupt changes of those
quantities near phase transitions. This could be particularly
useful in the limit of high spin imbalance, where the nature
of impurities suddenly transitions from Fermi polarons to
molecules. [68,69].
We note that measurements of the temperature depend-

ence of the contact were simultaneously performed at
Swinburne using Bragg spectroscopy [70]. Their data are
in excellent agreement with the present results.
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DENSITY CALIBRATION IN THE
HOMOGENEOUS TRAP

The density of atoms in the homogeneous trap is mea-
sured using in situ absorption imaging [S1]. The ab-
solute atom numbers are calibrated by loading a spin-
imbalanced gas into a hybrid trap that is axially har-
monic and radially homogeneous [S2]. In Fig. S1, we plot
the 1D density profile given by the integrated profile
along the two homogeneous directions and the isother-
mal compressibility κ/κ0 = −∂EF↑/∂U of the majority
component, where κ0 = 3

2n↑EF
is the compressibility of

an ideal Fermi gas at density n↑.The compressibility in
the spin-polarized region provides the calibration of our
measurement of density.

(a)

(b)

FIG. S1. Density calibration using the spin-imbalanced Fermi
gas in the axially harmonic, radially homogeneous trap. Here,
the majority Fermi energy is EF↑/h = 5.7(1) kHz, T/TF↑ =
0.05(1) and the imbalance is N↓/N↑ = 0.18. (a) Majority
(minority) density profiles in blue (red) data points. The
dashed line is a fit to the ideal equation of state for the spin-
polarized Fermi gas, restricted to the polarized wings of the
cloud (outside the minority component edge, marked with
the dot-dashed line). (b) The isothermal compressibility of
the majority component as a function of position.

RF SPECTROSCOPY MEASUREMENTS

For rf spectroscopy measurements, two images are
taken within several µs of each other. The first image
records the transferred cloud in state |f〉= |2〉, while the
second image allows for counting the number of atoms
in the initial state |↓〉= |1〉. For measurements of the full
spectrum, the pulse time is set to TPulse = 1 ms, giving
a Fourier-limited spectral resolution of 1 kHz. For mea-
surements of the contact, we select a detuning that is
large compared to both the Fermi energy and the tem-
perature of the cloud. This ensures that atoms are trans-
ferred from the high-momentum tails, and the transfer
rate accurately measures the contact. For detunings be-
tween ~ω ≈ 5EF and ~ω ≈ 13EF , we verified that the
measured value of C̃ is constant within statistical errors.
The Rabi frequencies are adjusted between ΩR = 2π×500
Hz and ΩR = 2π × 1 kHz to maintain a high signal to
noise ratio.

COOPER PROBLEM AT FINITE
TEMPERATURE

In the Cooper problem [S3] one searches for the bind-
ing energy of two opposite-spin fermions on top of the
filled Fermi sea. The Fermi sea is treated as “inert”, its
only role being to block momentum states that would
otherwise be available to the scattering pair. This con-
straint alone already leads to pairing in three dimensions.
Cooper’s solution can be extended to non-zero temper-
ature, in the search of a bound state on top of a finite
temperature Fermi gas. A standard approach [S4] yields
an equation for the bound state energy Ec for Cooper
pairs:

− m

4π~2a
=

∫
d3p

(2π)3

(
(1− nF (ξp))

2

2ξp − Ec
− 1

2εp

)
, (S1)

where nF (ε) = (1 + exp(ε/T ))−1 is the Fermi func-

tion, ξp = p2

2m − µ, and µ the chemical potential of the
non-interacting Fermi gas at temperature T . The factor
(1 − nF (ξp))

2 represents Pauli blocking of momentum
states already occupied in the spin up and the spin down
Fermi sea. Without it, there would be no pairing of two



S2

particles, as is well known in three dimensions. This sim-
plest approach to pairing in a Fermi gas predicts a Cooper
pair energy at resonance (1/a = 0) of Ec = −0.61EF at
zero temperature, and an onset of pairing (Ec < 0) at
T ∗/TF = 0.41EF . To look for binding in the full many-
body framework, one searches for poles of the pair propa-
gator. In the lowest-order T-matrix calculation or equiva-
lently to lowest order in a 1/N expansion [S5, S6] (where
2N is the number of spin components of the Fermi gas),
one finds an equation for this pole that is nearly identical
to the above:

− m

4π~2a
=

∫
d3p

(2π)3

(
(1− nF (ξp))

2 − nF (ξp)
2

2ξp − Ec
− 1

2εp

)
.

(S2)
Compared to the simple Cooper problem, the many-body
approach yields an additional contribution to the inte-
gral from occupied momentum states ∝ −nF (ξp)

2 as
fermions within the Fermi sea now also profit from pair-
ing. This does not change the prediction for the T = 0
binding energy Ec = −0.61EF , but it yields stronger
binding at finite temperature, and predicts an onset of
pairing at T ∗/TF = 0.5. In the main text, we show
Ec from this lowest-order many-body approach. As is
well-known, fluctuations reduce the onset of superfluid-
ity to lower Tc. The next order in the 1/N expansion
yields [S5] Tc/TF = 0.14, and the self-consistent T-matrix
approach [S7] yields Tc/TF = 0.16, in agreement with the
experimental value Tc/TF = 0.167(13) [S8]. However, T ∗

is often interpreted as the crossover temperature scale for
pair formation [S9], and the region between Tc and T ∗ is
the putative “pseudogap” regime. For a recent analysis
of pair correlations see [S10].

CONDENSATE FRACTION

The condensate fraction is measured by performing
a momentum space mapping of the pair wavefunction.
The atoms are released from the optical box potential
into a magnetic harmonic trap with a confining trap-
ping frequency ωz = 2π × 23 Hz along the z-direction.
Simultaneously, the bias field is rapidly ramped from the
Feshbach resonance to a value near a zero crossing of
the scattering length, which associates existing fermion
pairs into bosonic molecules, and preserves the center
of mass momentum. Assuming the resulting molecules
are non-interacting, the density profile of the cloud af-
ter a quarter-period oscillation in the harmonic trap pro-
vides the pair center of mass momentum distribution [S2].
The measured integrated profiles n1D(z) are functions of
the momentum kz = mωzz/~ along the z direction (see
Fig. S2). We fit the wings with the momentum distribu-
tion for a thermal gas of non-interacting bosons [S11]:

n1D(kz) =
1

(2πkBT )3/2
g3/2

(
e−|~

2k2z/2m−µ|/kBT
)

(S3)

(a) (d)

(b)

(c)

FIG. S2. Momentum space mapping of the box pair wavefunc-
tion. (a)-(c) Images of the cloud at T/TF = 0.13 in (a), 0.16 in
(b), and 0.18 in (c), after a quarter-period release along the
horizontal direction. (d) From top to bottom, T/TF = 0.13,
0.16, 0.18, 0.21, 0.43. Here, n1D is the two-axis integrated
pair center of mass momentum distribution, and the dashed
black lines are polylogarithm fits to the thermal wings. The
dashed vertical lines in (a)-(c) and the dotted vertical lines
in (d) mark the condensate region excluded from the fit
(≈ ±0.07kF ). Here, kF is the Fermi wavevector in the uni-
form trap.

As the gas is cooled, the profiles display an increased
occupation near zero momentum, and at Tc, a clear con-
densate peak emerges. We define the condensate fraction
N0/N as the difference in area between the observed pro-
file and the fit to the thermal wings.
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Boiling a Unitary Fermi Liquid
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We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity
limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at
high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range
correlations of Fermi polarons at low temperatures T. In this regime, we observe a characteristic T2

dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid.
At high T, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann
gas, ∝ T−1=2. In the transition region between the quantum degenerate and classical regime, the spectral
width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle
description. Density measurements in a harmonic trap directly reveal the majority dressing cloud
surrounding the minority spins and yield the compressibility along with the effective mass of Fermi
polarons.

DOI: 10.1103/PhysRevLett.122.093401

Landau’s Fermi liquid theory provides a quasiparticle
description of the low-temperature behavior for a large class
of unordered fermionic states of matter, including most
normal metals, atomic nuclei, and liquid helium-3 [1].
Strongly interacting Fermi gases with highly imbalanced
spin populations have been identified as belonging to the
same class [2–14]. The quasiparticles in spin-imbalanced
Fermi gases are Fermi polarons: spin impurities dressed by
an excess cloud of majority fermions. The stability of
quasiparticles in a Fermi liquid is a consequence of the
restricted phase space for collisions due to Pauli blocking.
With increasing temperature T, the accessible phase space
increases, and the lifetime of quasiparticles shortens, leading
to the breakdown of Fermi liquid theory. In this intermediate
temperature regime, the gas is neither a Fermi liquid nor a
classical Boltzmann gas. For strong interactions, this regime
is void of well-defined quasiparticles and controlled by the
quantum critical point of the unitary spin-balanced gas at
zero chemical potential and temperature [15–17].
Ultracold Fermi gases offer a unique opportunity to

study the crossover from a low-temperature Fermi liquid to
a classical Boltzmann gas, due to the large accessible
temperature range. In spin-imbalanced Fermi gases, the two
inequivalent Fermi surfaces provide additional richness. As
the temperature is lowered from the classical regime, the
Fermi surface of the majority forms first, giving minority
spins the quasiparticle character of polarons. At even lower
temperatures, the polarons themselves become quantum
degenerate and form a Fermi surface.
In this Letter, we access the entire crossover from

degenerate polarons to the classical Boltzmann gas through

the quantum critical region. The internal properties of the
polaronic quasiparticles are measured via radio-frequency
(rf) spectroscopy [10,18–20] on a homogeneous Fermi gas
[21,22]. At low temperatures, the peak position and width
of the rf spectra reflect energy and decay rate of the
polarons. Note that the decay rate of a quasiparticle can be
viewed as the rate of momentum relaxation in a transport
measurement (see, e.g., [7]). The wings of the rf spectra
yield information about the short-range correlations and the
contact [23–27], controlling the change in the polaron
energy with interaction strength. Further thermodynamic
properties of the polaron gas are directly obtained from
in situ density profiles in the presence of a harmonic
potential [6,12,13,28–30], revealing the number of atoms in
the majority dressing cloud of a polaron. The compress-
ibility of the impurity gas at low temperature yields the
effective mass of Fermi polarons.
For the spectroscopic studies we employ rf ejection

spectroscopy, where the many-body state is first prepared
and then probed by transferring a small fraction of one spin
component into a weakly or noninteracting final state.
Radio-frequency ejection spectroscopy has been used to,
e.g., measure interactions, correlations, pairing phenomena
in Fermi gases [31,32], and more specifically, the binding
energy of the attractive Fermi polaron at low temperatures
[10,19]. A prerequisite for our measurements is a spatially
uniform box potential. This avoids the spectral broadening
caused by an inhomogeneous density and impurity con-
centration [21,33]. The three energetically lowest hyperfine
states of 6Li (labeled j1i; j2i; j3i) are utilized to create and
probe the strongly interacting spin mixture. The minority

PHYSICAL REVIEW LETTERS 122, 093401 (2019)
Editors' Suggestion Featured in Physics

0031-9007=19=122(9)=093401(6) 093401-1 © 2019 American Physical Society



(impurity) and majority components are prepared in j↓i ¼
j1i and j↑i ¼ j3i and transferred via the rf drive into the
final state jfi ¼ j2i [33,37]. All measurements have been
performed at a magnetic field of 690 G, where the
interactions between minority and majority atoms are
unitarity limited. Final state interactions are weakly repul-
sive with kF↑a↑f ≲ 0.2 (a↑f ¼ 62 nm). The impurity con-
centration (minority to majority density ratio n↓=n↑) is
controllably varied between 10% and 30%.
The rf response is linked to the probability that a hole of

energy E and momentum p is excited by ejecting a particle
from the many-body state, as described by the occupied
spectral functionA−↓ðp; EÞ [10,32,38,39]. Detecting a free
particle of momentum p after rf transfer implies a momen-
tum p and energy Ep ¼ p2=2m − μ↓ − ℏω of the leftover
hole, where μ↓ is the minority chemical potential and ℏω is
the energy of the rf photon with respect to the non-
interacting transition. The number of transferred minority
atoms NfðωÞ is proportional to the momentum integral of
the occupied spectral function A−↓ðp; EpÞ. Fermi liquids
feature a spectral function that is sharply peaked around
ϵ0 þ p2=2m� − μ↓, with the effective mass m� and dressed
energy ϵ0 of the quasiparticles. The width of the peak
is determined by the quasiparticle decay rate Γðp; TÞ.
For low temperatures and impurity concentrations, only
low-momentum states are populated and the peak position

of the rf spectrum corresponds to the polaron binding
energy [10].
Figure 1(a) shows the evolution with temperature of the

rf spectra. Here, we have defined the normalized transfer
IðωÞ ¼ ½NfðωÞ=N↓�ðEF↑=ℏΩ2

RTpulseÞ, with the number of
particles in the final (initial) state Nf (N↓), the pulse
duration Tpulse, and the single particle Rabi frequency ΩR.
The term Ω2

RTpulse originates from the linear response to
the rf pulse. The factor EF↑=ℏ in I is owed to the scale
invariance of the unitary Fermi gas, which implies that its
spectral features, such as the peak position, amplitude, and
width directly scale with the Fermi energy [31,32]. The
normalized transfer only depends on the dimensionless
parameters T=TF↑, n↓=n↑, and ℏω=EF↑, apart from small
corrections due to final state interactions and Fourier
broadening that break the scale invariance of the system.
The energy of the gas is measured by an isoenergetic
release from the uniform to a harmonic trap. After thermal-
ization, the in-trap size reveals the energy, from which we
obtain the temperature via the equation of state (see
Supplemental Material [33] ].
In the deeply degenerate limit ðT=TF↑ < 0.1Þ, we

observe a sharply defined resonance [Fig. 1(a)] signaling
the stable long-lived Fermi polaron [10]. Its width, defined
by the full width at half maximum (FWHM), is limited by
the Fourier resolution. From the position of the spectral
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FIG. 1. (a) Thermal evolution of the minority rf spectra. The impurity concentration is n↓=n↑ ¼ 0.10� 0.03, the Rabi frequency
ΩR ¼ 2π × 0.5 kHz, and the pulse duration Tpulse ¼ 1 ms. (b) 2D plot of the minority spectra with maxima highlighted by white points.
To reflect the energy of the initial many-body state, the spectra are shown with the inverse frequency E−=EF↑, where E− ¼ −ℏω. The
cross corresponds to the theoretical zero temperature result for the polaron energy, including a correction for final state interactions
[3–5,8,38]. (c) FWHM of the rf spectra. (Dotted line) Fourier resolution limit; (dashed red line) single-polaron decay rate Γ=EF↑ ¼
2.71ðT=TF↑Þ2 [7], offset by the Fourier limit; (dash-dotted black line) FWHM of the rf spectrum in the high-temperature limit
Γ=EF↑ ¼ 1.2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TF↑=T

p
[40,41], reflecting the scattering rate in the classical, unitary Boltzmann gas. [For the errors in (b) and (c), see the

Supplemental Material [33] ].
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peak at low temperature [Fig. 1(b)] and correction for weak
final state interactions as in [10], we obtain a zero temper-
ature polaron binding energy A≡ ϵ0=EF↑ ¼ −0.60� 0.05,
with a linear extrapolation of the peak positions below
T=TF↑ ¼ 0.3.
With increasing temperature, the spectral peak initially

shifts to higher frequencies and broadens significantly
[Figs. 1(b) and 1(c)]. A rise in the polaron binding energy
with temperature is expected, given the increased scattering
phase space of the majority spins, and is found theoretically
[42,43]. However, note that the position of the maximum at
finite temperature and impurity concentration is influenced
by the density of states, the difference in the effective
mass between initial and final state [20], and the thermal
population of momentum states. At a temperature near
T=TF↑ ≈ 0.75, a sharp jump in the position of the global
maximum to ω ≈ 0 is observed [Figs. 1(a) and 1(b)] [44]. In
this regime, the width of the spectra reaches its maximum
[Fig. 1(c)], on the order of the Fermi energy. Beyond this
temperature, the position of the maximum remains constant
at ω ≈ 0, as expected theoretically [40,41]. It reflects a
merging of attractive and repulsive branches, symmetric
about zero on resonance [45], as the temperature exceeds
their splitting.
The spectral function of a Fermi liquid is a single

Lorentzian peak with a width given by the decay rate of
the quasiparticles [1]. The width of the rf spectra is
dominated by this decay rate at low temperatures. We
observe a quadratic scaling of the width at low temper-
atures, a hallmark of Fermi liquid theory, in agreement with
a theoretical calculation [Fig. 1(c)] [7]. In the quantum
critical regime around T ≈ TF↑, the lifetime of the polarons
drops below the Fermi time (h=EF↑), signaling a break-
down of quasiparticles [15–17]. The decrease in width at
temperatures beyond the Fermi temperature is expected for
a classical Boltzmann gas with unitarity limited inter-
actions. The thermal scattering rate in the dilute impurity
limit is given by Γth ¼ n↑σthvth ∼ 1=

ffiffiffiffi
T

p
, with the thermal

velocity vth ∼
ffiffiffiffi
T

p
and the unitarity limited scattering cross

section σth ∼ λ2 ∼ 1=T.
Apart from energies and lifetimes, rf spectra also directly

yield the strength of short-range correlations, quantified by
contact C [Fig 2(a)] [24–27,31,46,47]. The contact is a
central quantity in a set of universal relations, linking
microscopic properties to thermodynamics, which apply to
all many-body systems with contact interactions [23]. It
governs the tail of the momentum distribution, short-range
pair correlations, and the change in energy with interaction
strength [27,31,32]. As the contact is a measure of pair
correlations, the tails of the rf spectrum of the minority and
majority components are identical. For unitarity limited
interactions, the fraction of transferred atoms in the high-
frequency limit is given by [27]

IðωÞ ¼
ω→∞

C
2N↓kF↑

1

2
ffiffiffi
2

p
πð1þ ℏω=EbÞ

�
EF↑

ℏω

�
3=2

; ð1Þ

where Eb ¼ ℏ2=ma2↑f ≈ h × 433 kHz. The inset of
Fig. 2(a) shows the corresponding fit of the tails with
Eq. (1), leaving only the contact as a free parameter.
The temperature dependence of the contact displays a

nonmonotonic behavior with a maximum located around
T ≈ 0.4TF↑ [Fig. 2(b)]. The observed initial rise in temper-
ature is partially expected from the increase in scattering
phase space and has also been found theoretically in a spin-
imbalanced few-body calculation of the contact [50]. In the
high-temperature limit, the contact is proportional to the
scattering cross section and vanishes as 1=T.
The contact quantifies short-range correlations. However,

the polaron is an extended object with pair correlations
extending out over distances even beyond the majority
interparticle spacing [51]. We thus set out to probe the entire
cloud of excessmajority atoms surrounding the impurity spin
of density Δn↑ ¼ n↑ðμ↑; μ↓; TÞ − n0ðμ↑; TÞ by in situ
density measurements [Fig. 3(a)]. Here, n↑ðμ↑; μ↓; TÞ is
the actual measured density of the interacting majority
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FIG. 2. Contact of the spin-imbalanced Fermi gas. (a) Typical rf
spectra of the spin minority (blue circles) and majority (red
squares). The impurity concentration is 10%. (Inset) High-
frequency tails of the minority and majority spectra together
with a fit of Eq. (1). (b) Contact as a function of temperature,
obtained by measuring the transferred fraction of atoms as a
function of rf pulse duration for frequencies ℏω=EF↑ > 5.5 and
use of Eq. (1). The gray dashed line shows the third-order viral
expansion [48] and the cross shows the result from the Chevy
ansatz [3,49].
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component and n0ðμ↑; TÞ corresponds to the density of a
noninteracting gas with the same temperature and majority
chemical potential. For this measurement, we use a hybrid
trapping potential that is harmonic along one direction and
uniform along the other two axes [21]. This trapping
geometry gives direct access to the density of each
spin component as a function of the trapping potential U
[Fig. 3(a)]. Under the local density approximation, the
knowledge of n↑;↓ðUÞ can be used to extract a variety of
thermodynamic quantities [12,13,30,33]. The majority
chemical potential and temperature are obtained from the
low-fugacity wings of the gas. In the case of a partially spin
polarized wing, we use the third-order virial expansion [48],
whereas for a fully spin polarized wing, we use the ideal
equation of state. For the lowest temperatures, the excess
majority density per minority atom is Δn↑=n↓ ¼ 0.63ð5Þ
[Fig. 3(b)]. For increasing temperature, the excess density
drops until it reaches the value predicted by the virial
expansion for the density. Δn↑=n↓ displays no dependency

on the minority concentration within our error up to
n↓=n↑ ¼ 0.3.
To elucidate the origin of the excess density from

thermodynamics, we model the total pressure of the
system as

Pðμ↑; μ↓; TÞ ¼ P0ðμ↑; TÞ þ
�
m�

m

�3
2

P0ðμ↓ − Aμ↑; TÞ: ð2Þ

Here, P0ðμ; TÞ is the pressure of the noninteracting Fermi
gas. The ansatz describes the total pressure of the system as
the sum of the partial pressure of the noninteracting
majority component and the partial pressure of an ensemble
of polarons with an effective chemical potential of μ↓ −
Aμ↑ and an effective mass m� [12,13]. It contains weak
interactions among the polarons that amount to a few
percent of the total energy of the system [52]. From this
pressure ansatz, the density can be calculated with the
Gibbs-Duhem equation at constant temperature and scat-
tering length ðdP ¼ n↑dμ↑ þ n↓dμ↓Þ,

n↑ðμ↑; μ↓; TÞ ¼ n0ðμ↑; TÞ − An↓ðμ↑; μ↓; TÞ;
n↓ðμ↑; μ↓; TÞ ¼ ðm�=mÞ32n0ðμ↓ − Aμ↑; TÞ; ð3Þ

where n0ðμ; TÞ≡ ∂P0=∂μ is the density of the noninter-
acting gas. Each minority is accumulating on average jAj ¼
0.6 excess majority atoms over the noninteracting limit, in
agreement with our measured value [Fig. 3(b)].
Since the Fermi liquid ansatz describes the thermodynam-

ics accurately in the low-temperature regime T=TF↑ < 0.2,
we now focus on this temperature regime and utilize the
ansatz to determine the effective mass of the polarons from a
measurement of the minority compressibility. In analogy to
the total compressibility of the gas, the normalized isothermal
minority compressibility is defined as κ̃↓ ≡ −dEF↓=dUeff

[30]. Here, Ueff ¼ ð1 − AÞU is the effective potential of the
minority component generated by the interaction with the
majority component [4,11]. Using Eq. (3) for the minority
density, one finds

κ̃↓ðT=TF↓Þ ¼
m�

m

κ0ðT; TF↓m�=mÞ
κ0ð0; TF↓m�=mÞ ; ð4Þ

where κ0ðT; TF↓Þ≡ n−20 ð∂n0=∂μÞT is the compressibility of
the noninteracting Fermi gas at fixed density. Figure 4 shows
the measured isothermal compressibility of the minority
component. A fit of Eq. (4) fixing A ¼ −0.615 [8] results
in an effective mass of m�=m ¼ 1.25ð5Þ, which is in agree-
ment with results obtained from diagrammatic Monte Carlo
simulations [8], a variational ansatz [5], and previous low-
temperature experiments [11–13]. The saturation of the
minority compressibility at low temperatures signals the
formation of a degenerate Fermi sea of polarons.

(a)

(b)

FIG. 3. Observation of the majority excess cloud. (a) Density
profiles in a harmonically varying external potentialU. Blue (red)
data points indicate the profiles of the minority (majority) spin
component. The normalized temperature of the gas is T=TF↑ ¼
0.07 in the trap center (U ¼ 0). The green dashed line represents
the equation of state of the ideal Fermi gas, the red (blue) solid
line is the Fermi liquid ansatz [Eq. (3)] for the majority (minority)
component. The red shaded area displays the excess majority
density Δn↑. (Inset) Dependence of the excess majority to
minority ratio on the impurity concentration. (b) Temperature
dependence of the majority excess cloud. Data points show the
excess majority density Δn↑ for an impurity concentration of
n↓=n↑ ¼ 0.1 (squares), n↓=n↑ ¼ 0.2 (triangles), and n↓=n↑ ¼
0.3 (circles). The cross indicates the low-temperature prediction
of the Fermi liquid ansatz Δn↑=n↓ ¼ −A ¼ 0.615 [8] and the
dashed line shows the third-order virial expansion.
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In conclusion, we have studied the temperature depend-
ence of a highly spin-imbalanced unitary Fermi gas with rf
spectroscopy and in-trap density profiles. When the major-
ity component is degenerate ðT=TF↑ ≪ 1Þ, long-lived
quasiparticles emerge. In the spirit of Fermi liquid theory,
these polarons behave like a weakly interacting Fermi gas
forming a sharp Fermi sea for T=TF↓ ≪ 1. The weakly
interacting character of the quasiparticles is also reflected in
the independence of the majority dressing cloud on the
impurity concentration. In the opposing high-temperature
regime, the gas is accurately described as a classical
Boltzmann gas. At intermediate temperatures (T ≈ TF↑)
the quasiparticle description breaks down. The spectral
features of the attractive polarons dissolve, merging with
excited branches, such as dressed dimerons [8,49,53] and
repulsive polarons [18–20,38,53,54].

We thank Richard Schmidt and Felix Werner for helpful
discussions. This work was supported by the National
Science Foundation (Center for Ultracold Atoms Awards
No. PHY-1734011 and No. PHY-1506019), Air Force
Office of Scientific Research (FA9550-16-1-0324 and
MURI Quantum Phases of Matter FA9550-14-1-0035),
Office of Naval Research (N00014-17-1-2257) and the
David and Lucile Packard Foundation. J. S. was supported
by LabEX ENS-ICFP: ANR-10-LABX-0010/ANR-10-
IDEX-0001-02 PSL*.

[1] P. Nozières and D. Pines, The Theory of Quantum Liquids,
Vol. I: Normal Fermi Liquids, 1st ed. (W.A. Benjamin, New
York, 1966).

[2] M.W. Zwierlein, A. Schirotzek, C. H. Schunck, and W.
Ketterle, Science 311, 492 (2006).

[3] F. Chevy, Phys. Rev. A 74, 063628 (2006).
[4] C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys. Rev.

Lett. 97, 200403 (2006).

[5] R. Combescot, A. Recati, C. Lobo, and F. Chevy, Phys. Rev.
Lett. 98, 180402 (2007).

[6] Y.-I. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle,
Nature (London) 451, 689 (2008).

[7] G. M. Bruun, A. Recati, C. J. Pethick, H. Smith, and S.
Stringari, Phys. Rev. Lett. 100, 240406 (2008).

[8] N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408
(2008).

[9] M. Veillette, E. G. Moon, A. Lamacraft, L. Radzihovsky,
S. Sachdev, and D. E. Sheehy, Phys. Rev. A 78, 033614
(2008).

[10] A. Schirotzek, C.-H. Wu, A. Sommer, and M.W. Zwierlein,
Phys. Rev. Lett. 102, 230402 (2009).

[11] S. Nascimbène, N. Navon, K. J. Jiang, L. Tarruell, M.
Teichmann, J. McKeever, F. Chevy, and C. Salomon, Phys.
Rev. Lett. 103, 170402 (2009).

[12] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C.
Salomon, Nature (London) 463, 1057 (2010).

[13] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon,
Science 328, 729 (2010).

[14] A. Sommer, M. Ku, and M.W. Zwierlein, New J. Phys. 13,
055009 (2011).

[15] P. Nikolić and S. Sachdev, Phys. Rev. A 75, 033608
(2007).

[16] T. Enss, Phys. Rev. A 86, 013616 (2012).
[17] B. Frank, J. Lang, and W. Zwerger, ZhETF 154, 953 (2018)

[J. Exp. Theor. Phys. 127, 812 (2018)].
[18] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P.

Massignan, G. M. Bruun, F. Schreck, and R. Grimm, Nature
(London) 485, 615 (2012).

[19] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld,
and M. Köhl, Nature (London) 485, 619 (2012).

[20] F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico,
A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G.
Roati, Phys. Rev. Lett. 118, 083602 (2017).

[21] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah,
J. Struck, and M.W. Zwierlein, Phys. Rev. Lett. 118,
123401 (2017).

[22] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and
H. Moritz, Phys. Rev. Lett. 120, 060402 (2018).

[23] S. Tan, Ann. Phys. (Amsterdam) 323, 2971 (2008).
[24] G. Baym, C. J. Pethick, Z. Yu, and M.W. Zwierlein, Phys.

Rev. Lett. 99, 190407 (2007).
[25] M. Punk and W. Zwerger, Phys. Rev. Lett. 99, 170404

(2007).
[26] W. Schneider, V. B. Shenoy, and M. Randeria, arXiv:

0903.3006.
[27] E. Braaten, D. Kang, and L. Platter, Phys. Rev. Lett. 104,

223004 (2010).
[28] Y.-I. Shin, Phys. Rev. A 77, 041603 (2008).
[29] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama,

Science 327, 442 (2010).
[30] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M.W.

Zwierlein, Science 335, 563 (2012).
[31] M.W. Zwierlein, in Novel Superfluids, edited by K.-H.

Bennemann and J. B. Ketterson, 1st ed. (Oxford University
Press, New York, 2014), Vol. 2, Chap. 18, pp. 269–422.

[32] W. Zwerger, in Quantum Matter at Ultralow Temperatures,
Proceedings of the International School of Physics “Enrico
Fermi,” Course CXCI, edited by M. Inguscio, W. Ketterle,

0 0.5 1 1.5
0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 4. Isothermal minority compressibility. The solid line is
the Fermi liquid ansatz for m�=m ¼ 1, while the dashed line
corresponds to a fit with an effective mass of m�=m ¼ 1.25ð5Þ
assuming A ¼ −0.615 [8]. The gray shaded area represents the
standard deviation of the fit. For the entire range of temperatures
displayed, the majority component is degenerate (T=TF↑ < 0.2).

PHYSICAL REVIEW LETTERS 122, 093401 (2019)

093401-5



S. Stringari, and G. Roati (IOS Press, Amsterdam, 2016),
Chap. 2, pp. 63–142.

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.093401 for more
information regarding the homogeneity of the gas, state
preparation, thermometry, and rf spectroscopy, which in-
cludes Refs. [34–36].

[34] J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev. Lett.
95, 120402 (2005).

[35] T. L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[36] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini,

A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303
(2011).

[37] C. H. Schunck, Y.-I. Shin, A. Schirotzek, and W. Ketterle,
Nature (London) 454, 739 (2008).

[38] P. Massignan, M. Zaccanti, and G. M. Bruun, Rep. Prog.
Phys. 77, 034401 (2014).

[39] P. Törmä, Phys. Scr. 91, 043006 (2016).
[40] T. Enss, R. Haussmann, and W. Zwerger, Ann. Phys.

(Amsterdam) 326, 770 (2011).
[41] M. Sun and X. Leyronas, Phys. Rev. A 92, 053611 (2015).

[42] H. Tajima and S. Uchino, New J. Phys. 20, 073048 (2018).
[43] B. C. Mulkerin, X.-J. Liu, and H. Hu, arXiv:1808.07671.
[44] Recently, a preprint appeared in which the authors, moti-

vated by our work, found similar sudden shifts of the peak rf
transfer. See H. Tajima and S. Uchino, arXiv:1812.05889.

[45] T. L. Ho and E. J. Mueller, Phys. Rev. Lett. 92, 160404
(2004).

[46] P. Pieri, A. Perali, and G. C. Strinati, Nat. Phys. 5, 736
(2009).

[47] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys.
Rev. Lett. 104, 235301 (2010).

[48] X.-J. Liu and H. Hu, Phys. Rev. A 82, 043626 (2010).
[49] M. Punk, P. T. Dumitrescu, and W. Zwerger, Phys. Rev. A

80, 053605 (2009).
[50] Y. Yan and D. Blume, Phys. Rev. A 88, 023616 (2013).
[51] C. Trefzger and Y. Castin, Europhys. Lett. 101, 30006

(2013).
[52] C. Mora and F. Chevy, Phys. Rev. Lett. 104, 230402 (2010).
[53] R. Schmidt and T. Enss, Phys. Rev. A 83, 063620 (2011).
[54] R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina,

and E. Demler, Rep. Prog. Phys. 81, 024401 (2018).

PHYSICAL REVIEW LETTERS 122, 093401 (2019)

093401-6



Supplemental Material:
Boiling a Unitary Fermi Liquid

Zhenjie Yan,1 Parth B. Patel,1 Biswaroop Mukherjee,1 Richard

J. Fletcher,1 Julian Struck,1, 2 and Martin W. Zwierlein1

1MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department
of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
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STATE PREPARATION

The three hyperfine states |↓〉 = |1〉, |f〉 = |2〉 and
|↑〉 = |3〉 are adiabatically connected to the respective
states |F = 1

2 ,mF = 1
2 〉, | 12 ,− 1

2 〉 and | 32 ,− 3
2 〉 at vanish-

ing magnetic field. As in previous works at MIT [S1], we
start from a degenerate and fully spin-polarized gas in
state |1〉 in an optical dipole trap, and prepare the spin-
imbalanced mixture through two consecutive Landau-
Zener sweeps at a magnetic field of B = 569 G, where
the interactions between all three states are weak. The
magnetic field is then ramped up within 1 ms to the |1〉-
|3〉 Feshbach resonance at B = 690 G, where the gas
is loaded into the uniform potential and cooled through
forced evaporation over 2 seconds [S2].

UNIFORM CYLINDER TRAP

Uniform trapping potentials offer a crucial advantage
for non-local rf spectroscopy. For non-uniform traps, the
Fermi energy and the impurity concentration vary spa-

(a) (c)

(d)(b)

FIG. S1. Spin-imbalanced Fermi gas in the cylinder-shaped
optical trap. Here, EF↑/h = 10.3 ± 0.1 kHz, T/TF↑ = 0.74 ±
0.01 and n↓/n↑ = 0.1. In situ absorption images of the major-
ity (a) and minority (b) component along the radial direction
of the cylinder. The column density along the axial (c) and
radial (d) direction. The red (blue) points correspond to the
majority (minority) component. The solid lines indicate the
fits with Eqs. (S1) and (S2).

tially, leading to an artificial broadening of the rf spectra.
For the rf measurements we load the gas into a

cylinder-shaped uniform optical trap [S2] [Fig.S1 (a) and
(b)]. Forced evaporation in this trap leads to tempera-
tures of T ' 0.05TF↑ and majority Fermi energies of
EF↑/h ∼ 10 kHz. Instead of adjusting the temperature of
the gas by evaporation, we introduce an additional heat-
ing step by periodically modulating the cylindrical trap-
ping potential by 20% at 1 kHz up to 4.5 s. We have found
that this additional step reduces the spread in Fermi en-
ergies for different temperatures compared to a control
through the evaporation.

We directly probe the variation in impurity concentra-
tion in the cloud from in-situ measurements of the cloud
profiles [Fig.S1 (c) and (d)]. We find that the ratio of the
effective volume of the minority component and the ma-
jority component is V↓/V↑ > 0.8. More significantly for
our purposes, well over 90% of the minority cloud is in a
region of constant majority density at all temperatures.
The radius R↑,↓ and length L↑,↓ of the gas have been
determined by fitting the column integrated density pro-
files of the minority and majority component. The fitting
functions along the radial (x) and the axial (z) direction
are given by:

ncol(x) = n̄col
√
R2 − x2 , (S1)

ncol(z) = n̄col

(
erf

(
L/2 + z√

2σ1

)

+ erf

(
L/2− z√

2σ2

))
/2 . (S2)

Here, erf(z) denotes the error function and σ1,2 the ef-
fective widths of the potentials walls along the axial di-
rection.

THERMOMETRY OF THE HOMOGENEOUS
UNITARY FERMI GAS

Standard thermometry methods for ultracold atoms
rely on the low-fugacity tails in non-uniform traps. In
addition, for weakly or non-interacting gases the momen-
tum distribution, measured in time-of-flight, can be used
to infer the temperature. However, in the case of strongly
interacting homogeneous gases none of these methods is



S2

directly applicable. Here we describe our thermometry
method to obtain the temperature of the unitary Fermi
gas in a uniform trap. First, we determine the energy of
the gas in the uniform box potential. This energy then
yields the temperature using the equation of state of the
imbalanced gas.

Energy Measurement

The total energy of the homogeneous gas is measured
by an isoenergetic expansion into a hybrid cylindrical
trap that features a harmonic potential along the axial
direction (ωz = 2π · 23 Hz) and is uniform in the radial
direction [S2]. Figure S2 shows the isoenergetic trans-
fer between the two trapping potentials. For the trans-
fer the two endcaps of the cylindrical trap are instan-
taneously removed and therefore no work is performed
on the atoms. Subsequently the gas expands isoenergeti-
cally along the axial direction. Note that the underlying
harmonic potential along the axial direction is always
present, even for the experiments in the uniform trap.
However, the potential variation due to the harmonic po-
tential is only a few percent of the Fermi energy [S2].
After the removal of the endcaps we wait for 2 s to equi-
librate the gas. The total energy of the gas in the hybrid
cylindrical trap can be determined from the in situ den-
sity profiles using a one-dimensional version of the virial
theorem [S3].

The total energy of the system is given by sum of the
internal and potential energy

E =

∫
d3r
(
ε(r) + n(r)U(r)

)
, (S3)

with the internal energy density ε(r), the total density
n(r) = n↓(r) +n↑(r) and the potential energy U(r). The
hybrid trap is uniform along the radial direction and we
can express Eq. (S3) with the cylindrical cross-section
Acyl as

E = Acyl

∫
dz
(
ε(z) + n(z)U(z)

)
, (S4)

where we have defined ε(z) ≡ ε(x = 0, y = 0, z), n(z) ≡
n(x = 0, y = 0, z) and U(z) ≡ U(x = 0, y = 0, z). For the
unitary Fermi gas the internal energy is directly related
to the pressure ε(z) = 3/2P (z) [S4]. Combined with a
partial integration of the first term in Eq. (S4) this leads
to

E = −3

2
Acyl

∫
z
∂P (z)

∂z
dz +Acyl

∫
n(z)U(z) dz , (S5)

where we have assumed that the pressure P (z) is an
even function of z. With the equation for hydrostatic
equilibrium (Gibbs-Duhem equation at constant scatter-
ing length and temperature) dP = ndµ and the local

E
xpansion 

&
 Therm

alization 
(a)

(b)

(c)

FIG. S2. Isoenergetic expansion from the uniform to harmonic
trap. (a) Initially the gas is trapped in a quasi-uniform po-
tential, (b) then the end caps of the trap are instantaneously
removed, allowing the gas to expand into a harmonic trapping
potential along the axial direction. (c) After a 2 s hold time
the gas is in thermal equilibrium and the energy is determined
using a one-dimensional virial theorem.

density approximation dµ = −dU , we obtain the one-
dimensional virial theorem

E =
3

2
Acyl

∫
z n(z)

∂U(z)

∂z
dz +Acyl

∫
n(z)U(z) dz ,

= 2Acylmω2
z

∫
n(z) z2 dz . (S6)

In the second step of Eq. (S6) we have used the explicit
expression for the harmonic potential U(z) = mω2

z z
2 /2,

with the trapping frequency ωz and mass m.

Equation of State of the
Spin-Imbalanced Unitary Fermi Gas

The conversion of the total energy into the corre-
sponding temperature requires knowledge of the finite-
temperature equation of state of the system. For this
purpose, we have measured the finite temperature pres-
sure equation of state of the spin-imbalanced unitary
Fermi gas. As mentioned previously, at unitarity pressure
and energy are directly related through E = 3/2P V ,
with V as the volume [S4]. The zero-temperature equa-
tion of state of the spin-imbalanced Fermi gas has been
measured previously, confirming Fermi-Liquid behaviour
beyond the Chandrasekhar-Clogston limit in the nor-
mal fluid phase [S5–S9]. We determine the pressure of
the gas from in situ density profiles in the hybrid trap
[S2] and a precise knowledge of the harmonic trapping
potential U along the axial direction of the trap [Fig.
S3(a)]. From the equation for hydrostatic equilibrium
and the local density approximation follows for the pres-
sure P (U) =

∫∞
U
n(U)dU [S10] [Fig. S3(b)]. The impurity

concentration is varying in this non-uniform trapping po-
tential [Fig. S3(c)]. To fill the three-dimensional parame-
ter space P (n, n↓/n↑, T ), we measure density profiles for
varying initial evaporation parameters. The temperature
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(a)

(b)

(c)

(d)

FIG. S3. Pressure of the spin-imbalanced unitary Fermi gas.
(a) An example of in situ density profiles of the majority
(red) and minority (blue) component in the hybrid trap. The
temperature of T = 31 ± 2 nK is determined from a fit of
the spin-polarized tail of the majority component with the
equation of state of the non-interacting Fermi gas (green solid
line). The majority Fermi energy in the center of the trap
(U = 0) is EF↑/h = 5.4 ± 0.2 kHz. (b) The local pressure
of the gas, obtained from integrating the density profiles. (c)
The local minority concentration. The relevant values for a
minority concentration of n↓/n↑ = 0.1 are indicated with the
dashed line. (d) The equation of state of the gas at fixed
impurity concentration of n↓/n↑ = 0.1. Our measurement is
compared with the Fermi liquid ansatz (green dotted line) and
3rd order Virial expansion (red dashed line). An interpolation
function (black solid line) is used to connect the Fermi liquid
ansatz and Virial expansion.

is obtained from third order virial expansion fits [S11]
to the low-fugacity tails of the gas or fits with the equa-
tion of state of the non-interacting Fermi gas, in case of
spin-polarized tails.

Figure S3(d) shows the equation of state at a fixed
impurity concentration of n↓/n↑ = 0.1. For the uni-
tary Fermi gas, the normalized pressure and energy are
identical: P/P0↑ = E/E0↑, with the ground state en-
ergy E0↑ = 3/5N↑EF↑ and pressure P0↑ = 2/5n↑EF↑
of the majority atoms. At low temperatures, the nor-
malized pressure is in agreement with the Fermi liquid
pressure ansatz [Eq. (3)], while at higher temperatures it

is in agreement with the virial expansion. We use an in-
terpolation function that connects the high and low tem-
perature regime to be able to determine the temperature
for arbitrary pressure (energy) values [Fig. S3(d)].

RF SPECTROSCOPY

In this section, we discuss the detection scheme used for
rf spectroscopy, the determination of the transfer rate in
the linear response regime and the definition of the error
bars in Fig.1 (b) and (c).

Detection

For the measurement of the normalized transfer I(ω),
the atom numbers in all three spin states |1〉, |2〉 and
|3〉 after the rf pulse need to be determined. For this
purpose we have implemented a triple absorption imaging
scheme that allows us to detect all three spin components
in a single experimental run. The amount of transferred
atoms Nf is determined from an absorption image along
the axial direction of the cylinder trap recorded on an
EMCCD camera. After 3 ms, the spin components |1〉 and
|3〉 are subsequently imaged along the radial direction of
the cylinder trap and recorded on a fast SCMOS camera
with a time delay of 10µs between the two states.

Linear Response

Linear response is an essential requirement for the ap-
plicability of Eqs. (1) and (2), linking the rf spectra to
the spectral function and the contact. The linear transfer
rate can be determined by measuring the transfer frac-
tion Nf/N↓ as a function of the rf pulse duration [Fig.
S4]. For the contact data we fit the transfer rate with
the exponential function Nf/N↓ = Γτ(1− exp(−t/τ)) to
account for saturation effects (time scale τ) and use the
initial slope at short times to derive the linear transfer
rate Γ [Fig. S4].

Error Bars in Figure 1

Figure 1 shows the peak position and full width at half
maximum (FWHM) at different temperatures. To deter-
mine the experimental uncertainty for these observables,
we use the standard error of the measured transferred
fraction without any rf pulse (see TPulse = 0 in Fig. S4).
The errors for the peak position and FWHM are then
inferred from the frequency range of data points that lie
within the standard error of the amplitude of the maxi-
mum and half maxima respectively.
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FIG. S4. Time resolved rf response of the minority component.
Here, the majority Fermi energy is EF↑/h = 9.9±0.2 kHz, the
impurity concentration n↓/n↑ = 0.11 ± 0.02, the rf detuning
ω = 2π × 60 kHz and the temperature T/TF↑ = 0.73 ± 0.02.
The blue datapoints correspond to the measured rf transfer
for several experimental runs and the black circles are the
averaged data points. The transferred fraction is fitted with
an exponential function (red solid line). The green solid line
(shaded area) shows the initial linear slope Γ (standard error)
of the fit.
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Appendix E

Universal sound diffusion in a

strongly interacting Fermi gas

This appendix contains a reprint of Ref. [139]:
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QUANTUM GASES

Universal sound diffusion in a strongly interacting
Fermi gas
Parth B. Patel1,2,3, Zhenjie Yan1,2,3, Biswaroop Mukherjee1,2,3, Richard J. Fletcher1,2,3,
Julian Struck1,2,3,4, Martin W. Zwierlein1,2,3*

Transport of strongly interacting fermions is crucial for the properties of modern materials, nuclear
fission, the merging of neutron stars, and the expansion of the early Universe. Here, we observe
a universal quantum limit of diffusivity in a homogeneous, strongly interacting atomic Fermi gas by
studying sound propagation and its attenuation through the coupled transport of momentum and
heat. In the normal state, the sound diffusivity D monotonically decreases upon lowering the
temperature, in contrast to the diverging behavior of weakly interacting Fermi liquids. Below the
superfluid transition temperature, D attains a universal value set by the ratio of Planck’s constant
and the particle mass. Our findings inform theories of fermion transport, with relevance for
hydrodynamic flow of electrons, neutrons, and quarks.

T
ransport in fermionic quantum matter
lies at the heart of phenomena as varied
as superconductivity in cuprates (1) and
bilayer graphene (2), inspirals of neutron
star binaries (3), and perfect fluidity of

the early universe (4). For hydrodynamic flow,
transport is governed by diffusion, which
facilitates the decay of spatial variations in
globally conserved quantities—such as mo-
mentum, energy, charge, or spin—at a rate
set by the corresponding diffusivity. A ubiqui-
tous example is the attenuation of sound in
fluids, where the modulation in current den-
sity and temperature causes diffusion of mo-
mentum and heat, leading to attenuation of
sound at a rate set by the sound diffusivity
D. The magnitude and temperature depend-
ence of sound diffusivity reveal many of
the characteristic features of the underlying
substance.
Kinetic theory yields an estimate of D ≃ vl,

where v is the average velocity of the particles
and l is theirmean free path,which canvary over
many orders of magnitude across substances.
However, for strongly interacting quantum
liquids and gases, a certain universality of dif-
fusion coefficients may be expected. Here, the
mean free path becomes on the order of the
interparticle spacing, and the velocity takes on
the Heisenberg-limited value v ∼ ℏ=ml, where
ℏ is the reduced Planck’s constant andm is the
particle mass. This leads to a limiting value of
D ∼ ℏ=m, with a numerical prefactor of order
unity determined by the specific microscopic
interactions. Such Heisenberg-limited values
were observed for the spin diffusivity in a uni-
tary Fermi gas (5–7), as well as themomentum

diffusivity (the shear viscosity) in both the
quark-gluon plasma of the early Universe and
the unitary Fermi gas (4). Notably, the quan-
tum liquids of bosonic 4He and fermionic 3He
display similar sound diffusivities ofD ∼ ℏ=m
around 4 K (8, 9). However, upon lowering
the temperature into the deeply degenerate
regime, these two quantum liquids display
markedly different behaviors in the damping
of sound. Down to about 1 K, the sound at-
tenuation in 4He does not vary strongly with
temperature, decreasing only by a factor of
two across the superfluid transition, with a
minimum ofD ≃ 0:5ℏ=m (8, 10). By contrast,
3He features a diverging diffusivity ðº 1=T 2Þ,
characteristic of a Fermi liquid, growing to
∼50;000ℏ=m around 2 mK, followed by a steep
drop at the superfluid transition and settling
to a value of ∼5000ℏ=m (9). A priori, it is un-
clear whether the temperature dependence
of sound attenuation in a strongly interacting,
fermionic gas—of atoms, electrons, orneutrons—
should resemble that of a quantum liquid, and
if so, whether it corresponds more closely to
the strongly interacting, but bosonic, liquid
4He or to the fermionic, but weakly interact-
ing, liquid 3He.
Ultracold atomic Fermi gases at unitarity

are a prototypical strongly interacting quan-
tum fluid for transport experiments (11–15).
Featuring a mean free path as short as one
interparticle spacing, these systems display the
most robust form of fermionic superfluidity
and near-perfect hydrodynamic flow even in the
normal state (16–18). The presence of scale in-
variance leads to universality in physics proper-
ties (13–15, 19–21), including transport (5, 22–24).
The universality directly connects this system
to a host of other strongly interacting Fermi
systems across all energy and length scales
from nuclear matter to neutron stars. For the
unitary Fermi gas, scale invariance implies
that sound diffusivity must remain the same
upon changing all length scales by the same

factor. The diffusivity is thus ℏ=m times a uni-
versal function of T=TF , where the tempera-
tureT is normalized by the Fermi temperature
TF that only depends on the particle density n
(25). At nondegenerate temperatures T ≫ TF ,
we expect a unitary Boltzmann gas, where
the thermal wavelength l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pℏ2=ðmkBTÞ
p

(kB, Boltzmann constant) sets both the mean
free path and the typical velocity of excita-
tions, l ∼ 1=ðnl2Þ and v ∼ ℏ=ðmlÞ, implying
D ∼ ðℏ=mÞðT=TFÞ3=2. In the quantum critical
regime of the unitary gas (26, 27), at T ∼ TF ,
the interaction and thermal energies are com-
parable and even the nature of the equilibrium
state is a subject of debate (28, 29). At low tem-
peratures T≪TF , it remains unknown whether
the sound diffusivity diverges as 1=T 2 (30), as
in the Fermi liquid 3He (31, 32), and whether
any sudden drop in the sound diffusion occurs
upon entering the superfluid regime. Calcula-
tion of such transport parameters is very dif-
ficult; for example, predictions for the shear
viscosity vary from zero (33), as suggested by
experiments on expanding inhomogeneous
gases (22, 24), to infinity if phonon damping
dominates (23, 34–36).
Transport experiments on Fermi gases have

thus far used harmonic traps (15) or terminal
configurations (37, 38) and have been used
to probe collective oscillations (39–41), spin
transport (5, 7, 42), viscosity (22), conductivity
(37), and Josephson oscillations (38). However,
obtaining transport coefficients of homoge-
neous matter from inhomogeneous samples
in atom traps requires sophisticated analysis
and assumptions on the spatial flow profile
(5, 22, 43). With the recent advent of optical
box traps (44–47), it is now possible to di-
rectly probe the transport properties of homo-
geneous quantumgases (47–50). The gas is then
in the same state throughout, and transport
properties are identical across the system.
Measurements of transport properties in-

volve the response of a system to an external
drive. In linear response, an applied potential
change dV couples to perturbations in the fluid
density dn ¼ �cdV by the density response
function c. Sound corresponds to a resonant
response, that is, a pole in c at a frequency
w ¼ ck, set by the speed of sound c and wave
number k, in the vicinity of which cðw; kÞ ∼
1=ðw2 � c2k2 þ iGwÞ (51, 52). Here, i is the
unit imaginary number and G is the damping
rate of sound, given by G ¼ Dk2 (53) for hydro-
dynamic systems. Measurements of c and G
thus directly provide the sound diffusivity. Ex-
periments involving liquid helium have used a
number of techniques to measure c, from free
decay of resonant modes in a cylindrical reso-
nator (8, 9) to Brillouin scattering off of sound
waves (54).
In our homogeneous quantum gas, the con-

stant background density enables an ideal
realization of a density response measurement
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(Fig. 1A). We use an equal two-state mixture
of 6Li atoms with resonant interstate inter-
actions, confined to a cylindrical optical box
potential composed of three repulsive laser
beams: a hollow cylindrical beam providing
the radial confinement (radius 60 mm) and
two sheets of light serving as endcaps (length
L ~ 100 mm) (45). The numberN∼106 of atoms
per spin state yields a Fermi energy of EF ¼
ℏ2kF2=ð2mÞ ∼ h� 10kHz . To inject sound
waves, we sinusoidally modulate the inten-
sity of one endcap beam, which drives the
gas at a well-defined frequency w, and a wide
range of spatial wave numbers, Fourier lim-
ited by the width ~4 mm of the endcap poten-
tial’s edge (55). At the given driving frequency,
the resonant sound response of the gas is
dominated by a specific wave number k ¼ w=c,
resulting in a traveling wave of sound. An in
situ absorption image is taken after an evolu-
tion time sufficiently short such that no re-
flections occur, and the resonant wave number
k is directly measured (Fig. 1B, ii to iv). By re-
peating this protocol for different drive fre-
quencies, we obtain the dispersion relation
wðkÞ for wave numbers k < 0:14kF (Fig. 1C).
It is linear within our measurement error,
corresponding to a constant speed of sound
c ¼ w=k as a function of wave number. We note
that at wavelengths approaching the inter-
particle spacing, and thus at momenta ℏk ap-
proaching the Fermi momentum ðk ∼ kFÞ,
deviations from linear sound dispersion are
expected for the unitary Fermi gas (56).
The precise measurement of the speed of

sound allows a sensitive test of scale invar-
iance of the unitary Fermi gas. In general,
the speed of isentropic sound propagation
c is directly tied to the equation of state by
the hydrodynamic relationmc2 ¼ ð@P=@nÞjS ¼
ðV 2=NÞð@2E=@V 2ÞjS. Here, E is the energy, S is
the entropy,V is the volume, andP¼ �ð@E=@V ÞjS
is the pressure of the gas. A notable property
of all nonrelativistic scale invariant systems
in three dimensions is that their total ener-
gy scales as EºV�2=3; this follows from the
scaling behavior E → E=l2 under dilation of
space by a factor l. This directly yieldsmc2 ¼
ð10=9ÞE=N , independent of temperature or
the phase of matter. In Fig. 1D, we show the
measured speed of sound as a function of
the energy per particle E=N , obtained from
an isoenergetic expansion of the gas from
the box into a harmonic trap (57). For both
superfluid and normal samples (blue and red,
respectively), the scale invariant prediction
(solid black line) captures the data well with
no free parameters. This demonstrates the
universality of the speed of sound and scale
invariance in the unitary Fermi gas in the
explored window of temperature.
The attenuation of sound is already appar-

ent in the spatial decay of the traveling waves
shown in Fig. 1. For a precision measurement

of the sound diffusivity, we now turn to the
steady-state response of the system to a con-
tinuous drive, which directly reveals the den-
sity response function c. The intensity of one
of the endcaps is modulated for a sufficiently
long time such that the density evolution has
reached a steady state. After an integer num-
ber of driving cycles, the spatial Fourier trans-
form of the density yields the out-of-phase
response of the system, or Im½cðw; kÞ� (55).
This quantity also gives the average power
absorbed by the system for a drive at fre-
quency w and spatial frequency k, and thus
directly reveals the poles of c as resonances.

The measurements are summarized in Fig. 2.
Each row of pixels in Fig. 2B shows the frac-
tional density modulation at a particular
drive frequency after integration along the
radial axis. This “sonogram” reveals discrete
normal modes, the first five of which are
shown in Fig. 2A. The spatial Fourier trans-
form, giving the out-of-phase response func-
tion, is shown in Fig. 2C. For each normal
mode in the box, it features a peak at w ¼ ck.
The sound attenuation rate can be seen to
increase with k, revealed in both a broadened
frequency response as well as a reduced peak
height.
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Fig. 1. Sound waves in a homogeneous unitary Fermi gas. (A) Fermionic 6Li atoms are trapped in a
three-dimensional cylindrical box made from green laser beams. Sound is excited by modulating the intensity
of one of the laser walls. (B) The resulting density wave is observed via an in situ absorption image, shown
as optical density (OD) for both an unperturbed (i) and modulated (ii) sample. Here, the modulation
frequency is 2p × 600 Hz. Taking their difference (iii) and integrating along the homogeneous radial trap
axis reveals (iv) a perturbation in the fractional density difference Dn=n, propagating along the axial
direction z and exhibiting a well-defined wave number k corresponding to the applied modulation
frequency w. (C) Dispersion of sound wðkÞ. The fitted slope (black line) provides the speed of sound.
The insets display sound waves observed at w = 2p × 600 Hz and w = 2p × 850 Hz. Errors in the
measured k are smaller than the point size. (D) Measurement of the universal relation between the
measured speed of sound and the energy-per-particle E=N (see text). The black solid line shows
the predicted linear dependence for any nonrelativistic scale invariant system in three dimensions;
mc2 ¼ 10

9 E=N. Data are shown for both the normal (red) and the superfluid (blue) phase.
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The density response Im½cðw; kjÞ� at the
wave number kj ¼ jp=L of the jth normal
mode of the box is shown in Fig. 3A, along
with Lorentzian fits (solid lines). The full-
width at half-maximum yields the damping
rate of soundG, which is shown as a function
of k in Fig. 3B, for gases both above (red and
green) and below (blue) the superfluid tran-
sition. At temperatures above the superfluid
transition temperature TC ¼ 0:17TF (20), we
observe GðkÞ to increase quadratically with k
for all explored wave numbers (k ≲ 0:3 mc=ℏ).
This establishes diffusive damping of sound in
the normal regime, as expected in the colli-
sionally hydrodynamic regime (16, 58).
Below the superfluid transition temperature,

T < TC, we observe a crossover from quadratic
scaling of GðkÞ at wave numbers k ≲ 0:2mc=ℏ
to linear behavior, indicating a departure from
purely hydrodynamic transport at high wave
numbers. This is expected when the modula-
tion frequency becomes comparable to the
damping rate of thermal phonons Gph (36, 59).
Collisionless or Landau damping of sound is
caused by nonlinearities resulting from the
kinetic energy density carried by sound and
the density dependence of the speed of sound.
Fermi’s golden rule yields a rate Gphºk
(36, 51) proportional to the energy ℏck carried
by a phonon. Including a nonzero damping rate
of phonons Gph yields a crossover from hydro-

dynamic to collisionless damping as the sound
frequency ck exceeds Gph (59). The relation
G¼Dk2f ðck=GphÞ with f ðxÞ ¼ tan�1ðxÞ=x (59)
shows a good agreement with the data (solid
line). The scale of the fitted relaxation rate
Gph ¼ 0:27ð8ÞkBT=ℏ is on the order of the gas
temperature, hinting toward quantum critical
damping (27). We note that the observation
of quadratic scaling of G with k at low wave
numbers implies that sound is primarily at-
tenuated in the bulk, and that edge effects
are negligible (53, 60).
As the main result of this work, we present

in Fig. 4 the sound diffusivityD of the unitary
Fermi gas. This is obtained asD ¼ G=k2 using
the j ¼ 2 normal mode, for which ck=Gph is
always less than 0:25, ensuring that it is well
described by a hydrodynamic framework. The
measured values are shown in units of ℏ=m
and, at low temperatures, exhibit a numerical
prefactor ~1. This demonstrates universal sound
diffusion, with no dependence on microscopic
parameters of the gas.
Generally, the sound diffusivity contains

contributions from both the bulk and shear
viscosity, z and h, respectively (which damp
momentum gradients), and the thermal con-
ductivity k (which damps temperature gra-
dients) (53). However, for a scale-invariant
fluid, the bulk viscosity vanishes (61) and
D ¼ Dh þ Dk only, with Dh ¼ 4h=ð3mnÞ and

Dk ¼ 4kT=ð15PÞ (55). We note that our mea-
surements of D therefore constrain the rela-
tionship between the viscosity and thermal
conductivity, which is usually quantified
by the Prandtl number Pr ¼ cPh=k (53),
where cP is the specific heat at constant
pressure (55).
The solid black line in Fig. 4 shows a

prediction D ¼ 6:46 ðℏ=mÞðT=TFÞ3=2, which
uses the high-temperature results for vis-
cosity (23, 62) and thermal conductivity
(23, 25), along with the ideal gas equation
of state. This simple model captures the
high-temperature behavior well without
any free parameters. However, it is expected to
underestimate D when T=TF ≲ 1 because it
neglects the suppression of scattering arising
from Pauli blocking.
As the temperature is reduced, D smooth-

ly drops to a value ∼ℏ=m , consistent with
Heisenberg-limited diffusivity. Notably, at
intermediate temperatures, we observe neither
the D ∼ 1=T 2 scaling typical of a Fermi liquid
nor any sudden change at the superfluid
transition. This is further demonstrated by the
inset of Fig. 4, wherewe show amagnified plot
of D (blue points) in the vicinity of the super-
fluid transition (vertical red line) (20). Also
shown is the pair condensate fraction (red
points) obtained from themeasured pair center-
of-mass momentum distribution (63), which
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Fig. 2. Normal modes of the cylindrical box trap. (A and B) The steady-state density response of the gas is obtained by modulating the container
walls at frequency w for 30 cycles of the drive. Standing waves of sound corresponding to the normal modes in the box are observed at frequencies
wj ¼ jpc=L ≈ 2pj� 77Hz (where j ∈ ℤ), the first five of which are shown in (A). The full sonogram is shown in (B). Here, each row of pixels corresponds to
a particular realization of the experiment at a given frequency. (C) The spatial Fourier transform directly yields the density response function Im½cðk;wÞ�.
It reveals well-defined resonance peaks exhibiting both the linear dispersion of sound and increasing widths in frequency at higher wave numbers,
corresponding to increased rates of sound attenuation.
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serves as both an indicator of superfluidity
and a robust thermometer in the superfluid
phase (15). Despite the definitive onset of pair
condensation, we observe nomeasurable sharp
feature in the diffusivity, which remains ap-
proximately constant as the temperature is re-
duced. Our nonvanishing diffusivity therefore
contrasts previous measurements of a vanish-
ing viscosity in the low-temperature limit (24).
This behavior can qualitatively be understood

as follows. In the superfluid phase, viscosity
arises entirely from the normal component,
giving a diffusivity D ∼ ðnn=nÞlv where l ¼
1=ðnnsÞ is the mean free path of a typical ex-
citation with scattering cross section s , ve-
locityv, and densitynn (30, 64). The dependence
on the (strongly temperature-dependent) nn

therefore cancels, giving D ∼ v=ðsnÞ. At the
temperatures studied here, the normal com-
ponent is dominated by brokenpairs (15), whose
velocity and cross section are only weakly

temperature-dependent. Broken pairs are pri-
marily formed at the Fermi surface, which is
broadened by the pairing gap D. This results
in a typical velocity v ∼ ℏkF=mandcross section
s ∼ kF�2ðD=EFÞ2, where the ðD=EFÞ2 accounts
for the restriction of phase space available for
scattering arising from Pauli blocking. In the
unitary Fermi gas, D ∼ 0:4EF (41, 65), giving a
diffusivityD ∼ ℏ=m, consistentwith our obser-
vations. By contrast, the pairing gap in 3He is
D ∼ 10�3EF, leading to a much larger value of
D ∼ 5000ℏ=m (60, 66).
We have measured the sound diffusivity

of the unitary Fermi gas. The diffusivity ap-

proaches a Heisenberg-limited value of ℏ=m
at low temperatures, similar to the strongly
interacting, bosonic quantum fluid 4He. In con-
trast to Fermi liquid behavior seen in weakly
interacting fermionic systems, the diffusivity
monotonically increases with increasing tem-
peratures and eventually follows the high-
temperature behaviorD ∼ ℏ=mðT=TFÞ3=2. The
measured sound diffusivity constrains the
shear viscosity and thermal conductivity of
the unitary Fermi gas. In particular, combined
with the calculated shear viscosity in (23),
we find a Prandtl number strictly lower than
unity for all explored temperatures (55). This
excludes the existence of a relativistic con-
formal gravity dual of the unitary Fermi gas
(67), because this would requirePr ¼ 1. Thanks
to the scale invariance of the unitary Fermi
gas, the results obtained here apply broadly to
other strongly interacting forms of fermionic
matter, from hydrodynamic electron flow to
nuclei and neutron matter.
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Fig. 3. Spectral response of sound and its
attenuation rate. (A) The imaginary part of the
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wave number kj displays a well-defined peak
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T=TF ¼ 0:36ð5Þ (red circles), T=TF ¼ 0:21ð3Þ
(green squares), and T=TF ¼ 0:13ð2Þ (blue
triangles). For all temperatures, GðkÞ displays a
quadratic scaling at low momenta characteristic
of diffusive damping. For our coldest samples,
as k increases, we observe a deviation from this
behavior, revealed by a crossover to linear scaling.
At all temperatures and wave numbers, our data
are well captured by the model of (59)
(solid lines), which accounts for the finite
relaxation rate of the fluid. Error bars represent
1s statistical uncertainty.

Fig. 4. Temperature dependence of the sound
diffusivity. For temperatures comparable to
the Fermi temperature, the sound diffusivity
(D, normalized by ℏ=m; blue circles) approaches

the expected high-temperature scaling of T3=2

(solid black line). As the temperature is lowered,
D decreases monotonically and attains a quantum-
limited value close to ℏ=m. Below the superfluid
transition [vertical red line, from (20)], D is
observed to be almost independent of temper-
ature and condensate fraction (nC=n, red circles
in inset). From the transition temperature
(nC=n ¼ 0) to the coldest temperatures
(nC=n ∼ 0:8), the changes in D are within the
standard error of the measurements. Theoretical
predictions for D are as follows: The dashed
orange line is from the sound attenuation length
calculated in the framework of kinetic theory
(25), and the dashed green line is from a
calculation of shear viscosity (23), assuming a
Prandtl number of 2/3. Bars denote statistical
error arising from the uncertainty in G. Addition-
ally, the dominant systematic uncertainty in D is
an error of 13% arising from the nonzero width
of the endcaps. The red shaded regions represent
the uncertainty in the superfluid transition
temperature (20).

RESEARCH | REPORT

on M
arch 26, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 



30. H. Smith, H. H. Jensen, Transport Phenomena (Clarendon,
1989).

31. M. A. Black, H. E. Hall, K. Thompson, J. Phys. C Solid State
Phys. 4, 129–142 (1971).

32. C. N. Archie, T. A. Alvesalo, J. D. Reppy, R. C. Richardson,
J. Low Temp. Phys. 42, 295–332 (1981).

33. H. Guo, D. Wulin, C.-C. Chien, K. Levin, New J. Phys. 13, 075011
(2011).

34. G. Rupak, T. Schäfer, Phys. Rev. A 76, 053607 (2007).
35. M. Mannarelli, C. Manuel, L. Tolos, Ann. Phys. 336, 12–35

(2013).
36. H. Kurkjian, Y. Castin, A. Sinatra, Ann. Phys. 529, 1600352

(2017).
37. S. Krinner, T. Esslinger, J.-P. Brantut, J. Phys. Condens. Matter

29, 343003 (2017).
38. G. Valtolina et al., Science 350, 1505–1508 (2015).
39. M. Bartenstein et al.,Phys. Rev. Lett. 92, 203201

(2004).
40. J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, J. E. Thomas,

Phys. Rev. Lett. 92, 150402 (2004).
41. S. Hoinka et al., Nat. Phys. 13, 943–946 (2017).
42. M. Koschorreck, D. Pertot, E. Vogt, M. Köhl, Nat. Phys. 9,

405–409 (2013).
43. M. Bluhm, J. Hou, T. Schäfer, Phys. Rev. Lett. 119, 065302

(2017).
44. A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych,

R. P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 110, 200406
(2013).

45. B. Mukherjee et al., Phys. Rev. Lett. 118, 123401
(2017).

46. K. Hueck et al., Phys. Rev. Lett. 120, 060402 (2018).
47. L. Baird, X. Wang, S. Roof, J. E. Thomas, Phys. Rev. Lett. 123,

160402 (2019).

48. N. Navon, A. L. Gaunt, R. P. Smith, Z. Hadzibabic, Nature 539,
72–75 (2016).

49. J. L. Ville et al., Phys. Rev. Lett. 121, 145301 (2018).
50. S. J. Garratt et al., Phys. Rev. A (Coll. Park) 99, 021601

(2019).
51. P. C. Hohenberg, P. C. Martin, Ann. Phys. 34, 291–359

(1965).
52. P. C. Hohenberg, J. Low Temp. Phys. 11, 745–750

(1973).
53. L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Elsevier,

1959).
54. J. A. Tarvin, F. Vidal, T. J. Greytak, Phys. Rev. B 15, 4193–4210

(1977).
55. See supplementary materials.
56. H. Kurkjian, Y. Castin, A. Sinatra, Phys. Rev. A 93, 013623

(2016).
57. Z. Yan et al., Phys. Rev. Lett. 122, 093401 (2019).
58. M. J. Wright et al., Phys. Rev. Lett. 99, 150403 (2007).
59. C. J. Pethick, D. Ter Haar, Physica 32, 1905–1920

(1966).
60. G. Eska et al., Phys. Rev. Lett. 44, 1337–1340 (1980).
61. D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).
62. G. M. Bruun, H. Smith, Phys. Rev. A 72, 043605

(2005).
63. B. Mukherjee et al., Phys. Rev. Lett. 122, 203402

(2019).
64. C. J. Pethick, H. Smith, P. Bhattacharyya, Phys. Rev. B 15,

3384–3400 (1977).
65. A. Schirotzek, Y. I. Shin, C. H. Schunck, W. Ketterle, Phys. Rev. Lett.

101, 140403 (2008).
66. Y. A. Ono, J. Hara, K. Nagai, J. Low Temp. Phys. 48, 167–188

(1982).

67. M. Rangamani, S. F. Ross, D. Son, E. G. Thompson, J. High
Energy Phys. 2009, 075 (2009).

68. P. B. Patel et al., Replication data for: Universal sound diffusion
in a strongly interacting Fermi gas. Harvard Dataverse (2020);
https://doi.org/10.7910/DVN/UVM2KN.

ACKNOWLEDGMENTS

We thank Y. Castin, T. Enss, T. Schäfer, C. J. Vale, and
W. Zwerger for helpful discussions. Funding: This work was
supported by the National Science Foundation (Center for
Ultracold Atoms award nos. PHY-1734011 and PHY- 1506019),
U.S. Air Force Office of Scientific Research (FA9550-16-1-0324
and MURI Quantum Phases of Matter FA9550-14-1-0035),
U.S. Office of Naval Research (N00014-17-1-2257), and the
David and Lucile Packard Foundation. J.S. was supported by
LabEX ENS-ICFP: ANR-10-LABX-0010/ANR-10-IDEX-0001-02
PSL*. Author contributions: P.B.P., Z.Y., and J.S. performed
the experimental measurements and data analysis. All
authors contributed to the interpretation of the data and the
preparation of the manuscript. Competing interests:
The authors declare no competing interests. Data and
materials availability: All data shown in this work can be found
at Harvard Dataverse (68).

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/370/6521/1222/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 and S2
References (69–73)

20 September 2019; accepted 24 October 2020
10.1126/science.aaz5756

Patel et al., Science 370, 1222–1226 (2020) 4 December 2020 5 of 5

RESEARCH | REPORT

on M
arch 26, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 



Universal sound diffusion in a strongly interacting Fermi gas
Parth B. Patel, Zhenjie Yan, Biswaroop Mukherjee, Richard J. Fletcher, Julian Struck and Martin W. Zwierlein

DOI: 10.1126/science.aaz5756
 (6521), 1222-1226.370Science 

, this issue p. 1222; see also p. 1162Science
helium-4, a fluid of strongly interacting bosons.
They found that below the superfluid transition, the sound diffusivity behaved not unlike what has been observed in 

Schaefer).systems by studying a homogeneous gas of lithium-6 atoms at very low temperatures (see the Perspective by 
 exploited this concept to draw universal conclusions about the attenuation of sound in suchet al.invariance. Patel 

spanning many orders of magnitude. This universality of physics comes about thanks to a property known as scale 
A gas of strongly interacting fermionic atoms can serve as a model for systems with densities and energies

Watching sound die out

ARTICLE TOOLS http://science.sciencemag.org/content/370/6521/1222

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/12/02/370.6521.1222.DC1

CONTENT
RELATED http://science.sciencemag.org/content/sci/370/6521/1162.full

REFERENCES

http://science.sciencemag.org/content/370/6521/1222#BIBL
This article cites 66 articles, 5 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on M
arch 26, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 



science.sciencemag.org/content/370/6521/1222/suppl/DC1 

Supplementary Materials for 
Universal sound diffusion in a strongly interacting Fermi gas 

Parth B. Patel, Zhenjie Yan, Biswaroop Mukherjee, Richard J. Fletcher, 
Julian Struck, Martin W. Zwierlein* 

*Corresponding author. Email: zwierlei@mit.edu

Published 4 December 2020, Science 370, 1222 (2020) 
DOI: 10.1126/science.aaz5756 

This PDF file includes: 

Materials and Methods 
Supplementary Text 
Figs. S1 and S2 
References 



Materials and Methods

The strongly interacting unitary Fermi gas was realized using an equal mixture of the first and

third lowest hyperfine states of 6Li, |1〉 = |mJ = −1
2
,mI = 1〉 and |3〉 = |−1

2
,−1〉 respectively,

with magnetic fields tuned to an interstate Feshbach resonance centered at∼690 G (69,70). The

temperature and density were calibrated using the measured equation of state (20).

Sound waves were generated by sinusoidally modulating the intensity of one of the endcap

laser sheets with sharpness ∼ 4 µm (45). This drives the gas at a wide range of wavenumbers

(k . 0.5 µm−1 or k/kF . 0.15) simultaneously. The sound wave amplitude ∆n/n was delib-

erately kept below 10% to ensure that the response is in the linear regime and the local velocity

v = (∆n/n) c is smaller than the critical velocity.

Supplementary Text

Thermal conductivity and Prandtl number.

Within hydrodynamics, the change in the energy of a sound wave is given by Ė = −Dk2E

with D = 4η/(3ρ) + α2c2κT/(ρc2P ) (53). Here α = (1/V )(∂V/∂T )|P is the thermal expan-

sivity and ρ = mn is the mass density. The scale invariance of the unitary Fermi gas im-

plies c2 = 5P/(3ρ) and cP = 5Pα/(2ρ) (15), which simplifies the sound diffusivity to D =

4η/(3ρ) + 4κT/(15P ), valid at all temperatures above Tc. Below Tc, coupling to the second

sound increases the contribution from viscosity by ∼ 30% for the unitary Fermi gas (51).

Our measurements of the sound diffusivity constrain the value of the viscosity and thermal

conductivity according to D = Dη + Dκ, where Dη = 4η/(3ρ) and Dκ = 4κT/(15P ). For

example, the thermal conductivity κ = (D−Dη)(15P )/(4T ) can be calculated from the sound

diffusivity D if the equation of state and viscosity are known. We calculate the thermal con-

2



A B

Figure S1: Thermal conductivity and Prandtl number. For temperatures comparable to the
Fermi temperature (T ∼ TF), the thermal conductivity (A; κ/(nkB), normalized by ~/m; blue
circles) approaches the expected high temperature scaling T 3/2 (solid black line) as the Prandtl
number (B; Pr; blue circles) approaches the predicted high temperature value of 2/3 (solid
black line). The orange dashed line in both A and B are theoretical predictions calculated in the
framework of kinetic theory (25).

ductivity κ (Fig. S1A) and Prandtl number Pr = cPη/κ (Fig. S1B) using the measured sound

diffusivity, the experimental equation of state (20), and a theoretical calculation for the shear

viscosity η above Tc (23), performed within the same framework that gave excellent agreement

with the experimental equation of state (20). Similar to the sound diffusivity and viscosity, the

thermal conductivity increases with temperature as T 3/2 for T � TF. The solid black line in

Fig. S1A shows the limiting behavior κ/(nkB) = 10.38 (~/m) (T/TF)3/2 for the thermal con-

ductivity at high temperatures (25), which captures our data well without any free parameters.

The Prandtl number, Pr, quantifies the relative importance of viscosity and thermal con-

ductivity for the attenuation of sound in fluids. For compressible fluids such as air, both the

viscosity and the thermal conductivity play an important role in the diffusion of sound, result-

ing in Pr being close to unity. In contrast, for incompressible fluids such as water, thermal

gradients associated with sound waves are minimal, resulting in a Pr � 1. The unitary Fermi

gas is a compressible fluid, whose Pr is predicted to reach the classical limit of 2/3 at high

3



A B

Figure S2: Weight of the first-sound mode in χ. (A) Integral over the density response
I1(k) =

∫
dω δn(ω, k)/ω for even (red triangles) and odd (green square) modes. They are fit

with a Gaussian function (solid lines) which models the drive V0(k). (B) The weight of the
first sound in the density response function W1(k) =

∫
dω Im[χ(ω, k)]/ω calculated from the

measured I1 and the modelled drive potential, W1(k) = I1(k)/V0(k).

temperatures (25). Our data indeed approach this value at high temperatures. We find the Pr to

be significantly below 1 at all temperatures, excluding the existence of a relativistic conformal

gravity dual of the unitary Fermi gas (67).

The response function χ and its normalization

The response function χ relates the perturbations in a fluid’s number density to the applied

external potential, δn(ω, k) = χ(ω, k)V (ω, k) (51). With knowledge of χ, the density re-

sponse of a fluid to an arbitrary external perturbation can be calculated via a Fourier transform,

δn(t, x) =
∫

dω′
2π
e−iω

′t
∫

dk
2π
e−ikx χ(ω′, k)V (ω′, k). For example, the density response to a si-

nusoidal drive V (ω′, k) = −iπV0(k) (δ(ω′ + ω)− δ(ω′ − ω)), with frequency ω and amplitude

V0(k), is

δn(t, k) = V0(k) sin(ωt)Re[χ(ω, k)]− V0(k) cos(ωt)Im[χ(ω, k)].

Similar to a classical harmonic oscillator, the in-phase and out-of-phase density responses are

proportional to Re[χ] and Im[χ] respectively, providing an experimentally convenient tool to

4



measure the density response function. Data shown in Fig. 2 were taken after 30 complete

cycles of the sin(ωt) drive, which was found to be sufficiently long to reach a steady state of

the density evolution at all frequencies and temperatures explored. During this drive, the energy

injected by the external potential is less than 4% of the energy of the system.

In the vicinity of a sound mode (ω ∼ ck), the response of the fluid can be well modeled

by a damped driven harmonic oscillator with a resonance frequency ω0 = ck and damping

rate Γ (51). The equation of motion of a harmonic oscillator implies a response function χ ∼

1/ (ω2 − ω2
0 + iΓω) whose imaginary part, Im[χ] ∼ 1/((ω−ω0)

2 + Γ2), has a Lorentzian peak

with full-width-at-half-maximum Γ centered at ω = ω0.

In general, the response function χ for a unitary Fermi gas is given by two-fluid hydro-

dynamics, as discussed in Refs. (51, 52, 71). Fixing k, the function Im(χ(ω, k))/ω contains in

general two peaks: one is centered at the first-sound resonance, corresponding to predominantly

density waves. The second peak is present when thermal gradients can cause density gradients,

which occurs for non-zero expansivity α or equivalently for a specific heat ratio cP/cV 6= 1. In

the normal state, the second peak occurs at zero frequency, corresponding to purely diffusive

heat transport coupled to density. In the superfluid regime, this peak moves to finite frequency,

corresponding to the emergence of second sound. It is predominantly (for cP/cV not far from

1) a temperature wave that propagates ballistically (72, 73).

An exact sum rule relates the integral of Im(ω, k)/ω to the isothermal compressibility (51,

71). The integral W1 =
∫
dω Im[χ(ω, k)]/ω over only the first-sound peak is nπ/(2mc2), re-

lated to the speed of sound and thus the isentropic compressibility, independent of the wavenum-

ber. We verify this ‘first sound sum-rule’ in Fig. S2 and utilize it to calibrate the amplitude

V0(k) of the drive. The measured out-of-phase density response (Fig. 2C and Fig. 3A) is given

by δn(ω, k) = Im[χ(ω, k)]V0(k). The weight of the first-sound mode is calculated from the

density response, W1 =
[∫
dω δn(ω, k)/ω

]
/V0(k) ≡ I1/V0(k), where I1 is the integral over

5



the δn (Fig. S2A). We model the shape of the potential wall V0(x) by a Gaussian function with a 

width σ such that V0(k) ∼ exp [−k2σ2/2]. To account for the slight asymmetry between the two 

endcap potentials, we use σ = 4.4(1)µm and 3.2µm for the even and odd modes, respectively, 

acquired from Gaussian fits to I 1. The calculated weight W1(k) (Fig 6B) is independent of the 

wavenumber to within the standard error of the measurements. By requiring the average value 

of W1(k) to be nπ/(2mc2), we calibrate the amplitude of V0(k) and normalize Im[χ] shown in 

Fig. 3A.
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QUANTUM SIMULATION

Geometric squeezing into the lowest Landau level
Richard J. Fletcher*, Airlia Shaffer, Cedric C. Wilson, Parth B. Patel, Zhenjie Yan, Valentin Crépel,
Biswaroop Mukherjee, Martin W. Zwierlein

The equivalence between particles under rotation and charged particles in a magnetic field
relates phenomena as diverse as spinning atomic nuclei, weather patterns, and the quantum Hall effect.
For such systems, quantum mechanics dictates that translations along different directions do not
commute, implying a Heisenberg uncertainty relation between spatial coordinates. We implement
squeezing of this geometric quantum uncertainty, resulting in a rotating Bose-Einstein condensate
occupying a single Landau gauge wave function. We resolve the extent of zero-point cyclotron
orbits and demonstrate geometric squeezing of the orbits’ centers 7 decibels below the standard
quantum limit. The condensate attains an angular momentum exceeding 1000 quanta per particle
and an interatomic distance comparable to the cyclotron orbit. This offers an alternative route toward
strongly correlated bosonic fluids.

I
n 1851, Foucault directly demonstrated the
rotation of Earth via the precession of a
pendulum’s oscillation axis. This occurs
because in the rotating frame, counter-
and corotating motions no longer oscil-

late at the pendulum’s natural frequency w.
Instead, their frequencies are increased and
decreased, respectively, by Earth’s rotation
frequencyW, which leads to the bob performing
epicycles (Fig. 1A). In Foucault’s experiment,
for which W << w, this manifests as an ap-
parent precession of the oscillation axis. If
we imagine instead that W = w, the centrif-
ugal force exactly cancels the restoring force.
The pendulum can still perform cyclotron orbits
against the frame’s rotation, but the motion of
the orbit’s guiding center is free. In a quantum
mechanical description, the energy spectrum
is analogous to that of charged particles in a
magnetic field and forms discrete Landau
levels spaced by 2ħw, where ħ is the reduced
Planck constant. The levels correspond to dif-
ferent states of cyclotron motion, each with a
large degeneracy arising from the possible
guiding-center positions.
An intrinsic characteristic of both neutral

particles under rotation and charged particles
in a magnetic field is the noncommutativity
of space. This can be seen from the quan-
tized Hamiltonian of a pendulum of massm
viewed in the rotating frame,

Ĥ ¼ p̂2
x þ p̂ 2

y

2m
þ 1

2
mw2 x̂2 þ ŷ2� ��WL̂z ð1Þ

where p̂x;y are the canonical momenta along
x and y, and L̂z is the axial angularmomentum.
The rotational term WL̂z mixes spatial and
momentumcoordinates into newnormalmodes,

and one decouples Eq. 1 by transforming into
cyclotron coordinates x = ½[x – (py/mw)]
and h = ½[y + (px/mw)], and guiding-center
coordinatesX =½[x + (py/mw)] and Y =½[y –
(px/mw)], yielding

Ĥ ¼ mw wþWð Þ x̂
2þ ĥ2

� �
þ

mw w�Wð Þ X̂
2þ Ŷ

2
� �

ð2Þ

(1). Because x̂ ¼ X̂ þ x̂ and ŷ ¼ Ŷ þ ĥ , the
particle’s motion is the sum of a fast cyclotron
motion and a slow drift of the guiding center
(Fig. 1A). Crucially, while the absolute spatial
coordinates x̂ and ŷ always commute, the
two pairs of cyclotron and guiding-center co-
ordinates separately do not. Each pair spans
the phase space of a one-dimensional harmonic
oscillator, and consequently

x̂; ĥ
h i

¼ � X̂ ; Ŷ
� � ¼ i‘2B ð3Þ

where ‘B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ= 2mwð Þp

is the rotational analog
of the magnetic length. If an applied po-
tential V̂ x̂; ŷð Þ varies little over this length
scale, it cannot resolve the cyclotron motion
and only couples to the guiding centers. In
this case, V̂ x̂; ŷð Þ→ V̂ X̂ ; Ŷ

� �
, and the result-

ing dynamics occurs within a noncommuta-
tive space (2).
This noncommutativity of guiding-center

motion lies at the heart of the Hall effect.
Each spatial variable generates translations
in the orthogonal direction, meaning that a
force along X effects motion along Y. Particles
therefore drift along isopotentials of V with a
velocity vd =W × ∇V/(2mWw) in analogy to the
E × B drift of electromagnetism. This flow is
divergence-free, reflecting the incompressibility
of phase-space distributions (3), and defines a
one-to-one mapping between a particle’s initial
position and its final position. Time evolution
therefore always results in a purely geometric,
equiareal transformation of the guiding-center
distribution.

These concepts are relevant to atomic nuclei
(4–6), astrophysical phenomena (7, 8), quan-
tum Hall systems (9), and ultracold atomic
quantum gases, which offer a highly versa-
tile experimental arena for studying rotating
quantum fluids (10). In Bose-Einstein conden-
sates rotating close to the trap frequency, sig-
natures of the gas approaching the lowest
Landau level (LLL) were seen in a softening
of the vortex lattice (11, 12). A principal goal is
to address the quantum Hall regime, but the
exacting requirements on the trap isotropy
and rotation speed present a major challenge.
Synthetic magnetic fields (13–15) have also been
engineered by othermethods, such as spin-orbit
coupling (16, 17), and by direct phase-imprinting
in both optical lattices (18–21) and synthetic
dimensions (22). Experiments have shown a
transverse Hall response in lattice transport
(23) and superfluid collective modes (24), as
well as chiral edge states in synthetic dimen-
sions (25, 26).
Here, we directly exploited the noncom-

mutativity of guiding-center motion to realize
geometric squeezing, cleanly distilling a single
Landau gauge wave function in the lowest
Landau level (1). In comparison to previous
work in azimuthally symmetric condensates
(11), this obviates delicate fine-tuning of trap-
ping and rotation parameters, and offers a
complementary “Landau gauge” starting point
from which to investigate interaction-driven
physics in quantum Hall systems. To begin
our experiment, we prepared a condensate
of NTot = 8.1 (±0.1) × 105 atoms of 23Na in
an elliptical time-orbiting-potential (TOP)
trap (27), with trap frequencies wx;wy;wzð Þ ¼ffiffiffiffiffiffiffiffiffiffiffi

1þ e
p

;
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
;

ffiffiffi
8

p� �
w . Here, w = 2p × 88.6

(±0.1) Hz and the trap ellipticity is e = 0.125 ±
0.004. We smoothly ramped the trap’s rota-
tion frequency from zero to w, waited for a
variable time t, and then obtained an absorption
image of the in situ density distribution. Our
imaging resolution was sufficient to observe
vortices in situ with a contrast of ~60% (1).
These have a characteristic size set by the
healing length, which is ~300 nm in our
system. This is much smaller than the quan-
tummechanical ground-state size of cyclotron
orbits, set by the magnetic length ‘B = 1.6 mm.
In the frame rotating at W, the condensate

evolves under both a vector potential and a
scalar potential. The vector potential and
the associated synthetic magnetic field are
induced by the frame rotation (1). The scalar
potential V ¼ m w2 �W2

� �
X2 þ Y 2ð Þ=2� �þ

mew2 X 2 � Y 2ð Þ=2½ � arises from both the
TOP trap and the centrifugal force. For
W=w <

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
, the isopotentials of V are

closed; the condensate remains confined but
deforms into an ellipse. In earlier experiments,
unstable density modulations mediated the
nucleation of vortices for rotation frequencies
W/w ≳ 0.8 (28, 29). By ramping sufficiently
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quickly, we precluded breakup of the conden-
sate while allowing its ellipticity to adiabati-
cally follow the equilibrium value (30).
When W = w, the scalar potential forms a

saddleVs =mew2(X2 – Y 2)/2 (Fig. 1B).Without
a vector potential, atoms would be lost along
the anti-trapped y-direction. Instead, the guid-
ing centers drift outward along the x = y con-
tours and inward along the x = –y contours.
This flow (illustrated by white arrows) medi-
ates squeezing of the spatial distribution. In
Fig. 1C we show the evolution of the conden-
sate density viewed in the rotating frame. The
final image is overlaid with the known iso-
potentials of Vs, whose coincidence with the
atomic density provides a qualitative signature
of isopotential drift. The small curvature of
the diagonal contours arises from the known
quartic corrections ~(X2 + Y 2)2 to the trapping
potential (27), and the spatial twisting of the
condensate lies in close analogy to the twist-
ing in optical phase space induced by the
Kerr effect (31).
To measure the transverse Hall response,

we obtained the radial drift speed as a func-
tion of the azimuthal force, which at a radius
r is F(r) = mew2r. Our measurements are
shown in Fig. 2 along with the theoretical
relation vd = F/(2mw), valid for any quantum
state, which shows good agreement without
any free parameters. We used a continuity
equation to infer the drift speed; the atom

numberN inside a bounding box (Fig. 2, white
frame in top inset) centered on r = 0 and with
length 2R varies asN

� ¼ �2vdn, where vd and
n are the drift speed and one-dimensional
number density at r = R. Integrating once

gives 1 – [N(t)/N(0)] = 2vd ∫t0 dt′[n(t′)/N(0)],
allowing straightforward evaluation of vd as
shown in the lower inset. This method offers a
convenient protocol for measuring the Hall
response of any fluid.
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A
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Fig. 1. Geometric squeezing of a rotating Bose-Einstein condensate.
(A) Viewed in a frame rotating at W, the motion of a Foucault pendulum with
natural frequency w separates into a slow corotating drift of the guiding center
(X, Y), in blue, and fast counterrotating cyclotron orbits with relative coordinates
(x, h), in red. For W < w, the pendulum performs skipping orbits, whereas if W =
w, the guiding-center motion is free. (B) Atoms in an elliptical harmonic trap
rotating at W = w evolve under both a vector potential and a scalar saddle

potential Vs, whose isopotentials are shown as red (Vs > 0) and blue (Vs < 0)
dashed lines. Particles perform cyclotron orbits whose guiding centers drift along
isopotentials with a velocity vd (white arrows) orthogonal to the local force F =
–∇Vs (green arrow). (C) In situ images of the condensate in the rotating frame.
During the hold time at W = w, the atoms flow out along one diagonal and in
along the other, mediating squeezing of the distribution in guiding-center phase
space. The final image is overlaid with the isopotentials of Vs.

Fig. 2. Isopotential drift
velocity. The main plot shows
the particles’ radial speed vd in
response to the azimuthal force
F, measured at distances of
(left to right) 4.1 mm, 12 mm,
20 mm, 28 mm, 36 mm, 44 mm,
52 mm, and 60 mm from the
trap center. The speed is inferred
from changes in the atom
number N inside a bounding
box (top inset) and the density
n at its boundary. The bottom
inset shows a typical plot
constructed from N(t) and
n(t), whose slope gives vd (see
text). The data show good
agreement with the theoretical
expectation (red line) without
any free parameters. The force
F is calculated assuming a
harmonic trap, but the quartic
corrections to the potential
reduce the velocity along x = y; this results in a small downward shift of the data, which is captured by a GP
simulation (1). Error bars show the variation in vd measured across different time intervals.
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Whereas the drift velocity determines the
local response to a force, the specific geometric
transformation of the cloud depends upon the
global shape of Vs. Qualitatively, isopotential
flow on a saddle in the presence of a magnetic
field results in elongation and contraction along
orthogonal diagonals. More quantitatively, in
terms of the oscillator ladder operators â ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

mw=ħ
p ðx̂ þ iĥÞ and b̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mw=ħ
p

X̂ � iŶ
� �

,
the single-particle Hamiltonian is

Ĥ s ≈ 2ℏw â†â þ 1

2

	 


þ ℏz
2

b̂b̂ þ b̂
†
b̂
†

� �
ð4Þ

(1), where we define z = ew/2. Comparison
with the one-mode squeezing operator Ŝ að Þ ¼
exp½ða�b̂b̂ � ab̂

†
b̂
†Þ=2� reveals that time evo-

lution under a saddle potential is equivalent
to fully coherent squeezing of the guiding-center
phase space distribution, analogous to phase
squeezing in quantum optics (32–34). Con-
sistent with the perspective based on isopo-
tential flow, the imaginary squeezing parameter
a = izt describes dilation of the cloud along the
diagonals of phase space by factors exp(±zt).
In the limit zt >> 1, the particles’ guiding

centers become widely distributed along one
diagonal and sharply localized along the other.
The residual transverse width of the cloud
solely arises from the unsqueezed cyclotron
orbits, which have a size

ffiffiffiffiffiffiffiffiffi
x̂
2

D Eq
¼ ‘B

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ1=2

p
in

the nth Landau level. The minimum orbit size

sLLL = ‘B=
ffiffiffi
2

p
occurs in the LLL, where the

cyclotron wave function is Gaussian and sat-
urates the Heisenberg uncertainty relation
DxDh ≥ ‘B

2/2. The density of any condensate
in the LLL is therefore a convolution of the
guiding-center distribution with a Gaussian of
width sLLL. In the quantum optics analogy,
this directly realizes the Husimi-Q representa-
tion of the guiding-center Wigner function
(1). In our case, at long times the cloud is an
extended strip of transverse width sLLL. Geo-
metric squeezing therefore coherently trans-
forms the condensate into a single Landau
gauge wave function within the LLL (1).
In Fig. 3A we show images of the conden-

sate before and after squeezing and plot the
major and minor cloud widths, s±, which are
defined as the e–1/2 radii obtained from a
Gaussian fit. Initially the chemical potential
is m0 ≈ h × 3.4 kHz, where h is the Planck
constant, and the number of Landau levels
admixed into the condensate wave function
is ~m0/(2ħw) ≈ 20, hence the evolution is well
described by a hydrodynamic model that
neglects quantum pressure (29). The predic-
tion of this model is shown by the red line,
for which the only free parameter is the total
atom number (35).
For times t > 0, the cloud evolves under

the squeezing Hamiltonian of Eq. 3 and the
major width increases as s+ º exp(zt), il-

lustrated by the dashed line. However, the
minor width decays more slowly. This dif-
ference arises because the condensate size
contains contributions from both the guiding
centers, which are squeezed at a rate z, and the
cyclotron orbits, whose size depends on the
number of occupied Landau levels NLL ≡
m/(2ħw). In our experiment, s– is generally
dominated by cyclotron motion and its evol-
ution is captured well by a simple scaling
model. The chemical potential is proportional
to the atomic number density ~NTot/(s+s–sz),
where sz is the axial extent of the conden-
sate. Themajor width always increases as s+º
exp(zt), and s�;zº

ffiffiffi
m

p
when NLL >> 1. We

therefore predict a time dependence s– º
exp(–zt/4) at early times, which is shown by
the dotted line in Fig. 3A. The gray data show a
small breathing of the cloud at the cyclotron
frequency 2w. This is driven by imperfections
in the trap, which shows a ~0.3% root-mean-
square variation in w with ellipse orientation,
giving a perturbation in the rotating frame
with a frequency 2W. The blue points are
averaged over one period.
The falling chemical potential mº exp(–zt/2)

guarantees that eventually m < 2ħw and the
condensate enters the LLL. As shown in Fig.
3B, we directly observe the saturation of s–
at the zero-point cyclotron width sLLL im-
posed by Heisenberg uncertainty. Because
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Fig. 3. Squeezing into the
lowest Landau level.
(A) Evolution of the major and
minor cloud radii s± in
response to ramping the rota-
tional angular frequency W of
the trap from zero to the trap
frequency w (top). The gray
shading shows the time period
for which W < w. The left and
right insets show representa-
tive in situ images of the cloud
at early and late times,
respectively. Initially the con-
densate is approximately iso-
tropic, whereas for long times
the spatial aspect ratio
exceeds 100. The red line
shows the prediction of a
hydrodynamic model for
which the total atom number
is the only free parameter, and
whose behavior when W = w
follows simple scalings shown by the dashed and dotted lines (see text). The green line shows the result of a Gross-Pitaevskii simulation of our experiment (1) and
captures the deviation from classical hydrodynamic behavior as the LLL is approached. The gray data show a small cyclotron breathing oscillation driven by trap
imperfections (see text); the blue points are averaged over one period. (B) Top: A zoom-in of the minor width evolution. Bottom: The inferred number of occupied
Landau levels NLL ≡ m/(2ħw). As the condensate enters the LLL, its width saturates at sLLL = ‘B=

ffiffiffi
2

p
, shown by a solid line and corresponding to zero-point cyclotron

motion. For comparison, the dashed line shows the width of the two-dimensional harmonic oscillator ground state, s0 = ‘B. The blue arrow denotes the measured
imaging resolution obtained using vortex cores (1). (C) The transverse optical density (OD) profile of the cloud along with fits of Thomas-Fermi (red) and Gaussian
(green) functions. At early times, interactions dominate and the profile is Thomas-Fermi in character, whereas when NLL ≲ 1 we observe a Gaussian shape, which is
characteristic of wave functions in the LLL.
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the hydrodynamic model neglects quantum
pressure, it predicts that s– → 0. On the other
hand, the saturation of the cloud width is cap-
tured very well by a Gross-Pitaevskii simula-
tion with no free parameters (green solid line)
(1). For comparison, the dashed line shows the
width s0 = ‘B of the noninteracting harmonic
oscillator ground state, which corresponds
to minimal, but isotropic, Heisenberg uncer-
tainty in both cyclotron and guiding-center co-
ordinates. This lies above our data at long
times, and from the last five data points we
infer squeezing of the guiding centers by >7 dB
below the standard quantum limit.
In the lower panel of Fig. 3B, we plot the

number of occupied Landau levels, NLL, in-
ferred from the central density evaluated using
the fitted hydrodynamic model. We indeed
find that the crossover to LLL behavior occurs
for NLL ~ 1; the dashed region corresponds to
NLL < 1, where the hydrodynamic model is not
applicable and this inference is no longer self-
consistent. We also see a qualitative change in
the shape of the cloud, which changes from a
Thomas-Fermi to a Gaussian profile. This is
shown in Fig. 3C, where we plot cuts along x =
–y at early and late times. IfNLL >> 1, the heal-
ing length is much smaller than the magnetic
length and the density profile is a Thomas-
Fermi function (red line). On the other hand, if
NLL < 1, the profile is Gaussian (green line),
reflecting the cyclotron ground state. We note
that at our latest times, the interparticle dis-
tance has grown to ~500 nm, close to half the
size of a zero-point cyclotron orbit ~sLLL. This
signals the approach of the Bose gas toward
the strongly correlated regime (10, 15, 36–40).
Microscopically, the squeezing operator

mixes higher–angular momentum states into
the condensate wave function, in analogy
to the admixing of higher Fock states in
squeezed light (32). In general, the angular
momentum of a superfluid can be carried
either by vortices or by deformations that
break rotational symmetry (41). Because ∇ ×
vd = 0, the induced flow is irrotational, but the
large aspect ratio gives a moment of inertia
Q ¼ mNTot s2þ � s2�

� �2
= s2þ þ s2�
� �h i

≈mNTots2þ
which is close to the rigid-body value (41). For
clouds with s+ > 50‘B, this gives a per-particle
angular momentum hlzi > 1000ħ despite the ab-
sence of any vortices inside the condensate (42).
In the experiments above, geometric squeez-

ing was seen in the evolution of the condensate
widths. To directly observe the drift velocity
field inside the cloud, we now introduce a
dilute gas of vortices that correspond to nodes
in the atomic wave function and can serve as
“tracer particles” for the local flow.We prepare
a ground-state condensate rotating at 0.8w in
an isotropic trap and instantaneously apply
the saddle Vs rotating at W = w. The initial
chemical potential is m ≈ h × 2.2 kHz, giving a
cyclotron orbit size ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= 2ħwð Þp

‘B = 5.5 mm.

This ismuch smaller than the cloud’s Thomas-
Fermi radius of 21 mm, hence the observed
width is dominated by the guiding-center dis-
tribution. In Fig. 4, A and B, we show the in
situ evolution in both real and reciprocal
space. Initially, the condensate is circular and
contains a triangular Abrikosov lattice with
six-fold–symmetric reciprocal lattice vectors.

Subsequently, squeezing is evident in both
the cloud shape and the vortex lattice. Be-
cause the vortices are distributed through-
out the whole cloud, this indicates that the
coordinates of all particles evolve under the
same squeezing transformation. For longer
times, while the overall spatial envelope con-
tinues to squeeze, the density profile exhibits
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Fig. 4. Squeezing of a vortex lattice. (A and B) In situ evolution in real space (A) and reciprocal space (B) after
suddenly applying the rotating saddle. Initially the cloud is round, and the reciprocal lattice vectors lie on a circle.
Squeezing is evident in both the condensate spatial envelope and the vortex lattice spacing. At longer times,
clustering of vortices causes the condensate to break up into droplets. (C) Time evolution of the major and minor
Thomas-Fermi radii of the condensate, R±, and the major and minor radii of the ellipse describing the lattice
vectors, b±. The black dashed lines show exponential functions A exp(±ζt), with A fixed by the data at t = 0;
the solid lines include the small contributions of quadrupolar collective modes and the nonzero size of the
cyclotron orbits (1). The longest squeezing time ζt = 1.8 corresponds to t ≈ 50 ms. The ellipse widths in reciprocal
space are shown for times for which the distribution of vortices remains periodic.
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an intricate evolution. Squeezing of the ini-
tially triangular vortex lattice eventually leads
to the formation of vortex rows (43, 44). Sub-
sequently, a hydrodynamic instability drives
amalgamation of the vortices into clusters, as
well as an intriguing fragmentation of the
condensate into a persistent array of droplets.
In Fig. 4C, we show the evolution of the

major and minor Thomas-Fermi radii of the
cloud, R±, and the major and minor radii of
an ellipse fitted to the reciprocal lattice vectors,
b±. The dashed lines show exponential func-
tions A exp(±zt) (where the amplitude A is the
only free parameter), which capture the initial
evolution well. This confirms both the expected
rate of squeezing and the incompressibility
of the guiding-center distribution. The solid
lines show a fit that includes the excitation
of quadrupolar collective modes by the saddle
turn-on and trap imperfections (see above)
and additionally accounts for the nonzero
cyclotron orbit size (1). This results in a slight
reduction of the apparent squeezing rate and a
slowdown of the decay in R– as the guiding-
center width approaches the cyclotron size.
The geometric squeezing protocol estab-

lished here offers an alternative route to LLL
physics in quantum gases. Crucially, simply
turning off the saddle potential halts the
outward flow of atoms. This controllably pre-
pares an equilibrium condensate (1), which oc-
cupies a single Landau gauge wave function
whose purely interaction-driven evolution in
the flat single-particle dispersion of the LLL
can then be cleanly observed. Natural im-
mediate directions concern the collective exci-
tation spectrum (45), quantum hydrodynamic
stability, and the appearance of strongly cor-
related bosonic states (36–40, 42, 46). More
generally, the ability to resolve cyclotron mo-
tion and vortices in situ allows the study of
chiral edge states and quantum turbulence in
rotating gases. From a metrology perspective,
azimuthally squeezed condensates might offer

benefits for rotation sensing and a route to
spin-squeezing via a spatially dependent cou-
pling between internal atomic states (47).
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A spinning quantum gas
Ultracold atomic gases are very good at simulating electrons in solids but lack one essential party trick: charge. Their
neutrality makes it challenging to simulate phenomena such as the quantum Hall effect, which, in the case of charged
electrons, is easily induced by an external magnetic field. One way to produce a similar effect in a neutral system is to
rotate it, but achieving the equivalent of strong magnetic fields remains difficult. Fletcher et al. rotated a gas of trapped
sodium atoms, reaching a state in which the gas could be described by a single lowest Landau-level wave-function.
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Materials and Methods

Sample preparation

We prepare a Bose-Einstein condensate of NTot = 8.1(1)⇥105 atoms of 23Na in the |F = 2, mF = 2i

hyperfine state, in a magnetic TOP trap (27) of rms radial frequency ! = 2⇡ ⇥ 88.6(1) Hz,

and with no discernible thermal component. The chemical potential at the cloud center is

µ0 ⇡ h⇥ 3.4 kHz corresponding to a healing length of
p
~2/(2mµ) = 250 nm.

Imaging calibration

The objective used for our in situ imaging has a nominal numerical aperture of NA = 0.5. In

addition to the diffraction limit, an imaged cloud can also be broadened by optical aberrations,

imperfections in the polarisation and frequency of the imaging light, and by motion of the atoms

during imaging.

To directly characterize our imaging resolution experimentally, we measure the core struc-

ture of a quantum vortex. In Fig. S1A we show a rotating condensate prepared in a circular

magnetic trap which has a radial trapping frequency ! = 2⇡ ⇥ 88.6(1) Hz. The cloud rotation

rate is ⌦ ⇡ 0.75!, which is determined from the two-dimensional vortex number density, nv,

according to nv = m⌦/(⇡~) (50). From the measured Thomas-Fermi radius of the condensate,

R ⇡ 22.1 µm, and using the effective radial trapping frequency of
p
!2 � ⌦2, we infer a central

chemical potential µ ⇡ h⇥ 1.9 kHz corresponding to a healing length of 340 nm.

We perform an azimuthal average of the measured two-dimensional atomic number density,

n, around every vortex located within a radius of R/2. The average of these individual vortex

profiles is shown in Fig. S1B, where we compare the data to two models. The dashed curve

shows the theoretical vortex core stucture, obtained by numerically solving the Gross-Pitaevskii

equation for a single vortex within a uniform condensate (51). The solid curve shows a fit

function obtained by convolving this profile with a Gaussian of variable e�1/2-radius �, which
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Figure S1: In situ image of quantum vortices. (A) An in situ image of a condensate contain-
ing a vortex lattice. A radial average of the measured density, n, is performed around the core of
each vortex within R/2 of the cloud center, where R is the Thomas-Fermi radius of the cloud.
(B) The average of these profiles is shown by the blue points, where the density, n, has been
normalized to the density of the surrounding condensate, n0. We fit the data with a function ob-
tained by convolving the theoretical core structure of a single vortex (see text) with a Gaussian
function, whose e�1/2-radius has an optimal value of 670 nm. The resulting curve is shown by
the solid line, while the dashed line shows the theoretical curve without any broadening.

simultaneously captures both the increased width and reduced contrast of the vortex well. The

optimum value of � = 670 nm corresponds to the effective broadening of a point source arising

from both the diffraction limit and imaging imperfections. It is indicated by a blue arrow in

Fig. 3 of the main paper.

For comparison, we measured the point spread function of our imaging system before in-

stallation in the machine, using a point source provided by a SNOM optical fibre tip (52). A

Gaussian fitted to this function has a e�1/2-radius of 280 nm. The difference between this value

and the observed resolution is approximately accounted for by motion of the atoms during

imaging; we use a high-intensity imaging pulse with a duration of 3 µs, resulting in diffusion

by ⇡ 570 nm of a 23Na atom transverse to the imaging axis.

We note that in situ detection of vortices has also been reported using, i) dark-field imag-

ing (53), where several vortices within a lattice were detected with a spatial resolution ⇠ 3 µm
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and separation of 9 µm, ii) phase-contrast imaging (54), where individual vortices could be

detected for separations & 20 µm, and iii) by filling the vortex cores with atoms prepared

in a different internal hyperfine state (55), which expanded the core to a radius of ⇠ 7 µm.

In contrast to these previous methods, our imaging allows us to resolve dense vortex lattices,

with an inter-vortex spacing comparable to the vortex size, given by the healing length scale of

⇠ 0.5 µm.

Fit function for vortex lattice squeezing

In Fig. 4C of the main paper, we show the evolution under geometric squeezing of the major

and minor widths of the cloud in real space, and the major and minor widths of an ellipse

describing the reciprocal vectors of the vortex lattice. While the dashed lines show purely the

ideal squeezing evolution R±, b± ⇠ exp(±⇣t), the solid line fits include a small admixture of

m = 0 and m = 2 quadrupolar collective excitations, which have a natural frequency 2! for

a cloud rotating at ⌦ = ! (44). These are excited by both the sudden switch-on of the saddle

potential which initiates squeezing of the cloud, and a small (⇠ 0.3%) breathing of the trapping

frequency ! as the trap rotates (see main paper). We also include the non-zero size of cyclotron

orbits; these are not squeezed and so their contribution to the cloud width remains constant,

while the guiding centers are squeezed at a rate ⇣ . We simultaneously fit the function

R±(t) = A
p

e±2⇣t + B2 + C sin (2!t + �C) ± D sin (2!t + �D)),

b±(t) = E/R±(t),

to all data sets {R±(t), b±(t)}.

We find fractional amplitudes C/A = 0.047(5) and D/A = 0.019(5) for the m = 0 and

m = 2 modes respectively, and a residual cyclotron orbit size AB = 7.6(4) µm, comparable to

an estimate ⇠
p

µ/(2~!) `B = 5.5 µm obtained from the chemical potential µ ⇡ h⇥ 2.2 kHz.
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Gross-Pitaevskii simulations

Given the experimental results presented in the main paper, it is interesting to explore the ex-

perimental protocol within a Gross-Pitaevskii (GP) framework. Stimulated by the experiment,

we thus implemented a GP simulation in the rotating frame. In addition to describing well the

saturation of the cloud width as the gas enters the LLL (see Fig. 3 of the main paper), we also

reproduced several other features of the experiment, examples of which are shown in Fig. S3.

Figure S2: Gross-Pitaevskii simulation of the geometric squeezing experiment. (A) Quartic
corrections to the TOP trap potential (27) lead to a curvature of the cloud as the atoms flow
out along isopotentials. We show images from the experiment (left, taken from Fig. 1 of the
main paper) and the simulation (right). (B) At high densities (top), a cut through the density
distribution along the short axis of the cloud is better fitted by a Thomas-Fermi function (red)
than a Gaussian (green). At low densities (bottom), the gas occupies the LLL and the density
is better fitted by a Gaussian. Corresponding experimental profiles are shown in Fig. 3C of the
main paper. (C) The drift velocity as a function of the azimuthal force F (r) = m"!2r felt by
atoms flowing out along the diagonal of the saddle potential. The red line shows the simulated
drift velocity for a perfectly harmonic trap, and the green line shows the GP result including
corrections to the velocity directed along x = y, which arise from quartic terms in the trapping
potential. The blue points show our experimental data, plotted in Fig. 2 of the main paper.
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Supplementary Text

Geometric squeezing as a route to equilibrium rotating gases

Turning off the saddle potential during geometric squeezing halts the outward flow of atoms.

The density of the final condensate can be smoothly varied by changing the duration of the

squeezing, and is conveniently parameterized by the number of occupied Landau levels NLL =

µ/(2~!). The condensate continues to rotate at ⌦ = !, experiencing a synthetic magnetic

field but no scalar potential. In the limit NLL ⌧ 1 the atoms occupy a single Landau gauge

wavefunction within the LLL, whereas in the limit NLL � 1 states from the first⇠ NLL Landau

levels are admixed into the superfluid wavefunction.

In both cases, despite the absence of any scalar potential in the rotating frame, the cloud

is stabilized by an effective trap along x, of frequency 2!, where we take the long axis of the

condensate to lie along the y-direction. This can be seen directly from the Hamiltonian in the

Landau gauge of a gas rotating at ⌦ = ! (see Eq. (S17) below),

H =
p2

x

2m
+

1

2
m(2!)2(x� ky`

2
B)2, (S1)

where ky is the wavevector along the translationally-invariant y-direction. Physically, the effec-

tive trapping arises from the kinetic energy cost imposed by irrotationality of the condensate in

the lab frame, which implies a flow profile in the rotating frame ~v = (0,�2!x) (30).

In Fig. S2 we show several examples of condensate evolution after turning off the saddle.

The cloud continues to rotate at ⌦ = !, but the density profile remains constant. In the rotating

frame, the condensate provides a static, equilibrium starting point from which to investigate

quantum Hall physics. This equilibrium reflects a balancing of the outward pressure (quantum

or mean-field) on each fluid element by the inward Coriolis force arising from the flow profile ~v.

Such stabilization of the cloud by the Coriolis force is reminiscent of the persistence of vortex

aggregates in azimuthally-symmetric condensates (56).
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Figure S3: Preparation of an equilibrium, rotating condensate by geometric squeezing.
Turning off the saddle potential halts geometric squeezing, and freezes the outward flow of
atoms. The cloud continues to rotate at ⌦ = ! and therefore experiences a synthetic magnetic
field. Even though it feels no scalar potential, the cloud maintains its shape thanks to the
imprinted flow profile in the rotating frame (see text), realizing an equilibrium starting point
from which to investigate quantum Hall physics. (A-B) The stable evolution of a cloud with
µ/(2~!) ⇡ 9, and a lower density cloud with µ/(2~!) ⇡ 3. The time interval between images
is 1 ms, with the first image being taken immediately after turning off the saddle potential. (C)
The evolution of a cloud supporting quantum vortices, obtained by geometric squeezing of a
condensate containing a vortex lattice. The images show the cloud 0 ms, 2 ms, 5 ms, 7 ms,
10 ms, and 20 ms after turning off the saddle.

Derivation of the Foucault Hamiltonian

The Hamiltonian of a two-dimensional harmonic oscillator viewed in a frame rotating about the

z-axis is

H =
p2

x + p2
y

2m
+

1

2
m!2(x2 + y2)� ⌦Lz, (S2)

where ! is the natural frequency of the pendulum, m is the particle’s mass, px,y are canonical

momenta along x and y, Lz = xpy�ypx is the axial angular momentum, and ⌦ is the rotational

angular frequency of the reference frame. Although we are describing the quantum problem,

we omit hats over all operators for brevity.
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The equivalence of Eq. (S2) to the Hamiltonian of a charged particle in a magnetic field is

easily seen by completing the square for momentum variables. For the case ⌦ = !, where the

centrifugal force cancels the trapping force, we obtain

H =
(px + m⌦y)2 + (py �m⌦x)2

2m
. (S3)

Rotation of the reference frame therefore induces an effective vector potential q ~A = m~⌦ ⇥ ~r,

corresponding to a uniform magnetic field qB = q~r ⇥ ~A = 2m⌦. Here q is the particle’s

charge in the equivalent magnetic problem. In that case, particles perform cyclotron motion

at the cyclotron frequency qB/m = 2! and with a typical extent set by the magnetic length

`B =
p
~/(qB) (57).

The Hamiltonian of the rotating pendulum given in Eq. (S2) is conveniently diagonalized

by introducing ladder operators corresponding to the counter-rotating ‘cyclotron’ mode, and the

co-rotating ‘guiding center’ mode,

a =
ax + iayp

2
, b =

ax � iayp
2

(S4)

where ax =
p

m!
2~ (x + i px

m!
) and ay =

p
m!
2~ (y + i py

m!
) are ladder operators for the individual

x- and y-oscillators respectively. One finds

H = ~(! + ⌦)a†a + ~(! � ⌦)b†b + ~!, (S5)

which describes two decoupled oscillators with natural frequencies ! ± ⌦. In terms of the

cyclotron coordinates (⇠, ⌘) and the guiding center coordinates (X, Y ) (57),

a =

r
m!

~
(⇠ + i⌘) , b =

r
m!

~
(X � iY ) , (S6)

where (⇠, ⌘) and (X, Y ) are admixtures of the position and momentum variables of the pendu-

lum bob,

⇠ =
⇣x

2
� py

2m!

⌘
, ⌘ =

⇣y

2
+

px

2m!

⌘
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X =
⇣x

2
+

py

2m!

⌘
, Y =

⇣y

2
� px

2m!

⌘
. (S7)

A particle’s absolute position (x, y) = (⇠ + X, ⌘ + Y ) is given by the sum of a fast, counter-

rotating motion in (⇠, ⌘)-space, and a slow, co-rotating motion in (X, Y )-space (see Fig. 1A of

the main paper). Since these coordinate pairs each span the phase space of a one-dimensional

harmonic oscillator, they do not commute, and

[⇠, ⌘] = �[X, Y ] = i`2B, (S8)

where `B =
p
~/(2m!) is the rotational analogue of the magnetic length. In terms of these

variables, the pendulum Hamiltonian takes the form

H = m!(! + ⌦)(⇠2 + ⌘2) + m!(! � ⌦)(X2 + Y 2), (S9)

which reproduces Eq. (1) of the main paper.

Derivation of the squeezing Hamiltonian

Viewed in a rotating reference frame, the Hamiltonian of an anisotropic harmonic oscillator

with trapping frequencies !
p

1 ± " along the x- and y-directions respectively is

H" =
p2

x + p2
y

2m
+

1

2
m!2(x2 + y2) +

1

2
m"!2(x2 � y2)� ⌦Lz, (S10)

where all quantities are defined as in the previous section. The Hamiltonian is quadratic, and

can be decoupled into its normal modes by a gauge transformation, under which wavefunctions

transform as  0 = G , where G = exp{�ixy(m!/~)} and  = "!/(2⌦). The transformed

Hamiltonian is

H 0
" = GH"G

† =
p2

x + p2
y

2m
+

1

2
m!2(1+2)(x2 + y2)�⌦(xpy� ypx)+!(xpy + ypx). (S11)

We now rescale spatial and momentum variables according to

x̃ = (1 + 2)1/4 x, p̃x = (1 + 2)�1/4 px
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ỹ = (1 + 2)1/4 y, p̃y = (1 + 2)�1/4 py (S12)

which yields

H 0
" =
p

1 + 2


p̃2

x + p̃2
y

2m
+

1

2
m!2(x̃2 + ỹ2)

�
� ⌦(x̃p̃y � ỹp̃x) + !(x̃p̃y + ỹp̃x). (S13)

The first two terms are simply the Hamiltonian of a rotating isotropic oscillator (see Eq. (S2)).

Analogously to the previous section, we introduce scaled ladder operators,

ã =
ãx + iãyp

2
, b̃ =

ãx � iãyp
2

(S14)

in terms of which the first term of Eq. (S13) yields ~!
p

1 + 2 (ã†ã + b̃†b̃ + 1), the second term

~⌦ (ã†ã� b̃†b̃) and the third term ~! (ã†ã† + ãã + b̃†b̃† + b̃b̃)/2. We finally obtain

H 0
" = ~

h
�+(ã†ã + 1/2)� !

2
(ã†ã† + ãã)

i

+~
h
��(b̃†b̃ + 1/2) +

!

2
(b̃†b̃† + b̃b̃)

i
. (S15)

The Hamiltonian therefore separates into two decoupled oscillators, each including a squeezing

interaction, with natural frequencies �± = !
p

1 + 2 ± ⌦ and squeezing rate ⇣ = !.

In our case, ⌦ = ! and so ⇣ = "!/2 and  = 0.06, corresponding to an anisotropy-induced

shift in the normal mode frequencies by ⇠ 10�3 !. To an excellent approximation, because

! ⌧ �+ we can neglect squeezing of the cyclotron motion and set �+ ! 2!. On the other

hand, because ! � �� the guiding center motion is completely squeezed, and we set �� ! 0.

We also neglect the small (⇠ 0.1%) rescaling of spatial and momentum variables. This yields

the squeezing Hamiltonian

Hs ⇡ 2~!(a†a + 1/2) +
~⇣
2

(b†b† + bb), (S16)

which recovers Eq. (3) of the main paper.
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Squeezing as effecting a gauge transformation

The rotational origin of the gauge field in Eq. (S3) gives rise to a Hamiltonian expressed in

the symmetric gauge. However, one can equally well express the rotating gas Hamiltonian

in the Landau gauge. This gauge transformation is accomplished by defining Landau gauge

wavefunctions  L, which are related to their symmetric gauge counterparts  s by  L = U s

where U = eim⌦xy/~, and whose time evolution is governed by the transformed Hamiltonian

UHU †. In the case ⌦ = !, the symmetric gauge Hamiltonian of Eq. (S3) transforms to

H =
p2

x

2m
+

1

2
m(2!)2(x� ky`

2
B)2, (S17)

where we have assumed wavefunctions of the form exp(ikyy) L(x) due to the translational

invariance of Eq. (S17).

This Hamiltonian corresponds to a flat dispersion associated with momentum along the y-

direction, and an effective harmonic oscillator along x. Physically, the effective trapping arises

from the kinetic energy cost imposed by irrotationality of the condensate in the lab frame,

which implies a flow profile in the rotating frame ~v = (0,�2!x) (30). Within the Landau

gauge, eigenstates are translationally-invariant along y, and in the LLL are Gaussian along x

with the density showing a e�1/2-radius of `B/
p

2.

Geometric squeezing smoothly evolves the wavefunction from one that is most easily de-

scribed in the symmetric gauge, to one that is best described in the Landau gauge. As a simple

illustration, we calculate the evolution of the non-interacting ground state of the 2D harmonic

oscillator under geometric squeezing. We will see how this state coherently evolves into the

ground state in the Landau gauge, acquiring a width given by the cyclotron zero-point motion.

The ground state starts out in |0, 0i, where |m, ni denotes a state of m quanta of cyclotron

oscillation and n quanta of guiding center motion. We treat the case, relevant here, of critical

rotation ⌦ = !. Standard tools of quantum optics (58) allow us to write the time-evolved state
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as

| (t)i = exp

✓
�i
⇣t

2

�
b†b† + bb

�◆
|0, 0i =

1p
cosh(⇣t)

exp

✓
� i

2
tanh(⇣t) b†b†

◆
|0, 0i .

The wavefunction at position (x, y) is hx, y| (t)i. Noting that b† = z�a, with z = x+iy written

in units of the oscillator length
p
~/m! =

p
2 lB, [z, a] = 0, and hx, y|0, 0i = 1p

⇡
exp(�1

2
(x2+

y2)), one finds

hx, y| (t)i =
1p

⇡ cosh(⇣t)
exp

✓
� i

2
tanh(⇣t)z2

◆
exp

✓
�1

2
|z|2
◆

, (S18)

from which follows for the density n(x, y) = |hx, y| (t)i|2

n(x, y) =
1

⇡ cosh ⇣t
exp

✓
�1

2
(1� tanh(⇣t)) (x + y)2 +

1

2
(1 + tanh(⇣t)) (x� y)2

◆
.

(S19)

Figure S4: Geometric squeezing from a symmetric to Landau gauge ground state. The
density plots show the time evolution of the condensate density n(x, y) according to Eq. (S19).
The cloud is coherently transformed from the circular ground state wavefunction of the sym-
metric gauge, to the elongated Landau gauge ground state.

This describes geometric squeezing along the diagonal x = y, and the evolution of n(x, y)

is illustrated in Fig. S4. The final state for ⇣t� 1 evolves towards

| (⇣t� 1)i / exp

✓
�1

2
(x� y)2

◆
exp

✓
�1

2
i(x2 � y2)

◆
(S20)

which is the ground state Landau gauge wavefunction oriented along the diagonal y = x, of

density n(x, y) / exp(�(x�y)2), featuring a e�1/2-radius along the narrow axis of lB/
p

2. The
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phase profile exp(�1
2
i(x2�y2)) = exp(�im!uv/~), with u = (x+y)/

p
2 and v = (x�y)/

p
2,

is precisely that of a Landau gauge strip when expressed in the symmetric gauge (in which we

solved the problem) for ⌦ = !.

Deviations from ideal behavior

The motion of a particle in a rotating frame deviates from the ideal picture of circular cyclotron

orbits drifting along isopotentials in two ways (59). First, any applied force not only leads to a

transverse drift in (X, Y )-space, but also a static colinear displacement in (⇠, ⌘)-space. Second,

curvature of an applied scalar potential mixes the cyclotron and guiding center modes, resulting

in sheared cyclotron orbits.

In our case, atoms are driven outward along the x = y diagonal of the saddle potential by the

azimuthal force F (r) = m"!2r. Cyclotron orbits occur at a frequency 2! giving an effective

spring constant k = 4m!2, which implies a spatial displacement in the azimuthal direction of

F/k = "r/4. This causes the outward flow of atoms to deviate from the x = y diagonal by an

angle of "/4 ⇠ 2�.

The shearing of cyclotron orbits follows from Eq. (S15). Rewriting the cyclotron ladder op-

erator in terms of spatial cyclotron variables, a =
p

m!/~ (⇠ + i⌘), yields a cyclotron Hamil-

tonian 2m!2[⇠2(1 � /2) + ⌘2(1 + /2)]. Atoms therefore perform elliptical trajectories in

cyclotron phase-space, of ellipticity /2 = "/4 = 0.03, giving a ratio of major to minor orbit

widths of 1.03.

Relation of the density distribution to cyclotron and guiding center Wigner
functions

In this section, we show that if the particle’s wavefunction is separable in guiding center and

cyclotron coordinates, then the imaged density distribution is given by the convolution of the

guiding center and cyclotron Wigner distributions. In the following we set ~ = 1 and 2m! = 1.
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For a one-dimensional particle described by state vector | i and with position and momen-

tum variables (x, p), the Wigner distribution is defined by

W(x, p) =
1

⇡

Z
du e2ipu  (x� u) ⇤(x + u), (S21)

and is closely analogous to the phase space distribution of classical physics (48). Whereas

[x, p] = i, the cyclotron and guiding center coordinates instead have commutators [⇠, ⌘] = i and

[X, Y ] = �i (see Eq. (S8)), implying corresponding Wigner functions

Wc(⇠, ⌘) =
1

⇡

Z
du e2i⌘u  c(⇠ � u) ⇤

c (⇠ + u),

Wg(X, Y ) =
1

⇡

Z
du e�2iY u  g(X � u) ⇤

g(X + u). (S22)

where  c(⇠) and  g(X) are the cyclotron and guiding center wavefunctions.

The imaged density is proportional to the particle state vector | i projected onto a state of

definite x and y,

n(x, y) = |hx, y| i|2

=

����
Z

dpy

2⇡
hx, y|x, pyi  (x, py)

����
2

=

����
Z

dpy

2⇡
eipyy  

⇣
X =

x

2
+ py, ⇠ =

x

2
� py

⌘����
2

, (S23)

where we have inserted the resolution of the identity I =
R dx dpy

2⇡
|x, pyi hx, py|, and used

Eq. (S7) to relate absolute spatial and momentum coordinates to cyclotron and guiding cen-

ter variables.

We now make the assumption of a separable wavefunction, such that | i = | gi | ci, where

| gi and | ci are the guiding center and cyclotron state vectors respectively. We find

n(x, y) =
1

4⇡2

Z Z
du dv ei(u�v)y  g

⇣x

2
+ u
⌘
 ⇤

g

⇣x

2
+ v
⌘
 c

⇣x

2
� u
⌘
 ⇤

c

⇣x

2
� v
⌘

.

(S24)
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Making the coordinate rotation u = ↵ + �, v = ↵� � yields

n(x, y) =
1

2⇡2

Z Z
d↵ d� e2i�y  g

⇣x

2
+ ↵ + �

⌘
 ⇤

g

⇣x

2
+ ↵� �

⌘
 c

⇣x

2
� ↵� �

⌘
 ⇤

c

⇣x

2
� ↵ + �

⌘
.

(S25)

We now employ the convolution theorem
R

dk
2⇡

eikxf(k)g(k) = [
R

dk
2⇡

eikxf(k)] ⇤ [
R

dk
2⇡

eikxg(k)],

where the convolution is defined by f(x) ⇤ g(x) =
R

du f(x
2

+ u) g(x
2
� u), yielding

n(x, y) =

Z
d↵
2⇡


1

⇡

Z
d� e2i�y  g

⇣x

2
+ ↵ + �

⌘
 ⇤

g

⇣x

2
+ ↵� �

⌘�
⇤y


1

⇡

Z
d� e2i�y  c

⇣x

2
� ↵� �

⌘
 ⇤

c

⇣x

2
� ↵ + �

⌘�

=

Z
d↵
2⇡

Wg(
x

2
+ ↵, y) ⇤y Wc(

x

2
� ↵, y) (S26)

= Wg(x, y) ⇤x,y Wc(x, y), (S27)

where ⇤i denotes convolution over the i-direction.

In the case that the cloud occupies the lowest Landau level, the cyclotron wavefunction

corresponds to the ground state of a harmonic oscillator with coordinates (⇠, ⌘) and natural

frequency 2!, and h⇠| ci ⇠ exp(�⇠2/(2`2B). Evaluating the Wigner function according to

Eq. (S22) yields Wc(⇠, ⌘) ⇠ exp(�(⇠2 + ⌘2)/`2B). The experimentally observed density is

therefore the convolution of the guiding center Wigner function with a Gaussian, directly visu-

alizing the Husimi-Q representation of the guiding center wavefunction.
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Crystallization of bosonic quantum Hall 
states in a rotating quantum gas

Biswaroop Mukherjee1, Airlia Shaffer1, Parth B. Patel1, Zhenjie Yan1, Cedric C. Wilson1, 
Valentin Crépel1, Richard J. Fletcher1 & Martin Zwierlein1 ✉

The dominance of interactions over kinetic energy lies at the heart of strongly 
correlated quantum matter, from fractional quantum Hall liquids1, to atoms in optical 
lattices2 and twisted bilayer graphene3. Crystalline phases often compete with 
correlated quantum liquids, and transitions between them occur when the energy cost 
of forming a density wave approaches zero. A prime example occurs for electrons in 
high-strength magnetic fields, where the instability of quantum Hall liquids towards a 
Wigner crystal4–9 is heralded by a roton-like softening of density modulations at the 
magnetic length7,10–12. Remarkably, interacting bosons in a gauge field are also expected 
to form analogous liquid and crystalline states13–21. However, combining interactions 
with strong synthetic magnetic fields has been a challenge for experiments on bosonic 
quantum gases18,21. Here we study the purely interaction-driven dynamics of a Landau 
gauge Bose–Einstein condensate22 in and near the lowest Landau level. We observe a 
spontaneous crystallization driven by condensation of magneto-rotons7,10, excitations 
visible as density modulations at the magnetic length. Increasing the cloud density 
smoothly connects this behaviour to a quantum version of the Kelvin–Helmholtz 
hydrodynamic instability, driven by the sheared internal flow profile of the rapidly 
rotating condensate. At long times the condensate self-organizes into a persistent 
array of droplets separated by vortex streets, which are stabilized by a balance of 
interactions and effective magnetic forces.

When electrons are placed in a magnetic field, their kinetic energy is 
quenched. The single particle states form discrete, highly degenerate  
Landau levels, and correspond to wavepackets localized to the magnetic 
length ℓB. In the presence of interactions between electrons, owing to 
the absence of kinetic energy, one naturally expects the formation of a 
Wigner crystal of periodicity ~ ℓB (refs. 4–6,8,9,23). Famously, however, the 
interplay of the macroscopic degeneracy and interactions instead typi-
cally favours the strongly correlated fractional quantum Hall liquids, 
which host fractional charges, anyonic exchange statistics and topo-
logically protected transport properties1. The tendency to crystallize 
is still apparent in a pronounced minimum in the collective excitation 
spectrum at wavevectors k~1/ℓB (refs. 7,10–12). In analogy with the roton 
minimum in 4He, also considered a precursor of solidification24, these 
excitations are called magneto-rotons7,11,12.

The fate of interacting bosons in the presence of a gauge field is of 
fundamental importance in the classification of topological states 
of matter19. Quantum Hall states13,16,20, exotic vortex lattices14 and 
vortex-free states under extreme fields17 were predicted. Quantum 
phase transitions between such states were found to be signalled by 
the softening of a roton-like collective mode15,25.

Bosonic quantum gases in artificial magnetic fields18,21 have been 
generated via spin–orbit coupling21,26,27, phase imprinting in lattices28–32 
and by rotation of the trapped gas16,22,33,34. The latter approachuses the 
analogy between the Lorentz force on a charged particle in a magnetic 
field, and the Coriolis force on a massive particle in a frame rotating at 

frequency Ω, giving ωc = 2Ω and ℓ ħ mω= /( )B c  as the rotational ana-
logue of the cyclotron frequency and the magnetic length, respectively.

Signatures of physics near the lowest Landau level (LLL) have 
been observed in rotating Bose gases33,34. In recent work at MIT, 
condensates have been prepared directly in the lowest Landau 
gauge wavefunction using geometric squeezing22. In this mean-field 
quantum Hall regime13, all bosons occupy a single wavefunction, 
whose subsequent dynamics subject to a gauge field can be studied, 
offering a microscopic insight into the individual building blocks of 
quantum Hall systems. An advantage of rotation is that the interac-
tions between atoms are decoupled from the induced gauge poten-
tial, in contrast to other methods for which the effective magnetic 
field appears within a dressed-atom picture, leading to additional 
unwanted interaction terms35.

Here we directly observe the evolution of an interacting Bose–Einstein  
condensate occupying a single Landau gauge wavefunction in the LLL. 
We find that the Landau gauge condensate is unstable under the influ-
ence of interactions, exhibiting spontaneous growth of a snaking mode 
leading to a persistent density wave order at the magnetic length ℓB as 
illustrated in Fig. 1. At the heart of this crystallization is the coupling 
between the relative momentum and spatial overlap of two particles 
in a gauge field. This lowers the interaction energy cost of populating 
higher-momentum states, and leads to the dynamical instability of the 
lowest (Goldstone) collective excitation branch15 (see Supplementary 
Information). The ensuing proliferation of excitations at momenta near 
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ħ/ℓB can be viewed as condensation of magneto-rotons, in analogy with 
the Wigner crystal instability of quantum Hall systems4–9.

Condensation at non-zero momentum has been predicted in super-
fluid helium above a critical velocity36–38. Roton-like excitations and 
instabilities in Bose–Einstein condensates have been induced via 
cavity-mediated interactions39,40, spin–orbit coupling41,42, shaken 
optical lattices43,44, driven interactions45 and dipolar interactions46–48. 
These instabilities are tightly connected to evidence for supersolidity, 
the simultaneous existence of spatial and superfluid order38,40,42,49–51. 
In our case, the instability of density-wave order arises purely from 
the interplay of contact interactions and a gauge field. No external 

drive is present, nor is there any residual scalar potential in the rotating 
frame. The absence of kinetic energy in the LLL directly implies that 
the crystallization rate is set solely by the interaction energy of the gas.

By increasing the condensate density such that many Landau levels 
become populated, we observe a crossover from LLL behaviour to a 
hydrodynamic instability driven by the sheared internal velocity profile. 
Analogous phenomena are ubiquitous throughout hydrodynamics, 
from the diocotron instability in charged plasmas52 and fragmentation 
of electron beams53, to the Kelvin–Helmholtz instability in atmospheric 
and astrophysical systems54,55. In the context of superfluids, for which 
the circulation is quantized, the Kelvin–Helmholtz instability has been 
detected in liquid helium56, and theoretically predicted at the bound-
ary between counterflowing condensates57. In our superfluid hydro-
dynamic setting, we directly observe streets of quantized vortices 
separating emergent droplets, revealing the quantum nature of the 
instability at the most microscopic level.

To analyse the instability, consider the condensate in the frame rotat-
ing at the frequency ω of the isotropic harmonic trap, where it experi-
ences a synthetic magnetic field but no scalar potential (see Fig. 1a, b), 
and thus evolves under the Hamiltonian

p A∫H r Ψ
q
m

g
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r  is the bosonic field operator, p̂ is the canonical momen-
tum, q and A are the charge and vector potential in the equivalent 
magnetic problem, and g is the two-dimensional mean-field coupling 
constant. Geometric squeezing prepares a translationally invariant 
condensate most conveniently described within the Landau gauge 
qA = (0, mωcx) (ref. 22) for which the Hamiltonian becomes
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Cyclotron motion of the atoms is reflected in an effective harmonic 
oscillator along the x-direction of frequency ωc = 2ω, the non-interacting 
energy states of which correspond to different Landau levels (see 
Fig. 1b). Each level is macroscopically degenerate since it costs no 
energy to translate the centres of cyclotron orbits. Initially, the 
y momentum of all atoms is zero, and their cyclotron motion is centred 
at x = 0 with a two-dimensional number density n2D(x). The condensate 
has uniform phase and thus features a sheared velocity profile  
v = −qA/m = (0, −ωcx) proportional to the vector potential (see Fig. 1c). 
We parameterize the crossover from LLL to hydrodynamic behaviour 
by the ratio gn

ħωc
, the condensate’s mean-field energy of ~ gn to the Lan-

dau level  spacing  ħωc, giving a measure for the number of occupied 
Landau levels22,33. Here n = n2D(0) is the peak density. In our experiment 

gn
ħωc

 varies from 0.6 to 7.3, corresponding to a central filling fraction ℓn B
2   

of 50 and higher, meaning the condensate lies within the mean-field 
quantum Hall regime13,16.

The dynamical instability illustrated in Fig. 1 can be understood in 
the low- and high-density limits as follows. When gn ≲ ħωc, the conden-
sate is restricted to the LLL and shows a Gaussian transverse density 
profile with a 1/e radius of ℓB (ref. 22; see Supplementary Information). 
A Bogoliubov analysis around this state generically results in a Ham-
iltonian of the form15

∑H A a a a a B a a a aˆ = ( ˆ ˆ + ˆ ˆ ) + ( ˆ ˆ + ˆ ˆ ), (3)
k

k k k k k k k k k kLLL
>0

†
−
†

−
†

−
†

−

where âk is the annihilation operator for a particle with momentum ħk 
along the y-direction. This Hamiltonian describes pairs of modes ±k 
with natural frequency Ak/ħ and coupled by a pair-creation operator 
of strength Bk, which corresponds to a two-mode squeezing interaction 
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Fig. 1 | Spontaneous crystallization of an interacting Bose–Einstein 
condensate in an artificial magnetic field. a, In the laboratory frame, the 
condensate freely rotates in a circularly symmetric harmonic trap at the 
trapping frequency ω. Occupied states in the energy spectrum are sketched  
(Lz, angular momentum). b, In the rotating frame, the condensate experiences 
an effective magnetic field B but no scalar potential. The energy spectrum is 
flattened into Landau levels (k, momentum along y). Only the k = 0 Landau 
gauge wavefunction is occupied. c, The irrotationality of the condensate in the 
laboratory frame imposes a sheared velocity profile in the rotating frame, 
which is dynamically unstable towards a periodic density modulation. Motion 
with momentum ħk along the y-direction is tied to sideways displacement of 
the wavefunction along x. The reduced overlap of |k| > 0 states with the  
k = 0 condensate lowers the interaction energy cost of collective excitations, 
leading to spontaneous population of ±k pairs whose interference with the 
condensate results in a density modulation. d, This dynamical instability is 
reflected in a (Goldstone) collective excitation branch, which is imaginary 
across a range of wavevectors, shown by a red line. The spectrum shown is 
calculated for a condensate in the LLL, for which the interaction energy gn 
provides the only relevant energy scale and the magnetic length ℓB = 1.6 μm sets 
the lengthscale. Here g is the mean-field coupling constant, and n = n2D(0) is the 
peak two-dimensional density. e, Absorption images of the evolution of the 
condensate density in the rotating frame, displaying a snake-like instability and 
the formation of droplet arrays. Here the cloud width is R = 2.34ℓB, and the 
frames are taken at 0, 5, 6.2, 8.5 and 10 cyclotron periods (2π/ωc = 5.6 ms).  
The magnification reveals vortex streets between adjacent droplets (grey 
crosses), indicating counterflow at their interface.
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in the language of quantum optics. In a non-rotating uniform conden-

sate, A gn= +k
ħ k

m2

2 2
 and Bk = gn (ref. 58), and hence pair creation is  

always weaker than the mode energy, leading to stable excitations. 
However, the effective magnetic field profoundly changes this picture. 
First, in the LLL there is no kinetic energy contribution to Ak. Second, 
as illustrated in Fig. 1c, the coupling between momentum and position 
means that states with k ≠ 0 have a reduced overlap with the condensate 
and a correspondingly lower interaction energy. One finds15 
A gn k= [2 exp(− /2) − 1]/ 2k B

2 2ℓ  and B gn k= exp(− )/ 2 ,k B
2 2ℓ  and the  

resulting dispersion ε A B= | | − | |k k k
2 2  is shown in Fig. 1d. The spectrum 

is imaginary for an entire range of wavevectors k > 0 beyond the zero-
energy Goldstone mode at k = 0, indicating dynamical instability of 
the Goldstone branch and correlated exponential growth of ±k pairs 
of these modes. Their interference with the k = 0 condensate results 
in a density modulation (see Fig. 1c). The fastest growth occurs at a 
wavevector ~1/ℓB giving a spatial modulation wavelength ~ 2π times the 
magnetic length. This mode eventually becomes macroscopically 
occupied, corresponding to condensation of magneto-rotons and 
yielding a density modulation contrast of order unity. Crucially, since 
interactions provide the only energy scale in the LLL, the instability 
growth rate is determined purely by the interaction energy gn.

In the high-density limit where gn ≫ ħωc, a hydrodynamic description 
that neglects quantum pressure is valid. In this regime, the condensate 
initially exhibits a Thomas–Fermi density profile n x R∝ 1 − /2D

2
TF
2   

where ℓR = =gn

mω

gn
mω BTF

2 2

cc
2

 (ref. 59; see Supplementary Information). 

The Coriolis force 2mv × Ω on each fluid element resulting from the 
shear flow v = (0, −ωcx) perfectly balances the local gradient of mean-
field energy, resulting in an inhomogeneous equilibrium density 
despite the absence of any scalar potential. Our hydrodynamic stability  
analysis about this equilibrium state reveals a dynamical snaking insta-
bility of the cloud (see Supplementary Information), in analogy with 
the Kelvin–Helmholtz instability of counterflow in fluid layers54,55, and 
the diocotron instability of charged plasmas and electron beams52,53. 
The absence of quantum pressure means that the Thomas–Fermi radius 
and cyclotron frequency provide the only lengthscale and rate. Within 
the hydrodynamic analysis the instability develops at a wavevector set 
by the condensate width, as in the LLL, but at a density-independent 
rate proportional to ωc, in striking qualitative contrast to the growth 
rate in the LLL.

From these arguments, for all condensate densities we anticipate 
an emergent density modulation with a lengthscale set by the width 
of the initial cloud. For a quantitative analysis, from our experimental 
images (see Fig. 1e) we obtain the static structure factor Sk ≡ |nk|2/N, 
where nk = ∫dy n1D(y)e−iky is the Fourier transform of the one-dimensional 
number density  n1D(y) and N = ∫dy n1D(y) (ref. 47). In Fig. 2a we show exam-
ples of Sk obtained once the density modulation has fully developed, 
which show a well defined peak at a wavevector kmax. We attribute the 
much smaller secondary peak at 2kmax to the contiguous traces of con-
densate linking adjacent droplets. In Fig. 2c we show kmax as a function 
of the condensate density, which is parameterized by the ratio R/ℓB 
where R is the full-width at half-maximum of the initial cloud divided 
by 2 log 2 . This normalization is chosen such that R/ℓB → 1 for vanish-
ing gn, and in the high-density limit ℓR gn ħω/ = /( log 2)B c . At all den-
sities, we indeed find an instability lengthscale of order the cloud width, 
kmax ~1/R. The star indicates the LLL prediction kmax = 0.98/ℓB and the 
dashed line shows the hydrodynamic result kmax = 0.95/R neglecting 
quantum pressure (see Supplementary Information). The solid line 
presents kmax that we obtain from a numerical solution of the Bogoli-
ubov equations (see Supplementary Information) showing excellent 
agreement with the data without any free parameters.

Although the cloud width sets the instability lengthscale in both the 
LLL and hydrodynamic regimes, the growth rate shows qualitatively  
different behaviour. In Fig. 3a, we show Sk as a function of time for several 

different condensate densities. In addition to the decrease in the instabil-
ity lengthscale at lower densities, we observe a concurrent reduction of 
the growth rate. At each wavevector we fit the time evolution of the struc-
ture factor with the theoretically expected function Sk(t) = Acosh(2Γt) 
(see Supplementary Information), and extract the instability growth 
rate Γ(k). This is reported in Fig. 3b, along with the imaginary component 
of the corresponding Bogoliubov spectrum, which shows good agree-
ment without any free parameters. We note that the experimental data 
also reveal some growth in Sk at higher wavevectors than the unstable 
region predicted by the linear Bogoliubov analysis. We attribute this 
to nonlinear effects, and have performed numerical simulations of the 
Gross–Pitaevskii equation, finding that these exhibit the same behaviour 
(see Supplementary Information).

We capture the typical crystallization rate corresponding to a particular  
condensate density by the growth rate of the dominant instability, 
Γ(kmax), and in Fig. 3c plot this as a function of R/ℓB. When R/ℓB ≫ 1 the rate 
is density-independent and consistent with our hydrodynamic result 
Γ = 0.14ωc, shown by the dashed line. However, for lower interaction 
energies the gas enters the LLL where gn provides the only energy scale. 
We observe a concurrent slowing down of the instability, and the data 
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Fig. 2 | Structure factor and lengthscale of the emergent crystal. a, The 
static structure factor, Sk, measured once the density modulation has reached 
steady state for condensates with initial widths R/ℓB = 2.58, 1.75, 1.59, 1.28 and 
1.22 (top to bottom). The prominent peak reflects the periodic modulation of 
the cloud density. b, Corresponding images of the steady-state crystal, 
illustrating the decrease in the modulation lengthscale with falling condensate 
density. c, Dependence of the dominant modulation wavevector, kmax, on the 
cloud width, R/ℓB. The LLL and hydrodynamic results are indicated by the star 
and dashed line, respectively (see text). The solid line shows the prediction of 
our Bogoliubov analysis (see Supplementary Information), which shows 
excellent agreement with our data with no free parameters.
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approach the LLL prediction Γ = 0.21gn/ħ indicated by a dotted line. 
At all densities, the data show good agreement with the rate obtained 
from our Bogoliubov analysis, reported as the solid line.

After its initial hyperbolic growth, Sk reaches a steady state, as shown 
in the inset of Fig. 3c. The emergent crystal is long-lived, with each drop-
let stabilized by a balance of the outward mean-field pressure and an 
inwards Coriolis force. This arises from the circulating flow within each 
droplet which is imposed by the gauge field, and is evident from vortices  
intersecting adjacent droplets (see Fig. 1e). The counterflow speed at 
the interface of two droplets of radius R is ~ωcR, giving a gradient of 
mωcR/ħ in the relative phase and a vortex spacing of ℓ R2π /B

2 . Adjacent 
droplets are therefore separated by ~(R/ℓB)2 vortices. In the limit  

of classical hydrodynamics this number is large and the quantization 
of circulation is irrelevant, whereas in the LLL adjacent droplets are 
separated by a single vortex15.

Although the dynamical instability drives the growth of a density 
modulation, the initial seeding of the unstable mode must arise from 
thermal or quantum fluctuations in the gas density at t = 0 (see Supple
mentary Information). Since the phase of these fluctuations is random, 
this results in spontaneous breaking of the initial translational sym-
metry of the condensate. In Fig. 4 we show the phase and visibility of 
the density modulation observed in different iterations of our experi-
ment. To account for small fluctuations in the overall cloud position, 
we fit the one-dimensional density profile with a sinusoidal function 
modulated by a Gaussian envelope, and obtain the modulation phase 
ϕ relative to the centre of mass of the cloud. At all densities we find 
that the phase is uncorrelated between different experimental reali-
zations, indicating spontaneous breaking of the initial translational  
symmetry.
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Fig. 3 | Instability growth dynamics. a, The temporal evolution of the static 
structure factor, Sk(t), for condensates with different initial widths, which 
reveals a density dependence of both the modulation lengthscale and the 
growth rate. b, The measured instability growth rate, Γ, as a function of 
wavevector. The solid line shows the rate obtained from our Bogoliubov 
analysis (see Supplementary Information) and captures the data well with no 
free parameters. c, The instability growth rate at the dominant unstable 
wavevector shown as a function of the condensate width. The growth rate is 
obtained by averaging points from the shaded regions in b. At high densities  
we find good agreement with the density-independent hydrodynamic rate 
Γ = 0.14ωc (dashed line). As the density falls, we observe a crossover to the  
LLL scaling Γ = 0.21gn/ħ (dotted line). Solid line, Bogoliubov analysis 
(see Supplementary Information). The inset shows Sk(t) at kmax for condensates 
in the hydrodynamic regime (dark red) and the LLL (light red), along with the 
corresponding fits used to extract the rate (see text).
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Fig. 4 | Spontaneous breaking of translational symmetry. a, Images of the 
emergent crystal in three experimental iterations, along with the integrated 
one-dimensional density profiles n1D( y). The vertical dashed line shows the 
position of the centre-of-mass of the cloud, relative to which the modulation 
phase is random. b, An image of the cloud averaged over 60 iterations, in which 
the density modulation is no longer visible. c, The phase, ϕ, and visibility of the 
density modulation measured for multiple iterations of the experiment, for 
two different initial condensate densities. The visibility appears largely 
independent of the phase chosen by the modulation. The phase is randomly 
distributed between 0 and 2π, indicating spontaneous breaking of the initial 
translational symmetry of the cloud.
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The emergent crystallization observed here offers a pristine example 

of collective physics arising purely from the interplay of interparticle 
interactions and a gauge field. The steady state breaks both the U(1) 
symmetry associated with the phase of the wavefunction and transla-
tional symmetry, and thus displays supersolid properties38. A natural 
immediate direction concerns the Goldstone mode associated with 
the spontaneous breaking of translational symmetry, corresponding 
to magneto-phonons in the droplet array9. This would be a remarkable 
instance of a propagating mode arising intrinsically from interactions, 
in the absence of any single-particle dynamics. Although the densi-
ties in our experiment correspond to tens of atoms per flux quantum, 
our protocol can be straightforwardly extended to prepare clouds of 
lower filling fractions, which are expected to host beyond-mean-field, 
strongly correlated bosonic quantum Hall states13–17,19,20,59.
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Methods

Preparation of Landau gauge condensates
We prepare condensates occupying a single Landau gauge wave-
function using the geometric squeezing protocol described in ref. 22.  
We begin with a condensate of 8.1(1) × 105 atoms of 23Na in an elliptical 
time-orbiting-potential (TOP) trap60, with an root-mean-square (r.m.s.) 
radial frequency ω = 2π × 88.6(1) Hz, ellipticity 0.125(4), and axial fre-
quency 2.8ω. We then rotate the ellipticity of the trap, ramping the rota-
tion frequency from zero to ω. In the rotating frame, atoms experience 
both a synthetic magnetic field and a scalar saddle potential. Isopotential 
flow on this saddle, in analogy to the E × B Hall drift of electromagnetism, 
leads to elongation and contraction of the condensate along orthogo-
nal directions and effecting unitary squeezing of the atomic density 
distribution22. We then turn off the saddle potential by setting the trap 
ellipticity to zero, which halts the outward flow of atoms. This results in 
an equilibrium, quasi-translationally invariant condensate freely rotating 
at ω, which we allow to evolve for a variable time t. Finally, we obtain an 
absorption image of the in situ density distribution.

Imaging setup
Our imaging resolution is sufficient to observe vortices in situ with a 
contrast of ~60% (ref. 22). In the Thomas–Fermi regime, these have a 
characteristic size set by the healing length, which is ~300 nm in our 
system. This is substantially smaller than the quantum mechanical 
ground state size of cyclotron orbits, set by the rotational analogue of 
the magnetic length, ℓ ħ mω= /(2 ) = 1.6 μmB .

Coupling constant
Given interaction energies close to the LLL, the axial motion at fre-
quency 2.8ω is predominantly in its ground state. The coupling constant 
is then ∫g z ϕ z= d | ( )|ħ a

m
4π 4

2
, where a is the three-dimensional s-wave 

scattering length, m denotes the atomic mass of 23Na and ϕ(z) is the 
axial wavefunction with normalization ∫dz|ϕ(z)|2 = 1.

Stability analysis
To theoretically investigate the crystallization process, we perform 
a stability analysis of the initial Landau gauge condensate. In the 
Thomas–Fermi limit, we may neglect the quantum pressure term in 
the superfluid hydrodynamic equations. We linearize the equations 
about the original unperturbed condensate61, and find an exact analyti-
cal solution for the density and the velocity perturbations in terms of 
the Heun function62. The initial counterflow leads to an instability of 
Kelvin–Helmholtz type, and the analysis displays a dynamical instabil-
ity with a most critical wavevector at kmax = 1.12/RTF = 0.95/R and a rate 
Γ = 0.14ωc. To treat the entire region from the LLL to the Thomas–Fermi 
regime, we perform a numerical Bogoliubov analysis. In the LLL limit, 
the crystallization growth rate is given by Γ = 0.21gn/ħ, and the most 
critical wavevector is kmax → 0.981/ℓB. The Bogoliubov analysis shows 
that the growth rate of the dominant wavevector evolves smoothly 
from being interaction-dominated (Γ ≈ 0.21gn/ħ) in the LLL regime, 
to being set by the cyclotron frequency (Γ ≈ ωc) in the Thomas–Fermi 
regime. Further details are provided in the Supplementary Information.

Gross–Pitaevskii simulation
To provide insight into the crystallization dynamics beyond what can 
be captured in the linear stability analysis, we perform a numerical 
simulation of our experiment based upon the Gross–Pitaevskii (GP) 
equation. Within a single-mode approximation, the condensate wave-
function ψ(r, t) evolves in the rotating frame as
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Here g = 8π
ħ a
mlz

2
s  is the two-dimensional mean-field coupling  

constant, as = 3.3 nm is the scattering length, l =z
ħ

mω z
 is the harmonic 

oscillator length of the axial trap, ωz = 2.8ω is the trap frequency in the 
zdirection, ω = 2π × 88.6 Hz is the r.m.s. radial trap frequency, Ω t z= ( )ˆΩ  
is the angular velocity, L is the angular momentum operator, and V is a 
complex scalar potential. The real part V mω ε x ε yRe( ) = [(1 + ) + (1 − ) ]1

2
2 2 2  

is the radial trapping potential with ellipticity ε, and the imaginary part 
V r R σIm( ) ∝ 1 + erf[( − )/ )]∞  serves as an absorbing circular boundary.  

The absorbing radius R∞ is chosen to be much larger than the transverse 
size of the condensate, and we use a wall thickness σ = R∞/10. We imple-
ment the evolution of equation (4) on a square grid using the time-splitting 
spectral method63 and accelerate the simulation by performing the bulk 
of the computation on a graphics processing unit (GPU).

The simulated experimental sequence is identical to the experiment. 
We first perform geometric squeezing of an initially circular conden-
sate22, before setting the trap ellipticity ε → 0 after which the condensate 
evolves freely for a time t in the rotating frame.

We find that without the explicit addition of noise, the condensate 
does not exhibit any instability except near the boundaries, owing 
to residual edge effects not mitigated by the absorbing potential  
(see Extended Data Fig. 1a). On the other hand, seeding of the dynamical 
instability by the addition of Gaussian phase noise at time t = 0 results 
in a very similar simulated evolution (Extended Data Fig. 1b) compared 
to the experiment (Extended Data Fig. 1c).

We perform an identical analysis procedure as in the experiment  
(see main text) on the simulated density profiles in order to 
obtain the structure factor Sk(t), shown in Extended Data Fig. 1d, e,  
and the instability growth rate shown in Extended Data Fig.  1f. 
The red points show the experimental instability growth rate as 
a function of wavevector k, and the black line shows the predic-
tion of our Bogoliubov analysis. For comparison, the blue line 
shows the rate extracted from the simulation, which captures the 
observed growth at higher wavevectors than the unstable range  
predicted by the Bogoliubov approach. This suggests that such growth 
can indeed be attributed to nonlinear effects, which are not captured 
by the perturbative Bogoliubov approach. In addition to oscillations in 
Sk at the cyclotron frequency ωc, a slower modulation is also observed. 
We attribute this oscillation to rotation of the individual droplets in 
the crystal.

In both experiment and simulation the emergent crystal is long-lived, 
persisting for ωct/(2π) > 20. In the experiment the lifetime is only limited 
by the weak ∝r4 anharmonicities in the trapping potential, leading to a 
slow S-shaped distortion of the linear crystal, similar to the Kerr effect 
on nonclassical states in quantum optics.

Vortex detection and phase profile
In the rotating frame, each droplet exhibits an irrotational flow profile, 
with vortices surrounding the droplets. These vortices are directly vis-
ible in the experimental density image, and can be used to reconstruct 
the phase profile of the crystal in the rotating frame (see Extended Data 
Fig. 2a, c, e). The phase is determined by the locations of the vortices, 
which are assumed to each have a single unit of circulation 2πħ/m. 
Most vortices are outside of the bulk of the condensate, making their 
detection challenging. Nevertheless, a numerical solution of the GP 
equation shows similarly located vortices (Extended Data Fig. 2d), as 
well as a similar irrotational flow profile in the rotating frame (Extended 
Data Fig. 2f).

Data availability
All data files are available from the corresponding author upon request. 
Accompanying data, including those for figures, are available from 
Zenodo (https://doi.org/10.5281/zenodo.5533142).
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e

f

Simulation: No noise seed

Simulation: With noise seed

Experiment

Extended Data Fig. 1 | Numerical GP simulation of the condensate evolution 
in the rotating frame. a–c, Time evolution of the condensate density without 
the addition of noise (top), with added phase noise (middle), and in the 
experiment (bottom). The frames correspond to times ωct/(2π) = 0, 4 and 6.  
d–e, Evolution of the structure factor Sk(t) extracted from the simulation  
(d) and the experiment (e) which show good agreement. f, The extracted 

instability growth rate as a function of wavevector k. The experimental 
measurements are shown by red points, and the Bogoliubov prediction by the 
black line. The blue line shows the result of the GP simulation. Here, the blue 
shading and the red error bars indicate 1σ standard error. This model captures 
the experimentally measured growth at wavevectors above the instability 
region provided by the linear Bogoliubov description.
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Extended Data Fig. 2 | Phase profile of the crystal. a, b, The density profiles of 
the crystals in the experiment (a) and GP simulation (b) appear to contain 
vortices, which are marked in c and d. e, The phase of the macroscopic 
wavefunction can be inferred from the locations of the vortices in the 

experimental image. Note that additional contributions from undetected 
vortices may exist. f, The simulated phase profile from a GP simulation shows a 
similar structure of irrotational flow within each segment of the crystal. In both 
e and f, the phase shown is in the rotating frame.
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BOGOLIUBOV STABILITY ANALYSIS OF LANDAU GAUGE CONDENSATES

A condensate prepared to have uniform phase in the Landau gauge - a “Landau gauge condensate” - is energetically unstable:
an infinitely extended Bose gas has lower energy. However, in the absence of dissipation - as in the experiment - this does not
itself lead to an instability. The question is whether the system is dynamically unstable, which would cause exponential growth of
excitations and an isoenergetic transition into a new state. To search for dynamically unstable modes and to obtain their growth
rate and spatial structure we perform a stability analysis of Landau gauge condensates via the Bogoliubov approach [1–3]. We
expect the initial unmodulated condensate to be well-described within a single-mode framework, and expand the Hamiltonian
in the Landau gauge, Eq. 2 of the main text, to second order in small fluctuations δψ̂ of the bosonic field Ψ̂ = ψ0 + δψ̂ about
the initial condensate wavefunction ψ0 [1–3]. To ensure number conservation one employs the grand-canonical Hamiltonian
K̂ = Ĥ − µN̂ with chemical potential µ:

K̂ = Ĥ − µN̂ ≈ const.+

∫
d2r δψ̂†

(
ĥ− µ0 + 2g |ψ0|2

)
δψ̂ +

1

2
g

∫
d2r

(
ψ∗0

2δψ̂ δψ̂ + δψ̂†δψ̂†ψ2
0

)
. (1)

with the single-particle Hamiltonian in the Landau gauge ĥ =
p̂2x
2m + 1

2mω
2
c

(
x̂− p̂yl

2
B

~

)2

and the constant term a function of

ψ0. Terms first order in δψ̂ vanish if ψ0 obeys the stationary Gross-Pitaevskii (GP) equation ĥψ0 + g |ψ0|2 ψ0 = µ0ψ0. Since
the initial wavefunction ψ0 = ψ0(x) is translationally invariant along y, this reads

(
− ~2

2m

d2

dx2
+

1

2
mω2

cx
2 + g |ψ0(x)|2

)
ψ0(x) = µ0ψ0(x), (2)

which is formally equivalent to the GP equation of a Bose-Einstein condensate in a one-dimensional harmonic oscillator (h.o.)
potential of frequency ωc. We solve Eq. 2 numerically via imaginary time evolution, choosing ψ0(x) to be real and normal-
ized such that

∫
dx |ψ0(x)|2 = n1D, where n1D is the initial one-dimensional number density. A dimensionless quantity

measuring the interaction energy, relative to the cyclotron level spacing ~ωc, is g̃ ≡ gn1D

lB~ωc
. Near the lowest Landau level,

the interaction is a small perturbation, resulting in the gaussian density ψ2
0(x) = n1D√

πlB
e−x

2/l2B and µ0 ≈ ~ωc

2

(
1 +

√
2
π g̃
)

,

close to the ground-state cyclotron energy. In the Thomas-Fermi regime, where the term p̂2
x/2m can be neglected, one obtains

gψ2
0(x) = µ0 − 1

2mω
2
cx

2 with µ0 = 1
2~ωc

(
3
2 g̃
)2/3

.

Translation invariance of ψ0(x) and ĥ along y allows expanding δψ̂ =
∑
k

1√
L
eikyφ̂k(x) into bosonic fields φ̂k(x) of well-

defined y-momentum ~k, with L the spatial extent of the system in the y-direction. The quadratic part of Eq. 1 then becomes,
using matrix notation,

K̂2 =
1

2

∑

k

∫
dx
(
φ̂†k φ̂−k

)( ĥk − µ0 + 2gψ2
0 gψ2

0

gψ2
0 ĥ−k − µ0 + 2gψ2

0

)(
φ̂k
φ̂†−k

)

=
1

2

∑

k

〈Φ̂k|Ĥk|Φ̂k〉 (3)

with ĥk =
p̂2x
2m + 1

2mω
2
c

(
x− kl2B

)2
, Φ̂k =

(
φ̂k φ̂

†
−k

)T

, Ĥk(x) the 2 × 2 matrix operator of the first line in Eq. 3, and

〈f |g〉 =
∫

dx f†(x) · g(x) for vectors f , g. Momentum conservation along y ensures that allowed scattering processes result
in either the simultaneous creation or simultaneous annihilation of a pair of states with momenta k and −k. Consequently the
Hamiltonian only mixes a particle with y-momentum k with a hole of y-momentum −k, as is explicit in the 2× 2 particle/hole
matrix notation. The Bogoliubov Hamiltonian Ĥk(x) in Eq. 3 is Hermitian, has only real eigenvalues (bounded from below



2

by −µ0) and thus K̂2 has only real expectation values in any state. However, the time evolution of the bosonic field operators
φ̂k(x, t) evolving under the grand-canonical Hamiltonian K̂ is given by i~ ∂

∂t φ̂k =
[
φ̂k, K̂

]
, and with the bosonic commutation

relations
[
φ̂k(x), φ̂†k′(x

′)
]

= δk,k′δ(x− x′) we have

i~
∂

∂t
Φ̂k =

(
ĥk − µ0 + 2gψ2

0 gψ2
0

−gψ2
0 −(ĥ−k − µ0 + 2gψ2

0)

)
Φ̂k = ηĤkΦ̂k (4)

with η =

(
1 0
0 −1

)
acting in particle-hole space [4, 5]. The evolution of the field operators is thus governed by an operator

ηĤk that is in general non-Hermitian and can thus feature complex eigenvalues, leading to exponential growth of fluctuations -
the system features dynamical instabilities [6].

Symmetries, eigenvectors and eigenvalues of ηĤk

For each k, the Hamiltonian matrix Ĥk is real, Ĥ∗k = Ĥk, and symmetric under simultaneous reflection of space R̂ (i.e.

R̂xR̂ = −x) and exchange of particles and holes, i.e. Ĥk = γR̂ĤkR̂γ with γ =

(
0 1
1 0

)
exchanging particles and holes. It

follows that given an eigenvector Vk,n of ηĤk with eigenvalue εk,n, the vector V∗k,n is also an eigenvector with eigenvalue ε∗k,n,
and γR̂Vk,n and γR̂V∗k,n are eigenvectors with eigenvalues −εk,n and −ε∗k,n, respectively. The latter follows from γη = −ηγ.
We also note that Ĥ−k = R̂ĤkR̂ implying that R̂Vk,n ≡ V−k,n is eigenvector of ηĤ−k with eigenvalue ε−k,n = εk,n.
In general, the four values εk,n, ε∗k,n, −εk,n and −ε∗k,n are all different, implying an oscillatory evolution of exponentially
increasing and decreasing amplitudes. The instability studied in the present work concerns the mode of lowest |εk,n| for given
k, the Goldstone branch which we label by n=0. It is smoothly connected to the Goldstone mode at k=0 of zero frequency,
ε0,0=0, that reflects the free choice of the overall phase of the condensate, i.e. its U(1) symmetry. An associated second mode
with zero eigenvalue of (ηĤ0)2 describes the global phase fluctuations [7]. The next excited mode, n=1, is correlated near k=0
with the cyclotron oscillation. At k=0 the n=1 mode lies precisely at the cyclotron energy ε0,1 = ~ωc, according to Kohn’s
theorem [8, 9]. The modes at k>0 of the Goldstone branch, connecting to the Goldstone density and phase modes at k=0,
are thus well separated from any other excitations, so that this branch is described by only two, not four, distinct eigenvalues.
This implies that either εk,0 = ε∗k,0, i.e. one has two real eigenvalues ±εk,0, or εk,0 = −ε∗k,0, i.e. one has two purely imaginary
eigenvalues±εk,0. For excitations of non-rotating condensates in their ground state, only the first case occurs and corresponds to
the usual Bogoliubov phonon excitations. Here, instead, we find, in an entire range of momenta between k = 0 and a maximum
k = kc, the case of purely imaginary frequencies εk,0, corresponding to the exponential growth of correlated excitations at ±k
that causes the “snake-like” dynamical instability. Results of the numerical solution of ηĤkVk,n = εk,nVk,n are shown in
Fig. 1, from deep in the lowest Landau level (g̃ . 1) to the Thomas-Fermi regime (g̃ � 1).

Relation between eigenvalues of Ĥk and ηĤk

The difference between stable and dynamically unstable excitations is analogous to the difference between the stable
motion in a harmonic oscillator potential and the unstable motion of a particle in an inverted harmonic oscillator. The
correspondence becomes explicit if we introduce the Hermitian operators Q̂k(x) =

(
φ̂k(x) + φ̂†k(x)

)
/
√

2 and P̂k(x) =

−i
(
φ̂k(x)− φ̂†k(x)

)
/
√

2 obeying
[
Q̂k(x), P̂k′(x

′)
]

= iδk,k′δ(x− x′). They are related to the density and current fluctuations
of the condensate, as the density operator is

n̂(x, y) = Ψ̂†Ψ̂ ≈ |ψ0|2 + ψ0(δψ̂ + δψ̂†) = |ψ0|2 + ψ0

√
2

L

∑

k

cos(ky)Q̂k(x)− sin(ky)P̂k(x)

and ĵ ≈ |ψ0|2∇Θ̂ with the linear fluctuation part of the velocity potential operator [2]

Θ̂ =
~

2miψ0

(
δψ̂ − δψ̂†

)
=

~
2mψ0

√
2

L

∑

k

cos(ky)P̂k(x) + sin(ky)Q̂k(x)
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FIG. 1. Bogoliubov spectra from the Lowest Landau Level to the Thomas-Fermi regime. The interaction parameters g̃ ≡ gn1D
lB~ωc

for (a-e)
are 0.3, 1, 3, 10, 40, corresponding to R/lB = 1.04, 1.14, 1.39, 2.01, 3.28., capturing the evolution from the flat spectra deep in the LLL to
the more intricate crossings in the Thomas-Fermi regime. The bottom panel shows a zoomed-in region focusing on the unstable Goldstone
branch (red). In the bottom panel of (a), the growth rate/excitation frequencies are normalized by gn, with n = |ψ0(0)|2 = n1D/(

√
πlB) the

central 2D density in the LLL. The dashed line in this panel shows the result in the deep LLL limit using [10]. In the Thomas-Fermi regime,
the dashed line in e) shows the result of the hydrodynamic calculation (see text). Note the existence of complex eigenvalues with Re(εk) 6= 0
near the curve crossings, indicated by purple lines.

In terms of Q̂k and P̂k, we have K̂2 = 1
4

∑
k〈Q̂k|Ĥk|Q̂k〉+ 〈P̂k|ηĤkη|P̂k〉 with Q̂T

k = (Q̂k Q̂−k) and P̂T
k = (P̂k P̂−k). So

we can think of Ĥk as representing the matrix of “spring constants” and ηĤkη the matrix of “inverse masses” in the oscillator
analogy. Dynamical instabilities can arise in an oscillator when either a spring constant becomes negative, while the mass
remains positive, or vice versa.
The time evolution d

dtQ̂k =
[
Q̂k, K̂2

]
= ηĤkηP̂k and d

dt P̂k = −ĤkQ̂ yields d2

dt2 Q̂k = −ηĤkηĤkQ̂k
!
= −ε2kQ̂k showing

that eigenfrequencies of the motion correspond indeed to the eigenvalues of the operator ηĤk. The Hermitian operators Ĥk

and ηĤkη share their (real) eigenvalues, and if Uk,n is an eigenvector of Ĥk of eigenvalue Ek,n, then ηUk,n is the eigen-
vector of ηĤkη with that same eigenvalue. With Ok,nm = 〈Uk,n|η|Uk,m〉 =

∫
dxUk,n(x)ηUk,m(x) the matrix effecting

the basis change, which is symmetric and orthonormal (so O2
k = 1), we have 〈Uk,n|ηĤkη|Uk,m〉 =

∑
lOk,nlEk,lOk,lm =

(OkEkOk)nm, with Ek the diagonal matrix of eigenvalues of Ĥk (the “spring constants”). The squared eigenfrequencies ε2k are
thus eigenvalues of OkEkOkEk, and so the eigenfrequencies εk themselves are eigenvalues of OkEk, the matrix describing ηĤk

in the basis of eigenvectors of Ĥk. Importantly, whenever a “spring constant” or “inverse mass” equals zero, i.e. one of the
eigenvalues of Ĥk equals zero, one eigenfrequency εk of ηĤk also equals zero. Regions in the variable k featuring dynamical
instabilities with purely imaginary eigenfrequency are thus bounded by values of k where consecutive eigenvalues Ek of Ĥk

equal zero. This is analogous to a harmonic oscillator slowing down and becoming dynamically unstable as its spring constant
changes from positive to negative, followed by its mass diverging and changing sign to yield again a dynamically stable, but
thermodynamically unstable, oscillator. A famous example of the latter situation is the magnetron motion in Penning traps [11].

Since Ĥk commutes with simultaneous reflection and particle-hole exchange, i.e. with γR̂, eigenvectors of Ĥk can be found
as eigenvectors of γR̂ with eigenvalue σ = +1 or −1, which are states of the form U± = (u(x),±u(−x))

T, leading to the two
eigenequations

(ĥk − µ0 + 2gψ2
0)uk,n±(x)± gψ2

0uk,n±(−x) = Ek,n±uk,n±(x)

The lowest energy for σ= − 1 and k=0 is E0,0−=0, for u(x) = ψ0(x), and U0,0−(x) = (ψ0(x),−ψ0(x))
T
/
√

2 is the
Goldstone mode. Since ψ0(x) is the ground state for a condensate trapped in a 1D harmonic oscillator, the Hamiltonian Ĥ0,
describing fluctuations that are translation invariant along y, is positive semi-definite, with eigenvalues E0,n± all positive or
zero. For k > 0, the decreasing overlap of the eigenfunction uk,0− with the condensate centered at x = 0 causes the eigenvalue
Ek,0− to become negative, corresponding to the case of a negative spring constant. K̂2 then contains a term corresponding to an
inverted oscillator potential, 1

2Ek,0−Q̂2
k,0− with Q̂k,nσ ≡ 〈Uk,nσ|Q̂k〉 the “position” operators, with the canonically conjugate

“momentum” operators P̂k,nσ ≡ 〈Uk,nσ|P̂k〉 and commutation relations
[
Q̂k,nσ, P̂k,mσ′

]
= iδnmδσσ′ .
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FIG. 2. Relation between Goldstone branch instability and eigenenergies of the Bogoliubov Hamiltonian Ĥk. The decrease of overlap with
the condensate at non-zero k renders the lowest eigenvalue Ek,0− of Ĥk negative, corresponding to an inverted oscillator potential (negative
spring constant). The Goldstone branch is unstable, εk,0 being purely imaginary, until the second eigenvalue Ek,0+ of Ĥk becomes negative,
corresponding to a negative mass oscillator and resulting in stable motion, with εk,0 real.

To obtain the matrix of inverse masses, we note that since η anti-commutes with particle-hole exchange, ηγ = −γη, it only
connects states of opposite γR̂ symmetry, so 〈Uk,n+|η|Uk,m+〉 = 〈Uk,n−|η|Uk,m−〉 = 0. With O+−

k,nm ≡ 〈Uk,n+|η|Uk,m−〉 =∫
dxuk,n+(x)uk,m−(x) = O−+

k,mn we find for the “inverse mass” matrix 〈Uk,n+|ηĤkη|Uk,m+〉 =
(
O+−
k Ek−O−+

k

)
nm

and
〈Uk,n−|ηĤkη|Uk,m−〉 =

(
O−+
k Ek+O+−

k

)
nm

with Ekσ the diagonal matrix of eigenvalues Ek,σ . The squared Bogoliubov
eigenfrequencies ε2k are thus eigenvalues of the matrix O−+

k Ek+O+−
k Ek−.

Fig. 2 shows the generic case. The branch Ek,0−, the lowest eigenvalue of Ĥk, is negative for any non-zero k, and the
Goldstone branch εk,0 (eigenvalue of ηĤk) is correspondingly purely imaginary and thus dynamical unstable, until at k=kc the
second branch Ek,0+ crosses zero, and εk,0 becomes real. This is the situation of having both a negative mass and a negative
spring constant, corresponding to dynamically stable motion. The point at k = kc is called an exceptional point in the theory of
non-Hermitian physics [6]. kc is always on the order of the inverse cloud radius kc ∼ 1/R, and the maximum instability growth
rate |εk,0| is also only slightly below kc.

Normal form of K̂2

An inverted harmonic oscillator Hamiltonian H = p2

2m − 1
2κq

2 with negative spring constant (−κ < 0), and mass m > 0

can be canonically transformed via q′ = 1√
2mΓ

p +
√

κ
2Γq and p′ = 1√

2mΓ
p −

√
κ
2Γq into H = 1

2Γ(q′ p′ + p′ q′), where

Γ =
√
κ/m, with equations of motion d

dtq
′ = Γq′ and d

dtp
′ = −Γp′, generating squeezing of p′ and exponential growth of

q′. In terms of bosonic operators a = (q′ + ip′)/
√

2 and a† = (q′ − ip′)/
√

2 with [a, a†] = 1 the Hamiltonian is of the
squeezing form H = Γ 1

2i (aa − a†a†). Analogously we will find that K̂2, in the dynamically unstable region 0 < k < kc,

will contain a term of the squeezing form,
∑
k Γk

(
âkâ−k + â†kâ

†
−k

)
associated with the spontaneous pairwise creation of

excitations at ±k. Here, εk = iΓk with Γk > 0 is purely imaginary (we omit the index 0 in εk,0 for simplicity), and we
have, since εk = −ε∗k, two instead of four associated eigenvectors of ηĤk, labelled Vk and Wk = V∗k, associated with the
different eigenvalues εk and ε∗k = −εk. To have εk = −ε∗k, Vk and γR̂V∗k = γV∗−k must be linearly dependent, related by
a complex phase eiθ. Choosing this phase corresponds to a particular choice of the spatial phase of the emergent crystal. We
here set Vk = −γR̂V∗k, and we then also have Wk = −γR̂W∗

k. From this follows that Vk = (uk(x),−u∗k(−x))T and
Wk = (u∗k(x),−uk(−x))

T. We see 〈Vk|η|Vk〉 = 0 = 〈Wk|η|Wk〉 but we can choose the normalization of uk(x) such that
〈Wk|η|Vk〉 =

∫
dx
(
uk(x)2 − u∗k(x)2

)
= i. Then the action of Ĥk on the subspace relevant to εk is

Ĥk = Γk η|Vk〉〈Wk|η + Γk η|Wk〉〈Vk|η + . . .



5

with . . . the part of Ĥk corresponding to modes with n > 0. Inserting this in Eq. 3, and noting that V−k = R̂Vk and so
u−k(x) = uk(−x) gives

K̂2 =
1

2

∑

k

Γk

(
〈Φ̂k|η|Vk〉〈Wk|η|Φ̂k〉+ 〈Φ̂k|η|Wk〉〈Vk|η|Φ̂k〉

)
+ . . .

=
1

2

∑

k

Γk (p̂kq̂−k + q̂kp̂−k) + . . .

=
∑

k>0

Γk
1

i

(
âkâ−k − â†kâ

†
−k

)
+ . . .

where the dots denote contributions from stable modes of higher excitation energies |εk,n| and the k=0 Goldstone mode’s
“kinetic energy” term corresponding to free global phase diffusion [7], and we defined

p̂k ≡ 〈Φ̂k|η|Vk〉 =

∫
dx
(
uk(x)φ†k + u∗k(−x)φ−k

)

q̂k ≡ 〈Φ̂k|η|Wk〉 =

∫
dx
(
u∗k(x)φ†k + uk(−x)φ−k

)

p̂†k ≡ 〈Vk|η|Φ̂k〉 =

∫
dx
(
u∗k(x)φk + uk(−x)φ†−k

)
= p̂−k

q̂†k ≡ 〈Wk|η|Φ̂k〉 =

∫
dx
(
uk(x)φk + u∗k(−x)φ†−k

)
= q̂−k

with [q̂k, p̂−k] = i and other commutators zero and âk = (q̂k+ip̂k)/
√

2, accordingly â†k =
(
q̂†k − ip̂

†
k

)
/
√

2 = (q̂−k−ip̂−k)/
√

2

and
[
âk, â

†
k

]
= 1 with other commutators zero. Other choices of the phase between Vk and γV∗−k yield equivalent forms of the

squeezing Hamiltonian [12] such as Γk

(
âkâ−k + â†kâ

†
−k

)
. The time-dependence of the operators is then:

âk(t) = cosh(Γkt)âk(0)− i sinh(Γkt)â
†
−k(0),

â†−k(t) = cosh(Γkt)â
†
−k(0) + i sinh(Γkt)âk(0). (5)

Structure factor

The structure factor Sk is obtained as follows. From the density operator n̂(x, y) we obtain the density fluctuation operator,
only retaining the contribution from unstable modes

δn̂(x, y) = ψ0(x)
1√
L

∑

k

(
ūk(x)eikyâk + v̄∗k(x)eikyâ†−k + ū∗k(x)e−ikyâ†k + v̄k(x)e−ikyâ−k

)
. (6)

where ūk = (u∗k − iuk)/
√

2 and v̄k = −(uk − iu∗k)/
√

2. Integrating along x and taking the Fourier transform along y yields
the Fourier component of the one-dimensional density profile with a wavevector q in the y-direction,

δn̂q =

∫
dx
∫

dy δn̂(x, y)e−iqy

=
√
n1D

∫
dx ψ̃0(x)

[
(ūq(x) + v̄−q(x))âq + (ū∗−q(x) + v̄∗q (x))â†−q

]
(7)

Here we define ψ0 =
√
n1Dψ̃0 such that

∫
dx |ψ̃0(x)|2 = 1. We also have

∫
dx (|ūk(x)|2 − |v̄−k(x)|2) = 1. The structure

factor is defined as [13]

Sq =
1

N
〈δn̂qδn̂†q〉

= 〈
(
Aqâq +A∗q â

†
−q
)(
A∗q â

†
q +Aqâ−q

)
〉

= |Aq|2
(
〈1 + â†qâq + â†−qâ−q〉+

1

i
〈âqâ−q − â†qâ†−q〉

)

= |Aq|2 (1 + ν) cosh(2Γkt) (8)
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where N = Ln1D is the total atom number. Since 〈âqâ−q − â†qâ†−q〉 is an expectation value of an operator which commutes
with the Hamiltonian, it is a constant of motion and here taken to be zero. The terms 〈â†qâq〉 and 〈â†−qâ−q〉 correspond to the
occupation numbers of modes ±q. They are related to their values at t = 0 using the operator time-dependence given in Eq. (5),
and we denote the initial mode populations by ν = 〈â†q(0)âq(0)〉 + 〈â†−q(0)â−q(0)〉. The contribution of a single quantum to
Sk is determined by the overlap integral Aq = A−q =

∫
dx ψ̃0(x)(ūq(x) + v̄−q(x)).

Limit of the Lowest Landau Level

The Bogoliubov analysis in the lowest Landau level was performed in [10], focussing on the stable regime occurring in a
rotating saddle potential V (x, y) = 1

2mεω
2(x2 − y2) (in the rotating frame coordinates). The rotation frequency was chosen

such that the centrifugal force precisely cancelled the trapping force in the weaker (y-)direction, i.e. Ω = ω
√

1− ε. The
experiment performed here corresponds to no rotating saddle at all, i.e. ε = 0. The Bogoliubov Hamiltonian is

K̂2 =
∑

k

(
~2k2

2m∗
+ 2g∗n1De

−k2l2B/2
)
â†kâk +

g∗n1D

2

∑

k

e−k
2l2B

(
â†kâ
†
−k + âkâ−k

)

with an effective 1D coupling constant g∗ = g/
√

2πlB and where the effective mass m∗ of excitations is given by 1/m∗ =

1/m
(

1− 4Ω2

ω2
c

)
with the cyclotron frequency ωc = ω

√
4− 2ε modified by the anharmonic potential. One has m∗ ≈ 2

εm for
small ε. We see that in the case relevant to the present experiment ε = 0 we have 1/m∗ = 0, corresponding to “infinitely heavy”
excitations, i.e. a flat band without a kinetic mass term. Importantly, although only contact interactions are present, evolution
in the rotating frame yields a k-dependent effective interaction, and correspondingly a magneto-roton minimum which evolves
into a dynamical instability as the anharmonicity ε decreases. The excitation spectrum follows as [10]

ε2k =

[
~2k2

2m∗
+ g∗n1D

(
2e−k

2l2B/2 − 1
)]2

− g∗2n2
1De
−2k2l2B (9)

In the limit ε = 0 one has an unstable Goldstone branch between k = 0 and k = kc =

√
2 log

(
1√
2−1

)
/lB = 1.33/lB . The

maximum growth rate of the instability occurs at kmax lB =

√
2 log

(
2√
5−1

)
= 0.98 and is Γkmax

=
√

5
2

√
5− 11

2 g∗n1D =

0.3 g∗n1D = 0.21gn. This is shown in Fig. 1a).

Evolution from stable magneto-roton excitations to dynamical instability

The expression Eq. 9 allows us to follow the excitation spectrum in the 1D regime of motion in a rotating anharmonic saddle
as ε→ 0. This evolution is shown in Fig. 3, varying the parameter introduced in [10] β = n1Dg

∗

~2/2m∗l2B
, comparing the interaction

energy to the kinetic energy of excitations at momentum ∼ 1/`B . The present experiment corresponds to β = ∞, i.e. zero
kinetic energy, infinite effective mass of excitations and purely interaction-driven dynamics. The figure shows how an initially
stable branch consisting of phonons at low momenta k develops a magneto-roton minimum at k ≈ 1/lB . This minimum lowers
in energy as it becomes more and more favorable to create magneto-rotons, excitations which avoid the condensate mean-field
repulsion due to their spatial shift by kl2B ≈ lB . Beyond a critical β = 4.9, a dynamical instability near k ∼ 1/lB develops,
corresponding to the onset of magneto-roton condensation - in analogy to roton condensation considered in [14, 15]. Eventually,
for β →∞, the case of the present experiment, the entire Goldstone branch up to k = kc is dynamically unstable, with maximum
growth at k = kmax ∼ 1/lB .

Thomas-Fermi limit - Hydrodynamics

The Gross-Pitaevskii equation for the wavefunction ψ =
√
ρ eiS can be equivalently rewritten as hydrodynamic equations for

the density ρ = |ψ|2 and the velocity v = ~
m∇S. The equation for the velocity is:

∂v

∂t
= −∇

(
− ~2

2m2√ρ∇
2√ρ+

1

2
v2 − v · (Ω× r) +

1

m
U +

gρ

m

)
. (10)
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FIG. 3. Evolution from stable phonon and magneto-roton excitations to dynamically unstable excitations as the anharmonicity ε of a rotating
saddle potential is reduced to zero. From top to bottom, the value of the parameter β, measuring the strength of interaction energy to kinetic
energy, is varied from β = 1, 2, 3.5, 4.9 (the critical value where the magneto-roton minimum touches zero [10]), 5.1, 7, 10, 20, 100000.

Here, U(~r, t) = 1
2mω

2
(
x2(1 + ε) + y2(1− ε)

)
is a rotating anisotropic potential - in the experiment ε = 0. Introducing the

“convective derivative” moving with a fluid element,

D

Dt
=

∂

∂t
+ (vrot · ∇) (11)

this can be written as

m
Dvrot

Dt
= 2mvrot ×Ω +mΩ2r−∇

(
− ~2

2m
√
ρ
∇2√ρ+ U + gρ

)
. (12)

with vrot = v−Ω× r the velocity in the rotating frame. This is Newton’s law in the rotating frame, featuring the Coriolis force
2mvrot×Ω, the centrifugal forcemΩ2r and the force acting on a fluid particle derived from the quantum pressure− ~2

2m
√
ρ∇2√ρ,

the mean-field potential gρ, and the external potential U . The continuity equation in the rotating frame ∂ρ
∂t = −∇ · (ρvrot) can

also be written using the convective derivative:

Dρ

Dt
= −ρ∇ · vrot. (13)

Linearizing the hydrodynamic equations - including the quantum pressure term - is equivalent to the Bogoliubov approach [2].
We now drop the quantum pressure term, considering the Thomas-Fermi limit.

We perturb the density and phase around stationary solutions ρc and Sc

ρ = ρc + δρ

S = Sc + δS (14)

and obtain the linearized hydrodynamic equations [16]

Dδρ

Dt
= − ~

m
∇ · (ρc∇δS)

~
DδS

Dt
= −gδρ (15)
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Hydrodynamics in the Landau gauge

The Landau gauge corresponds to setting Sc = −mΩ
~ xy, and we specialize to Ω = ω

√
1− ε, where the centrifugal potential

exactly cancels the (y-)direction of weak confinement. The case in the experiment is ε = 0. Neglecting the quantum pressure
term (Thomas-Fermi limit), the stationary density profile is gρc(x) = µ− 1

2mω
2
cx

2, the velocity profile is vc = ~
m∇Sc and we

have vrot = vc −Ω× r = −2Ωx ŷ. The coupled linearized hydrodynamic equations become
∂δρ

∂t
− 2Ωx∂yδρ = − ~

m
∂x (ρc(x)∂xδS)− ~

m
ρc(x)∂2

yδS

∂δS

∂t
− 2Ωx∂yδS = −1

~
gδρ (16)

As there is no explicit dependence on y, one may choose δρ = Re(eikyδρk) and δS = Re(eikyδSk). We omit the index k in the
following and find

∂δρ

∂t
− 2iΩkx δρ = − ~

m
∂x (ρc(x)∂xδS) +

~k2

m
ρc(x)δS

∂δS

∂t
− 2iΩkx δS = −1

~
gδρ (17)

Using gρc(x) = µ− 1
2mω

2
cx

2 and ∂xgρc(x) = −mω2
cx we have

∂gδρ

∂t
− 2iΩkx gδρ = ω2

cx∂x ~δS −
1

m

(
µ− 1

2
mω2

cx
2

)(
∂2
x − k2

)
~δS (18)

Measuring rates and inverse times in units of ωc (such as Ω̃ = Ω/ωc), energies in units of ~ωc (writing δρ̃ = gδρ/(~ωc)), and
lengths in units of the Thomas-Fermi radius RTF =

√
2µ/(mω2

c ), the equations become (tildes are dropped for brevity)

∂δρ

∂t
− 2iΩkx δρ =

(
x∂x −

1

2
(1− x2)(∂2

x − k2)

)
δS

∂δS

∂t
− 2iΩkx δS = −δρ (19)

The operator L ≡ x∂x − 1
2 (1− x2)∂2

x = − 1
2∂x

(
(1− x2)∂x

)
is Legendre’s differential operator, whose eigenfunctions are the

Legendre polynomials Pn(x):

LPn(x) =
1

2
n(n+ 1)Pn(x) (20)

In terms of L, the coupled equations are

∂δρ

∂t
− 2iΩkx δρ =

(
L+

k2

2
(1− x2)

)
δS

∂δS

∂t
− 2iΩkx δS = −δρ (21)

Looking for a time-dependence ∼ e−iωt, the equations become

−i(ω + 2Ωkx)δρ =

(
L+

k2

2
(1− x2)

)
δS

−i(ω + 2Ωkx)δS = −δρ (22)

and thus

(ω + 2Ωkx)2δS =

(
L+

k2

2
(1− x2)

)
δS (23)

The equation is formally solved by the confluent Heun function [17], with eigenfrequencies obtained by demanding the solution
to be regular everywhere inside the Thomas-Fermi radius (|x| < 1). In particular, for ε = 0 and so 2Ω = ωc we have
δS = e

√
3kx HC

[
2(k2 + k(

√
3− 2ω) + ω2), 4k(

√
3− 2ω), 1, 1, 4

√
3k, 1+x

2

]
, where HC [q, α, γ, δ, κ, z] satisfies the confluent

Heun differential equation z(z − 1)y′′ + (γ(z − 1) + δz + z(z − 1)κ)y′ + (αz − q)y = 0 [17]. Notably, exceptional points
where ω = 0 are obtained as special zeroes of the confluent Heun function: HC

[
2k2 + 2

√
3k, 4
√

3k, 1, 1, 4
√

3k, 1
2

]
= 0. The

critical k = kc separating the dynamically unstable modes for 0 < k < kc and the stable excitations for k > kc is obtained as
the first zero of this particular Heun function, at kc = 1.47/RTF = 1.25/R. Below we find limiting cases, a series expansion
for the solution, and identify the minimal set of modes responsible for the instability: The Goldstone mode, dipole mode and
breathing mode of the unperturbed condensate.
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Solution for k → 0

For k = 0 the problem is just that of finding the excitation spectrum of a Bose-Einstein condensate in a one-dimensional
harmonic oscillator:

ω2δS = LδS (24)

with eigenvalues ωn =
√

1
2n(n+ 1), in units of ωc, and eigenfunctions δS = Pn(x). The case n = 1 is the sloshing mode,

oscillating at the cyclotron frequency with ω1 = ωc, unshifted from the result for the non-interacting harmonic oscillator, in
accordance with Kohn’s theorem [8, 9]. Including the long-wavelength modulation ∝ sin(ky), the mode is described by

δS(x, y, t) ∝ x cos(ωct) sin(ky)

δρ(x, y, t) ∝ x sin(ωct) sin(ky)

which is a time-dependent “snaking” mode, sloshing back and forth along x at frequency ωc.
The case n = 2 is the breathing mode, at ω2 =

√
3ωc, shifted from the non-interacting case (2ωc) by the interactions, and

describing a time-dependent compression / decompression mode that periodically alternates along y.
The case n = 0 and k = 0 is the Goldstone mode at ω0 = 0, with δS(x) = const. a constant phase offset, and δρ = 0, i.e. no

density modulation, describing the zero cost of changing the phase of the wavefunction globally. For the case in the experiment
ε = 0, i.e. Ω = ω, and neglecting coupling to the breathing mode, one still has the zero-energy solution ω0 = 0, since there
is zero energy cost to displace the wavefunction along x. The mode profile is δρ(x, y, t) ∝ Ωkx cos(ky), corresponding to a
stationary “snake”-like deformation. With coupling to the breathing mode, it will grow exponentially.

Solution by expansion in Legendre polynomials

To solve the equations for δρ and δS, we expand them in the basis of normalized Legendre polynomials pn(x) ≡√
2n+1

2 Pn(x) (with Pn(x) the traditional Legendre polynomials):

δρ(x) =
∑

n

ρnpn(x)

δS(x) =
∑

n

snpn(x)

The pn(x) are orthonormal for integration over x ε [−1, 1] (while the Pn(x) are not):

〈n|m〉 =

∫ 1

−1

dx pn(x)pm(x) = δn,m

where 〈f |g〉 =
∫ 1

−1
dx f(x)g(x) defines a scalar product. The pn(x) are eigenfunctions of L, but the terms in x and in x2 in

the equations 22 couple Legendre polynomials whose index differs by 1 or 2, respectively. A recurrence relation for Legendre
polynomials gives

xPn =
n+ 1

2n+ 1
Pn+1 +

n

2n+ 1
Pn−1

which for the orthonormal pn reads

xpn =
n+ 1√

(2n+ 1)(2n+ 3)
pn+1 +

n√
(2n+ 1)(2n− 1)

pn−1

from which one finds

Xnm ≡ 〈n|x|m〉 =

∫ 1

−1

dx pn(x)xpm(x) =
1√

(2n+ 1)(2m+ 1)
(n δm,n−1 +mδn,m−1)
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(
X2
)
nm

=
〈
n|x2|m

〉
=
∑

j

〈n|x|j〉 〈j|x|m〉 =
∑

j

XnjXjm

=
∑

j

1√
(2n+ 1)(2m+ 1)

1

2j + 1
(nδj,n−1 + jδn,j−1) (jδm,j−1 +mδj,m−1)

=
(2n(n+ 1)− 1)

(2n− 1)(2n+ 3)
δn,m +

1√
(2n+ 1)(2m+ 1)

(
m(m− 1)

(2m− 1)
δm,n+2 +

n(n− 1)

(2n− 1)
δn,m+2

)

The equations 22 can then be written

∂ρn
∂t

= i2ΩkXnmρm + L(k)
nmsm

∂sn
∂t

= i2ΩkXnmsm − ρn (25)

(using convention to sum over repeated indices) or in vector notation ~ρ = (ρ0, ρ1, . . . )
T

∂~ρ

∂t
= i2ΩkX~ρ+ L(k)~s

∂~s

∂t
= i2ΩkX~s− ~ρ (26)

where X is the matrix with entries Xnm, and where

L(k)
nm =

(
1

2
n(n+ 1) +

k2

2

)
δnm −

k2

2

(
X2
)
nm

This linear system is solved by choosing a cutoff in the degree n of polynomials used in the expansion. Alternatively, we can start
with Eq. 23, which is particularly useful for the case relevant to the present experiment ε = 0, so 2Ω = ωc ≡ 1 in dimensionless
units. We have

(ω + kx)2 − k2

2
(1− x2) = ω2 + 2ωkx+ k2

(
3

2
x2 − 1

2

)
= ω2P0 + 2ωkP1 + k2P2

since P2(x) = 3
2x

2 − 1
2 . So the equation to solve is

L δS = (k2P2 + 2ωkP1 + ω2P0)δS

This way of writing the equation makes it explicit that the cause of the instability of the Goldstone mode (ω = 0 for k = 0)
is coupling to the breathing mode with n = 2, caused by P2. The term multiplying P1, which could in principle couple the
Goldstone to the dipole mode, is zero for ω = 0 and thus is not responsible for the instability. In the basis of orthonormal
Legendre polynomials, we have

(P2(x))nm =
3

2

(
X2
)
nm
− 1

2
δnm. (27)

On the off-diagonals, it acts like 3
2 (X2)nm, but on the diagonal one finds the simpler

(P2(x))nn =
n(n+ 1)

(2n− 1)(2n+ 3)
(28)

This yields the equation for the sn:
(

1

2
n(n+ 1)

(
1− 2k2

(2n− 1)(2n+ 3)

)
− ω2

)
sn = 2ωkXnmsm +

3

2
k2
∑

m 6=n

(
X2
)
nm

sm

= 2ωk

(
n√

(2n− 1)(2n+ 1)
sn−1 +

n+ 1√
(2n+ 1)(2n+ 3)

sn+1

)

+
3

2
k2

(
(n+ 1)(n+ 2)

(2n+ 3)
√

(2n+ 1)(2n+ 5)
sn+2 +

n(n− 1)

(2n− 1)
√

(2n− 3)(2n+ 1)
sn−2

)

With a finite cutoff in the polynomial degree n this represents a sparse matrix, and eigenfrequencies are found by setting its
determinant to zero. In general, eigenfrequencies can be complex and one finds an unstable Goldstone branch. The result is
shown as the dashed lines in Fig. 1e).
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Minimal model

Insight is obtained by truncating the Hilbert space. Including the Goldstone, dipole and breathing mode, so p0, p1 and p2

gives equations for the coefficients (s0, s1, s2)




ω2 2kω√
3

k2√
5

2kω√
3

2k2

5 + ω2 − 1 4kω√
15

k2√
5

4kω√
15

2k2

7 + ω2 − 3






s0

s1

s2


 = 0

This minimal model already yields a dynamically unstable Goldstone branch which will lead to exponential growth for small k.
To find the critical k=kc where ω = 0 one solves

∣∣∣∣∣∣∣

0 0 k2√
5

0 2k2

5 − 1 0
k2√

5
0 2k2

7 − 3

∣∣∣∣∣∣∣
= 0 (29)

from which one finds kcRTF =
√

5
2 = 1.58. This is already close to the exact result kcRTF = 1.47. The maximum instability

is found at kmaxRTF ≈ 1.18 with Imω = 0.148ωc, close to the exact maximum in the Thomas-Fermi limit at kmaxRTF =
1.12 . . . with Imω = 0.141ωc.
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