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Abstract

With the increasing number of gravitational-wave (GW) detections made by LIGO-
Virgo-Kagra during the first three observing runs, the field of GW astrophysics has a
growing need for prompt and precise parameter estimation (PE) of GW sources. To
better understand the limitations of the current PE practices and to develop a more
robust approach to analyze future GW sources, this thesis explores the impact of various
aspects of data analysis, including priors, waveform models, noise characterization,
and instrumental calibration errors, on the final PE results. This thesis demonstrates
that in the case of marginal signals, the choice of priors can greatly impact the PE
results and the subsequent astrophysical interpretation, especially when population-
informed priors are not yet available. As the detector sensitivity improves, two other
sources of systematic errors become increasingly relevant: waveform approximants
and instrumental calibration errors. In the second half of the thesis, we conclude that
the current waveform approximants for neutron star-black hole mergers are unlikely
to introduce systematic errors comparable to the statistical uncertainties for sources
that can be detected with current and near-future detector sensitivity. In terms of the
calibration errors, we show that they will not impede the standard siren measurement
of the Hubble constant in the coming decades. This thesis examines the impact of
various data analysis choices on the final results with extensive PE runs unparalleled in
the previous literature and can continue to provide valuable guidance for PE analysis
for future generations of GW detectors.
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Chapter 1

Introduction

In classical physics, time is considered to proceed constantly and independently for all

objects, and gravity is viewed as a force acting on massive objects. This understanding

of physics was widely accepted until Albert Einstein published the general theory of

relativity (GR) in 1916. According to GR, gravity is no longer a force, but rather the

curvature of space-time caused by the presence of massive objects. This curvature of

space-time in turn influences the motion of other massive objects.

One of the predictions of GR is the existence of gravitational waves (GWs), which

are “ripples” in the fabric of space-time caused by massive, accelerating objects [1].

It was not until 2015 that the Advanced Laser Interferometer Gravitational-Wave

Observatory (LIGO) [2] successfully detected GWs from a binary black hole merger

(BBH), providing the first direct evidence of GWs. This discovery opened up a new field

of GW astrophysics, which provides a complementary way of observing the universe

through GWs, complementary to the traditional astronomy that uses electromagnetic

radiation (EM).

Any acceleration of a massive object can produce GWs, but detecting a GW signal

on Earth is an extremely challenging task. GWs can be so weak when they reach

Earth that they are easily drowned out by noise sources such as earthquakes or passing

trains. To overcome this challenge and detect GWs on Earth, we utilize Michelson

interferometers, which record the laser interference patterns to measure the differential

changes, referred to as strain, in the arms of the interferometers. If we have multiple
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detectors in an appropriate configuration, we can pinpoint the sources of the GWs in

the sky. A more detailed description of this technique will follow in Section 1.2.

1.1 GW Sources

The first indirect evidence of GWs came from the observation of the Hulse-Taylor

binary pulsars [3], where the decay of the orbital energy of the pulsars matched the

prediction of energy loss due to the emission of GWs. The most violent and powerful

events in the Universe, compact binary coalescences (CBCs): mergers of compact

objects like black holes (BHs), neutron stars (NSs), or white dwarfs, can produce

GWs directly observable on Earth. The source of the first directly detected GWs,

GW150914, indeed falls in this category.

Some of the expected sources of GWs are also luminous in the EM band, which

allows for the possibility of multi-messenger observations. The detection of the binary

neutron star merger (BNS) GW170817 and the associated counterparts across all

of the EM spectrum from radio to 𝛾-rays (AT2017gfo/GRB170817A) [4–15] marked

the beginning of the era of multi-messenger astrophysics based on photons and GWs.

GW170817 allowed us to set constraints on the equation of state (EoS) of NSs [16],

confirm the heavy metal production in BNSs [7, 10, 17–20], search for evidence of

p-g modes [21] and put bounds on the component NS masses and spins [5]. The host

of GW170817 was identified, and the EM data confirmed the connection between

short gamma-ray bursts and BNSs, lead to the observation of the kilonova, and

yielded insights on the details of the EM emission accompanying the merger [22–25].

Information from both the GW and the EM sides was used to measure the Hubble

constant in a standard siren approach that is independent of the cosmic distance

ladder [26].

Though LIGO-Virgo has joined research forces since 2010, GW170814 was the first

BBH event detected by the LIGO-Virgo network. In 2021, Kagra collaboration joined

the team since the third observing run, making the collaboration LIGO-Virgo-Kagra

(LVK). To date, LVK has reported the detection of ninety-three GWs from CBCs in
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the data collected during their first three observing runs [27–30]. The trend of the

increasing number of GW detections is illustrated in Fig. 1-1. As more detections

are made, they will make it possible to constrain the role of stellar wind, rotation,

and metallicity in the progenitor stars [31], measure the merger rate [32], the spin

and mass distribution [33–40] and perform stringent tests of GR in its strong-field

regime [41–46]. 12

GW candidates during O3 was enabled by the improved
sensitivity of the detector network. A conventional mea-
sure of sensitivity is the binary neutron star (BNS) inspi-
ral range, which quantifies the average distance at which
a fiducial 1.4M� + 1.4M� BNS could be detected with a
signal-to-noise ratio (SNR) of 8 [20–22]. During O3b the
median BNS inspiral range for LIGO Livingston, LIGO
Hanford and Virgo was 133 Mpc, 115 Mpc and 51 Mpc,
respectively. In Fig. 1 we show the growth in the num-
ber of candidates in the LVK catalog across observing
runs. Here, the search sensitivity is quantified by the
BNS time–volume, which should be approximately pro-
portional to the number of detections [3]. This is defined
as the observing time multiplied by the Euclidean sen-
sitive volume for the detector network [22]. For O1 and
O2, the observing time includes periods when at least
two detectors were observing, and the Euclidean sensi-
tive volume is the volume of a sphere with a radius equal
to the BNS inspiral range of the second most sensitive
detector in the network. For O3, to account for the po-
tential of single-detector triggers, the observing time also
includes periods when only one detector was observing,
and the radius of the Euclidean sensitive volume is the
greater of either (i) the BNS inspiral range of the second
most sensitive detector, or (ii) the BNS inspiral range of
the most sensitive detector divided by 1.5 (correspond-
ing to a SNR threshold of 12) [3]. As the sensitivity of
the detector network improves [23], the rate of discovery
increases.

Further searches for GW transients in O3b data have
been conducted focusing on: intermediate-mass black
hole (IMBH) binaries (with a component & 65M� and a
final BH & 100M�) [24], signals coincident with gamma-
ray bursts [25], cosmic strings [26], and both minimally
modeled short-duration (. O(1) s, such as from super-
novae explosions) [27] and long-duration (& O(1) s, such
as from deformed magnetars or from accretion-disk insta-
bilities) [28] signals. However, no high-significance can-
didates for types of signals other than the CBCs reported
here have yet been found.

We begin with an overview of the status of the Ad-
vanced LIGO and Advanced Virgo detectors during O3b
(Sec. II), and the properties and quality of the data used
in the analyses (Sec. III). We report the significance of
the candidates identified by template-based and mini-
mally modeled search analyses, and compare this set of
candidates to the low-latency public GW alerts issued
during O3b (Sec. IV). We describe the inferred astro-
physical parameters for the O3b candidates (Sec. V). Fi-
nally, we show the consistency of reconstructed wave-
forms with those expected for CBCs (Sec. VI). In the
Appendices, we review public alerts and their multimes-
senger follow-up (Appendix A); we describe commission-
ing of the observatories for O3b (Appendix B); we de-
tail data-analysis methods used to assess data quality
(Appendix C), search for signals (Appendix D) and in-
fer source properties (Appendix E), and we discuss the
di�culties in assuming a source type when performing a
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Figure 1. The number of CBC detection candidates with
a probability of astrophysical origin pastro > 0.5 versus the
detector network’s e↵ective surveyed time–volume for BNS
coalescences [3]. The colored bands indicate the di↵erent ob-
serving runs. The final data sets for O1, O2, O3a and O3b
consist of 49.4 days, 124.4 days, 149.8 days (177.2 days) and
125.5 days (142.0 days) with at least two detectors (one de-
tector) observing, respectively. The cumulative number of
probable candidates is indicated by the solid black line, while
the blue line, dark blue band and light blue band are the me-
dian, 50% confidence interval and 90% confidence interval for
a Poisson distribution fit to the number of candidates at the
end of O3b.

minimally modeled search analyses (Appendix F). A data
release associated with this catalog is available from the
Gravitational Wave Open Science Center (GWOSC) [29];
this includes calibrated strain time-series around signif-
icant candidates, detection-pipeline results, parameter-
estimation posterior samples, source localizations, and
tables of inferred source parameters.

II. INSTRUMENTS

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers [30–
32]. The advanced generation of interferometers be-
gan operations in 2015, and observing periods have
been alternated with commissioning periods [23]. After
O1 [13, 33] and O2 [14], the sensitivity of the interfer-
ometers has improved significantly [3, 34]. The main im-
provements were the adjustment of in-vacuum squeezed-
light sources, or squeezers, for the LIGO Hanford and
LIGO Livingston interferometers and the increase of the
laser power in the Virgo interferometer. The instrumen-
tal changes leading to improved sensitivities during O3b

Figure 1-1: Total number of CBC detections versus the effective surveyed time–volume
of the detector network for BNSs [29], reproduced from the third Gravitational-wave
Transient Catalog (GWTC-3) [27].

Besides those three mentioned above, several other events have fascinating scientific

implications. For example, GW190425, the second BNS detected using GWs, has a

total mass that exceeds that of any other known galactic neutron star binaries[47].

Additionally, GW190521 is to date the most massive BBH detected, with its component

masses being 85 and 66 solar masses (𝑀⊙) [48]. The resulting BH remnant has a mass

of 142 𝑀⊙ and is the first unambiguous detection of an “intermediate-mass” black

hole (IMBH).

GW190412 is the first BBH event with clear evidence of an unequal mass ratio [49],
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and thus provides important new information on the properties of BBHs and their

formation mechanisms. GW190814 is another BBH event with an extreme mass ratio,

with the heavier BH being almost ten times as heavy as the lighter component [50].

This event also raises new questions about the nature of the lighter object, which is

heavier than any other previously identified NS detected through EM [51] or GW.

The lighter component in this event has a mass that falls within the hypothesized

2.5− 5 𝑀⊙ lower mass gap [52–55], which is a region where no NSs or BHs have been

previously observed. This discovery helps to refine current models and theories of the

properties of compact objects and their possible formation mechanisms.

So far, no other EM counterparts have been identified and associated with a

CBC event detected using GWs. This includes GW190425, the second BNS event,

and the first-ever detected neutron star-black hole (NSBH) events, GW200105 and

GW200115 [56]. Several limitations make identifying EM counterparts difficult, such as

the large uncertainties in the sky localization of the event during parameter estimation

(PE), which are much larger than the field-of-view of typical telescopes. Moreover,

there is usually a trade-off between the field of view and the sensitivity of a telescope.

Improving the rapidity and reliability of PE, especially in terms of sky localization,

will be one of the critical challenges for multi-messenger astronomy. To increase the

chances of identifying EM counterparts in the future, there have been proposals to

build telescopes specific for GW follow-ups like the High Energy Stereoscopic System

(H.E.S.S.) [57], the WINTER telescope [58] and many more, besides instruments

that have dedicated telescope time for GW follow-ups like the Dark Energy Camera

(DECam), Zwicky Transient Facility (ZTF) [59], Fermi Gamma-ray Space Telescope,

to name a few.

In addition to the upcoming observing runs of LVK, there are the proposed

third-generation ground-based GWs detectors, Cosmic Explorer [60] and Einstein

Telescope [61]. These proposed detectors are expected to have much higher sensitivity

and thus larger detection volume, allowing us to observe a much greater number of

GW sources in the coming decades. Furthermore, the Laser Interferometer Space

Antenna (LISA) [62] is a planned array of satellites that can detect GWs at much lower
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frequencies, allowing us to study a wider variety of sources such as supermassive BBHs

and binary white dwarfs. These new developments present countless opportunities

in the future of GW astronomy and a growing demand for fast and accurate source

characterization of GW detections.

In the following sections, I will briefly describe some common practices and concepts

used in the GW data analysis pipeline, as illustrated in Fig. 1-2: GW data in Sec. 1.2,

and Bayesian statistics in Sec. 1.3.

Prior Likelihood

Background 
noise CBC signal

Simulated or Astrophysical

Bayesian 
Statistics

Waveform 
Templates

Posterior

CalibrationDetector 
Readout

Strain

Figure 1-2: The GW data analysis pipeline.

1.2 GW Data

Each of the current aLIGO-Virgo detectors is a dual-recycled Fabry-Pérot Michelson

laser interferometer (IFO) [64, 65], as illustrated in Fig. 1-3. Its data stream 𝑑IFO is

obtained from a voltage signal, 𝑒IFO, measured from the output power of the laser

incident on a photodetector. The process of converting 𝑒IFO into 𝑑IFO is referred to as

calibration [66], further discussed in Sec. 5.1.

The data in each IFO in the presence of a GW signal can be written as 𝑑 :

𝑑 = ℎ+ 𝑛 (1.1)
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Figure 1-3: Michelson Interferometer, reproduced from Ref. [63].

where ℎ is the GW signal and 𝑛 is the background noise. With the data stream 𝑑

from all detectors in hand, we want to measure the unknown source parameters, 𝜃.

We can describe the GWs emitted by a binary of two point masses in a quasi-

circular orbit by a set of 15 parameters, 𝜃, including masses, spins, coalescence phase,

polarization, as well as extrinsic parameters such as luminosity distance, inclination

angle, arrival time on Earth, and sky position. Different parameterizations are possible

for the mass parameters, including the asymmetric mass ratio 𝑞 = 𝑚2/𝑚1 (𝑚1, 𝑚2

are the component masses, with 𝑚1 ⩾ 𝑚2 by convention), and the chirp mass ℳ:

ℳ = (𝑚1𝑚2)
3/5(𝑚1 +𝑚2)

−1/5.

In general, six parameters are needed to describe the spins of the binary: two

dimensionless spin magnitudes 𝑎1, 𝑎2 defined as 𝑎𝑖 = |Si|/𝑚2
𝑖 where Si is the spin
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vector; the tilt angles 𝑡1, 𝑡2 between the spin vectors and the orbital angular momentum

at some reference frequency (usually equal to the lower frequency used in the analysis, )

and two azimuth angles. While individual black hole spins (𝑆𝑖) are difficult to measure,

a combination of the two spins called the effective spin 𝜒eff [67–70] is usually much

better measured [30, 39, 71–74]. The effective spin is the mass-weighted projection of

the component spins, along the orbital angular momentum 𝐿:

𝜒eff =

(︂
𝑚1𝜒1 +𝑚2𝜒2

𝑚1 +𝑚2

)︂
· 𝐿

|𝐿| . (1.2)

Note that we will be using natural units, 𝐺 = 𝑐 = 1, throughout this thesis.

Each NS in the binary adds additional complexity caused by the tidal deformation

of the NS and its potential disruption before the merger. BNSs would thus require

two additional parameters to model their linear tidal deformability [75–79].

The loudness of a given GW signal can be assessed with its optimal signal-to-noise

ratio (SNR), 𝜌opt, defined in each IFO as [80]:

𝜌opt = [⟨ℎ(𝜃, 𝑓)|ℎ(𝜃, 𝑓)⟩]1/2 (1.3)

where ℎ(𝜃, 𝑓) is the frequency-domain waveform projected in the detector, 𝑆𝑛(𝑓) is

the power spectral density (PSD) of the detector noise, and the noise weighted scalar

product is defined as:

⟨𝑎(𝜃, 𝑓)|𝑏(𝜃, 𝑓)⟩ ≡ 4

∫︁ 𝑓high

𝑓low

𝑎(𝜃, 𝑓)𝑏(𝜃, 𝑓)*

𝑆𝑛(𝑓)
𝑑𝑓 (1.4)

where 𝑓low and 𝑓high are the frequency bounds, usually 20 Hz and 1024 Hz. When

we have a network with multiple IFOs, we report the values of the network SNR,

which we obtain by adding in quadrature the values from each detector. LVK’s search

algorithms calculate and report a matched-filter SNR [30, 81], defined as:

𝜌MF =

∑︀
𝐼𝐹𝑂⟨𝑑|ℎ(𝜃, 𝑓)⟩√︀∑︀

𝐼𝐹𝑂⟨ℎ(𝜃, 𝑓)|ℎ(𝜃, 𝑓)⟩
. (1.5)
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The optimal SNR is the expectation of the matched-filter SNR in the limit where the

noise can be considered perfectly Gaussian.

1.3 Bayesian Statistics

We use Bayesian inference [82, 83], the standard practice in the field, to measure the

unknown parameters of the detected signals [84, 85], and calculate their posterior

probability density function (PDF):

𝑝(𝜃|𝑑, 𝐻) =
𝑝(𝜃|𝐻)𝑝(𝑑|𝜃, 𝐻)

𝑝(𝑑|𝐻)
(1.6)

where 𝑝(𝜃|𝐻) is the prior probability density of 𝜃, under the hypothesis 𝐻, and the

second term in the numerator is the likelihood:

𝑝(𝑑|𝜃, 𝐻) ∝ exp

(︂
−1

2
⟨𝑑− ℎ(𝜃)|𝑑− ℎ(𝜃)⟩

)︂
. (1.7)

The likelihood is defined so that it is maximized when the 𝑑 − ℎ(𝜃) is closest to

Gaussian noise with the detector PSD. The normalization constant 𝑝(𝑑|𝐻) is the

evidence for the model 𝐻:

𝑍 = 𝑝(𝑑|𝐻) =

∫︁
d𝜃𝑝(𝑑|𝜃, 𝐻)𝑝(𝜃|𝐻). (1.8)

Under the assumptions that the noise streams are statistically uncorrelated, the

total likelihood can be written as a product of individual likelihoods from each IFO

as: [86]

𝑝(𝑑|𝜃, 𝐻) =
∏︁
IFO

𝑝(𝑑IFO|𝜃, 𝐻) (1.9)

where the product spans all the instruments in the network.

Given the multidimensional posteriors, Eq. (1.6), the posterior PDFs of any specific

parameter can be found by marginalizing all the other parameters:
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𝑝(𝜃1|𝑑, 𝐻) =

∫︁
𝑑𝜃2...𝑑𝜃𝑁𝑝(𝜃|𝑑, 𝐻) (1.10)

This thesis aims to investigate the impact of potential systematic errors on the PE

of GW signals. The study can be divided into two main sections, each focusing on

a distinct scenario for PE. The first part of the thesis examines the PE of marginal

events with low SNRs. Chap. 2 discusses marginal events of various morphologies with

SNRs around the detection threshold, mainly how precisely and accurately the sources

can be characterized. Chap. 3 examines the choices made during the PE process of

seven marginal astrophysical BBHs reported by an independent data analysis pipeline

outside LVK: the choices of priors, the waveform models, the characterization of

background noise, and the sampler.

The second part of the thesis explores the opposite limit, where the signals are

strong enough that statistical uncertainties are small and systematic errors from

inaccurate models become more prominent. Chap. 4 performs extensive PE runs to

investigate NSBH waveform approximants, and Chap. 5 studies errors arising as the

detector read-out is converted to the strain data.

The main objective of this thesis is to investigate the limitations of PE and to

provide a comprehensive guide for future PE analysis and its astrophysical interpre-

tation, by thoroughly examining the various components of the PE pipeline. The

following four chapters will describe in detail how each analysis was conducted, to

make the methodology easily reproducible and applicable to other GW analyses. The

research described in each chapter corresponds to the publications [87], [88], [89] and

[90], respectively.
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Chapter 2

Marginal Simulated Events

The noise from GW detectors is not perfectly Gaussian. Non-Gaussian noise artifacts

(often referred to as glitches) limit the sensitivity of GW searches [91]. To assess the

significance of a candidate event, its SNR (or another detection statistics) is compared

with the distribution of SNRs from the background, which is usually estimated either

by time-sliding the data of different instruments [92] or by constructing the network

SNR distribution assuming noise is independent in each detector [93]. Unfortunately,

the distribution of SNRs from glitches increases much faster than those from CBCs

as the SNR decreases [94, 95]. This can limit the benefits of lowering the threshold

while searching for CBC signals and following them up in the EM band. For example,

Ref. [96] has shown that lowering the threshold false alarm rate to one per month

(week) would result in only 39% (13%) of the BNS candidate being of astrophysical

origin. Observers who decide to follow up on marginal events would thus have to deal

with a large number of false positives.

In this chapter, we look at a complementary aspect of marginal events: namely,

the fact that their characterization can be challenging or inconclusive. Virtually all

of the GW literature focusing on the characterization of GWs from compact binaries

has considered clear detections, generating simulated GW signals with optimal SNRs

above some thresholds (often ∼ 12). In this study, we reverse that approach and only

consider sources weaker than what could be considered as a clear detection.

We simulate BNS, BBH, and NSBH sources and add them to real interferometric
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noise of LIGO and Virgo, re-colored to have the spectral behavior expected in the

third observing run (O3), started in 2019 [92]. We analyze the sources at different

optimal network SNRs, as defined in Eq. (1.3), from 6 to 12, and show exactly how the

quality of the PE process degrades as the optimal network SNR decreases. We find

even at optimal network SNRs of 12, BNS sources cannot be localized to areas smaller

than ∼ 400 deg2 (90% credible interval). Meanwhile, the luminosity distance is always

measured with relative uncertainties larger than 40%. It is not uncommon that the

sky position and luminosity distance cannot be measured. This reveals the challenges

of finding an EM counterpart to a weak GW source and making a compelling case

that the association is real. The chirp mass, usually the best-measured parameter,

shows signs of multimodality, especially for heavy systems. At optimal network SNRs

of 7 or below, we obtain chirp mass posterior distributions that are multimodal, or

with very large tails for most of the sources we consider. The uncertainty in the mass

ratio is large for heavy systems, whereas it can be as small as 0.07 for NSBHs at

optimal network SNRs of 12. Finally, we show that, especially for NSBH, the effective

spin [97–100] can be measured at very low optimal network SNRs.

We use nested sampling implementation of LALInference [84] to stochastically

explore the parameter space and produce posterior distributions for 𝜃. To reduce the

computational cost of the likelihood evaluations, we use the reduced order quadrature

(ROQ) approximation [101]. Sampling the parameter space to measure the properties

of weak signals in the presence of strong priors can be challenging. In App. A.1 we

report on some sanity checks we have performed to verify the code had properly

converged.

For BNSs, we start the analysis at 24 Hz, following the LIGO and Virgo collabora-

tions [77], while for all other sources, we start at 20 Hz.

2.1 Noise and Signal Generation

The necessary ingredients to simulate an end-to-end analysis of a GW signal are thus

the generation of a synthetic GW signal and a stretch of data to which the signal can
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be added. This section describes our approach to generating these quantities, starting

from the noise.

We work with a network of two Advanced LIGO instruments (Hanford and Liv-

ingston) and the Advanced Virgo detector. To make this study immediately relevant

to O3, we work with noise streams with the projected O3 sensitivity for each instru-

ment. The PSD, 𝑆𝑛(𝑓), of a stretch of data is defined as the average of the noise

autocorrelation over the duration of the data segment [81]. It is trivial to produce

Gaussian noise colored to have any specific PSD, and this is the approach followed

in a significant fraction of the GW literature. However, when dealing with marginal

events, using real noise seems important, as small noise artifacts or fluctuations might

significantly impact the characterization of weak signals.

We use public real data from the first observing run (O1) [102] and re-color it

to have the projected O3 spectral behavior1. More specifically, we select five GPS

times in O1 such that the data around them do not contain any (known) astrophysical

events nor significant instrumental artifact that would have resulted in vetoing that of

data (Ref. [102] provides a list of data segments which are considered clean by the

LIGO and Virgo collaboration). The O1 times we used for our analysis are listed

in Table 2.1. We download the corresponding five data files for each of the LIGO

instruments from Ref. [102] and use a routine of the GstLAL algorithm [93, 103–106]

to apply the expected O3 power spectrum (specifically the lower bounds of the “Late”

curve (2018-19) for Advanced LIGO and of the “Mid” curve (2018-19) for Advanced

Virgo in [107].).

Since Virgo was not running with the Advanced LIGO in O1, no Virgo O1 data is

available for those five GPS times. We simulate Virgo data as follows. For each GPS

time, we pick a Hanford frame corresponding to one of the other four GPS times, shift

the time stamp to coincide with the desired GPS time, and re-color it to the projected

O3 Virgo PSD.

We stress that while recoloring O1 data to a target sensitivity (O3, in this case)

gives a way to make predictions about the performances of future observing runs,

1This study was conducted before O3.
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it also has limitations. In particular, it will not capture new types of instrumental

artifacts that might arise as the instruments get more sensitive. On the other hand,

recoloring archival data maintains old instrumental artifacts that might very well be

solved in the future. However, as our signals do not overlap with major instrumental

artifacts, and given the lack of alternatives, we proceed with recolored data and use

Hanford data as time-shifted mock Virgo data.

The PSDs estimated with the BayesWave algorithm [108] for one of the data

streams produced with this method are shown for each interferometer in Figure 2-1

(colored curves), together with the projected O3 curves (black lines) that we use to

recolor the O1 data.

Figure 2-1: PSD of the recolored data for Advanced LIGO (green for Livingston,
blue for Hanford) and Advanced Virgo (purple). The black lines are PSD for each
instrument at the projected O3 sensitivities [107].

To generate the waveform signals, we use the IMRPhenomPv2 waveform approxi-

mant. This is an inspiral-merger-ringdown (IMR) waveform with an effective precessing

spin [109–111]. We keep all the phase and amplitude corrections supported by the

waveform.
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GPS time Date Time

1135924088 2016 Jan 04 06:27:51
1135989351 2016 Jan 05 00:35:34
1136267078 2016 Jan 08 05:44:21
1136506663 2016 Jan 11 00:17:26
1136594611 2016 Jan 12 00:43:14

Table 2.1: Original O1 times in GPS and GMT. These are the times at which signals
are “injected”.

We prefer to work with the optimal SNR, instead of the matched-filter SNR, since

the optimal SNR can be calculated from the waveform before it is added to the noise,

without any knowledge of the exact realization of the noise. In the rest of the chapter,

we will refer to optimal SNR as SNR, unless otherwise specified.

Clear detections typically have matched-filter network SNRs well above 12 for heavy

objects [112–117], whereas BNS can be detected with high confidence at lower matched-

filter network SNR [77, 118]. Since we wish to focus on marginal events, we generate

signals with lower network SNRs: [6, 7, 8, 9, 10, 12]. We consider 4 representative CBC

systems, BNSs, NSBHs, stellar-mass BBHs, and heavy stellar-mass BBHs (hBBHs).

These representative morphologies capture some of the key features that can be present

in CBC signals: long inspirals with little or no spin (BNSs); high mass ratio and visible

spin precession (NSBHs) and heavier objects with little inspiral (BBHs and hBBHs).

The masses and spins of each system are given in Table 2.2. In this study, we neglect

tidal effects for BNS and NSBH to keep the computational cost reasonable. Given

that tidal deformability is hard to measure even for loud events such as GW170817,

they would not have been measurable with the marginal sources we consider in this

chapter.

When the inclination angle is larger than ∼ 70 degrees, the cross-polarization

becomes negligible, affecting the estimation of the extrinsic parameters [119–121].

Thus, we consider two different inclination angles for each source: 30 degrees and 80

degrees, to take into account the effect of polarization. We assign the same geographical
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coordinate to all of our simulated sources. Specifically, they are overhead of the two

LIGO detectors, the positions where most events should be detected. This results in

roughly equal SNRs in the two LIGO detectors. We can quantify the sensitivity of

each detector to a particular direction and polarization with the square root of the

sum of the antenna pattern, F, squared [81]:

𝐹 IFO =
√︁
𝐹 IFO
+ (𝛼, 𝛿, 𝜓)2 + 𝐹 IFO

× (𝛼, 𝛿, 𝜓)2

where 𝛼 is the right ascension, 𝛿 is the declination, and 𝜓 is the polarization of the

GW signal. We have the same values for all of our sources: 𝐹𝐻 = 𝐹𝐿 = 0.7, 𝐹 𝑉 = 0.3.

Each system has its distance scaled to give the desired SNR and added to the recolored

data at the five GPS times of Table 2.1. In total, we analyze 4 (mass bins) × 2

(inclinations) × 6 (SNRs) × 5 (GPS times) = 240 simulated events.

Type 𝑚1(𝑀⊙) 𝑎1 𝑡1(
∘) 𝑚2(𝑀⊙) 𝑎2 𝑡2(

∘)

BNS 1.4 0 0 1.4 0 0

NSBH 8 0.8 46 1.4 0 0
BBH 12 0.6 60 6 0.1 60
hBBH 30 0.6 60 30 0.6 60

Table 2.2: The intrinsic parameters for the four morphologies considered in this study.

2.1.1 Choice of Priors

Bayesian inference requires explicit priors, in our case 𝑝(𝜃|𝐻) under the hypothesis

that a CBC signal is present in the data. For all parameters except the luminosity

distance (see below), we use the same priors used by the LIGO and Virgo collaboration

for the CBCs detected as of the time of writing this chapter [5, 77, 85, 113–117]. We

use isotropic priors for sky position, orbital orientation, and spin orientation. For

the dimensionless spin magnitude, we used uniform priors in the range [0, 0.89] for

BHs [85, 113–117] and [0, 0.05] for NSs [5, 77]. The priors on the component masses

38



are also uniform, in the range in which the corresponding ROQ basis is valid [101].

The most natural prior for the luminosity distance would be a prior uniform

in volume, 𝑝(𝑑𝐿) ∼ 𝑑2𝐿, since the detection horizon for CBC is tens or hundreds of

megaparsecs, depending on the total mass. This is indeed the prior used in LIGO-Virgo

papers.

In this study, we prefer to use a uniform prior on the luminosity distance, and then

re-weight the samples to enforce a uniform-in-volume prior. The reason is as follows.

The nested sampling algorithm samples the prior [122] to calculate the evidence 𝑍,

obtaining the posterior distribution as a by-product. When using a uniform-in-volume

distance prior, the nested sampling algorithm will spend a significant fraction of time

exploring the region of parameter space where the distance is large. If we could run

the algorithm for an arbitrarily large number of steps, it would eventually converge to

the correct parameters. But when using a finite number of steps for low-significance

events like the ones we are considering, the algorithm might in practice not explore

properly the part of the parameter space where the distance is small, since it would

have to overcome a significant prior penalty. By sampling with a uniform-in-distance

prior we avoid this issue. The sampler can easily explore the whole distance range,

and the correct prior is applied in post-processing with a standard rejection sampling

approach.

2.2 Results

In this section, we report the uncertainty in measuring some of the key parameters of

the simulated events. Unless otherwise specified, we used 90% credible intervals (CI).

Those are either absolute intervals (in the appropriate units) or relative to the true

value (in percentages).

2.2.1 Extrinsic Parameters

Extrinsic parameters such as sky location and luminosity distance are of fundamental

importance for EM follow-ups. Although the details of the follow-up to GW triggers
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vary with the facility and geographical factors (e.g. altitude of the source) [12], one

usually tries to cover all or part of the sky uncertainty area (or sky-distance uncertainty

volume). In fact, three-dimensional uncertainty volumes have been routinely released

in low latency by the LIGO and Virgo collaboration for significant events in the first

and second observing runs. Lowering the threshold for making triggers public would

in general imply a significant increase of the false positive fraction [96]. In this section,

we show that an EM follow-up campaign might be prohibitive even for events of

astrophysical origin.

In Figure 2-2, we show the 90% credible regions (deg2) for all the sources we

analyzed. Each color represents a different morphology (red for BNS, purple for

NSBH, blue for BBH, green for hBBH), whereas the shape of the bullet indicates the

inclination angle (circles for 30∘, stars for 80∘). The optimal network SNR (for the

remaining of this section we will drop the “network”) is reported in the horizontal axis.

Notice that we have artificially introduced a small horizontal offset while plotting to

avoid significant superposition between data from different morphologies. The five

markers for each (SNR, morphology, inclination) set correspond to the results from

the five GPS times.

We see the expected overall trend of decreasing uncertainties with increasing SNRs.

At SNRs below 10, we find that some sources are localized to uncertainties of 10, 000

deg2 or more. However, even at these SNRs, there are sources that can be localized

within areas of [400− 1, 000] deg2. We have verified that these variations are due to

the specific data stream into which events were added. In particular, we find that one

of the five GPS times produces systematically lower uncertainties. At these low SNRs,

the actual noise realization can significantly impact the outcomes of the PE process.

As the SNRs increase, the signals can be more easily distinguished from the noise, and

the latter plays less of a role.

The loudest events we consider have SNRs of 12. For most of those, the 90%

credible regions of sky localization are of [200-1,000] deg2. These large error areas

would make it extremely challenging to pursue a systematic EM follow-up in any

band other than radio [123–125], where wide-field instruments can be deployed. For
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Figure 2-2: Size of 90% credible regions of the marginalized posteriors for sky location
vs. network SNR.

comparison, Ref. [126] simulated a large number of BNS with astrophysically motivated

parameters and found that 50% of the BNS detectable by a LIGO-Virgo network (at

their sensitivity of the second observing run) would have a 90% CI of 235 deg2 or

smaller if a detection threshold of matched-filter network SNR above 12 is used.

Similar wild variations in precision can be seen for the luminosity distance 𝑑𝐿,

Figure 2-3. Relative uncertainties are above 40% at all SNRs, and very often above

100%. We observe that NSBHs typically yield the smallest uncertainties. This is

expected since we allowed spin precession for NSBHs, as given in Table. 2.2. Spin

precession, together with the high mass ratios of NSBHs, helps break the degeneracy

between distance and inclination angle, leading to smaller uncertainties [38, 120, 127].

2.2.2 Intrinsic Parameters

We now discuss the estimation of intrinsic parameters: masses and spins.

For clear detections, the (detector-frame) chirp mass (defined in Eq. (1.2)) is

typically measured very well, with relative uncertainties of ∼ 0.01% for BNSs [5, 128,

129] and around 15% for heavier objects [85, 112–117]. The chirp mass is measured
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Figure 2-3: 90% CI of the marginalized posteriors / injected value for 𝑑𝐿 vs. network
SNR.

better for low-mass systems because it affects the phase evolution at the lowest Post

Newtonian order [130], and thus can be measured better for signals with long inspirals.

Since the merger frequency decreases as the total mass increases, BNSs are the sources

for which the chirp mass can be best measured.

In Figure 2-4, we report the relative 90% uncertainty for the chirp mass against

the network SNR. Overall, we see that BNSs have the smallest relative uncertainties

followed by NSBHs, BBHs, and hBBHs. The different morphologies are thus naturally

sorted by their total masses, as expected.

We will first discuss the high-SNR end of the simulations, as the weakest events

deserve a separate discussion. At SNRs 10 and 12, the BNSs have relative uncertainties

between 0.03% and 0.1%. This is in the ballpark of what one could have guessed using

a 1/SNR2 scaling argument [80], with GW170817 as a reference point. This simple

analysis is not totally accurate, since the variance scales like 1/SNR2 only at large

SNRs. For smaller SNRs, higher-order corrections must be taken into account [131,

132], and the uncertainties in the plot are indeed well above what a simple scaling

argument would suggest. At the high end of our SNR distribution, we find that the
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results from different GPS times and orientations are grouped together with very

few exceptions. The uncertainty mostly depends on the morphology. Due to their

Figure 2-4: Relative 90% credible interval for the chirp mass vs. network SNR. The
dashed lines represent the relative 90% width of the prior.

relatively long inspirals, NSBHs are the second-best source type, with uncertainties

between 0.2% and ∼ 2% at SNRs 10 and 12, including all data realizations and

orientations. Stellar-mass BBHs have uncertainties between 0.5% and ∼ 4%, a factor

of 2 worse than NSBHs, while heavy BBHs are considerably worse, with uncertainties

between 5% and 30% (again, at SNR 10 and 12).

As the SNRs decrease, we observe two distinct populations: one that roughly

continues the trend we see at SNR 10 and 12 with some degradation; and another with

much larger uncertainties, comparable to the prior width, especially for BNSs. The

latter are events for which the posteriors are not unimodal. One could expect that at

low SNRs, noise fluctuations can seriously impact the measurement of the chirp mass

since it is obtained by “following” the phase evolution of the waveform signal through

thousands of cycles [133]. We get a (rough) classification of the chirp mass posteriors

by using the find_peaks routine of Scipy [134] using a prominence threshold of 9% of

the main peak to trigger the recognition of additional modes. While more sophisticated

statistical tests could be used, this gives us at least an idea of what fraction of the
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posteriors is clearly unimodal. A distinct type of chirp mass posteriors appears often

enough to deserve some discussion: those with clearly uni-modal posteriors but with

tails large enough to span most if not all of the prior range. These are sources for

which the likelihood profile is shallow and does not dominate the underlying prior

distribution.

We thus introduce three categories: unimodal; “unimodal-wide”, which we define

as posteriors with one clear peak but a 90% uncertainty larger than 50% of the prior

range; and multimodal posteriors. Examples of each are shown in Figure 2-5.

(a) Unimodal. The network
SNR is 12.

(b) “Unimodal-Wide”. The
network SNR is 7.

(c) Multimodal. The net-
work SNR is 6.

Figure 2-5: Representative posterior distribution for the chirp mass. All systems are
BBHs with true inclination angle of 80∘. The range is the same in all panels on the
x-axis.

We apply this classification scheme to all events and show the fraction of events

that belong to each category in Figure 2-6. At SNRs 10 and 12, all morphologies

but BBHs show unimodal posteriors. Some of the BBHs at these SNRs have hints

of secondary modes that do not significantly broaden the 90% CIs, as clear from

Figure 2-4. On the opposite end, at SNRs 6 and 7, most events have multimodal

posteriors, or a broad posterior filling up most of the prior range with just a hint of a

peak at the true chirp mass value.

Next, we consider the asymmetric mass ratio 𝑞, Figure 2-7. We expect NSBHs

to yield the best measurements, since spin-induced precession breaks the degeneracy

between mass ratio and spins [38, 120, 127, 135], improving the measurability of both.

For NSBHs, we find uncertainties as small as 0.07 for SNRs of 12 and orientations

close to edge-on. For the NSBHs with orientation close to face-on, the uncertainty is

systematically worse, at all SNRs. The reason is again the correlation. When orbital
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Figure 2-6: Proportions for uni-modal, uni-modal (wide) and multimodal posterior
distributions for chirp mass (%) vs. network SNR.

precession is present, inclinations closer to 90∘ yield better spin measurement [38, 39].

The smaller spin uncertainties result in smaller mass ratio uncertainties. The same

trend is visible for the BBHs. However, the hBBHs have comparable uncertainties

regardless of the orientation, because the hBBHs in our simulations are equal-mass,

which suppresses spin precession. Owing to their longer inspiral phase, the uncertainties

are of [0.3 − 0.5] for most BNSs in the SNR range of 7 − 12, better than those for

BBHs and hBBHs. These results suggest that if the real source is a marginal NSBH

with visible spin precession, one might be able to distinguish between an NSBH and a

low-mass BBH, but not so easily between a BNS and a low-mass NSBH.

We now look at the estimation of the spins. Since individual spins are hard to

measure even for loud sources [5, 38, 39, 85, 112–117, 135] we focus on the the effective

inspiral spin, 𝜒eff , as defined in Eq. (1.2). Importantly, the effective spin can be used

to distinguish between different astrophysical formation channels [128, 136], instead
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Figure 2-7: 90% CI of the marginalized posteriors for mass ratio 𝑞 vs. network SNR.
The dashed line represents the 90% CI for the 𝑞 prior.

of relying on the measurement of the individual spins [33, 137]. We report the 90%

CI for 𝜒eff in Figure 2-8, where the horizontal dashed lines represent the 90% of the

prior width. For all sources that include at least one BH, the uncertainties at SNRs

of 12 are between ∼ 0.08 and ∼ 0.3, a factor of 2− 10 narrower than the prior. At

SNRs of 10, the uncertainties for these systems are between ∼ 0.1 and ∼ 0.4. For the

same reasons we described while discussing the mass ratio results, the effective spin

estimation is best for NSBH with edge-on orientations. Heavy BBHs are the worst

since they have short inspirals and mass ratios of unity. As the SNRs decrease, the

𝜒eff posterior is still informative for some sources. Conversely, for the BNSs, even at

SNRs of 12, the posteriors are only marginally narrower than the prior.

To quantify the amount of information gained about 𝜒eff after analyzing the data,

we calculate the Kullback-Leibler (K-L) divergence [138] of the posterior Q over the

prior P:

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑖

𝑃 (𝑖)ln
𝑄(𝑖)

𝑃 (𝑖)
(2.1)

where the index 𝑖 spans the samples. This is shown in Figure 2-9. For most sources

with at least one BH at SNRs of 12, the data yield more than 1 nat of information.
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Figure 2-8: 90% CI of the marginalized posteriors for 𝜒eff vs. network SNR. The
dashed line represents the 90% CI for 𝜒eff prior.

The most information is gained for NSBHs, while the data is usually less informative

for BNSs. At SNRs of 12, the typical information gained for BNSs is ∼ 0.1 nats, while

at low SNRs, no information is gained, which implies that the posterior is basically

the prior. This is consistent with Figure 2-8. As the SNR decreases, the data cannot

significantly update the prior, and the K-L divergence can get values below 0.1 nats.

In App. A.2, we report the median K-L divergence over the five GPS times for all

parameters and all signal morphologies.

2.3 Conclusion

CBCs, the most common source of GWs detectable by ground-based detectors, are

expected to be distributed uniformly in volume. This implies that their SNRs 𝜌 should

be distributed as 𝜌−4: for each loud detection, there should be many more marginal

signals in the data. In practice, lowering the threshold matched-filter network SNR (or

other detection statistics) will not increase the number of detections with the fourth

power since the background from instrumental and environmental sources increases

more steeply. As the detection threshold is lowered, candidate events will compete
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Figure 2-9: K-L divergence for 𝜒eff vs. network SNR.

with background events of non-astrophysical origins [96, 118, 139, 140].

However, it is still the case that a significant fraction of detections made in the

next few years will be marginal. In this chapter, we have explored what kind of

astrophysical information can be extracted from these weak signals. This topic was

not extensively studied in the literature since most existing work focuses on clear

detections (see Ref. [140]).

We have simulated GWs from various CBC sources with different network SNRs,

from 6 to 12, and added them into real interferometric data. We have considered a

network made by the two Advanced LIGOs and the Advanced Virgo detector at their

expected sensitivity for O3, which began in April 2019.

We have shown that the 90% credible regions in the sky localization of the sources

are of [200 − 1, 000] deg2 for network SNRs of 12 for all signal morphologies. As

the network SNR decreases, the uncertainty increases and a larger spread between

different noise realizations is present, which confirms that the specific noise realization

can seriously affect the outcome of the analysis at very low SNRs. Most sources are

not localized at all at the lowest SNRs we consider. However, it is essential to notice

that for those events, it is not systematically the case that other parameters are not
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measured (e.g., the chirp mass). The reason is that a single detector is enough to

measure an intrinsic parameter like the chirp mass, while at least two are needed to

constrain the sky position through time triangulation as well as amplitude and phase

consistency [141–143].

The measurement of the luminosity distance, which could be used to infer the

Hubble constant if a counterpart is found [26, 120, 144–146] (or statistically, in the

absence of counterparts [147, 148]), is also challenging for similar reasons. We have

found relative uncertainties for the luminosity distance to be above 40% even for

the loudest event we considered and above 100% for a significant fraction of events.

These numbers suggest that wide-field radio is the only viable option for following

up on marginal CBC events. There is also the possibility that an EM counterpart,

e.g., a gamma-ray burst, is found independently, which could be used to confirm the

astrophysical nature of the GW candidate. However, given the large uncertainties in

sky position and distance, one might have to deal with a significant background of

EM signals, making it difficult to claim a solid association.

We have verified that intrinsic parameters, such as the detector-frame masses and

the effective spin, can usually be constrained and do not simply yield the prior. We

have found that the chirp mass can be estimated to be better than 0.1% for BNSs,

2% for NSBHs, and 4% for stellar-mass BBHs, at SNRs of 10 and 12. As the SNR

decreases, the uncertainties increase gradually for the bulk of the source. Still, for

some noise realizations, the posteriors start to be multimodal or develop fat tails,

dramatically increasing the uncertainty. Most of the BBHs in the simulation yield

uncertainties in the range ∼ [0.5− 10] %. Owing to their shorter inspirals, hBBHs

have larger uncertainties, above 5% at SNRs of 12 and above 8% at SNRs of 10 or

lower.

The mass ratio can only be significantly constrained for sources with visible spin

precession (NSBHs) or long inspirals (BNSs). At SNRs of 12, the 90% can be as small

as ∼ 0.07 for our NSBHs, and [0.3− 0.5] for BNSs.

Finally, the effective spins can be constrained, obtaining posterior distributions

a factor of many narrower than the prior for systems with large mass ratios and
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spin precession. For those at SNRs of 10, the uncertainty can be as small as ∼ 0.1,

although ∼ 0.4 is more common (the prior width is 0.89). Using the K-L divergence,

we quantified the amount of information provided by the data. For systems with at

least one BH, that number is usually above one nat. For BNSs, we have used a more

restrictive prior (the prior width is 0.05) and obtained that the data usually yield only

a limited amount of information. At SNRs of 12, the typical K-L divergence we have

found for BNSs is 0.1 nats. However, as the SNR decreases, the data does not allow

for significant updates on the prior, and the K-L divergence can get values below 0.1

nats.

Based on the uncertainties mentioned above, it might occasionally be possible

to associate a marginal source with a specific astrophysical class (e.g., BBH rather

than BNS). It is important to remember that even if each event individually is not

particularly informative, the whole population of marginal events can be used and

contribute to the astrophysical inference of the underlying population. Moreover,

this can be done even if one is not sure about their astrophysical origin since the

probability that the event is astrophysical can be folded in the analysis [140].
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Chapter 3

Marginal Astrophysical Signals

The parameters of observed BBHs [71, 74] encode information about the underlying

BBH population and about the evolutionary history of the BHs and their progenitors.

The masses and spins of the BHs in particular can be used to infer the formation

mechanism of the observed binaries. Usually, two families of formation scenarios are

considered: classical binary evolution in the galactic field [149–163], or dynamical

formation either in the galactic field [164], or in dense environments such as clusters [165,

166] or AGN disks [167–170]1. This latter scenario could also result in repeated mergers,

which would produce heavier BHs [171–173].

The spins of the BHs, specifically the relative orientation of the BH spins in a

binary, can be used to discriminate between these formation channels: formation in

the field is expected to result in spins that are nearly aligned with the orbital angular

momentum (if tides are efficient in spinning up the progenitors), while dynamical

formation should not set any such preferential direction [174]. Unfortunately, it is

often hard to measure the individual spins of BHs in binaries very precisely [39, 175,

176]. While it is still possible to measure the relative occurrence of BBHs in the

different formation channels using the component spins and their orientation, hundreds

of detections would be required before a firm measurement can be achieved [33, 177,

178].

Formation channels that preferentially align the spins with the orbital angular

1Other possibilities exist: e.g. primordial black holes [165, 166].
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momentum should thus have positive values of 𝜒eff , as defined in Sec. 1.2. This is

not necessarily true for dynamically formed BBHs: since all BH spin orientations

are equally likely for those, the expected distribution for 𝜒eff is centered around zero.

The effective spin can thus be used to infer the astrophysical origin of individual

sources, and to reconstruct the overall population of BHs in binaries and of their

progenitors [71, 179, 180].

Remarkably, all of the BBHs reported by the LIGO-Virgo collaboration in the

first two observing runs are consistent with having small or zero 𝜒eff [30] at 90%

confidence. The two sources for which the largest 𝜒eff was measured are GW151226

(0.2+0.2
−0.1, median and 90% CI) and GW170729 (0.4+0.2

−0.3).

In Zackay et al. [73] and Venumadhav et al. [74], an independent analysis of the

public data released by the LIGO-Virgo collaboration [181–184] has revealed nine

additional potential GW signals, among which three signals have appreciable 𝜒eff :

GW151216, GW170403, and GW170121. Especially remarkable are the spins reported

for GW151216 and GW170403, where GW151216 was reported as having a large and

positive effective spin of 𝜒eff = 0.8+0.1
−0.2 [73], while 𝜒eff = −0.7+0.5

−0.3 [74] was inferred for

GW170403, making it the largest negative effective spin BBH so far.

The algorithms used by this independent pipeline [74, 185] were optimized to

detect the faintest individually observable events in the population of BBHs, and

hence several of the detected signals had relatively modest values of the SNR. As the

information content of observed signals scales with their SNR2, the data will have the

least constraining power on the intrinsic parameters for faint events such as GW151216

and GW170403.

In light of this fact, it is worth carefully considering the impact on the inferred

parameters of the various analysis choices adopted in parameter estimation: the

Bayesian priors, GW waveform model, and the treatment of the instrumental noise,

particularly its PSD [186]. For example, Ref [187] has shown how the 𝜒eff measurement

of the LIGO detection GW151012 [30] is sensitive to the prior choice; while Ref. [188]

2Squared information, as defined in the sense of Shannon’s information theory, is proportional to
the squared SNR.
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has shown how the treatment of the noise PSD can impact the source characterization

analysis.

In this chapter, we continue our discussion of marginal CBC signals in Chap. 2,

but with the seven BBHs reported in Zackay et al. [73] and Venumadhav et al. [74].

We perform PE with the procedures discussed in [73, 74, 189], as well as the ones used

by LIGO-Virgo in the analysis of the first GW Transient Catalog (GWTC-1) [30].

Our results underline that the specific configuration of the analysis can have a

significant impact on the astrophysical inference of some of the BBHs detected to

date, especially if they have low SNRs. In particular, we show that the high 𝜒eff of

GW151216 and GW170403 can be significantly reduced depending on the spin priors

used in the analysis. The tails of the distribution need to be interpreted with care and

in the context of the analysis choices, such as the method used to estimate the PSD

and the length of data analyzed. For studies that build on the estimated parameter

distributions for such sources, it is important to be aware of these analysis choices

before interpreting the results.

3.1 Method

We perform PE using three distinctive sets of analysis choices, as detailed in Table 3.1,

with different choices of the sampler, prior, PSD estimation method, and waveform

models. Configs. A and B follow standard procedures of analysis adopted by the

LVK in its publications so far. In these configurations, we perform the matched-filter

analysis using the LALSuite software package [190] and explore the parameter space

stochastically using the nested sampling algorithm implemented in LALInference [82,

191]. The PSDs are estimated using the BayesWave algorithm [188, 192, 193], over

four-second segments centered around the merger time of each candidate event. We

use data from the same segments to evaluate the likelihood, Eq. 1.7, restricting the

domain of the integrals in Eq. 1.4 to the frequency range [20, 512]Hz.
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The configurations also use different waveform models, all of which describe

the complete inspiral-merger-ringdown (IMR) of a CBC and are calibrated against

numerical relativity simulations of BBHs. Config. C uses the phenomenological

waveform model IMRPhenomD [194, 195] which assumes BH spins to be (anti-)aligned

to the orbital angular momentum. The model used by Config. A, IMRPhenomPv2, is

constructed from the same aligned-spin model but is extended to include an effective

description of the effects from spin-precession through a rotation of the underlying

IMRPhenomD model [111, 194, 195]. Config. B uses a separately developed aligned-spin-

only model, SEOBNRv4_ROM, based on the effective-one-body framework [196].

Because the inner product, Eq. (1.4), depends on the noise PSD and the waveform

model, both of these factors can impact the measured SNR. Keeping everything else

the same, we would expect a precessing waveform approximant to be able to recover

more SNR than a spin-aligned one, due to the extra degrees of freedom. This is indeed

what we observe comparing Configs. A and B, Sec. 3.2. Configs. B and C instead use

spin-aligned waveforms, but with different PSDs and analysis software. In particular,

the algorithms we use to estimate the PSD adopt different strategies to limit the effect

of noise non-stationary and non-Gaussianity [185, 188, 192, 193, 201]. We find that

the matched-filter SNRs for Configs. B and C calculated at the maximum likelihood

point usually differ by a few percent in either direction.

Configs. A and B use priors routinely employed in LVK publications [4, 5, 83,

202–206]. Config. A (precessing analysis) uses a uniform prior in the dimensionless

spin magnitude for each BH, in the range [0, 0.99], and an isotropic prior for the spin

orientation. Config. B uses a waveform model that assumes aligned spins, and we use

the prior from Config. A for the spin component along the orbital angular momentum,

𝜒𝑖𝑧. Finally, Config. C, a spin-aligned analysis with IMRPhenomD, uses a spin prior

that is uniform in the effective inspiral spin, 𝜒eff . These prior choices are shown in

Fig. 3-1, where we plot the prior distributions for 𝜒eff , the magnitude of the component

spins |𝜒|, and the projection of the primary’s spin along the angular momentum (𝜒𝑧).

Note that for the two spin-aligned analyses, |𝜒| = |𝜒𝑧| by definition.

We stress that the prior on 𝜒eff for Config. C is quite different from that for Config.
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Figure 3-1: Spin priors on the effective spin 𝜒eff , the individual spin magnitude |𝜒|,
and the 𝑧-component of spin 𝜒𝑧, used in the three configurations. Note that for
aligned-spin waveforms (Configs. B and C), |𝜒𝑖| = |𝜒𝑖,𝑧| where 𝑖 = 1, 2 corresponds to
individual components of the binary.

A or B, especially toward the edges. Configs. A and B penalize a priori large 𝜒eff ,

and thus systems for which the spins are large in magnitude and nearly aligned with

the orbital momentum. Conversely, Config. C achieves a prior that is flat in 𝜒eff , by a

priori preferring large individual spin magnitudes.

The three analyses all use similar priors in the other parameters: in particular,

they all use priors that are uniform over the detector-frame component masses, in a

range large enough that the posteriors are not truncated; uniform over the sphere

for the sky position and the orientation of the orbit with respect to the line of sight;

proportional to the square of the luminosity distance; and uniform in the geocenter

arrival time and phase.

3.2 Results

In this section, we report the results of our analyses on all of the GW events identified

in Zackay et al. [73] and Venumadhav et al. [74]. For all events, we report the medians

and 90% CIs on detector-frame chirp mass ℳ, mass ratio 𝑞 = 𝑚2/𝑚1 ∈ [0, 1], effective

spin 𝜒eff , and luminosity distance 𝐷𝐿. For all configurations, we follow the definition
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of the SNRs in Refs. [73, 74] for the sake of consistency3:

𝜌 =

√︃∑︁
𝐼𝐹𝑂

(2⟨𝑑|ℎ⟩ − ⟨ℎ|ℎ⟩). (3.1)

and report the values corresponding to the maximum likelihood.

For Configs. A and B, we also report the natural log Bayes factor for the GW

signal model over the Gaussian noise model (lnℬ𝑆/𝑁 ) [83, 191, 207]. The Bayes factor

can be obtained as the ratio of the evidence of two alternative models 𝐻1 and 𝐻2:

ℬ𝐻1/𝐻2 ≡
𝑍(𝐻1)

𝑍(𝐻2)
(3.2)

ℬ𝐻1
𝐻2

> 0 if 𝐻1 is preferred. By comparing the ratio of evidences for competing models,

one can quantify the relative belief that a given model represents the true signal in

the data [191] in a way that also automatically penalizes models with more degrees

of freedom or larger priors. Here, we can compare lnℬ𝑆/𝑁 of Configs. A and B to

quantify the relative confidence.

We first present an overview of the results in Fig. 3-2, which shows contours in the

ℳ–𝜒eff plane that encloses 90% of the probability for the seven events discussed in

this chapter. We show Configs. A and C, and omit Config. B to avoid overcrowding.

Solid (dotted) lines and a dot (cross) mark the contours and the maximum likelihood

point for Config. A (C). The posteriors on the parameters are formally consistent with

each other within their CIs, but there are points of difference between the different

configurations. The differences are relatively minor for most of the events, but notable

in the case of GW151216 and GW170403. We will therefore first discuss these two

cases, and then briefly review the properties of the other events, for which results

are consistent across the analyses. To better quantify the discrepancies between the

different configurations, especially for these two events with large spins, we additionally

report the posterior percentile of 𝜒eff values on both tails of the distribution.

3Note that SNRs reported by LVK [30] is the matched-filter SNR, defined in Eq. (1.5).
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Figure 3-2: Joint 2D posterior for 𝜒eff vs. detector-frame ℳ for all the events analyzed
in this chapter, for Config. A and C. We do not show Config. B to avoid overcrowding
the plot. For Config. A (C) the maximum likelihood estimate is indicated with a dot
(cross) and the edge of the 90% contour by a solid (dotted) line.

3.2.1 GW151216

GW151216 was reported by Zackay et al. [73] as having a high and positive effective

spin, 𝜒eff = 0.8+0.1
−0.2. Our results are shown in Fig. 3-3 and summarized in Table 3.2.

Of all the events analyzed in this chapter, the differences in the inferred parameters

across the configurations are the clearest for GW151216. The chirp mass posteriors

from Configs. A and B show fat tails, which are often associated with faint signals

such as the ones analyzed here [87]. Conversely in Config. C, the distribution of the

chirp mass is narrower and centered at ∼ 31 𝑀⊙. All of the estimates are compatible

with their CIs. Similarly, the mass ratio measurements, while having large posterior

overlaps, peak at rather different values. Configs. A and B have median values of

𝑞 = 0.4 and 𝑞 = 0.5 respectively, whereas Config. C has a median value of 𝑞 = 0.7.

Configs. A and B give marginal, but still non-zero, support for equal mass binaries

(𝑞 = 1). The median for the luminosity distance is above 1.5 Gpc for all configurations,

with Config. C placing the source at the largest distance among three analyses,

𝐷𝐿 = 2.4+1.2
−1.1 Gpc.
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Figure 3-3: Corner plot for posterior distributions for GW151216, red for Config. A,
green for Config. B and blue for Config. C. The dashed lines mark the 90% CI, and
the dark (light) shaded area marks the 50%(90%) contour, the same for all corner
plots to follow.

Finally and more importantly, we observe differences in the estimation of 𝜒eff .

Config. C finds that 𝜒eff is large and positive, while Configs. A and B have low levels

of support for 𝜒eff = 0. More specifically, Config. A finds 𝜒eff = 0.5+0.2
−0.5 and Config. B

finds 𝜒eff = 0.7+0.2
−0.9. Both of these posteriors peak at positive values for 𝜒eff , but have

long tails extending towards small values. The fact that different analyses yield 𝜒eff

posteriors that peak at different values can be at least partially explained by the very

different priors that are used, see Fig. 3-1. Configs. A and B penalize a priori large

values of 𝜒eff , thus reducing the prior support at large values.

The lnℬ𝑆/𝑁 values of Configs. A and B are similar, with a natural log Bayes

factor of 0.2 in favor of Config. A. This suggests that there is not enough information
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Configuration A B C

ℳ/𝑀⊙ 28+7
−8 29+3

−12 31+2
−3

q 0.4+0.5
−0.2 0.5+0.4

−0.3 0.7+0.3
−0.3

𝜒eff 0.5+0.2
−0.5 0.7+0.2

−0.9 0.8+0.1
−0.2

𝐷𝐿/Gpc 1.6+1.3
−0.8 1.5+0.4

−0.8 2.5+1.2
−1.1

SNR 8.6 8.4 8.5
lnℬ𝑆/𝑁 10.8 10.6 15.5

p(𝜒eff ≤ 0|d) 5.2% 3.4% 0.0%
p(𝜒eff ≥ 0.8|d) 1.3% 2.6% 52.5%

Table 3.2: Properties for GW151216 estimated using three different configurations.
In the upper half, the median values are reported for the source parameters, with
error bars marking the span of the 90% CIs. The SNRs are calculated using Eq. (3.1),
and the values here correspond to the maximum likelihood. lnℬ𝑆/𝑁 is the natural log
Bayes factor (Note that its value depends on the noise realization, so since Configs.
A and B use a different approach to estimate the noise of a different data segment
from that in Config. C, the lnℬ𝑆/𝑁 values are expected to differ). Tables for other
events follow the same reporting setup. p(𝜒eff ≤ 0|d) and p(𝜒eff ≥ 0.8|d) marks the
probability for 𝜒eff to take values less than or equal to 0 and greater or equal to 0.8,
respectively.

available to either support or rule out the presence of spin-precession in GW151216,

as found in [73]. As an additional test, we repeat the analysis of Config. A while

fixing the spins to be zero. We observe a natural log Bayes factor of 2.4 (2.2) in favor

of precessing (aligned) spins over zero spins.

It is worth pointing out that any differences in the inferred values of ℳ, 𝑞, 𝜒eff ,

and 𝐷𝐿 across various analyses are expected to be correlated, as there are significant

degeneracies between these parameters [72, 208, 209]. In the region of parameter space

relevant for GW151216, the tightest correlation involves ℳ, 𝜒eff , 𝑞. Hence changing

the prior on 𝜒eff can affect the inference of the other parameters as well.

We have verified that the choice of waveform models does not play a significant

role in the differences by performing a supplementary analysis where all the other

analysis choices including the priors and PSDs are the same as Config. B, and only the

waveform is varied from SEOBNRv4_ROM to IMRPhenomD. We find no appreciable
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difference in the posteriors.

As mentioned in Section 3.1, the other points of difference between the configura-

tions are (a) the length of data used, (b) the choice of the sampler, (c) the method

used to infer the PSD, and consequently, to compute the likelihood, and (d) the

choice of prior. We performed a number of tests to narrow down the reasons for the

discrepancy in the inferred parameters; we present associated details in App. B.

In line with our intuition, we find that the most important cause of the differences

in the choice of prior: using a ‘3D isotropic’ spin prior causes the mode of the posterior

for 𝜒eff to shift to lower values. This is consistent with the analysis in Zackay et

al. [73], in which the inference performed using the same prior as in Config. B

gives 𝜒eff = 0.6+0.2
−0.2. None of the other factors (method of PSD estimation, sampler,

waveform, segment length, etc.) have as significant an impact on the results.

Apart from the shift in the posteriors for 𝜒eff , there is an additional effect: the

tails of the posteriors are systematically broader in Configs. A and B, respectively

with 5.2% and 3.4% of the 𝜒eff posterior distributions extending below 0 (a similar

effect was also reported in Ref. [210], with even more dramatic tails in the posteriors,)

as compared to 0.0% of Config. C. Configs. A and B also show significantly less

support at high 𝜒eff values, 1.3% and 2.6% above 𝜒eff = 0.8 compared to 52.5% for

Config. C. Deeper investigation shows that this additional phenomenon is related to

a combination of the sampler used, and the treatment of spectral lines in the data

when calculating the likelihood. Further details can be found in App. B. In light of

these investigations, we conclude whether the 𝜒eff posterior of GW151216 is an outlier

compared to the other systems we discuss in this chapter, Fig. 3-2, depends strongly

on the details of the analysis.

Config. A recovers SNR of 8.6, and Config. B (C) recover a similar SNR of

∼ 8.4(8.5). The lnℬ𝑆/𝑁 values are also comparable, 10.8 and 10.6 from Configs. A

and B.
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Figure 3-4: Corner plot for posterior distributions for GW170403, red for Config. A,
green for Config. B and blue for Config. C.

3.2.2 GW170403

In Venumadhav et al. [74], GW170403 was found to have large and negative 𝜒eff .

With Config. C we find 𝜒eff = −0.7+0.5
−0.3, which excludes 𝜒eff = 0 from the 90% CI,

with 1.2% of the 𝜒eff posterior distributions extending above 0, and 42.7% below -0.7.

On the contrary, we find that Configs. A and B yield posteriors with larger support

at 𝜒eff = 0, Tab. 3.3. Config. A (𝜒eff = −0.2+0.4
−0.3) and Config. B (−0.2+0.3

−0.4) have

14.0%(1.2%) and 9.6%(1.4%) of the 𝜒eff posterior distributions extending above 0

(below -0.7), respectively.

Fig. 3-4 shows a difference between aligned and precessing waveform models, most

clearly seen in the joint 𝑞–𝜒eff posterior. The precessing degrees of freedom allowed in

Config. A to alter the well-known correlation between 𝜒eff and mass ratio [72, 208],
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Configuration A B C

ℳ/𝑀⊙ 53+11
−12 54+10

−10 48+10
−7

q 0.7+0.3
−0.4 0.7+0.2

−0.3 0.7+0.2
−0.3

𝜒eff −0.2+0.4
−0.3 −0.2+0.3

−0.4 −0.7+0.5
−0.3

𝐷𝐿/Gpc 2.8+2.3
−1.5 3.2+2.2

−1.6 2.7+1.5
−1.2

SNR 8.4 8.1 8.2
lnℬ𝑆/𝑁 11.8 11.2 14.6

p(𝜒eff ≤ −0.7|d) 1.2% 1.4% 42.7%
p(𝜒eff ≥ 0|d) 14.0% 9.6% 1.2%

Table 3.3: Properties for GW170403 estimated using three different configurations.
p(𝜒eff ≤ −0.7|d) and p(𝜒eff ≥ 0|d) marks the probability for 𝜒eff to take values less
than or equal to -0.7 and greater or equal to 0, respectively.

yielding a broader posterior distribution for the mass ratio, whose lower end of the

90% CI now reaches ∼ 0.3. Again, we do not find enough information to confirm or

rule out the presence of effects due to spin-induced orbital precession.

However, the posteriors for 𝑞, ℳ, and 𝐷𝐿 are more consistent across our analysis

configurations for GW170403 than they are for GW151216. This suggests that the

small differences we observe for GW170403 can be entirely or nearly entirely explained

by the different priors used for 𝜒eff , which “push” the posteriors in Configs. A and

B closer to 0. Similar to the findings in [187], varying the prior choices has a more

substantial effect on low-SNR observations like the events analyzed in this chapter,

so general caution should be exercised when drawing astrophysical inferences using

quantities that are as strongly dependent on the priors as the 𝜒eff measurements

presented here. On the other hand, the comparison with GW151216 suggests that for

low-SNR events the specific realization of the noise and the detector behavior around

the trigger time may amplify the differences introduced by the PSD estimation, which

is quite different in Configs. A and B compared to Config. C.

We notice that Config. C has a more pronounced tail at negative 𝜒eff , resulting in

stronger support at lower values of the chirp mass. Systems with more negative 𝜒eff
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Figure 3-5: Corner plot for posterior distributions for GW170202, red for Config. A,
green for Config. B and blue for Config. C.

produce shorter GW signals [72]. This can be roughly compensated for by decreasing

the chirp mass [209].

3.2.3 GW170202

All the analyses yield consistent results for GW170202, as seen in Tab. 3.4 and Fig. 3-5.

The detector-frame chirp mass for GW170202 is estimated to be 22+4
−1 𝑀⊙ (23+4

−2 𝑀⊙)

with flat-in-𝜒eff prior (or otherwise). Of all the sources we discuss in this work,

GW170202 is the one for which we measure the lowest mass ratio, consistently across

the configurations: Config. A yields 𝑞 = 0.6+0.4
−0.3, while Configs. B and C have an even

lower median, 𝑞 = 0.5+0.4
−0.3 and 𝑞 = 0.5+0.4

−0.2, respectively. The 𝜒eff posterior is broadly

consistent across the three analyses, with Configs. A and B peaking closer to zero, as
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Configuration A B C

ℳ/𝑀⊙ 23+4
−2 23+4

−2 22+4
−1

q 0.6+0.4
−0.3 0.5+0.4

−0.3 0.5+0.4
−0.2

𝜒eff −0.1+0.3
−0.3 −0.1+0.3

−0.3 −0.2+0.4
−0.3

𝐷𝐿/Gpc 1.5+1.1
−0.8 1.5+1.0

−0.8 1.5+0.8
−0.6

SNR 8.5 8.3 8.5
lnℬ𝑆/𝑁 10.5 10.9 13.9

Table 3.4: Properties for GW170202 estimated using three different configurations.

expected, given that their priors prefer values closer to zero.

3.2.4 GW170121, GW170304, GW170425, GW170727

Set-up A B C

ℳ/𝑀⊙ 31+3
−3 31+3

−3 29+4
−3

q 0.8+0.2
−0.3 0.8+0.2

−0.3 0.8+0.2
−0.3

𝜒eff −0.2+0.2
−0.2 −0.2+0.2

−0.3 −0.3+0.3
−0.3

𝐷𝐿/Gpc 1.3+0.9
−0.7 1.3+0.9

−0.8 1.3+0.9
−0.7

SNR 10.8 10.7 10.9
lnℬ𝑆/𝑁 30.9 31.1 34.6

Table 3.5: Properties for GW170121 estimated using three different configurations.

GW170121 has the highest SNR among the events discussed in the chapter. The

PE results are consistent with a heavy, near-equal-mass BBH with a preference for

negative values of 𝜒eff , at a luminosity distance of ∼ 1.3 Gpc. Our results are shown

in Fig. 3-6 and summarized in Table 3.5.

GW170304 and GW170425 are similar systems, with detector-frame chirp masses

of ∼ 47 𝑀⊙, 𝜒eff posteriors centered near zero, luminosity distance of ∼ 3 Gpc and

a preference for nearly equal masses, as shown in Figs. 3-7 and 3-8, and Tables 3.6

and 3.7.

65



0.
45

0.
60

0.
75

0.
90

q

24 27 30 33 36

Mdet/M�

−0
.7
5

−0
.5
0

−0
.2
5

0.
00

0.
25

χ
eff

0.
45

0.
60

0.
75

0.
90

q
−0
.7
5

−0
.5
0

−0
.2
5

0.
00

0.
25

χeff

Config. A

Config. B

Config. C

Figure 3-6: Corner plot for posterior distributions for GW170121, red for Config. A,
green for Config. B and blue for Config. C.

While small differences are seen across the configurations, the posteriors obtained

from the three analyses are all broadly consistent, and depict very similar results:

GW170304 and GW170425 are broadly similar to the majority of the BBHs discovered

in LIGO-Virgo data: massive systems with nearly equal component masses and

(apparent) 𝜒eff values consistent with zero. These heavy BBHs may arise from a

common formation scenario [30, 71].

The same is true for GW170727, as seen in Tab. 3.8 and Fig. 3-9, which appears

only slightly less massive and closer, at a recovered median distance of ∼ 2.5 Gpc. For

all configurations, the 𝜒eff posterior is centered around zero. It is worth stressing that

even though the SNR reported for Config. A in Table 3.8 is 10% higher than that for

Config. B, we do not find significant evidence supporting the precessing model, with
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Figure 3-7: Corner plot for posterior distributions for GW170304, red for Config. A,
green for Config. B and blue for Config. C.

the two configurations yielding similar Bayes factors. The reason is that the SNRs

we report are calculated at the point in parameter space that yields the maximum

likelihood, whereas the Bayesian evidence, and hence the Bayes factors, are integrated

over the whole parameter space, Eq. 1.8. The median SNR is thus a better tracer for

the evidence. We indeed find that the median SNRs of Configs. A and B only differ

by a fraction of a percent.

3.3 Conclusion

In this chapter, we compare the source property measurements of the seven BBHs

first presented in Zackay et al. [73] and Venumadhav et al. [74]. The analysis therein
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Configuration A B C

ℳ/𝑀⊙ 47+7
−7 46+7

−6 48+8
−7

q 0.8+0.2
−0.4 0.8+0.2

−0.3 0.8+0.2
−0.3

𝜒eff 0.1+0.3
−0.3 0.1+0.2

−0.2 0.2+0.3
−0.3

𝐷𝐿/Gpc 2.7+1.6
−1.4 2.6+1.6

−1.4 3.0+1.6
−1.3

SNR 9.0 8.7 8.7
lnℬ𝑆/𝑁 16.0 15.7 18.1

Table 3.6: Properties for GW170304 estimated using three different configurations.

Configuration A B C

ℳ/𝑀⊙ 46+16
−8 45+13

−8 48+26
−10

q 0.7+0.3
−0.3 0.7+0.3

−0.3 0.7+0.3
−0.3

𝜒eff 0.0+0.3
−0.3 0.0+0.3

−0.3 0.1+0.4
−0.4

𝐷𝐿/Gpc 2.8+2.0
−1.4 2.7+1.9

−1.4 3.3+2.9
−1.6

SNR 8.4 8.4 8.0
lnℬ𝑆/𝑁 14.2 14.3 13.2

Table 3.7: Properties for GW170425 estimated using three different configurations.

(corresponding to Config. C in this chapter) includes two BBHs with 𝜒eff significantly

deviating from zero. We also perform PE analyses using the standard algorithms of

LVK [30, 83, 211] where we use both waveform models allowing for spin-precession

(Config. A) and assuming spins (anti-)aligned to the orbital angular momentum

(Config. B). In the analysis for Configs. A and B, the data from the GW detectors is

assumed to be described by a stationary and Gaussian noise process modeled on a

four-second-long data segment under analysis using the spectral model in BayesWave,

whereas Config. C assumes the noise to be well described by a PSD estimated through

Welch’s method from a significantly longer data segment surrounding the GW signal,

multiplied by a time-dependent normalization measured on a ∼ 15 second scale. The

three configurations also differ significantly in their respective prior assumptions on
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Figure 3-8: Corner plot for posterior distributions for GW170425, red for Config. A,
green for Config. B and blue for Config. C.

the BH spin parameters, which as shown by [187], could have a significant effect on

the inferred posterior distributions, especially for high-mass BBH systems with low

SNRs, such as the ones presented in this study.

Compared to Zackay et al. [73] and Venumadhav et al. [74], Configs. A and B

recover lower values for 𝜒eff , consistent with zero or low component spins for all

reported BBHs, Fig. 3-2. In particular, for GW151216, Ref. [73] reported a positive

𝜒eff of 0.8+0.1
−0.2, while we report 𝜒eff = 0.5+0.2

−0.5 and 𝜒eff = 0.7+0.2
−0.9 (corresponding to

Config. C, A and B, respectively). Similarly for GW170403, Ref. [73] reported a

negative 𝜒eff of −0.7+0.5
−0.3, while we report 𝜒eff = −0.2+0.4

−0.3 and 𝜒eff = −0.2+0.3
−0.4 (again

corresponding to Config. C, A, B).

Ultimately, one should choose priors that reflect the underlying population of
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Figure 3-9: Corner plot for posterior distributions for GW170727, red for Config. A,
green for Config. B and blue for Config. C.

BHs. To measure this population’s mass and spin distributions, the prior choices

applied for any individual event must be removed so as not to double count the prior

probability impact, and the “raw” likelihood distributions need to be used to infer

the properties of the population [30, 71]. Such an analysis was carried out in [212],

whose population-informed posteriors broadly agree with those derived in this work.

Future PE analysis will benefit from using population-informed priors, especially as

the number of detected GW events grows.
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Configuration A B C

ℳ/𝑀⊙ 44+5
−5 44+5

−5 42+7
−6

q 0.8+0.2
−0.3 0.8+0.2

−0.3 0.7+0.2
−0.2

𝜒eff −0.0+0.2
−0.3 −0.0+0.2

−0.3 −0.1+0.3
−0.3

𝐷𝐿/Gpc 2.4+1.3
−1.2 2.4+1.3

−1.2 2.5+1.3
−1.1

SNR 10.2 9.4 9.0
lnℬ𝑆/𝑁 22.6 22.5 20.9

Table 3.8: Properties for GW170727 estimated using three different configurations.

71



72



Chapter 4

Waveform Systematics

Key to the interpretation of GW detections and signal analysis is the development of

accurate and computationally efficient GW waveforms, which are used to measure the

parameters of the signal by matching the model waveforms1 against the GW data.

GW models are usually calibrated against waveforms obtained directly with numer-

ical relativity (NR) codes, which solve Einstein’s equations computationally [213–216].

The presence of matter in combination with a singularity makes NSBHs exciting

systems to study, but also very challenging to simulate compared to BBH systems.

Due to the high computational cost and significant technical difficulties of NR NSBH

simulations, there are only a handful of high-resolution NSBH waveforms [217–221]

publicly available in the Simulating eXtreme Spacetimes (SXS) GW database , and

just over one hundred lower-resolution NSBH waveforms generated using the SACRA

code, which has been used to calibrate various waveform approximants but is not

publicly available [222, 223].

Furthermore, one usually does not directly use NR waveforms to measure the

parameters of detected CBCs (but see Refs. [224, 225]), due to their high individual

computational cost and sparsity across the parameter space. Instead, surrogate,

phenomenological, or effective-one-body (EOB) GW models are produced, which are

calibrated against NR simulations. To make these waveform models fast enough to be

1In what follows we will use “waveform model” and “waveform approximant” as synonyms, as they
are both commonly used in GW literature.
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calculated millions of times, as required by stochastic samplers, and in some cases due

to limitations in the very NR simulations that the models are calibrated against, only

some of the relevant physical features are included (for example, spin precession but

not tidal deformability). Due to the lack of a large NR database, and the fact that

all of the physics that is relevant to describe a CBC can induce measurable effects in

NSBHs2, these systems are potentially prone to systematic errors due to waveform

modeling.

In this chapter, we create hybrids from recent NSBH NR simulations to produce

full inspiral-merger-ringdown waveforms that are then added to the data stream

of a three-detector GW network made of the two Advanced LIGO [226] and the

Advanced Virgo [227] detectors. We simulate signals at various mass ratios, SNRs,

and orbital orientations, and measure their parameters with stochastic samplers,

using a suite of phenomenological and EOB models. Our work significantly extends

what was done by Ref. [220], which explored NSBH waveform systematics by only

looking at waveform overlaps, instead of performing a full Markov Chain Monte

Carlo (MCMC) measurement of all of the binary parameters. Ref. [228] looked at

parameter estimation for NSBH sources, but only used a single waveform model,

Lackey_Tidal_2013_SEOBNRv2_ROM [222, 229, 230], and did not measure extrinsic

parameters or source-frame masses.

Since the BH in NSBHs contributes most of the total spin, these systems can yield

precise measurements of BH spins [50, 231]. Furthermore, the potentially large mass

ratio3 will enhance the effect of eventual spin precession [232], also making it easier to

measure the BH spin with good precision [39, 175, 233, 234]. Similarly, the impact of

higher multipoles is larger for systems with large mass ratios, paving the way to tests

of the multipolar structure of GR [49, 235].

If the BH is light enough, or with significant spin [236–245] (otherwise the NS
2For example, higher order modes are formally present in all CBC signals, but are suppressed

for systems close to equal mass. This is the reason why waveform models that do not model them
perform well with most of the BBHs detected to date. The same will not necessarily be true for
NSBHs.

3Note that two conventions exist for the mass ratio. LVK usually defines the mass ratio in the
range [0, 1]. We will follow the opposite convention (primarily used in the NR community) and define
𝑞 = 𝑚1/𝑚2, with 𝑚1 ≥ 𝑚2.

74



will cross the event horizon before it can be significantly disrupted) tidal effects

might also be present. Furthermore, the potential presence of significant spin-induced

orbital precession would break the degeneracy between luminosity distance and orbital

inclination, which could make NSBHs significant contributors to the measurement of

the Hubble constants with standard sirens [119].

As mentioned above, our goal is to verify if current waveform approximants can

be used to accurately constrain the unknown parameters of NSBH systems. If not,

we wish to check which parameters are more susceptible to biases, and at which SNR

these biases become significant compared to the statistical uncertainties. The following

sections provide more details on the generation and construction of inspiral-merger-

ringdown NSBH waveforms used in this work and the data analysis approaches to

measuring their parameters.

4.1 Simulated Signals

One can decompose the GW strain into a sum of spin-weighted spherical harmon-

ics [235] as:

ℎ(𝑡, 𝜃𝐽𝑁 , 𝜓0) =
∞∑︁
𝑙=2

𝑙∑︁
𝑚=−𝑙

ℎ𝑙𝑚(𝑡)
−2𝑌𝑙𝑚(𝜃𝐽𝑁 , 𝜓0) (4.1)

where 𝜃𝐽𝑁 is the angle between the line of sight and the orbital angular momentum 4,
−2𝑌𝑙𝑚 are spin -2 weighted spherical harmonics, and 𝜓0 is the initial binary phase [1]. In

general, the (𝑙 = 2, |𝑚| = 2) mode is dominant [235, 246–250] and higher order modes

(HOMs) are suppressed. This is particularly true for low-mass systems with a mass

ratio close to unity [249, 251–257]. The impact of HOMs is also reduced in systems

that are observed close to “face-on”, i.e. with the orbital angular momentum aligned

with the line-of-sight since in this case, the angular structure of the spin-weighted

spherical harmonics suppresses the magnitude of the higher order terms relative to the

dominant (𝑙 = 2, |𝑚| = 2) mode. This is consistent with the fact that GW190412 [49]

and GW190814 [50], the first two CBC detections with visible imprints of HOMs, are
4For a binary with observable spin-precession, the inclination angle 𝜃𝐽𝑁 can vary significantly

over time. In this work, we, therefore, define 𝜃𝐽𝑁 always at a reference GW frequency of 100 Hz.
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NR Wave-
forms

𝑀𝐵𝐻/𝑀⊙ 𝑀𝑁𝑆/𝑀⊙ NS
equation
of state

Λ𝑁𝑆 𝑟𝑁𝑆/km Modes
(𝑙, |𝑚|)

q6 [217] 8.4 1.4 Γ2(𝜅 =
92.12)5

526 13.3 (2,2) (3,3)
(2,1) (4,4)

(5,5)

q3 [221] 4.05 1.35 H16 624 12.3 (2,2) (3,3)
(2,1) (4,4)

q2 [221] 2.8 1.4 Γ2(𝜅 =
101.45)

791 14.4 (2,2)
(3,3)

Table 4.1: NR waveforms used for the post-inspiral part of the simulated signals. Full
waveforms are obtained by hybridizing with NRHybSur3dq8Tidal waveforms. See the
body for more details. Note all the NSs and BHs are non-spinning.

also the GW events with the most asymmetric mass ratio reported to date, at around

4 and 9, respectively.

To generate realistic GWs emitted from NSBHs, we use NR simulations carried

out by the SXS collaboration. We consider three different NR simulations [217, 221]

produced by the SXS collaboration using the SpEC code [240, 259] at the highest

available resolution. In Tab. 4.1, we report their corresponding masses, spins, HOMs,

as well as the tidal deformability of the NS, defined as:

ΛNS =
2

3
𝑘2

(︂
𝑅NS

𝑀NS

)︂5

(4.2)

where 𝑅NS and 𝑀NS are the radius and mass of the NS, 𝑘2 is its tidal Love number

describing the susceptibility of its shape to change in response to a tidal potential [260],

and we use natural unites, 𝐺 = 𝑐 = 1. Waveforms that include tidal features often

parameterize the finite size effects through the tidal deformability of each individual

NS, or a single additional parameter proportional to the lowest-order correction to

the phase evolution of the waveform in a post-Newtonian expansion, the effective

tidal deformability of the binary. Other finite size effects, including for example the

impact of the disruption of an NS by a BH, are then modeled as a function of the
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tidal deformability of the NS. While there is no obvious reason for tidal deformability

to be the most relevant parameter for finite-size effects beyond the lowest-order post-

Newtonian correction to the waveform, tidal deformability has worked well enough as

a proxy for other finite-size effects within the accuracy of existing waveform models7.

The NR waveforms used in this chapter are for non-spinning NSs and BHs. This

limitation does not make our analysis less relevant or urgent since most of the BHs

and all of the NSs discovered with GWs to date are consistent with having small or

no spin [30, 209]. In the rest of this chapter, we will often use the mass ratios of the

systems, as reported in the first column of Tab. 4.1, to refer to the individual NSBH

simulations.

The EoS for cold, supranuclear matter in these simulations is such that the resulting

tidal deformability is toward the high end of the region still allowed by previous GW

observations [5, 47]. Specifically, the q6 and q2 NR waveforms use a simple Γ-law

EoS, where the pressure 𝑃 , density 𝜌, temperature 𝑇 , and specific internal energy 𝜖

are related by 𝑃 = 𝜅𝜌Γ + 𝜌𝑇 , 𝜖 = 𝑃/𝜌/(Γ − 1). Both simulations use Γ = 2, while

𝜅 = 92.12 for q6 and 𝜅 = 101.45 for q28. This results in the NS having a tidal

deformability of Λ = 526 for q6, and Λ = 791 for q2. Finally, q3 uses a piece-wise

polytropic EoS (H1, defined in [258]). For the 1.35𝑀⊙ NS considered in the simulation,

this EoS leads to a tidal deformability of Λ = 624.

We note that while q2 and q6 are relatively long waveforms by the standard of

hydrodynamic simulations (> 20 cycles), q3 is comparatively short (13.3 cycles). In all

cases, these simulations contain only the last few cycles before the two compact objects

merge, while we need to simulate the full GW signals starting at the low-frequency

cut-off of GW detectors (i.e. 20 Hz) for the purpose of this study.

We use the hybridization scheme described in Ref. [261] to combine the NR

simulations with models for the early-inspiral section of the waveform. The late

and post-inspiral phases from NR are smoothly attached to the early-inspiral section

7In this work, we will assume that the BH is not tidally deformed and that all finite-size effects
can be accurately modeled as functions of the NS tidal deformability.

8Simulations using a Γ-law EoS can in theory be rescaled to any mass, at constant mass ratio
and NS compactness. However, we do have to choose a mass scale when injecting the waveform into
detector data. In this work, we set the mass of the NS to 1.4𝑀⊙.
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predicted by the NRHybSur3dq8Tidal9 model [262].

We use the infrastructure described in Ref. [263] to project the hybrid signals

into the data streams of a network of the two Advanced LIGO detectors (Hanford

and Livingston) and the Virgo detector. To better isolate biases due to waveform

systematics from offsets due to Gaussian noise fluctuations, we work with a zero-noise

realization of the data [264], i.e. a data stream where the noise is zero at each time or

frequency bin (whereas the noise PSD itself is non-zero).

We probe the effect of the orbital orientation on the results by simulating every

source at two different inclinations 𝜃𝐽𝑁 , representative of a “typical” [265] detection

(30∘, “face-on”) and of a high-inclination system (70 degrees, close to “edge-on”). As

mentioned above, larger inclinations should make the effects of HOMs more visible

and, conversely, increase the bias when these effects are not taken into account but

would significantly contribute to the overall signal [254, 255]. Finally, all of these

systems are put at two distances to give a network SNR of 30 (comparable to the

loudest CBC discovered to date) and 70. The masses in Tab. 4.1 are to be interpreted

as detector-frame masses, with the astrophysically relevant source-frame masses being

smaller by a factor of (1+ 𝑧), with 𝑧 being the redshift of the source. Strictly speaking,

the masses reported by NR simulations should be treated as defined in the source

frame. However, given the proximity of our sources (App. C.1), the masses differ by

at most a few percentages, affecting the mapping between the NS mass and radius by

an amount much smaller than either statistical or systematic uncertainties. In the

rest of the chapter, we will only report the measurements of the source-frame masses.

Finally, the sky location of all sources is fixed to the (arbitrary) value of 60∘ for both

the right ascension and the declination.

9NRHybSur3dq8Tidal is constructed by adding post-Newtonian tidal effects to the underlying
BBH model NRHybSur3dq8 [261]. Therefore it only includes the inspiral part of the waveform.
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4.2 Waveform Models

The choice of the waveform approximants, i.e. the waveform models we use to

characterize the hybrid waveforms described in the previous section, enters the analysis

through the term ℎ(𝜃) in the likelihood as discussed in Sec. 1.3.

When we conducted this study, no waveform that accounts for all of the relevant

features, including tidal effects, spin precession, and HOMs, was available in the LIGO

Algorithm library [190]. We, therefore, use a range of approximants that have some

but not all of these features. These are reported in Tab. 4.2, together with a list of the

physical features that are included and, when relevant, their range of validity (which

usually restricts the mass ratio and/or the BH spin). Details on the priors assumed in

the analyses are given in App. C.3.
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The waveform approximants used in this study are constructed following either

the EOB formalism [196, 230, 251, 273–276], or based on the phenomenological

extension to analytical post-Newtonian waveforms (IMRPhenom) [69, 194, 195, 271,

272, 277]. Both approaches smoothly extend the inspiral waveforms with models of

binary merger-ringdown, calibrated against a set of spin-aligned BBH NR waveforms.

SEOBNRv4_ROM (henceforth: SEOB) [196, 266] describes BBH inspiral-merger-

ringdown signals with general spins aligned to the orbital angular momentum. For com-

putational efficiency, we evaluate the likelihood (cf. Eq. (1.7)) using a ROQ [101] ver-

sion of SEOBNRv4 expressed in the frequency-domain. SEOBNRv4_ROM_NRTidal

(SEOBT) [196, 266–268] builds on the baseline BBH model SEOB by adding a correction

of the waveform phase through a prescription of tidal effects found in BNS systems, cali-

brated against a set of BNS NR simulations [267, 268]. Lackey_Tidal_2013_SEOBNRv2_ROM

(LEA+) [222, 228–230] adds both phase and amplitude corrections specific to NSBH sys-

tems, but is constructed from a reduced order model (ROM) of the older SEOBNRv2

BBH baseline waveform model [230]. We also use a ROQ implementation for LEA+.

SEOBNRv4_ROM_NRTidalv2_NSBH (SEOBNSBH) [269] is also based on SEOB and

dedicated to describing NSBH systems, but adds both a phase correction (through an

updated formalism to the one included in SEOBT [278]) as well as corrections to the

waveform amplitude based on the model of Ref. [244].

From the IMRPhenom waveform family, we use IMRPhenomNSBH (IMRNSBH) [270]

constructed from the aligned-spin BBH baseline IMRPhenomC [69] with updated

phase [278] and NSBH-specific amplitude [244] corrections similar to SEOBNSBH. As

a comparison to other GW analyses, we also include a ROQ implementation of

IMRPhenomPv2 (IMRp) [111, 194, 195], which has been used for the majority of

CBC analyses in recent years. This waveform is based on the newer aligned-spin

IMRPhenomD [194, 195] BBH baseline, extended to also capture spin-induced orbital

precession through an effective precession formalism [111]. We also use IMRPhe-

nomPv2_NRTidal (IMRpT) [111, 194, 195, 267, 268], which further augments IMRp by

adding a phase correction based on the same BNS tidal description as used in SEOBT10.

10Note that the two BNS NRTidal models, SEOBT and IMRpT, do not include a description for the
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Finally, we use IMRPhenomXHM (IMRXHM) [271, 272], which is based on the recent

IMRPhenomXAS model [277] and describes aligned-spin BBH waveforms including

HOMs. Note that IMRXHM does not include any phase or amplitude corrections from

the presence of an NS in the binary.

Overall, the choice of waveform models used for this study is determined by a

compromise between covering a large variety of families and physics, while keeping

the computational cost reasonable. This second factor is the reason why we do not

include other waveform approximants with HOMs, for example, the time-domain

SEOBNRv4HM [279, 280]11.

We analyze all of the hybrid signals we generated with all of these waveform models

(with some exceptions for the LEA+ model, used for 𝑞 = 3 only due to its limited range

of validity on the mass ratio). As mentioned above, none of the waveform families

account for all of the relevant physical effects. However, given that none of the hybrid

waveforms we use to simulate the detected sources has precessing spins, we do not

expect large biases in the recovered parameters for waveforms that do not model spin

precession, while the lack of tides and HOMs might have a visible impact, depending

on the mass ratio, inclination angle, and SNR of the source systems.

4.3 Results

In this section, we summarize the main findings of our study, with sections dedicated

to the most significant astrophysical parameters that can be inferred from GW

observations. As mentioned above, each signal is simulated at two different inclination

angles (30∘ and 70∘) and two network SNRs (30 and 70). Unless otherwise stated, we

quote the 90% CI, either absolute or relative to the true value. The full results of

uncertainties can be found in App. C.

post-merger section (either a BH ringdown or an NS remnant oscillation) of the waveform.
11We note that a frequency-domain ROM of the aligned-spin SEOBNRv4HM [279] model was made

available as this study reached completion [281].
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4.3.1 Masses

Chirp Mass

For low-mass CBCs, the best-constrained parameter is the chirp mass ℳ, as defined

in Eq. (1.2). ℳ also appears in the waveform amplitude, together with the luminosity

distance 𝐷𝐿 and the redshift 𝑧:

𝒜 ∼ ((1 + 𝑧)ℳ)5/3/𝐷𝐿 . (4.3)

While this would suggest that these two parameters are positively correlated [209], in

practice for CBCs with NSs and/or stellar mass BHs, the phase evolution determines

the chirp mass so precisely that it can be treated as known in the amplitude of the

signal (which is usually measured much less precisely). Indeed, for NSBH systems like

those reported here, there are 𝒪(1000) observable inspiral cycles, leading to a precise

ℳ measurement from the waveform phase alone. For example, for the sources we

analyze, the typical fractional uncertainty for ℳ is ≲ 1%, whereas the luminosity

distance has fractional uncertainties of ∼ 50%, due to its correlation with the orbital

orientation, see Sec. 4.4.

However, we do find a clear anti-correlation between ℳsource and 𝐷𝐿, as seen in

Figs. 4-1 to 4-6, where ℳsource is the rest-frame (or source-frame) chirp mass of the

NSBH: when one increases the other decreases. This behavior can be explained by

the fact that what is measured from the GW data is the detector-frame chirp mass,

which is larger than the source-frame mass by a factor (1 + 𝑧). Thus, to convert

detector-frame chirp mass to the astrophysically interesting source-frame chirp mass,

one must use the measured luminosity distance (and assume a cosmology; we use the

Planck 2015 cosmological parameters12 [282]). For a given measured detector-frame

mass, if the source were a bit farther away (higher 𝑧), the source-frame mass would

have to be slightly smaller in order to yield the same detector-frame value. This is

indeed what we find, and is worth stressing, as the uncertainty on the luminosity

12We use the cosmology defined in the TT+lowP+lensing+ext column of Tab. 4 from [282]. This
corresponds to Ω𝑀 = 0.3065, ΩΛ = 0.6935, 𝑤0 = −1 and 𝐻0 = 67.90 kms−1Mpc−1.
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Figure 4-1: Corner plot of posterior distributions for chirp mass ℳsource, mass ratio q,
and luminosity distance 𝐷𝐿, recovered by different approximants for 𝑞 = 2, inclination
30∘. The thin (thick) lines mark the 50% (90%) contour, the same for all corner plots
to follow.
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Figure 4-2: Corner plot of posterior distributions for chirp mass ℳsource, mass ratio q,
and luminosity distance 𝐷𝐿, recovered by different approximants for 𝑞 = 2, inclination
70∘.
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Figure 4-3: Corner plot of posterior distributions for chirp mass ℳsource, mass ratio q,
and luminosity distance 𝐷𝐿, recovered by different approximants for 𝑞 = 3, inclination
30∘.
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Figure 4-4: Corner plot of posterior distributions for chirp mass ℳsource, mass ratio q,
and luminosity distance 𝐷𝐿, recovered by different approximants for 𝑞 = 3, inclination
70∘.
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Figure 4-5: Corner plot of posterior distributions for chirp mass ℳsource, mass ratio q,
and luminosity distance 𝐷𝐿, recovered by different approximants for 𝑞 = 6, inclination
30∘.
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Figure 4-6: Corner plot of posterior distributions for chirp mass ℳsource, mass ratio q,
and luminosity distance 𝐷𝐿, recovered by different approximants for 𝑞 = 6, inclination
70∘.
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distance is often a significant factor in the statistical and systematic uncertainty for

the source-frame chirp mass.

For most of the systems we analyze, especially for the inclination 30∘ binaries, the

true ℳsource value is recovered within the 90% CI and little difference is seen between

approximants. The situation is quite different for the systems with an inclination

equal to 70∘: for those, the source-frame chirp mass is usually underestimated. In

turn, this happens because the distance is overestimated (as explained in Sec. 4.4).

This bias is reduced or even absent when using IMRXHM for systems with large mass

ratios, large inclinations, and SNRs, since in that case, HOMs become observable

enough to help break the distance-inclination degeneracy, thus yielding unbiased chirp

mass estimates (e.g. Figs. 4-6 and Sec. 4.4).

On the other hand, there is only a marginal difference in the recovery of ℳsource

between waveform models that do or do not include NS tidal effects. However, the

same is not necessarily true for other parameters, as discussed below.

Mass Ratio

As we will discuss further in Sec. 4.3.2, it is largely the binary mass ratio, together

with the BH spin and NS EoS, that determines if and to which extent the finite-size

effects of the NS will leave an observable imprint in the detected GW signal [239, 243,

244]. For the 𝑞 = 2 binaries, for which tidal effects are largest, the waveforms that do

not model the NS tidal disruption recover a strongly biased posterior of 𝑞, with the

true value of 𝑞 = 2 only barely included in the tail of the posterior for the SNR 70

sources, Figs. 4-1b and 4-2b.

For the 𝑞 = 3 binaries of Figs. 4-3 and 4-4, the tidal effects present are less

prominent and hence all waveform models show similar performance in recovering the

true mass ratio, with the exception of the non-tidal IMRPhenom-based waveforms,

IMRp and IMRXHM, which produce results only marginally consistent with the true

value.

When 𝑞 = 6, Figs. 4-5 and 4-6, the NS is not expected to disrupt before plunging

into the BH, and hence tidal effects are unmeasurable (as shown in Figs. 4-11 and 4-12).
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For these sources, it is the two waveform models that are explicitly calibrated against

(near-equal-mass) BNS simulations, SEOBT and IMRpT, that produce biased mass-ratio

posteriors, with IMRpT being farther away from the true value. While at SNR 30,

Figs. 4-5a and 4-6a, a second peak is already visible closer to an equal mass ratio,

the main peak is still present around the true value of 𝑞 = 6. It is only for the loud

signals that the peak at the true value disappears, resulting in a significant bias,

especially for IMRpT. For the 𝑞 = 6 sources, the two specialized NSBH waveforms,

IMRNSBH and SEOBNSBH, and the BBH waveforms measure the mass ratio comparably

well, whereas IMRXHM remains overall better suited as it can deliver more precise

distance and inclination measurements, Sec. 4.4, and hence a better measurement of

the source-frame masses.

Overall, we find the absolute statistical uncertainties for 𝑞 on the order of ∼ 0.8 at

SNR 70 for the NSBH-tuned models without much dependence on the true value of 𝑞.

While the absolute value of the 90% CI stays roughly constant with 𝑞, the relative

uncertainty is three times smaller for 𝑞 = 6 than for 𝑞 = 2. For the SNR 30 signals,

the absolute uncertainties are naturally higher and fall into the range of 1.2-1.6 for all

three systems.

NS and BH Masses

One of the most attractive features of NSBHs is the potential of a precise measurement

of the NS mass, including putting constraints on its maximum value, which is still

under debate [283–287]. Unfortunately, this is hard to achieve even at high SNRs with

BNSs, due to their mass ratios being close to unity [288].

This is particularly true if one follows an agnostic approach, without assuming

a priori that a compact object lighter than 2 𝑀⊙ is necessarily an NS, and allows

for the object to assume spins larger than what an NS could nominally support [289,

290]. In that case, a known spin-mass ratio degeneracy will significantly increase

the uncertainty in both parameters [72]. This was clearly shown with the first BNS

source [4], for which the upper value of the 90% CI for the primary mass increases

by ∼ 40% (∼ 18%) when the spin magnitude limit is increased from 0.05 to 0.89 for
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spin-aligned (spin-precessing) waveforms. Similar differences have been reported for

GW190425 [47]. For BNSs, the spin prior will usually determine whether it is possible

to set a significant upper bound on the NS masses.

We want to verify if NS mass measurements obtained from NSBHs are more

precise, as one would expect from their larger mass ratios, and more accurate. We

find that for the SNR 30 binaries, Figs. 4-13a to 4-18a, all waveform models perform

comparatively well in recovering the true binary masses. The exception is the 𝑞 = 3

binaries, Figs. 4-15a and 4-16a: two of the models which allow for NS tidal effects

and are dedicated to BNS systems (SEOBT and IMRpT) have wider tails towards more

equal-mass binaries, and hence heavier NSs (Figs. 4-3a and 4-4a). This behavior is also

seen for the 𝑞 = 6 binaries, Figs. 4-17a and 4-18a, with IMRpT having especially large

tails. On the other hand, note that the IMRNSBH and SEOBNSBH analyses are more

constraining on the NS and BH masses compared to these “BNS-tuned” waveform

models, similar to the discussion in Sec. 4.3.1.

For the SNR 70 binaries, severe biases are visible, due to two different factors. The

true values are outside of the 90% CIs for the 𝑞 = 2 binaries, Figs. 4-13b and 4-14b

when using approximants that do not support NS matter effects. This is to be expected

since tidal effects are most visible at small mass ratios, and in light of the fact that

tides and mass ratios enter the GW phase in combination [291]. This bias of ∼ 0.1𝑀⊙

for the recovered NS mass, though only a small fractional error, could be detrimental

when propagated to the inference on the NS EoS, which is very sensitive to changes

in the NS mass. It is also interesting to note that the HOMs included in the IMRXHM

model do not affect the inferred masses for these binaries, and indeed recover the same

biased masses as the other waveform models without NS matter effects. A similar

behavior is also seen for the 𝑞 = 3 binaries, Figs. 4-15b and 4-16b, where again the

models without NS matter effects show larger biases in the NS and BH masses, more

so for IMRp and IMRXHM than for SEOB, though the effects are smaller than the those

for the 𝑞 = 2 binaries.

For the 𝑞 = 6 binaries, Figs. 4-17b and 4-18b, we see even stronger biases, but the

reason is now different. As the more asymmetric mass ratio reduces the observational
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impact of the tidal effects, the “BBH-like” models can describe the system quite well,

and the models tuned to BNS-like (thus light and nearly equal-mass) tidal effects

(SEOBT and IMRpT) greatly misestimate the NS and BH masses. This might be due

to the conditioning applied to the end of SEOBT and IMRpT waveforms, which would

be outside of the most sensitive part of the detector bandwidth for BNS-like systems,

but might leave a detectable imprint for NSBHs with increased mass ratios and total

masses as the binary merger now occurs at frequencies where the detectors are more

sensitive.

Analyses of CBCs containing an object whose mass is reasonably consistent

with being an NS can intuitively be expected to exhibit some form of tidal effects.

Waveform models that allow for such effects could therefore be believed to measure

the source parameters better, as they nominally contain a more accurate description

of all relevant physical effects. Naively following these assumptions for the 𝑞 = 6

binaries would, as shown here, potentially lead to significant errors in the inferred

astrophysics. As an example, the IMRpT analysis in Fig. 4-18b would, if taken in

isolation, have a strong impact on the inferred maximum NS mass, a parameter which

in turn affects the constraints on the NS EoS [283–287, 292]. It is worth noticing that

one can quantitatively assess the relative goodness of fit to the data of two models

by computing Bayes factors, as previously described in Sec. 3.2. We find that the

BNS-tuned tidal waveforms are strongly disfavored even when compared to non-tidal

waveforms for 𝑞 = 6 and SNR 70, which could be used as a figure of merit to exclude

them from parameter estimation for specific candidate events. Further details about

Bayes factors are also given below, in Sec. 4.3.2.

4.3.2 Matter Effects

Together with the mass, the radius is probably the most interesting astrophysical

quantity one can infer from the GW observations of NSs. As seen above, in Eq. (4.2),

this information is encoded in the tidal deformability of NSs, which directly enters the

phase evolution of GW signals, though at high post-Newtonian orders [268, 293–296].

In this section, we will discuss the measurement of both radius and tidal deformability.
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Figure 4-7: Posterior distributions for ΛNS and 𝑟NS recovered by different approximants
for 𝑞 = 2, inclination 30∘. The dashed lines mark the 90% CIs, the same for all 1D
plots to follow.
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Figure 4-8: Posterior distributions for ΛNS and 𝑟NS recovered by different approximants
for 𝑞 = 2, inclination 70∘.
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Figure 4-9: Posterior distributions for ΛNS and 𝑟NS recovered by different approximants
for 𝑞 = 3, inclination 30∘.
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Figure 4-10: Posterior distributions for ΛNS and 𝑟NS recovered by different approxi-
mants for 𝑞 = 3, inclination 70∘.
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Figure 4-11: Posterior distributions for ΛNS and 𝑟NS recovered by different approxi-
mants for 𝑞 = 6, inclination 30∘.
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Figure 4-12: Posterior distributions for ΛNS and 𝑟NS recovered by different approxi-
mants for 𝑞 = 6, inclination 70∘.
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NS Tidal Deformability

While GWs carry information about the NS tidal deformability, whether these effects

are in practice observable depends heavily on the binary parameters, for a fixed SNR.

Specifically, if the mass ratio is too large, the NS will cross the event horizon of the

BH before any significant tidal disruption can occur. The exact value of the mass

ratio above which tidal effects are shut off also depends on the BH spin (as it affects

the position of the outer event horizon) and the NS compactness or, equivalently, its

radius 𝑟NS, see App. C.2 [236–245]. Therefore, we do not expect to gain significant

information about tides from the 𝑞 = 6 signals. We stress that, if one is agnostic

and does not a priori exclude the existence of BHs with masses comparable to NSs,

measuring the deformability of the secondary object as being non-zero would be the

main way to prove that it was not a BH (unless EM emission is detected, which would

be an even stronger indication that an NS was involved in the merger).

Indeed, at a mass ratio of 𝑞 = 6, NR simulations that nominally include the effects

of a tidally disrupted NS are indistinguishable from “pure BBH” simulations, with the

tidal signature on the generated waveform being comparable to, or smaller than, the

numerical precision of current NR simulations. Thus, we do not expect to be able to

constrain the tidal deformability for these types of high mass-ratio NSBHs.

On the other hand, as discussed in Sec. 4.1, we should be able to constrain the tidal

deformability better for binaries with less asymmetric mass ratio. In light of the above

discussion, we expect the 𝑞 = 2, 3 binaries to be the more favorable configurations in

this analysis to measure ΛNS: a low-mass BH (within the putative mass gap between

NSs and BHs [54, 297, 298]) with a relatively massive NS. We stress that BHs with

masses in the gap have likely already been discovered: the lighter component of

GW190814 was a ∼ 2.6 𝑀⊙ compact object, making it either the heaviest NS or the

lightest BH ever found [50]. Moreover, the total mass of GW190425 was ∼ 3.3𝑀⊙ [47,

299, 300]: if the final product of the merger were a BH, which is likely, it would have

masses in between the BHs of our 𝑞 = 2 and 𝑞 = 3 signals13. The tidal deformability

13Whether such a BH would have a high probability of merging again, with an NS, is highly
dependent on the environment where it formed.
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is indeed best constrained for the most equal-mass system in our study, the 𝑞 = 2

binaries, Figs. 4-7a and 4-8a. We note, however, that for these signals, ΛNS is generally

underestimated for all waveform models, while still containing the true value within

the 90% CIs at SNR 30. For the SNR 70 sources, the statistical uncertainty shrinks,

while the offsets remain comparable. We find that the true value of ΛNS is outside of

the 90% CIs for all waveforms but IMRNSBH and IMRpT, including SEOBNSBH that is

nominally tuned for this kind of source. It is worth mentioning that SEOBNSBH, IMRpT,

and SEOBT all roughly agree with each other and underestimate ΛNS by a similar

amount, where SEOBNSBH provides the most constrained posterior among the three.

The situation is not too different for the 𝑞 = 3 binaries, for which we can additionally

use the LEA+ model, whose range of validity is limited to 𝑞 ∈ [2, 5]. At SNR 30, Figs.

4-9a and 4-10a, the peak of the ΛNS posterior is close to the true value for all

approximants, which also agree well with each other, with the exception of LEA+ and

IMRNSBH whose posteriors slightly overestimate the ΛNS (while still containing the

true value within their very large 90% CIs). A more complex picture emerges when

SNR is 70, Figs. 4-9b and 4-10b. In this case, we observe that posteriors cluster

around two values, one larger and one smaller than the true ΛNS, with the true

value roughly in between the two sets. IMRpT yields the longest tail in the posteriors

among the approximants with its 90% CI only slightly wider than the others. It is

worth stressing that the differences we see do not simply align with the underlying

base model (IMRPhenom or EOB), as instead happening for, e.g., the luminosity

distance, Sec. 4.4 below. We do not have a simple (or complicated) explanation for

these features, which could arise from the detailed way each approximant implements

and calibrates tidal corrections. We also observe this difference in the results from

NSBH-tuned models: while based on the results from IMRNSBH (or LEA+, for 𝑞3 =)

we would be able to place ΛNS = 0 at a very low confidence level, SEOBNSBH finds

a non-negligible amount of posterior support there and would not allow to rule out

that the secondary is in fact a BH for which ΛNS = 0. However, even at an SNR of

70, the systematic uncertainties caused by waveform models on ΛNS are still within

the statistical uncertainties. Thus, we can still use any waveforms that include tidal
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effects, both the ones dedicated to BNSs and the ones to NSBHs, without producing

significant bias in the results. We will require specialized NSBH waveforms only when

we have detections with significantly higher SNRs.

For the 𝑞 = 6 sources at SNR of 30, (Figs. 4-11a and 4-12a), the recovered posteriors

on ΛNS are not much different from the prior, explicitly showing that for non-spinning

systems at such a large mass ratio, there is no information about the NS composition,

since the NS plunges into the BH horizon before it is significantly deformed. At SNR

70, this general behavior still persists but with a slightly more discernible fall off at

high ΛNS (not visible in the plots, due to the range we show in the horizontal axis,

but conveyed by the 90% CIs quoted in App. C.1). The clear exception is IMRpT

whose posterior has a visible peak at ΛNS = 0 and is significantly different from the

prior (only the upper bound of the 90% for IMRpT is visible in this case, Figs. 4-11b

and 4-12b). To a smaller extent, SEOBT shows the same trend. However, as discussed

in Sec. 4.3.1, these approximants also recover significantly biased mass parameters,

and have unfavorable Bayes factors compared to other approximants at 𝑞 = 6, further

discussed in Sec. 4.3.2.

NS radius

Another astrophysically important quantity, capable of constraining the NS EoS

through GW and EM observations [16, 47, 301–305], is the radius of the NS, 𝑟NS.

Unlike ΛNS, 𝑟NS is not directly encoded in the GW signal but rather inferred from the

measurements of the NS mass and ΛNS using fitting formulae (see App. C.2).

We report these posteriors in panels (c) and (d) of Figs. 4-7 to 4-12. Overall, the

radius is not constrained with high precision at SNR 30, with typical 90% CI widths of

∼ 7 km (compare with ≲ 4 km for the BNS GW170817 [16], which had a comparable

SNR). The fact that the NSBHs we study do not provide radius measurements as

precise as GW170817 is due to the dependency of the tidal terms on the mass ratio,

and the fact that fewer waveform cycles are in the band for CBCs with larger chirp

masses.

For the 𝑞 = 2 binaries, the inferred 𝑟NS distributions show a smaller spread than
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the respective ΛNS posteriors. For SNR 70 especially (Figs. 4-7d and 4-8d), the inferred

𝑟NS is underestimated, though the true value is still contained within the 90% CI.

A similar behavior is seen in the 𝑞 = 3 binaries, again with a reduced spread

compared to ΛNS. In the SNR 70 analyses (Figs. 4-9d and 4-10d), SEOBNSBH and SEOBT

return distributions for 𝑟NS centered around the true value, whereas IMRNSBH and LEA+

slightly overestimate 𝑟NS, while still including the true value at a high confidence level.

For the SNR 70 sources, typical 90% CIs are of ∼ 3− 4 km (4− 5 km) for 𝑞 = 2

(𝑞 = 3).

As with ΛNS, the 𝑞 = 6 analyses recover very broad posteriors for 𝑟NS and only

exclude extremely large values of the radius (≥ 20 km), Figs. 4-11 and 4-12, with

the SNR 70 posteriors more constraining than those of the SNR 30 sources. It is

worth stressing that most of this information does not come from ΛNS, but rather from

the NS mass measurements (see Sec. 4.3.1). Finally, while IMRpT finds very biased

posteriors for ΛNS and NS mass at 𝑞 = 6, the two biases cancel out, giving a derived

posterior on 𝑟NS not too different from what is obtained with other approximants.

Model Selection

As mentioned above, the relative goodness of fit of waveform models to the data in

hand can be quantified by calculating the Bayes factors between them, as defined in

Eq. (3.2). If one calls 𝐻1 the model where the approximant 𝐴1 is used to analyze the

data, and 𝐻2 the model where the approximant 𝐴2 is used, ℬ𝐴1
𝐴2

= 𝑍(𝐻1)
𝑍(𝐻2)

> 0 if the

model 𝐻1, i.e. if the waveform model 𝐴1, is preferred. In Tab. 4.3 to 4.6 we present

the natural log Bayes factor between some of the models used in this study.

As one would expect, for the 𝑞 = 2 binaries, there is more support for models that

include tidal effects. SEOBNSBH and IMRNSBH match the data equally well and have

large odds ratios relative to all other models, likely due to the fact that they have

been tuned specifically for NSBH signals, and that they do not allow for a spin in

the NS and only allow a smaller range for the BH spin, see the priors in Tab. C.8.

Because the true NS spin is actually zero, SEOBNSBH and IMRNSBH are not penalized

by that limitation, and their odds ratios are boosted by the smaller prior volume. The
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SEOBNSBH/Sim. SEOB SEOBT LEA+ IMRNSBH IMRp IMRpT IMRXHM

BHNSq2s0 51.96 41.15 - -0.35 42.54 42.64 -

BHNSq3s0 2.30 2.99 -0.06 -0.27 3.95 3.46 -

BHNSq6s0 2.62 4.81 - 0.24 4.29 6.35 -2.92

Table 4.3: lnℬ for different approximants, SNR 30, inclination 30∘, reported as the
odds ratio to the lnℬ of SEOBNSBH.

SEOBNSBH/Sim. SEOB SEOBT LEA+ IMRNSBH IMRp IMRpT IMRXHM

BHNSq2s0 51.62 40.71 - -0.29 42.25 42.11 -

BHNSq3s0 2.43 2.96 0.06 -0.10 3.58 3.70 -

BHNSq6s0 2.42 5.11 - 0.01 3.90 6.13 -15.67

Table 4.4: lnℬ for different approximants, SNR 30, inclination 70∘, reported as the
odds ratio to the lnℬ of SEOBNSBH.

SEOBNSBH/Sim. SEOB SEOBT LEA+ IMRNSBH IMRp IMRpT IMRXHM

BHNSq2s0 279.38 214.03 - -0.27 220.98 218.13 -

BHNSq3s0 3.42 4.97 0.29 -0.27 6.15 6.61 -

BHNSq6s0 2.64 21.20 - 1.55 6.45 17.39 -

Table 4.5: lnℬ for different approximants, SNR 70, inclination 30∘, reported as the
odds ratio to the lnℬ of SEOBNSBH.

SEOBNSBH/Sim. SEOB SEOBT LEA+ IMRNSBH IMRp IMRpT IMRXHM

BHNSq2s0 277.24 212.81 - -0.18 219.73 216.79 -

BHNSq3s0 3.46 5.41 0.40 -0.30 6.89 7.42 -

BHNSq6s0 2.67 23.47 - 1.53 6.21 17.87 -

Table 4.6: lnℬ for different approximants, SNR 70, inclination 70∘, reported as the
odds ratio to the lnℬ of SEOBNSBH.
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same would not necessarily be true if the source contained a spinning NS. SEOBT is

significantly favored over SEOB, while there is only mild support for IMRpT over IMRp

even at an SNR of 70.

The results for the 𝑞 = 3 binaries are qualitatively different. Here we observe that

IMRXHM is mildly preferred over the NSBH approximants. This suggests that at this

mass ratio, not modeling HOMs is penalized more than not modeling tides. The LEA+

model (with further constraints on the mass ratio prior) performs as well as the other

two newer NSBH approximants. The comparisons between SEOBT and SEOB, as well

as between IMRpT and IMRp, are rather inconclusive compared to the results for the

𝑞 = 2 binaries.

For the 𝑞 = 6 binaries, IMRXHM has the highest Bayes factor among all the

approximants, since it is the only approximant included here that accounts for HOMs,

which are more significant at higher mass ratios. Moreover, the preference is stronger

for higher inclinations where HOMs have a more significant amplitude. The NSBH

approximants perform slightly better than non-tidal waveforms and much better than

the two tidal models that are tuned for BNS systems. It is interesting to observe

that 𝑞 = 6 SEOB (IMRp) does better than SEOBT (IMRpT). This is not because tides are

not measurable, and hence “unnecessary” in the model: as we have seen before, no

significant constraints can be placed on ΛNS (see Sec. 4.3.2) for these sources, and

not much information is gained relative to the prior distribution. In this case, no

significant Occam penalty [306] is assigned to the models with tides. Hence, the fact

that the BNS-tuned tidal waveform models are disfavored over their related non-tidal

models for the 𝑞 = 6 binaries must be attributed to their failure to adequately describe

the NSBH waveforms in that mass range.

4.3.3 Spins

There are multiple reasons why an accurate measurement of the BH spins of NSBH

systems is essential. First, the BH spin should be measured more precisely in NSBHs

than in BBHs, since the potentially large mass ratio of NSBHs enhances the effect

of spin precession and spin-orbit coupling, yielding a more significant amount of
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phase and amplitude modulation than what would be present in an equal mass

system with similar spins. NSBHs might very well be the systems that yield the

most precise measurement of BH spins in the next few years. It is thus essential that

accuracy follows. Second, spins are a good tracer of the formation channel of compact

binaries [33, 178–180, 307, 308]. A precise and accurate measurement of spins could be

critical to determine whether the formation pathways of BBH and NSBH systems are

different. When the masses of the compact objects in a binary are comparable, GWs

provide a good measurement of the effective spin, 𝜒eff , the mass-weighted projection

of the total spin along the orbital angular momentum [67–70] as defined in Eq. (1.2).

As the mass ratio increases, the spin of the primary becomes the leading contribu-

tion to 𝜒eff (this is even more true for an NSBH, as NSs are expected to have small

spins), and one indeed finds that the spin of the primary becomes measurable [175,

309, 310].

Because our simulations have non-spinning BHs and NSs, we will not be able

to probe the quality of spin measurement for large spins. However, it is still very

interesting to show if waveform systematics affect the measurement of small spins in

NSBH because (a) most of the BH found to date are consistent with having small or no

spin [71, 179, 180, 308] and (b) there is a correlation between effective spin and mass

ratio [72], as well as between mass ratio and tidal parameters [291], hence different

waveforms might produce visibly different posteriors. We expect the biases to be more

visible when the mass ratio is small enough that the NS can acquire significant tidal

deformation and disruption before merging with the BH.

Indeed, this is what our simulations show, in Figs. 4-13 and 4-14 for 𝑞 = 2. While

some differences in behavior between tidal and non-tidal approximants are already

visible at SNR 30, it is only when the signals are very loud, at SNR 70, that the

tension becomes significant compared to the statistical uncertainties. For these loud

simulations, Figs. 4-13b and 4-14b, the models that include tides recover the true

value of 𝜒eff and 𝑞, with the 90% CI of ∼ 0.1 (with some minor differences depending

on the inclination angle and the tidal waveform model). As discussed in Sec. 4.3.1,

biases in the results from models without tides are also visible for the mass ratio and
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Figure 4-13: Corner plot of posterior distributions for component masses 𝑚source
1 and

𝑚source
2 , the effective spin 𝜒eff and the tidal deformability ΛNS recovered by different

approximants for 𝑞 = 2, inclination 30∘.
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Figure 4-14: Corner plot of posterior distributions for component masses 𝑚source
1 and

𝑚source
2 , the effective spin 𝜒eff and the tidal deformability ΛNS recovered by different

approximants for 𝑞 = 2, inclination 70∘.
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Figure 4-15: Corner plot of posterior distributions for component masses 𝑚source
1 and

𝑚source
2 , the effective spin 𝜒eff and the tidal deformability ΛNS recovered by different

approximants for 𝑞 = 3, inclination 30∘.
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Figure 4-16: Corner plot of posterior distributions for component masses 𝑚source
1 and

𝑚source
2 , the effective spin 𝜒eff and the tidal deformability ΛNS recovered by different

approximants for 𝑞 = 3, inclination 70∘.
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Figure 4-17: Corner plot of posterior distributions for component masses 𝑚source
1 and

𝑚source
2 , the effective spin 𝜒eff and the tidal deformability ΛNS recovered by different

approximants for 𝑞 = 6, inclination 30∘.
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Figure 4-18: Corner plot of posterior distributions for component masses 𝑚source
1 and

𝑚source
2 , the effective spin 𝜒eff and the tidal deformability ΛNS recovered by different

approximants for 𝑞 = 6, inclination 70∘.
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hence for the component masses. For all of these parameters, the true values are

marginally included in or excluded from the 90% CIs. We do not observe significant

differences between the NSBH-tuned waveforms and the other tidal waveforms. It

is also worth stressing that the IMRXHM waveform does not perform better, or even

differently, than the other non-tidal waveforms, showing explicitly that even at SNRs

of 70, the missing tidal terms have a dominant effect on the waveform systematics

over the missing HOMs for small mass ratios.

As the mass ratio increases, the biases in the spin posteriors become less and

less apparent, as one would expect given that the effect of tides decreases with more

unequal masses. However, for 𝑞 = 3 at SNR 70, Figs. 4-15b and 4-16b, we still see a

bias for the non-tidal IMR models, whereas the EOB models are consistent with the

true values of 𝜒eff and masses. In general, we find that non-tidal IMR models tend

to overestimate 𝜒eff and, due to its correlation with 𝑞 [72], to overestimate the mass

ratio. Finally, for 𝑞 = 6, Fig. 4-17 and 4-18, the true value of 𝜒eff and masses are

within the 90% CIs even at SNR 70 for all non-tidal approximants. This suggests that

for such a high mass ratio, even higher SNRs would be needed for the measurement

of 𝜒eff and masses to be limited by waveform systematics. On the other hand, we

observe that IMRpT, which has tidal effects, gives significantly biased results at this

high mass ratio. While the statistical uncertainties are large enough at SNR 30 that

the posterior is consistent with the true values, the same is no longer true at SNR

70, and for both masses and 𝜒eff , the IMRpT posteriors are in significant tension with

the true values (even the component spin magnitude is heavily biased, as presented

in Tab. C.6). In fact, while less pronounced than for IMRpT, one can see that even

SEOBT starts diverging from the other approximants at 𝑞 = 6. This can be explained

by the fact that SEOBT and IMRpT are constructed with the goal of matching the late

inspiral of BNSs, for which the mass ratios are close to unity. Thus, for mass ratios

high enough, waveforms without tidal terms actually do better than waveforms with

tidal terms tuned to only BNS mergers. As the true mass ratio increases, we are using

these two models further and further from their range of validity.

This explanation for the biases is corroborated by the total lack of biases in LEA+
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(only used for the 𝑞 = 3 analysis), IMRNSBH, and SEOBNSBH, all of which have tidal

terms that have phase and amplitude corrections tuned against NSBH systems. For all

of the simulations, we find that LEA+, IMRNSBH, and SEOBNSBH yield the most precise

estimates of 𝜒eff . However, more than representing a true feature of these models, this

is merely a consequence of their prior support as they do not allow spin in the NS

and thus enable a narrower range of spin for the BH. This reduces correlations in the

GW phase, and hence yields a better measurement of the only spin parameter.

To summarize, we find that the 90% CIs for 𝜒eff are typically around ∼ 0.16 for the

SNR 30 sources (with small variations depending on the mass ratio) and ∼ 0.08 for

the SNR 70 sources. In fact, the ratio of statistical uncertainties for any given source

when measured at SNR 70 and at 30 is close to the ratio of SNRs, as one would expect

for loud enough sources for which the Fisher matrix limit is valid [264, 311–313].

Given that the NS spin is expected to be very low, and the mass ratio of these events

is far from unity, one might also hope to measure the BH spin instead of only 𝜒eff . In

general, we find that IMRp and IMRpT yield consistently larger uncertainties, followed

by spin-aligned waveforms (SEOBT,IMRXHM,SEOB) and by single-spin waveforms (LEA+,

IMRNSBH, and SEOBNSBH). As in the case of 𝜒eff , these differences can be explained with

the reduced parameter space covered by different models. IMRp and IMRpT include

a prescription for effective spin-orbit precession and cover a higher dimensionality

than any other waveforms in our set. Conversely, LEA+, IMRNSBH, and SEOBNSBH only

allow the BH to be spinning (with a smaller maximum amplitude), and only along the

orbital angular momentum (see Tab. 4.2) while setting the NS spin to be exactly 0.

It is worth stressing that for none of our configurations can we constrain the

magnitude of the NS spin (for the waveform models that allow it to vary from 0) to

below ∼ 0.4 at the 90% CIs. This suggests that even for NSBHs, constraining the NS

spin to values consistent with the range of spins of known pulsars will be challenging

and require extremely loud sources. We do not expect this conclusion to depend

significantly on the fact that our BHs did not have any spin, as Ref. [175] reported

similarly poor constraints on the NS spin in 10− 1.4 𝑀⊙ NSBH with precessing spins,

although they worked with inspiral-only waveforms that do not include tides or HOMs.
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Figure 4-19: 2D contour plot of posterior distributions for luminosity distance 𝐷𝐿 and
the inclination angle 𝜃𝐽𝑁 , recovered by different approximants for 𝑞 = 2, inclination
30∘.

4.4 Extrinsic Parameters

In this section, we focus on the measurements of the inclination angle and the luminosity

distance, both of great importance for fully exploiting the scientific potential of NSBHs.

At least some of the NSBHs are expected to produce EM radiation as they merge [236–

245, 314–317], making an accurate measurement of their luminosity distance crucial

for a successful EM follow-up campaign. Furthermore, the potentially small statistical

uncertainty in their luminosity distance results allows NSBHs to be valuable standard

sirens in measuring the Hubble constant [119]. Measurements of the orbital orientation

could be used to distinguish between competing kilonova models [318] and, more

generally, to study their detailed emission angular pattern at all wavelengths.

We report the inclination/luminosity distance corner plots for the face-on (i.e., true

inclination 30∘) systems in Figs. 4-19, 4-21, and 4-23. It is worth underlining a few

common features (see the complete set of results in App. C.1). First, the only waveform

model with HOMs among those we use, IMRXHM, yields smaller statistical errors and

offsets relative to the true value. Smaller statistical errors are not unexpected since the

true signals do have HOMs, which are known to help break the distance-inclination
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Figure 4-20: 2D contour plot of posterior distributions for luminosity distance 𝐷𝐿 and
the inclination angle 𝜃𝐽𝑁 , recovered by different approximants for 𝑞 = 2, inclination
70∘.
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Figure 4-21: 2D contour plot of posterior distributions for luminosity distance 𝐷𝐿 and
the inclination angle 𝜃𝐽𝑁 , recovered by different approximants for 𝑞 = 3, inclination
30∘.
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Figure 4-22: 2D contour plot of posterior distributions for luminosity distance 𝐷𝐿 and
the inclination angle 𝜃𝐽𝑁 , recovered by different approximants for 𝑞 = 3, inclination
70∘.
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Figure 4-23: 2D contour plot of posterior distributions for luminosity distance 𝐷𝐿 and
the inclination angle 𝜃𝐽𝑁 , recovered by different approximants for 𝑞 = 6, inclination
30∘.
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Figure 4-24: 2D contour plot of posterior distributions for luminosity distance 𝐷𝐿 and
the inclination angle 𝜃𝐽𝑁 , recovered by different approximants for 𝑞 = 6, inclination
70∘.

degeneracy [319], hence reducing the statistical uncertainty. One might be surprised

that systematic errors are the smallest for IMRXHM even when the mass ratios are

small, even though it does not allow for tides. This can be explained by the fact that

HOMs affect the overall amplitude since they change the angular dependence on the

orbital orientation, while tides only affect the late inspiral and mostly the phase of the

waveform, thus not as directly related to distance and inclination. This also explains

why, while IMRXHM performs similarly to other IMR waveforms at small mass ratios for

which HOMs are less important, it does significantly better at 𝑞 = 6. For example, at

SNR 30 and inclination 30∘, the 90% relative uncertainty for the luminosity distance

is 45% for all IMR models when 𝑞 = 2, but decreases to 32% only for IMRXHM when

𝑞 = 6, while staying above 40% for the other IMR approximants. Biases for the

luminosity distance usually lie within the 90% CIs for the recovered posteriors, with

typical offsets on the order of ∼ 5 − 15% of the statistical uncertainty for SNR 30.

As the SNR increases, the statistical uncertainties shrink, making systematic offsets

perceptually more important, though usually still smaller than the corresponding

statistical uncertainty. The only exception is the IMRpT posterior for 𝑞 = 6, Fig. 4-23b,

109



which is very narrow and only marginally consistent with the true value. As already

discussed above, this approximant yields biases for most parameters at 𝑞 = 6, which

is quite far from its intended region of validity.

The situation is quite different when the sources are simulated at an inclination

angle of 70∘. We find that most waveform families severely overestimate the distance,

with the true value barely included in the posterior, Figs. 4-20, 4-22, and 4-24. This

results in an orbital orientation measurement closer to face-on/off and, in turn, affects

the estimation of the source-frame chirp mass, as seen above. This behavior is not

unexpected and can be explained with the strong Bayesian prior in the distance

(proportional to 𝐷2
𝐿, and roughly uniform in comoving volume at the relatively small

distances in our simulations), as well as the fact that the waveform approximants

without HOMs do not strongly depend on the inclination angle. In a Bayesian

framework, it is thus often more advantageous to overestimate the distance (which

comes with a prior boost) and compensate by measuring an orientation closer to

face-on/off. This was explicitly shown for models without HOMs in Ref. [119] (see

also Ref. [121]). It is also consistent with the fact that the only model with HOMs in

our set, IMRXHM, usually recovers a posterior closer to the true value, and more and

more so as the mass ratio increases, which enhances the effect of HOMs, as discussed

above. For the 𝑞 = 3 and 𝑞 = 6 sources, the IMRXHM posterior is clearly separated

from all approximants at both SNRs.

Overall, the medians of the results for the high inclination sources are offset from

the true value by significant fractions of the statistical uncertainty. The smallest offset

we observe is ∼ 40% of the statistical uncertainty for IMRXHM when 𝑞 = 6. Typical

values are 50% or larger. The relative statistical uncertainties on the distance for the

high inclination sources are not significantly smaller than those for the systems closer

to face-on. In fact, they can be larger. This is partially an artifact of quoting the 90%

CIs relative to the true value: as the inclination increases, the true distance of the

source must be decreased to keep the same SNR. Since the absolute uncertainty can

increase with the true distance faster than decreasing with the inclination, the relative

uncertainties on the inclination can get larger (see Fig. 1 of Ref. [119]).
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Furthermore, it is interesting to compare non-HOM models based on the EOB

vs. the IMRPhenom formalisms. We see that the results from all models generally

peak at similar values, but the EOB-based models usually yield luminosity distance

posteriors with a tail toward small distances, more pronounced than those for the

IMRPhenom-based models. While we do not have a complete explanation, we note

the EOB-based models we are using do not allow for spin-precession, unlike IMRp and

IMRpT. Because spin precession causes amplitude (and phase) modulation that also

breaks the distance-inclination degeneracy [232], the precessing models may yield better

constraint posteriors because some distance-spin configurations would be excluded

when precession is not observed. This interpretation seems to be supported by the

behavior of IMRNSBH, which is IMRPhenom-based but does not allow for precession.

We see, for example in Fig. 4-23a, how its posterior follow closely those of the EOB

models rather than those of the other IMRPhenom models.

Overall, our results show that all models broadly agree for the sources with

inclinations of 30∘. Only with the high-inclination sources do we start seeing significant

intra-waveform differences for extrinsic parameters. We see a few instances where two

posteriors are nearly disjoint: for 𝑞 = 3 and 𝑞 = 6 at SNR 70, the IMRXHM posterior is

in strong tension with IMRp and even more so with IMRpT (the tension with the EOB

models is milder since those have longer tails, e.g., Fig. 4-24). The three NSBH-tuned

models do not perform better than the other tidal models regarding the measurement

of distance and inclination.

4.5 Conclusion

Observations of NSBHs can lead to significant insights into the nature of NSs, for

example yielding a precise measurement of their mass and radius or providing infor-

mation on their formation channels. However, GWs from NSBHs are very challenging

to simulate with current NR tools. The presence of matter as well as a singularity

at the same time, of HOMs enhanced by the high mass ratio, of potential BH spin

precession, and the fact that the late inspiral and merger phases will be in a more
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sensitive frequency band of the GW detectors than that for BNSs, make it imperative

to verify the role of waveform systematics.

In this chapter, we have created NSBH hybrid waveforms with recent NSBH

NR simulations at three mass ratios, 𝑞 = 2, 3, 6. We projected the signal into a

three-interferometer network and ran a full PE campaign, using most of the relevant

waveform families available in the LIGO Algorithm Library [190], including three

that were specially built for NSBH systems. For each mass ratio, we have considered

four configurations, where the orbital orientation and the network SNR had all of the

pairwise combinations of 𝜃𝐽𝑁 = 30∘, 70∘ and SNR = 30, 70. This gave a total of 88

PE runs, making this study one of the most extensive studies of the statistical and

systematic uncertainties in analyzing NSBH systems to date.

We found that for signals with an SNR of 30, comparable to the loudest CBC

signals detected to date, systematic uncertainties due to waveform modeling are

smaller than statistical ones. Some differences are visible, for example, in the NS tidal

deformability, ΛNS, where in some cases, the posterior distributions can cluster in two

different groups even at SNR 30. This is more visible for 𝑞 = 3, Fig. 4-9a, than 𝑞 = 2,

Fig. 4-7a.

Significant offsets are also found for the source-frame chirp mass, although they

are not due to waveform modeling as much as to a failure to correctly measure the

source luminosity distance, which is required to convert the detector-frame masses

(which are the quantities actually measured from GW data) to the source-frame ones.

This is particularly visible for highly inclined sources, Figs. 4-2a, 4-4a and 4-6a. The

underlying reason, as discussed in Sec. 4.4, is that the likelihood penalty for measuring

an orientation closer to face-on, and hence a larger distance, can be more than

compensated for by the fact that the Bayesian prior increases with the distance, unless

the true inclination angle is within ∼ 15∘ from 90∘ [119]. This effect will not be seen

for a typical detection, as most sources are expected to be detected at small inclination

angles (i.e., close to 0∘ or 180∘) [265]. It is also worth stressing that this offset is smaller

for the IMRXHM waveform at 𝑞 = 6 since the detectable HOM contribution to the actual

signal allows the IMRXHM model to break the distance-inclination degeneracy. For the
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waveform models tuned against NSBH systems, IMRNSBH, LEA+, and SEOBNSBH, at

SNR 30, we obtain 90% statistical CIs on the NS source-frame mass of ∼ 0.2− 0.5 𝑀⊙.

These uncertainties are comparable to those reported for the BNS GW170817 [5].

This comparison is not entirely fair, as both the dimensionality of the models and

the priors used are different. The settings of our IMRpT analyses are more directly

comparable to Ref. [5]: for the 𝑞 = 2 analysis and SNR 30, we find a 90% CI for the

NS mass of 0.5 𝑀⊙. While this is less constraining than the results from GW170817, it

must be remembered that the mass posteriors for GW170817 have a hard prior bound

(enforcing 𝑚1 ≤ 𝑚2, Fig. 5 of Ref. [5]), which helps to explain why those posteriors

appear narrower.

The situation is starkly different at SNR 70, with biases comparable to, or larger

than, the statistical uncertainties. At 𝑞 = 2, waveform models that do not account for

tidal effects yield posterior measurements that do not include the true value in their

90% CIs for the mass ratio, the component masses, and the effective spin. The overall

trend is the same with 𝑞 = 3, but the biases are smaller due to the reduced impact of

tides on the GW signal. In this case, whether the true value is excluded depends on the

exact approximant used. The situation is somewhat reversed at 𝑞 = 6, a configuration

for which tidal effects, though formally included in the simulated source, do not play

a significant role. Waveform approximants that do not include tides actually perform

well, while waveforms with post-inspiral evolution tuned against nearly equal-mass

BNS NR simulations, SEOBT and IMRpT, yield the most severe biases. For those, the

recovered masses and spins are systematically offset from the true value and entirely

different from those from all the other waveforms, with IMRpT yielding a larger bias

than SEOBT.

We should stress that we are using these two waveform families in a region of

mass ratios quite far from their calibrated regions; hence, these biases should not be

surprising. However, we report them since they clearly show the importance of using

well-calibrated and faithful waveform models for the systems of interest. While we

have not done this test in our study, it would be interesting to show if the opposite

is true: whether NSBH-tuned waveforms would suffer from similar biases if used to
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characterize BNS sources.

Bayes factors between pairs of models can be used to reveal whether, and to what

extent, some waveform models are inadequate at matching the data. We reported them

for a subset of the approximants we used, Sec. 4.3.2, and show that the BNS-tuned

models are clearly disfavored at 𝑞 = 6 even when compared to models that do not

include matter effects. These tests could be used to decide which waveform families

should be used for specific analysis or to combine samples from different waveforms to

marginalize inaccuracies and differences between waveforms [320].

The effective inspiral spin is usually measured accurately and precisely by NSBH-

tuned approximants, when applicable, for all configurations. At SNR 70, systematic

biases are visible for 𝑞 = 3 from all non-tidal approximants but are more significant

for 𝑞 = 2, where they are larger than statistical uncertainties. It is worth stressing

that we cannot constrain the NS spin to be smaller than ∼ 0.4 (the true value is 0)

with any of the approximants, for any of the simulated sources. This suggests that

even with loud NSBHs, it might be challenging to set constraints on the NS spin to

values comparable to those found in galactic pulsars. This conclusion might need to

be checked against NSBH sources in which the BH has a large spin misaligned with

the orbital angular momentum, though existing work suggests it might still hold.

Finally, we found biases in measuring the NS tidal deformability, ΛNS. For the

𝑞 = 2 and 𝑞 = 3 sources, the differences in the posteriors are visible even at SNR 30,

though much smaller than the statistical uncertainty (which in itself is very large, more

than 100% of the true value). Perhaps the most interesting of the SNR 30 comparisons

is the one shown in Fig. 4-9a since it shows tension between two approximants tuned

against NSBH NR simulations, SEOBNSBH and IMRNSBH. While the offsets are still

much smaller than the statistical uncertainties at SNR 30, they are worth stressing as

one would have expected IMRNSBH and SEOBNSBH to perform similarly. It is also worth

stressing that LEA+, which belongs to the EOB-baseline family, agrees with IMRNSBH,

suggesting the differences we see are not merely due to the underlying difference

between EOB or IMRPhenom models but the specific technical details, such as the

way each approximant implements tidal terms and the reference point-particle models.
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This tension becomes much more visible at SNR 70, Figs. 4-7b, 4-8b, 4-9b and 4-

10b, especially for 𝑞 = 3. Again, LEA+ and IMRNSBH roughly agree with each other (and

are found to overestimate ΛNS), while IMRpT, SEOBT, and SEOBNSBH recover different

and smaller values of ΛNS. Since measuring ΛNS away from 0 is perhaps the best way

of showing that the secondary object is not a BH when no EM counterpart is detected,

these differences are particularly interesting. IMRNSBH, together with LEA+ when it

is valid, would exclude ΛNS = 0 for nearly all of the 𝑞 = 2 and 𝑞 = 3 simulations,

whereas SEOBNSBH, IMRpT, and SEOBT would have stronger support for ΛNS = 0. This

said, none of the models exclude the true value of ΛNS: for 𝑞 = 2, we find a general

tendency to underestimate the tidal deformability, while for 𝑞 = 3, some approximants

overestimate and others underestimate it, with the true value found roughly in the

middle, e.g., Fig. 4-10b. The most stringent constraints are found for the 𝑞 = 2 sources

at SNR 70, with a 90% CI of 500− 600. For the SNR 30 sources, only an upper bound

can be placed.

For 𝑞 = 6, the simulated signals do not carry information about tides. We indeed

find that nearly all families return a posterior on ΛNS that is very similar to the prior

at SNR 30 and only exclude extremely large values at SNR 70, Figs. 4-11b and 4-12b.

IMRpT differs significantly from the other approximants and recovers a ΛNS posterior

that peaks at small values. As discussed above, the reason is that IMRpT is used far

from its calibrated range since it is tuned for BNS systems.

The mass and ΛNS posteriors can be converted, using phenomenological fits, to a

measurement for the NS radius, 𝑟NS, with the approach described in Sec. C.2. We find

that, at SNRs of 30, all approximants yield comparable constraints on the radius, with

90% CIs of 5 km or larger (which is larger than what was inferred for GW170817 [5]).

Interestingly, even for sources where some discrepancy in ΛNS is visible, the posteriors

on the radius show a smaller spread. This shows that most of the information comes

from the measurement of the NS mass, with ΛNS contributing less to the inference of

𝑟NS.

Overall, we find that while the three waveform approximants that have been

specifically tuned with NSBH NR simulations agree well with each other for most
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parameters, they already show differences at an SNR of 30 when measuring the NS

tidal parameters. These differences are usually smaller or at most comparable to the

1-𝜎 statistical uncertainty even at an SNR of 70, and thus might not be problematic

for most of the potential NSBH sources in the next few years. However, the residual

differences between these approximants that are nominally on equal footing might

cause issues for tests of GR using GWs from NSBHs. Moreover, when we reach the

next-generation detector era [321] where typical SNRs will be ten times higher, these

differences will pose more serious challenges. At such high SNRs, we will be able to

distinguish NSBHs with mass ratios considered in this chapter from BBHs or BNSs

at a waveform level (see Fig. 2 of Ref. [270]), making waveforms calibrated to NR

simulations crucial for accurate characterization of the system’s source properties.

To address these limitations, a more extensive set of NR simulations that covers a

wider range of the parameter space is necessary. This will require further development

of the NR simulation codes [322, 323] to balance the computational efficiency with

the required resolution to incorporate all significant physical effects [321, 324, 325].

Furthermore, the simulated signals used in this study do not have spin, presenting

a favorable but still possibly realistic scenario given that most of the BHs detected to

date are consistent with not having spins. If the actual signal came from an NSBH

with a large precessing BH spin, it is likely that even the two NSBH-tuned models in

this study may produce biased PE results.
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Chapter 5

Calibration Errors

The Hubble constant, 𝐻0, is the current expansion rate of the Universe and serves

an important role in our understanding of cosmic expansion history. However, there

is currently a beyond 4-𝜎 tension between the measurements of the early and the

late Universe. Planck satellite’s observations of the cosmic microwave background

anisotropies, assuming the standard flat cosmological model, lead to an inferred

late-Universe measurement of 𝐻0 = 67.36 ± 0.54 km s−1Mpc−1 [326, 327]. Direct

measurements in the local universe lead to a different result: the SH0ES team measured

𝐻0 = 73.30± 1.04 km s−1Mpc−1 using the Cepheid-supernova distance ladder [328–

330], which is consistent with the results from H0LiCOW using lensed quasars [331,

332], from the Carnegie-Chicago Hubble program using the Tip of the Red Giant

Branch method to calibrate the distances [333–335], and from the Hubble Space

Telescope photometry and Gaia parallaxes [336].

CBCs that emit both EM radiation and substantial GWs provide an independent

method to measure 𝐻0, and have the potential to resolve the above-mentioned ten-

sion [337–345]. Combining the luminosity distance 𝐷𝐿 measurement from the GW

observations and the Hubble flow velocity 𝑣𝐻 from the EM observations leads to a

direct estimation of 𝐻0, a method often referred to as a standard siren or “bright

siren” measurement. Since EM-bright GW sources detected by the second-generation

GW detectors will be relatively local, we can use bright sirens to constrain only 𝐻0.

Other cosmological parameters can be measured with methods that rely on the NS
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EoS [346–348], dark sirens [337, 344, 349–351], features in the mass distribution of

BNSs and BBHs [352–355], or the spatial clustering scale of GW sources with known

galaxies [356, 357].

The observations of GW170817 [358–360], the kilonova AT2017gfo and the gamma-

ray burst GRB170817A served as the first demonstration of the bright siren approach,

leading to a measurement of 𝐻0 = 70.0+12.0
−8.0 km s−1Mpc−1 [361–365]. This method

can be very powerful as we observe more such events. Ref. [341] presented a 5%

precision in the 𝐻0 measurement after 15 BNSs with EM counterparts and 1% with

30 such sources.

However, GW observations may suffer from underlying systematic biases in their

estimate of 𝐷𝐿, and one needs to understand these biases before interpreting the

resulting 𝐻0 measurements. One such bias is the systematic error in the production and

calibration of the detectors’ primary data stream [366–368], referred to as calibration

errors (CEs). Such errors are uncorrelated with the astrophysical event rate, evolve

independently in each detector, and may be present in one or more detectors during

several astrophysical events. CEs may bias the amplitude of the strain data in the

same way over multiple observations, and lead to a biased inference of 𝐻0.

Previous studies have estimated the impact of typical values of CEs on individual

events observed during the first and second observing runs of LIGO-Virgo [369–371], or

attempted to refine the estimates of CEs using detected [372] or expected astrophysical

signals [373]. Our study instead uses large CEs experienced during atypical times in

the LIGO-Virgo’s O3 to probe their worst-case impact on astrophysical PE for both

the single-event characterization and the joint inference of 𝐻0.

More specifically, we simulate a collection of BNS detections and introduce into the

GW data stream of each signal artificial CEs that follow the six cases of particularly

large CEs from the Advanced LIGO detectors at Hanford (LHO) or Livingston (LLO)

during O3 [367, 368]. We pick the instantiation that leads to the worst bias in

the astrophysical measurements of 𝐷𝐿, apply it to varying fractions of one hundred

simulated BNSs, and infer 𝐻0 to explore the progressive impact of large CEs. In

Sec. 5.2, we will discuss the method we use to produce the miscalibrated data stream
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and to perform PE. In Sec. 5.3, we report how CEs impact the 𝐷𝐿 results for individual

events, as well as the 𝐻0 results when we combine multiple sources.

5.1 Calibration

For each detector at any given time, the conversion from its voltage signal 𝑒IFO to

its data stream 𝑑IFO is made by a complex-valued, frequency-dependent response

function, 𝑅(𝑓 ; 𝑡),

𝑑IFO = 𝑅IFO(𝑓 ; 𝑡) 𝑒IFO
1, (5.1)

where 𝑓 is frequency and 𝑡 is time. The model of the response function, 𝑅model,IFO(𝑓 ; 𝑡),

is constructed from the expected behavior of the detectors, coupled with supporting

measurements of the model parameters as described in Ref. [374, 375]. Imperfections in

𝑅model,IFO(𝑓 ; 𝑡), and thus in 𝑑IFO, are referred to as calibration errors, or CEs [366–368].

The errors may be represented by the ratio of the actual, “true”, response function,

𝑅true,IFO(𝑓 ; 𝑡), and the model, 𝑅model,IFO(𝑓 ; 𝑡), by 2

𝜂IFO(𝑓 ; 𝑡) = 𝑅true,IFO(𝑓 ; 𝑡)/𝑅model,IFO(𝑓 ; 𝑡). (5.2)

In the ideal case, 𝑅model,IFO(𝑓 ; 𝑡) will be identical to 𝑅true,IFO(𝑓 ; 𝑡), and 𝜂IFO(𝑓 ; 𝑡)

becomes a frequency-independent constant with unity magnitude and zero phases. In

reality, 𝜂IFO(𝑓 ; 𝑡) is usually a function of frequency and time. Since 𝑅model,IFO(𝑓 ; 𝑡),

𝑅true,IFO(𝑓 ; 𝑡), and 𝜂IFO(𝑓 ; 𝑡) always depend on 𝑓 and 𝑡 in our case and evolve inde-

pendently in every detector, we will drop the (𝑓 ; 𝑡) arguments and the IFO subscript

henceforth unless we need to specify 𝑓 , 𝑡, or IFO.

While 𝑅model is known, 𝑅true may only be inferred by direct measurements that

are invasive for observations and would reduce the duty cycle of the detector. Instead,

at any given reference time 𝑇0, the parameters of 𝑅true are numerically estimated to

create 104 samples of the probability distribution of {𝜂(𝑇0)}, with relatively large

1𝑑IFO and 𝑒IFO are implicit functions of 𝑓 and 𝑡.
2𝜂IFO(𝑓 ; 𝑡) is referred to as 𝜂𝑅(𝑓 ; 𝑡) in Ref. [367, 368].
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uncertainties. Later, additional measurements and models are crafted to better inform

or correct the estimated {𝜂(𝑇0)} in retrospect.

5.2 Method

We summarize how we simulate the data stream in Sec. 5.2.1, how we define CEs and

artificially add them to the data stream in Sec. 5.2.2, and how we perform PE and

infer 𝐻0 in Sec. 5.2.3.

5.2.1 Simulations

We simulate five thousand BNSs with uniform-in-cosine inclinations and uniformly

distributed sky locations. Each event is assigned a 𝐷𝐿 randomly drawn from a uniform-

in-comoving-volume distribution, with the maximum 𝐷𝐿 set at 600 Mpc, larger than

the horizon3 of the LIGO-Virgo network at the design sensitivity [358, 359]. We

randomly draw one hundred events with optimal network SNRs above 12 to form our

set of EM-bright GW events.

We simulate non-spinning BNSs with component masses 𝑚1 = 2𝑀⊙ and 𝑚2 =

1.5𝑀⊙, with the phenomenological waveform model IMRPhenomPv2 [101, 111, 194,

195], which does not model NS matter effects. We use the same waveform model

during PE to avoid any systematics caused by waveform mismatch4. We assume an

EM counterpart yielded an exact redshift measurement for each event. Since the

uncertainties on the sky localization from the EM measurements are much smaller

than the typical uncertainties on the GW measurement, we assume the sky positions

of the sources are exactly known from the EM observations prior to the GW analysis.

We also disregard effects from the peculiar velocity of the sources, as most of the

events considered here are close to the horizon of GW detections.

We produce Gaussian noise n colored by the LIGO-Virgo design sensitivities [359],

then project the signal, which is the sum of the modeled waveforms and the noise, to
3For events with an optimal network SNR of 12.
4Previous papers have looked into waveform systematics for BNSs, for example, Ref. [324, 376,

377].
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each detector in the network to obtain the data stream.

5.2.2 Systematic Calibration Errors

In O3, the probability distribution of 𝜂 for each detector was estimated at discrete

times {𝑇} with hourly cadence when the detector was stable in the observing mode.

The estimated {𝜂} may vary slowly in time, either continuously with drifts in the

detector’s alignment or thermal state, or discretely with changes made in the detector’s

control system between different configuration periods. In most cases, the slow time-

dependent variation is appropriately tracked and accounted for when producing 𝑒IFO.

The time variation of {𝜂} is thus negligible for the majority of the observing time

as long as the detector’s sensing and control configurations remain unchanged. Over

each observing period with static configurations, we can choose an arbitrary time 𝑇𝑘,

and uses {𝜂(𝑇𝑘)} to represent the typical CE distribution of this period, referred to as

{𝜂typ(𝑇𝑘)}.
However, the detectors’ sensing and control configurations do not remain static

for the entire observing run. There may be planned changes typically to improve the

detector sensitivity, or unplanned changes due to issues with the hardware, electronics,

or computers. Such changes get fixed in a temporary fashion such that the observation

may resume with an acceptable error, but may not be fully investigated or resolved

until later. The entire detector’s response, 𝑅true, is checked weekly and monitored

continuously at a few select frequencies, to ensure coverage of any unexpected situations.

When issues are found in the detector behavior, additional measurements may also

be made to model and include the CE in {𝜂} retroactively. If at a time 𝑡𝑖, {𝜂(𝑡𝑖)} is

significantly different from the typical behavior of the time period {𝜂typ(𝑇𝑖)}, henceforth

{𝜂typ}𝑖, measured at a nearby time 𝑇𝑖, we refer to these outliers as {𝜂out(𝑡𝑖)}, henceforth

{𝜂out}𝑖. During O3, six such outliers have been identified in either LLO or LHO.

For example, in Fig. 5-1, we compare the median and 1-𝜎 boundaries of the

magnitude and phase of {𝜂out}6,LLO against its corresponding {𝜂typ}6,LLO. We include

plots for the distributions of {𝜂out}𝑖 and {𝜂typ}𝑖 for 𝑖 = 1...5 in App. D.1. In reality,

if there happens to be an astrophysical signal at a time similar to one of the 𝑡𝑖, the

121



102 103

Freq (Hz)

0.4

0.6

0.8

1.0

1.2

1.4

M
ag

n
it

u
d

e

{ηtyp}6,LLO

{ηout}6,LLO

ηout
6,LLO,j

102 103

Freq (Hz)

−30

−20

−10

0

10

20

30

P
h

as
e(

d
eg

)

{ηtyp}6,LLO

{ηout}6,LLO

ηout
6,LLO,j

Figure 5-1: The median (dash-dotted) and the 1-𝜎 bounds (solid, thick) of one example
of a large CE, {𝜂out}6,LLO from O3, in magnitude (left) and phase (right) as a function
of frequency. The thin light blue curves represent some of the individual realizations,
𝜂out6,LLO,𝑗 during this time. The orange curves are the corresponding typical distribution
{𝜂typ}6,LLO.

{𝜂out}𝑖 may not be readily available at the time of the PE analyses, so {𝜂typ}𝑖 will be

used instead. This is the scenario we investigate in this study: when the actual CEs

are very different from the CEs known and used at the time of PE.

We introduce artificial CEs to the data streams 𝑑LLO and 𝑑LHO. For all six cases,

{𝜂out}𝑖 is applied to only one of the Advanced LIGO detectors. We first select the

worst realization from each {𝜂out}𝑖, denoted by 𝜂mis
𝑖 , to maximize its impact on the

amplitude of the data, and hence on the estimation of 𝐷𝐿. We define the impact,

weighted by the detector sensitivity and integrated over the bandwidth:

𝒟𝑖,𝑗 ≡
∫︁ 𝑓high

𝑓low

|𝜂𝑖,𝑗| − |̃𝜂typ𝑖 |√︀
𝑆𝑛(𝑓)

d𝑓, (5.3)

where j indexes the individual curves from each {𝜂out}𝑖 distribution. At each frequency,

we take the difference between the magnitude of the 𝑗th sample, |𝜂𝑖,𝑗|, and |̃𝜂typ𝑖 |,
the median of the magnitudes of samples in {𝜂typ}𝑖 (the dot-dashed orange curve

in Fig. 5-1).
√︀
𝑆𝑛(𝑓) is the detector’s amplitude spectral density, for which we use

the design sensitivity of the Advanced LIGO [358, 359]. The frequency limits of the

integral, 𝑓low and 𝑓high, have been chosen as 20 Hz and 1024 Hz, respectively, with

a frequency resolution of 0.25 Hz. We select the curve that maximizes 𝒟𝑖,𝑗 in the
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negative direction5, denoted by 𝜂mis
𝑖 ,

𝜂mis
𝑖 ≡ min

𝑗
𝒟𝑖,𝑗. (5.4)

Fig. 5-2 shows the amplitude and phase of the selected 𝜂mis
6,LLO compared with

{𝜂typ}6,LLO from Fig. 5-1. We apply 𝜂mis
6,LLO to miscalibrate the LLO data, the sum of

the noise and the modeled waveform, as,

𝑑mis
𝑖 = 𝜂mis

𝑖 𝑑. (5.5)

The noise, as part of 𝑑, will thus also be scaled by 𝜂mis
𝑖 . Each detector’s resulting

amplitude spectral density is 𝜂mis
𝑖

√︀
𝑆𝑛(𝑓).

For the other Advanced LIGO detector, in this case, LHO, we will select a curve

𝜂mis
6,LHO that lies within the 1-𝜎 CI of {𝜂typ}6,LHO to miscalibrate the data, in the same

way as Eq. (5.5). No CEs are added to the Advanced Virgo data since the full 𝜂

distributions of Advanced Virgo are not available at the time of writing. In this case,

{𝜂mis
6,LLO, 𝜂

mis
6,LHO, 1} forms the sixth set of curves to miscalibrate the data, 𝜂mis

6 .

We also prepare a separate set of control runs in which we do not add any CE

in any of the detectors. When comparing the PE results of the miscalibrated and

control runs, we can observe the biases caused exclusively by the large added CEs in

the former.

Next, we select one CE realization that leads to the most significant bias in the 𝐷𝐿

likelihood, and apply it to one hundred segments of data, each containing a different

BNS event, as described in Sec. 5.2.1. To select the desired CE realization, we first

consider a single BNS event with an optimal network SNR of 50, an inclination of 30∘,

and a sky location right above LLO. We add each of the six distinctive sets of CEs

to a data chunk containing this BNS and compare the resulting 𝐷𝐿 likelihoods. As

we only consider single-event results in this part of the study, we need to eliminate

the random effects of noise realizations. We work with the zero-noise realization [264]

5We also performed the full PE analysis with the curve that maximizes 𝒟𝑖,𝑗 in the positive
direction, but observed smaller biases in the PE results.
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Figure 5-2: 𝜂mis
6,LLO (green) shown in magnitude and phase (deg) as a function of

frequency (Hz). Also plotted are the 1-𝜎 bounds and the median of typical CE
distributions, {𝜂typ}6,LLO (orange).

where the noise n has a mean of 0 and standard deviation equal to the detector’s

power spectral density. Lastly, we infer 𝐻0 from the one hundred events.

5.2.3 Parameter Estimation and Inference of 𝐻0

We perform Bayesian inference [82, 378] to obtain the likelihood ℒ(𝑑|𝜃, 𝐻0,ℋ), as

described in Sec. 1.3. We write 𝐻0 explicitly here because it is the hyper-parameter

that we are interested in. We can obtain the likelihood ℒ(𝑑|𝐻0,ℋ) by integrating

over all astrophysical parameters,

ℒ(𝑑|𝐻0,ℋ) =

∫︁
d𝜃ℒ(𝑑|𝜃, 𝐻0,ℋ)𝜋(𝜃|𝐻0,ℋ), (5.6)

where 𝜋(𝜃|𝐻0,ℋ) is the prior. Since not all events have equal chances of detection,

we follow Ref. [342, 379] to account for the selection effect and refer to the function

of detectable sources as 𝛽(𝐻0). Since all sources in our simulations have the same

source-frame masses, the selection function only needs to be calculated once.

We can obtain the posterior for 𝐻0 by applying a uniform prior of 𝜋(𝐻0|ℋ) =

[20, 150] km s−1Mpc−1,

𝑝(𝐻0|𝑑,ℋ) =
𝜋(𝐻0|ℋ)ℒ(𝑑|𝐻0,ℋ)

𝛽(𝐻0)
. (5.7)

As all of the one hundred BNSs are independent, their joint likelihood can be calculated
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by simply multiplying the likelihoods of each event [380],

ℒ(𝑑|𝐻0,ℋ) =
100

Π
𝑖=1

ℒ𝑖(𝑑|𝐻0,ℋ). (5.8)

One caveat is that our PE analysis adopts a standard, uniform-in-individual-masses

prior with additional bounds on the chirp mass ℳ, as defined in Eq. (1.2), and the

mass ratio, while our simulated events all have the same masses and the function

of event detectability in Eq. (5.7) is calculated assuming so. This may introduce a

small bias, but it will be present for both the miscalibrated and control runs, thus not

affecting their differential behaviors.

We can marginalize CEs during PE through two approaches: the Spline interpola-

tion method [381] and the physiCal method [370, 371]. Both methods treat the CEs

as independent in each detector. The Spline method models 𝜂 by fitting a cubic spline

polynomial at a small number of logarithmically-spaced frequencies {𝑓𝑚}. At each

frequency, the prior on the magnitude and phase is a Gaussian distribution with the

same mean and standard deviation as those of {𝜂typ(𝑓𝑚)}. The recently developed

physiCal method [370, 371] is more computationally efficient and physically motivated

and estimates the physical parameters in the models for 𝜂 along with 𝜃 during PE.

PhysiCal directly draws samples from {𝜂typ} to form the prior.

In all PE analyses to date, known CEs are marginalized. In this study, we are

interested in the scenarios where large calibration errors 𝜂mis
𝑖 are not fully captured and

marginalized in PE. We assume we do not know the actual error distribution {𝜂out}𝑖,
but only have and use {𝜂typ}𝑖 as the prior. Similarly, we utilize the medians and 1-𝜎

bounds of {𝜂typ}𝑖 as the prior for the Spline method. As mentioned in Sec. 5.2.2, since

the full {𝜂} distributions of Advanced Virgo are unavailable at the time of writing, we

only adopt the Spline method to marginalize CEs in Advanced Virgo.
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Figure 5-3: 𝐷𝐿 likelihood for the six scenarios, miscalibrated (green) vs. control
(orange) runs, the vertical dashed lines mark the 25%, 50%, and 75% percentiles.

5.3 Results

First, we present the 𝐷𝐿 likelihoods when we apply the six sets of 𝜂mis (selected using

the method described in Sec. 5.2.2) to a single BNS event with an optimal network

SNR of 50. The likelihoods for the miscalibrated runs are plotted as green kernel

density plots in Fig. 5-3, and the results for the corresponding control run are plotted

in orange. We report the normalized difference ∆𝐷𝐿 = (𝐷𝐿,med − 𝐷𝐿,true)/𝐷𝐿,true,

between the true value 𝐷𝐿,true and the median of the recovered likelihoods, 𝐷𝐿,med, in

Tab. 5.1.

The results from using the physiCal and Spline methods agree very well. Thus, we

only show the results from the physiCal methods in Fig. 5-3 and Tab. 5.1, and the

ones from the Spline method in App. D.2.
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CE Realization Mis-calibrated Control

𝜂mis
1 −1.0% −2.5%

𝜂mis
2 −2.3% −2.3%

𝜂mis
3 −1.2% −2.1%

𝜂mis
4 −0.9% −2.3%

𝜂mis
5 −1.5% −2.5%

𝜂mis
6 0.5% −2.6%

Table 5.1: ∆𝐷𝐿 in the likelihoods for the physiCal runs with and without large CEs.

Compared with the control runs, where the offsets are between −2.1% to −2.6%,

𝜂mis
6 leads to the most significant differences in the 𝐷𝐿 likelihoods. We note the control

runs all show a negative ∆𝐷𝐿 due to the well-known correlation between 𝐷𝐿 and

inclination [119]. Since all sources in Fig. 5-3 have an inclination 𝜃𝐽𝑁 of 30∘, but the

inclination prior follows sin 𝜃𝐽𝑁 , we expect an offset towards larger inclination values,

where the prior is larger, and thus smaller 𝐷𝐿.

Next, we apply 𝜂mis
6 to the data of one hundred BNSs. This offset will no longer

be present in the analysis since the inclinations are drawn from a uniform-in-cosine

distribution (effectively sin 𝜃𝐽𝑁d𝜃𝐽𝑁), the same as the prior.

In Fig. 5-4, we vary the fraction of the miscalibrated BNSs and show the posterior

distributions of the dimensionless ℎ0, defined as 𝐻0 = ℎ0100 km s−1Mpc−1. We apply

𝜂mis
6 to 𝑥% of the BNSs, while the other events do not suffer from any miscalibration.

The joint ℎ0 posterior shifts towards smaller values as the miscalibrated fraction

increases. The posterior excludes the true value of ℎ0 = 0.679 from the 90% CI when

the data of more than 50% BNSs are miscalibrated.

Additionally, we vary the total number of detected events. We randomly draw

𝑛 detections without repetition for ⌊100/𝑛⌋ trials (i.e. rounding down 100/𝑛 to an

integer), and randomly miscalibrate 𝑥% of the events in each trial. We calculate the

median and the bounds of the 90% CI for each trial. In Fig. 5-5, for each pair of
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Figure 5-4: ℎ0 posteriors for different fractions of miscalibration. Thicker curves
indicate results with more BNS events miscalibrated.

{𝑛, 𝑥}, the green points are medians of the ⌊100/𝑛⌋ medians from all the trials, and

the error bars are the medians of the 90% CI bounds from all the trials. The orange

points and error bars indicate the results of the control runs6. We overlay the latest

results from SH0ES (2022) [330] in blue and from Planck (2018) [327] in purple, for

their 1 − 𝜎 (darker bar) and 2 − 𝜎 ranges. Note that the “true” value of ℎ0 for the

simulated events in this chapter is chosen to be 0.679, thus consistent with the Planck

results. When 100% of the events are miscalibrated, our ℎ0 results are still consistent

with the Hubble measurements from Planck.

With 100% of the detected events miscalibrated, the joint ℎ0 posterior excludes

the true value from its 90% CI after 50 detections or more. With 50% or a smaller

fraction of the events miscalibrated, the posterior includes the true ℎ0 even after one

hundred detections. In Fig. 5-5, the rightmost set of points in each subplot represents

6The medians of the control runs for under 30 events jump above and below the true value. As we
increase 𝑛, there are fewer trials, and our results show more dependence on specific noise realizations.
In this case of noise realization, the median falls below the true value. If we apply different noise
realizations, the results will jump around the true value like the trials with fewer events.
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the same scenario as Fig. 5-4.

5.4 Conclusion

GW observations of EM-bright CBCs provide an independent way to measure the

Hubble constant and potentially break the existing tension between the early and

late universe 𝐻0 measurements. As we observe more such events, the resulting 𝐻0

posterior will be increasingly constraining, making it essential to thoroughly control

and understand potential systematic biases.

In this study, we applied large CEs to the GW data stream and investigated

their effects on the inference of 𝐻0. Our analysis was constructed not to contain any

systematic errors or statistical uncertainties from the EM observations like peculiar

velocities [382, 383] or viewing angles [384], or from the waveform systematics.

We found that the 𝐻0 posterior does not exclude the true value from its 90%

CI, corresponding to a 2–3% systematic error, unless we are inferring 𝐻0 with more

than 50 BNS detections that all suffer from the same significant CEs. When 50%

or a smaller fraction of the BNSs are miscalibrated, the true value is not excluded

even after one hundred BNS detections. For comparison, systematic errors due to the

EM observation side, for example, kilonova viewing angles, will be 2% after 50 BNS

detections [384].

All of the outliers {𝜂out}𝑖 that motivated our study are based on the estimated CE

around times of real physical changes or malfunctions of the detectors during O3. These

events are generally rare and relatively short-lived; typically < 1% of the time over any

few-month observing period – the typical duration of stable detector configurations

during an observing run [367, 368]. In our analysis, we assume we only know and use

{𝜂typ}𝑖 to marginalize CEs during PE, whereas {𝜂out}𝑖 is assumed to be unknown and

uncharacterized although coinciding with some fraction of the detected BNS events.

Given the current estimate of astrophysical event rate, 320+490
−240 Gpc3yr−1 [385], there

is a very low probability that a large CE remains uncharacterized over a period of

stable configurations during which dozens of BNSs may be detected.
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(a) 10% of the events miscalibrated.
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(b) 50% of the events miscalibrated.

10 20 30 40 50 60 70 80 90 100
Detected Events

0.60

0.65

0.70

0.75

h 0

SH0ES (2022)
Planck (2018)
True value
100% Miscal
No Miscal

(c) 100% of the events miscalibrated.

Figure 5-5: ℎ0 posteriors when we have a certain number of detections, plotted when
10%, 50%, and 100% of the events are miscalibrated. We introduce an artificial offset
on the x-axis for plotting purposes. We overlay the latest 1− 𝜎 (darker bar) and 2− 𝜎
results from SH0ES (2022) [330] in blue and from Planck (2018) [327] in purple.
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Our results imply that CEs will not be a significant concern in measuring the

Hubble constant with the bright-siren method for the next many years. In the most

realistic yet unlikely case, where large instances of CEs like the ones described in this

chapter affect a small fraction of the sources, CEs will not become the limiting factor

until more than one hundred BNSs, each with an EM counterpart, have been found.

Since the bright-siren method will likely have the smallest statistical uncertainties,

other approaches to constrain 𝐻0 using distance measurements from GW sources will

be even less sensitive to CEs.
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Chapter 6

Summary & Outlook

This thesis examines the key sources of systematic errors in GW data analysis and

their effects on the PE results and subsequent astrophysical implications. As the next

generation of GW detectors, such as the third-generation ground-based interferometers

with longer detector arms, such as Cosmic Explorer and Einstein Telescope, and the

proposed space-based probe LISA, come online, new opportunities and challenges

arise. The increasing rate of GW detections necessitates prompt and reliable PE and

a thorough understanding of when and how to include PE results for a population

study of the sources. Moreover, GW signals with different characteristics will require

improved waveform modeling and a deeper understanding of potential systematic

sources.

This thesis first investigates the PE process in the context of marginal CBC

signals by studying simulated events in Chap. 2 and re-analyzing real data containing

astrophysical signals in Chap. 3. In particular, Chap. 3 examines the analysis of seven

weak astrophysical BBH signals, among which one was claimed to have highly spinning

BHs by a data analysis pipeline independent of LVK. For this specific BBH, the choices

of priors on the BH spin significantly affect the spin posteriors. In general, when

the signals are marginal, the assumption that the noise is Gaussian and stationary

can break down, and the realizations of noise can mimic astrophysical signals, as

demonstrated in Chap. 2. The choices made during PE, like the choices of priors, the

waveform models, the characterization of background noise, and the sampler, can thus
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significantly impact the results. The observations made in these two chapters will

remain relevant for future GW detections, as more marginal sources will be detected

with the improving detector sensitivity in the coming decades.

The second half of this thesis delves into the opposite limit, dealing with high-SNR

signals that clearly have astrophysical origins. In this case, the signal is strong enough

to shrink the statistical uncertainties of the PE results and the inaccuracy of the

waveform models (discussed in Chap. 4), as well as the instrumental calibration errors

(discussed in Chap. 5), become important factors to consider. The findings indicate

that these two sources of systematic errors will not significantly impact the precision

of PE until much higher detector sensitivities are achieved (for example, to detect

multiple events with SNRs ten times as high as that of the currently loudest event).

Nevertheless, ongoing efforts to minimize and account for these errors are essential.

This thesis makes a significant contribution to the field of GW astrophysics by

thoroughly examining the systematic errors that can arise during data analysis by

performing extensive PE runs not previously found in the literature. The findings and

conclusions of this thesis have the potential to provide direction for the interpretation of

PE results and offer practical guidance for future systematic error studies. Additionally,

the insights gained from these studies can be applied to related fields that involve

analyzing noisy and complex data, such as signal processing and machine learning.
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Appendix A

Analysis Details for Marginal Event

Simulation

A.1 Sampling Convergence

As mentioned in Chap. 2, sampling algorithms are only guaranteed to return the

correct posteriors in the limit where they run for an infinite amount of time. Especially

at low SNRs, there is the risk that the sampler does not reach the right part of

the parameter space, or gets stuck in a local and unrelated maximum. We use the

maximum value of the recovered log likelihood as a probe of the convergence of the

PE run, by comparing it with the log likelihood corresponding to the exact waveform

parameters.

For a well-converged run, the difference:

∆ log𝐿 ≡ log𝐿injected −max (log𝐿recovered) (A.1)

should be slightly negative and not exactly zero since the component of the noise that

happens to be correlated across the network can contribute to the maximum recovered

log likelihood. Conversely, positive values would suggest that the code failed to collect

all the available evidence, indicating a problem with convergence.

We show ∆ log𝐿 for all sources in Figure A-1. We find the expected behavior for
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Figure A-1: Log likelihood for injection minus the maximum recovered log likelihood
vs. network SNR.

all sources except for BNSs, for which a downward trend is visible. This difference is

due to a known issue for long signals in the implementation of the ROQ likelihood in

the lscsoft algorithm repository as of the time of writing [72]. Imperfections in the

waveform reconstruction used in the ROQ basis can explain the different behavior of

the BNS data.

To verify that the uncertainties we obtained for the BNS runs are meaningful, we

have checked that the BNS runs do recover the correct SNRs. Furthermore, we have

run PE on a small number of BNS sources (the ones used in Ref. [72]) both with and

without the ROQ likelihood and found that the uncertainties are similar.

A.2 K-L Divergence

Here we report the median of K-L divergence (in nats) over five GPS times for

luminosity distance 𝑑𝐿, right ascension 𝛼, declination 𝛿, effective spin 𝜒eff , effective

precessing spin 𝜒p, chirp mass ℳ, and mass ratio q, for the four morphologies and

the two inclinations. Numbers close to zero imply the data is not informative about

that parameter (at a given SNR). Conversely, large K-L divergence implies the prior
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and posteriors are significantly different.

The effective precession spin, 𝜒p, is notoriously hard to measure, even for louder

events [85, 112, 114–117, 386, 387]. The tables below show that for weak events we

nearly always recover the prior, which is why we have not reported 𝜒p uncertainties in

Chap. 2.

Network SNR 6 7 8 9 10 12

𝑑𝐿 (𝜃𝐽𝑁 = 30∘) 0.01 0.01 1.85 5.00 5.62 6.51

𝑑𝐿 (𝜃𝐽𝑁 = 80∘) 0.01 0.00 3.39 5.10 5.68 6.67

𝛼 (𝜃𝐽𝑁 = 30∘) 0.00 0.00 0.32 0.77 0.80 0.89

𝛼 (𝜃𝐽𝑁 = 80∘) 0.00 0.01 0.82 0.90 0.92 1.22

𝛿 (𝜃𝐽𝑁 = 30∘) 0.00 0.00 0.07 0.19 0.21 0.25

𝛿 (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.24 0.25 0.29 0.51

𝜒eff (𝜃𝐽𝑁 = 30∘) 0.00 0.00 0.04 0.05 0.07 0.08

𝜒eff (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.07 0.08 0.09 0.13

𝜒p (𝜃𝐽𝑁 = 30∘) 0.00 0.00 0.04 0.06 0.04 0.05

𝜒p (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.07 0.06 0.05 0.06

ℳ (𝜃𝐽𝑁 = 30∘) 0.04 0.12 4.69 9.67 10.31 10.36

ℳ (𝜃𝐽𝑁 = 80∘) 0.08 0.24 5.83 10.76 11.01 11.01

q (𝜃𝐽𝑁 = 30∘) 0.00 0.03 1.13 1.74 1.76 1.88

q (𝜃𝐽𝑁 = 80∘) 0.01 0.06 1.79 1.93 1.99 2.06

Table A.1: Median of K-L divergence (in nats) over five GPS times for BNSs.
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Network SNR 6 7 8 9 10 12

𝑑𝐿 (𝜃𝐽𝑁 = 30∘) 0.01 0.60 4.04 4.85 5.38 6.37

𝑑𝐿 (𝜃𝐽𝑁 = 80∘) 0.01 0.01 0.00 3.99 7.31 8.90

𝛼 (𝜃𝐽𝑁 = 30∘) 0.00 0.21 1.03 2.10 2.05 2.23

𝛼 (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.00 1.10 1.17 1.89

𝛿 (𝜃𝐽𝑁 = 30∘) 0.00 0.22 0.64 1.56 1.62 1.86

𝛿 (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.00 0.55 0.66 1.61

𝜒eff (𝜃𝐽𝑁 = 30∘) 0.01 1.19 2.43 2.71 2.86 2.85

𝜒eff (𝜃𝐽𝑁 = 80∘) 0.01 0.01 0.02 3.28 3.46 4.05

𝜒p (𝜃𝐽𝑁 = 30∘) 0.00 0.06 0.16 0.19 0.09 0.31

𝜒p (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.00 1.76 1.35 1.68

ℳ (𝜃𝐽𝑁 = 30∘) 0.05 2.35 6.53 7.47 7.58 7.42

ℳ (𝜃𝐽𝑁 = 80∘) 0.05 0.08 0.17 5.21 6.88 7.49

q (𝜃𝐽𝑁 = 30∘) 0.01 0.20 0.34 0.48 0.46 0.26

q (𝜃𝐽𝑁 = 80∘) 0.00 0.01 0.00 0.94 0.79 1.11

Table A.2: Median of K-L divergence (in nats) over five GPS times for NSBHs.
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Network SNR 6 7 8 9 10 12

𝑑𝐿 (𝜃𝐽𝑁 = 30∘) 0.11 2.78 4.45 5.23 5.80 6.62

𝑑𝐿 (𝜃𝐽𝑁 = 80∘) 0.00 0.04 2.99 5.78 6.67 7.73

𝛼 (𝜃𝐽𝑁 = 30∘) 0.02 0.67 0.99 1.18 1.28 1.30

𝛼 (𝜃𝐽𝑁 = 80∘) 0.00 0.01 0.60 1.08 1.23 1.36

𝛿 (𝜃𝐽𝑁 = 30∘) 0.01 0.21 0.34 0.41 0.52 0.64

𝛿 (𝜃𝐽𝑁 = 80∘) 0.00 0.01 0.15 0.28 0.34 0.57

𝜒eff (𝜃𝐽𝑁 = 30∘) 0.02 0.22 0.48 1.36 1.68 1.97

𝜒eff (𝜃𝐽𝑁 = 80∘) 0.01 0.06 0.83 1.50 1.74 2.01

𝜒p (𝜃𝐽𝑁 = 30∘) 0.02 0.10 0.02 0.08 0.09 0.09

𝜒p (𝜃𝐽𝑁 = 80∘) 0.00 0.00 0.47 0.68 0.84 1.10

ℳ (𝜃𝐽𝑁 = 30∘) 0.64 2.91 3.62 4.88 5.60 5.96

ℳ (𝜃𝐽𝑁 = 80∘) 0.01 0.14 3.19 4.81 5.16 5.52

q (𝜃𝐽𝑁 = 30∘) 0.01 0.01 0.29 0.56 0.66 0.73

q (𝜃𝐽𝑁 = 80∘) 0.00 0.01 0.24 0.48 0.50 0.77

Table A.3: Median of K-L divergence (in nats) over five GPS times for BBHs.
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Network SNR 6 7 8 9 10 12

𝑑𝐿 (𝜃𝐽𝑁 = 30∘) 2.53 3.96 5.09 5.73 6.42 7.28

𝑑𝐿 (𝜃𝐽𝑁 = 80∘) 1.99 4.05 5.10 5.68 6.39 7.38

𝛼 (𝜃𝐽𝑁 = 30∘) 0.45 0.77 0.90 1.14 1.41 2.12

𝛼 (𝜃𝐽𝑁 = 80∘) 0.39 0.68 0.93 0.97 1.32 1.56

𝛿 (𝜃𝐽𝑁 = 30∘) 0.28 0.40 0.65 0.75 0.97 1.65

𝛿 (𝜃𝐽𝑁 = 80∘) 0.20 0.52 0.67 0.52 0.89 1.20

𝜒eff (𝜃𝐽𝑁 = 30∘) 0.67 1.40 1.31 1.31 1.38 1.58

𝜒eff (𝜃𝐽𝑁 = 80∘) 0.52 0.59 0.74 0.84 1.01 1.57

𝜒p (𝜃𝐽𝑁 = 30∘) 0.02 0.08 0.10 0.10 0.13 0.06

𝜒p (𝜃𝐽𝑁 = 80∘) 0.02 0.01 0.08 0.05 0.04 0.05

ℳ (𝜃𝐽𝑁 = 30∘) 1.24 1.54 1.87 2.28 2.56 3.05

ℳ (𝜃𝐽𝑁 = 80∘) 1.25 1.81 2.22 2.50 2.78 3.20

q (𝜃𝐽𝑁 = 30∘) 0.02 0.05 0.05 0.04 0.04 0.05

q (𝜃𝐽𝑁 = 80∘) 0.10 0.06 0.14 0.29 0.38 0.33

Table A.4: Median of K-L divergence (in nats) over five GPS times for hBBHs.
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Appendix B

Further Investigation on GW151216

Among the events discussed in Chap. 3, GW151216 shows the biggest differences in its

inferred parameters between the three configurations. We summarized the differences

in Sec. 3.2.1. In this appendix, we present the results of a deeper investigation into

the possible causes. As we mentioned in Sec. 3.1, the configurations used in this study

differ along five axes: (a) the segment of data used, (b) the algorithm used to estimate

the PSD, and consequently, compute the likelihood ℒ(𝑑|𝜃), (c) the sampler, (d) the

waveform model, and finally (e) the prior on the spins of the BHs. It is not practical to

explore every combination of factors; hence, we perform a few controlled experiments

by varying the choices that we expect to be the most important. We have already

checked that the different choices of the waveform model made no difference in this

case, so we omit that factor from the rest of the discussion.

From the results in Ref. [73] as well as Sec. 3.2.1, we expect that the choice of

prior can play a significant role. The configurations in Tab. 3.1 differ in both the prior

and other analysis choices. Hence it is worthwhile to fix the prior and vary the other

choices.

We first restrict to the flat-in-𝜒eff spin prior of Config. C. Fig. B-1 shows the effect

of successively changing the sampler and the method of PSD estimation from those

of Config. C to those of Configs. A and B. Firstly, Fig. B-1a shows the effect of

varying the samplers, pyMultiNest and LALInference, while keeping the rest of

the configuration identical to Config. C. Next, Fig. B-1b shows the impact of varying
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Figure B-1: Corner plot for posterior distributions for GW151216, using a flat-in-𝜒eff

spin prior, IMRPhenomD, and a 128-second-long data segment. The left and right
panels, respectively, show the effects of successively changing the sampler and the
method of PSD estimation from those of Config. C to those of Configs. A and B. The
gray-filled contours show the posterior using the sampler in LALInference, and
the PSD estimated using the Welch method (with a drift correction factor, used in
Config. C). On the left panel, the brown contours mark the same analysis done with
the pyMultinest. On the right, the purple contours show the effect of changing only
the PSD to the one estimated using BayesWave (also used in Configs. A and B).
This figure shows that under the flat-in-𝜒eff prior, the inference is insensitive to other
analysis choices.

the method used to estimate the PSD from the Welch method to BayesWave. We

see that the posteriors are identical to those of Config. C, which implies that under

the flat-in-𝜒eff prior, the rest of the analysis choices do not significantly impact the

PE results, and consequently, the only way to go to the results of Config. B (and A)

is to choose a different spin prior.

The above tests were performed with the flat-in 𝜒eff prior, and hence do not look

for residual effects of the analysis methods under the alternative isotropic spin prior

of Configs. A and B. To do this, we compare the results of Config. B to those of a

run with a modified version of Config. C with the isotropic spin prior (henceforth

Config. C1), Fig. B-2. Similar to the comparisons in Fig. B-1, these two runs have

the same prior but differ in analysis methods (additionally, they use data segments of
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different lengths). We observe that (a) the differences are less pronounced than those

in Sec. 3.2.1, which is consistent with our understanding that the choice of spin priors

is the most significant driver of the differences in Fig. 3-3, and (b) unlike in Fig. B-1,

the data segments used and the analysis methods make some difference here. The two

sets of results are formally consistent with each other, but the posteriors of Config. B

are broader and encompass those of Config. C1. In particular, the posterior on the

effective spin has a fatter tail towards 𝜒eff = 0 in Config. B.

The above differences should be caused by the three remaining points of departure,

i.e., the method of PSD estimation, the length of the data used, and the sampler: the

simplest one to vary in isolation is the sampler (analogous to Fig. B-1a). Toward this

end, the pink contours in Fig. B-2a show the posteriors with the first two choices

fixed to those of Config. B (i.e., using the BayesWave PSD and a four-second-long

segment of data), and changing the sampler from LALInference to pyMultinest

(henceforth, Config. B1). We see that contrary to the case of the “uniform-in-𝜒eff”

prior (as shown in Fig. B-1a), the choice of the sampler makes a small but noticeable

difference here. The weight of the samples at 𝜒eff ≤ 0 is reduced to between those of

Configs. B and C1.

In Fig. B-3 we show the result of varying the segment length while keeping other

choices identical to Config. B. Here, the effect is slightly more visible but still cannot

account for the more prominent differences between the posteriors for chirp mass and

effective spin seen in Fig. 3-3 when comparing Config. B with Config. C. A secondary

mode in the spin posterior that supports zero 𝜒eff is more visible for some segment

lengths and is most prominent for 64 s and least evident for 128 s. We attribute these

differences to the PSD estimation. Different segment lengths result in slightly different

PSD estimates, which can have a visible impact on the PE results for low SNR events,

as discussed in Chap. 2 (published as [87]). We further explore the assumptions used

in estimating the PSDs below.

We next investigate the causes of the difference between the results from Configs.

B1 and C1: these configurations differ in the method of PSD estimation and the

length of the data segment analyzed. The Welch method with a drift factor, as used
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Figure B-2: Corner plot for posterior distributions for GW151216 with the isotropic
prior on spins. In the left panel, green, pink, and orange posteriors use Config. B, a
version of Config. B with pyMultinest (B1) , and Config. C with the isotropic prior
(C1), respectively. The blue contours in the right panel are for B2, a further modified
version of B1 (data with loud lines notched out, and using the BayesWave continuum).
Under this prior, there are residual effects of analysis choices (sampler between B and
B1, treatment of lines in the data between B1 and B2, and PSD continuum between
B2 and C1).

by Config. C, requires data segments much longer than four seconds, thus precluding

a direct head-to-head comparison. A naive approach forward would be to reduce the

frequency resolution of a PSD computed on longer segments (say, using the Welch

method) onto a frequency grid conjugate to the four-second segment. Let us consider

the validity of such an approach. The likelihood estimation in Eq. (1.7) works with

the discrete Fourier transform (DFT) coefficients, 𝑑(𝑓𝑚), of the data 𝑑, where 𝑓𝑚

is conjugate to the four-second segment. Given the PSD, 𝑆𝑛,w(𝑓), computed using

the Welch method on a very fine frequency grid (over a longer segment of data), the
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Figure B-3: Corner plot for posterior distributions for GW151216, with PSD estimation
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(green) vs. 64 s (orange) vs. 128 s (blue), where all segments end two seconds after
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covariance matrix of the DFT coefficients is

⟨
𝑑 (𝑓𝑚)

[︁
𝑑 (𝑓𝑚′)

]︁*⟩
=

1

4
𝑒𝑖 𝜋 (𝑓𝑚′−𝑓𝑚)Δ𝑡×∫︁

d𝑓 𝑆𝑛,w(𝑓)̃︁𝑊 (𝑓 − 𝑓𝑚)̃︁𝑊 (𝑓 − 𝑓𝑚′) , (B.1)

where ∆𝑡 is the sampling period, and 𝑊̃ is the Fourier transform of the window

function applied to the data (typically a Tukey window). The noise PSD exhibits
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spectral lines that are orders of magnitude louder than the continuum, so the window

function 𝑊 in Eq. (B.1) induces covariances between distinct frequencies in the vicinity

of the lines (i.e., between 𝑓𝑚 ≠ 𝑓𝑚′). In such a case, the fundamental assumption

in Eq. (1.7) that the frequencies can be separately analyzed when computing the

likelihood breaks down.

We avoid dealing with these complications by using a further modified version of

Config. B1, in which we (a) use Bessel filters to notch from the BayesWave PSD used

by Config. B all loud spectral lines that we identified when analyzing 4096 s of data 1;

and (b) use only the continuum of the PSD to analyze this segment. This approach

(henceforth Config. B2) is a heuristic way to mitigate the imperfect resolution of

spectral lines arising from using a short segment. This is not an alternative approach

to analyze GW151216, but instead a controlled experiment to investigate the extent

to which the loud spectral lines in the PSD can impact the PE results. Fig. B-2b

contrasts the posteriors under Config. B2 to the others: we see that the posteriors in

𝜒eff are consistent with those of Config. C, but there are residual differences in the

distributions of mass-ratio 𝑞 (and a small bias by a fraction of a sigma in the other

parameters as well).

Tab. B.1 reports the posterior weights in the region 𝜒eff ≤ 0 and 𝜒eff ≥ 0.8 for the

various configurations considered in this section under the isotropic prior on spins, as

well the values from Configs. B and C from Sec. 3.2.1 for comparison. The weight of

the posteriors varies and is subject to significant measurement uncertainties. 𝜒eff ≤ 0

contains only low-probability tails across all of the configurations considered here,

while the support for high spin magnitude 𝜒eff ≥ 0.8 is much more significant for

Config. C than for the others.

1The sets of critical frequencies are as follows: (35.85, 35.95), (36.65, 36.74), (37.275, 37.325),
(40.885, 41.05), (59.9, 60.05), (119.94, 120.03), (179.910, 180.05), (299.489, 299.594), (299.665,
299.745), (299.890, 300.02), (302.180, 302.260), (303.260, 303.345), (331.840, 331.955). In each tuple,
the first and second numbers, respectively, are the lower and upper critical frequency for the notch
filter, in Hz.
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Configuration Notes 𝑝(𝜒eff ≤ 0|d) 𝑝(𝜒eff ≥ 0.8|d)

B See Tab. 3.1 3.4% 2.6%
B1 B +

pyMultiNest
2.4% 0.7%

B2 B1 − lines 0.3% 1.1%
C See Tab. 3.1 0.0% 52.5%
C1 C + Isotropic

spin prior
0.5% 0.2%

Table B.1: The posterior weights in the region 𝜒eff ≤ 0 for various configurations for
GW151216.
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Appendix C

Waveform Systematics

C.1 PE Tables

We report the PE results for an extended set of parameters relative to Sec. 4.3. The

results are the median of the marginalized 1D posterior distributions for different

parameters and the corresponding symmetric 90% CIs.

The 𝑞 = 2 analyses are reported in Tab. C.1 for SNR 30 and Tab. C.2 for SNR

70. For 𝑞 = 3, the SNR 30 results are shown in Tab. C.3 and the SNR 70 results in

Tab. C.4. Finally, the 𝑞 = 6 results are reported in Tab. C.5 for SNR 30 and Tab. C.6

for SNR 70.

C.2 NS Radii Calculation

The compactness of the NS is estimated using a fit from Ref. [388] (Eq. (78), in Sec.

4.4.1):

𝐶NS =
2∑︁

𝑘=0

𝑎𝑘(lnΛNS)
𝑘, (C.1)

with fitting parameters 𝑎0 = 0.371, 𝑎1 = −0.0391, and 𝑎2 = 0.001056 from Ref. [389].

As reported in Ref. [388], this fit, when compared to a large set of NS EoS models,

has the largest deviation of 6.5% that is significantly smaller than the statistical

uncertainties reported in Sec. 4.3.2.
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The NS radius 𝑟NS is, in turn, related to the compactness through:

𝑟NS =
𝑚NS

𝐶NS

, (C.2)

with 𝑚NS being the NS mass reported in the rest frame of the NSBH. Again, we use

natural units, 𝐺 = 𝑐 = 1.

C.3 Prior

We use priors that are routinely used in LVK publications [4, 5, 83, 202–206], in

Tab. C.7, C.8 and C.9, for 𝑞 = 2, 𝑞 = 3, and 𝑞 = 6, respectively.

We use uniform priors for the detector-frame component masses. When using a

ROQ, additional prior constraints are imposed on the detector-frame chirp mass and

mass ratio, which limit their range. For one system, the mass prior bounds are the

same for all the aligned-spin waveforms while slightly different from those for the

precessing-spin waveforms due to the different choices by the ROQ basis. Note that

the LEA+ ROQ basis is constructed with prior constraints only on the component BH

and NS masses.

The BH spin prior is uniform in the dimensionless spin magnitude in the range

[0, 0.99], and isotropic for the orientation for precessing-spin approximants. For

non-precessing waveforms, the prior on the (aligned) spin magnitude is equal to the

projection of an isotropic spin vector along the orbital angular momentum.

For waveform models that support tidal deformation of the NS, we use a prior

uniform over ΛNS within the range of validity.

We choose a prior for sky localization and the orientation of the orbital angular

momentum with respect to the line of sight that is uniform over the sphere, a prior for

the distance that is proportional to the luminosity distance squared, and a uniform

prior over the arrival time and phase.

152



A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

65
2.

0
2.

72
1.

36
4.

08
0.

00
0.

0
0.

0
0.

0
0.

0
79

1
14

.4
13

6.
5

30

SE
OB

1
.6
6
+
0
.0
2

−
0
.0
1

2
.3

+
0
.9

−
0
.9

2
.9

+
0
.6

−
0
.7

1
.3

+
0
.4

−
0
.2

4
.2

+
0
.4

−
0
.3

0
.0
3
+
0
.0
9

−
0
.1
1

0
.0
7
+
0
.1
7

−
0
.0
7

0
.0

+
0
.2

−
0
.2

0
.1
3
+
0
.4
1

−
0
.1
2

0
.0

+
0
.5

−
0
.4

-
-

1
3
1
.4

+
2
5
.9

−
4
6
.0

3
4
+
3
0

−
2
5

SE
OB

T
1
.6
6
+
0
.0
2

−
0
.0
1

2
.0

+
0
.8

−
0
.7

2
.7

+
0
.5

−
0
.6

1
.4

+
0
.3

−
0
.2

4
.1

+
0
.3

−
0
.2

0
.0
0
+
0
.0
9

−
0
.0
7

0
.0
7
+
0
.1
9

−
0
.0
6

0
.0

+
0
.2

−
0
.2

0
.1
2
+
0
.4
1

−
0
.1
2

0
.0

+
0
.4

−
0
.4

5
0
3
+
9
5
7

−
4
2
6

1
2
.5

+
3
.0

−
3
.8

1
3
1
.8

+
2
5
.1

−
4
5
.9

3
4
+
3
0

−
2
4

SE
OB

NS
BH

1
.6
6
+
0
.0
2

−
0
.0
1

1
.9

+
0
.7

−
0
.8

2
.6

+
0
.5

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.0

+
0
.3

−
0
.2

0
.0
0
+
0
.0
7

−
0
.0
7

0
.0
5
+
0
.1
1

−
0
.0
5

−
0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

5
4
7
+
7
7
3

−
4
1
5

1
2
.9

+
3
.2

−
3
.4

1
3
1
.9

+
2
2
.8

−
4
4
.1

3
2
+
2
8

−
2
3

IM
RN

SB
H

1
.6
5
+
0
.0
2

−
0
.0
1

1
.9

+
0
.6

−
0
.8

2
.7

+
0
.5

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.1

+
0
.3

−
0
.2

0
.0
0
+
0
.0
7

−
0
.0
8

0
.0
4
+
0
.1
1

−
0
.0
4

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

6
9
4
+
7
4
4

−
4
9
2

1
3
.2

+
2
.9

−
3
.3

1
3
3
.4

+
2
3
.5

−
4
4
.5

3
2
+
2
8

−
2
3

IM
Rp

1
.6
5
+
0
.0
2

−
0
.0
1

2
.2

+
0
.8

−
0
.8

2
.9

+
0
.5

−
0
.6

1
.3

+
0
.3

−
0
.2

4
.2

+
0
.3

−
0
.3

0
.0
2
+
0
.0
8

−
0
.0
9

0
.1
4
+
0
.3
6

−
0
.1
3

0
.0

+
0
.2

−
0
.2

0
.3
1
+
0
.5
4

−
0
.2
8

0
.0

+
0
.4

−
0
.3

-
-

1
4
3
.1

+
1
6
.5

−
4
7
.3

2
4
+
3
4

−
1
8

IM
Rp

T
1
.6
5
+
0
.0
2

−
0
.0
1

1
.9

+
0
.7

−
0
.7

2
.6

+
0
.5

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.0

+
0
.3

−
0
.2

−
0
.0
1
+
0
.0
8

−
0
.0
70
.1
3
+
0
.4
0

−
0
.1
2

0
.0

+
0
.1

−
0
.1

0
.2
5
+
0
.5
3

−
0
.2
3

−
0
.0

+
0
.3

−
0
.2

5
6
9
+
7
8
2

−
4
5
9

1
3
.0

+
2
.7

−
3
.5

1
4
2
.1

+
1
7
.1

−
4
6
.9

2
5
+
3
3

−
1
9

XH
M

1
.6
5
+
0
.0
1

−
0
.0
1

2
.2

+
0
.9

−
0
.9

2
.9

+
0
.6

−
0
.7

1
.3

+
0
.4

−
0
.2

4
.2

+
0
.4

−
0
.3

0
.0
3
+
0
.0
9

−
0
.1
0

0
.0
7
+
0
.1
5

−
0
.0
6

0
.0

+
0
.2

−
0
.2

0
.1
3
+
0
.3
0

−
0
.1
2

0
.0

+
0
.4

−
0
.3

-
-

1
4
1
.1

+
2
0
.0

−
4
1
.6

2
7
+
2
8

−
2
0

(a
)

In
cl

in
at

io
n

30
∘ .

A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

67
2.

0
2.

75
1.

37
4.

12
0.

00
0.

0
0.

0
0.

0
0.

0
79

1
14

.4
87

.0
70

SE
OB

1
.6
6
+
0
.0
2

−
0
.0
1

2
.3

+
0
.9

−
0
.9

2
.9

+
0
.6

−
0
.7

1
.3

+
0
.4

−
0
.2

4
.2

+
0
.4

−
0
.3

0
.0
3
+
0
.0
9

−
0
.1
1

0
.0
7
+
0
.1
8

−
0
.0
7

0
.0

+
0
.2

−
0
.2

0
.1
3
+
0
.4
4

−
0
.1
3

0
.0

+
0
.5

−
0
.4

-
-

1
3
1
.3

+
2
7
.2

−
5
0
.2

3
5
+
3
7

−
2
5

SE
OB

T
1
.6
6
+
0
.0
2

−
0
.0
1

2
.0

+
0
.8

−
0
.8

2
.7

+
0
.5

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.1

+
0
.3

−
0
.2

0
.0
0
+
0
.0
9

−
0
.0
7

0
.0
7
+
0
.2
1

−
0
.0
6

0
.0

+
0
.2

−
0
.2

0
.1
2
+
0
.4
3

−
0
.1
1

0
.0

+
0
.4

−
0
.4

5
0
2
+
9
5
3

−
4
2
3

1
2
.5

+
3
.1

−
3
.8

1
3
1
.3

+
2
7
.1

−
4
9
.1

3
5
+
3
6

−
2
5

SE
OB

NS
BH

1
.6
6
+
0
.0
2

−
0
.0
1

1
.9

+
0
.7

−
0
.8

2
.6

+
0
.5

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.0

+
0
.3

−
0
.2

−
0
.0
1
+
0
.0
7

−
0
.0
70
.0
5
+
0
.1
1

−
0
.0
5

−
0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

5
5
0
+
7
8
2

−
4
0
6

1
3
.0

+
3
.2

−
3
.3

1
3
1
.0

+
2
5
.2

−
4
4
.9

3
4
+
3
1

−
2
4

IM
RN

SB
H

1
.6
5
+
0
.0
2

−
0
.0
1

2
.0

+
0
.6

−
0
.8

2
.7

+
0
.4

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.1

+
0
.3

−
0
.2

0
.0
0
+
0
.0
6

−
0
.0
8

0
.0
4
+
0
.1
1

−
0
.0
4

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

7
0
7
+
7
8
2

−
4
8
6

1
3
.3

+
2
.9

−
3
.1

1
3
3
.8

+
2
4
.9

−
4
5
.6

3
3
+
3
0

−
2
3

IM
Rp

1
.6
5
+
0
.0
2

−
0
.0
1

2
.3

+
0
.8

−
0
.8

2
.9

+
0
.5

−
0
.6

1
.3

+
0
.3

−
0
.2

4
.2

+
0
.4

−
0
.3

0
.0
3
+
0
.0
8

−
0
.1
0

0
.1
2
+
0
.3
3

−
0
.1
1

0
.0

+
0
.1

−
0
.1

0
.3
2
+
0
.5
3

−
0
.2
8

0
.0

+
0
.4

−
0
.3

-
-

1
4
4
.2

+
1
7
.0

−
5
4
.0

2
4
+
4
1

−
1
8

IM
Rp

T
1
.6
5
+
0
.0
2

−
0
.0
1

1
.8

+
0
.7

−
0
.7

2
.6

+
0
.5

−
0
.6

1
.4

+
0
.4

−
0
.2

4
.0

+
0
.3

−
0
.2

−
0
.0
2
+
0
.0
8

−
0
.0
60
.1
4
+
0
.4
3

−
0
.1
2

0
.0

+
0
.1

−
0
.2

0
.2
4
+
0
.4
9

−
0
.2
1

−
0
.0

+
0
.2

−
0
.2

5
3
8
+
7
3
2

−
4
3
5

1
2
.9

+
2
.8

−
3
.6

1
4
3
.1

+
1
8
.1

−
5
3
.4

2
5
+
4
0

−
1
9

XH
M

1
.6
5
+
0
.0
2

−
0
.0
1

2
.2

+
1
.0

−
0
.7

2
.9

+
0
.7

−
0
.5

1
.3

+
0
.2

−
0
.2

4
.2

+
0
.5

−
0
.3

0
.0
3
+
0
.1
0

−
0
.0
8

0
.0
9
+
0
.2
2

−
0
.0
9

0
.0

+
0
.2

−
0
.3

0
.1
5
+
0
.4
1

−
0
.1
4

0
.1

+
0
.5

−
0
.3

-
-

1
3
3
.4

+
2
5
.2

−
4
3
.3

3
4
+
3
0

−
2
2

(b
)

In
cl

in
at

io
n

70
∘ .

Ta
bl

e
C

.1
:

P
ro

pe
rt

ie
s

of
th

e
q=

2,
SN

R
30

si
m

ul
at

io
n,

as
re

co
ve

re
d

by
th

e
lis

te
d

ap
pr

ox
im

an
ts

.
W

e
re

po
rt

th
e

1D
m

ed
ia

n
an

d
th

e
sy

m
m

et
ri

c
90
%

C
I.

153



A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

68
2.

0
2.

76
1.

38
4.

15
0.

00
0.

0
0.

0
0.

0
0.

0
79

1
14

.4
58

.6
30

SE
OB

1
.6
8
+
0
.0
1

−
0
.0
0

2
.5

+
0
.4

−
0
.4

3
.1

+
0
.3

−
0
.3

1
.2

+
0
.1

−
0
.1

4
.4

+
0
.2

−
0
.2

0
.0
6
+
0
.0
4

−
0
.0
5

0
.0
7
+
0
.1
5

−
0
.0
7

0
.1

+
0
.2

−
0
.2

0
.1
4
+
0
.4
0

−
0
.1
4

0
.1

+
0
.4

−
0
.4

-
-

5
7
.8

+
8
.5

−
1
5
.4

3
1
+
2
4

−
2
2

SE
OB

T
1
.6
8
+
0
.0
1

−
0
.0
0

2
.0

+
0
.5

−
0
.6

2
.8

+
0
.4

−
0
.5

1
.4

+
0
.3

−
0
.1

4
.1

+
0
.2

−
0
.2

0
.0
0
+
0
.0
6

−
0
.0
7

0
.0
6
+
0
.1
9

−
0
.0
6

0
.0

+
0
.2

−
0
.2

0
.1
1
+
0
.4
1

−
0
.1
1

−
0
.0

+
0
.4

−
0
.4

4
1
5
+
2
6
4

−
2
9
1

1
2
.1

+
2
.4

−
2
.9

5
7
.9

+
8
.4

−
1
6
.0

3
1
+
2
4

−
2
2

SE
OB

NS
BH

1
.6
8
+
0
.0
1

−
0
.0
0

1
.9

+
0
.4

−
0
.6

2
.7

+
0
.3

−
0
.5

1
.4

+
0
.3

−
0
.1

4
.1

+
0
.2

−
0
.2

0
.0
0
+
0
.0
4

−
0
.0
6

0
.0
3
+
0
.0
9

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

5
1
0
+
2
0
6

−
2
0
5

1
2
.7

+
2
.1

−
1
.7

5
8
.1

+
7
.4

−
1
4
.4

2
9
+
2
3

−
2
0

IM
RN

SB
H

1
.6
8
+
0
.0
1

−
0
.0
0

2
.0

+
0
.4

−
0
.5

2
.7

+
0
.3

−
0
.4

1
.4

+
0
.2

−
0
.1

4
.1

+
0
.2

−
0
.2

0
.0
0
+
0
.0
4

−
0
.0
5

0
.0
2
+
0
.0
8

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

6
9
5
+
2
1
2

−
2
2
5

1
3
.2

+
1
.6

−
1
.4

5
9
.2

+
7
.2

−
1
5
.1

2
9
+
2
3

−
2
0

IM
Rp

1
.6
8
+
0
.0
0

−
0
.0
0

2
.6

+
0
.4

−
0
.4

3
.2

+
0
.3

−
0
.3

1
.2

+
0
.1

−
0
.1

4
.4

+
0
.2

−
0
.2

0
.0
6
+
0
.0
3

−
0
.0
4

0
.1
2
+
0
.2
1

−
0
.1
1

0
.1

+
0
.1

−
0
.1

0
.2
8
+
0
.5
0

−
0
.2
4

0
.1

+
0
.3

−
0
.3

-
-

6
4
.4

+
3
.0

−
1
2
.6

1
5
+
2
6

−
1
1

IM
Rp

T
1
.6
8
+
0
.0
1

−
0
.0
0

1
.9

+
0
.5

−
0
.7

2
.7

+
0
.3

−
0
.6

1
.4

+
0
.3

−
0
.1

4
.1

+
0
.2

−
0
.2

0
.0
0
+
0
.0
5

−
0
.0
6

0
.0
9
+
0
.2
5

−
0
.0
8

0
.0

+
0
.1

−
0
.1

0
.1
8
+
0
.4
6

−
0
.1
6

0
.0

+
0
.2

−
0
.2

5
0
2
+
2
8
4

−
2
6
9

1
2
.8

+
2
.2

−
2
.3

6
3
.2

+
4
.0

−
1
5
.2

1
9
+
2
7

−
1
5

XH
M

1
.6
8
+
0
.0
0

−
0
.0
0

2
.5

+
0
.4

−
0
.3

3
.1

+
0
.2

−
0
.2

1
.2

+
0
.1

−
0
.1

4
.4

+
0
.2

−
0
.1

0
.0
7
+
0
.0
3

−
0
.0
4

0
.0
6
+
0
.1
2

−
0
.0
5

−
0
.0

+
0
.1

−
0
.2

0
.2
8
+
0
.4
3

−
0
.2
6

0
.3

+
0
.4

−
0
.3

-
-

6
2
.8

+
4
.2

−
6
.8

2
1
+
1
3

−
1
2

(a
)

In
cl

in
at

io
n

30
∘ .

A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

69
2.

0
2.

78
1.

39
4.

17
0.

00
0.

0
0.

0
0.

0
0.

0
79

1
14

.4
37

.3
70

SE
OB

1
.6
8
+
0
.0
1

−
0
.0
0

2
.5

+
0
.4

−
0
.4

3
.1

+
0
.3

−
0
.3

1
.2

+
0
.1

−
0
.1

4
.4

+
0
.2

−
0
.2

0
.0
6
+
0
.0
4

−
0
.0
5

0
.0
7
+
0
.1
4

−
0
.0
7

0
.1

+
0
.1

−
0
.2

0
.1
4
+
0
.4
0

−
0
.1
3

0
.0

+
0
.4

−
0
.4

-
-

5
3
.3

+
1
3
.1

−
1
7
.5

3
9
+
3
3

−
2
9

SE
OB

T
1
.6
8
+
0
.0
1

−
0
.0
0

2
.0

+
0
.5

−
0
.6

2
.7

+
0
.4

−
0
.5

1
.4

+
0
.3

−
0
.1

4
.1

+
0
.2

−
0
.2

0
.0
0
+
0
.0
6

−
0
.0
6

0
.0
6
+
0
.2
0

−
0
.0
5

0
.0

+
0
.2

−
0
.2

0
.1
1
+
0
.4
1

−
0
.1
0

0
.0

+
0
.4

−
0
.4

4
1
7
+
2
7
1

−
2
9
6

1
2
.2

+
2
.3

−
3
.0

5
3
.4

+
1
3
.1

−
1
7
.3

3
9
+
3
2

−
2
9

SE
OB

NS
BH

1
.6
8
+
0
.0
1

−
0
.0
0

1
.9

+
0
.3

−
0
.5

2
.7

+
0
.2

−
0
.4

1
.4

+
0
.2

−
0
.1

4
.1

+
0
.1

−
0
.2

0
.0
0
+
0
.0
4

−
0
.0
5

0
.0
2
+
0
.0
8

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

5
0
7
+
2
0
3

−
2
0
0

1
2
.6

+
1
.9

−
1
.6

5
4
.1

+
1
1
.4

−
1
7
.7

3
7
+
3
3

−
2
6

IM
RN

SB
H

1
.6
8
+
0
.0
1

−
0
.0
0

2
.0

+
0
.3

−
0
.5

2
.7

+
0
.2

−
0
.4

1
.4

+
0
.2

−
0
.1

4
.1

+
0
.1

−
0
.2

0
.0
0
+
0
.0
4

−
0
.0
5

0
.0
2
+
0
.0
7

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

6
9
3
+
2
1
5

−
2
1
6

1
3
.2

+
1
.5

−
1
.4

5
5
.2

+
1
1
.3

−
1
8
.2

3
6
+
3
3

−
2
6

IM
Rp

1
.6
8
+
0
.0
1

−
0
.0
0

2
.5

+
0
.4

−
0
.3

3
.1

+
0
.2

−
0
.2

1
.2

+
0
.1

−
0
.1

4
.4

+
0
.2

−
0
.2

0
.0
6
+
0
.0
3

−
0
.0
4

0
.1
2
+
0
.1
5

−
0
.1
1

0
.0

+
0
.1

−
0
.1

0
.3
0
+
0
.4
4

−
0
.2
6

0
.1

+
0
.3

−
0
.2

-
-

6
4
.1

+
3
.8

−
2
6
.4

1
8
+
5
1

−
1
4

IM
Rp

T
1
.6
8
+
0
.0
1

−
0
.0
0

1
.9

+
0
.4

−
0
.7

2
.7

+
0
.3

−
0
.6

1
.4

+
0
.3

−
0
.1

4
.1

+
0
.2

−
0
.2

0
.0
0
+
0
.0
5

−
0
.0
6

0
.0
9
+
0
.2
4

−
0
.0
8

0
.0

+
0
.1

−
0
.1

0
.1
6
+
0
.5
2

−
0
.1
5

0
.0

+
0
.2

−
0
.2

5
2
2
+
2
8
7

−
2
6
4

1
2
.9

+
2
.1

−
2
.3

6
2
.5

+
5
.2

−
2
4
.8

2
2
+
4
6

−
1
8

XH
M

1
.6
8
+
0
.0
0

−
0
.0
0

2
.6

+
0
.4

−
0
.3

3
.2

+
0
.3

−
0
.2

1
.2

+
0
.1

−
0
.1

4
.4

+
0
.2

−
0
.1

0
.0
7
+
0
.0
3

−
0
.0
4

0
.0
6
+
0
.1
1

−
0
.0
6

0
.1

+
0
.1

−
0
.1

0
.1
2
+
0
.3
1

−
0
.1
1

0
.1

+
0
.3

−
0
.3

-
-

5
4
.8

+
8
.2

−
1
1
.6

3
8
+
1
8

−
1
5

(b
)

In
cl

in
at

io
n

70
∘ .

Ta
bl

e
C

.2
:

P
ro

pe
rt

ie
s

of
th

e
q=

2,
SN

R
70

si
m

ul
at

io
n,

as
re

co
ve

re
d

by
th

e
lis

te
d

ap
pr

ox
im

an
ts

.
W

e
re

po
rt

th
e

1D
m

ed
ia

n
an

d
th

e
sy

m
m

et
ri

c
90
%

C
I.

154



A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

91
3.

0
3.

90
1.

30
5.

21
0.

00
0.

0
0.

0
0.

0
0.

0
62

4
12

.3
17

0.
0

30

SE
OB

1
.9
1
+
0
.0
3

−
0
.0
1

3
.0

+
0
.4

−
0
.6

3
.9

+
0
.3

−
0
.5

1
.3

+
0
.1

−
0
.1

5
.2

+
0
.2

−
0
.3

0
.0
0
+
0
.0
5

−
0
.0
8

0
.0
4
+
0
.1
3

−
0
.0
4

0
.0

+
0
.1

−
0
.2

0
.1
2
+
0
.4
3

−
0
.1
2

0
.0

+
0
.4

−
0
.4

-
-

1
6
1
.8

+
3
4
.3

−
6
1
.9

3
6
+
4
1

−
2
6

SE
OB

T
1
.9
1
+
0
.0
3

−
0
.0
1

2
.6

+
0
.7

−
1
.1

3
.6

+
0
.5

−
0
.9

1
.4

+
0
.4

−
0
.1

5
.0

+
0
.4

−
0
.5

−
0
.0
5
+
0
.0
8

−
0
.1
30
.0
7
+
0
.2
4

−
0
.0
7

−
0
.0

+
0
.2

−
0
.3

0
.1
5
+
0
.4
5

−
0
.1
5

−
0
.0

+
0
.4

−
0
.5

7
2
6
+
1
1
3
1

−
6
2
6

1
3
.5

+
3
.5

−
4
.2

1
6
3
.8

+
3
3
.0

−
6
4
.0

3
5
+
4
2

−
2
6

SE
OB

NS
BH

1
.9
1
+
0
.0
2

−
0
.0
1

2
.7

+
0
.5

−
1
.1

3
.7

+
0
.4

−
0
.9

1
.4

+
0
.4

−
0
.1

5
.1

+
0
.3

−
0
.5

−
0
.0
3
+
0
.0
6

−
0
.1
30
.0
4
+
0
.2
2

−
0
.0
4

−
0
.0

+
0
.1

−
0
.2

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

7
4
5
+
1
0
8
6

−
6
1
8

1
3
.2

+
4
.2

−
3
.7

1
6
1
.6

+
3
2
.3

−
5
9
.0

3
5
+
3
5

−
2
5

LE
A+

1
.9
1
+
0
.0
2

−
0
.0
1

3
.0

+
0
.5

−
0
.4

3
.9

+
0
.4

−
0
.3

1
.3

+
0
.1

−
0
.1

5
.2

+
0
.3

−
0
.2

0
.0
0
+
0
.0
5

−
0
.0
4

0
.0
2
+
0
.0
5

−
0
.0
2

0
.0

+
0
.1

−
0
.1

-
-

1
1
0
5
+
1
7
9
5

−
9
4
9

1
3
.2

+
2
.9

−
3
.8

1
6
2
.7

+
3
3
.6

−
6
1
.3

3
5
+
3
8

−
2
6

IM
RN

SB
H

1
.9
1
+
0
.0
2

−
0
.0
1

2
.9

+
0
.5

−
0
.9

3
.8

+
0
.3

−
0
.7

1
.3

+
0
.3

−
0
.1

5
.1

+
0
.3

−
0
.4

−
0
.0
1
+
0
.0
5

−
0
.1
10
.0
3
+
0
.1
5

−
0
.0
3

−
0
.0

+
0
.1

−
0
.2

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

1
0
0
5
+
1
1
8
1

−
7
7
8

1
3
.5

+
3
.3

−
3
.4

1
6
4
.3

+
3
1
.5

−
6
0
.7

3
4
+
3
7

−
2
4

IM
Rp

1
.9
0
+
0
.0
3

−
0
.0
1

3
.2

+
0
.7

−
0
.7

4
.1

+
0
.5

−
0
.5

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.4

−
0
.4

0
.0
2
+
0
.0
7

−
0
.0
7

0
.1
1
+
0
.2
6

−
0
.1
0

0
.0

+
0
.1

−
0
.1

0
.3
6
+
0
.5
0

−
0
.3
3

0
.0

+
0
.4

−
0
.4

-
-

1
8
0
.1

+
1
9
.7

−
7
1
.2

2
3
+
5
9

−
1
8

IM
Rp

T
1
.9
0
+
0
.0
3

−
0
.0
1

2
.7

+
0
.7

−
1
.4

3
.7

+
0
.5

−
1
.2

1
.4

+
0
.5

−
0
.1

5
.0

+
0
.4

−
0
.6

−
0
.0
4
+
0
.0
9

−
0
.1
40
.1
1
+
0
.3
3

−
0
.1
0

−
0
.0

+
0
.1

−
0
.2

0
.3
0
+
0
.5
3

−
0
.2
7

−
0
.0

+
0
.3

−
0
.4

7
3
9
+
1
2
8
9

−
6
2
7

1
3
.6

+
3
.5

−
4
.3

1
7
8
.7

+
2
0
.9

−
6
7
.9

2
5
+
5
9

−
1
9

XH
M

1
.9
0
+
0
.0
2

−
0
.0
1

3
.1

+
0
.8

−
0
.7

4
.0

+
0
.5

−
0
.5

1
.3

+
0
.2

−
0
.1

5
.3

+
0
.4

−
0
.4

0
.0
1
+
0
.0
8

−
0
.0
9

0
.0
5
+
0
.1
2

−
0
.0
5

0
.0

+
0
.1

−
0
.1

0
.1
1
+
0
.3
5

−
0
.1
0

0
.0

+
0
.4

−
0
.3

-
-

1
7
4
.8

+
2
5
.0

−
4
8
.1

3
0
+
1
1
9

−
2
1

(a
)

In
cl

in
at

io
n

30
∘ .

A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

94
3.

0
3.

97
1.

32
5.

30
0.

00
0.

0
0.

0
0.

0
0.

0
62

4
12

.3
85

.5
70

SE
OB

1
.9
1
+
0
.0
3

−
0
.0
1

3
.0

+
0
.4

−
0
.6

4
.0

+
0
.3

−
0
.5

1
.3

+
0
.1

−
0
.1

5
.2

+
0
.2

−
0
.3

0
.0
0
+
0
.0
5

−
0
.0
8

0
.0
4
+
0
.1
3

−
0
.0
4

0
.0

+
0
.1

−
0
.2

0
.1
3
+
0
.4
3

−
0
.1
2

0
.0

+
0
.5

−
0
.4

-
-

1
5
9
.2

+
3
4
.0

−
6
3
.1

3
6
+
4
0

−
2
6

SE
OB

T
1
.9
1
+
0
.0
3

−
0
.0
1

2
.6

+
0
.7

−
1
.0

3
.6

+
0
.5

−
0
.8

1
.4

+
0
.3

−
0
.1

5
.0

+
0
.4

−
0
.5

−
0
.0
5
+
0
.0
8

−
0
.1
30
.0
7
+
0
.2
1

−
0
.0
6

−
0
.0

+
0
.1

−
0
.2

0
.1
5
+
0
.4
4

−
0
.1
5

−
0
.0

+
0
.4

−
0
.5

7
1
2
+
1
1
7
3

−
6
1
8

1
3
.4

+
3
.7

−
4
.3

1
5
9
.7

+
3
3
.7

−
6
3
.3

3
6
+
4
1

−
2
6

SE
OB

NS
BH

1
.9
1
+
0
.0
2

−
0
.0
1

2
.7

+
0
.6

−
1
.1

3
.7

+
0
.4

−
0
.9

1
.4

+
0
.4

−
0
.1

5
.1

+
0
.3

−
0
.5

−
0
.0
3
+
0
.0
6

−
0
.1
30
.0
5
+
0
.2
1

−
0
.0
4

−
0
.0

+
0
.1

−
0
.2

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

7
1
8
+
1
1
1
7

−
5
9
7

1
3
.1

+
4
.3

−
3
.7

1
5
8
.8

+
3
1
.5

−
5
9
.6

3
5
+
3
5

−
2
4

LE
A+

1
.9
1
+
0
.0
3

−
0
.0
1

3
.0

+
0
.5

−
0
.4

3
.9

+
0
.4

−
0
.3

1
.3

+
0
.1

−
0
.1

5
.2

+
0
.3

−
0
.2

0
.0
0
+
0
.0
6

−
0
.0
4

0
.0
2
+
0
.0
5

−
0
.0
2

0
.0

+
0
.1

−
0
.1

-
-

1
1
1
3
+
1
7
4
7

−
9
4
9

1
3
.3

+
2
.8

−
3
.8

1
5
9
.9

+
3
3
.7

−
6
4
.3

3
5
+
4
0

−
2
6

IM
RN

SB
H

1
.9
1
+
0
.0
2

−
0
.0
1

2
.9

+
0
.5

−
0
.9

3
.8

+
0
.3

−
0
.7

1
.3

+
0
.2

−
0
.1

5
.2

+
0
.2

−
0
.4

−
0
.0
1
+
0
.0
5

−
0
.1
00
.0
3
+
0
.1
4

−
0
.0
3

−
0
.0

+
0
.1

−
0
.2

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

9
8
5
+
1
1
2
3

−
7
5
3

1
3
.4

+
3
.2

−
3
.3

1
6
1
.5

+
3
1
.6

−
6
1
.5

3
5
+
3
7

−
2
4

IM
Rp

1
.9
0
+
0
.0
3

−
0
.0
1

3
.2

+
0
.6

−
0
.5

4
.1

+
0
.4

−
0
.4

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.3

−
0
.3

0
.0
3
+
0
.0
6

−
0
.0
7

0
.0
8
+
0
.2
1

−
0
.0
7

0
.0

+
0
.1

−
0
.1

0
.3
3
+
0
.4
8

−
0
.3
0

0
.0

+
0
.4

−
0
.2

-
-

1
7
6
.2

+
2
0
.3

−
6
4
.5

2
5
+
4
4

−
1
9

IM
Rp

T
1
.9
0
+
0
.0
3

−
0
.0
1

2
.7

+
0
.7

−
1
.1

3
.7

+
0
.5

−
0
.9

1
.4

+
0
.4

−
0
.1

5
.0

+
0
.4

−
0
.5

−
0
.0
4
+
0
.0
8

−
0
.1
20
.1
1
+
0
.2
9

−
0
.1
0

−
0
.0

+
0
.1

−
0
.2

0
.3
0
+
0
.5
1

−
0
.2
8

−
0
.0

+
0
.3

−
0
.4

8
1
7
+
1
2
2
8

−
6
9
3

1
3
.6

+
3
.2

−
4
.3

1
7
6
.7

+
2
0
.3

−
6
4
.4

2
5
+
4
8

−
1
9

XH
M

1
.9
2
+
0
.0
2

−
0
.0
2

3
.2

+
0
.7

−
0
.6

4
.0

+
0
.5

−
0
.5

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.4

−
0
.3

0
.0
2
+
0
.0
7

−
0
.0
8

0
.0
5
+
0
.1
2

−
0
.0
5

0
.0

+
0
.1

−
0
.2

0
.1
5
+
0
.4
1

−
0
.1
5

0
.0

+
0
.5

−
0
.4

-
-

1
3
1
.9

+
4
5
.6

−
4
4
.8

5
3
+
7
6

−
2
7

(b
)

In
cl

in
at

io
n

70
∘ .

Ta
bl

e
C

.3
:

P
ro

pe
rt

ie
s

of
th

e
q=

3,
SN

R
30

si
m

ul
at

io
n,

as
re

co
ve

re
d

by
th

e
lis

te
d

ap
pr

ox
im

an
ts

.
W

e
re

po
rt

th
e

1D
m

ed
ia

n
an

d
th

e
sy

m
m

et
ri

c
90
%

C
I.

155



A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

95
3.

0
3.

99
1.

33
5.

31
0.

00
0.

0
0.

0
0.

0
0.

0
62

4
12

.3
73

.0
30

SE
OB

1
.9
5
+
0
.0
1

−
0
.0
1

3
.1

+
0
.3

−
0
.3

4
.1

+
0
.2

−
0
.2

1
.3

+
0
.1

−
0
.1

5
.4

+
0
.2

−
0
.1

0
.0
2
+
0
.0
3

−
0
.0
3

0
.0
4
+
0
.1
2

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
1
+
0
.4
0

−
0
.1
0

0
.0

+
0
.4

−
0
.4

-
-

7
1
.1

+
1
1
.8

−
2
1
.9

3
3
+
2
6

−
2
4

SE
OB

T
1
.9
5
+
0
.0
1

−
0
.0
0

2
.8

+
0
.4

−
0
.6

3
.8

+
0
.3

−
0
.4

1
.4

+
0
.1

−
0
.1

5
.2

+
0
.2

−
0
.3

−
0
.0
2
+
0
.0
4

−
0
.0
70
.0
5
+
0
.1
5

−
0
.0
4

−
0
.0

+
0
.1

−
0
.2

0
.1
1
+
0
.4
1

−
0
.1
1

0
.0

+
0
.4

−
0
.4

3
8
0
+
6
0
6

−
3
4
2

1
1
.7

+
3
.1

−
3
.5

7
1
.7

+
1
1
.3

−
2
1
.6

3
2
+
2
7

−
2
3

SE
OB

NS
BH

1
.9
5
+
0
.0
1

−
0
.0
0

2
.8

+
0
.3

−
0
.5

3
.9

+
0
.2

−
0
.4

1
.4

+
0
.1

−
0
.1

5
.2

+
0
.2

−
0
.2

−
0
.0
2
+
0
.0
4

−
0
.0
50
.0
3
+
0
.0
8

−
0
.0
2

−
0
.0

+
0
.0

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

4
8
1
+
3
5
8

−
3
5
9

1
2
.0

+
2
.0

−
2
.6

7
1
.7

+
1
0
.7

−
2
1
.2

3
1
+
2
6

−
2
2

LE
A+

1
.9
5
+
0
.0
1

−
0
.0
0

3
.0

+
0
.3

−
0
.3

4
.0

+
0
.2

−
0
.3

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.2

−
0
.2

0
.0
0
+
0
.0
4

−
0
.0
4

0
.0
2
+
0
.0
4

−
0
.0
2

0
.0

+
0
.0

−
0
.1

-
-

8
8
8
+
5
1
2

−
5
5
6

1
3
.1

+
1
.6

−
2
.4

7
1
.5

+
1
1
.5

−
2
2
.7

3
2
+
2
8

−
2
3

IM
RN

SB
H

1
.9
5
+
0
.0
1

−
0
.0
0

2
.9

+
0
.3

−
0
.5

3
.9

+
0
.2

−
0
.4

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.2

−
0
.3

0
.0
0
+
0
.0
3

−
0
.0
5

0
.0
2
+
0
.0
7

−
0
.0
2

−
0
.0

+
0
.0

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

8
3
1
+
3
7
7

−
4
1
9

1
3
.0

+
1
.7

−
1
.9

7
2
.5

+
1
0
.6

−
2
1
.3

3
1
+
2
6

−
2
2

IM
Rp

1
.9
4
+
0
.0
1

−
0
.0
0

3
.3

+
0
.3

−
0
.2

4
.2

+
0
.2

−
0
.2

1
.3

+
0
.0

−
0
.1

5
.5

+
0
.2

−
0
.1

0
.0
4
+
0
.0
3

−
0
.0
3

0
.0
7
+
0
.1
4

−
0
.0
6

0
.0

+
0
.1

−
0
.1

0
.2
8
+
0
.4
3

−
0
.2
2

0
.1

+
0
.2

−
0
.2

-
-

7
9
.9

+
4
.2

−
1
8
.8

1
7
+
2
8

−
1
3

IM
Rp

T
1
.9
4
+
0
.0
1

−
0
.0
0

2
.5

+
0
.7

−
1
.3

3
.6

+
0
.5

−
1
.1

1
.4

+
0
.6

−
0
.1

5
.1

+
0
.4

−
0
.6

−
0
.0
4
+
0
.0
7

−
0
.1
10
.1
7
+
0
.3
4

−
0
.1
5

−
0
.1

+
0
.1

−
0
.3

0
.3
4
+
0
.5
2

−
0
.3
1

0
.0

+
0
.3

−
0
.4

3
7
1
+
6
8
5

−
3
1
9

1
2
.8

+
3
.2

−
3
.9

8
1
.2

+
3
.4

−
1
6
.8

1
4
+
2
8

−
1
1

XH
M

1
.9
5
+
0
.0
0

−
0
.0
0

3
.3

+
0
.3

−
0
.3

4
.2

+
0
.2

−
0
.2

1
.3

+
0
.1

−
0
.1

5
.5

+
0
.2

−
0
.2

0
.0
4
+
0
.0
3

−
0
.0
3

0
.0
4
+
0
.1
0

−
0
.0
4

0
.0

+
0
.1

−
0
.1

0
.1
3
+
0
.3
9

−
0
.1
3

0
.1

+
0
.4

−
0
.3

-
-

7
5
.3

+
6
.0

−
8
.3

2
7
+
1
2

−
1
0

(a
)

In
cl

in
at

io
n

30
∘ .

A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
1.

96
3.

0
4.

02
1.

34
5.

36
0.

00
0.

0
0.

0
0.

0
0.

0
62

4
12

.3
36

.6
70

SE
OB

1
.9
5
+
0
.0
1

−
0
.0
1

3
.1

+
0
.3

−
0
.3

4
.1

+
0
.2

−
0
.2

1
.3

+
0
.1

−
0
.1

5
.4

+
0
.2

−
0
.1

0
.0
2
+
0
.0
3

−
0
.0
3

0
.0
4
+
0
.1
1

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
0
+
0
.3
9

−
0
.1
0

0
.0

+
0
.4

−
0
.4

-
-

6
5
.5

+
1
5
.8

−
2
7
.1

3
9
+
3
2

−
2
8

SE
OB

T
1
.9
5
+
0
.0
1

−
0
.0
1

2
.8

+
0
.4

−
0
.6

3
.8

+
0
.3

−
0
.5

1
.4

+
0
.2

−
0
.1

5
.2

+
0
.2

−
0
.3

−
0
.0
2
+
0
.0
4

−
0
.0
70
.0
5
+
0
.1
8

−
0
.0
5

−
0
.0

+
0
.1

−
0
.2

0
.1
3
+
0
.4
5

−
0
.1
2

0
.0

+
0
.5

−
0
.4

3
5
7
+
5
7
7

−
3
1
8

1
1
.6

+
3
.2

−
3
.4

6
5
.8

+
1
5
.6

−
2
7
.8

3
9
+
3
3

−
2
8

SE
OB

NS
BH

1
.9
5
+
0
.0
1

−
0
.0
1

2
.9

+
0
.3

−
0
.5

3
.9

+
0
.2

−
0
.4

1
.4

+
0
.1

−
0
.1

5
.3

+
0
.2

−
0
.2

−
0
.0
1
+
0
.0
3

−
0
.0
50
.0
2
+
0
.0
7

−
0
.0
2

−
0
.0

+
0
.0

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

4
7
4
+
3
6
2

−
3
5
0

1
2
.0

+
2
.0

−
2
.5

6
6
.7

+
1
4
.0

−
2
7
.5

3
7
+
3
3

−
2
6

LE
A+

1
.9
5
+
0
.0
1

−
0
.0
1

3
.0

+
0
.4

−
0
.3

4
.0

+
0
.3

−
0
.2

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.2

−
0
.2

0
.0
0
+
0
.0
4

−
0
.0
4

0
.0
2
+
0
.0
4

−
0
.0
2

0
.0

+
0
.0

−
0
.1

-
-

8
9
1
+
5
1
0

−
5
7
0

1
3
.1

+
1
.6

−
2
.4

6
4
.7

+
1
6
.6

−
2
6
.9

4
0
+
3
2

−
2
9

IM
RN

SB
H

1
.9
5
+
0
.0
1

−
0
.0
1

2
.9

+
0
.3

−
0
.5

3
.9

+
0
.2

−
0
.4

1
.3

+
0
.1

−
0
.1

5
.3

+
0
.2

−
0
.3

0
.0
0
+
0
.0
3

−
0
.0
5

0
.0
2
+
0
.0
6

−
0
.0
2

0
.0

+
0
.0

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

8
5
2
+
3
5
7

−
4
0
7

1
3
.1

+
1
.7

−
1
.8

6
7
.7

+
1
3
.7

−
2
8
.3

3
6
+
3
3

−
2
6

IM
Rp

1
.9
4
+
0
.0
1

−
0
.0
0

3
.4

+
0
.3

−
0
.2

4
.3

+
0
.2

−
0
.2

1
.3

+
0
.0

−
0
.0

5
.5

+
0
.1

−
0
.1

0
.0
4
+
0
.0
2

−
0
.0
3

0
.0
8
+
0
.1
6

−
0
.0
6

0
.0

+
0
.1

−
0
.1

0
.2
7
+
0
.5
1

−
0
.2
4

0
.1

+
0
.3

−
0
.3

-
-

7
8
.7

+
4
.1

−
2
1
.5

1
7
+
3
2

−
1
3

IM
Rp

T
1
.9
4
+
0
.0
1

−
0
.0
0

2
.8

+
0
.4

−
1
.4

3
.8

+
0
.3

−
1
.2

1
.4

+
0
.5

−
0
.1

5
.2

+
0
.2

−
0
.7

−
0
.0
2
+
0
.0
5

−
0
.1
30
.0
7
+
0
.3
0

−
0
.0
7

−
0
.0

+
0
.1

−
0
.3

0
.2
3
+
0
.5
5

−
0
.2
1

−
0
.0

+
0
.3

−
0
.4

5
3
0
+
6
3
9

−
4
2
2

1
2
.9

+
3
.0

−
3
.4

7
8
.7

+
4
.5

−
3
3
.3

1
8
+
4
7

−
1
4

XH
M

1
.9
6
+
0
.0
0

−
0
.0
1

3
.3

+
0
.3

−
0
.3

4
.3

+
0
.2

−
0
.2

1
.3

+
0
.1

−
0
.0

5
.5

+
0
.2

−
0
.2

0
.0
4
+
0
.0
3

−
0
.0
3

0
.0
4
+
0
.0
9

−
0
.0
4

0
.0

+
0
.1

−
0
.1

0
.1
5
+
0
.3
8

−
0
.1
4

0
.1

+
0
.4

−
0
.3

-
-

4
7
.8

+
1
2
.3

−
1
0
.8

6
1
+
1
3

−
1
5

(b
)

In
cl

in
at

io
n

70
∘ .

Ta
bl

e
C

.4
:

P
ro

pe
rt

ie
s

of
th

e
q=

3,
SN

R
70

si
m

ul
at

io
n,

as
re

co
ve

re
d

by
th

e
lis

te
d

ap
pr

ox
im

an
ts

.
W

e
re

po
rt

th
e

1D
m

ed
ia

n
an

d
th

e
sy

m
m

et
ri

c
90
%

C
I.

156



A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
2.

65
6.

0
8.

00
1.

33
9.

33
0.

00
0.

0
0.

0
0.

0
0.

0
52

6
13

.3
22

9.
5

30

SE
OB

2
.6
5
2
+
0
.0
4
3

−
0
.0
2
36
.1

+
0
.9

−
0
.8

8
.1

+
0
.7

−
0
.6

1
.3

+
0
.1

−
0
.1

9
.4

+
0
.6

−
0
.5

0
.0
1
+
0
.0
6

−
0
.0
7

0
.0
3
+
0
.0
8

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
5
+
0
.4
5

−
0
.1
4

0
.0

+
0
.5

−
0
.5

-
-

2
2
1
.4

+
4
4
.0

−
7
7
.4

3
4
+
3
0

−
2
5

SE
OB

T
2
.6
5
0
+
0
.0
4
3

−
0
.0
2
45
.4

+
1
.1

−
1
.4

7
.5

+
0
.8

−
1
.2

1
.4

+
0
.2

−
0
.1

8
.9

+
0
.7

−
1
.0

−
0
.0
5
+
0
.0
9

−
0
.1
40
.0
6
+
0
.2
0

−
0
.0
6

−
0
.1

+
0
.1

−
0
.2

0
.1
8
+
0
.4
9

−
0
.1
7

0
.0

+
0
.5

−
0
.6

1
9
9
0
+
1
7
8
8

−
1
7
9
0
1
5
.7

+
4
.0

−
5
.2

2
2
1
.5

+
4
4
.5

−
7
8
.6

3
4
+
3
1

−
2
5

SE
OB

NS
BH

2
.6
5
1
+
0
.0
4
1

−
0
.0
2
25
.8

+
0
.7

−
1
.2

7
.9

+
0
.6

−
0
.9

1
.4

+
0
.1

−
0
.1

9
.2

+
0
.5

−
0
.8

−
0
.0
1
+
0
.0
5

−
0
.1
00
.0
3
+
0
.1
1

−
0
.0
3

−
0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

1
9
3
8
+
2
5
2
4

−
1
6
9
1
1
5
.3

+
3
.8

−
4
.8

2
2
1
.9

+
4
0
.9

−
7
5
.4

3
3
+
2
9

−
2
3

IM
RN

SB
H

2
.6
4
8
+
0
.0
4
2

−
0
.0
2
26
.0

+
0
.7

−
1
.0

8
.0

+
0
.5

−
0
.8

1
.3

+
0
.1

−
0
.1

9
.3

+
0
.5

−
0
.7

0
.0
0
+
0
.0
5

−
0
.0
8

0
.0
2
+
0
.0
8

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

2
5
9
1
+
2
1
2
0

−
2
2
1
2
1
5
.9

+
3
.0

−
4
.8

2
2
7
.3

+
4
0
.8

−
7
6
.9

3
3
+
2
9

−
2
3

IM
Rp

2
.6
4
0
+
0
.0
4
0

−
0
.0
1
46
.2

+
0
.6

−
0
.5

8
.1

+
0
.5

−
0
.4

1
.3

+
0
.0

−
0
.1

9
.5

+
0
.4

−
0
.3

0
.0
1
+
0
.0
5

−
0
.0
4

0
.0
5
+
0
.1
2

−
0
.0
4

0
.0

+
0
.1

−
0
.0

0
.3
2
+
0
.5
4

−
0
.2
8

0
.0

+
0
.4

−
0
.3

-
-

2
4
3
.9

+
2
5
.8

−
7
5
.2

2
2
+
3
3

−
1
7

IM
Rp

T
2
.6
3
6
+
0
.0
4
0

−
0
.0
1
45
.6

+
0
.8

−
3
.2

7
.6

+
0
.6

−
2
.9

1
.4

+
0
.6

−
0
.1

9
.0

+
0
.6

−
2
.3

−
0
.0
4
+
0
.0
7

−
0
.2
60
.0
9
+
0
.4
3

−
0
.0
8

−
0
.0

+
0
.1

−
0
.4

0
.3
7
+
0
.5
3

−
0
.3
3

0
.0

+
0
.5

−
0
.6

1
7
1
0
+
1
9
8
6

−
1
5
2
7
1
5
.7

+
5
.3

−
5
.3

2
4
8
.3

+
2
3
.9

−
7
3
.6

2
0
+
3
3

−
1
5

XH
M

2
.6
4
4
+
0
.0
2
0

−
0
.0
1
46
.3

+
0
.8

−
0
.7

8
.2

+
0
.6

−
0
.5

1
.3

+
0
.1

−
0
.1

9
.5

+
0
.5

−
0
.5

0
.0
2
+
0
.0
5

−
0
.0
5

0
.0
3
+
0
.0
7

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
3
+
0
.3
4

−
0
.1
3

0
.0

+
0
.4

−
0
.4

-
-

2
3
7
.1

+
2
7
.3

−
3
7
.0

2
8
+
1
4

−
1
3

(a
)

In
cl

in
at

io
n

30
∘ .

A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙
𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
2.

72
6.

0
8.

23
1.

37
9.

60
0.

00
0.

0
0.

0
0.

0
0.

0
52

6
13

.3
95

.4
70

SE
OB

2
.6
5
1
+
0
.0
4
5

−
0
.0
2
36
.1

+
0
.9

−
0
.8

8
.1

+
0
.7

−
0
.6

1
.3

+
0
.1

−
0
.1

9
.4

+
0
.6

−
0
.5

0
.0
1
+
0
.0
6

−
0
.0
7

0
.0
3
+
0
.0
8

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
5
+
0
.4
7

−
0
.1
5

0
.0

+
0
.5

−
0
.5

-
-

2
2
2
.5

+
4
4
.3

−
8
0
.5

3
4
+
2
9

−
2
5

SE
OB

T
2
.6
4
8
+
0
.0
4
3

−
0
.0
2
35
.4

+
1
.0

−
1
.4

7
.6

+
0
.8

−
1
.2

1
.4

+
0
.2

−
0
.1

9
.0

+
0
.7

−
1
.0

−
0
.0
5
+
0
.0
9

−
0
.1
40
.0
6
+
0
.1
9

−
0
.0
5

−
0
.0

+
0
.1

−
0
.2

0
.1
6
+
0
.4
8

−
0
.1
6

0
.0

+
0
.5

−
0
.5

1
9
3
6
+
1
8
5
7

−
1
7
3
8
1
5
.6

+
3
.9

−
5
.2

2
2
4
.3

+
4
3
.3

−
7
9
.0

3
4
+
2
9

−
2
4

SE
OB

NS
BH

2
.6
5
0
+
0
.0
4
0

−
0
.0
2
15
.8

+
0
.7

−
1
.1

7
.9

+
0
.6

−
0
.9

1
.4

+
0
.1

−
0
.1

9
.2

+
0
.5

−
0
.8

−
0
.0
1
+
0
.0
5

−
0
.1
00
.0
3
+
0
.1
1

−
0
.0
3

−
0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

1
8
6
4
+
2
5
2
6

−
1
6
1
9
1
5
.1

+
3
.8

−
4
.6

2
2
3
.0

+
4
0
.8

−
7
3
.8

3
3
+
2
7

−
2
3

IM
RN

SB
H

2
.6
4
7
+
0
.0
4
2

−
0
.0
2
16
.0

+
0
.7

−
0
.9

8
.0

+
0
.5

−
0
.7

1
.3

+
0
.1

−
0
.1

9
.3

+
0
.5

−
0
.6

0
.0
0
+
0
.0
5

−
0
.0
8

0
.0
2
+
0
.0
7

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

2
4
4
9
+
2
2
2
7

−
2
1
0
8
1
5
.7

+
3
.1

−
4
.8

2
2
9
.5

+
4
0
.2

−
7
7
.5

3
2
+
2
8

−
2
3

IM
Rp

2
.6
3
9
+
0
.0
3
9

−
0
.0
1
46
.2

+
0
.7

−
0
.5

8
.2

+
0
.5

−
0
.4

1
.3

+
0
.0

−
0
.1

9
.5

+
0
.5

−
0
.3

0
.0
1
+
0
.0
5

−
0
.0
4

0
.0
5
+
0
.1
2

−
0
.0
4

0
.0

+
0
.1

−
0
.0

0
.3
0
+
0
.5
6

−
0
.2
8

0
.0

+
0
.4

−
0
.3

-
-

2
4
5
.0

+
2
5
.9

−
7
2
.9

2
3
+
3
1

−
1
7

IM
Rp

T
2
.6
3
4
+
0
.0
3
7

−
0
.0
1
35
.4

+
1
.0

−
3
.1

7
.5

+
0
.8

−
2
.9

1
.4

+
0
.6

−
0
.1

8
.9

+
0
.7

−
2
.2

−
0
.0
5
+
0
.0
9

−
0
.2
80
.1
1
+
0
.4
5

−
0
.1
0

−
0
.0

+
0
.1

−
0
.4

0
.4
1
+
0
.5
0

−
0
.3
6

0
.0

+
0
.5

−
0
.5

1
5
4
9
+
2
1
0
8

−
1
3
8
9
1
5
.8

+
5
.9

−
5
.3

2
5
0
.8

+
2
2
.8

−
6
7
.5

1
9
+
3
1

−
1
4

XH
M

2
.6
8
5
+
0
.0
3
1

−
0
.0
2
76
.4

+
0
.8

−
0
.6

8
.4

+
0
.6

−
0
.5

1
.3

+
0
.1

−
0
.1

9
.8

+
0
.5

−
0
.4

0
.0
3
+
0
.0
5

−
0
.0
5

0
.0
4
+
0
.0
8

−
0
.0
4

0
.0

+
0
.1

−
0
.1

0
.1
4
+
0
.3
7

−
0
.1
3

0
.0

+
0
.4

−
0
.4

-
-

1
6
2
.3

+
4
8
.7

−
5
4
.6

5
4
+
1
4

−
1
5

(b
)

In
cl

in
at

io
n

70
∘ .

Ta
bl

e
C

.5
:

P
ro

pe
rt

ie
s

of
th

e
q=

6,
SN

R
30

si
m

ul
at

io
n,

as
re

co
ve

re
d

by
th

e
lis

te
d

ap
pr

ox
im

an
ts

.
W

e
re

po
rt

th
e

1D
m

ed
ia

n
an

d
th

e
sy

m
m

et
ri

c
90
%

C
I.

157



A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙

𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
2.

72
6.

0
8.

22
1.

37
9.

59
0.

00
0.

0
0.

0
0.

0
0.

0
52

6
13

.3
98

.4
30

SE
OB

2
.7
2
1
+
0
.0
1
6

−
0
.0
0
9

6
.1

+
0
.4

−
0
.4

8
.3

+
0
.3

−
0
.3

1
.4

+
0
.0

−
0
.0

9
.7

+
0
.3

−
0
.3

0
.0
1
+
0
.0
3

−
0
.0
3

0
.0
2
+
0
.0
6

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.1
3
+
0
.4
2

−
0
.1
3

0
.0

+
0
.5

−
0
.4

-
-

9
7
.2

+
1
4
.9

−
2
6
.5

3
1
+
2
4

−
2
3

SE
OB

T
2
.7
1
9
+
0
.0
1
6

−
0
.0
0
9

5
.4

+
0
.6

−
0
.6

7
.7

+
0
.5

−
0
.5

1
.4

+
0
.1

−
0
.1

9
.1

+
0
.4

−
0
.4

−
0
.0
4
+
0
.0
5

−
0
.0
5
0
.0
8
+
0
.1
3

−
0
.0
7

−
0
.1

+
0
.1

−
0
.1

0
.2
1
+
0
.5
5

−
0
.2
0

0
.1

+
0
.6

−
0
.4

9
2
1
+
2
2
7
3

−
8
5
2

1
4
.1

+
4
.2

−
4
.6

9
7
.8

+
1
4
.6

−
2
6
.6

3
1
+
2
4

−
2
2

SE
OB

NS
BH

2
.7
2
0
+
0
.0
1
5

−
0
.0
0
8

6
.0

+
0
.4

−
0
.4

8
.2

+
0
.3

−
0
.4

1
.4

+
0
.0

−
0
.0

9
.6

+
0
.3

−
0
.3

0
.0
0
+
0
.0
3

−
0
.0
4

0
.0
1
+
0
.0
3

−
0
.0
1

0
.0

+
0
.0

−
0
.0

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

9
7
9
+
1
2
2
5

−
8
3
1

1
3
.6

+
2
.6

−
3
.6

9
9
.0

+
1
3
.6

−
2
5
.7

3
0
+
2
4

−
2
1

IM
RN

SB
H

2
.7
2
0
+
0
.0
1
5

−
0
.0
0
8

6
.1

+
0
.4

−
0
.5

8
.3

+
0
.3

−
0
.4

1
.4

+
0
.0

−
0
.0

9
.7

+
0
.3

−
0
.3

0
.0
0
+
0
.0
3

−
0
.0
3

0
.0
2
+
0
.0
3

−
0
.0
1

0
.0

+
0
.0

−
0
.0

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

1
5
6
2
+
2
0
5
8

−
1
2
8
1

1
4
.6

+
3
.1

−
3
.9

9
9
.5

+
1
3
.9

−
2
5
.8

3
0
+
2
3

−
2
1

IM
Rp

2
.7
1
5
+
0
.0
1
3

−
0
.0
0
3

6
.3

+
0
.4

−
0
.2

8
.4

+
0
.3

−
0
.2

1
.3

+
0
.0

−
0
.0

9
.8

+
0
.3

−
0
.2

0
.0
2
+
0
.0
3

−
0
.0
2

0
.0
4
+
0
.0
9

−
0
.0
3

0
.0

+
0
.1

−
0
.0

0
.2
4
+
0
.5
1

−
0
.2
1

0
.1

+
0
.4

−
0
.3

-
-

1
0
8
.1

+
5
.6

−
2
3
.2

1
7
+
2
7

−
1
3

IM
Rp

T
2
.7
0
8
+
0
.0
0
4

−
0
.0
0
3

2
.9

+
0
.9

−
0
.8

5
.5

+
0
.9

−
0
.9

1
.9

+
0
.3

−
0
.2

7
.3

+
0
.7

−
0
.6

−
0
.1
8
+
0
.0
9

−
0
.1
1
0
.4
2
+
0
.1
6

−
0
.1
4

−
0
.4

+
0
.1

−
0
.1

0
.6
6
+
0
.2
9

−
0
.5
0

0
.4

+
0
.3

−
0
.3

2
6
2
+
8
0
1

−
2
4
7

1
4
.9

+
3
.9

−
4
.5

1
1
2
.8

+
3
.5

−
7
.2

8
+
1
6

−
6

XH
M

2
.7
2
0
+
0
.0
0
5

−
0
.0
0
4

6
.4

+
0
.5

−
0
.4

8
.5

+
0
.4

−
0
.3

1
.3

+
0
.0

−
0
.0

9
.9

+
0
.3

−
0
.3

0
.0
3
+
0
.0
3

−
0
.0
3

0
.0
3
+
0
.0
6

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
4
+
0
.4
1

−
0
.1
4

0
.1

+
0
.5

−
0
.4

-
-

1
0
0
.5

+
6
.4

−
8
.0

2
9
+
7

−
7

(a
)

In
cl

in
at

io
n

30
∘ .

A
pp

ro
xi

m
an

t
ℳ

so
u
rc

e
/𝑀

⊙
q

𝑚
so

u
rc

e
1

/𝑀
⊙𝑚

so
u
rc

e
2

/𝑀
⊙𝑀

so
u
rc

e
to

ta
l

/𝑀
⊙

𝜒
e
ff

|𝑠
1
|

𝑠 1
,𝑧

|𝑠
2
|

𝑠 2
,𝑧

Λ
2

𝑟 N
S
/k

m
𝐷

𝐿
/M

pc
𝜃 𝐽

𝑁
/∘

Tr
ue

va
lu

e
2.

75
6.

0
8.

32
1.

39
9.

71
0.

00
0.

0
0.

0
0.

0
0.

0
52

6
13

.3
40

.9
70

SE
OB

2
.7
2
7
+
0
.0
2
5

−
0
.0
1
4

6
.2

+
0
.4

−
0
.4

8
.4

+
0
.3

−
0
.3

1
.4

+
0
.0

−
0
.0

9
.7

+
0
.3

−
0
.3

0
.0
1
+
0
.0
3

−
0
.0
3

0
.0
2
+
0
.0
7

−
0
.0
2

0
.0

+
0
.1

−
0
.1

0
.1
4
+
0
.4
3

−
0
.1
3

0
.0

+
0
.5

−
0
.4

-
-

8
7
.1

+
2
4
.6

−
4
2
.1

4
1
+
2
7

−
3
0

SE
OB

T
2
.7
2
5
+
0
.0
2
5

−
0
.0
1
4

5
.3

+
0
.7

−
0
.6

7
.7

+
0
.6

−
0
.5

1
.4

+
0
.1

−
0
.1

9
.2

+
0
.5

−
0
.5

−
0
.0
4
+
0
.0
5

−
0
.0
5
0
.0
8
+
0
.1
4

−
0
.0
8

−
0
.1

+
0
.1

−
0
.1

0
.2
4
+
0
.5
6

−
0
.2
3

0
.2

+
0
.6

−
0
.5

9
7
3
+
2
4
0
7

−
9
1
1

1
4
.2

+
4
.3

−
4
.8

8
7
.6

+
2
4
.5

−
4
2
.0

4
1
+
2
7

−
3
0

SE
OB

NS
BH

2
.7
2
5
+
0
.0
2
6

−
0
.0
1
3

6
.0

+
0
.3

−
0
.4

8
.2

+
0
.3

−
0
.3

1
.4

+
0
.0

−
0
.0

9
.6

+
0
.2

−
0
.3

0
.0
0
+
0
.0
3

−
0
.0
3

0
.0
1
+
0
.0
3

−
0
.0
1

0
.0

+
0
.0

−
0
.0

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

9
8
6
+
8
0
7

−
8
2
9

1
3
.7

+
1
.9

−
3
.5

8
9
.5

+
2
2
.5

−
4
3
.0

3
9
+
2
8

−
2
8

IM
RN

SB
H

2
.7
2
6
+
0
.0
2
6

−
0
.0
1
4

6
.2

+
0
.4

−
0
.4

8
.4

+
0
.3

−
0
.3

1
.4

+
0
.0

−
0
.0

9
.7

+
0
.3

−
0
.3

0
.0
1
+
0
.0
3

−
0
.0
3

0
.0
2
+
0
.0
3

−
0
.0
2

0
.0

+
0
.0

−
0
.0

0
.0
0
+
0
.0
0

−
0
.0
0

0
.0

+
0
.0

−
0
.0

1
3
5
0
+
1
6
7
2

−
1
1
0
6

1
4
.2

+
2
.8

−
3
.6

8
9
.7

+
2
3
.5

−
4
3
.2

4
0
+
2
8

−
2
9

IM
Rp

2
.7
1
5
+
0
.0
1
8

−
0
.0
0
3

6
.4

+
0
.4

−
0
.3

8
.5

+
0
.3

−
0
.2

1
.3

+
0
.0

−
0
.0

9
.8

+
0
.2

−
0
.2

0
.0
3
+
0
.0
3

−
0
.0
2

0
.0
4
+
0
.0
8

−
0
.0
4

0
.0

+
0
.1

−
0
.0

0
.2
9
+
0
.4
7

−
0
.2
6

0
.1

+
0
.3

−
0
.3

-
-

1
0
8
.9

+
5
.2

−
3
2
.0

1
6
+
3
4

−
1
2

IM
Rp

T
2
.7
0
8
+
0
.0
0
5

−
0
.0
0
3

2
.6

+
1
.0

−
0
.8

5
.1

+
1
.0

−
0
.9

2
.0

+
0
.4

−
0
.3

7
.1

+
0
.8

−
0
.6

−
0
.2
2
+
0
.1
2

−
0
.1
1
0
.4
7
+
0
.2
4

−
0
.1
6

−
0
.4

+
0
.1

−
0
.2

0
.4
8
+
0
.4
1

−
0
.3
6

0
.3

+
0
.3

−
0
.2

1
8
6
+
7
1
3

−
1
7
8

1
4
.9

+
4
.2

−
4
.4

1
1
3
.2

+
3
.6

−
7
.5

8
+
1
7

−
6

XH
M

2
.7
4
8
+
0
.0
0
8

−
0
.0
0
9

6
.4

+
0
.5

−
0
.4

8
.6

+
0
.4

−
0
.3

1
.3

+
0
.0

−
0
.0

1
0
.0

+
0
.3

−
0
.3

0
.0
3
+
0
.0
2

−
0
.0
3

0
.0
3
+
0
.0
7

−
0
.0
3

0
.0

+
0
.1

−
0
.1

0
.1
6
+
0
.4
1

−
0
.1
5

0
.1

+
0
.5

−
0
.4

-
-

5
2
.5

+
1
5
.4

−
1
3
.8

6
4
+
8

−
9

(b
)

In
cl

in
at

io
n

70
∘ .

Ta
bl

e
C

.6
:

P
ro

pe
rt

ie
s

of
th

e
q=

6,
SN

R
70

si
m

ul
at

io
n,

as
re

co
ve

re
d

by
th

e
lis

te
d

ap
pr

ox
im

an
ts

.
W

e
re

po
rt

th
e

1D
m

ed
ia

n
an

d
th

e
sy

m
m

et
ri

c
90
%

C
I.

158



Approximant ℳdet/𝑀⊙ q 𝑚det
1 /𝑀⊙ 𝑚det

2 /𝑀⊙ 𝑠1 𝑠2 Λ2 𝐷𝐿/Mpc

SEOB [1.480,2.711] [1.0,8.0] [1.043,
9.664]

[1.043,
9.664]

[-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

SEOBT [1.480,2.711] [1.0,8.0] [1.043,
9.664]

[1.043,
9.664]

[-
0.99,0.99]

[-
0.99,0.99]

[0,4000] [0,500]

SEOBNSBH [1.480,2.711] [1.0,8.0] [1.043,
9.664]

[1.043,
3.000]

[-0.5,0.8] - [0,5000] [0,500]

IMRNSBH [1.480,2.711] [1.0,8.0] [1.043,
9.664]

[1.043,
3.000]

[-0.5,0.5] - [0,5000] [0,500]

IMRp [1.421,2.602] [1.0,8.0] [1.001,
9.277]

[1.001,
9.277]

[-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

IMRpT [1.421,2.602] [1.0,8.0] [1.001,
9.277]

[1.001,
9.277]

[-
0.99,0.99]

[-
0.99,0.99]

[0,4000] [0,500]

XHM [1.480,2.711] [1.0,8.0] [1.043,
9.664]

[1.043,
9.664]

[-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

Table C.7: Prior bounds for the q=2 simulation.

Approximant ℳdet/𝑀⊙ q 𝑚det
1 /𝑀⊙ 𝑚det

2 /𝑀⊙ 𝑠1 𝑠2 Λ2 𝐷𝐿/Mpc

SEOB [1.776,3.253] [1.0,8.0] [1.252,11.597] [1.252,11.597] [-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

SEOBT [1.776,3.253] [1.0,8.0] [1.252,11.597] [1.252,11.597] [-
0.99,0.99]

[-
0.99,0.99]

[0,4000] [0,500]

SEOBNSBH [1.776,3.253] [1.0,8.0] [1.252,11.597] [1.252,
3.000]

[-0.5,0.8] - [0,5000] [0,500]

LEA+ - [2.0,5.0] [3.0,7.2] [1.2,1.45] [-0.5,0.5] - [0,4000] [0,500]

IMRNSBH [1.776,3.253] [1.0,8.0] [1.252,11.597] [1.252,
3.000]

[-0.5,0.5] - [0,5000] [0,500]

IMRp [1.421,2.602] [1.0,8.0] [1.001,
9.277]

[1.001,
9.277]

[-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

IMRpT [1.421,2.602] [1.0,8.0] [1.001,
9.277]

[1.001,
9.277]

[-
0.99,0.99]

[-
0.99,0.99]

[0,4000] [0,500]

XHM [1.776,3.253] [1.0,8.0] [1.252,11.597] [1.252,11.597] [-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

Table C.8: Prior bounds for the q=3 simulation.
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Approximant ℳdet/𝑀⊙ q 𝑚det
1 /𝑀⊙ 𝑚det

2 /𝑀⊙ 𝑠1 𝑠2 Λ2 𝐷𝐿/Mpc

SEOB [2.184,4.016] [1.000,17.944] [1.000,22.953] [1.000,22.953] [-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

SEOBT [2.184,4.016] [1.000,17.944] [1.000,22.953] [1.000,22.953] [-
0.99,0.99]

[-
0.99,0.99]

[0,4000] [0,500]

SEOBNSBH [2.184,4.016] [1.000,17.944] [1.000,22.953] [1.000,3.000] [-0.5,0.8] - [0,5000] [0,500]

IMRNSBH [2.184,4.016] [1.000,17.944] [1.000,22.953] [1.000,3.000] [-0.5,0.5] - [0,5000] [0,500]

IMRp [2.184,4.016] [1.000,8.000] [1.001,14.317] [1.001,14.317] [-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

IMRpT [2.184,4.016] [1.000,8.000] [1.001,14.317] [1.001,14.317] [-
0.99,0.99]

[-
0.99,0.99]

[0,4000] [0,500]

XHM [2.184,4.016] [1.000,17.944] [1.000,22.953] [1.000,22.953] [-
0.99,0.99]

[-
0.99,0.99]

- [0,500]

Table C.9: Prior bounds for the q=6 simulation.
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Appendix D

Analysis Details for Calibration Error

Study

D.1 𝜂mis, {𝜂out} and {𝜂typ} for the Other Five Realiza-

tions

Here, in Figs. D-1 to D-5, we show the 𝜂mis, {𝜂out}, and {𝜂typ} for the other five

outlier cases identified for CEs during O3.

D.2 Spline Results

In Fig. D-6, we show the distance likelihoods for BNSs at an SNR of 50, where the

green and purple shaded distributions are obtained from the runs with the physiCal

and Spline methods, respectively, both miscalibrated by the same 𝜂mis. We report

∆𝐷𝐿 in Tab. D.1. The differences between the results are quite small compared to

those between the physiCal runs with and without CEs.
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Figure D-1: Large CEs, {𝜂out}1,LHO(blue), compared to the corresponding typical
distribution, {𝜂typ}1,LHO (orange), both showing the edges of the 1-𝜎 CIs in each
frequency bin. 𝜂mis

1,LHO is plotted in green.
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Figure D-2: Large CEs, {𝜂out}2,LHO(blue), compared to the corresponding typical
distribution, {𝜂typ}2,LHO (orange), both showing the edges of the 1-𝜎 CIs in each
frequency bin. 𝜂mis

2,LHO is plotted in green.
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Figure D-3: Large CEs, {𝜂out}3,LHO(blue), compared to the corresponding typical
distribution, {𝜂typ}3,LHO (orange), both showing the edges of the 1-𝜎 CIs in each
frequency bin. 𝜂mis

3,LHO is plotted in green.
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Figure D-4: Large CEs, {𝜂out}4,LLO(blue), compared to the corresponding typical
distribution, {𝜂typ}4,LLO (orange), both showing the edges of the 1-𝜎 CIs in each
frequency bin. 𝜂mis

4,LLO is plotted in green.
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Figure D-5: Large CEs, {𝜂out}5,LHO(blue), compared to the corresponding typical
distribution, {𝜂typ}5,LHO (orange), both showing the edges of the 1-𝜎 CIs in each
frequency bin. 𝜂mis

5,LHO is plotted in green.
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Figure D-6: 𝐷𝐿 likelihoods for the six scenarios, miscalibrated, physiCal (green) vs.
Spline (purple) runs, the vertical dashed lines mark the 25%, 50%, and 75% percentiles.
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CE Realization physiCal Spline

𝜂mis
1 −0.8% −1.5%

𝜂mis
2 −2.0% −2.6%

𝜂mis
3 −1.6% −1.4%

𝜂mis
4 −0.8% −0.6%

𝜂mis
5 −1.7% −1.2%

𝜂mis
6 0.2% 1.0%

Table D.1: ∆𝐷𝐿 in the likelihoods for physiCal vs. Spline results.
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