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Abstract 
 
Developing novel battery technologies is required to electrify hard to decarbonize industries. 
One such novel technology, lithium–oxygen batteries, has great potential for electric aviation but 
is hampered by our lack of detailed knowledge of the processes occurring inside the batteries. 
Thus, the projects in this thesis work to further our fundamental understanding of these battery 
systems using atomistic simulations. 

In the first project, I explored one simulation methodology, ab initio molecular dynamics, 
commonly used to model battery systems. I examined the coordination environment of lithium 
ions in different solvents and compared the computational results to experimental data. The 
result was that the computationally calculated properties were heavily dependent on the starting 
configuration of the system, which illustrates the importance of both equilibration method and 
sufficient independent sampling for extracting experimentally relevant quantities from ab initio 
molecular dynamics simulations. Such details are often poorly documented or not justified in the 
literature, so this work indicates a need for increased attention to these details to ensure ab initio 
molecular dynamics studies are reproducible and physically accurate and thus useful. 

In the second project, I utilized classical molecular dynamics to explore a wider range of 
properties for systems of lithium salts in twelve different solvents. This work combined a 
dedication to accuracy, as I compared the results from the computations to experimental data, 
with innovative ways of measuring ionic transport. I examined how solvent metrics combining 
different properties such as solvent donor number and viscosity that are relatively easy to 
measure experimentally correlate with the atomistic lithium transport mechanisms that are quite 
difficult to measure experimentally but readily accessible computationally, with the goal of 
eventually enabling the prediction of these transport mechanisms and thus a deeper 
understanding of the system on an atomistic scale from a few simple experiments. To my 
knowledge, this is the first time such solvent metrics have been examined with relation to ionic 
transport mechanisms in small molecule liquid solvent systems. 
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Thesis Co-Supervisor: Leonid S. Levitov 
Title: Professor of Physics  
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1 Introduction 

There is increasing demand for “green” energy technologies in both power generation and 

transportation.1–3 However, these technologies rely heavily on the ability to store large quantities 

of energy for significant lengths of time. Renewable energy sources like solar, wind, and 

hydropower are intermittent, so energy storage is critical for them to be viable replacements for 

coal and natural gas. Electric vehicles must be able to transport enough energy to power 

themselves for hundreds of miles, while electric planes would need ranges of well over a 

thousand miles to fully decarbonize aviation. This has resulted in a huge increase in the demand 

for batteries3 and in the amount of research focused on improving battery technology.4,5 This 

battery research encompasses everything from developing new electrolytes for lithium-ion 

batteries6 to exploring novel battery technologies like lithium– or sodium–air batteries,7–9 and as 

computers become more powerful10 and computational methods become more sophisticated,11,12 

computational techniques have become an important part of battery research. 

Computational battery research is diverse in both methods and goals, from using Monte Carlo 

simulations to predict battery lifetimes13 to using machine learning to determine cathode 

properties.14 However, there is a unified goal in much of this work: to enable the faster and 

cheaper design of better batteries. High throughput studies can be significantly easier, cheaper, 

and faster to perform computationally than experimentally, enabling, for example, the screening 

of billions of candidate molecules for solar heat batteries.15 Simulations can also probe the 

dynamics of processes that can be difficult or expensive to directly observe experimentally, such 

as solid electrolyte interphase formation (the growth of passivation layers on the electrodes of a 

battery due to decomposition of the electrolyte).16 
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One long-term and ongoing area of focus has been to better understand physical processes 

occurring inside batteries, ranging from the mechanisms governing solid electrolyte interphase 

formation to how ions are transported through the bulk electrolyte, on an atomistic level using 

molecular dynamics simulations.17–23 As mentioned above, these processes can be hard to 

directly observe experimentally, but they also be important for understanding battery 

performance. For example, the growth of a solid electrolyte interphase on the anode of a battery 

prevents further electrolyte decomposition but can also cause the battery capacity to fade, so 

investigating the mechanics of solid electrolyte interphase formation via atomistic simulations is 

key to furthering our understanding of battery degradation.16 For ionic transport, examining the 

transport mechanisms is again difficult experimentally but possible computationally, and 

improving our knowledge of transport mechanisms can allow the design of novel electrolytes 

with targeted properties such as low viscosity and high ionic diffusivity.24 

Prior to the mid-2000s, most simulations aimed at capturing dynamical properties such as 

diffusion and viscosity were performed using classical molecular dynamics (MD), and this 

remains the primary method used to compute such properties that require relatively large systems 

and long timescales.19,23,25 However, thanks to great advances in both algorithmic efficiency and 

computational power over the past several decades, simulating battery materials on the atomistic 

level using ab initio molecular dynamics (AIMD) with forces from density functional theory 

(DFT – a quantum mechanical method to calculate the electronic structure of many-body 

systems such as atoms, molecules, liquids, and solids) calculations has become more 

common.17,18,20–22,26–28 AIMD has some limitations compared to classical MD, primarily 

simulation length and system size. However, it also has significant advantages when simulating 

atomistic behavior, as AIMD calculates the behavior using quantum mechanical methods rather 
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than empirical force fields as in classical MD and is thus more transferable and better suited to 

capture reactions and describe properties such as partial charges and charge transfer.18,21 Due to 

these advantages, AIMD has gained popularity in battery research, especially for examining 

properties that may depend on charge transfer such as lithium-ion solvation in different 

electrolytes, which is important because the solvation environment of lithium ions influences 

how lithium is transported in the system.17,18,21 However, most AIMD studies in the literature 

rely on the assumption that even small, short simulations can obtain physically accurate results. 

1.1 Overview 

The work in this thesis examines how lithium ions are transported in different small molecule 

liquid solvents using both classical MD and AIMD. Lithium transport is an important process to 

understand, as it is closely tied to ionic conductivity and thus battery properties such as the 

charging and discharging rates. Enabling fast charging is especially important for applications 

such as electric cars and airplanes, as the user does not want to wait hours for the battery to 

recharge.29 Therefore, better understanding what factors govern lithium transport can enable us 

to design higher performing batteries. The atomistic transport mechanisms are difficult to 

directly examine experimentally but can be extracted from simulations, making this problem an 

ideal candidate for computational study. 

My research in this thesis includes two projects with different goals. The first, detailed in the Ab 

Initio Molecular Dynamics Methodology Study section, is primarily a methodology study. I 

examine how equilibration and sampling methodology affect the results of AIMD simulations by 

investigating how lithium ions are coordinated with solvent molecules and counter anions in 

several common lithium–air battery systems, and I show the importance of both equilibration 
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method and sufficient independent sampling for extracting experimentally relevant quantities 

from AIMD simulations, which have often been neglected in the literature. The second, detailed 

in the Lithium Transport Mechanisms section, focuses on using classical MD simulations to 

obtain physical insights to guide battery design. I develop solvent metrics by combining different 

properties that can be measured experimentally and investigate how these metrics relate to 

atomistic scale lithium transport mechanisms in a variety of small molecule liquid solvents, and 

the results suggest novel methods for predicting transport properties and designing new solvents. 

I will now give some background information on batteries and the different molecular dynamics 

methods and some motivation as to why my research is relevant and important. 

1.2 Batteries 

The fundamental concept of a battery is a device that stores chemical energy and then provides 

power by converting that chemical energy to electrical energy. Batteries are critical to many 

different aspects of our society, with applications ranging from pacemakers to personal 

electronics such as phones and laptops to “green” transportation in the form of electric cars, 

buses, and planes. This last category is especially interesting, as electric transportation is critical 

to decarbonization. There has been immense progress in the past decade on improving electric 

cars, with innovations in battery technology and battery manufacturing resulting in the median 

range of an electric vehicle for sale in the United States jumping from 68 miles in 2011 to 259 

miles in 2020 and similar improvements in other markets.30,31 However, incremental 

improvement is not sufficient for electric aviation, as electrifying even a typical regional 

airplane, designed to travel ~500 miles and hold 30–75 passengers, would require batteries with 

specific energies (energy per unit mass) several times higher than those of current commercial 
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lithium-ion batteries.32,33 I will return to electric transportation in the discussion of lithium-ion 

and lithium–oxygen batteries in the following sections. 

1.2.1 Lithium-Ion Batteries 

Lithium-ion batteries are one of the dominant commercial battery technologies today, used in 

most portable consumer electronic devices and most electric vehicles.34 A schematic of a typical 

lithium-ion battery during the discharge cycle is shown in Figure 1. During discharge, lithium 

ions carry current from the carbon (commonly graphite) anode through the electrolyte to the 

lithium-metal oxide cathode. During charging, an external current is applied to the battery, 

forcing the lithium ions to travel from the cathode through the electrolyte to the anode, where 

intercalation (lithium ions being reversibly inserted into the porous anode material) occurs. 

Graphite is the dominant commercial anode material and has been for decades because it is 

cheap, electrically conductive, and allows for lithium intercalation with only modest volume 

expansion.35,36 Limiting volume expansion is especially important because large changes in the 

anode volume during intercalation can cause the solid electrolyte interphase to crack during each 

cycle and thus cause further electrolyte degradation, passivation, and capacity fade to occur.37 
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Figure 1: Schematic of lithium-ion battery during discharge. 

 

Lithium-ion batteries have become dominant for several reasons. They have high specific 

energies compared to older battery technologies such as lead–acid batteries, with high-quality 

commercial batteries reaching specific energies of ~0.9 MJ/kg for lithium-ion batteries versus 

~0.2 MJ/kg for lead–acid batteries.38–40 Lithium-ion batteries also have high coulombic 

efficiencies (the ratio of the total charge extracted from the battery to the total charge put into the 

battery), with efficiencies that can exceed 99% in ideal charging conditions compared to 

efficiencies of ~90% for lead–acid batteries;41 can withstand more cycles at high temperatures 

than lead–acid batteries;42 and have the potential for many of their components to be recyclable, 

though this is not always cost-efficient industrially.34  

One major area of continuing research and development for lithium-ion batteries is on 

developing and improving the electrolyte through which the lithium ions travel.43–45 The 
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electrolyte consists primarily of solvent molecules, plus lithium ions, counter anions, and any 

additives or contaminants. Commercial lithium-ion batteries most commonly utilize a small 

molecule liquid solvent such as ethylene carbonate.44 However, the choice of solvent can have a 

huge impact. Most obviously, the solvent affects the dynamic lithium transport processes 

occurring during the charging and discharging stages, thus affecting properties such as the 

battery charging and discharging rates that would be critical to electric aviation, as batteries 

would need to recharge quickly while a plane is being unloaded and reloaded. Additionally, 

different solvents have different rates of thermal decomposition, and this decomposition can lead 

to gas generation which both degrades the battery performance, thus reducing the battery 

lifetime, and can result in safety concerns, as the gases generated may be flammable, which 

would be of obvious concern in airplanes.44,46 Different solvents may also have different 

optimum operating temperatures, making them better or less suited for different applications. 

Finally, there are more direct commercial considerations such as the cost of the solvents, though 

this may be of less importance for aviation with its generally high equipment and operating costs 

than for an application such as large battery storage power plant. As such, there is much research 

geared at finding new solvents or combinations of solvents that could be used for various 

applications and understanding what specific properties of solvents are most critical for their 

performance in lithium-ion batteries.43,45,47,48 While my research is primarily focused on lithium–

air applications, the second project on lithium transport mechanisms in different solvents is also 

relevant to lithium-ion applications as many of the same solvents are used in the two types of 

batteries. 

Despite their widespread usage and continuing research, there are fundamental limitations to 

lithium-ion batteries that are relevant for potential applications such as electric aviation. The 
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most fundamental limitation is the specific energy. While lithium-ion batteries may have a 

specific energy several times higher than older technologies such as lead–acid batteries, it is still 

insufficient for most electric aviation applications. In the past few years, there have been many 

news articles about companies developing electric aircraft,49–51 but the technologies fall into a 

few categories: (1) using lithium-ion batteries to transport ~10–20 passengers up to around 500 

miles,52–54 (2) using lithium-ion batteries in hybrid planes that electrify only some aspects of the 

flight such as electric takeoff and landing,55,56 and (3) using novel technologies still being 

developed (such as hydrogen fuel cells or batteries with chemistries other than lithium-ion) to 

power larger planes for longer distances.57–59 Furthermore, in a recent study, Bills et al. estimated 

that the minimum specific energy threshold for a commercially viable electric regional airplane 

designed to hold 30–75 passengers would be ~1.8 MJ/kg, though this would only achieve around 

a quarter of the current average range for such aircraft.32 This is about twice as high as the 

specific energies of the best commercial lithium-ion batteries available today,33 and it is also 

higher than the theoretical maximum specific energy of ~1.6 MJ/kg for a lithium-ion battery.60 

Furthermore, in a similar study, Schäfer et al. estimated that traveling 2,000 km without stopping 

to recharge would require a specific energy of at least ~6 MJ/kg,33 and intercontinental flights 

between the US and Europe are over 5,000 km. To give a point of comparison, the specific 

energy for jet fuel is 43 MJ/kg.61 With the growing focus on the importance of aviation in 

decarbonization efforts,62,63 the limitations of lithium-ion batteries have led to a resurgence of 

interest in other battery technologies, as evidenced by the companies investigating novel 

technologies such as hydrogen fuel cells57–59 and beyond lithium-ion battery technologies such as 

lithium–sulfur64 and lithium–air batteries.65 
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1.2.2 Lithium–Oxygen Batteries 

One such technology that has emerged as a promising possibility for electric aviation is lithium–

oxygen batteries. The promise lies in the specific energy, with experimentally realized batteries 

achieving specific energies on the order of what is required for short-range electric aircraft and a 

theoretical maximum comparable to jet fuel.33,40,66 A schematic of a lithium–oxygen battery 

during the discharge cycle is shown in Figure 2. During discharge, lithium ions are released from 

the lithium-metal anode through oxidation. They carry current as they pass through the 

electrolyte to the porous cathode and then react with oxygen that has entered the electrolyte 

through the porous cathode, ultimately forming a lithium oxide discharge product on the cathode 

surface. During charging, the lithium oxides are decomposed into oxygen which diffuses back 

through the cathode and out of the battery and lithium ions which travel through the electrolyte 

to be deposited at the anode.66 The porous cathode is often carbon-based.66  

The reason for the high specific energy of lithium–oxygen batteries relates to how the energy is 

stored in lithium–oxygen battery compared to in lithium-ion batteries. While a lithium–oxygen 

battery is in a charged state but before discharge occurs, its energy is stored in the form of bonds 

in the lithium-metal anode. This contrasts with energy being stored via intercalation of lithium 

ions into the anode in lithium-ion batteries.67 The anode in a lithium-ion battery has a maximum 

ratio of lithium to anode material with the specific ratio depending on the composition of the 

anode, while there is no such limit for the lithium-metal anode in a lithium–oxygen battery. This 

enables a higher specific energy. 

One important note is that lithium–oxygen strictly refers to using pure oxygen as the gas input 

for the battery. Lithium–oxygen batteries are commonly used in laboratory settings, as using 

pure oxygen as the gas input is controlled and reproducible. However, most real-world 
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applications would instead require lithium–air batteries, with ambient air used as the input gas. 

This could lead to other side reactions, as water, carbon dioxide, and nitrogen could enter the 

battery in addition to the oxygen.68 For example, it has been shown that even water content of 

500 parts per million in the electrolyte can have a signficant effect on the morphology of the 

lithium oxide discharge on the cathode in a lithium–oxygen battery.69 This reduced control over 

the battery chemistry is one complication in studying and designing lithium–air batteries. 

 

 

Figure 2: Schematic of lithium–oxygen battery during discharge. 

 

As with lithium-ion batteries, the choice of solvent plays a large role in the behavior of lithium–

oxygen batteries. My research focuses on non-aqueous, small molecule liquid solvents, which 

are widely used in lithium–oxygen battery studies,9,69,70 though there are several other classes of 
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electrolytes including aqueous, polymer, and ceramic. The overarching goals of my research are 

to improve the simulation techniques for modeling how lithium ions are transported in different 

candidate solvents and then use physically relevant quantities extracted from these simulations to 

enable better battery design. In pursuit of these goals, I have focused on bulk electrolyte systems 

without electrodes or external electric fields. These systems are much more accessible 

computationally, not requiring nearly as large of systems as would be needed to accurately 

model electrodes, while also still giving valuable insights into ionic transport mechanisms. 

Despite the promise of lithium–oxygen or lithium–air batteries, they are not used commercially 

today for several reasons. Solvents are a particular area of interest for the reasons discussed 

above in the lithium-ion battery section, mainly that many of the key battery properties such as 

performance, lifetime, safety, and cost are greatly affected by the choice of solvent. For example, 

many early lithium–air batteries used aqueous solvents, but parasitic reactions between the 

lithium metal and the water could create hydrogen gas and lithium hydroxide.66 This was a safety 

concern, so much recent research instead utilizes non-aqueous solvents. Another combined 

safety, lifetime, and performance concern is the growth of dendrites from the lithium-metal 

anode, which can eventually cause the battery to short circuit.68 Thus, there is research to find 

solvents that can suppress dendrite growth.71 The work in this thesis will focus on how the 

choice of solvent affects transport properties, as transport properties such as ionic conductivity 

are one key measure of battery performance.72–74 

1.3 Molecular Dynamics 

At its most fundamental, molecular dynamics is a method to simulate the movement of particles 

over time. The simulated particles can be atoms or pseudo-atoms. Pseudo-atoms are used to 
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approximate groups of atoms and are used in coarse-grained molecular dynamics; an example 

would be using one simulation particle to represent an entire molecule or even group of 

molecules rather than an individual atom. This technique enables larger simulations but 

sacrifices accuracy and atomistic-level detail. The work in this thesis solely used all-atom 

molecular dynamics simulations, as the research probes atomistic properties and phenomena. 

The dynamics part of molecular dynamics refers to modeling the interactions between the 

different particles in the system by numerically solving Newton’s equations of motion. The 

fundamental concept relies on only freshman-level physics equations: 𝑎⃗ = 𝐹⃗
𝑚ൗ  and 𝐹⃗ = −𝛻𝑈. 

Given initial positions and velocities for the particles, various well-established computational 

techniques can be used to integrate to find velocities and positions at a later time once the forces 

are known.75 Thus, the primary question in molecular dynamics simulations is how to obtain the 

forces or, equivalently, the potential energies. The method of obtaining the forces defines the 

different types of molecular dynamics, and two such types will now be discussed: classical 

molecular dynamics and ab initio molecular dynamics. 

1.3.1 Classical Molecular Dynamics 

The key concept of classical molecular dynamics is using force fields to describe particle 

interactions. A force field is a collection of functional forms and parameters used to calculate the 

potential energy of the system. An example is modeling a bond in a molecule as a spring with a 

spring constant and equilibrium length. As a result, classical molecular dynamics has many fixed 

quantities. Molecules are explicitly defined, with fixed bonds and fixed charges on each atom in 

the molecule. Parameters such as atomic charges and bond lengths and angles may come directly 

from experimental data, from more accurate but more expensive computational methods such as 
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density functional theory calculations, or from iterative optimization for desired properties such 

as density or viscosity. The functional forms, such as modeling bonds as springs, can come 

directly from physical insights or from trial-and-error. One important note is that traditional force 

fields such as AMBER, CHARMM, and GROMOS do not allow bonds to break or form.76–78 

There are newer reactive force fields, perhaps the most well-known being ReaxFF, that allow 

bond breaking and formation,79 but the work in this thesis uses traditional force fields that have 

fixed bonds and charges, as these force fields are parametrized for the solvent and salt molecules 

used in the study. 

Classical molecular dynamics simulations have many strengths. Simulations of thousands of 

small molecules for tens of nanoseconds take only a few days to run on one or two nodes of a 

cluster or supercomputer, and larger systems and longer runtimes are accessible with more time 

and computing power. One of the most widely used classical molecular dynamics codes, 

LAMMPS, scales very efficiently with system size using parallelization.80 While simulating 

thousands of molecules for tens of nanoseconds may not compare to the scale of experimental 

studies, these simulations are large and long enough to extract many physically relevant 

quantities, ranging from the equilibrium density of a liquid solvent to the ion transport 

mechanisms in a polymer electrolyte. In this thesis, I calculate different dynamic properties such 

as viscosities, densities, and diffusion coefficients for classical molecular dynamics simulations 

of liquid systems. Since my simulations explicitly model all atoms, I can also extract atomic 

scale properties such as the coordination environment of a lithium ion in a given solvent. 

However, classical molecular dynamics also has limitations. One was previously mentioned: that 

bonds and atomic charges are typically fixed. Thus, traditional classical molecular dynamics 

simulations cannot model chemical reactions or processes that rely heavily on charge transfer. 
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Another major limitation is the force fields. Force fields need to be parametrized for each 

molecule being simulated, and parametrizing a force field can be a time-consuming task. 

Additionally, a force field that is well parametrized for one application may be poorly 

parametrized for another, even for the same molecule, and it is thus important to validate results 

from classical molecular dynamics with experimental data or more accurate but more expensive 

computational methods. To illustrate this, I will briefly discuss the two force fields used in this 

thesis: PCFF+ and OPLS. 

PCFF+ is an extension of PCFF (Polymer Consistent Force Field), parametrized for additional 

molecules. Many of the PCFF parameters are derived from more accurate and more 

computationally intensive computational methods, while others are derived by fitting to 

molecular crystal data.81,82 However, past work has shown PCFF is generally ill-suited for 

molecular dynamics simulations at finite temperatures, often finding the densities of systems to 

be too low compared to experimental data.82 Additionally, the original focus for the 

parametrization was largely polymeric systems, rather than small molecule liquid systems.81 As 

such, PCFF+ is used in this thesis only as a comparison point to test a hypothesis that the initial 

classical molecular dynamics equilibration method used for ab initio molecular dynamics 

simulations does not affect the final results. More details will be given in the Ab Initio Molecular 

Dynamics Methodology Study section. 

OPLS (Optimized Potentials for Liquid Simulations), in contrast, is widely used for simulations 

of small molecule liquid systems, and there continues to be research into parametrizing new 

molecules and improving old parametrizations.83–86 Many OPLS parameters are derived from 

more accurate and more computationally intensive computational methods, and there has been an 

emphasis on testing the accuracy of OPLS parameters by comparing properties such as densities 
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for simulations of liquid systems of pure organic solvents to experimental data.87 I have 

continued this emphasis on validation with experimental data but expanded it to new properties 

and beyond systems of pure organic solvents by comparing densities, viscosities, and ionic 

conductivities for simulations of solvent–lithium salt systems to experimental data. More details 

about this validation and the further physical insights obtained from the classical molecular 

dynamics simulating using the OPLS force field will be discussed in the Lithium Transport 

Mechanisms section. 

1.3.2 Ab Initio Molecular Dynamics 

Unlike classical molecular dynamics, ab initio molecular dynamics does not rely on 

parametrized force fields to calculate forces. Instead, ab initio molecular dynamics uses 

electronic structure calculations based on quantum mechanics. There are several variations, but 

the ab initio molecular dynamics technique used in this thesis utilizes a density functional theory 

(DFT) calculation at every time step to calculate the forces. DFT is a theoretically exact method 

that relies on theorems developed by Hohenberg and Kohn.88–90 These theorems state that the 

ground-state properties of any interacting many-particle system are uniquely determined by the 

electron density as a function of position, and further work has extended this to excited states.91 

However, only in very simple problems would the electron density everywhere in space be 

known. In order to make DFT useful for chemistry and physics applications, Kohn and Sham 

developed an approximation. Instead of dealing with the complicated many-body problem of 

interacting electrons, the system of interacting electrons is treated as a system of noninteracting 

electrons in an effective potential.91 Different variants of DFT use different approximations for 

the effective potential, and the trade-off between accuracy and computational resources for these 

approximations remains one of the major limitations of DFT.  
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However, DFT and, by extension, ab initio molecular dynamics remain far less parametrized 

than classical molecular dynamics. There is no need to explicitly define bonds and molecules, 

which allows ab initio molecular dynamics to model chemical reactions and processes involving 

charge transfer.92,93 Only one set of parameters is used per atomic species for DFT calculations, 

in contrast to having possibly two or three different sets of parameters for just carbon in one 

molecule in classical molecular dynamics. With infinite computing time and power, it is 

theoretically possible to more accurately model any process accessible with classical molecular 

dynamics using ab initio molecular dynamics. In reality, many properties accessible with 

classical molecular dynamics are not accessible with ab initio molecular dynamics due to 

limitations on system size and length. DFT calculations are simply much more computationally 

intensive than the parametrized force field calculations used in classical molecular dynamics, and 

one such calculation is required per time step. As a result, ab initio molecular dynamics is 

typically limited to simulating hundreds of atoms for tens of picoseconds. Thus, many of the 

dynamic properties such as viscosities and diffusion coefficients that can be extracted from 

classical molecular dynamics simulations are not accessible with ab initio molecular dynamics. 

Ab initio molecular dynamics studies thus focus on properties such as the coordination 

environment of lithium ions which are believed to equilibrate quickly. In this thesis, I evaluate 

the validity of the assumption that ab initio molecular dynamics is well suited to study such 

properties by examining how much effect initial system configurations have on the results of ab 

initio molecular dynamics simulations. This work will be discussed in the Ab Initio Molecular 

Dynamics Methodology Study section.  
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2 Ab Initio Molecular Dynamics Methodology Study 

This section is adapted from Crabb et al. (2020)94 and reprinted with permission from J. Chem. 

Theory Comput. 2020, 16, 12, 7255–7266. Copyright 2020 American Chemical Society. 

In this study, I show that equilibration methodology and sampling affect the behavior of ab initio 

molecular dynamics (AIMD) simulations of systems of common solvents and salts found in 

lithium–oxygen batteries. I compare two equilibration methods: (1) using an AIMD temperature 

ramp and (2) using a classical MD simulation followed by a short AIMD simulation both at the 

target simulation temperature of 300 K. I also compare two different classical all-atom force 

fields: PCFF+ and OPLS. By comparing the simulated association/dissociation behavior of 

lithium salts in different solvents with the experimental behavior, I find that equilibration with 

the classical force field that produces more physically accurate behavior in the classical MD 

simulations, namely OPLS, also results in more physically accurate behavior in the AIMD runs 

compared to equilibration with PCFF+ or with the AIMD temperature ramp. Equilibration with 

OPLS outperforms even the pure AIMD equilibration because the classical MD equilibration is 

much longer than the AIMD equilibration (nanosecond vs. picosecond timescales). These longer 

classical simulations allow the systems to find a more physically accurate initial configuration, 

and in the short simulation times available for the AIMD production runs, the initial 

configuration has a large impact on the system behavior. I also demonstrate the importance of 

averaging coordination number over multiple starting configurations and Li+ ions, as the 

majority of Li+ ions do not undergo a single association or dissociation event even in a ~40 ps 

long simulation and thus do not sample a statistically significant portion of the phase space. 

These results show the importance of both equilibration method and sufficient independent 

sampling for extracting experimentally relevant quantities from AIMD simulations. 
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2.1 Introduction 

In recent years, increased motivation for high-capacity electrochemical energy storage has led to 

the use of molecular dynamics (MD) simulations to better understand physicochemical processes 

that occur inside batteries such as cation solvation17–19,21–23 and solid electrolyte interphase 

formation95,96 on the molecular level. Both classical MD with empirically derived forces and ab 

initio molecular dynamics (AIMD) with forces from density functional theory (DFT) 

calculations have been employed,17,18,21,22,26–28,95 with AIMD limited to much smaller timescales 

(tens of picoseconds for AIMD21,22 vs. tens to hundreds of nanoseconds for classical MD19,23) 

and system sizes (hundreds of atoms for AIMD21,22,27 vs. thousands of atoms for classical 

MD19,23). Despite these limitations, AIMD has gained popularity in battery research because of 

its advantages, including transferability between systems and ability to accurately describe 

properties such as polarization and charge transfer,18,21 which are especially important for 

examining properties such as lithium-ion solvation in different electrolytes.17,18,21 Classical force 

fields, on the other hand, are typically parametrized so that specific properties of a given system 

will match values from experiments or ab initio theories such as DFT,19,82 which can result in 

limited transferability as well as challenges in accurately modeling polarization, charge transfer 

effects, and chemical reactions.  

Most AIMD studies document many simulation parameters such as time step, simulation length, 

and temperature,18,21 in some cases justifying the choice of a specific temperature21 or energy 

cutoff.20 However, I have found that there is less discussion and evaluation of how systems are 

equilibrated and sampled for AIMD simulations. Typically, the first few picoseconds of a 

production AIMD simulation are treated as equilibration and discarded from the data 

collection.17,18,21,22,26–28,95 Sometimes this is preceded by a classical MD simulation.17,20,26,28 
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When a classical MD simulation is used, there is often minimal evaluation of or justification for 

the choice of force field. The implicit assumption for many AIMD solvation studies is thus that a 

30–50 ps AIMD simulation is long enough that the initial configuration and equilibration method 

are of minimal importance. Also, many papers use only one or two initial configurations.20,21,26,27 

This methodology of executing only one or two production runs relies on the assumption that the 

system can sample a significant portion of phase space in the tens of picoseconds of simulation 

time of an AIMD simulation.  

However, recent studies on cation coordination in aqueous solutions have questioned the validity 

of these assumptions.97–100 In an AIMD study of highly concentrated LiCl aqueous solutions, the 

length of the simulation (30 ps) was directly compared to the timescale of the exchange of water 

from the Li+-ion coordination shell, which is typically on the order of 30–100 ps;101,102 the 

authors therefore deemed the mechanism too slow to observe full reorganization of water in the 

Li+ coordination shells in their simulation.97 As a result, the coordination environments in the 

study were found to be biased by the classical MD method used for equilibration.97 However, 

because the timescale of the Li+–Cl– interaction was only ~4.5 ps, chloride exchange was 

observed in the Li+ coordination shells, and the study could draw conclusions about the Li+ 

coordination environment.97  

Unfortunately, most AIMD studies do not include such a detailed discussion of the timescales of 

the ion pairing and solvent reorganization processes present in the systems being examined and 

how these timescales influence the possible effects of the equilibration methodology. Thus, to 

evaluate these assumptions for the specific case of lithium dynamics in different environments, I 

examined two different types of equilibration techniques: (1) an AIMD temperature ramp 

method with no classical equilibration and (2) classical MD followed by a short AIMD 
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equilibration step at the target temperature. For the classical MD method, I also compared two 

classical force fields: PCFF+ and OPLS. To evaluate the effect of the equilibration methods, I 

examined the lithium solvation environment in several systems with different solvents and 

lithium salts that are commonly used in lithium–oxygen batteries8,9,103,104 and compared them to 

recent experimental work from Leverick et al.9 

2.2 Methodology 

2.2.1 Systems 

Each simulation system consisted of 50 solvent molecules and 3 lithium-salt molecules. The 

solvents were acetonitrile (MeCN), dimethyl sulfoxide (DMSO), and 1,2-dimethoxyethane 

(DME). The salts were lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium 

trifluoromethanesulfonate (LiTfO), and lithium trifluoroacetate (LiTFA). These solvents and 

salts were selected due to their extensive use in lithium–oxygen battery research,8,9,103,104 

allowing for direct comparison with experimental results. The ratio of 3 salt molecules to 50 

solvent molecules corresponds to molarities ranging from 0.5 M to 1.1 M for the systems 

simulated, which is similar to the range of molarities investigated for such systems in the 

literature.9,103,104 The initial amorphous configurations were generated using MedeA® (when 

either pure AIMD or the PCFF+ force field was used for equilibration) or fftool and packmol 

(when the OPLS force field was used for equilibration),105–108 and the results for three 

simulations with different random starting configurations were averaged for each solvent–salt 

combination. The molecular structure for each solvent and salt molecule is shown in Figure 3. 
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Figure 3: The solvent (a–c) and salt (d–f) molecules used in the simulations. The atomic color 
code: carbon – black, fluorine – green, hydrogen – white, lithium – blue, nitrogen – purple, 

oxygen – red, sulfur – yellow 

 

The density of each system was extrapolated from the experimentally known densities of the 

solvents and salts.109 Both experiments by my collaborators measuring the density as a function 

of molarity and data in the literature support the accuracy of this methodology.110 Densities were 

calculated this way rather than by performing simulations in the isothermal–isobaric (NpT) 

ensemble for each system because of the prohibitive expense of performing NpT simulations 

with AIMD. Although it would have been possible to use classical simulations in the NpT 

ensemble to find equilibrium densities with each classical force field investigated, this would 

have impaired a direct comparison between the purely AIMD equilibration and the classical MD 

equilibration methods. The extrapolated density 𝜌௠௜௫௧௨௥௘ was calculated using 

𝜌௠௜௫௧௨௥௘ =  
𝑉௦௔௟௧ ∗ 𝜌௦௔௟௧ + 𝑉௦௢௟௩௘௡௧ ∗ 𝜌௦௢௟௩௘௡௧

𝑉௦௔௟௧ + 𝑉௦௢௟௩௘௡௧
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where 𝜌௦௔௟௧ and 𝜌௦௢௟௩௘௡௧ are the experimentally known densities of the salt and solvent and 𝑉௦௔௟௧ 

and 𝑉௦௢௟௩௘௡௧ are the volumes of salt and solvent in the system, given by 

𝑉௫ =  
(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑥) ∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑥
 

where 𝑥 represents either the salt or solvent. The same procedure has been used to find 

“experimental” mass densities for a classical MD study in Molinari et al.109 

To assess the validity of this approximation, the extrapolated densities were compared to both 

the equilibrium densities obtained with classical NpT calculations and the experimentally 

measured densities. For all but one system, the equilibrium densities obtained with classical NpT 

calculations were within 5% of the extrapolated densities and the experimentally measured 

densities, as will be discussed in Tables 6 and 7. For further validation, I also performed classical 

NVT simulations for the solvent–LiTFSI systems and AIMD simulations for the MeCN–LiTFSI 

system with the density increased or decreased by 10% with respect to the extrapolated value and 

observed no appreciable change in association/dissociation behavior. More details are included 

in the Density Study section of the Results and Discussion, but I can conclude that any 

deviations of the extrapolated densities from the true densities of the systems are unlikely to have 

an effect on the overall association/dissociation behavior of the systems.  

The experimental methodology is included in the Appendix.  

2.2.2 Ab Initio Molecular Dynamics Methods 

Two different AIMD simulation methods for these explicit solvent simulations were investigated 

in this study: “pure” AIMD and classical MD equilibration + AIMD. All AIMD simulations 

were performed using the Vienna Ab initio Simulation Package (VASP) with the projector 
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augmented wave (PAW) method.111–116 All AIMD simulations used the Perdew–Burke–

Ernzerhof (PBE) functional with the zero damping DFT-D3 correction method,117–119 Γ-point 

Brillouin zone sampling, a planewave energy cutoff of 400 eV, an energy convergence criterion 

of 10–5 eV, and a time step of 1 fs. I also tested the effect of removing the DFT-D3 correction for 

two solvent–salt systems and found no significant impact on the overall association/dissociation 

behavior (as discussed in the Results and Discussion section). All equilibration was performed in 

the canonical (NVT) ensemble using a Nosé–Hoover thermostat with a Nosé frequency of ~834 

cm–1 corresponding to a period of 40 fs, while all production runs were performed in the 

microcanonical (NVE) ensemble. For the simulations using the MeCN and DMSO solvents, each 

production run was at least 11 ps with the first picosecond excluded from the final data to allow 

for further equilibration due to the transition between the NVT and NVE ensembles. For the DME 

solvent simulations, each production run was at least 6 ps with the first picosecond excluded 

from the final data. Because DME is a larger molecule than MeCN or DMSO, the total number 

of electrons in the DME systems is significantly larger, and thus I could not run for as long a 

simulation time as for the MeCN and DMSO systems. Though these simulation times are short 

compared to some AIMD studies that use 25–50 ps simulations,18,20–22,26 important dynamical 

information can still be obtained,17,27,28 and I will show later that the properties considered in this 

study did not vary significantly even when selected systems were simulated for ~40 ps. Much 

more important was using multiple independent initial configurations, as will also be discussed 

in the Results and Discussion section. 

2.2.2.1 Pure Ab Initio Molecular Dynamics Equilibration Method 

For the “pure” AIMD equilibration method, all the equilibration was performed using an AIMD 

temperature ramp in the NVT ensemble, with the temperature of the system initially set at 600 K, 
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then lowered to 450 K, until finally reaching 300 K. The system was simulated at each of the 

temperatures for 3 ps, with a separate 0.5 ps simulation used to transition between each pair of 

temperatures. Thus, the total AIMD NVT equilibration simulation time was 10 ps. The high 

temperatures were used to accelerate relaxation processes, and this temperature ramp method has 

been used in previous AIMD studies examining the solvation of different cations in water.120,121 

However, care had to be taken in this study because in some cases 600 K and even 450 K are 

above the boiling points for the solvents and the decomposition temperatures of the salts. Due to 

the short lengths of the equilibration simulations, this typically was not important. However, I 

observed an unphysical decomposition of one of the salt counter anions (typically in the form of 

a dissociation of one or more O or F atoms from the anion) due to the high temperatures in a few 

of the simulations; these simulations were discarded and replaced with new randomly generated 

configurations. 

2.2.2.2 Classical Molecular Dynamics Equilibration Method 

All classical MD simulations were performed with the LAMMPS code.122 For the classical MD 

equilibration method, the first equilibration step was a minimization step using conjugate 

gradients followed by a short 100 ps classical MD simulation within the NVT ensemble with a 

time step of 0.5 fs and the temperature set to 300 K. The cutoff distance for Lennard-Jones and 

the real-space part of the Coulomb interactions was 9.5 Å, with a simple cutoff used beyond this 

distance, and tail corrections were applied to the 1/r6 term in the potentials. Then, a longer 

classical MD simulation within the NVT ensemble was executed for 100 ns, still with a time step 

of 0.5 fs and at 300 K. The cutoff distance for Lennard-Jones and the real-space part of the 

Coulomb interactions was also unchanged at 9.5 Å, and tail corrections were still applied to the 

1/r6 term in the potentials, but long-range Coulomb interactions were calculated using the 
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particle–particle–particle–mesh (PPPM) solver with an accuracy of 10–5 instead of using a simple 

cutoff. This longer simulation is the one used for the classical MD analysis in Table 8 in the 

Results section. After the classical MD simulation, further equilibration was performed by 

executing a 3 ps AIMD NVT simulation at 300 K before executing the AIMD production runs in 

the NVE ensemble, as is common in previous work.17,18,21,22,26–28,95,123 

2.2.2.3 Classical Force Fields 

Using classical MD as an equilibration method for AIMD is a standard practice in the 

literature,17,20,26,28 usually with the implicit assumption that details such as the classical force 

field used will not have a significant impact on the ab initio dynamics because an AIMD 

simulation of 10–50 ps is long enough to obtain a fairly representative sampling of low energy 

configurations. In order to investigate this, I selected two very different classical force fields for 

comparison with each other and with the pure AIMD: PCFF+ (an extension of PCFF, Polymer 

Consistent Force Field) and OPLS (Optimized Potentials for Liquid Simulations).83,107,108,124–131 

The versions of each used in this study are all-atom force fields, but they are otherwise 

significantly different.  

PCFF+ is a force field largely based on the CFF91 force field intended for use with both 

polymers and organic materials.82 However, I predicted that PCFF+ would perform poorly for 

the types of systems in this study (organic electrolytes and lithium salts), as the PCFF/PCFF+ 

force field was not parametrized for electrolytes.82 In general, PCFF/PCFF+ does not appear to 

be extensively used for simulating the types of systems used in this study, namely small lithium-

salt molecules in liquid electrolytes. In contrast, OPLS is widely used for modeling the solvents 

and salts in this study,84–86,131 and there has been continuing work to improve availability and 

accuracy of the parameters.83,108,124–131 As such, I anticipated the classical MD simulations with 
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the OPLS force field would more accurately match experiments than those with the PCFF+ force 

field would. This difference in accuracy between the two classical force fields helps to gauge the 

importance of equilibration in AIMD.  

2.2.2.4 Classical Molecular Dynamics NpT Calculations 

To aid in the comparison of the PCFF+ and OPLS classical force fields, NpT simulations were 

also performed on both large pure solvent systems (300 solvent molecules) and production run 

sized solvent–salt systems (50 solvent molecules and 3 salt molecules). These NpT simulations 

were 5 ns long with a time step of 0.5 fs after a short 100 ps NVT equilibration run. Other 

settings were the same as for the other LAMMPS NVT simulations. 

2.2.3 Coordination Number Calculations 

To compare the different AIMD equilibration methods, I focused on the Li+-ion solvation 

environment. Specifically, I calculated the coordination numbers between Li and either N (for 

MeCN) or O (for DMSO and DME) in the solvent molecules and between Li and O in the salt 

counter anions. In a few cases, association was observed between Li+ ions and N in the TFSI– 

counter anions, in which case this coordination number was also calculated. 

The Li–N and Li–O coordination numbers are defined as the number of N or O atoms within the 

first solvation shell of the Li+ ion. The total Li coordination of each system is simply the sum of 

the Li–N and/or Li–O coordination numbers from the possible Li–solvent and Li–salt 

interactions (e.g., for the MeCN–LiTFSI system, there can be Li–N coordination with the N in 

both the MeCN and the TFSI– counter anions and Li–O coordination with the O in the TFSI– 

counter anions; the total Li coordination is the sum of these three contributions). The 

coordination number was calculated using the radial distribution function (RDF), denoted in 
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equations by 𝑔(𝑟).132,133 The RDF is the probability of finding another atom of a specific type 𝛼 

in a shell at a distance 𝑟 and with thickness 𝑑𝑟 from a reference atom, which in this study is a Li+ 

ion. In terms of the local density 𝜌ఈ(𝑟) of atoms of type 𝛼, the partial RDF for species 𝛼 is given 

by 

𝑔ఈ(𝑟) =
𝑑𝑛ఈ(𝑟)

4𝜋 𝑑𝑟 𝜌ఈ(𝑟)
  

The coordination number 𝑛ఈ for the first solvation sphere is then defined as the integral of the 

RDF up to its first minimum 𝑟௠௜௡ 

𝑛ఈ(𝑟௠௜௡) = න 4𝜋𝑟ଶ𝑔ఈ(𝑟)
௥೘೔೙

଴

𝜌ఈ(𝑟)𝑑𝑟 

In practice, the exact location of the first minimum of the RDF could be ill-defined as it was 

averaged over different time steps and over the three Li+ ions in the simulation. As such, I 

averaged the RDF values into bins 0.1 Å thick (𝑑𝑟), fitted the RDF for the first solvation shell to 

a Gaussian function, extracted the mean and standard deviation of the fit, and defined the 

coordination number as the numerical integral of the RDF at three standard deviations above the 

mean. The reported data was then averaged over the three simulations performed for each 

system. The Li–O RDF plots in MeCN–LiTFSI for two different simulations are shown in 

Figure 4. 

In the majority of cases, a Gaussian function was a good fit for the RDF for the solvation shell, 

and this procedure provided a consistent, unambiguous definition of coordination number (see 

Figure 4a–b). However, in a few cases (particularly for some of the classical MD simulations 

using PCFF+), the first solvation shell and therefore the coordination number was ill-defined 

because multiple Li+ ions and counter anions clustered into one large structure (see Figure 4c–d). 
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Figure 4: The RDF functions for Li–O (a, c) and system snapshots (b, d) for simulations of 
MeCN–LiTFSI systems. (a–b) an AIMD simulation using pure AIMD equilibration; (c–d) a 

classical MD simulation with the PCFF+ force field. The dashed red lines in (a) and (c) are the 
RDF data with bin widths of 0.1 Å, while the solid lines are the fitted Gaussian function. The 
grey vertical lines on the RDF plots in (a) and (c) indicate three standard deviations above the 
mean for the Gaussian function. The integral of the RDF function at this point is defined as the 
coordination number. In the classical MD simulation, all the Li+ ions and TFSI– counter anions 

were in one large cluster as seen in (d). As such, the first solvation shell and coordination 
number are ill-defined. In contrast, there is one clear peak in the RDF of the AIMD simulation 

in (a), as there was no large cluster formation in the simulation as seen in (b). 
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I also provide experimental coordination number data from a recent study by Leverick et al. for 

comparison.9 However, note that these experimental coordination numbers are obtained from 

deconvoluted Raman spectra rather than direct distance measurements as in my study. Due to the 

different calculation methods, I expect well-equilibrated AIMD simulations to reproduce the 

general association/dissociation trends from the experimental work but not necessarily the exact 

coordination values. 

2.3 Results and Discussion 

The first two subsections on the results of the effect of density and the DFT-D3 correction on the 

simulation results support the validity of my simulation procedures. The remaining subsections 

are on the comparison of classical force fields and of ab initio molecular dynamics 

methodologies and illustrate the importance of equilibration method and sampling. 

2.3.1 Density Study 

2.3.1.1 Comparison of Extrapolated and Experimental Densities 

The extrapolated and experimentally measured densities for the six solvent–salt systems studied 

are shown in Table 1. For all systems, the magnitude of the difference between the extrapolated 

and experimental densities was under 7%, and the average difference was 2.6%. This motivated 

my simulations at 10% above and below the extrapolated densities (described in the following 

section) to test the effect of the exact densities used in the simulations. 
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Salt Solvent 
Measured 

Experimental 
Densities in g/mL 

Extrapolated 
Densities in 

g/mL 

Percent Error of 
Extrapolated vs. 

Experimental 

LiTFSI 

MeCN 0.95 0.89 –6.2% 

DMSO 1.18 1.14 –4.0% 

DME 0.96 0.92 –4.4% 

LiTFA 
MeCN 0.85 0.86 +0.6% 

DMSO 1.14 1.14 +0.0% 

LiTfO MeCN 0.89 0.88 –0.4% 

Average Magnitude of Difference 2.6% 

Table 1: Comparison of measured experimental densities and extrapolated densities for different 
solvent–salt systems with a ratio of 3 salt molecules to 50 solvent molecules. 

 

2.3.1.2 Effect of Density on Solvent–Salt Association/Dissociation Behavior 

To verify that my extrapolated densities are sufficiently accurate to reproduce the physical 

association/dissociation behavior in the solvent–salt systems studied, I performed classical MD 

simulations with the OPLS force field for the solvent–LiTFSI systems with densities 10% above 

and below the extrapolated densities. The results are shown in Table 2. When the density was 

increased or decreased by 10%, I observed no difference in association/dissociation behavior, 

and the numerical coordination numbers differed by at most 0.1. I can thus conclude that any 

deviations of my extrapolated density from the true experimental density of the systems are 

unlikely to have an effect on the association/dissociation behavior of the systems. 
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Salt Solvent 
Density 

in g/mL a 

Li–N (MeCN) /  
Li–O (DME and 

DMSO) in Solvent 

Li–O in 
Salt 

Total Li 
Coordination b 

Li-Salt 
Associated or 
Dissociated? 

LiTFSI 

MeCN 

0.80 4.4 0.4 4.8 D 

0.89 4.5 0.4 4.9 D 

0.98 4.6 0.4 5.0 D 

DMSO 

1.02 5.1 0.1 5.2 D 

1.14 5.2 0.1 5.2 D 

1.25 5.4 0.0 5.4 D 

DME 

0.83 4.1 0.7 4.9 A 

0.92 4.2 0.6 4.9 A 

1.01 4.0 0.8 4.8 A 

Table 2: Effect of density on coordination of Li+ ions with N and O atoms in solvents and salts 
for classical MD NVT simulations using OPLS with 50 solvent and 3 LiTFSI salt molecules. 

(a) Densities 10% above and below the extrapolated density were used, and no change in 
association/dissociation behavior was observed. (b) Total coordination numbers were calculated 

separately and therefore may not exactly equal the sum of the Li–solvent and Li–salt 
coordination numbers due to rounding. 

 

I then performed one additional test for the MeCN–LiTFSI system by performing one AIMD 

simulation at the densities 10% above and below the extrapolated density. The coordination 

number results and the comparison to the coordination numbers for the extrapolated density are 

shown in Table 3. Again, the overall association/dissociation behavior was unchanged for the 

system, and the numerical coordination numbers found were within the variation of the three 

runs performed at the extrapolated density. This further supports my assertion that a density 

difference between simulation and experiment is not the reason for any difference in the 

coordination behavior. 
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Salt Solvent 
Density 

in g/mL a 
Li–N (MeCN) 

in Solvent 
Li–O in 

TFSI 
Total Li 

Coordination 

Li-Salt 
Associated or 
Dissociated? 

LiTFSI MeCN 

0.80 3.6 0.3 3.9 D 

0.89 b 3.9 0.1 c 4.0 D 

0.98 4.0 0.0 4.0 D 

Table 3: Effect of density on coordination of Li+ ions with N and O atoms in the MeCN–LiTFSI 
systems for AIMD NVE simulations using OPLS equilibration with 50 MeCN and 3 LiTFSI salt 

molecules. (a) Densities 10% above and below the extrapolated density were used, and no 
change in association/dissociation behavior was observed. (b) The coordination numbers for the 
extrapolated density of 0.89 g/mL are averaged over three runs, while the data for the other two 

densities are from only one run. (c) The Li–O coordination numbers for the three runs at the 
extrapolated density were 0.0, 0.0, and 0.3, so the coordination numbers observed for the lower 
and higher density systems are within the variation of the systems at the extrapolated density. 

 

2.3.2 Effect of DFT-D3 Correction 

To evaluate whether the zero damping DFT-D3 correction method used in the AIMD simulations 

had an appreciable effect on the simulation dynamics and thus the calculated coordination 

numbers, I performed two AIMD simulations without the D3 correction using the pure AIMD 

temperature ramp equilibration method. I selected the MeCN–LiTFSI and DMSO–LiTFA 

systems for the test because the association/dissociation behavior for the pure AIMD simulations 

for these systems did not match experimental behavior, as will be seen in Tables 9 and 10. The 

results of the DFT-D3 study are shown below in Table 4. In both systems, the overall 

association/dissociation behavior was the same for the simulations with and without the D3 

correction (although coordination between one Li+ ion and F in TFA was observed in the 

DMSO–LiTFA simulation without the D3 correction and was not observed in any of the 

simulations with the D3 correction or in experiments9). The exact effect of the D3 correction on 
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dynamic behavior merits further study, but there is no evidence from my test cases that the D3 

correction is responsible for the different association/dissociation behavior observed in 

simulations and experiments. 

 

Salt Solvent 
D3 

Correction? 

Li–N 
(MeCN) / 

Li–O 
(DMSO) in 

Solvent 

Li–O 
in Salt 

Li–F 
in Salt 

Total Li 
Coordination a 

Li-Salt 
Associated 

or 
Dissociated? 

LiTFSI MeCN 
Yes b 3.2 0.7 0.0 3.8 A 

No c 3.3 0.7 0.0 3.9 A 

LiTFA DMSO 
Yes b 3.0 0.8 0.0 3.8 A 

No c 2.9 0.7 0.3 d 3.9 A 

Table 4: Effect of DFT-D3 correction on coordination of Li+ ions with N and O atoms in 
solvents and salts for AIMD NVE simulations equilibrated with an AIMD temperature ramp with 
50 solvent and 3 salt molecules. (a) Total coordination numbers were calculated separately and 

therefore may not exactly equal the sum of the Li–solvent and Li–salt coordination numbers due 
to rounding. (b) The data for the D3 corrections corresponds to the data in Tables 9 and 10 and is 

thus the average over three 10 ps simulations for each system. (c) The data without D3 
corrections is from one 10 ps production run for the MeCN–LiTFSI system and one 5 ps 

production run for the DMSO–LiTFA system. (d) In both systems, I saw no significant change is 
overall association/dissociation behavior when the D3 correction was removed, although I did 

observe Li–F coordination in the DMSO–LiTFA system without the D3 corrections, which was 
not observed in any of the simulations with the D3 correction or in experiments.9 

 

2.3.3 Comparison of Classical Force Fields 

In order to evaluate the dependence of the AIMD results on the method used for equilibration, it 

was first necessary to compare different classical force fields. As discussed above, I selected 

PCFF+ which was expected to be inaccurate for modeling the solvent–salt systems because it 

was not parametrized for such systems82 and OPLS which was expected to more accurately 

model the systems as there has been continuing work to improve its parameterization for similar 



42 
 

electrolyte–salt systems and it is generally more prevalent in the literature.84–86,131 The 

comparison of these force fields included NpT and NVT simulations. 

2.3.3.1 Classical Molecular Dynamics NpT Simulations 

The results for the classical MD NpT simulations for the pure solvent and the solvent–salt 

systems are given in Tables 5–7. As was hypothesized, simulations using OPLS better 

reproduced the experimental densities on average than simulations using PCFF+. However, 

unexpectedly OPLS did not perform better than PCFF+ for every system. For example, the 

equilibrium density for the pure MeCN system found using OPLS was ~5% smaller than the 

experimental value, whereas the density found using PCFF+ was only ~1% larger than the 

experimental one (as seen in Table 5).  

 

Solvent 
Experimental 

Density in g/mL 

Density in g/mL and Percent Error vs. Experiment 

PCFF+ OPLS 

MeCN 0.786 0.796 +1.3% 0.749 –4.7% 

DMSO 1.100 1.040 –5.5% 1.097 –0.3% 

DME 0.868 0.832 –4.1% 0.864 –0.5% 

Average Magnitude of Error 3.6% 1.8% 

Table 5: Equilibrium solvent densities for MeCN, DMSO, and DME calculated from classical 
MD NpT simulations of 300 solvent molecules using LAMMPS compared with experimentally 

known densities. 
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 Salt Solvent 
Extrapolated 
Densities in 

g/mL 

Measured 
Experimental 
Densities in 

g/mL 

PCFF+ 

Density 
in g/mL 

Percent Error 
vs. Extrapolated 

Percent Error 
vs. Measured 

LiTFSI 

MeCN 0.89 0.95 0.99 +10.7% +3.9% 

DMSO 1.14 1.18 1.16 +2.1% –2.0% 

DME 0.92 0.96 0.93 +1.1% –3.3% 

LiTFA 
MeCN 0.86 0.85 0.88 +2.8% +3.4% 

DMSO 1.14 1.14 1.09 –4.0% –4.0% 

LiTfO MeCN 0.88 0.89 0.90 +2.0% +1.7% 

Average Magnitude of Error   3.8% 3.0% 

Table 6: Equilibrium densities for different solvent–salt systems from classical MD NpT 
simulations of 50 solvent molecules and 3 salt molecules with the PCFF+ force field compared 

with the extrapolated and experimental densities. 

 

Salt Solvent 
Extrapolated 
Densities in 

g/mL 

Measured 
Experimental 
Densities in 

g/mL 

OPLS 

Density 
in g/mL 

Percent Error 
vs. Extrapolated 

Percent Error 
vs. Measured 

LiTFSI 

MeCN 0.89 0.95 0.90 +0.7% –5.6% 

DMSO 1.14 1.18 1.19 +4.8% +0.6% 

DME 0.92 0.96 0.96 +4.4% –0.2% 

LiTFA 
MeCN 0.86 0.85 0.83 –3.1% –2.4% 

DMSO 1.14 1.14 1.15 +1.3% +1.3% 

LiTfO MeCN 0.88 0.89 0.86 –2.5% –2.9% 

Average Magnitude of Error   2.8% 2.1% 

Table 7: Equilibrium densities for different solvent–salt systems from classical MD NpT 
simulations of 50 solvent molecules and 3 salt molecules with the OPLS force field compared 

with the extrapolated and experimental densities. 
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2.3.3.2 Classical Molecular Dynamics NVT Simulations  

The coordination number results for the classical MD NVT simulations for the solvent–salt 

systems are given in Table 8. Experimental values from Leverick et al. are provided for 

comparison.9 The final column of Table 8 indicates association or dissociation, with association 

defined as an average coordination number between the Li+ ion and N or O in the salt counter 

anion of ≥ 0.5. The PCFF+ force field resulted in the correct association behavior in only one of 

the six systems investigated (only MeCN–LiTFA), while the OPLS force field resulted in the 

correct behavior in four of the six cases (all except DME–LiTFSI and DMSO–LiTFA). The 

OPLS force field was marginal in one of the two cases where the simulation behavior did not 

match experiment with a coordination number of 0.6 for Li–O in TFSI in the DME–LiTFSI 

system when experiments showed dissociation. In all but one of the cases where simulation 

behavior did not match the experimental behavior for either force fields (the exception being the 

PCFF+ force field with the MeCN–LiTfO system), the Li+ ions in the simulations were on 

average associated with a salt counter anion, while they were on average dissociated in the 

experiments. This suggests that both the PCFF+ and OPLS force fields have too strong an 

interaction between the Li+ ions and counter anions in some systems. However, neither force 

field always results in association between the Li+ ions and counter anions for every system, so 

this problem must be related to the parametrization of individual molecules. 
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Salt Solvent 
Method / 

Force Field 

Li–N 
(MeCN) / 

Li–O (DME 
and DMSO) 
in Solvent 

Li–O 
in 

Salt 

Li–N 
in Salt 
(TFSI 
only) 

Total Li 
Coordination a 

Li-Salt 
Associated or 
Dissociated? b 

LiTFSI 

MeCN 

Experiment c 4.3 0.3 0.0 d 4.6 D 

PCFF+ 1.2 2.7 1.9 5.8 A 

OPLS 4.5 0.4 0.0 4.9 D 

DMSO 

Experiment c 4.3 0.0 0.0 d  4.3 D 

PCFF+ 3.6 1.9 1.1 6.6 A 

OPLS 5.2 0.1 0.0 5.2 D 

DME 

Experiment c 4.4 0.2 0.0 d  4.6 D 

PCFF+ 1.1 2.9 1.9 5.9 A 

OPLS 4.2 0.6 0.0 4.9 A 

LiTFA 

MeCN 

Experiment c 1.2 1.5 

  

2.7 A 

PCFF+ 2.4 3.1 5.4 A 

OPLS 1.8 3.0 4.8 A 

DMSO 

Experiment c 4.2 0.1 4.3 D 

PCFF+ 2.8 2.1 4.9 A 

OPLS 4.1 1.3 5.4 A 

LiTfO MeCN 

Experiment c 1.7 1.9 3.6 A 

PCFF+ 5.6 0.2 5.8 D 

OPLS 2.8 2.7 5.4 A 

Table 8: Coordination numbers for Li+ ion with N and O atoms in solvents and salts for classical 
MD NVT simulations with 50 solvent and 3 salt molecules averaged over three simulations for 
each system. (a) Total coordination numbers were calculated separately and therefore may not 

exactly equal the sum of the Li–solvent and Li–salt coordination numbers due to rounding. 
(b) The final column indicates association or dissociation, with association defined as an average 

coordination number for the Li+ ion and N or O in the salt counter anion of ≥ 0.5. 
(c) Experimental values from Leverick et al. are provided for comparison.9 (d) Coordination 

between Li and N in TFSI was not reported in the experimental work as it was never observed. 

 

Taken as a whole, the classical MD results indicate that the OPLS force field better reproduces 

experimentally known properties such as density and coordination number than the PCFF+ force 
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field does. This provided a good opportunity to test the dependence of AIMD results on the 

choice of classical force field used for equilibration.  

2.3.4 Comparison of Ab Initio Molecular Dynamics Methodologies 

The coordination number results for the AIMD simulations with different equilibration methods 

are shown in Tables 9–11. Of the six systems investigated, the AIMD with the PCFF+ classical 

equilibration reproduced the same association/dissociation behavior as the experimental results 

in only one of the six cases (only MeCN–LiTFA). The AIMD with the OPLS classical 

equilibration reproduced the same behavior as experiments in four of the six cases (all except 

DME–LiTFSI and DMSO–LiTFA). The AIMD with purely AIMD initialization reproduced the 

same association/dissociation behavior as the experimental results in three of the six cases 

(matching for DMSO–LiTFSI, MeCN–LiTFA, and MeCN–LiTfO), although two of the cases 

(MeCN–LiTFSI and DMSO–LiTFA) with different behavior were marginal (coordination 

numbers with the salt of ~0.7 and ~0.8 when the experiment showed dissociation). This was also 

true of the two cases (DME–LiTFSI and DMSO–LiTFA) where the results for OPLS 

initialization did not match the experimental results (coordination numbers with the salt of ~0.7 

when the experiment showed dissociation). In these marginal cases, it is possible that my sample 

was not large enough and that averaging over more than three initial configurations would result 

in association/dissociation behavior more closely matching experiment. However, for the OPLS 

cases, the OPLS classical MD results for the same systems also did not match experiment, so it is 

also possible that the disagreement in the AIMD results is due to physically unrealistic starting 

configurations from the classical MD. 
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Salt Solvent 
Equilibration 

Method 
Force 
Field 

Li–N 
(MeCN) / 

Li–O (DME 
and DMSO) 
in Solvent 

Li–O 
in 

TFSI 

Total Li 
Coordination a 

Li-Salt 
Associated or 
Dissociated? b 

LiTFSI 

MeCN 

Experiment c  4.3 0.3 4.6 D 

Classical MD 
PCFF+ 2.1 1.8 3.9 A 

OPLS 3.9 0.1 4.0 D 

AIMD  3.2 0.7 3.8 A 

DMSO 

Experiment c  4.3 0.0 4.3 D 

Classical MD 
PCFF+ 3.0 0.9 3.9 A 

OPLS 3.7 0.2 4.0 D 

AIMD  3.8 0.1 3.9 D 

DME 

Experiment c  4.4 0.2 4.6 D 

Classical MD 
PCFF+ 1.8 2.3 4.1 A 

OPLS 3.3 0.7 4.1 A 

AIMD  3.2 1.2 4.3 A 

Table 9: Coordination numbers for Li+ ion with N and O atoms in different solvents and the 
TFSI– anion for AIMD simulations with 50 solvent and 3 salt molecules averaged over three 
simulations for each system. (a) Total coordination numbers were calculated separately and 

therefore may not exactly equal the sum of the Li–solvent and Li–salt coordination numbers due 
to rounding. (b) The final column indicates association or dissociation, with association defined 

as an average coordination number for the Li+ ion and O in the salt counter anion of ≥ 0.5. 
(c) Experimental values from Leverick et al. are provided for comparison.9 Coordination 

between Li and N in TFSI is not reported as it was never observed in either the experimental 
work or AIMD simulations. 
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Salt Solvent 
Equilibration 

Method 
Force 
Field 

Li–N 
(MeCN) / 

Li–O 
(DMSO) 

in Solvent 

Li–O 
in 

TFA 

Total Li 
Coordination a 

Li-Salt 
Associated or 
Dissociated? b 

LiTFA 

MeCN 

Experiment c  1.2 1.5 2.7 A 

Classical MD 
PCFF+ 1.5 2.3 3.8 A 

OPLS 1.6 2.2 3.8 A 

AIMD  2.9 1.0 3.9 A 

DMSO 

Experiment c  4.2 0.1 4.3 D 

Classical MD 
PCFF+ 2.6 1.3 3.9 A 

OPLS 3.2 0.7 3.8 A 

AIMD  3.0 0.8 3.8 A 

Table 10: Coordination numbers for Li+ ion with N and O atoms in different solvents and the 
TFA– anion for AIMD simulations with 50 solvent and 3 salt molecules averaged over three 
simulations for each system. (a) Total coordination numbers were calculated separately and 

therefore may not exactly equal the sum of the Li–solvent and Li–salt coordination numbers due 
to rounding. (b) The final column indicates association or dissociation, with association defined 

as an average coordination number for the Li+ ion and O in the salt counter anion of ≥ 0.5. 
(c) Experimental values from Leverick et al. are provided for comparison.9 

 

Salt Solvent 
Equilibration 

Method 
Force 
Field 

Li–N 
(MeCN) 

in Solvent 

Li–O 
in 

TfO 

Total Li 
Coordination a 

Li-Salt 
Associated or 
Dissociated? b 

LiTfO MeCN 

Experiment c  1.7 1.9 3.6 A 

Classical MD 
PCFF+ 3.7 0.2 4.0 D 

OPLS 1.6 2.3 3.9 A 

AIMD  3.3 0.7 3.9 A 

Table 11: Coordination numbers for Li+ ion with N and O atoms in MeCN and the TfO– anion 
for AIMD simulations with 50 solvent and 3 salt molecules averaged over three simulations for 
each system. (a) Total coordination numbers were calculated separately and therefore may not 

exactly equal the sum of the Li–solvent and Li–salt coordination numbers due to rounding. 
(b) The final column indicates association or dissociation, with association defined as an average 

coordination number for the Li+ ion and O in the salt counter anion of ≥ 0.5. (c) Experimental 
values from Leverick et al. are provided for comparison.9 
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From the results shown in these tables, I can conclude that the choice of equilibration method 

clearly plays a crucial role in the AIMD simulations. This may appear, on the surface, to be an 

obvious statement that has been well known for decades.134,135 However, the magnitude and 

nature of this dependence are often ignored, and it is instead assumed that many paths to a 

starting AIMD configuration could be “good enough” and that any prior unphysical correlations 

would quickly disappear, especially with a quick AIMD NVT annealing run. My results show 

this is not the case for these properties and materials. The use of PCFF+ for equilibration led to 

worse results than either of the other methods, corresponding to its poor performance in the 

classical MD simulations. In contrast, OPLS equilibration results outperformed even the AIMD 

using pure AIMD equilibration. This is likely because the classical MD equilibration runs were 

much longer than the AIMD equilibration runs, which allowed the systems to better find a 

physically accurate initial configuration; in the short simulation times available for the AIMD 

production runs, the initial randomly generated configuration had a large impact on the system 

behavior. Additionally, the overall association/dissociation behavior for the AIMD simulations 

with either classical equilibration method matched the association/dissociation for the classical 

NVT simulations with the same force field exactly. Thus, choosing a force field well suited to a 

given system is critical for equilibrating the initial configuration for AIMD simulations. This is 

because of the small number of association/dissociation events that occur in the short timescale 

of a typical AIMD simulation. The coordination environments and corresponding RDF plots and 

coordination numbers for the three Li+ ions in one MeCN–LiTFSI simulation are shown in 

Figure 5. Within the ~10 ps of this simulation, no association/dissociation events occurred. 

However, the different ions had different coordination environments, which emphasizes the 
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importance of sampling using different initial configurations and multiple Li+ ions within each 

configuration. 
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Figure 5: Plots of the radial distribution function and its integral for the Li coordination to O in 
TFSI– anions and for the Li coordination to N in solvent molecules for each of the three Li+ ions 

in one of the simulations of 50 MeCN molecules and 3 LiTFSI molecules using AIMD with 
AIMD initialization. Also shown are the first coordination shells of the lithium ions at the end of 

the simulation. The RDFs are averages over the length of the simulation, but no significant 
variation was observed over time. N in the TFSI– anions was not present in the first coordination 

shell of any of the Li+ ions. Both the plots and the figures show that the first solvation shell of 
two of the Li+ ions was similar (coordinated to one TFSI– anion and three solvent molecules), 

whereas the first solvation shell of the third Li+ ion was markedly different (coordinated to four 
solvent molecules). 
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To further examine the relative importance of simulation time and using multiple initial 

configurations, I performed a few longer AIMD simulations. The coordination number over time 

for three ~40 ps simulations of MeCN–LiTFSI systems are shown in Figure 6. Simulations of 

around this length are common for production runs in the literature,18,20–22,26 and often only one 

or two simulations are performed for each system.20,21,26,27 However, in two of the long 

simulations, two of the three Li+ ions did not undergo any association or dissociation event, and 

in the third case, none of the Li+ ions underwent any association or dissociation event. 

Additionally, in each simulation, at least one ion remained dissociated for the entire simulation, 

while one ion remained associated to the same TFSI– anion(s). Thus, the lack of 

association/dissociation events was not because all the ions were trapped in the most 

energetically favorable state. The small number of exchange events in the Li+-ion coordination 

shells is also similar to what was observed with the reorganization of water in the previously 

mentioned AIMD study of Li coordination in an aqueous LiCl solution: because water 

reorganization is slow compared to the timescale of the AIMD simulation, full reorganization of 

the water in the Li+-ion coordination shells is not possible, and the initial configurations from the 

classical MD equilibration step bias the AIMD results.97 The fact that association/dissociation 

events are relatively rare in my systems further illustrates the importance of both having a well-

equilibrated initial configuration and using multiple initial configurations, given that even a 

simulation of ~40 ps is not long enough for each individual Li+ ion to sample a statistically 

significant portion of the phase space. 

 



53 
 

 

Figure 6: Li–O coordination number over time for three AIMD simulations of MeCN–LiTFSI 
systems, one with AIMD equilibration, one with classical MD equilibration using the PCFF+ 

force field, and one with classical MD equilibration using the OPLS force field. Each point of the 
coordination number data is averaged over 1 ps. In the cases of AIMD and PCFF+ equilibration, 

two of the three Li+ ions did not undergo an association or dissociation event. In the case of 
OPLS equilibration, none of the three Li+ ions underwent an association or dissociation event. 
This illustrates the importance of averaging over multiple Li+ ions and initial configurations 

instead of just running longer simulations, as even a long AIMD simulation of ~40 ps is not long 
enough for each individual Li+ ion to sample a statistically significant portion of the phase space. 
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To further illustrate the importance of sampling, I computed the dimer existence autocorrelation 

functions (DACF) for Li and O in TFSI and for Li and N in MeCN for a classical MD simulation 

with the OPLS force field using the TRAVIS analysis program.136 The DACF of two particles 𝑖, 𝑗 

is defined as the autocorrelation function of 𝛽௜,௝ where 

𝛽௜,௝ = ቄ
1 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛 𝑖𝑛 𝑎 𝑑𝑖𝑚𝑒𝑟 𝑠𝑡𝑎𝑡𝑒

0 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑟 ℎ𝑎𝑠 𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑
 

with the dimer existence criteria defined as desired.136 The DACF at a time 𝜏 is the probability 

that the dimer criteria are still satisfied at time 𝜏 and is thus defined as136 

𝐷𝐴𝐶𝐹(𝜏) = 𝑁 ∙ 〈෍ 𝛽௜,௝(𝑡 + 𝜏) ∙ 𝛽௜,௝(𝑡)

்ିఛ

௧ୀ଴

〉௜,௝ 

The results are shown in Figure 7, with an inset showing the DACFs only up to the length of the 

long AIMD simulations. The dimer existence criteria used cutoffs of 3 Å and the five nearest 

neighbors, although the results were not very sensitive to the choices of criteria. A significant 

fraction of the Li–MeCN and Li–TFSI dimers had lifetimes longer than the total AIMD 

simulation times of ~40 ps. That, combined with the fact that Li–TFSI dimers were relatively 

rare (average coordination number for Li–O of 0.4 for classical MD with OPLS and 0.3 for 

experiment9), explains why few association/dissociation events were observed in the AIMD 

simulations in Figure 6. If the DACFs are fitted to exponential functions of the form  

𝐴𝑒ିఛ/ఛೝ 

where 𝐴 is a fitted prefactor, 𝜏 is the length of the time interval for the DACF, and 𝜏௥ is the mean 

residence time of the solvent molecule or anion in the Li+ coordination shell, I find that the mean 

residence time for MeCN in the Li+ coordination shell is ~50 ps and that the mean residence time 
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for TFSI– in the Li+ coordination shell is ~30 ps. These mean residence times are significantly 

longer than the timescales of my AIMD production runs (5–10 ps) and on the order of the 

timescale of the longer AIMD simulations in Figure 6 (~40 ps), which further explains why I did 

not see the Li+-ion coordination environments in all of the AIMD simulations of the same system 

equilibrate to the same final steady-state structures; the simulations were simply not long enough 

for this equilibration to occur.  

 

 

Figure 7: The dimer existence autocorrelation function (DACF) for Li and N in MeCN and for 
Li and O in TFSI for a 100 ns classical MD simulation of a MeCN–LiTFSI system calculated 

with TRAVIS.136 Dimers were defined with a cutoff of 3 Å and five nearest neighbors. The inset 
shows the DACF for 40 ps, the length of the long AIMD simulations discussed in Figure 6. 

 

Additionally, when I performed similar analysis on the OPLS simulations of the other systems in 

this study, the other five systems had longer Li–solvent and Li–salt residence times than the 
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MeCN–LiTFSI system did, sometimes by more than an order of magnitude. While I cannot be 

certain of the accuracy of these residence times because the simulations with the OPLS force 

field do not reproduce experimental behavior in all the systems studied, this is still strong 

evidence that the AIMD simulations are not long enough for equilibration to occur. As a very 

rough rule of thumb, it seems reasonable to suggest that an AIMD simulation would have to be 

several times longer than the longest residence time (slowest process) in the system to be 

confident that it accurately reproduces experimental results for properties related to the 

coordination environment. Based on my results, that would suggest a required simulation length 

of ~200 ps for the MeCN–LiTFSI system and simulation lengths ranging from hundreds of 

picoseconds to tens of nanoseconds for other small molecule electrolyte systems, which is 

beyond the timescales available with AIMD. 

2.4 Conclusions 

I examined the effect of equilibration methodology on AIMD simulations by investigating the 

Li+-ion coordination with solvent molecules and counter anions in several common lithium–

oxygen battery systems. Much of the previous AIMD literature has largely ignored the effect of 

equilibration methodology. The AIMD equilibration method is usually a classical MD 

simulation,17,20,26,28 often with minimal evaluation of or justification for the choice of force field, 

and/or the first few picoseconds of the production AIMD simulation.17,18,21,22,26–28,95 Also, many 

papers use only one or two initial configurations.20,21,26,27 The implicit assumption is that a 30–

50 ps AIMD simulation is long enough that the initial configuration is of minimal importance 

and long enough to obtain uncorrelated data. However, I found that the initial equilibration 

method has a large impact on AIMD trajectories, even for simulations as long as ~40 ps, because 
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even what is considered a relatively long AIMD simulation is not long enough for individual Li+ 

ions to sample a statistically significant portion of the phase space.  

As a result, I conclude that two details are critical for accurately calculating properties such as 

coordination number from AIMD simulations: (1) using an equilibration method well suited for 

the particular system and (2) sampling over several initial configurations. I found that the 

association/dissociation behavior for the AIMD simulations closely aligned with the behavior for 

the classical MD equilibration runs, as has been reported previously.97 As a result, a force field 

that more accurately reproduced experimental behavior in classical MD simulations, namely 

OPLS in this study, was also the equilibration method for AIMD that produced the most accurate 

behavior. In contrast, when PCFF+, a force field more poorly suited to these solvent–salt 

systems,82 was used for equilibration, the AIMD coordination behavior matched the 

experimental behavior in only one of six systems. In fact, for both OPLS and PCFF+, the overall 

association/dissociation behavior for the AIMD simulations exactly matched the 

association/dissociation behavior for the corresponding classical MD runs for all six systems 

tested. I therefore demonstrated the importance of equilibrating the system using a force field 

well suited for it. Additionally, I showed the importance of performing several simulations with 

different initial configurations to obtain a good sample of different Li coordination 

environments, as individual Li+ ions may not undergo any association/dissociation events in the 

timescale of the simulations. 

I am not arguing that AIMD simulations require a perfect potential to equilibrate the system; if a 

perfect classical potential exists for a system, there is no need for AIMD simulations. However, 

what is required is a potential that can avoid deep wells in the free-energy landscape, such as an 

associated ion pair, if these wells would not occur in the corresponding AIMD simulation. If the 
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AIMD simulation is run for long enough, these artifacts will fade away, but that may require 

timescales of hundreds of picoseconds or even nanoseconds that are not accessible in a standard 

AIMD simulation. In contrast, it is not critical that the potential can accurately reproduce 

features such as bond lengths or angles, as these relax quickly during the AIMD simulation. 

What is critical is that the potential accurately models features that would take a long time to 

relax.  

An example of a system that may be easier to equilibrate is in the previously cited studies of 

cation coordination in water.120,121,123 In these studies, there are no counter anions present; the 

focus is on the cation–water interactions only, not on the cation–anion association/dissociation. 

Thus, the only feature DFT needs to capture is the relaxation of the orientational degrees of 

freedom of the water molecules, which relaxes quickly compared to diffusion-related 

mechanisms such as dissociation involving bulky anions. Another example well suited to study 

with AIMD is the interaction of small, monovalent ions dissolved in a low-viscosity solvent, 

such as a concentrated aqueous Li–Cl solution.97 Because the timescale of the Li+–Cl– interaction 

is much shorter than the total simulation time (~4.5 ps vs. 30 ps), the AIMD simulation is long 

enough to allow breakdown of the ion pairing and thus long enough to accurately calculate the 

coordination between Li+ and Cl– ions in the solution, achieving good agreement with 

experiments. 

Overall, my work demonstrates the importance of both equilibration method and sufficient 

sampling for calculating properties such as coordination number using AIMD simulations. It also 

shows the importance of documenting this information in articles to enable reproducibility and 

the importance of using some sort of experimental validation for molecular dynamics studies. 

Additionally, my results show the inherent difficulty and expense of accurately calculating 
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experimentally relevant quantities using AIMD simulations. This demonstrates the need for the 

development of new techniques in the form of either new classical force fields or emerging 

methods such as machine learning force fields based on the accurate energy and force data 

provided by AIMD simulations. There are currently significant research efforts in this area,19,137–

139 but further improvements in ease of training from AIMD data, transferability, and usability 

have the potential to greatly expand the types of systems that can by accurately modeled with 

molecular dynamics. 
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3 Lithium Transport Mechanisms 

In this study, I investigate how ionic transport mechanisms in lithium-containing electrolytes 

influence key performance properties of lithium batteries, with a focus on how the choice of 

solvent affects the transport mechanism. To this end, I develop solvent metrics by combining 

different properties that can be measured experimentally such as solvent donor number, 

viscosity, and shear modulus and investigate how these metrics relate to atomistic-scale lithium 

transport mechanisms in liquid electrolytes. I examine the lithium transport mechanisms, 

primarily a vehicular transport mechanism with a lithium solvation shell moving through the 

solvent and a solvent exchange mechanism with net motion caused by solvent molecules 

entering and exiting the solvation shell, using classical molecular dynamics simulations with the 

OPLS force field. I utilize diverse small molecule liquid solvents (DEC, DMA, DME, DMF, 

DMSO, EC, MeCN, MTBE, PC, Py, SL, and THF) and also examine properties of one solvent 

mixture (EC/MTBE) as a function of solvent composition. I validate the classical force fields 

used for these solvents by comparing the computed values of the density, viscosity, and ionic 

conductivity with experimental measurements for the solvent–LiTFSI systems and also examine 

simulation properties such as diffusion coefficients, coordination numbers, and residence times. 

The results suggest novel methods for predicting transport properties and designing new 

solvents. 

3.1 Introduction 

In the past few decades, there has been a push in the battery community to improve our 

understanding of battery systems on an atomistic level, and computational methods are a key tool 

in this process. Examining dynamic processes such as cation transport17,19 on an atomistic scale 
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can be difficult experimentally but accessible using classical molecular dynamics (MD) 

simulations. In this study, I examined transport properties for lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI)–solvent systems with twelve different small 

molecule liquid solvents common in battery applications using classical MD simulations and 

investigated how these transport properties correlate with other, more easily experimentally 

measured solvent properties such as donor number, viscosity, and shear modulus at infinite 

frequency.  

In addition to examining fairly standard transport properties such as the Li–solvent and Li–TFSI 

coordination numbers and residence times, I also utilized an additional, more novel property, the 

transport ratio, developed by Borodin and Smith140 and designed to elucidate the atomistic 

mechanisms by which lithium ions are transported in the different solvents. The transport ratio is 

a measure of how much a vehicular transport mechanism, where lithium ions move with their 

solvation shells through the solvent, dominates over a solvent exchange transport mechanism, 

where there is net movement of lithium ions because solvent molecules exit and reenter the 

lithium solvation shells. Beyond general interest in understanding the atomistic behavior of the 

systems, I am interested in the transport mechanisms because vehicular motion is usually faster 

than transport via solvent exchange. Solvents where the solvent exchange mechanism dominates 

can have poor lithium ion transport, which can lead to lower ionic conductivity and thus possibly 

worse overall battery performance including slower charging and discharging rates.140  

Additionally, as my first study showed the importance of experimentally validating simulation 

results, I also compared the calculated viscosities, densities, and ionic conductivities for my 

classical MD simulations directly to experimental measurements. 



62 
 

With the transport properties for the twelve different solvent–LiTFSI systems calculated using 

classical MD simulations, I then explored whether more experimentally accessible properties 

such as viscosity or solvent donor number correlate with these transport properties. The goal is to 

ultimately be able to predict the transport properties of systems, such as the dominant lithium 

transport mechanism, without needing to perform classical MD simulations. While my work may 

not yet have this level of predictive power, I have developed a novel tool not to my knowledge 

previously applied to small molecule solvent systems: solvent metrics. I have examined two such 

metrics (solvent donor number / solvent–LiTFSI system viscosity and solvent donor number / 

shear modulus at infinite frequency for the pure solvent) and found correlations between both 

metrics and the transport ratio. 

To further examine how solvent properties affect lithium transport, I also performed classical 

MD simulations of mixtures of two solvents and investigated how the transport properties varied 

as a function of solvent composition. 

3.2 Methodology 

3.2.1 Systems 

Each simulation system consisted of 2,000 solvent molecules and 120 lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI) molecules. I selected twelve different small 

molecule solvents that are chemically diverse and parametrized for the OPLS force field; my 

experimental collaborator also verified that the solvent–LiTFSI systems are liquid at 300 K. 

LiTFSI was selected as the lithium salt because of its widespread use in battery research.9,141–143 

The solvents used were diethyl carbonate (DEC), dimethylacetamide (DMA), dimethoxyethane 

(DME), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), 
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acetonitrile (MeCN), methyl tert-butyl ether (MTBE), propylene carbonate (PC), pyridine (Py), 

sulfolane (SL), and tetrahydrofuran (THF). The initial amorphous configurations were generated 

using fftool and packmol,105,106,108 and the results for three simulations with different random 

starting configurations were averaged for each solvent–LiTFSI combination. The molecular 

structure for each solvent molecule and the LiTFSI salt molecule is shown in Figure 8. 
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Figure 8: The solvent (a–l) and salt (m) molecules investigated in the study. The atomic color 
code: carbon – black, fluorine – green, hydrogen – white, lithium – blue, nitrogen – purple, 

oxygen – red, sulfur – yellow 
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3.2.2 Classical Molecular Dynamics Methodology 

The computational results in this study were obtained using classical MD simulations performed 

with the LAMMPS code.122,144 All simulations were performed using the OPLS all-atom force 

field, which is widely used for the molecules in this study.84,85,131 The parameters have been 

assembled from multiple sources, sometimes with small modifications to, for example, ensure 

that molecules remained neutrally charged.83,108,129,131,145,146 

Two different types of classical MD simulations were utilized: simulations in the isothermal–

isobaric (NpT) ensemble and simulations in the canonical (NVT) ensemble. The simulations in 

the NpT ensemble were used to find the equilibrium density of each system, and these 

equilibrium densities were then used to create the initial configurations for the simulations in the 

canonical (NVT) ensemble. Below I will detail each simulation method. 

3.2.2.1 NpT Methodology 

For the simulations in the NpT ensemble, the initial random configurations were generated using 

fftool and packmol at densities extrapolated from the experimentally known densities of LiTFSI 

and the solvents.105,106,108,109 The first step was then an equilibration step with minimization using 

conjugate gradients followed by a short 100 ps classical MD simulation in the NVT ensemble 

with a time step of 0.5 fs and a temperature of 300 K. The cutoff distance for Lennard-Jones and 

the real-space part of the Coulomb interactions was 12 Å, with long-range Coulomb interactions 

calculated using the particle–particle–particle–mesh (PPPM) solver with an accuracy of 10–5, and 

tail corrections were applied. Then, a longer classical MD simulation within the NpT ensemble 

was executed for 5 ns, still with a time step of 0.5 fs, at 300 K, and with other settings 

unchanged. 
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3.2.2.2 NVT Methodology 

For the simulations in the NVT ensemble, the initial random configurations were generated using 

fftool and packmol at the equilibrium densities calculated from the simulations in the NpT 

ensemble.105,106,108 The first step was again an equilibration step, identical to the equilibration 

step used for the NpT simulations. Then a longer classical MD simulation within the NVT 

ensemble was executed for 10 ns, still with a time step of 0.5 fs, at 300 K, and with other settings 

unchanged from the NpT simulations. 

3.2.3 Computational Properties 

3.2.3.1 Density 

Density was the only property calculated using the simulations in the NpT ensemble. The 

equilibrium density of a solvent–LiTFSI system was defined as the average density of the 

simulation over the second half of the 5 ns NpT production run. This equilibrium density was 

then averaged over the results of the three simulations for each solvent, but the variation in the 

density between the independent runs was very small (no variation in the thousandth digit). 

3.2.3.2 Viscosity 

Viscosity calculations for the simulations in the NVT ensemble were performed using the Python 

LAMMPS Analysis Tools (PyLAT).147,148 The viscosity was calculated using the stress tensor 

autocorrelation function and given by 

𝜂 =
𝑉

𝑘஻𝑇
න ൻ𝜏ఈఉ(𝑡) ⋅ 𝜏ఈఉ(0)ൿ 𝑑𝑡

ஶ

଴
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where 𝜂 is the viscosity, 𝑉 is the simulation box volume, 𝑘஻ is the Boltzmann constant, 𝑇 is the 

simulation temperature, and 𝜏ఈఉ(𝑡) is the 𝛼𝛽 element of the stress tensor. The detailed 

calculation methodology implemented by the PyLAT program is documented in Humbert et 

al.147 For each simulation, the first nanosecond of data was excluded from the viscosity 

calculation to allow for equilibration. The final results are the average for the three production 

runs executed for each system. The reported error is the standard deviation of the viscosities for 

the three runs, so it reflects the variation between the runs and not an estimate of any possible 

systemic error due to, for example, the OPLS force field parameters. 

3.2.3.3 Diffusion Coefficients and Ionic Conductivity 

Diffusion coefficient calculations for Li+ ions, TFSI– counter anions, and solvent molecules in 

the simulations in the NVT ensemble were performed using the Mean Square Displacement / 

Diffusion Coefficients function of the TRAVIS analysis program.136 To find the diffusion 

coefficient for one type of particle, the mean square displacement (MSD) for that type of particle 

is first calculated. The MSD for a type of particle is the square of the average distance a particle 

has traveled away from its starting point during a time interval of length 𝜏, averaged over all 

particles of that type and all starting times, and is defined by the equation 

𝑀𝑆𝐷(𝜏) = ⟨|𝑟௜(𝑡 + 𝜏) − 𝑟௜(𝑡)|ଶ⟩௧,௜ 

where 𝑟௜(𝑡) is the position of the 𝑖௧௛ particle of the desired type at a time 𝑡. The diffusion 

coefficient is then defined as  

𝐷 = 𝑙𝑖𝑚
ఛ→ஶ

ቆ
1

2𝑛
𝑀𝑆𝐷(𝜏)ቇ 
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for 𝑛-dimension motion. 𝑛 was always 3 in this study. The detailed calculation methodology 

implemented by the TRAVIS program is documented in Brehm et al.136 Similarly to the viscosity 

calculations, the first nanosecond of data was excluded from the calculations, the final results are 

the average for the three simulations for each system, and the reported error is the standard 

deviation of the diffusion coefficients for the three runs.  

The ionic conductivity for each system was calculated using the Nernst–Einstein equation and 

the Li+ and TFSI– diffusion coefficients. The Nernst–Einstein equation is 

𝜎ோ =
𝑒ଶ

𝑉𝑘஻𝑇
(𝑁ି𝑧ି

ଶ𝐷ି + 𝑁ା𝑧ା
ଶ𝐷ା) 

where 𝜎ோ is the ionic conductivity, 𝑒 is the elementary charge, 𝑉 is the simulation box volume, 

𝑘஻ is the Boltzmann constant, 𝑇 is the simulation temperature, 𝑁± are the number of cations and 

anions in the simulation (number of Li+ and TFSI– ions in this study), 𝑧± are the charge of the 

cation and anion (±1 in this study), and 𝐷± are the diffusion coefficients of the cation and 

anion.149 The Nernst–Einstein equation relies on the assumption that the ions do not interact, so 

the equation is only exact in the infinite dilution limit and will break down for highly 

concentrated systems and systems with a high degree of ion clustering.149 The systems in this 

study are not highly concentrated, so this equation should generally be expected to be a good 

approximation. However, the approximation may still break down for systems with less salt 

dissociation where the Li+ and TFSI– ions do not diffuse independently. 

3.2.3.4 Coordination Numbers 

Coordination numbers represent the average number of solvent molecules or TFSI– anions in the 

first solvation shell of a Li+ ion and are a method of quantifying the lithium solvation 
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environment. The solvent and TFSI coordination numbers were found using the Radial 

Distribution function of the TRAVIS analysis program.136 The radial distribution function (RDF, 

denoted in equations as 𝑔(𝑟)), is the probability of finding another molecule or ion of a specific 

type 𝛼 in a shell at a distance 𝑟 and with thickness 𝑑𝑟 from a reference molecule or ion, which in 

this study is a Li+ ion. In terms of the local density 𝜌ఈ(𝑟) of molecule or ion of type 𝛼, the partial 

RDF for species 𝛼 is given by 

𝑔ఈ(𝑟) =
𝑑𝑛ఈ(𝑟)

4𝜋 𝑑𝑟 ∗  𝜌ఈ(𝑟)
  

The coordination number 𝑛ఈ for the first solvation sphere is then defined as the integral of the 

RDF up to its first minimum 𝑟௠௜௡ 

𝑛ఈ(𝑟௠௜௡) = න 4𝜋𝑟ଶ𝑔ఈ(𝑟)
௥೘೔೙

଴

𝜌ఈ(𝑟)𝑑𝑟 

In practice, the exact location of the first minimum of the RDF of a simulation could be ill-

defined as it was averaged over different time steps and over the three Li+ ions in the simulation. 

As such, I averaged the RDF values into bins 0.05 Å thick (𝑑𝑟), fitted the RDF for the first 

solvation shell to a Gaussian function, extracted the mean and standard deviation of the fit, and 

defined the coordination number as the numerical integral of the RDF at three standard 

deviations above the mean.  

As with the other calculations, the first nanosecond of data was excluded from the calculations, 

the final results are the average for the three simulations for each system, and the reported error 

is the standard deviation of the diffusion coefficients for the three runs. An example of raw data 

and the fitted Gaussian for a MeCN–LiTFSI system is shown in Figure 9.  
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Figure 9: The radial distribution function for MeCN with respect to Li. The red dashed line is 
the radial distribution function data, the blue dashed line is the numerical integral of the radial 

distribution function, and the solid red line is the fitted Gaussian function. The grey vertical line 
indicates three standard deviations above the mean for the Gaussian function, which was also 

used as a cutoff distance in the residence time calculation. The integral of the radial distribution 
function at this point is defined as the coordination number. 

 

3.2.3.5 Residence Times 

Residence times for solvent molecules and TFSI– anions in the lithium solvation shell were 

calculated using the Aggregation function of the TRAVIS analysis program.136 I defined a 

solvent molecule or TFSI– anion as being within the solvation shell of a Li+ ion if its center of 

mass was within a cutoff distance of three standard deviations above the mean of the Gaussian fit 

to the RDF used in the coordination number calculation and it was one of the six nearest 

neighbors of the Li+ ion. The condition of being one of the six nearest neighbors was included 

because the maximum average total coordination number for lithium in any of the systems was 

5.94. Overall, the results were not very sensitive to the choice of cutoff distance or the nearest 

neighbor constraints. To find the residence time, I first calculated the dimer existence 
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autocorrelation function (DACF). The DACF of two particles 𝑖, 𝑗 is defined as the 

autocorrelation function of 𝛽௜,௝ where 

𝛽௜,௝ = ቄ
1 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛 𝑖𝑛 𝑎 𝑑𝑖𝑚𝑒𝑟 𝑠𝑡𝑎𝑡𝑒

0 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑟 ℎ𝑎𝑠 𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑
 

with the dimer existence criteria defined as desired, which in this study was when the solvent 

molecule or TFSI– anion was within the cutoff distance of the Li+ ion and was one of the six 

nearest neighbors of the Li+ ion.136 The DACF is the probability that the dimer criteria are still 

satisfied after a time interval of length 𝜏 given that the criteria were fulfilled at the start of the 

interval, averaged over all dimers of the given type and all starting times, and is thus defined 

as136 

𝐷𝐴𝐶𝐹(𝜏) = 𝑁 ∙ 〈෍ 𝛽௜,௝(𝑡 + 𝜏) ∙ 𝛽௜,௝(𝑡)

்ିఛ

௧ୀ଴

〉௜,௝ 

The mean residence time for solvent molecules or TFSI– anions within the lithium solvation shell 

can then be found by fitting the DACF to an exponential function of the form  

𝐴𝑒ିఛ/ఛೝ 

where 𝐴 is a fitted prefactor, 𝜏 is the length of the time interval for the DACF, and 𝜏௥ is the mean 

residence time of solvent molecules or anions in the Li+ coordination shell. As with the other 

calculations, the first nanosecond of data was excluded from the calculations, the final results are 

the average for the three simulations for each system, and the reported error is the standard 

deviation of the diffusion coefficients for the three runs. 
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3.2.3.6 Transport Ratio 

For ion transport in small molecule liquid systems such as the ones in this study, there are two 

dominant competing ion transport mechanisms: vehicular motion and solvent exchange.140 

Vehicular motion is when the ion (Li+ in this study) is transported with its first solvation shell 

(typically 4–6 solvent molecules and/or TFSI– anions in this study). Solvent exchange is the net 

motion of the ion due to the breakup and reformation of its solvation shell, specifically the 

exchange of solvent molecules between the first solvation shell and the bulk solvent. Another 

possible ion transport mechanism is anion exchange, which would be when an anion exits the 

solvation shell and is replaced by another anion; mixed exchanges (a solvent molecule being 

replaced in the solvation shell by an anion or vice versa) are also possible. However, for the 

systems in this study, LiTFSI was generally fairly dissociated with few TFSI– anions in the 

lithium solvation shells. Thus, vehicular motion and solvent exchange were the dominant 

transport mechanisms for the Li+ ions, though a more thorough justification for neglecting 

contributions from salt exchange will also be discussed in the Results and Discussion section. As 

mentioned previously, I am interested in the transport mechanisms in part because vehicular 

motion is usually faster than transport via the solvent exchange. Therefore solvents where 

vehicular motion is dominant tend to have better lithium ion transport, which can correlate with 

higher ionic conductivity and thus potentially better battery performance including higher 

charging and discharging rates.140 

The transport ratio is a measure of the relative importance of the vehicular and solvent exchange 

mechanisms of lithium transport and was developed by Borodin and Smith.140 It first requires 

calculating the Li–solvent residence time 𝜏௥,௅௜ି௦௢௟௩, as was described above. Then the average 
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distance traveled by a Li+ ion while coordinated with a solvent molecule, 𝐿௥௘௦, is calculated 

using 

𝐿௥௘௦ = ඥ6 ∗ 𝐷ା ∗ 𝜏௥,௅௜ି௦௢௟௩ 

𝐿௥௘௦ is equivalent to the square root of the mean square displacement of a Li+ ion in the average 

time between solvent exchanges. 

The next step in the calculation is to find the average molecular size of a solvent molecule, 𝑆௦௢௟௩, 

which is defined as twice the radius of gyration of the solvent molecule.140 The average radius of 

gyration of the solvent molecule can be outputted directly from LAMMPS.  𝐿௥௘௦/𝑆௦௢௟௩ will then 

be the average number of solvent molecule diameters that a Li+ ion travels between solvent 

exchanges. A higher value corresponds to the vehicular mechanism being more dominant.140 

Borodin and Smith then argued that the MSD of the Li+ ion after a time 𝜏௥,௅௜ି௦௢௟௩ can be 

approximately broken up into vehicular and structure components as 

𝐿௥௘௦
ଶ = 𝑀𝑆𝐷൫𝜏௥,௅௜ ൯ ≈ 𝑀𝑆𝐷൫𝜏௥,௅௜ି௦௢௟௩൯

௩௘௛௜௖௨௟௔௥
+ 𝑀𝑆𝐷൫𝜏௥,௅௜ି௦௢௟௩൯

௦௧௥௨௖௧௨௥௘
 

and that 

𝑀𝑆𝐷൫𝜏௥,௅௜ି௦௢௟௩൯
௦௧௥௨௖௧௨௥௘

≈ 𝑆௦௢௟௩
ଶ 

such that 

𝐿௥௘௦
ଶ ≈ 𝑀𝑆𝐷൫𝜏௥,௅௜ି௦௢௟௩൯

௩௘௛௜௖௨௟௔௥
+ 𝑆௦௢௟௩

ଶ 

Rearranging this, the vehicular to solvent exchange ratio, which I will hereafter refer to the 

transport ratio for conciseness, can be defined as140 
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𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑖𝑜 ≡  
𝑉𝑒ℎ𝑖𝑐𝑢𝑙𝑎𝑟

𝑆𝑜𝑙𝑣𝑒𝑛𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
=

𝑀𝑆𝐷൫𝜏௥,௅௜ି௦௢௟௩൯
௩௘௛௜௖௨௟௔௥

𝑆௦௢௟௩
ଶ = ൬

𝐿௥௘௦

𝑆௦௢௟௩
൰

ଶ

− 1 

This analysis assumes that the average displacement of the Li+ ion during a solvent exchange is 

equal to the solvent size, 𝑆௦௢௟௩.140 A transport ratio of 1 corresponds to equal contributions to 

lithium transport from the two mechanisms, and previous studies of EC–LiTFSI systems have 

found a transport ratio of 1 and observed roughly equal contributions from the vehicular and 

solvent exchange mechanisms, supporting the validity of the definition of this property.140,150 

3.3 Results and Discussion 

3.3.1 Experimental Validation 

I will now discuss the results of the experimental validation using three properties of the solvent–

LiTFSI systems: density, viscosity, and ionic conductivity. The experimental methodology is 

included in the Appendix.  

3.3.1.1 Density 

The computationally calculated densities for the solvent–LiTFSI systems compared to the 

experimentally measured densities are shown in Figure 10 and included in Table 12. The 

agreement between the computational and experimental values is generally quite good, with the 

maximum percent error for the computational densities being 5.0% for the DME–LiTFSI system. 

It is not surprising that the DME system most poorly matched the experimental results, as the 

force field parametrization of DME is primarily designed for larger glyme molecules131 and was 

shown in my earlier work using OPLS as an equilibration method for AIMD simulations to not 

be very well suited for small molecule liquid simulations.  
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Figure 10: Densities calculated for the solvent–LiTFSI systems by averaging over three NpT 
simulations of 2,000 solvent molecules and 120 LiTFSI molecules vs. measured experimentally 

for systems with the same concentration. The red line represents perfect agreement. 

 

Solvent 
Computational 
Density in g/mL 

Experimental 
Density in g/mL 

DEC 1.081 1.035 

DMA 1.015 1.023 

DME 1.008 0.960 

DMF 1.029 1.046 

DMSO 1.201 1.182 

EC 1.422 1.407 

MeCN 0.950 0.951 

MTBE 0.840 0.823 

PC 1.314 1.269 

Py 1.079 1.080 

SL 1.371 1.324 

THF 0.973 0.998 

Table 12: Computational and experimental densities for solvent–LiTFSI systems. 
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3.3.1.2 Viscosity 

The computationally calculated viscosities for the solvent–LiTFSI systems compared to the 

experimentally measured viscosities are shown in Figure 11 and included in Table 13. The 

computational viscosities are all higher than experimental values, which I hypothesize is due to 

the OPLS force field used. In my first study using OPLS as an equilibration method for AIMD, I 

observed that simulations with the OPLS force field often resulted in a higher degree of Li–salt 

association than was seen in experiments. The higher viscosities in this study suggest that OPLS 

also overestimates the strength of intermolecular interactions between solvent molecules. Apart 

from this general trend, DME is again an outlier, with the computational viscosity being almost 

twenty times larger than the experimental viscosity. As mentioned above for the density, this 

may be due to DME being poorly parametrized for small molecule liquid simulations. I will 

include results for the DME–LiTFSI system in this study but note that I expect them to be less 

accurate than for the other systems. 
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Figure 11: Viscosities for the solvent–LiTFSI systems calculated using three NVT simulations of 
2,000 solvent molecules and 120 LiTFSI molecules vs. measured experimentally for systems 

with the same concentration. The red line represents perfect agreement. The error bars represent 
variation between the different NVT simulations. 
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Solvent 
Computational 
Viscosity in cP 

Experimental 
Viscosity in cP 

DEC 3.62 ± 0.09 1.15 

DMA 3.1 ± 0.6 1.61 

DME 14 ± 2 0.69 

DMF 3.4 ± 0.9 1.45 

DMSO 5.1 ± 0.6 2.76 

EC 16 ± 4 5.11 

MeCN 0.8 ± 0.2 0.68 

MTBE 0.81 ± 0.09 0.50 

PC 12 ± 3 4.90 

Py 2.5 ± 0.5 1.76 

SL 46 ± 20 19.38 

THF 1.3 ± 0.2 0.87 

Table 13: Computational and experimental viscosities for solvent–LiTFSI systems, with error 
reflecting variation between simulations. 

 

3.3.1.3 Ionic Conductivity 

The experimentally measured ionic conductivities and computational ionic conductivities 

calculated using the Nernst–Einstein equation with the Li+ and TFSI– diffusion coefficients from 

the simulations are shown in Figure 12 and included in Table 14. The MTBE–LiTFSI system 

appears to be an outlier, with the computational ionic conductivity over an order of magnitude 

higher than the experimental ionic conductivity. However, the low experimental conductivity of 

the MTBE–LiTFSI system relative to its viscosity suggests a high degree of ion pairing. As 

discussed in the Methodology section, the Nernst–Einstein equation relies on the assumption that 

there is no ion clustering in order to extrapolate the ionic conductivity of the system from the 

diffusion coefficients of the cation and anion. Thus, I hypothesize that this assumption breaks 
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down for the MTBE–LiTFSI system and that the computational ionic conductivity calculated 

using the Nernst–Einstein equation is therefore inaccurate. However, the Li+ and TFSI– diffusion 

coefficients themselves could still be more physically accurate, so no strong conclusions about 

how well parametrized the MTBE solvent is can be drawn from this single result. 

 

 

Figure 12: Ionic conductivities for the solvent–LiTFSI systems calculated with the Nernst–
Einstein equation using Li+ and TFSI– diffusion coefficients calculated for three NVT simulations 
of 2,000 solvent molecules and 120 LiTFSI molecules vs. measured experimentally for systems 
with the same concentration. The red line represents perfect agreement. The error bars represent 
variation between the different NVT simulations. I hypothesize the poor agreement between the 
computational and experimental ionic conductivities for MTBE is due to the breakdown of the 

approximations underlying the Nernst–Einstein equation. 
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Solvent 
Ionic Conductivity  

in S/cm 
Experimental Ionic 

Conductivity in S/cm 

DEC (2.03 ± 0.09) x 10–3 7.5 x 10–4 

DMA (6.2 ± 0.8) x 10–3 1.1 x 10–2 

DME (1.8 ± 0.1) x 10–3 9.4 x 10–3 

DMF (1.01 ± 0.05) x 10–2 1.5 x 10–2 

DMSO (6.3 ± 0.4) x 10–3 8.9 x 10–3 

EC (2.2 ± 0.3) x 10–3 6.0 x 10–3 

MeCN (6.8 ± 0.3) x 10–2 3.2 x 10–2 

MTBE (4.7 ± 0.6) x 10–3 1.6 x 10–5 

PC (1.4 ± 0.1) x 10–3 5.0 x 10–3 

Py (5 ± 1) x 10–3 9.7 x 10–3 

SL (5.8 ± 0.6) x 10–4 2.1 x 10–3 

THF (6.9 ± 0.8) x 10–3 8.0 x 10–3 

Table 14: Computational and experimental ionic conductivities for solvent–LiTFSI systems, 
with error reflecting variation between simulations. 

 

3.3.2 Properties, Trends, and Insights Into Lithium Transport Mechanisms 

Diffusion coefficients for Li+ ions, TFSI– counter anions, and solvent molecules in the different 

solvent–LiTFSI systems are included in Table 15. Also included again as a point of reference are 

the computational ionic conductivities calculated from the Li+ and TFSI– diffusion coefficient 

using the Nernst–Einstein equation; these were previously listed with the experimental ionic 

conductivities in Table 14. 
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Solvent 
Lithium Diffusion 

Coefficient  
in cm2/s 

TFSI Diffusion 
Coefficient  

in cm2/s 

Solvent Diffusion 
Coefficient  

in cm2/s 

Ionic 
Conductivity  

in S/cm 

DEC (5.6 ± 0.3) x 10–7 (5.7 ± 0.3) x 10–7 (4.5 ± 0.2) x 10–6 (2.03 ± 0.09) x 10–3 

DMA (1.2 ± 0.7) x 10–6 (1.6 ± 0.4) x 10–6 (4.25 ± 0.06) x 10–6 (6.2 ± 0.8) x 10–3 

DME (3.4 ± 0.3) x 10–7 (5.2 ± 0.4) x 10–7 (1.12 ± 0.03) x 10–6 (1.8 ± 0.1) x 10–3 

DMF (1.7 ± 0.1) x 10–6 (2.2 ± 0.2) x 10–6 (5.68 ± 0.04) x 10–6 (1.01 ± 0.05) x 10–2 

DMSO (9 ± 1) x 10–7 (1.30 ± 0.08) x 10–6 (2.60 ± 0.07) x 10–6 (6.3 ± 0.4) x 10–3 

EC (3.3 ± 0.2) x 10–7 (4.1 ± 0.9) x 10–7 (1.41 ± 0.01) x 10–6 (2.2 ± 0.3) x 10–3 

MeCN (9.4 ± 0.8) x 10–6 (9.3 ± 0.4) x 10–6 (2.19 ± 0.06) x 10–5 (6.8 ± 0.3) x 10–2 

MTBE (1.3 ± 0.2) x 10–6 (1.3 ± 0.3) x 10–6 (1.51 ± 0.02) x 10–5 (4.7 ± 0.6) x 10–3 

PC (2.6 ± 0.1) x 10–7 (3.1 ± 0.4) x 10–7 (1.07 ± 0.05) x 10–6 (1.4 ± 0.1) x 10–3 

Py (1.1 ± 0.3) x 10–6 (1.1 ± 0.3) x 10–6 (6.5 ± 0.2) x 10–6 (5 ± 1) x 10–3 

SL (7 ± 1) x 10–8 (1.9 ± 0.2) x 10–7 (3.5 ± 0.2) x 10–7 (5.8 ± 0.6) x 10–4 

THF (1.4 ± 0.2) x 10–6 (1.4 ± 0.2) x 10–6 (1.26 ± 0.01) x 10–5 (6.9 ± 0.8) x 10–3 

Table 15: Computational diffusion coefficients and ionic conductivities, with error reflecting 
variation between simulations. 

 

While the computational and experimental ionic conductivities were discussed above, the 

relationship between the computational lithium diffusion coefficients and the computational 

viscosities for the different systems is shown in Figure 13. There is a general trend of decreasing 

lithium diffusion coefficient with increasing viscosity, as would be expected given that particles 

have reduced mobility in more viscous liquids. This is a good check that the simulation results 

model the expected physical behavior. 

 



82 
 

 

Figure 13: Computational viscosity vs. computational lithium diffusion coefficient. The 
expected trend of decreasing diffusion coefficient with increasing viscosity is evident. 

 

Another check of the physical accuracy of the simulations was performed using the coordination 

numbers, which are displayed in Figure 14 and included in Table 16. In my previous work using 

OPLS for AIMD equilibration and in past studies in the literature, the total lithium coordination 

number was generally between 4 and 6.151,152 This was found to be true in two thirds of the 

systems examined here, as can be seen in Figure 14. The systems where this was not true had 

lower total coordination numbers, and in all but one of these cases, the Li–TFSI coordination 

number was high (> 0.7). The TFSI– anion is larger than any of the solvent molecules: TFSI had 

an average radius of gyration of ~2.57 Å in the simulations, while the average radius of gyration 

for the solvent molecules varied from 1.17 Å for MeCN to 2.31 Å for DEC (all radii of gyration 

are included in Table 17). Therefore, it is not surprising that a higher degree of Li–TFSI 

coordination correlates with a lower overall coordination number, as the TFSI– anion takes up 
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more physical space in the lithium coordination shell than a solvent molecule does. The only 

system with a low overall coordination number but also a low degree of Li–TFSI coordination 

was for the DME solvent, which can have either monodentate or bidentate coordination with a 

Li+ ion due to its two oxygen molecules. Therefore, fewer total solvent molecules would be 

required to surround a Li+ ion with 4 to 6 oxygen atoms compared to other solvents that can only 

have monodentate coordination. 

 

 

Figure 14: Computational lithium–solvent coordination number vs. computational lithium–salt 
coordination number. The red region corresponds to a total lithium coordination number of 

between 4 and 6. Most systems fall in this region, which agrees with past studies and my prior 
work.151,152 

 



84 
 

Solvent 
Li–Solvent 

Coordination # 
Li–TFSI 

Coordination # 
Total Li 

Coordination # a 

DEC 3.3 ± 0.2 0.81 ± 0.07 4.1 ± 0.1 

DMA 4.6 ± 0.1 0.36 ± 0.05 4.95 ± 0.08 

DME 3.81 ± 0.02 0.039 ± 0.004 3.85 ± 0.02 

DMF 5.22 ± 0.02 0.138 ± 0.008 5.36 ± 0.01 

DMSO 5.246 ± 0.009 0.080 ± 0.004 5.326 ± 0.006 

EC 4.96 ± 0.08 0.20 ± 0.02 5.16 ± 0.06 

MeCN 4.732 ± 0.003 0.771 ± 0.006 5.503 ± 0.008 

MTBE 1.31 ± 0.04 0.92 ± 0.01 2.23 ± 0.03 

PC 4.7 ± 0.2 0.33 ± 0.04 5.0 ± 0.1 

Py 2.75 ± 0.02 0.736 ± 0.006 3.49 ± 0.01 

SL 5.6 ± 0.1 0.4 ± 0.1 5.94 ± 0.02 

THF 2.39 ± 0.03 0.90 ± 0.02 3.29 ± 0.02 

Table 16: Computational coordination numbers for the first solvation shell of lithium, with error 
reflecting variation between simulations. (a) Total coordination numbers were calculated 

separately and therefore may not exactly equal the sum of the Li–solvent and Li–TFSI 
coordination numbers due to rounding. 

 

Having evaluated the accuracy of the simulation methods, I can now examine what properties 

influence the lithium transport mechanisms in different systems. The transport ratios for the 

different Li–solvent systems as well as the remaining properties used in the transport ratio 

calculation and the Li–TFSI residence times as a comparison point for the Li–solvent residence 

times are included in Table 17. The Li–TFSI residence times generally have significantly larger 

variation between runs compared to the Li–solvent residence times due to the lower degree of 

Li–TFSI coordination compared to Li–solvent coordination, as this results in fewer 

association/dissociation events to average over for TFSI in the lithium coordination shell.  

The residence time results combined with the lower degree of Li–TFSI coordination compared to 

Li–solvent coordination support my earlier assumption that vehicular motion and solvent 
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exchange are the dominant mechanisms of lithium transport, with salt exchange (net motion of a 

Li+ ion because a TFSI– counter anion exits or enters the solvation shell of the Li+ ion) 

contributing much less. The Li–TFSI residence time is longer than the Li–solvent residence time 

for most systems, meaning that there are fewer Li–TFSI association/dissociation events than 

Li–solvent association/dissociation events to contribute to the motion of the Li+ ions. In the few 

systems where the Li–TFSI residence time is shorter than the Li–solvent residence time, the 

Li–TFSI coordination number is low (< 0.4), so there again must be few Li–TFSI dissociation 

events that can contribute to the motion of the Li+ ions. As such, the initial assumption that 

vehicular motion and solvent exchange are the dominant mechanisms seems reasonable, and I 

can thus proceed to use the transport ratio, which relies on this assumption. 
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Solvent 
Li–Solvent 

Residence Time 
in ns 

Li–TFSI 
Residence Time 

in ns a 

Solvent 
Radius of 
Gyration 

TFSI Radius 
of Gyration 

Transport 
Ratio 

DEC 12.8 ± 0.6 19 ± 1 2.307 2.57 19.4 

DMA 2.77 ± 0.09 4 ± 1 1.691 2.57 17.0 

DME 7.9 ± 0.2 30 ± 31 b 2.028 2.56 8.9 

DMF 1.50 ± 0.04 0.5 ± 0.1 1.545 2.57 15.3 

DMSO 1.85 ± 0.06 1.2 ± 0.4 1.313 2.56 14.1 

EC 3.7 ± 0.3 2.9 ± 0.7 1.439 2.56 7.9 

MeCN 0.108 ± 0.000 c 0.123 ± 0.001 1.172 2.57 10.0 

MTBE 6.8 ± 0.9 17 ± 3 1.670 2.56 47.1 

PC 5.5 ± 0.2 8 ± 2 1.679 2.56 6.5 

Py 1.8 ± 0.1 7.0 ± 0.7 1.477 2.58 12.1 

SL 28 ± 2 15 ± 5 1.674 2.56 10.2 

THF 2.1 ± 0.1 13 ± 2 1.364 2.58 22.8 

Table 17: Computational residences times, radii of gyration, and transport ratios, with error 
reflecting variation between simulations. (a) The TFSI calculations have relatively large error 

compared to the solvent calculations because LiTFSI is fairly dissociated in most of these 
systems. There are thus fewer TFSI– anions in the lithium solvation shells, and the residence 
times are averaged over a relatively small number of Li–TFSI dimers. (b) LiTFSI is almost 

completely dissociated in DME, so there are few TFSI– anions in the lithium solvation shells. 
Thus, the Li–TFSI residence time has large uncertainty. (c) Results are only reported to 1 ps 

accuracy given that the trajectory is outputted and saved only every 0.1 ps. 

 

Having established the validity of the transport ratio for these systems, I was interested in novel 

ways to use the transport ratio and the insights it provides into the atomistic behavior of the 

systems. Different solvent metrics versus the lithium transport ratio for the different Li–solvent 

systems are shown in Figures 15 and 16. In both cases, the solvent metric is created by 

combining different solvent properties that can be fairly straightforwardly measured 

experimentally and that are expected to relate to the transport mechanism, as will be explained 

below. The goal is to correlate easy to measure experimental properties with the lithium transport 

mechanisms in different systems and ultimately predict the dominant lithium transport 
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mechanism for new systems without needing to perform simulations. As stated earlier, vehicular 

transport is generally faster than transport via solvent exchange,140 so understanding the transport 

mechanisms gives insight into overall performance. In Figure 15, the solvent metric is the 

solvent donor number in kcal/mol divided by the experimental viscosity of the solvent–LiTFSI 

system in cP, with the solvent donor numbers taken from the literature.153,154 The only exception 

is the donor number for MTBE, which was estimated from donor number values for other ethers. 

In Figure 16, the solvent metric is the solvent donor number in kcal/mol divided by the shear 

modulus at infinite frequency for the pure solvent (𝐺ஶ) in GPa.  

These solvent properties were chosen because they are expected to relate to the transport 

mechanisms. Solvent donor number is a measure of the ability of a solvent to solvate cations 

such as the lithium ions, so it should be inversely correlated with transport via the solvent 

exchange mechanism. In other words, I would expect solvents with a higher solvent donor 

number to have less transport via the solvent exchange mechanism because the solvent 

molecules in the lithium solvation shells are more strongly associated with the lithium ions and 

thus the solvation shells are more stable with fewer exchange events. In contrast, the viscosity is 

a measure of the internal friction of the system, and the shear modulus is a measure of the 

stiffness or rigidity of the system. Both of these properties should be inversely correlated with 

transport via the vehicular motion mechanism. I would expect solvents with higher viscosities or 

shear moduli to have less transport via the vehicular motion mechanism because the transport of 

the lithium solvation shells through the bulk solvent is slow. Thus, for the solvent metrics of 

solvent donor number / viscosity and solvent donor number / shear modulus, higher values of the 

metric should correspond to higher transport ratios (more vehicular motion and less motion via 
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solvent exchange), and indeed, in Figures 15 and 16, there is a trend of increasing lithium 

transport ratio with increasing value of the solvent metric.  

 

 

Figure 15: Solvent metric (solvent donor number / viscosity of the solvent–LiTFSI system) vs. 
computational lithium transport ratio.153,154 
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Figure 16: Solvent metric (solvent donor number / shear modulus at infinite frequency for the 
pure solvent) vs. computational lithium transport ratio.153,154 

 

To my knowledge, such a trend between solvent metrics combining different experimentally 

accessible solvent properties and atomistic ion transport mechanisms has not been previously 

reported for small molecule liquid systems. I believe it warrants further study, as it could provide 

a straightforward way to predict atomistic transport properties for new systems without 

developing a classical MD parametrization for each new solvent molecule. Thus, one method for 

further examining these trends would be to add additional solvents, which I am interested in 

doing in the future and encourage others to explore. However, a second method to investigate 

these trends is to examine mixtures of different solvents. I have therefore examined the behavior 

of LiTFSI in EC/MTBE systems with different ratios of the two solvents. EC and MTBE were 

selected because they have very different values of the solvent metric (for both metrics 

examined) and of the lithium transport ratio. I thus expect properties of the mixtures to vary 
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strongly as a function of composition. The results of this study are discussed in the following 

section. 

3.3.3 EC/MTBE Solvent Composition Study 

In this study, I examined the behavior of LiTFSI in EC/MTBE systems with three different molar 

ratios for the solvents: 25:75, 50:50, and 75:25. In each case, there were still 2,000 solvent 

molecules total and 120 LiTFSI molecules, and other simulation properties were unchanged, 

including running three independent simulations for each system. As one test of my simulations, 

I examined the viscosity as a function of the solvent composition, and the results are shown in 

Figure 17. The EC–LiTFSI system has a signficantly higher viscosity than the MTBE–LiTFSI 

system (a computational viscosity of 16 ± 4 cP for the EC–LiTFSI system vs. a computational 

viscosity of 0.81 ± 0.09 cP for the MTBE–LiTFSI system; values in Table 13). Thus, I expected 

the viscosity to increase as the mole fraction of EC increases, and this is indeed what is observed. 
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Figure 17: Viscosity as a function of solvent composition for the EC/MTBE–LiTFSI systems. 

 

A more interesting property to examine for insights into the effect of solvent composition is the 

Li+-ion coordination environment. The Li–EC, Li–MTBE, Li–TFSI, and total coordination 

numbers as a function of solvent composition are shown in Figure 18. In every system except the 

one with no EC solvent, EC molecules dominate the lithium solvation shells. Additionally, there 

are on average more TFSI– counter anions than MTBE solvent molecules in the lithium solvation 

shell. This was a very interesting result, as adding even a relatively small fraction of EC to the 

MTBE solvent drastically changes the lithium solvation environment. I would expect this to 

significantly affect how lithium is transported, as the two primary lithium transport mechanisms, 

the vehicular transport mechanism and the solvent exchange mechanism, both depend on the size 

and stability of the lithium solvation shell. This can be investigated by examining the lithium 

transport ratio. 
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Figure 18: Li–EC, Li–MTBE, Li–TFSI, and total coordination numbers as a function of solvent 
composition for the EC/MTBE–LiTFSI systems. 

 

The lithium transport ratio is not a perfect descriptor for mixed solvent systems, as it depends on 

the solvent radius of gyration and the average residence time of a solvent molecule in a lithium 

solvation shell and does not have a clean way to combine contributions from different solvents. 

However, in the EC/MTBE systems, lithium is far more likely to be coordinated by EC 

molecules than by MTBE molecules. Thus, I can calculate the lithium transport ratio using just 

the EC radius of gyration and average residence time and neglect the MTBE contribution. This is 

similar to my previously neglecting the contribution of interactions between the Li+ ions and the 

TFSI– counter anions on the lithium transport behavior because the lithium solvation shells are 

dominated by solvent molecules and not TFSI– counter anions. 
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The resulting lithium transport ratio is shown as a function of the solvent composition in 

Figure 19. Systems with more MTBE and less EC had a higher lithium transport ratio. On the 

one hand, this was expected as the MTBE–LiTFSI system had a much higher transport ratio than 

the EC–LiTFSI system did (47.1 vs. 7.9). Also, the viscosity of the EC/MTBE systems decreased 

as the mole fraction of EC decreased, which should generally lead to increased ion mobility and 

increased vehicular motion. However, it was still interesting that the lithium transport ratio had 

such as strong correlation with the EC mole fraction even though the lithium coordination shell 

was dominated by EC in all of the systems. These results suggest that for the systems with a low 

fraction of EC, the lithium solvation shell is primarily composed of EC molecules and is fairly 

stable. However, the solvation shell can move farther before undergoing any 

association/dissociation events in the EC/MTBE systems than it could in the pure EC solvent 

because it is moving through a significantly less viscous solvent. Thus, the vehicular transport 

mechanism is more dominant over the solvent exchange mechanism for the EC/MTBE systems 

than for the EC system, which corresponds to a higher lithium transport ratio. 
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Figure 19: Lithium transport ratio using EC as solvent as a function of solvent composition for 
the EC/MTBE–LiTFSI systems. 

 

3.4 Conclusions 

These results suggest a way to look for combinations of solvents that could facilitate lithium 

transport while optimizing other solvent properties. I have examined only transport-related 

properties here, but there can be many other considerations in selecting a solvent ranging from 

thermal stability to melting point to cost. If a given solvent is considered desirable for one of its 

non-transport properties, measurements of properties such as its donor number, viscosity, and/or 

shear modulus at infinite frequency could predict the mechanism by which lithium ions are 

transported in the system without needing to perform new simulations. Knowing the mechanism 

then gives an indication of how well the solvent would perform in a battery, as a higher lithium 

transport ratio (more vehicular transport) often corresponds to overall better transport properties. 
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If the measurements of the given solvent suggest worse transport properties than desired, my 

work with the EC/MTBE systems gives guidance for how to select other solvents to mix with the 

given solvent to change the transport properties. For example, if one solvent has a property such 

as exceptional thermal stability or resistance to solvent decomposition well suited to a given 

application but has low ionic conductivity due to less vehicular ionic transport, it could be mixed 

with a solvent where vehicular transport is more dominant to enable faster overall ionic 

transport. 

More research, which could include adding new solvents or examining more mixtures, is needed 

to further investigate the trend between the solvent metrics and the transport ratio. Additional 

solvent metrics using different experimental properties could also be examined. However, I 

believe that there is much potential in the concept of using a metric that captures different 

solvent properties to predict atomistic behavior such as transport mechanisms that cannot be 

easily examined experimentally. 
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4 Conclusions and Broader Impact 

This work in this thesis can broadly be described as using atomistic simulation methods to 

investigate how ions are transported in small molecule liquid electrolyte systems relevant to 

battery applications, with a focus on lithium–oxygen batteries. However, my research 

encompasses two different but complementary goals: (1) evaluating and improving the methods 

used for these atomistic simulations and (2) then using these methods to extract physical insights 

into various battery systems. 

For the methodology development portion of this thesis, I focused on how ab initio molecular 

dynamics simulations are typically performed in the literature and evaluated whether this 

methodology produces physically accurate, reproducible results. To this end, I compared two ab 

initio molecular dynamics equilibration methods as well as two different classical force fields for 

simulating how Li+ ions are coordinated with solvent molecules and counter anions in several 

common lithium–oxygen battery systems. By comparing the computational behavior of lithium 

salts in different solvents with the experimental behavior, I found that equilibration with the 

classical force field that produced more physically accurate behavior in the classical molecular 

dynamics simulations also resulted in more physically accurate behavior in the ab initio 

molecular dynamics runs compared to the other equilibration methods, illustrating the 

importance of equilibration methodology. I also demonstrated the importance of averaging 

coordination number over multiple starting configurations and Li+ ions, as the majority of Li+ 

ions do not undergo a single association or dissociation event even in what is considered a long 

ab initio molecular dynamics simulation and thus do not sample a statistically significant portion 

of the phase space.  
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Overall, these results show the importance of both equilibration method and sufficient 

independent sampling for extracting experimentally relevant quantities from ab initio molecular 

dynamics simulations. This had not been previously systematically studied in the field, and many 

ab initio molecular dynamics papers exist in the literature with no justification for why their 

chosen equilibration method is sufficient or even with no discussion of their equilibration 

methods at all. Thus, my work also demonstrates the importance of documenting information on 

equilibration and sampling methodology in articles to enable reproducibility.  

Additionally, my results showed the inherent difficulty and expense of accurately calculating 

experimentally relevant quantities using from ab initio molecular dynamics simulations. This 

motivated my using classical molecular dynamics simulations in the second portion of the thesis 

focused on extracting physical insights into battery systems, as I could calculate more material 

properties by using classical molecular dynamics than with ab initio molecular dynamics 

simulations. In this work, I examined a variety of transport properties for solvent–LiTFSI 

systems with twelve different small molecule liquid solvents commonly used in battery. As my 

previous research had illustrated the importance of using physically accurate simulation methods, 

I also evaluated the classical molecular dynamics force fields by calculating computational 

viscosities, densities, and ionic conductivities for each system and comparing them to 

experimental data. I finally examined whether more experimentally accessible properties such as 

viscosity or solvent donor number correlate with the atomistic transport properties and developed 

solvent metrics such as the donor number / viscosity that correlate with atomistic transport 

properties. To my knowledge, this work is the first time such combined solvent metrics have 

been utilized for analyzing ionic transport in small molecule liquid solvents. While the trends 

found in this work may be more indicative than predictive, they are an important step towards 
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the ultimate goal of predicting atomistic transport properties without the need to perform 

simulations. This would allow more efficient screening of new candidate solvents or proposed 

solvent mixtures. 

In all, I hope the work in this thesis will shape how future ab initio molecular dynamics studies 

are performed, with the goal of increased physical accuracy, documentation, and reproducibility. 

The concept of solvent metrics correlated to ionic transport mechanisms developed here also has 

the potential to greatly aid in the search for improved battery electrolytes, as such metrics could 

allow for high-throughput screening of potential solvents without needing to develop force field 

parameters for and then simulate each system. The need for simulations would not disappear, but 

they could be more targeted towards systems predicted to have optimal transport properties. This 

will allow us to continue our development of novel battery technologies, such as lithium–oxygen 

or lithium–air batteries, needed to conquer hard decarbonization problems such as electric 

aviation. 
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5 Appendix: Experimental Methodology 

While the work in this thesis is purely computational, the research was performed in 

collaboration with experimentalists who provided experimental data for comparison and 

validation. The experimental methodologies are included below; the methodology for the AIMD 

study is adapted from Crabb et al. (2020).94 

5.1 Experimental Density Methodology for the AIMD Study 

High purity dimethyl sulfoxide (DMSO, Sigma Aldrich, anhydrous, ≥ 99.9%) and acetonitrile 

(MeCN, Sigma Aldrich, anhydrous, ≥ 99.8%) were purchased and dried over molecular sieves 

for at least a week before use. 1,2-dimethoxyethane (DME) was purchased from Acros and was 

degassed and dried using a Glass Contour Solvent Purification System built by SGWater USA, 

LLC. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 99.99% extra dry grade provided by 

Solvay) was used as received. Lithium trifluoromethanesulfonate (LiTfO, Sigma Aldrich, 

99.995%) and lithium trifluoroacetate (LiTFA, Alfa Aesar, 97%) were dried at 150°C under 

vacuum for 48 hours and transferred directly to an argon-filled glovebox (MBraun, < 0.1 ppm 

H2O, < 0.1 ppm O2) without exposure to the ambient. All chemicals were stored in an argon-

filled glovebox (MBraun, USA) with H2O and O2 content of < 0.1 ppm. Electrolytes were 

prepared by dissolution of the salt and solvent where proportions were determined based on the 

mass of salt and solvent. Density measurements were performed with an Anton Paar SVM 3001 

at 300 K with three repetitions per measurement. 
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5.2 Experimental Methodology for the Transport Study 

As experimental validation of classical force fields is very important, a collaborator measured 

experimental densities, viscosities, and ionic conductivities for the twelve solvent–LiTFSI 

systems used in this study to compare with my computational results. The methodology is 

included below. For each system, the LiTFSI concentration was the same as that of the 

corresponding computational system (with all systems having a ratio of 3 LiTFSI molecules to 

50 solvent molecules). 

5.2.1 Chemicals 

High purity dimethyl sulfoxide (DMSO, Sigma Aldrich, anhydrous, ≥ 99.9%), 

N,N-dimethylacetamide (DMA, Sigma Aldrich, anhydrous, ≥ 99.8%), N,N-dimethylformamide 

(DMF, Sigma Aldrich, anhydrous, ≥ 99.8%), tert-butyl methyl ether (MTBE, Sigma Aldrich, 

anhydrous, ≥ 99.8%), tetrahydrofuran (THF, Sigma Aldrich, anhydrous, ≥ 99.9%, inhibitor-free), 

acetonitrile (MeCN, Sigma Aldrich, anhydrous, ≥ 99.8%), pyridine (Py, Sigma Aldrich, 

anhydrous, 99.8%) and sulfolane (SL, Thermo Scientific, 99%) were purchased and dried over 

molecular sieves for at least a week before use. 1,2-dimethoxyethane (DME) was purchased 

from Acros and was degassed and dried using a Glass Contour Solvent Purification System built 

by SGWater USA, LLC. Propylene carbonate (PC, BASF Selectilyte), ethylene carbonate (EC, 

BASF Selectilyte) and diethyl carbonate (DEC, BASF Selectilyte) were used as received. 

Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 99.99% extra dry grade provided by 

Solvay) was used as received. All chemicals were stored in an argon-filled glovebox (MBraun, 

USA) with H2O and O2 content of < 0.1 ppm. Electrolytes were prepared by dissolution of the 

desired mass of the salt and solvent. The total H2O content in the solvents was checked using a 
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C20 compact Karl Fisher coulometer from Mettler Toledo; for the dry solvent, it was < 20 ppm 

for ~2 g of sample. 0.5 M LiTFSI solutions in DMSO and DME had water contents < 40 ppm 

indicating no significant water contamination of the salt. 

5.2.2 Characterization of Solvent–LiTFSI Systems 

Ionic conductivity was measured using the complex impedance method in the frequency range of 

1 MHz to 400 mHz with 100 mV amplitude using a Bio-Logic SP-300. The electrolyte was 

sealed in a cell containing two platinum-black electrodes (conductivity cell CG-511B, TOA 

Electronics), and the cell was thermally equilibrated at 300 K in an environmental chamber 

(Espec SU-241) until the impedance spectra stabilized (typically ~30 minutes). The cell constant 

of the conductivity cells was determined using an aqueous KCl solution of known conductivity 

(Ricca Chemical, 1.413 mS/cm at 25°C). Viscosity and density measurements were performed 

with an Anton Paar SVM 3001. 
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