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Abstract

In this three-part thesis, Part I is an examination of the measurement process in classical
Hamiltonian mechanics. This part is concerned with the tradeoff that exists, when mea-
suring any observable of a system, between the disturbance inflicted upon the system and
the information that can be extracted. The main result takes the form of a Heisenberg-like
precision-disturbance relation: measuring an observable leaves all compatible observables
undisturbed but inevitably disturbs all incompatible observables. The magnitude of the
disturbance (the analogue of h̵) is found to be proportional, in a sense that is made precise,
to one’s initial uncertainty in the ready-state of the apparatus—a quantity that relates to
the temperature of the apparatus.

Part II of this thesis develops a model of the computations taking place in the deliber-
ative decision-making system of rodents, during wakefulness and sleep, with focus on the
role of hippocampus (HPC). In this model, medial prefrontal cortex performs high-level
planning, and then tasks HPC with fleshing out the details of the plan, as needed. We
describe this planning task of HPC as an optimal control problem, which allows us to draw
insights from the powerful mathematics of optimal control theory. The model makes novel
testable predictions, provides insights into memory consolidation during sleep, and offers
a paradigm capable of accommodating a wide range of observed phenomena, such as the
theta rhythm, the slow oscillation, spindle oscillations, sharp wave-ripples, θ-sequences, for-
ward and reverse SWR-sequences, the formation and strengthening of episodic memories,
and a need for two modes of operation—online and offline.

The two parts described above are the main content of this thesis. Part I falls within
the purview of classical theoretical physics, while Part II falls in that of computational
neuroscience. The two may seem unrelated; however, while each part is self-contained, I
see the two as connected. Part III of this thesis is my attempt to provide an outline of a
bigger picture, which sees the foregoing as lines of inquiry towards the same far-reaching
conjecture—one which has had a strong pull on my imagination during my PhD, and which
I hope to be able to address in the future. This conjecture is that the probability calculus
of quantum mechanics holds a kind of normative status for a class of decision problems
involving intertemporal choice under uncertainty—a class of problems of great importance
to artificial intelligence, brain sciences, economics, and, I argue, to physics too.

Thesis Supervisor: Matthew A. Wilson
Title: Professor of Neuroscience

Thesis Supervisor: Mehran Kardar
Title: Professor of Physics
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A closer look at classical
measurement1

Abstract

Measurement in classical physics is examined here as a process involving the joint evolu-
tion of an object-system and a finite-temperature measuring apparatus. For this, a model
of measurement is proposed which lends itself to theoretical analysis using Hamiltonian
mechanics and Bayesian probability. At odds with a widely-held intuition, we find that the
ideal measurement capable of extracting finite information without disturbing the system
is ruled out. In its place we find a Heisenberg-like precision-disturbance relation: measur-
ing an observable leaves all compatible observables undisturbed but inevitably disturbs all
incompatible observables. In this classical uncertainty relation the role of h̵ is played by an
apparatus-specific quantity,

¯
q. While this is not a universal constant, our model suggests

that
¯
q takes a finite positive value for any apparatus that can be built. (Specifically:

¯
q

vanishes in our model only in the unreachable limit of zero absolute temperature.) Addi-
tionally, the process of continuous measurement is examined, yielding a novel Liouville-like
master equation describing the dynamics of (a rational agent’s knowledge of) a system un-
der continuous measurement. The resulting equation is analogous to the stochastic master
equation used in continuous quantum measurement. I believe the approach presented here
points the way to studying the (Bayesian) epistemology of classical physics, which has until
now been overlooked and wrongly assumed to be trivial. These results suggest that said
epistemology has instead a non-trivial structure bearing a resemblance to the quantum
formalism. For this reason, these findings may be of interest to researchers working on
the foundations of quantum mechanics, particularly for ψ-epistemic interpretations. More
practically, these results may find applications in the fields of precision measurement, na-
noengineering and molecular machines.

I.1 Introduction

It is commonly held among the wider physics community that the topic of classical mea-
surement is essentially trivial. I don’t mean the modeling in physical detail of any one
laboratory setup, which of course can get very complicated, but just the examination of
“measurement” as a bare-bones physical process, idealized away from as many complica-
tions as possible; a theoretical physicist’s model of measurement. One way of stating the
wide-held intuition is that there is in principle no obstruction in classical physics to mea-
suring any observable of a system with arbitrary precision while disturbing the system
arbitrarily little. This intuition is in sharp contrast to the situation in quantum physics,
where the Heisenberg uncertainty principle (specifically the Ozawa inequality [1]) asserts
just such a limit. Surely influenced by this attitude, there is a correspondingly sharp

1This Part is adapted from my paper arXiv:2104.02064 [quant-ph], submitted for publication to the
journal Physical Review E.
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Section I.1. Introduction 11

contrast between the little attention ever payed to the measurement process in classical
physics, and the large attention payed over the decades (deservedly) to that same process
in quantum physics. To the best of my knowledge, only a handful of examples can be at-
tributed to the first category: Heisenberg’s own thought experiments in the late 1920’s [2]
(particularly Heisenberg’s microscope); although they served as the motivation for his
quantum uncertainty principle, they were essentially classical arguments, augmented only
by Einstein’s theory of the photon. In 1996 Lamb and Fearn [3] set up the problem of a
classical point particle (the system) in interaction with a second point particle (the “appa-
ratus”) subject to noise. They stopped short of a thorough analysis; their primary interest
being the quantum case. Recently Morgan [4] and Katagiri [5] made use of KvN formalism
in independent attempts to use quantum measurement theory to examine measurement in
classical mechanics.

The only long-lasting foray into classical measurement seems to be within the body of
work surrounding Maxwell’s demon and the foundations of thermodynamics. The demon
was first conceptualized by Maxwell in 1867 [6] as a “very observant and neat-fingered
being” capable of monitoring the molecules of a gas, and, by opening and closing a small
door without exerting any work, of sorting the high-energy molecules from the low, thus
creating a temperature gradient. This amplifier of fluctuations, if it existed, could then
be used to run a perpetual motion machine of the second kind, violating the second law.
Writing in 1929 Szilárd [7] realized that, if the second law was to hold, somewhere in
the demon’s monitoring of the molecules (i.e. in the measurement process) entropy had
to be produced. Soon afterwards von Neumann [8], in his reading of Szilárd, pointed
to information acquisition as the key step incurring entropy cost. The latter claim was
developed prominently in the 1950’s by Brillouin [9, 10] and Gabor [11]. But in the 1980’s
Bennett [12, 13] (building on work by Landauer [14]) argued against Brillouin and Gabor,
pointing instead to erasure of the measurement record as the key step incurring entropy
cost. This 150-year-long inquiry may be finally nearing a close in recent years, with the
answer appearing to be that both sides, Brillouin-Gabor and Bennett, had part of the
answer: and that the entropy cost of measurement can be traded between the acquisition
and erasure steps. This resolution is reviewed in [15], in an analysis that relies on quantum
(not classical) measurement theory.

The above illustrates three points which I would like to contend: (i) despite the wide-
held intuition, measurement in classical physics is far from trivial; (ii) it is a surprisingly
underdeveloped subject; and (iii) unacknowledged, it is a subject whose immaturity may
have long held back progress in some fields of physics. To address the issue, a reasonable
aim would be a theory of measurement in the context of Hamiltonian mechanics, which is
the mathematical framework at the foundation of classical physics. The research program
I’m suggesting can be summarized as: to systematically bring Bayesian probability to bear
on an ontology governed by classical Hamiltonian mechanics, with the full strength, and
no more, that is permitted by the geometro-algebraic structure of the ontology. That is; to
develop the (Bayesian) epistemology of classical Hamiltonian ontology. The present paper
aims to kickstart this program, with no ambition of being the final word.

We begin by noting that the assumption of perfect information regarding the initial
state of the measuring apparatus is unrealistic. In fact it is ruled out as a matter of
principle by the third law of thermodynamics; initial uncertainty must be present if for
nothing other than for finite-temperature thermal noise. Next we posit a model of the
measurement as a physical process. While some minimal assumptions are made concerning
the systems that can be used as measuring apparatuses, no restrictions are placed on the
system under measurement. This model enjoys substantial generality while at the same
time lending itself to Bayesian analysis. We then show that, in the process of measurement,
the uncertainty in the state of the apparatus propagates into two uncertainties regarding



12 Part I. A closer look at classical measurement

the object-system: one is the imprecision of the measurement; and the other an uncertainty
in the magnitude of the disturbance caused upon the system—that is, an observer effect.
And we find that these two are bound by a Heisenberg-like precision-disturbance relation.
In particular, while we find no obstacle in principle to making a measurement arbitrarily
precise, we do find an obstruction to realizing such a measurement without disturbance.
Thus our findings are at odds with the wide-held intuition.

Interestingly, the disturbance in question is not arbitrary but takes the particular form
of time-evolution under the Hamiltonian flow generated by the measured observable; the
only thing uncertain is how much “time” the system flowed. Thus observables in involution
(i.e. “compatible”) with the one measured are spared, while those not in involution (i.e.
“incompatible”) are disturbed. A general consequence of these results seems to be that
in classical physics, like in quantum physics, observables can be simultaneously perfectly-
precisely measured if and only if they are compatible.

Next, we derive a novel Liouville-like master equation describing the dynamics of (a
rational agent’s knowledge of) a system under continuous measurement. This equation,
which is analogous to the stochastic master equation appearing in continuous quantum
measurement [16], is capable of describing general sequences of measurements, including
inefficient measurements and simultaneous measurements of multiple observables.

While I hope our topic will be of interest to several fields of physics, it may be of
particular interest to ψ-epistemic interpretations of quantum mechanics; given that we
find indications that the epistemology of classical Hamiltonian mechanics is more similar
to the quantum formalism than has previously been recognized.

The rest of the Part is organized as follows. We begin in Section I.2 by reminding
the reader of the basic concepts and equations of Hamiltonian mechanics. Section I.3
does the conceptual heavy lifting; there we construct our measurement model and obtain
the basic results on which the rest of the paper is based. In Section I.4 we arrive at the
precision-disturbance relation. In Section I.5 we consider the problem of continuous weak
measurement over time, which enables us to discuss simultaneous measurements of multiple
observables, as well as inefficient measurements. The method of analysis there is drawn
directly from the field of continuous quantum measurement. In Section I.6 we discuss a few
relevant topics in the new light of our results: the similarities, and likely coexistence in the
real world, of the classical and quantum uncertainty relations; the epistemic limitations
inherent to classical Hamiltonian ontology; and the subtle interplay between ontology and
epistemology in a theory of measurement. The paper ends by contemplating some of the
many possibilities ahead; both the concrete and the speculative.

I.2 Brief recap of Hamiltonian mechanics

Hamiltonian mechanics is a confluence of differential, algebraic and symplectic geometry,
Lie algebra and Lie groups. A wonderful resource for the topic is [17].

We consider a continuous-time dynamical system over a 2n-dimensional symplectic
manifold, called phase space. The observables of the system (e.g. position, momentum,
angular momentum, etc) are the smooth, single-valued, real-valued functions defined glob-
ally over phase space. By convention we take observables to not depend explicitly on time.
(With this convention, any explicit time-dependence is regarded as specifying a different
observable at each moment in time.) The points in phase space can be expressed in lo-
cal canonical coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn) (Darboux’s theorem). In terms
of these coordinates, the state of the system evolves over time according to Hamilton’s
equations,

q̇(t) = ∂H
∂p

(q(t), p(t); t), ṗ(t) = −∂H
∂q

(q(t), p(t); t), (1)
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where at each moment the system’s Hamiltonian, H, is an observable. Notice that “Hamil-
tonian” and “H” are indexical terms; they don’t specify any concrete function over phase
space, but refer to whichever observable happens to serve as the generator of time-evolution
(as in (1)) for a given system at a given time. At each moment Hamilton’s equations de-
scribe a flow ΦH

τ on phase space. Along the integral curves of this flow the value of any
observable A(q, p) changes as

Ȧ = {A,H}, (2)

where {A,H} denotes the Poisson bracket,

{A,H} ≜
n

∑
j=1

(∂A
∂qj

∂H

∂pj
− ∂A

∂pj

∂H

∂qj
) . (3)

(Note that (2) follows from (1) after application of the chain rule to d
dtA(q, p); but also

contains (1) as special cases when A equals one of the canonical coordinates.) Two observ-
ables A,B for which {A,B} is identically zero are said to be in involution with each other.
In this case, by (2), the value of A remains constant along the integral curves of the flow
ΦB
t (and vice versa). It follows that any observable in involution with the Hamiltonian is a

constant of the motion. In particular, if H is not explicitly time-dependent then it is itself
a constant of the motion (conservation of energy). Including itself, a given observable can
be in involution with as few as one and as many as 2n independent observables, but only
as many as n independent observables can be all in involution with one another. On the
other hand, if {A,B} = 1 identically then A,B are said to be conjugate to each other. In
this case B is also said to be “the” generator of translations in A (and vice versa); because,
by (2), the value of A changes monotonically at unit rate along the integral curves of the
flow ΦB

t . A given observable, A, may fail to have a conjugate observable. In this case, in
a neighborhood of any regular point of A (i.e. where dA ≠ 0), it is still possible to speak of
a locally-defined conjugate “quantity”, B, which satisfies {A,B} = 1 but fails to satisfy the
stringent definition of a bona fide observable. This is illustrated on the 2D phase space
by the observable I = 1

2(q
2 + p2) (the Hamiltonian for the simple harmonic oscillator);

whose conjugate quantity φ = arg(q + ip) (the phase of oscillation for the sho) either fails
to be globally continuous, or else fails to be single-valued (depending on one’s choice of
definition).

Notice that the components of (q, p) satisfy the canonical relations

{qi, qj} = {pi, pj} = 0, {qi, pj} = δij , (4)

so each canonical coordinate is in involution with all other coordinates but one, to which
it is conjugate. A diffeomorphism of phase space, (q, p) ↦ (q′, p′), such that (q′, p′) again
satisfy these canonical relations is said to be a canonical transformation. Canonical trans-
formations have Jacobian determinant equal to 1, so they preserve the Liouville measure
of phase space volume, dnqdnp = dnq′dnp′. For any flow parameter, τ , the Hamiltonian
flow ΦH

τ is an example of an (active) canonical transformation; in particular, Hamilto-
nian flow preserves the Liouville measure (Liouville’s theorem). Changes of coordinates
implemented by (passive) canonical transformations are particularly convenient since they
preserve the simple form of the Liouville measure, the equations of motion (1, 2), and the
Poisson bracket (3).

I.3 A model of measurement in a Hamiltonian world

Suppose we wished to measure an observable A(q, p) of the system (1) at time t0. In
the world of Hamiltonian mechanics this can only be done by coupling the system to a



14 Part I. A closer look at classical measurement

measuring apparatus, where the joint system (= object-system + apparatus) is itself a
Hamiltonian system, with

Hjoint(q, p, x, y; t) =H(q, p; t) +Happ(x, y; t) +Hint(q, p, x, y; t). (5)

Here (x, y) are canonical coordinates on the 2m-dimensional phase space of the apparatus;
Happ is the apparatus’ Hamiltonian; and Hint is the interaction between system and appa-
ratus, which we will assume to be switched on only briefly around t = t0. We now stipulate
a model for the measurement.

I.3.1 System-apparatus coupling

Consider the “gauge”, or “pointer display”, of the apparatus; by which I mean the observable
of the apparatus which, after interaction with the system, we want to reflect the sought-
after value of A at time t0. Denote this observable of the apparatus by P (x, y). Suppose P
has a conjugate observable, Q(x, y) (so that {Q,P} = 1). For the interaction to imprint the
value of A on P , the interaction Hamiltonian must involve A and the conjugate quantity to
P , namely Q; because this is the generator of translations in P .2 The simplest interaction
of this form is the product3

Hint(q, p, x, y; t) = αδ(t − t0)A(q, p)Q(x, y), (6)

where α ∈ R/{0} is a constant of proportionality, and δ(t − t0) is the Dirac delta function
indicating that the measurement is idealized as taking place instantaneously at t0.

I.3.2 Readying the apparatus

Let us take a step back to consider how to initialize the apparatus into its “ready state”
prior to interaction at t0. Being, as we are, in the process of defining what we mean by
“measurement”, on pain of circularity we shouldn’t appeal to measurement to assess the
state of the apparatus, as might be needed to actively manipulate it into a state ready for
measurement of the system. This difficulty can be circumvented by letting low-temperature
thermalization take care of confining the state of the apparatus to a narrow region of its
phase space. The region in question can be specified experimentally by setting up a deep
energetic well there—a “trap”. This trap could be due to a confining gravitational or
electrostatic potential; a combination of near-field electric and magnetic fields; a light
field; atomic chemical bonds; etc. We write

Happ(x, y; t) =Hown
app (x, y) +Π(t)Htrap(x, y), (7)

where Hown
app is the apparatus’ own, or internal, Hamiltonian, which we take to be time-

independent; and Π(t) is a rectangular step-function taking only the values 1/0, describing
the on/off switch of the trap. The trap will be switched off for all t > t0; it is only switched
on in the time leading up to t0, to help bring the apparatus into its ready state, as we

2To be more precise: for any specified pointer P (x, y), by the Carathéodory-Jacobi-Lie theorem [18]
there exists, in a neighborhood of any regular point of P (i.e. where dP ≠ 0), a canonical coordinate system
for the apparatus in which P is one of the coordinates. By Q we mean the coordinate conjugate to P in
this system. The requirement that Q be a bona fide observable amounts to the non-trivial assumption
that this coordinate can be extended to a smooth single-valued function globally on phase space. As seen
in (4), P is in involution with all other coordinates of this system but Q. It follows that if, upon expressing
Hint in these coordinates, Q did not appear, then we would have {Hint, P} = 0; and by (2) the interaction
would have no immediate effect on the pointer P . Since this is the opposite of what we want, we see that
Hint should depend on Q.

3Note that this interaction is the classical analogue of that used in the von Neumann model of quantum
measurement [8].
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will now describe. The trap consists of a deep energetic well which, when switched on
(Π(t) = 1), sets the ground state of the apparatus at some point (x∗, y∗) of its phase
space. Without loss of generality we may set our coordinates such that (x∗, y∗) = (0,0),
and we may assume that the corresponding energy is Happ(x∗, y∗)∣trap on = 0. (Otherwise
these conditions can be met by shifted redefinitions of x, y,Happ.) We Taylor-expand
Happ(x, y)∣trap on around the ground state, obtaining a positive-definite quadratic form:

Happ(x, y)∣
trap on

=Hown
app (x, y) +Htrap(x, y) =

1

2
(x y) M̂ (x

y
) +O(3), (8)

where M̂ is a symmetric positive-definite 2m-by-2m matrix of coefficients, and O(3) de-
notes all higher-degree terms in the series. As shown by Whittaker [19] (see also theorem
by Williamson [20], explained in [17, appendix 6]), there exists a local linear canonical
coordinate transformation (x, y) ↦ (z,w) which reduces (8) to the normal form

Happ(z,w)∣
trap on

= 1

2

m

∑
i=1

(b2i z2
i +w2

i ) +O(3). (9)

Here b1 ≥ b2 ≥ ⋅ ⋅ ⋅ ≥ bm > 0 are constants with physical dimensions of angular frequency;
they are the natural frequencies of oscillation of the apparatus around its trapped ground
state.

Now to ready the apparatus: while the trap is on, the apparatus is brought into contact
with a thermal bath at some temperature T = 1/βkB, allowed to equilibrate, and then
isolated again.4 After this our knowledge about the state of the apparatus is given by the
Boltzmann probability distribution

ρ(z,w)dmzdmw ∝ exp{−βHapp(z,w)∣
trap on

} dmzdmw. (10)

Note that in the time between isolation from the bath and measurement at t0 the evolution
of the apparatus will preserve this distribution, as opposed to spoiling the preparation,
since Happ∣trap on is constant under the phase-space flow generated by itself and such flow
preserves the Liouville measure dmzdmw.

At this point we make three requirements that constrain the apparatuses, traps, and
temperatures allowed by our model. (i) We require that the trap be harmonic enough, or
the temperature be low enough, that in the Boltzmann distribution (10) the higher-degree
terms in (9) can be neglected. (ii) We require that at least one of the coordinates wi be
in involution with Hown

app . Let i = i∗ be the index of this special coordinate. (If given a
choice, we want the associated frequency bi∗ to be as large as possible, for a reason to
be seen in Section I.4.) The condition means that wi∗ will be a constant of the motion
of the apparatus when the trap is switched off—a desirable property for the pointer P
(introduced in Section I.3.1); so that the measurement record is stable after the interaction
has past. We thus identify the pointer P ≜ wi∗ and its conjugate Q ≜ zi∗ . We denote the
corresponding frequency by Ω ≜ bi∗ . Note the physical interpretation of Ω as the natural
frequency of oscillation of the pointer around its trapped state. Since Q,P are required
to be observables, in making these identifications we’re implicitly making our assumption
(iii): the pair of conjugate local quantities (zi∗ ,wi∗) are globally extendable to smooth
single-valued functions on phase space.

From now on Q,P are the only observables of the apparatus with which we will be
concerned. With the above requirements met, we can easily marginalize over all other

4Instead of removing the bath, we might require just that its coupling to the apparatus be weak enough
that it doesn’t spoil the measurement record, P , on the timescales of interest.
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variables in (10) to find the probability distribution over the pointer and its conjugate:

ρ(Q,P )dQdP = βΩ

2π
exp{−βΩ2

2
Q2 − β

2
P 2}dQdP. (11)

This is the apparatus ready state. It describes a preparation in which the pointer and
its conjugate have been set independently to zero, but there remains some uncertainty on
their exact values.

I.3.3 Integrating Hamilton’s equations

Integrating Hamilton’s equations for the joint system, the effect of the interaction (6) is to
instantaneously change the state of both object-system and apparatus as5

(q
p
)
t+0

= ΦA
αQ (q

p
)
t−0

(12a)

(Q
P
)
t+0

= ( Q
P − αA(q, p))

t−0

(12b)

where ΦA
τ is the transformation on the system’s phase space that implements flowing for

a “time” τ under the Hamiltonian flow generated by A. Having initialized the apparatus
to its ready state (11) prior to the interaction, then, in view of (12b), after the interaction
our state of knowledge of the apparatus, conditional on a given state of the system at the
time of measurement, is

ρ(Q,P ∣q, p)dQdP = βΩ

2π
exp{−βΩ2

2
Q2 − β

2
(P + αA(q, p))2}dQdP. (13)

Note that the dependence on (q, p) is only through A(q, p).
The trap on the apparatus is released at the moment of measurement (Π(t) = 0 for t >

t0), so that the apparatus Hamiltonian returns to its internal settingHown
app . By construction

the pointer P is in involution with this Hamiltonian, so it constitutes a stable record of the
measurement. At this time (i.e. any time after t0) we read the pointer on the apparatus,
yielding some definite value P ∗, or equivalently

A∗ ≜ −P
∗

α
. (14)

(A∗ is just the reading on the pointer with the scale set appropriately.) Note that this
does not mean that the value of A at the time of measurement is A∗! Rather, given this
datum, the likelihood function for the value of A at the time of measurement is, from (13),

ρ(A∗∣A)dA∗ =
√

α2β

2π
exp{−α

2β

2
(A∗ −A)2}dA∗. (15)

This completes our model of measurement. Themeasurement record A∗, or equivalently the
likelihood function (15) (with A∗ specified), constitutes the outcome of the measurement.

5To do this calculation it helps to approximate the δ by a square impulse of width ∆t and height 1/∆t.
As ∆t is taken smaller and smaller, the joint Hamiltonian (5) becomes dominated by Hint during the
interaction, so that H and Happ can be neglected during the brief time ∆t. Noting that both A and Q
are constant under the flow generated by the interaction Hamiltonian (6), both parts of (12) then follow
readily.
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I.3.4 Consuming the measurement

There are two operations that one, as a recipient, should perform to consume the informa-
tion of the measurement. The first is triggered by the information that the observable A
of the system was measured at time t0 by the stipulated procedure, with specified settings
(α,β,Ω). As seen in (12a), the interaction involved in this measurement affects the state of
the system by causing it to move along the flow generated by A for some unknown “time”
αQ. If one knew the value of Q then one should change their probability distribution about
the state of the system at time t0 according to

ρ(q, p; t−0) ↦ ρ(q, p; t+0) = [(ΦA
αQ)∗ ρ] (q, p; t

−
0),

where (ΦA
τ )∗ denotes the push-forward of the transformation ΦA

τ , defined as [(ΦA
τ )∗ρ](q, p) ≜

ρ(ΦA
−τ(q, p)); and the +/− superscripts on t0 are meant as a reminder that this update re-

flects a physical transition of the system that took place in a short time interval around
t0. But one does not know the value of Q; all that is know about it is expressed by the
probability distribution (11). One folds this in by marginalizing over Q:

ρ(q, p; t+0) =
√

βΩ2

2π
∫

∞

−∞
dQ exp{−βΩ2

2
Q2}[(ΦA

αQ)∗ ρ] (q, p; t
−
0). (16a)

The second operation is triggered by the information of the measurement outcome (15).
One assimilates this by performing the Bayesian update ρpri(q, p; t0) ↦ ρpost(q, p; t0), with

ρpost(q, p; t0) ∝ ρpri(q, p; t0)ρ(A∗∣A(q, p))

∝ ρpri(q, p; t0) exp{−α
2β

2
(A∗ −A(q, p))2} , (16b)

where the omitted factor of proportionality is just the normalization, obtained by integrat-
ing the expression shown over the system’s phase space (∫ dnqdnp). Since multiplication
by a function of A commutes with the push-forward (ΦA

τ )∗, operations (16a, 16b) can be
performed in either order to the same effect. If (16b) is performed first, it corresponds to
updating one’s knowledge about the state the system was in before the measurement was
made (i.e. at t−0); if second, about the state the system was left in by the measurement.
Notice that if only the fact of the measurement is revealed but not the outcome (in this
case we say the outcome was discarded), then one should only perform operation (16a),
not (16b).

Finally, if a single number is desired as an objective quantification of the measured
observable (i.e. not biased by anyone’s prior), the maximum-likelihood estimate can be
given, from (15):

A∣
t0
= A∗ ± 1√

α2β
(17)

(mean ± standard deviation).6 We will refer to

εA ≜ 1√
α2β

(18)

as the imprecision of the measurement. (But notice that to translate this to an uncertainty
in a given agent’s knowledge of A we must first combine the likelihood function with the
agent’s prior, as in (16b).)

6The justification for calling this number a “mean ± standard deviation” is that that is what
it corresponds to in the posterior (16b) when the marginalized prior ρpri(A′; t0) ≜ ∫ dnqdnp δ(A′ −
A(q, p))ρpri(q, p; t0) is sufficiently flat.
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I.3.5 Measurement strength and apparatus quality parametrize our model

Of the three parameters (α,β,Ω) entering our model—respectively the constant of propor-
tionality in the interaction Hamiltonian (6), the (inverse) temperature of the apparatus,
and the frequency of oscillation of the apparatus’ pointer around its trapped ground state—
only the two combinations

k ≜ α
2β

8
> 0 and

¯
q ≜ 2

βΩ
> 0 (19)

appear independently in the final results, (16a, 16b), which can be written as

ρ(q, p; t+0) = ∫
∞

−∞

dτ√
4πk

¯
q2

exp{− 1

4k
¯
q2
τ2} [(ΦA

τ )∗ ρ] (q, p; t
−
0), (20a)

ρpost(q, p; t0) ∝ ρpri(q, p; t0) exp{−4k (A∗ −A(q, p))2} . (20b)

We will refer to k as the strength of the measurement; indeed, in view of (18), the larger
k the higher the measurement’s precision.7 Its physical dimensions are [k] = [A]−2.

For a reason to be seen next, we will refer to
¯
q (“q-bar”) as the inverse quality of the

apparatus (i.e. lower values of
¯
q will correspond to higher-quality devices). Note that it

has physical dimensions of action.

I.4 A Heisenberg-like precision-disturbance relation in Hamil-
tonian mechanics

Our measurement model is characterized by the pair (k,
¯
q); respectively the strength of the

measurement, and the (inverse) quality of the apparatus. As has just been said, we can
make our measurement of A more precise by cranking up the strength, k, which we might
think of as a knob on our experimental setup. However, notice that the more precisely A is
measured (i.e. the larger k), the more uncertain we are about the magnitude of the back-
action, or observer effect, in (20a) (i.e. the larger the variance, 2k

¯
q2, in the “flow time”, τ).

It’s worth emphasizing that this disturbance of the system is not arbitrary, but has the
form of time-evolution along the Hamiltonian flow generated by the measured observable,
A; the only thing uncertain is how much “time” the system flowed. We can see that this
disturbance will affect some observables of the system more than others: in particular, any
observable B in involution with A will emerge undisturbed in the immediate aftermath of
the measurement (although subsequent time-evolution under the system’s own dynamics
will cause the initial disturbance to “leak into” such a B, unless B is also in involution with
H).

Concretely, we find that the imprecision of a measurement (18), and the magnitude of
the disturbance caused by the measurement upon the system,

ηA ≜
√

2k
¯
q2, (21)

obey the inverse relation
εAηA = ¯

q

2
, (22)

7Given the definition of A∗ in (14), one might worry that not just εA, but also A∗ scales with 1/
√
k,

but that’s not the case: notice, from (13), that P ∗ is drawn from a gaussian centered at −αA. Obviously
the value of A is independent of our decision to measure it, and a fortiori of our setting of α. Hence it’s
the reading on the dial, P ∗, that scales with α, so A∗ is unaffected (in expectation) by the strength of the
measurement.
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which is fixed for a given apparatus quality; independent of the identity of the system
measured, of that of the system used as measuring apparatus, of the measurement strength
and of the choice of observable measured. The product on the left-hand side can easily
be made larger (see discussion in Section I.6.1) but not smaller, as far as I can tell. To
the extent that our model of measurement has a claim to generality, relation (22) will be
a general principle. This Heisenberg-like precision-disturbance relation (or “uncertainty
relation” for short) suggests an obstruction to how close we can come in a world governed
by Hamiltonian mechanics to the idealization of measurement without disturbance. Note
that this relation is softer than the Heisenberg uncertainty principle of quantum mechanics:
for any given apparatus one will have a finite obstruction on the right-hand side of (22),
but one can always endeavor to make the obstruction smaller by cooling the apparatus
further or tightening the trap (i.e. improving apparatus quality). Instead this obstruction
is of a kind with the third law, to which it is clearly related: it suggests that it is impossible
by any procedure, no matter how idealized, to reduce the observer effect of measurement
to zero in a finite number of operations.

I.5 Continuous measurement over time, and simultaneous
measurement of multiple observables

Extracting information about the system by measurement increases our knowledge about
some aspect of it. However, we’ve seen that any such measurement according to our
model will disturb the system to an extent that we cannot monitor; and this decreases
our knowledge about some other aspect of the system. For a single measurement this
tradeoff is expressed by the precision-disturbance relation (22), or in more detail by the
updates (20a, 20b). In this section we explore the compound effect of such tradeoff due to
multiple measurements; specifically, a continuous succession of vanishingly-weak measure-
ments. This will allow us, in Section I.5.3, to treat the cases of simultaneous measurement
of multiple observables, and of inefficient measurements. The method of analysis we fol-
low is drawn from the field of continuous quantum measurement, which addresses the
corresponding problem in that setting. (See for example [16].)

Subdivide a finite interval of time [0, T ] into N equal subintervals demarcated by
t0 = 0 < t1 < t2 < ⋅ ⋅ ⋅ < tN = T , with tj = j∆t. For each j ∈ {1, . . . ,N}, select an observable
Aj = Aj(q, p) of the system, and prepare for it a measurement (kj∆t,

¯
qj) to be carried out

at time tj . Notice that we’ve scaled the strength according to the size of the subintervals;
smaller ∆t means each individual measurement is weaker, but a greater number of them
fit into [0, T ]. We will see that this is the right scaling for the effects to converge when
we take the limit of smaller and smaller ∆t. (Note that this changes the physical dimen-
sions of kj ; they are now [kj] = [Aj]−2 ⋅ time−1.) The resulting tuple of pointer readings
A∗ ≜ (A∗

1 ,A
∗
2 , . . . ,A

∗
N) constitutes the measurement record for the entire succession of mea-

surements. To assimilate the j-th measurement we perform the two operations (20a, 20b),
resulting in the update

ρ(q, p; tj+1) ∝ e
−4kj∆t(A

∗
j−Aj(q,p))

2

∫
∞

−∞

dτ e
− 1

4(kj∆t)
¯
q2
j

τ2

√
4π(kj∆t)

¯
q2
j

[(Φ
Aj
τ )

∗
ρ] (q, p; tj). (23)

As ∆t becomes small, the exponential inside the integral vanishes except for small τ . For
small τ , the push-forward

[(ΦA
τ )∗ ρ] (q0, p0) = ρ (ΦA

−τ(q0, p0)) = ρ(q(−τ), p(−τ)) (24)

can be calculated by Taylor-expanding the function τ ↦ ρ(q(−τ), p(−τ)) around τ = 0;
using the chain rule to pass all time-derivatives onto q, p, and calculating the latter from
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Hamilton’s equations with Hamiltonian A. The result is

(ΦA
τ )∗ ρ = ρ + τ{A,ρ} +

τ2

2
{A,{A,ρ}} +O(τ3). (25)

Putting this into (23), the integral can then be done order-by-order. The odd-order terms
all vanish by symmetry, leaving us with

ρ(q, p; tj+1) ∝ exp{−4kj∆t (A∗
j −Aj)

2}(ρ + kj
¯
q2
j∆t{Aj ,{Aj , ρ}} +O(∆t2))

RRRRRRRRRRR(q,p;tj)
. (26)

I.5.1 Discarded measurement record

Let’s pause to consider the case in which the measurement record A∗ is discarded. In this
case we should skip update (20b), which amounts to dropping the exponential factor and
the omitted proportionality factor in (26). Taking then the limit ∆t → dt describing a
continuous succession of vanishingly-weak measurements, we arrive in this case (discarded
measurement record) at

∂ρ

∂t
= {H,ρ}

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
internal dynamics
Hamiltonian flow
info preserved

+ k
¯
q2{A,{A,ρ}}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
observer effect

diffusion along flow ΦAτ
info of compatible observs. preserved

other info lost

(27)

where we’ve introduced the well-known Liouville term {H,ρ} accounting for the internal
dynamics of the system under H [21], which we had been ignoring until now; and all
quantities shown may be explicit functions of time. This is a Liouville-like master equation,
with an additional second-order term due to the observer effect of measurement. We can
get some sense for the effect of this new term as follows. Let B(q, p; t) denote any function
over phase space, possibly explicitly time-dependent. Here and throughout let’s use ⟨ ⋅ ⟩ to
denote the phase-space average:

⟨B⟩ ≜ ∫ dnqdnpρ(q, p; t)B(q, p; t). (28)

In Appendix I.A we prove that under master equation (27) any such phase-space average
evolves as

d

dt
⟨B⟩ = ⟨{B,H}⟩ + ⟨∂B

∂t
⟩ − k

¯
q2 ⟨{A, log ρ}{A,B}⟩ . (29)

The first term on the right-hand side of this equation is due to the Liouville term in (27);
the second term is due to any explicit time-dependence of B; and the third term is due to
the second-order term in (27). As a special application of this equation consider B = − log ρ,
in which case the phase-space average is the Gibbs entropy:

S(t) ≜ ⟨− log ρ⟩. (30)
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It is not hard to show that the first two terms on the right-hand side of (29) vanish in this
case.8 Thus we find that under dynamics (27),9

Ṡ = k
¯
q2 ⟨{A, log ρ}2⟩ ≥ 0. (31)

It is a well-known result that S(t) remains constant (Ṡ = 0) under the Liouville equation
∂ρ/∂t = {H,ρ} (see example in Figure 1b). In breaking with that, we have just found
that entropy generally increases over time under (27) on account of the new term. Thus
the Liouville term preserves information, while the second-order term causes information
loss. Indeed, in accordance with our discussion in Section I.4 concerning the nature of
the observer effect, this term describes diffusion along the flow lines generated by the
instantaneous observable A(q, p; t) (see example in Figure 1c). This diffusion preserves,
instant-to-instant, information pertaining to observables in involution with A(q, p; t), while
it erases information pertaining to observables not in involution with it.

We should note that master equation (27) has appeared in the literature before, outside
the context of measurement. It appeared in [22], which studied stochastic optimization
problems. And a generalization of it appeared in [23], which studied Hamiltonian systems
driven by colored noise.10

I.5.2 Simulated measurement record

Returning now to (26), suppose instead that the measurement record is not discarded but
that we have only yet read up to the (j−1)-th entry; i.e. A∗

1 through A∗
j−1 are known while

A∗
j onward are not. We would like to simulate ahead of time (say, on a computer) how our

state of knowledge will evolve as we continue to read more of the record. However, without
the benefit of hindsight the upcoming record entries appear to us as random variables.
The language for this kind of simulation is stochastic calculus. (See tutorial on stochastic
calculus in [16].) Let us first ask: what should be our probability distribution for the
upcoming outcome, A∗

j ? Making use of the likelihood function (15), this question can be
answered in terms of our current knowledge of the value of Aj :

ρ(A∗
j ; tj) = ∫ dAj ρ(Aj ; tj)ρ(A∗

j ∣Aj)

∝ ∫ dAj ρ(Aj ; tj) exp{−4kj∆t (A∗
j −Aj)

2} . (32)

As ∆t → dt, the exponential in this expression becomes very wide and spread out as a
function of Aj . The distribution ρ(Aj ; tj) becomes very narrow by comparison, and can be
replaced by a Dirac delta, which must be centered at ⟨Aj⟩ for the means to match. Using
the delta to do the integral over Aj we have, up to a normalization factor,

ρ(A∗
j ; tj) Ð→

∆t→dt
exp{−4kj∆t (A∗

j − ⟨Aj⟩)
2} . (33)

8Proof: by identity (64) from Appendix I.A, the first term on the right-hand side of (29) can be written
as ∫ H{ρ,− log ρ}, which is zero because the bracket vanishes. The second term on the right-hand side
of (29) is ∫ ρ ∂∂t(− log ρ) = −∫ ∂ρ

∂t
= − d

dt ∫ ρ = −
d
dt

1 = 0.
9(31) is a special case of a more general result,

d

dt ∫
dnqdnpf(ρ) = −k

¯
q2
∫ dnqdnpf ′′(ρ){A,ρ}2,

which holds under dynamics (27). (We omit this result’s proof, which involves steps similar to those leading
to (31).) Here f ∶ R→ R is any smooth function for which the shown integrals converge. It follows that for
every such function, f , which is downward-concave, we have an H-theorem, d

dt ∫ f(ρ) ≥ 0. (31) is the case
f(ρ) = −ρ log ρ.

10I thank an anonymous referee for pointing out these connections.
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Figure 1: (Rotated. Caption next page.)
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Figure 1: (Previous page.) Master equation dynamics in various measurement
regimes. Evolution of the state of knowledge ρ(q, p; t) of a rational agent under master
equation (39) is illustrated in a simple example: the system under measurement is a 1D
simple harmonic oscillator (sho); the measurement is characterized by constant k,

¯
q and

fixed A; the measured observable is the energy A = H ≜ 1
2(ω

2q2 + p2); and the initial
distribution over phase space is unimodal. Although not proven here, three timescales
are involved: that of internal dynamics, τdyn ∼ 1/ω; that of diffusion due to observer
effect, τdif ∼ 1/k

¯
q2ω2; and that of collapse due to Bayesian update on the measurement

record, τcol ∼ 1/k∆E2, where ∆E is the target certainty on H (i.e. τcol is the characteristic
timescale for the variance of ρ(H; t) to fall below ∆E2). (a) Phase portrait showing level
sets of the sho Hamiltonian. (b–e) Snapshots of ρ(q, p; t) at successive times, indicated
at top in units of the sho period, for four different measurement regimes (rows). The
simplified master equation in each regime is indicated at left. For ease of visualization the
color scheme (bottom right) is normalized anew for each plot. (b) Regime τdyn ≪ τdif, τcol;
describes an isolated system; (39) reduces to the Liouville equation ∂ρ/∂t = {H,ρ}. (c)
Regime τdyn ∼ τdif ≪ τcol; describes case of discarded measurement record; (39) reduces
to (27). Notice entropy increase, in accordance with (31), due to diffusion along the
flow generated by A. (d) Regime τdyn ∼ τcol ≪ τdif; describes an approximation to ideal
classical measurement with minimal disturbance. Notice the trend of decreasing entropy,
in accordance with (42), due to collapse towards the measurement outcome. (e) Regime
τdyn ∼ τcol ∼ τdif; describes the three processes (dynamics, diffusion and collapse) happening
together. Notice the tradeoff between information about A and information about the
conjugate quantity (sho phase). (f) Evolution of the first four cumulants of ρ(A; t) in
regime d (equivalently regime e). For ease of visualization each cumulant is rescaled to 1
at t = 0. Note qualitative agreement with (44).

By a simple change of variables we introduce ∆Wj , our probability distribution of which
is a zero-mean Gaussian with variance ∆t, and in terms of which

A∗
j = ⟨Aj⟩ +

1√
8kj

∆Wj

∆t
. (34)

The value of expressing (33) this way is two-fold. From a simulation standpoint, we can
use a random number generator to sample ∆Wj from its Gaussian distribution, and (34)
then tells us how to convert this into a sample of A∗

j . And from an analysis standpoint,
this expression enables a very convenient form of calculation: in the limit ∆t→ dt we write

A∗ = ⟨A⟩ + 1√
8k

dW

dt
, (35)

where W (t) ≜ ∫
t

0 dW is a standard Wiener process, with dW obeying the basic rule of
Itô calculus dW 2 = dt. Notice that ∆Wj is statistically-independent from all quantities
appearing up to time t = tj . Using ⟪ ⋅ ⟫ to denote averaging over the Wiener process, we
have in particular, for any function f(ρ,A) of the present ρ and A:

⟪f(ρ,A)dW⟫ = f(ρ,A)⟪dW⟫ = 0. (36)

Taking stock: given ρ(q, p; tj) for a given time tj we can use it to calculate ⟨Aj⟩ (as in (28)),
and combine this with the output of a random number generator as in (34) to simulate the
upcoming entry of the measurement record A∗

j . We can then use (26) to calculate what our
updated state of knowledge ρ(q, p; tj+1) would be upon reading that entry, and iterate the
process. Analytically we proceed as follows. Substitute (34) into (26); expand the square
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in the exponent, discarding the overall factor exp{−∆W 2
j /2∆t} which is independent of

(q, p); and Taylor-expand the exponential, keeping in mind that powers of ∆Wj count for
“half an order”, to obtain

ρ(q, p; tj+1) ∝ (1 − 4kj∆t(Aj − ⟨Aj⟩)2 +
√

8kj∆Wj(Aj − ⟨Aj⟩)

+ 4kj∆W
2
j (Aj − ⟨Aj⟩)2 +O(∆t∆Wj))(ρ + kj

¯
q2
j∆t{Aj ,{Aj , ρ}} +O(∆t2))

RRRRRRRRRRR(q,p;tj)
.

(37)

In the limit of continuous measurement ∆t→ dt,∆Wj → dW,∆W 2
j → dt this reduces to

ρ(q, p; t + dt) ∝ ρ + k
¯
q2{A,{A,ρ}}dt +

√
8k(A − ⟨A⟩)ρdW

RRRRRRRRRRR(q,p;t)
, (38)

where again all quantities shown may be explicit functions of time. One can check that
the right-hand side is already normalized, so the omitted factor of proportionality is 1. We
arrive in this case (simulated measurement record) at

∂ρ

∂t
= {H,ρ}

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
internal dynamics
Hamiltonian flow
info preserved

+ k
¯
q2{A,{A,ρ}}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
observer effect

diffusion along flow ΦAτ
info of compatible observs. preserved

other info lost

+
√

8k(A − ⟨A⟩)ρ dW
dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bayesian update

collapse towards measurement outcome
non-linear & non-local

⟪∆info⟫≥0

,

(39)

where again we’ve re-introduced the Liouville term {H,ρ} accounting for the internal dy-
namics of the system. Compared to (27) we now have a new stochastic term appearing,
which is due to assimilation of the measurement record via Bayesian update. It is interest-
ing to note that this term is both non-linear and non-local in ρ, since ⟨A⟩ depends on the
value of ρ everywhere on phase space. To get some sense for the effect of this new term, in
Appendix I.B we prove that under master equation (39) the Gibbs entropy (30) evolves as

Ṡ = k
¯
q2 ⟨{A, log ρ}2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
observer effect
∆entropy≥0

−4kσ2
A −

√
8k ⟨(A − ⟨A⟩) log ρ⟩ dW

dt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bayesian update
can be positive or negative

, (40)

where
σ2
A = σA(t)2 ≜ ⟨(A − ⟨A⟩)2⟩ (41)

is the variance in our knowledge of A(q, p; t) at time t. The first term on the r.h.s. of (40)
is familiar from (31); it describes increasing entropy due to the observer effect of mea-
surement. The remaining two terms are due to the stochastic term in (39); these two
together may be positive for particular measurement outcomes, but they are non-positive
on average, as can be seen by invoking (36):

⟪Ṡ⟫ = k
¯
q2 ⟨{A, log ρ}2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
observer effect
∆entropy≥0

− 4kσ2
A

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bayesian update
⟪∆entropy⟫≤0

. (42)

Thus the stochastic term in (39) leads, on average, to increasing information (see example
in Figure 1d,e). To gain further insight into the effects of this term, suppose the measured
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observable is fixed A = A(q, p), and consider our PDF over this observable, ρ(A; t), which
is just the marginal

ρ(A′; t) ≜ ∫ dnqdnp δ(A(q, p) −A′)ρ(q, p; t). (43)

Let κi denote the i-th cumulant of this distribution. In Appendix I.C we prove the following
hierarchy of equations describing the contribution of the stochastic term in (39) to the
evolution of these cumulants:

dκ1 =
√

8k κ2 dW, (44a)

dκ2 =
√

8k κ3 dW − 4k(2κ2
2)dt, (44b)

dκ3 =
√

8k κ4 dW − 4k(6κ2κ3)dt, (44c)

dκ4 =
√

8k κ5 dW − 4k(8κ2κ4 + 6κ2
3)dt, (44d)

. . .

Notice in particular the trends ⟪κ̇1⟫ = 0, ⟪κ̇2⟫ ∼ −⟪κ2⟫2, ⟪κ̇3⟫ ∼ −⟪κ3⟫, ⟪κ̇4⟫ ∼ −⟪κ4⟫, . . . .
These trends tell us that (supposing A is not explicitly time-dependent and the Liouville
term does not intervene too strongly) the stochastic term in (39) causes all cumulants of
ρ(A; t) higher than second to vanish exponentially fast, leaving ρ(A; t) a Gaussian; it then
causes the variance to vanish like ∼ 1/t, while the mean jiggles around in a random walk of
zero drift and volatility decaying with the variance. In the limit in which the measurement
process is complete, ρ(A; t) converges to a delta distribution centered at the simulation’s
putative true value of A. (See example in Figure 1d–f.)

I.5.3 Simultaneous and inefficient measurements

Simultaneous weak measurement of multiple observables A1(q, p), . . . ,As(q, p), whether
these are in involution or not, can be handled by letting A(q, p; t) in (39) switch between
these observables on a fast time scale. Inefficient measurements can be handled in this way
too, by sporadically (on the fast time scale) discarding some of the outcomes some of the
time, thus reducing (39) to (27) at those times. By averaging the resulting dynamics over
the fast time scale we’re left with

∂ρ

∂t
= {H,ρ} +

s

∑
j=1

kj
¯
q2
j {Aj ,{Aj , ρ}} +

s

∑
j=1

√
8νjkj(Aj − ⟨Aj⟩)ρ

dWj

dt
, (45)

where (kj ,
¯
qj , νj) describes the measurement setup for the j-th observable, and Wj(t) ≜

∫
t

0 dWj are independent Wiener processes for j ≠ j′. Here νj ∈ [0,1] is the efficiency of
the j-th measurement. A perfectly efficient measurement has ν = 1 (as in (39)), while a
perfectly inefficient measurement has ν = 0 and corresponds to discarding the outcome (as
in (27)).

The analogues of (40) and (42) for the above equation are

Ṡ =
s

∑
j=1

kj
¯
q2
j ⟨{Aj , log ρ}2⟩ −

s

∑
j=1

(4νjkjσ
2
Aj +

√
8νjkj ⟨(Aj − ⟨Aj⟩) log ρ⟩

dWj

dt
) , (46)

and
⟪Ṡ⟫ =

s

∑
j=1

kj
¯
q2
j ⟨{Aj , log ρ}2⟩ −

s

∑
j=1

4νjkjσ
2
Aj . (47)

If all the outcomes are discarded (νj = 0 for all j) we’re left with

∂ρ

∂t
= {H,ρ} +

s

∑
j=1

kj
¯
q2
j {Aj ,{Aj , ρ}}, (48)
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which is linear, local, and deterministic; and

Ṡ =
s

∑
j=1

kj
¯
q2
j ⟨{Aj , log ρ}2⟩ ≥ 0. (49)

I.6 Discussion

I.6.1 Comparing the quantum and classical uncertainty relations

How does our classical precision-disturbance relation (22) compare to the Heisenberg un-
certainty principle of quantum mechanics? The latter can be stated in a few different
forms. We will consider the Kennard-Weyl-Robertson form in section I.6.2, where we
discuss the epistemology of classical Hamiltonian ontology. Here we consider the “joint
measurement form” [24–27], pertaining to simultaneous measurement of two observables,
A and B. When A,B are conjugate to each other this reads:

εAεB ≥ h̵
2
, (50)

where εA and εB denote the imprecisions in the measurement of A and B, respectively;11

and h̵ is the reduced Planck constant.
One superficial difference between (22) and (50) is that one is an equality while the

other an inequality. However, this difference is illusory. The product on the left-hand side
of (22) can easily be made larger than the right-hand side, so that for a more general class
of measurement models we have

εAηA ≥ ¯
q

2
. (51)

Indeed, we have defined inefficient weak measurements in Section I.5.3, as those with ν < 1
in (45). Such measurements will fail to saturate (51). The extreme case of this is when
the measurement outcome is discarded (εA → ∞;ηA unchanged). Another way to modify
our measurement model that fails to saturate (51) is if the apparatus’ pointer fails to be in
involution with Hown

app , so that some amount of “deterioration” of the measurement record
can happen between the time of the system-apparatus interaction and whenever the record
is read. In the opposite direction, one might ask: could not the bound (51) be exceeded,
say, by using a coupling and pointer, (Q,P ), that are correlated in the apparatus ready
state? To achieve the latter, one would need (Q,P ) to not diagonalize the quadratic
form (9); namely, instead of choosing (Q,P ) = (zi∗ ,wi∗), one would choose (Q,P ) related
to (zi∗ ,wi∗) by some linear canonical transformation. In fact, although not proven here,
I find that this approach leads to the same precision-disturbance relation (22); the only
difference (aside from the Bayesian analysis becoming more involved) is that a systematic
component is added to the observer effect. This component can be corrected given the
measurement outcome A∗; so it doesn’t count towards the disturbance ηA.12 In summary,
these remarks suggest that, while it is easy to do worse than (22), it may not be possible
to do better; i.e. they suggest inequality (51) to be the general principle.

A second difference, which remains between (50) and (51), is that one involves the prod-
uct of two imprecisions, while the other the product of an imprecision with a disturbance
magnitude. This difference can be bridged as well. Recall that the disturbance in question
amounts to flowing along ΦA

τ for an unknown “time” τ whose uncertainty is ηA. Under
11 To ease comparison between the quantum and classical cases, it’s convenient to speak of quantum

mechanics from a realist/hidden-variable interpretation, in which measurement outcomes are outcomes
about an underlying unknown state. We won’t concern ourselves here with the ongoing debate about the
plausibility of such an interpretation.

12Recall: ηA is defined as our uncertainty in τ (τ being the “flow time” for which the measurement
caused the system to move along ΦAτ ).
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Figure 2: Coexistence of quantum and classical uncertainty relations in the real
world. One may expect the quantum and classical uncertainty relations to coexist in
reality based on the observation that a Hamiltonian world effectively emerges from quan-
tum mechanics at macroscopic scales. The quantum relation dominates at low apparatus
temperature and/or tightly-trapped pointer in the apparatus ready state; when

¯
q < h̵ (be-

low the dashed diagonal). The classical relation dominates in the other direction. Here
f = Ω/2π and T = 1/kBβ. Notice that for the range of (f, T ) shown, the obstruction is
never larger than ∼ 10−17J⋅s.

this flow the “rate” of change of any observable B is as given by (2): d
dτB = {B,A}. In

particular, if B is the conjugate to A, so that {B,A} = 1, then B increases monotonically
at the steady rate of 1; and the net effect of the flow on B is simply to displace its value by
τ . (This final step can fail if B has a discontinuity somewhere; so it is important that B be
a bona fide observable, not just a local quantity such as the phase φ of an oscillator.) So
the uncertainty in the “flow time”, ηA, translates directly into a disturbance in the value of
the conjugate observable, B. This places a lower bound on the imprecision, εB, with which
any subsequent measurement can hope to determine the original value of B: εB ≥ ηA, with
equality holding only if the measurement of B is done at full strength (k → ∞). Thus we
have

εAεB ≥ ¯
q

2
, (52)

and the parallel with (50) becomes apparent. Historically it seems that Heisenberg’s own
interpretation of the uncertainty principle was as a precision-disturbance relation [2], not
very different in spirit from (51). And in recent years work in quantum mechanics has
payed considerable attention to precision-disturbance relations, yielding formulas similar
to (51) (with h̵ in place of

¯
q) [1, 28–31].

The real world is no doubt quantum mechanical, and so the Heisenberg uncertainty
principle is fundamental. But as we know, as one “zooms out” to larger scales somehow an
approximately Hamiltonian world effectively emerges (Bohr’s correspondence principle and
the quantum-to-classical transition). Hand in hand with the emergence of this effective
Hamiltonian world I expect our classical uncertainty relation to gain traction. Figure 2
illustrates how the classical and quantum relations then must coexist. For a tight enough
trap and/or cold enough apparatus (below the dashed diagonal), the obstruction in (52)
is brought below h̵/2 and becomes unreachable; the quantum obstruction acts like rock
bottom. For less tight traps and/or warmer apparatuses the obstruction in (52) rises
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above h̵/2 and begins to dominate. Taken together, one may expect to have in the real
world an obstruction that interpolates between these two; something along the lines of

εAεB ≥ h̵ +
¯
q

2
or perhaps

h̵/2
1 − e−h̵/¯q

; (53)

it will take a detailed quantum calculation to work out the precise formula (see Section I.6.4
for a germ of how this might be done). To gain some perspective for the scales involved, note
from Figure 2 that, at room temperature, trap frequencies any lower than about 12THz
(corresponding to light wave-lengths ≳ 25µm) are already enough to put us in the classical
regime. At the same time, even for the highest temperatures and lowest frequencies shown
in the top-left of Figure 2, the classical obstruction hardly becomes larger than ∼ 10−17J⋅s;
an extremely small quantity by macroscopic standards. And yet, even in more moderate
regimes towards the center of Figure 2, the classical obstruction may be relevant in the
contexts of precision measurement, nanoengineering and molecular machines.

I.6.2 On the epistemology of classical Hamiltonian ontology

Consider the Kennard-Weyl-Robertson (KWR) form of the Heisenberg uncertainty prin-
ciple of quantum mechanics [32]. For a pair of conjugate observables, A and B, it reads:

σAσB ≥ h̵
2
, (54)

where σA and σB denote the standard deviations at a given time in our knowledge of A
and B, respectively.13 This form of the uncertainty principle speaks directly to the limits
of what can be known about the state of a quantum system; that is, to the epistemology
of quantum ontology. In this section we ask whether the present developments allow us to
establish an analogous result about the epistemology of classical Hamiltonian ontology.

Notice, first of all, the sense in which we must understand such a question. Unlike
in the quantum formalism, there is nothing in our classical formalism that rules out the
possibility of starting with perfect information about conjugate observables:

ρ(A′,B′; t) = δ(A(t) −A′)δ(B(t) −B′), (55)

where

ρ(A′,B′; t) ≜ ∫ dnqdnp δ(A(q, p) −A′)δ(B(q, p) −B′)ρ(q, p; t). (56)

Rather, the question is whether it is at all possible to arrive at such a state of perfect
information from a state of less information. In particular: suppose we were handed a
Hamiltonian system about whose state we knew nothing at all, so that ρ were initially
uniform on phase space. Does there exist a sequence of measurements on the system that
would take ρ into the perfect-information state (55)?

Consider the direct approach of performing simultaneous measurement of A andB, with
respective measurement settings (kA,

¯
qA) and (kB,

¯
qB), and perfect efficiencies νA = νB = 1.

The evolution of ρ is as given by master equation (45). Suppose that the measurements are
strong enough that they come to completion on a much faster timescale than that of the
system’s dynamics, so that the Liouville term in (45) can be neglected. It is a bit tricky,
because one must be mindful of the rules of Itô calculus, but one can check that, starting
from an uncorrelated Gaussian distribution in A and B (of which the uniform distribution
is the special case of infinite variances), the general solution to (45) is

ρ(A,B; t) = 1

2πσAσB
exp{−(A − µA)2

2σ2
A

− (B − µB)2

2σ2
B

} , (57)

13cf. footnote 11.
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where the means µA, µB are stochastic functions of time evolving as

dµA =
√

8kAσA(t)2dWA, (58a)

dµB =
√

8kBσB(t)2dWB; (58b)

while the variances σ2
A, σ

2
B are the deterministic functions of time

σA(t)2 = ¯
qB
2

√
kB
kA

[coth{4
¯
qB

√
kAkB(t − tA)}]

lA
, (59a)

σB(t)2 = ¯
qA
2

√
kA
kB

[coth{4
¯
qA

√
kAkB(t − tB)}]

lB
, (59b)

where tA, tB < t are constants of integration, as are lA, lB ∈ {+1,−1}. We see that, under si-
multaneous measurement of conjugate observables, an initially-Gaussian-uncorrelated PDF
remains so for all time. Also, much like we saw in (44), the mean of the distribution ex-
ecutes a random walk (this time in two dimensions) of volatilities proportional to the
variances. However, unlike in (44), now the variances converge to non-zero values as the
measurements run to completion (t→∞):

σ2
A → ¯

qB
2

√
kB
kA
, σ2

B → ¯
qA
2

√
kA
kB
. (60)

This comes about because the measurement of A causes collapse “along the A-direction”
(along the integral curves of ΦB

τ ) and diffusion “perpendicular to the A-direction” (along
the integral curves of ΦA

τ ); while the simultaneous measurement of B causes the converse;
and at completion of the measurement the effects precisely cancel out. Notice that (60)
gives

σAσB →
√

¯
qA

¯
qB

2
, (61)

which begins to resemble (54). Is it the case that the product σA(t)σB(t) remains above
this limit at all times? That depends on the exponents lA, lB. The case lA = +1 gives
σA(t+A) → ∞; it describes complete ignorance about A at some past time tA. On the
other hand, the case lA = −1 gives σA(t+A) = 0; it describes perfect information about A at
the past time tA. Likewise for lB.14 Since we are interested in beginning from a state of
ignorance, the relevant solution for us has lA = lB = +1. It then follows from (59) that the
inequality

σAσB ≥
√

¯
qA

¯
qB

2
(62)

holds for all times. If both measurement apparatuses are of the same (inverse) quality,
¯
q,

this further reduces to

σAσB ≥ ¯
q

2
. (63)

We have derived this uncertainty-uncertainty relation by considering simultaneous mea-
surement of the pair of conjugate observables A,B. Could this be a general epistemic
obstruction, or is there some different sequence of measurements that fares better? We
leave the question open for future investigation.

14It is noteworthy that when σA and σB are smaller than their terminal values (60) (i.e. for lA = lB = −1)
one actually loses information by measuring! (Because the induced disturbances win over the information
gains.)
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I.6.3 Reading the measurement record; is it turtles all the way down?

We return to a complication that was tacitly overlooked in Section I.3. In our mea-
surement model, after the apparatus had interacted with the system—let’s call that step
“pre-measurement”—we stipulated that the pointer on the apparatus should be read, which
would yield some definite value P ∗. But what could it mean to “read P ” if not to measure
this observable of the apparatus? This seems to lead us down an infinite regression in which
the system is pre-measured by an apparatus, which must then be pre-measured, presum-
ably by another apparatus, which must then be. . . . The passage from “systems interacting”
to “agent being informed” never quite taking place. In a sense this predicament is similar
to the quantum measurement problem, particularly as articulated by the Wigner’s friend
thought experiment [33]. In both settings, the paradoxical step is the passage from what
seems to be best regarded as an ontic-level description (Hamiltonian or unitary dynamics)
to what seems to be best regarded as an epistemic-level operation (Bayesian updating or
collapse of the wave function). At the epistemic level we speak freely of agents, observers,
measurements, observations, reading the measurement record, information, probability,
Bayesian updating, collapse of the wave function. But at the ontic level all of these are
complicated phenomena, resisting precise characterization. Until such characterizations
are available we are stuck with the shifty split—to use a term coined by Bell [34].

In our model, the shifty split was introduced at one degree of separation from the
system under study: we described the system-apparatus interaction at the ontic level; then
we described the apparatus-agent interaction at the epistemic level. Such a once-removed
approach can be very useful, as demonstrated by the example of the theory of general
quantum measurement [35]. However, there is a pair of consistency tests that should be
checked of such a theory. Notice that the once-removed theory contains the twice-removed
and higher theories. To see this, simply let what we have been calling the object-system
instead be used as an apparatus of some kind to (pre-)measure another system. (Now we
have an object-system which is pre-measured by an apparatus, which is pre-measured by a
second apparatus, whose pointer is “read” by an agent.) This maneuver uses only the rules
of the ontology, yet succeeds in shifting away the split by one degree. In light of this feature
of the theory, for a first test (T1) we ask: is there any such way to shift away the split
that increases the efficiency of our measurement (i.e. decreases the obstruction in (51))?
If the answer is yes then test (T1) is failed; it is a sign that the way we are bridging the
shifty split does not fully exploit the possibilities allowed by the ontology, and we should
strengthen it. (This strengthening is necessary. So long as test (T1) is not passed, bounds
such as (51) derived from once-removed measurement schemes cannot be taken seriously,
since they can be circumvented by better use of the operations allowed by the ontology.)
On the other hand, for a second test (T2) we ask: is it the case that when we shift away
the split, no matter how we do it, we find that it always decreases the efficiency of our
measurement (i.e. increases the obstruction in (51))? If the answer is yes then test (T2) is
failed; it is a sign that the way we are bridging the shifty split requires an operation that
is not allowed by the ontology, and must be revised.

How does our model fare on these tests? Consider test (T2) first. We have bridged the
shifty split by stipulating: (i) “read” the pointer on the apparatus, yielding some definite
value P ∗. (This is after the apparatus has pre-measured the object-system.) Here’s a way
to shift away the split without reducing efficiency. Instead of (i) do: (ii) use a second
apparatus, operated according to our same model with parameters (k(2),

¯
q(2)), to pre-

measure at full strength (k(2) → ∞) the value of P , recording it on its own pointer P (2)

which we then “read”, yielding some definite value P (2)∗. To see that procedure (ii) is just
as efficient as (i) notice, first, that neither of the two involve further disturbance of the
object-system, so ηA is the same for both. Second, since the final measurement in procedure
(ii) is at full strength, we have ε(2)P ∝ 1/

√
k(2) → 0, so this measurement reveals the exact
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value of P ; P (2)∗ = P ∗. Thus procedure (ii) leads to the same likelihood function (15)
as (i), and hence to the same εA. This gives us proof-by-example that it is possible to
shift away the split without reducing our model’s efficiency, so test (T2) is passed. It is
harder to prove that test (T1) is passed since this requires proving that efficiency remains
unimproved for all ways of shifting away the split. I don’t know how to do that, but I
conjecture that our model passes this test too. In support of this conjecture, note one way
in which efficiency might have been increased by shifting away the split, but isn’t. Turn
again to procedure (ii) just discussed. Imagine that, after having measured the pointer of
the first apparatus (P ) as described, it were possible to do another measurement on this
apparatus to determine Q. If we could gain even a little information about the value that
Q had at the time of interaction with the object-system (t0), we could combine it with
what we know of Q(t0) from the thermal distribution (11) to reduce our uncertainty σQ,
and hence reduce the disturbance ηA = ασQ. If this were possible our model would fail test
(T2). That it is impossible follows from the fact that the measurement of P in procedure
(ii) had to be done at full strength (k(2) → ∞), which leads to an infinite disturbance of
the first apparatus (η(2)P ∝

√
k(2) → ∞); and this infinitely disturbs the value of Q (since

{Q,P} = 1). So we see that in the course of carrying out procedure (ii) all information
about Q(t0) is lost beyond recovery.

I.6.4 Future directions

In closing we look to some of the many questions and possibilities ahead. We have argued
that our model of measurement is maximally efficient; i.e. that it is impossible to do better
than (51) in the way of measuring without disturbing. It would be very desirable to have
a proof of this claim at the level of rigor of mathematical physics. Complementing this,
it would be desirable to see experimental tests of (51, 52, 63) and of the bigger picture
outlined in Figure 2. Moving forward it will be worth honing our intuition about the range
of possible dynamics of a Hamiltonian system under measurement (or more accurately, of
the epistemic state of a rational agent about a Hamiltonian system under measurement).
For this it would be good to see numerical studies of equations (27, 39) in more interesting
scenarios than the one-dimensional simple harmonic oscillator explored in Figure 1. For
this task it might be useful to carry out in the classical setting the steps, discovered already
in the quantum setting, to transform a non-linear stochastic master equation like (39) into
an equivalent linear equation [16, 36]. Another calculation that I would like to see is the
derivation of the precise version of (53), which I suspect can be obtained by reproducing
our measurement model from Section I.3 in the quantum setting. That is, essentially,
the von Neumann measurement scheme but taking into account the temperature of the
apparatus.

In connection with the quantum measurement problem and the interpretation of quan-
tum mechanics, there is a program dating back to Einstein [37, 38] of attempting to identify
and unmix a possible epistemic component of quantum theory from its ontic content. In
recent times this program has made promising progress at the hands of Caves, Fuchs, and
others [38–40]. In particular Spekkens [41, 42], and Bartlett, Rudolph, and Spekkens [43],
have illustrated how an uncircumventable epistemic limitation in an otherwise classical
world, much like what is suggested by our discussion in Section I.6.2, can lead to several
of the phenomena usually regarded as characteristic of quantum mechanics. It will be
interesting to see what these two programs can contribute to each other.

Finally I would like to venture the following speculative suggestions. (i) As we know
from general relativity, gravity couples directly to energy. Perhaps a system subject to a
strong external gravitational field can, in certain cases, be reasonably modeled by (27) with
A =H. If so, could this tell us something interesting about the entropy of a system falling
onto the event horizon of a black hole? Could this be a useful tool for studying black hole
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thermodynamics? (A quantum version of this master equation (c.f. earlier comments in
connection to (53)) might be an even better tool.) (ii) To the best of my knowledge, the-
oretical computer science grounds its notions of computability and complexity in concrete
(if highly abstracted and idealized) physical models. Does the existence of an obstruc-
tion to ideal measurement without disturbance in Hamiltonian mechanics have a bearing
on those notions of computer science grounded in the world of classical physics?15 (iii)
Hamilton’s equations and their underlying geometro-algebraic structure are not unique to
physics; they emerge wherever the equations of a theory can be gotten out of a variational
principle [45]. Indeed, in classical physics they emerge in just this way from Hamilton’s
principle of stationary action. In particular, optimal control theory uses essentially the
same equations under the name of Pontryagin’s minimum principle [46]. Could the present
results have consequences for aspects of optimal control under partial information and, by
extension, for artificial intelligence? (For more on this see Part III.) At the least, these
musings illustrate the breadth of potential implications of our subject.

I.A Derivation of equation (29)

Our objective is to derive equation (29). For brevity of notation we will omit the integration
measure dnqdnp in integrals over phase space. We will make use of the identity

∫ A{B,C} = ∫ B{C,A} = ∫ C{A,B}, (64)

which is valid for any smooth functions A(q, p; t),B(q, p; t),C(q, p; t) as long as their prod-
uct decays to zero as ∥(q, p)∥ → ∞, so that boundary terms from integration by parts can
be discarded. This identity is readily verified:

∫ A{B,C} = ∫ A
n

∑
i=1

(∂B
∂qi

∂C

∂pi
− ∂B
∂pi

∂C

∂qi
)

= ∫ C∑
i

(− ∂

∂pi
(A∂B

∂qi
) + ∂

∂qi
(A∂B

∂pi
))

= ∫ C∑
i

(−∂A
∂pi

∂B

∂qi
+ ∂A
∂qi

∂B

∂pi
)

= ∫ C{A,B}. (65)

In our applications of the identity one of the factors will always be homogeneous in ρ, which
it is safe to assume decays fast enough for the identity to hold (e.g. for each t, ρ(q, p; t)
can be assumed to have compact support over phase space without any loss of physical
generality.)

Now, the phase-space average of B is ⟨B⟩ = ∫ ρB, and the time derivative of this is

d

dt
⟨B⟩ = ∫ (B∂ρ

∂t
+ ρ∂B

∂t
) = ∫ B

∂ρ

∂t
+ ⟨∂B

∂t
⟩ . (66)

Working with the first term on the r.h.s. here, we substitute into it from (27):

∫ B
∂ρ

∂t
= ∫ B ({H,ρ} + k

¯
q2{A,{A,ρ}}) . (67)

Using identity (64), the first term on the r.h.s. here can be written as ∫ ρ{B,H} = ⟨{B,H}⟩.
Turning to the remaining term on the r.h.s. of (67), we let C ≜ {A,ρ} and again use

15Landauer’s work [14] establishing the thermodynamic irreversibility of certain computing processes
has certainly had such an impact; launching the field of reversible computing [44].
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identity (64), so that the integral in this term can be written as

∫ B{A,C} = ∫ C{B,A} = −∫ {A,ρ}{A,B} = −∫ ρ{A, log ρ}{A,B}

= − ⟨{A, log ρ}{A,B}⟩ . (68)

All together we have

d

dt
⟨B⟩ = ⟨{B,H}⟩ + ⟨∂B

∂t
⟩ − k

¯
q2 ⟨{A, log ρ}{A,B}⟩ , (69)

which is (29), as desired.

I.B Derivation of equation (40)

Our objective is to derive equation (40). For brevity of notation we will omit the integration
measure dnqdnp in integrals over phase space. Expanding the differential of S (from (30))
to second order in dρ:

dS = −∫ d(ρ log ρ)

= −∫ ((ρ + dρ) log(ρ + dρ) − ρ log ρ)

= −∫
⎛
⎝
(ρ + dρ)( log ρ + dρ

ρ
− 1

2

dρ2

ρ2
) − ρ log ρ

⎞
⎠

= −∫ ((log ρ + 1)dρ + 1

2

dρ2

ρ
)

= −∫ ( log ρdρ + 1

2

dρ2

ρ
). (70)

(In the last step we used the fact that ∫ dρ = d ∫ ρ = d1 = 0.) We will now substitute into
here for dρ from (39); however, notice that the non-stochastic terms from that equation
will only contribute linearly (since terms of order dt dW and dt2 are negligible), so their
final contribution to dS will be the same as already deduced in connection to master
equation (27) (c.f. (31)). We therefore need only calculate here the contribution to dS of
the stochastic term in (39); that is of dρ =

√
8k(A− ⟨A⟩)ρdW . Substituting this into (70),

and in the following step using the rule of Itô calculus dW 2 = dt:

dS = −∫ ( log ρ (
√

8k(A − ⟨A⟩)ρdW) + 1

2

(
√

8k(A − ⟨A⟩)ρdW )2

ρ
)

= −
√

8k dW ∫ (A − ⟨A⟩)ρ log ρ − 4kdt∫ (A − ⟨A⟩)2ρ

= −
√

8k dW ⟨(A − ⟨A⟩) log ρ⟩ − 4kσ2
Adt. (71)

This, together with the contribution (31) due to the non-stochastic terms from (39), gives
us (40), as desired.

I.C Derivation of the hierarchy of equations (44)

Our objective is to derive the hierarchy of equations (44), which describes the contribution
of the stochastic term in (39) to the evolution of the cumulants of ρ(A; t) when A = A(q, p)
is not explicitly time-dependent. For brevity of notation we will omit the integration
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measure dnqdnp in integrals over phase space. Consider the cumulant-generating function
for ρ(A; t):

f(z; t) ≜ log ⟨ezA⟩ ≜ κ1(t)
z

1!
+ κ2(t)

z2

2!
+ κ3(t)

z3

3!
+ . . . . (72)

Let df denote the differential of this function with respect to time, and f ′ denote its
derivative with respect to the dummy variable z. Expanding the differential of f to second
order in dρ:

df = d(log∫ ρ ezA) = log∫ (ρ + dρ)ezA − log∫ ρezA

= (∫
dρ ezA

∫ ρ ezA
) − 1

2
(∫

dρ ezA

∫ ρ ezA
)

2

. (73)

Substituting into here the stochastic term from (39) (that is dρ =
√

8k(A−⟨A⟩)ρdW ), and
using the rule of Itô calculus dW 2 = dt:

df =
√
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(A − ⟨A⟩)ρ ezA
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2
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. (74)

Writing f in terms of its cumulant expansion (72), and noting that ⟨A⟩ = κ1:
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Expanding the square on the r.h.s. and equating coefficients of corresponding powers of z
yields the hierarchy of equations (44), as desired.
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An algorithm for locale navigation in
rodents, with focus on the role of
hippocampus1

Abstract

We propose a model regarding the computations taking place in the deliberative decision-
making system of rodents, during wakefulness and sleep, with focus on the role of hip-
pocampus (HPC). In this model, medial prefrontal cortex performs high-level planning,
and then tasks HPC with fleshing out the details of the plan, as needed. We describe this
planning task of HPC as an optimal control problem. Drawing insights from the powerful
mathematics of optimal control theory, we provide a concrete algorithm by which HPC
solves the problem; we point out the main sources of algorithmic complexity and how
these shape the “computational life” of HPC; and we identify elements of the algorithm
with prominent features of the neurophysiology of the system; such as the theta rhythm,
the slow oscillation, spindle oscillations, sharp wave-ripples, θ-sequences, forward and re-
verse SWR-sequences, the formation and strengthening of episodic memories, and a need
for two modes of operation—online and offline. The model may also provide novel insights
into memory consolidation during sleep. In this way, the model offers a paradigm capable
of accommodating a wide range of observed phenomena, and makes many novel testable
predictions. Testing some of these predictions is the topic of ongoing work, and lies beyond
the scope of this thesis.

II.1 Introduction

In the mammalian brain, the hippocampus (HPC) is a major structure located bilaterally
in the medial temporal lobe. Being one of the most extensibly studied brain structures,
much has been learned about HPC anatomy and physiology, but many questions remain
unanswered, specially regarding its function. Two influential long-standing hypotheses
implicate HPC, on the one hand, (i) as the locus of temporary episodic memory traces,
which get consolidated into long-term memory during sleep [47]; and on the other hand,
(ii) as the locus of the cognitive map, believed to underlie much of our spatial memory and
our sense of spatial orientation [48]. Hypothesis (i) stemmed from observing particular
forms of memory deficits in lesion studies. Hypothesis (ii) stemmed from the discovery
that individual principal neurons of the HPC—now called place cells—become active only
in some spatial environments, and not in others, and then only when the animal is in a
particular spatially-localized region of the environment—the neuron’s place field. In this

1This Part is adapted from a paper provisionally titled “A model of hippocampal sequences as solutions
to the equations of optimal control”, co-authored with Zhe S. Chen and Matthew A. Wilson, not yet
submitted for publication.
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Box 1 ∣ Levels of analysis in brain sciences

As emphasized by Marr & Poggio [60], to understand a complex information-processing system,
such as the deliberative system, it is useful to target our models at one of several levels of
abstraction. In order of increasing abstraction these levels are usually taken to be: (i) mechanistic
or implementational, (ii) algorithmic or representational, and (iii) computational or functional.
The idea is that, as a first approximation, models at different levels can be considered in isolation,
greatly simplifying the task of understanding. Furthermore, upon closer inspection, models at
different levels can inform each another in useful ways. For example, in the descending direction:
a well-established hypothesis regarding function will inform candidate algorithmic-level models,
in the obvious sense that algorithms invented by people are always designed with functions
in mind. In the ascending direction: limitations due to the types of algorithms that can be
implemented by neural architecture will shape the computations and function of the system.

way, the neural activity of the population carries information that identifies the animal’s
current environment and location within that environment.

Attempts to synthesize the two hypothesis followed [49, 50]. However, the panorama
has expanded considerably over the past two decades, largely due to two types of devel-
opment: (i) the discovery of various forms of structure on short time-scales in the neural
population activity of HPC (Section II.2.1). And (ii) a growing body of data regarding the
interactions between HPC and other brain regions during wake and sleep (Section II.2.2).
These data seem to outline a well-defined functional circuit, of which HPC is only one com-
ponent. Indeed, recent proposals for synthesis situate HPC, along with prefrontal cortex
(PFC), thalamus, and other structures, as part of a wider brain system believed to enable
flexible behavior—primarily, but not exclusively, spatial behavior—in the face of changing
contingencies [51–57]. This system has been referred to as the deliberative decision-making
system, and has been contrasted with the procedural decision-making system involved in
the formation of habits [58, 59].

In this Part, we begin by proposing our own synthesis of various data on the de-
liberative system, in the form of a system-wide algorithmic-level model (cf. Box 1). This
model is meant to reproduce the function mentioned above—flexible behavior in the face of
changing contingencies—while assigning tasks to individual brain structures, and interac-
tions between structures, that are consistent with available data. Our model recapitulates
a number of elements from previous syntheses of the PFC–HPC circuit; primarily from
those of Eichenbaum [57], Penagos et al. [56], and Redish [55]. Put briefly, our algorithm
involves two modes of operation: online and offline, and describes a hierarchical planning
strategy in which medial PFC (mPFC) performs high-level planning, while HPC fleshes
out the lower-level details of the plan. In spatial tasks, the latter computation takes the
form of spatial trajectories, which appear in HPC as one of several types of “hippocampal
sequences” (Section II.2.1), depending on the mode in which the algorithm is operating.
When the algorithm operates in offline mode, new episodic memories are created, or ex-
isting ones are strengthened, after each calculation by HPC.

This system-wide algorithmic-level model ascribes to HPC a well-defined task that
remains the same throughout both modes of operation. Namely: HPC receives as input
initial and terminal states (two successive steps of the high-level plan) within a given
context, and it must compute an efficient low-level plan to get from the initial to the
terminal state. We formalize this planning task as an optimal control problem, arriving in
this way at a computational-level model of HPC.

Drawing on the theory of optimal control, we go on to propose a concrete algorithm by
which HPC solves its assigned task. We point out the main sources of complexity in this al-
gorithm, and how these shape the “computational life” of HPC. We identify elements of the
algorithm with prominent features of the neurophysiology of the system; such as the theta
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rhythm, the slow oscillation, spindle oscillations, sharp wave-ripples, θ-sequences, forward
and reverse SWR-sequences, the formation and strengthening of episodic memories, and a
need for two modes of operation—online and offline.

The rest of this Part is organized as follows. Section II.2 reviews relevant background
material; primarily on the neurophysiology of the deliberative system during wake and
sleep, but also on established ideas about navigation and hierarchical planning. Sec-
tion II.3 develops our three proposed models (together, “our model”); beginning with our
system-wide algorithmic model (Section II.3.1), then our computational model of HPC
(Section II.3.2), and finally our algorithmic model of HPC (Section II.3.3). Additional
details and supporting evidence are provided in Boxes 2 and 3. Section II.3.4 points out
potential insights into memory consolidation during sleep. In the discussion, Section II.4,
we first give a brief summary of our model, as developed throughout the preceding sections.
Then we point out our model’s relationship to previous models in the literature. We take
the time there to provide an in-depth comparison with two influential alternatives which
also ascribe to HPC an active role in decision-making: the successor representation [61,
62], and the model by Mattar & Daw [63]. In Section II.4.3 we discuss many predictions
and matters of interpretation of our model. In Section II.4.4 we pause to acknowledge the
many limitations of scope of our model, and a few points of tension with empirical obser-
vations, which we have been able to identify so far. We close in Section II.4.5 pointing out
the avenues for future research suggested by this work.

II.2 Background

II.2.1 Compressed sequences in the two states of hippocampus

Two states, or modes of operation, have been clearly identified in HPC; each associated
with a distinct pattern of neural population activity, and waves of electrical activity in
the local field potential (LFP). These states are named after the LFP patterns associated
with them: theta and large-amplitude irregular activity (LIA). (Refer to Figure 1.) Theta
state is the “online mode”; it occurs when the animal is engaged in active navigation and
decision-making, as well as during REM sleep (i.e. dreaming) [64]. It is characterized by
the presence of a persistent strong theta rhythm (∼8Hz in rodents) in the LFP. The awake
theta state is when HPC represents the current position of the animal and place fields
can be observed. Interestingly, in this state not only the current position is represented,
but also future positions immediately ahead; in such a way that the representation sweeps
ahead of the animal once per theta oscillation, forming θ-sequences [65] (Figure 1b,c). In
contrast, LIA state is the “offline mode”; it occurs during quiet wakefulness, such as during
consummatory behavior, as well as during slow-wave (i.e. dreamless) sleep [66]. It is char-
acterized by periods of low amplitude irregular fluctuations in the LFP, interrupted by brief
large-amplitude deflections (sharp waves, 50–150ms) containing high-frequency oscillations
(ripples, ∼200Hz). These sharp wave-ripples (SWRs) correspond to intense bursts of activ-
ity in the population of neurons, which are not random, but organized, and often represent
segments of local or remote trajectories; dubbed SWR-sequences [66, 67] (aka replay,2

Figure 1d,e). Both kinds of sequences, θ- and SWR-, represent experience in a temporally-
compressed way, with compression factors of 5–20x, so that relatively long stretches of
trajectories (in rats: ≲50cm for θ-sequences [68]; ≲5m for SWR-sequences [69]) can be rep-
resented in a fraction of a second. Three notable differences worth highlighting between
the two types of sequences are as follows. (i) Unlike awake θ-sequences which always be-
gin near the location of the animal (Figure 1b,c), SWR-sequences may begin at remote
locations [69] (Figure 1e), and even in other spatial contexts [70]. (ii) Unlike θ-sequences

2I favor “SWR-sequence”, being a name less committed to a particular interpretation of the phenomenon.
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which always represent experience in a “forward” fashion [71] (Figure 1b,c), SWR-sequences
may represent experience both “forward” as well as “backward through time”; dubbed for-
ward and reverse SWR-sequences [72] (Figure 1d,e). (iii) Unlike θ-sequences which always
happen in isolation once per theta cycle (Figure 1b,c), SWR-sequences can be “chained
together” within SWR trains (aka multi-ripple bursts, including up to eight SWRs), build-
ing up a single extended (forward or reverse) sequence out of multiple “atomic”, or simple,
SWR-sequences [69] (Figure 1e).

Concerning the possible functions of hippocampal sequences, partially complementary,
partially conflicting hypotheses implicate them in episodic memory formation [77–81]; con-
solidation into long-term memory [52, 53, 75, 81–90]; maintaining, updating, or augmenting
the cognitive map (including the discovery of generalizable cortical schemas) [53, 56, 80,
83, 90–92]; memory retrieval to guide behavior [75, 93, 94]; back-propagation of value for
model-based reinforcement learning [62, 63, 72, 95–99]; and mental exploration for delib-
erative planning [55, 92, 95, 100–106]. As can be seen, many interesting ideas regarding
the function of hippocampal sequences are being proposed, but a compelling paradigm is
yet to emerge as dominant.

Figure 1: (Next page.) Compressed sequences in the two states of hippocampus.
Left side of figure dedicated to θ-sequences; right side to SWR-sequences. (a) Bilateral LFP
recorded in rat HPC, showing the signature 8Hz theta oscillation of the theta state (“walk”),
and SWRs of the LIA state (“still”). Individual SWRs last 50–150ms, and can often occur
one after another in short proximity; called SWR trains (aka multi-ripple bursts). (b)
θ-sequences, which occur in the theta state, sweep up to ≲50cm ahead of the animal once
per theta cycle (LFP shown at top), corresponding to time-compressions of ≲10x compared
to real-time experience. The sequences are visible in the Bayesian decoder (bottom; color
scheme is posterior probability) and even in the sorted raster plot (middle). (c) Early
during learning, θ-sequences seem to flexibly explore future possibilities at decision points.
Here we see a rat performing an alternation task on an unfamiliar M-maze (left). An
example trial is illustrated in green. As the rat approaches the choice point, θ-sequences
are seen to explore each of the two choices in alternation (right). (d) SWRs occur in the
LIA state, when the rat is stationary or unengaged with the task. They are accompanied
by intense bursts of activity which often play out either a forward or a reverse SWR-
sequence (here visible in the sorted raster). Some SWR-sequences span across entire SWR
trains that can last up to half a second. (e) By simultaneously decoding position and
direction of motion one can reliably distinguish forward from reverse SWR-sequences. By
definition, forward sequences advance in the direction of the decoded direction of motion,
while reverse sequences advance opposite to it. Top: five SWR-sequences visualized in the
Bayesian decoder (color saturation indicates posterior probability; blue (positive heading)
and red (negative heading) indicate decoded direction of motion). Solid triangle indicates
location of animal at time of event. Each sequence shown spans a SWR train, as can be
seen from the multiple successive peaks in the multiunit activity (MUA, middle). Most
SWR-sequences are neatly classified as either forward or reverse, but a fraction of them
switch along the way from one class to another (example in top right; statistics in bottom
left); so-called mixed SWR-sequences. Average SWR-sequence speed is ∼8m/s (bottom
right), corresponding to time-compressions of ∼20x. Panel a is adapted from Buzsáki [73];
b from Feng et al. [68]; c from Kay et al. [74]; d from Carr et al. [75] (originally appeared
in Diba & Buzsáki [76]); and e from Davidson et al. [69].
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Figure 1: (Rotated. Caption previous page.)
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II.2.2 PFC–HPC interactions during wake and sleep

Crossed-lesions studies provide robust evidence that mPFC and HPC support memory and
decision-making via an ipsilateral pathway [107–111]. Moreover, the two states of HPC just
discussed, theta and LIA, are observed to correspond to distinct states of mPFC. Indeed,
distinct forms of coupled nested oscillations and oscillatory synchrony can be observed
between the two regions during either state, as follows.

Wake. When the animal is engaged in navigation and memory tasks, the theta rhythm
seen in HPC is also present in mPFC. The rhythms in these two regions are strongly
synchronized [52, 112–120], and the strength of this coordination correlates with behavioral
performance [121–125].

Moreover, studies that analyzed this interaction during successive stages of contextual
memory tasks found that context cueing involves flow of information from HPC to mPFC,
whereas context-appropriate decision-making involves flow of information from mPFC to
HPC [120, 126]. Extending these findings, O’Neill et al. [124] showed that mPFC synchrony
with ventral HPC (vHPC) supports performance even when the influence of dorsal HPC
(dHPC) is removed; and Adhikari et al. [127] found that vHPC synchronized with, and
led, mPFC in anxiety-inducing environments. Eichenbaum [57] has incorporated these and
other findings into a model in which vHPC informs mPFC of task context, and then mPFC
performs top-down control to gate the extraction of relevant information from dHPC to
guide behavior. These ideas will form part of our model in the coming sections.

Sleep and quiet wakefulness. Refer to Figure 2. During slow-wave sleep, while HPC
is in LIA state, cortex is engaged in the eponymous slow oscillation (SO, ≲1Hz) [128,
129]. The SO consists of alternations of suppressed (down) and elevated (up) neural
activity across cortex, thalamus and HPC. Of special interest to us will be the spindle
oscillation (∼12Hz), which can be observed in cortex, typically near the beginning of each
up sate [129]. Hippocampal SWRs also occur during the up state [129]. When SWRs
occur in a train (aka multi-ripple burst), the individual SWRs tend to be phase-locked
to individual cycles of the cortical spindle oscillation [130, 131]. As noted by Penagos
et al. [56], the nested nature of these oscillations suggests a means by which complex
computations can be decomposed into elementary operations across brain regions. This
idea will also form part of our model in the coming sections.

Of note, hippocampal SWRs coordinate with PFC activity also during the awake resting
state [93], suggesting similarities between the system’s operation during slow-wave sleep
and quiet wakefulness [132].

II.2.3 Five strategies of rodent navigation

It is useful to distinguish five strategies which an animal can employ for goal-directed
navigation. Quoting from Redish et al. [49], these are

• Random navigation. If the animal has no information about the location of the goal,
it must search randomly for it.

• Taxon navigation. The animal can find a cue toward which it can always run. For
example, if the goal is visible, it can simply “run toward the goal”.

• Praxic navigation. The animal can execute a constant motor program. For example,
if the animal always starts at the same location, in the same orientation, and the
goal is never moved, it can use praxic navigation to reach the goal.
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Figure 2: Nested sleep oscillations in cortex and hippocampus. Top trace, typical
cortical LFP (low-pass filtered at ∼20Hz), and bottom trace, typical hippocampal LFP
(band-pass filtered at ∼100–250Hz), during slow-wave sleep. The eponymous slow oscilla-
tion (SO, ≲1Hz) is seen in the cortical LFP (top). A large-amplitude biphasic wave known
as K-complex marks the down state, during which neural activity is suppressed across
cortex and HPC. During the up state (gray boxes), while neural activity is elevated, the
spindle oscillation (∼12Hz) can be observed in cortex, typically following the K-complex.
Delta waves (≲4Hz) may also be present during various phases of the cortical SO, but we
will not consider them in this paper. Hippocampal SWRs (bottom, seen only as ripples
due to filtering) occur during the up state. SWR trains (aka multi-ripple bursts) tend to
be phase-locked to the cortical spindle oscillation. Figure adapted from Penagos et al. [56].

• Route navigation. The animal can learn to associate a direction with each sensory
view. In more complex mazes, this entails planning a sequence of subgoals. For
example, many early navigation tasks used complex mazes that consisted of sequences
of T-junctions. Route navigation can be thought of as chaining sequences of taxon
and praxic substrategies.

• Locale navigation. The animal can learn the location of the goal relative to a con-
stellation of cues. It can learn a map on which the location of the goal is known. If
it knows both its own location and the location of the goal in the same coordinate
system, then it can plan a path from one to the other.

While the brain is capable of employing all of these strategies in combination, our concern
in this paper will be exclusively with the latter strategy. Specifically: we address a part of
the algorithm by which the deliberative system performs locale navigation.

II.2.4 Hierarchical mapping and planning

For reference in the coming sections, Figure 3 illustrates a generic scheme for two-stage
hierarchical mapping and planning. First a low-level map of the state-space is built, and a
high-level map is abstracted from it. With these maps at hand, the problem of planning a
low-cost route from any start location (S0) to any goal location (Sg) can be solved efficiently
in a hierarchical fashion: first a high-level plan S0 → S1 → ⋅ ⋅ ⋅ → Sg is computed using the
high-level map. Note that since the high-level map is, by construction, quite simple (e.g. a
graph with relatively few nodes and edges), classical planning algorithms are adequate for
this stage (e.g. A* search [133]). Next, each step of the high-level plan is refined using the
low-level map. Notice that the high-level plan provides boundary conditions (Si, Si+1) for
each stage of low-level planning. Since these boundary points are not too far apart from
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Figure 3: Generic scheme for two-stage hierarchical mapping and planning. Top:
a high-level map (right) is abstracted from a low-level map (left). Bottom: Once the
low- and high-level maps have been learned, efficient and flexible planning is carried out
hierarchically from the top down.

each other, efficient continuum techniques (e.g. based on gradient descent) can be invoked
during low-level planning, with little risk of getting stuck in bad local minima.

II.3 Modeling results

II.3.1 An algorithmic model of the deliberative system

Consistent with recent models of the deliberative system [51–57], we identify mPFC and
HPC as key components of the system. Of HPC we further distinguish its dorsal (dHPC)
and ventral (vHPC) regions. We follow Eichenbaum [57] in identifying vHPC as encod-
ing task-relevant context; dHPC as encoding the animal’s state within that context; and
mPFC as encoding context-relevant rules, as well as exerting top-down control to gate
task-relevant information at decision time. Our proposal is that the deliberative system
enables flexible decision-making by implementing a two-stage hierarchical mapping and
planning scheme, like that outlined in Section II.2.4. Specifically, we identify the cognitive
map in dHPC with the low-level map, and the task rules of mPFC with the high-level map,
in the hierarchical scheme of Figure 3. Following Eichenbaum [57], we propose that mPFC
is informed of task context by vHPC, and is informed of the animal’s state, S0, within that
context by dHPC. We suggest that mPFC makes use of context, external state S0, internal
motivational state, and context-relevant rules, to flexibly determine a high-level goal, Sg,
as well as a strategy to get from S0 to Sg. This strategy takes the form of a high-level plan
S0 → S1 → ⋅ ⋅ ⋅ → Sg, as in Figure 3 (bottom center). Classical planning algorithms may
be adequate for this computation, as mentioned in Section II.2.4. Next, the details of this
plan need to be fleshed out before it can be acted upon, as in Figure 3 (bottom right).

At this point we distinguish two modes of operation of the system: online and offline.
Online mode corresponds to the theta state of HPC and mPFC, and is the mode of opera-
tion whenever the animal is actively engaged in behavior. Offline mode corresponds to the
LIA state of HPC, during which the slow oscillation can be seen in mPFC; it is the mode
of operation during slow-wave sleep and quiet wakefulness. Online mode is characterized
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Figure 4: An algorithmic model of the deliberative system, containing a com-
putational model of dHPC. (a) In online mode, mPFC computes a high-level plan
appropriate for the current task context, external state S0, and internal motivations. The
task of dHPC is to quickly refine the first step of this plan, and output the resulting
low-level plan as a candidate for execution. This task of dHPC repeats on a duty cycle
of ∼120ms, giving rise to the characteristic 8Hz theta oscillation. (b) In offline mode,
mPFC sustains more prolonged conversations with dHPC. In each exchange (50–150ms),
mPFC prompts dHPC with the next step of its high-level plan, and dHPC tries to com-
pute the corresponding low-level plan. The whole conversation takes place over the course
of a cortical up state; it appears in mPFC as the spindle oscillation, and in dHPC as a
SWR train threaded by a single extended SWR-sequence. This precomputation serves to
ease the system’s computational burden during subsequent online episodes, as detailed in
Section II.3.3. (c) The computational task of dHPC remains the same in both modes of
operation: we formalize it as an optimal control problem.

by an urgency to output actionable plans to guide behavior in real time. Hence, while in
this mode, the system focuses its resources on refining only the first step of its high-level
plan, (S0, S1)—the only step that is imminently needed. To do this, we propose that the
system executes Algorithm 1, also illustrated in Figure 4a.

Algorithm 1. Online mode routine
1: while in online mode do: ▷ loop iterates at ∼8Hz; theta rhythm
2: Sensory afferents pass current state, S0, to dHPC
3: mPFC passes first step of high-level plan, S1, to dHPC
4: dHPC computes efficient trajectory S0 → S1; a low-level plan ▷ a θ-sequence
5: Resulting low-level plan is output to motor areas as candidate for execution

In the rodent, the do while loop in line 1 of this algorithm iterates on a duty cycle of
∼120ms, giving rise to the synchronous PFC–HPC theta rhythm. Line 4 of this routine
manifests in dHPC as a θ-sequence. The details of this step will be further fleshed out
in Section II.3.3. Note that in each cycle of this routine, S0 stands for the current state
of the animal, which changes gradually from iteration to iteration in accordance with the
animal’s displacement; and S1 stands for the first step of the high-level plan that still lies
ahead.
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Offline mode is characterized by a reduced urgency to output actionable plans. Thus,
the system can dedicate itself to more lengthy computations; specifically, to precomputing
answers that will ease its burden during subsequent online episodes. To do this, we propose
that the system executes Algorithm 2, also illustrated in Figure 4b.

Algorithm 2. Offline mode routine
1: while in offline mode do: ▷ loop iterates at ≲1Hz; slow oscillation
2: mPFC computes a high-level plan S0 → S1 → ⋅ ⋅ ⋅ → Sg
3: for i ∈ {0, . . . , g − 1}: ▷ loop iterates at ∼12Hz; spindle oscillation
4: mPFC passes step (Si, Si+1) of high-level plan to dHPC
5: dHPC computes efficient trajectory Si → Si+1; a low-level plan ▷ a SWR-sequence
6: if dHPC’s computation fails then:
7: break

The do while loop in line 1 of this algorithm corresponds to the PFC-thalamo-HPC slow
oscillation, while the for loop in line 3 corresponds to the nested spindle oscillation (Fig-
ure 2). In Section II.3.3 we will have more to say about how mPFC chooses which plans
to compute in line 2. Line 5 manifests as a SWR-sequence in dHPC. The details of this
step will also be fleshed out in Section II.3.3. The break clause in lines 6 and 7 controls
the length of the SWR train; if the break happens on the first iteration the result is a
simple SWR. More details on this clause (such as what it means for dHPC’s computation
to “fail”) are given in Box 2, and in Section II.3.3. In that Section we will also explain how
the results of these offline computations are efficiently stored, and how they are used to
ease the computational burden during subsequent online episodes.

In Box 2 we give a more detailed description of the model presented in this section,
which includes also roles for entorhinal cortex, the thalamic nucleus reuniens, and affec-
tive regions such as the ventral tegmentum and amygdala. There we also summarize the
literature supporting the various elements of the model.

Box 2 ∣ An algorithmic model of the deliberative system; further details

In this Box we give a more detailed description of our model of the deliberative system presented
in Section II.3.1 of the main text. This model is an elaboration of a model by Eichenbaum [57],
incorporating also ideas from Redish [55] and Penagos et al. [56]. After describing our model
we summarize the supporting evidence for its various elements.

Model description. (a) vHPC encodes task-relevant context, while dHPC encodes the animal’s
state within that context. From its output in CA1, via the direct HPC–mPFC pathway, HPC
informs ipsilateral mPFC of context and state. mPFC also receives the internal affective state
from amygdala and VTA. (b) mPFC itself encodes high-level context-dependent task rules.
Drawing upon these four ingredients, mPFC flexibly computes an appropriate strategy, in the
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form of a high-level plan S0 → S1 → ⋅ ⋅ ⋅ → Sg within the given context, leading from the
given starting state S0, to a goal state Sg that would satisfy internal motivations, using valid
transitions that follow the rules. This mPFC computation is done on a simplified high-level map,
so that classical planning techniques (e.g. A*) may be tractable. Before it can be a candidate
for execution, this high-level plan must be refined. (c) To refine its high-level plan, mPFC
pings ipsilateral dHPC with the first two steps of its plan (S0,S1). This information follows
the pathway through RE and then MEC. During “online mode” (see below) this mPFC efferent
is integrated with sensory information in MEC to improve the estimate of S0; during “offline
mode” (see below) sensory input is cutoff. In any case, dHPC receives two successive states of
the mPFC high-level plan. (d) dHPC encodes a continuous spatial map for the context at hand.
The two states it receives from mPFC define two points on this map, not too far apart from
one another. The task of dHPC is to compute a low-cost continuous trajectory—a low-level
plan S0 → S1—that admits these two points as boundaries. This computation manifests as a
HPC sequence. (See main text, Section II.3.3, for how HPC might do this.) At this point we
distinguish two modes of operation: online and offline. (e) During goal-directed behavior, the
system operates in online mode: low-level plans produced by dHPC are broadcast from dorsal
CA1 to motor-related areas as candidates for execution. (f) However, it is possible for the
low-level plan to have failed to reach the desired sub-goal, S1, leading instead to some other
location S′1 (see main text, Section II.3.3). The plan was broadcast to motor areas nonetheless
(step e), because pausing to verify would introduce delays that would be in tension with the
demands of real-time behavior. To guard against the possibility of a botched plan by HPC:
simultaneously with e, there is a validation step at dorsal CA1 to check whether S′1 is close
enough to S1 within some margin of error. The result of this validation (one bit of information)
is passed to ipsilateral mPFC via RE. (g) If the validation failed, mPFC responds by inhibiting
motor areas, preventing the animal from acting on HPC’s botched plan. In any case, arrival of
the validation signal to mPFC prompts mPFC to ping ipsilateral dHPC with (S0,S1) once more
(step c again). Steps c–g continue to iterate in this way, on a duty cycle of ∼120ms in the rodent
(the theta rhythm); in each cycle, S0 stands for the current state of the animal, which changes
gradually from iteration to iteration according to the animal’s displacement; and S1 stands for
the first step of the high-level plan that still lies ahead. In this way the animal performs real-
time flexible planning while behaving. The other mode of operation, offline mode, takes place
during quiet wakefulness and slow-wave sleep. In this mode, low-level plans produced by HPC
are not broadcast to downstream cortex (there are no steps e, g). This mode is characterized
by a reduced urgency to output actionable plans. Thus, the system can dedicate itself to more
lengthy computations; specifically, to precomputing answers that will ease its burden during
subsequent online episodes, as follows. Now if the validation step in dorsal CA1 succeeds,
mPFC (upon hearing of the success, step f) replies by prompting dHPC with the next two steps
of its high-level plan (step c again, but now with (S1,S2) in place of (S0,S1)); to which dHPC
responds by again computing the corresponding low-level plan (S1 → S2). Assuming rest is
not interrupted, this back-and-forth continues to iterate over successive steps of the high-level
plan, until one of HPC’s low-level plans fails to validate, or until the entire mPFC high-level
plan is fleshed out. Each back-and-forth takes 50–150ms; in HPC each manifests as a SWR; in
mPFC as a cycle of the spindle oscillation. The complete exchange appears in HPC as a SWR
train (≲0.5sec), threaded by a single extended SWR-sequence. Section II.3.3 of the main text
explains how the results of these offline computations are efficiently stored, and how they are
used during subsequent online episodes. Abbreviations: mPFC = medial prefrontal cortex; IL
= infralimbic cortex; PL = prelimbic cortex; AC = anterior cingulate cortex; MEC = medial
entorhinal cortex; vHPC = ventral hippocampus; iHPC = intermediate hippocampus; dHPC =
dorsal hippocampus; RE = thalamic nucleus reuniens; VTA = ventral tegmental area; BLA =
basolateral amygdala.

Supporting evidence. The model presented in this Box is an elaboration of a model of the
mPFC-thalamo-HPC circuit by Eichenbaum [57], incorporating also ideas from Redish [55]
and Penagos et al. [56]. Therefore much of the same supporting evidence discussed in those
papers can be invoked to support our model. Here we briefly recapitulate some of that evidence.

HPC function: It is well established that HPC plays a role in tasks that demand remember-
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ing events in the spatial context in which they occurred [134–140]. In agreement with this,
many studies have reported that hippocampal neurons remap between tasks, forming novel
allocentric spatial codes that allow placing memories in context [141–148]. In addition, it
has recently been found that there is a topography to HPC memory representations [149]:
namely, while neurons in dHPC of rodents encode highly specific locations, neurons in vHPC
encode large areas of space [150, 151] and distinguish events that occur in different spatial
contexts [152–155]. Correspondingly, lesioning vHPC, but not dHPC, attenuated the acquisi-
tion and expression of contextual fear conditioning, whereas lesioning dHPC, but not vHPC,
dramatically impaired performance on a spatial working memory task [156]. mPFC function:
Much converging evidence indicates that PFC contributes to decision-making by top-down con-
trol of memory processing [53, 157–162]. In rats [163–168] and in monkeys [169–172], mPFC
has been implicated in the selection and maintenance of “task sets”, also called “task rules” or
“options”—extended, context-specific sequences of behavior, directed toward particular goals,
possibly as part of a hierarchical decision-making scheme [173, 174], allowing for the flexible
switching between strategies in various tasks [175–185]. Affective inputs to mPFC: The mPFC
is strongly interconnected with the BLA of the amygdala and with the VTA of the midbrain; and
it has been proposed that mPFC is ideally positioned to integrate current and past information
with its affective qualities in order to guide decision-making [186, 187]. Direct HPC→mPFC
pathways: mPFC and HPC are known to be strongly connected by a few direct- and several
indirect pathways. Two well-known direct pathways consist of monosynaptic projections from
area CA1 of the vHPC and iHPC broadly to all layers of mPFC [187–189]. Since vHPC encodes
spatial context, while iHPC is closer to the part of HPC which precisely encodes location, these
two direct pathways may respectively inform mPFC of the task context and of the animal’s
specific location within that context. Consistent with this hypothesis, optogenetic inactivation
of vHPC terminals in mPFC during context cueing, but not during a post-cueing delay period or
at decision time, was found to impair spatial working memory [125]. mPFC–HPC interactions
during wake: Refer to main text, Section II.2.2.

Interim summary #1: The above studies all provide converging evidence for the coding and
computational roles ascribed by our model to HPC and mPFC in a and b, and for the pathway
and content of their communication in a. These parts of our model are essentially the same
as Eichenbaum [57]. We will show in the main text (Section II.3.3) how our model’s proposed
computational role for dHPC in d is consistent with prominent features of the neurophysiology
of HPC, such as θ-sequences and forward and reverse SWR-sequences.

mPFC↔HPC pathways through RE: One of the most anatomically-salient indirect connec-
tions between mPFC and HPC involves thalamus as the intermediary [120, 186, 190, 191]. This
pathway includes bidirectional connections between all mPFC areas and RE; and bidirectional
connections between RE and HPC area CA1 throughout its dorsal-ventral extent, as well as
between RE and entorhinal cortex [186, 192–195] (in particular MEC, which is known for its
role in path integration [196–198]). In turn, entorhinal cortex has projections to all areas of
HPC [155, 199–201]. Regarding the question of whether these connections (mPFC↔RE↔HPC)
are functional, and if so, what their function might be: as mentioned in Section II.2.2 of the
main text, context-appropriate behavior involves flow of information from mPFC to HPC at de-
cision time [120, 126]. Specifically, Hallock et al. [120] found that transient inactivation of the
mPFC↔RE↔HPC pathway by muscimol infusion in RE selectively disrupted (i) performance
on a spatial working memory task, (ii) mPFC–dHPC theta synchrony at decision time, and
(iii) information flow at decision time from mPFC to dHPC. Consistent with this, Ito et al.
[202] reported goal-dependent firing in mPFC, RE and dHPC of rodents in a spatial memory
task; and found that optogenetic silencing of RE significantly reduced goal-dependent firing
in dHPC—suggesting that goal information is conveyed from mPFC to dHPC through RE at
decision time.

Interim summary #2: These studies provide converging support for our model’s proposed
pathways of bidirectional communication between mPFC and dHPC in c and f, as well as for
the content of this communication proposed in c.

mPFC’s inhibitory control over motor output: Our model’s proposed role for mPFC in g—that
it inhibits motor-related areas in order to veto execution of a pre-committed course of action—is
consistent with many human studies on this topic [203–208]. (For comparing primate studies
with our rodent model, note that rodent mPFC is arguably homologous to primate dorsolateral
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PFC [209, 210].) Relationship to vicarious trial and error (VTA) behavior: Our model predicts
that if failure to validate (step f) recurs, as might be expected to happen early during learning
of a novel task or at difficult choice points, this can yield successive start-then-stop motor
commands (steps e and g, repeating on successive theta cycles). As discussed by Redish
[55], this aspect of the model is consistent with VTA behavior, and makes several further
neurophysiological predictions concerning VTA that are in general agreement with experimental
observations. Two modes of operation, and mPFC–HPC interactions during sleep: Refer to
main text, Section II.2.2.

II.3.2 A computational model of dHPC

After a while he calmed down and explained to me that not every place was good to sit
or be on, and that within the confines of the porch there was one spot that was unique, a
spot where I could be at my very best. It was my task to distinguish it from all the other
places. The general pattern was that I had to “feel” all the possible spots that were
accessible until I could determine without a doubt which was the right one.

—Carlos Castañeda, The teachings of Don Juan: a Yaki way of knowledge [211]

Our model of the deliberative system in Section II.3.1 (and Box 2) ascribes a function
to dHPC that remains the same throughout the online and offline modes of operation.
Namely: dHPC receives as input initial and terminal states, (Si, Si+1), within a given
context, or state-space, S, and it must compute a detailed plan to get from the initial to
the terminal state. This detailed plan takes the form of a continuous trajectory through S
joining the two endpoints. If Si+1 is within line-of-sight from Si, and there are no obstacles
in between, then taxon navigation (cf. Section II.2.3) seems to offer a straightforward
solution to the problem. However, under ethological conditions, taking the straight path
might put the rodent out in the open where it is an easy target for flying predators. Solving
the problem under these conditions calls for a more sophisticated approach. One way to
formulate the problem is to ascribe cost to regions of space (fear conditioning) according to
how dangerous, or otherwise inconvenient, they are for the animal to traverse (see example
in Figure 5). The computational task of HPC can then be cast as an optimal control
problem (Figure 4c):

control the system ṡ(t) = f(s(t),a(t)) (1a)

to minimize C[s,a] = UT + ∫
T

0
dtL(s(t),a(t)) (1b)

where s(0) = Si and s(T ) = Si+1 are fixed; while T ≥ 0 is free. (1c)

Our notation in this Part is that bold mathematical symbols denote vectors (more generally,
points on a manifold); s(t) is the represented location of the animal (more generally, its
state) at time t, which we take to lie in a continuous n-dimensional state-manifold, S.
(We have in mind typically n = 1,2 or 3, corresponding, e.g., to a 1D track, a 2D maze
or arena, or 3D physical space.) And a(t) is the action prescribed by the plan at time
t, which we take to be chosen from a continuous m-dimensional action-manifold, A. (We
have in mind m ≤ n, typically.) The differential equation (1a), the state equation, is meant
to be a simplified model of the animal’s motor system, capturing the effect of taking
any action a while the animal is in any state s. The function f in this equation is the
transition function. In (1b), the cost functional C[s,a] assigns a real number to each
possible plan {s(t),a(t)}t, as specified by the formula on the right. The integrand L(s,a)
here is the cost-rate (its negative is the effective reward-rate), describing the rate at which
cost accumulates, as function of state and action. The first part of (1c) recapitulates the
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Figure 5: Example of the task ascribed to dHPC by our computational model.
Example of the optimal control problem (1) using 2D state and action spaces (n =m = 2).
Here we set f(s,a) ≜ a, which corresponds to complete locomotive control; and L(s,a) ≜
µ(s)

2 ∥a∥2, which describes a cost to locomotion (e.g. metabolic cost, or risk of predation)
that is quadratic in the control effort, with the coefficient of proportionality, µ(s)/2, be-
ing location-dependent, as may be adequate for describing variations in terrain conditions
(altitude, ruggedness), ambient conditions (heat, cold, wind), risk of predation, fear con-
ditioning, etc. The figure defines the 2D state space S (gray marks inaccessible regions of
the plane); as well as the “contextual fear” function µ(s) (heat map). The action space is
A = R2. Optimal trajectories are shown between a few example start (green triangles) and
end (red squares) locations.

boundary conditions (Si,Si+1) dictated as input to dHPC. T is the time allotted by the
plan for transitioning from Si to Si+1, which we treat as a free parameter to be determined
as part of the optimization. The term UT appearing in (1b) penalizes plans for how long
they take. Here U > 0 is a fixed constant that can be understood as a measure of urgency;
larger values of U more heavily incentivize brief travel times. We proceed in this paper
without making any assumptions regarding the particular forms of the two functions f and
L, or the value of U . Figure 5 illustrates the kind of problem we have in mind, and the
kind of solutions defined by (1).

II.3.3 An algorithmic model of dHPC

Solving the optimal control problem (1) by brute-force search is exponentially slow (see
Box 3), so it would not be a viable option for HPC. For fast methods we look to opti-
mal control theory [46]. Generally speaking, two tractable approaches are known: the
Hamilton-Jacobi-Bellman (HJB) equation, and Pontryagin’s maximum principle. We de-
scribe both of these approaches in Box 3, where we also explain our reasons for believing
that Pontryagin offers the better platform upon which to model the computations taking
place in dHPC, given the task ascribed by our model above. In this section we flesh out
this idea in the form of an algorithmic-level model of dHPC.

As discussed in Box 3, Pontryagin’s principle provides a system of ordinary differential
equations (ODEs) ((iia–iic) of Box 3) for the optimal plan that solves (1). The unknowns
in these ODEs are s⋆(t) ∈ S, a⋆(t) ∈ A, and p⋆(t) ∈ Rn; respectively, the optimal state,
action, and co-state trajectories. The co-state, p, is a new “dummy variable” appearing
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in Pontryagin’s principle, which plays an auxiliary role in the calculation, and which has
the same dimensionality, n, as the state s. The ODEs must be satisfied throughout the
duration of the plan. As explained in the Box, to determine a unique solution, a set of 2n
boundary conditions must be satisfied (cf. (1c)):

s⋆(0) = Si and s⋆(T ) = Si+1. (2)

Notice, importantly, that these boundary conditions are split between the two endpoints
of integration. We see that the computational task of dHPC, in our model, is reduced
to solving a system of ODEs subject to split boundary conditions; a two-point boundary
value problem (TPBVP).

The above provides the setup for understanding the “computational life” of dHPC in
our model. Consider the following three key points. (i) If all boundary conditions could be
given at the initial time t = 0, so that instead of a TPBVP we had an initial-value problem
(IVP), then planning could easily be done at query time by a single forward sweep of
numerical integration of the ODEs. (ii) But because the boundary conditions are split
between the two endpoints of integration, the problem is more challenging, and dHPC is
forced to rely on precomputation during offline periods. An efficient way to organize such
precomputation is described in Box 3, and we make that idea a part of our model as follows.
During online episodes, while the animal is engaged in behavior, we propose that the brain
flags those states of the environment that are salient as either goal locations (states towards
which the animal may often need to navigate) or origin locations (states from whence the
animal may often need to depart). We think of these locations as hubs for navigation.
During subsequent periods of rest—when there is time to spare for computation—PFC
informs dHPC of the flagged states, and dHPC executes a “blindfolded forward shooting
method” (forward SWR-sequences) at the flagged starting locations, and a “blindfolded
reverse shooting method” (reverse SWR-sequences) at the flagged goal locations. (For a
description of these shooting methods see Box 3.) The result is a collection of optimal plans
leading from the flagged starting locations out to many places on the map, and from many
places on the map in to the flagged goal locations. Now, this collection of plans would
need to be committed to memory (episodic memories) for retrieval during subsequent online
episodes; and there would need to be one such collection for each experienced context, S.
This would amount to a large library of possible plans, raising the question of how such a
library could be stored efficiently. This leads to our third key point. (iii) Each time during
rest that dHPC computes an optimal plan {s⋆(t),p⋆(t),a⋆(t)}t between some initial and
terminal states (s⋆(0), s⋆(T )), instead of storing the full plan, it suffices to store only the
association

(s⋆(0), s⋆(T )) ↦ (p⋆(0),p⋆(T )), (3)

between the initial and terminal states and the initial and terminal co-states of the corre-
sponding optimal plan. This requires drastically less memory; and yet (s⋆(0),p⋆(0)) is a
seed from which the optimal plan can be quickly reconstructed at query time by a single
forward sweep of numerical integration (a θ-sequence), because these data constitute a full
set of initial conditions for Pontryagin’s equations (cf. point (i)). In summary, what is
bought by the precomputation is the conversion of the difficult TPBVP into the easy IVP,
which can then be solved in real-time, at query time, whenever needed during subsequent
online episodes; and further, these precomputations are done with a preference for optimal
plans to, and from, salient hub locations on the map.

We make these ideas concrete in Algorithms 3 and 4, which are fleshed-out versions of
the two algorithms from Section II.3.1.
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Algorithm 3. Online mode routine; further details
1: while in online mode do: ▷ loop iterates at ∼8Hz; theta rhythm
2: Sensory afferents pass current state, S0, to dHPC
3: mPFC passes first step of high-level plan, S1, to dHPC
4: if dHPC contains memory (S0,S1) ↦ (p

⋆
0 ,p

⋆
1) then:

5: dHPC does forward sweep of integration with ICs (S0,p
⋆
0) ▷ a goal-directed θ-sequence

6: else:
7: dHPC does an iteration of forward shooting method from S0 ▷ an exploratory θ-sequence
8: Resulting low-level plan is output to motor areas as candidate for execution

In line 4 of this algorithm, (p⋆0 ,p⋆1) stands for the initial and terminal co-states corre-
sponding to the optimal plan leading from S0 to S1, as in (3). (Similar comments apply
to lines 8 and 21 of Algorithm 4, below.) The memory alluded to there is an episodic
memory, whose formation is proposed to take place during offline periods (see below). In
line 5 (and in lines 9 and 22 of Algorithm 4), “ICs” and “TCs” stand for “initial condi-
tions” and “terminal conditions”, respectively. As indicated, line 5 appears in dHPC as a
goal-directed θ-sequence, as are observed in rodents when they have become proficient at
a task [55]; while line 7 appears as an exploratory θ-sequence, as are observed in rodents
during the early stages of learning [55, 74] (Figure 1c). Computationally, the purpose of a
goal-directed θ-sequence is to recreate an imminently needed optimal trajectory, which has
already been precomputed before, during rest. Notice that the forward sweep of integra-
tion required in this reconstruction is not only of very low algorithmic cost, but it is also
an example of an anytime algorithm; an algorithm that returns a valid solution even if it is
interrupted before it ends. This would explain why θ-sequences do not need to be as long
as SWR-sequences. In contrast, the purpose of exploratory θ-sequences is as a last-ditch
attempt to solve the challenging TPBVP, by executing the forward shooting method on
the fly. This is likely to require several shooting attempts before yielding a solution pass-
ing near the required terminal condition—meanwhile leaving the animal “lost in thought”,
exhibiting vicarious trial and error behavior (see “Relationship to vicarious trial and error
behavior”, in Box 2) [55]. Somewhat similarly, Algorithm 4, below, stipulates conditions
under which the system will produce SWR-sequences that are either goal-directed or ex-
ploratory; but also forward or reverse, and simple or trains. This algorithm also stipulates
criteria for the formation and strengthening of episodic memories in dHPC. The purpose of
these memories is for them to be used during subsequent online episodes, as just described.
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Over the course of multiple episodes of awake experience and sleep, these algorithms
create a library of optimal plans, leading the system’s θ-sequences, which are initially
exploratory, to become goal-oriented; a transition that enables the animal to become pro-
ficient at navigating the environment.

Further comments are in order regarding the flagging of origins and goals. First, it
should be acknowledged that the flagging process has not been included in Algorithm 3; this
process would have to be specified, before the algorithm could be considered “complete”.
Regarding this process, we can say on computational grounds that it should have the
following properties. In order to enable the system to focus its resources on computing
plans that will be most rewarding, or most relevant to upcoming behavior:

F1. Flagging should come by degrees, which we will call the priority of the flagged loca-
tion; and the selection of S0 and Sg in lines 4 and 17 of Algorithm 4 should be biased
by priority.

F2. An increase (resp. decrease) in the frequency with which the animal expects to visit
a rewarded location in the future, as well as an increase (resp. decrease) in the
magnitude of the reward, should increase (resp. decrease) the priority with which the
location is flagged as a goal.

F3. Similarly, an increase (resp. decrease) in the frequency with which the animal expects
to depart from an unpleasant location in the future, as well as an increase (resp. de-
crease) in the magnitude of the negative stimulus, should increase (resp. decrease)
the priority with which the location is flagged as an origin.

The previous point may be counterintuitive. Imagine a rodent that will sneak out into the
open—where it is an easy target for flying predators—in order to reach a source of food.
At the point that it has taken the food and is ready to flee, it finds itself departing from a
dangerous situation, with its life on the line if it fumbles around; it best have worked out
all possible escape plans ahead of time.

F4. Priority for a flagged origin (resp. goal) should decay slightly after every time that
location is selected in line 4 (resp. line 17) of Algorithm 4; since fewer optimal plans
efferent from (resp. afferent to) that location remain to be computed.

F5. A sudden change to movement affordances in a region (e.g. by opening or closing of a
shortcut), as well as a sudden change (increase or decrease) to the cost-rate function
L(s,a) in a region (e.g. by fear conditioning, or the addition of an overhead roof that
provides safety from predators), should boost the priorities of all flagged locations
(origins and goals) in the vicinity of the region.

The previous point is because such a change in contingencies causes the optimal plans to
change, so they need to be re-computed. Finally,

F6. During the awake offline mode, in anticipation of goal-directed navigation, priority
should be momentarily boosted for flagged locations (origins and goals) likely to be
involved in upcoming plans.

Notice that the selection of flagged locations in lines 4 and 17 of Algorithm 4 influences
the SWR-sequences produced by that algorithm. Hence, properties F1–F6 of the flagging
process make predictions regarding the frequencies with which forward and reverse SWR-
sequences should occur at particular locations, and for the change in such frequencies under
various types of manipulations. We will discuss these predictions in Section II.4.3.
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Box 3 ∣ Pontryagin vs. HJB: complementary approaches to planning

The brute-force approach to solving our optimal control problem (main text, equations (1))
would be to directly enumerate all valid paths—after suitable discretization of state, time and
action—and evaluate each to determine the most efficient one. But the algorithmic complexity of
this approach is O(∣A∣Nsteps), exponential in the depth of the search. (Here ∣A∣ is the cardinality
of the discretized action space, ∣S∣ that of the discretized state space, and Nsteps ≜ Tmax/∆tstep
is the depth of the search; where Tmax is the upper limit of the range over which T is allowed
to vary, and ∆tstep is the step-size of discretized time.) Unsurprisingly, this makes brute-force
search utterly intractable in practice.

Optimal control theory offers two general approaches for rendering the search tractable,
known as the Hamilton-Jacobi-Bellman (HJB) equation and Pontryagin’s maximum principle
(aka Pontryagin’sminimum principle, depending on sign conventions) [46]. In the HJB approach,
the search is organized by breadth-first, starting at t = Tmax, and is carried backward recursively
in a very efficient way (Bellman’s principle of optimality). This leads to a partial differential
equation, subject to terminal boundary conditions. The unknown in this equation is the cost-
to-go function (or its negative, the optimal value function). Standard numerical algorithms
for solving this terminal boundary value problem have complexity linear in the search depth,
O(∣S∣ ⋅ ∣A∣ ⋅Nsteps), down from exponential. But notice that the proportionality factor here can
be quite large, since ∣S∣ ∼ O(en) and ∣A∣ ∼ O(em) both suffer from the curse of dimensionality.

Panel a illustrates the features of such an algorithm, using as example the problem from Figure 5
of the main text, and designating as terminal state the particular location marked (red square).
Green contours denote level-sets of the cost-to-go function. The far-right panel illustrates
the relationship between the underlying “contextual fear” function µ(s) (heat map), the fully-
computed cost-to-go function (contours), and the resulting optimal policy, a⋆(s) (arrows, scaled
proportional to ∥a⋆∥.) As can be seen, the algorithm appears as value propagating backward
through time from the terminal state, and fanning out across space as it propagates.

The HJB equation is closely related to the standard theory of reinforcement learning [212].
The latter provides the theoretical underpinning for an influential paradigm of the procedural
(aka habitual) decision-making system [212–215]. It is known to lead to algorithms that are
fast-to-act once learning has completed, but which tend to be slow to learn and slow to adapt
to changing contingencies [216]. These characteristics are very different from those of the
deliberative system; which is flexible in the face of changing contingencies, but does not produce
reflex-fast decisions [216, 217]; which relies on depth-first (aka serial) search, not breadth-
first [58, 216]; and whose offline computations seem (if SWR-sequences can be interpreted as
such) to organize the search not always backward through time, but sometimes backward and
sometimes forward. In view of these differences, the HJB approach does not seem to us to
provide the best platform for models of the deliberative system.

We turn now to Pontryagin’s maximum principle [46]. This approach requires the introduc-
tion of a dummy variable, p(t) ∈ Rn, the co-state, which is time-dependent and of the same
dimensionality, n, as the state s; it plays an auxiliary role in the calculations, as we will now
see. Define a function, H(s,p;a), the control Hamiltonian, as

H(s,p;a) ≜ p ⋅ f(s,a) −L(s,a). (i)

In this approach, calculus of variations is used to directly derive a system of equations which the
optimal plan must satisfy, thus sidestepping the search process altogether. (This is analogous to
the theorem of ordinary calculus: [x⋆ = argminx g(x)] ⇒ [g′(x⋆) = 0], which enables replacing
a search by an equation.) In this way the minimization problem ends up converteda into the
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following system of coupled non-linear ordinary differential equations (ODEs):

ṡ⋆(t) = f(s⋆(t),a⋆(t)), (iia)

ṗ⋆(t) = −∂H
∂s

(s⋆(t),p⋆(t);a⋆(t)), (iib)

a⋆(t) = argmax
a

H(s⋆(t),p⋆(t);a). (iic)

These are a system of 2n first-order ODEs and m algebraic equations. The unknowns are the
2n +m components of the vectors s⋆(t),p⋆(t),a⋆(t), which constitute the optimal plan. The
equations must be satisfied for all t ∈ [0, T ]. To determine a unique solution, 2n boundary
conditions are required, which for us are

s⋆(0) = Si and s⋆(T ) = Si+1. (iid)

Finally, the duration of the plan, T , is implicitly determined by the equationb

H(s⋆(t),p⋆(t);a⋆(t)) = U ∀t ∈ [0, T ]. (iie)

Importantly, notice that the boundary conditions (iid) are split between the two endpoints
of integration, making this a two-point boundary value problem (TPBVP). If it were not for
this—that is, if the 2n boundary conditions could all be given at the initial time t = 0—then
equations (ii) could easily be solved by a single forward sweep of numerical integration, with a
modest algorithmic complexity O(∣A∣ ⋅Nsteps). Instead, TPBVPs must be addressed by some
version of the shooting method, in which one “shoots” out trajectories in different directions
from one boundary until one finds the trajectory that “hits” the other boundary condition [46].
Two straightforward versions of this are the forward shooting method, in which one shoots out
trajectories “forward through time” from the initial boundary, and the reverse shooting method,
in which one shoots out trajectories “backward through time” from the terminal boundary.

For an agent who finds themselves needing to navigate between multiple starting and goal
locations on a map, a sensible strategy is to implement a “blindfolded” forward shooting method
from the starting locations, and a “blindfolded” reverse shooting method from the goal locations.
By “blindfolded” I mean that there is no attempt to hit any particular condition at the other
boundary. This way, far from having to discard “missed shots”, the result is a collection of
optimal plans leading from the starting locations out to many places on the map, and from
many places on the map in to the goal locations. Panel b illustrates an instance of such a
blindfolded reverse shooting method, as it builds up optimal plans afferent to one particular
goal location (red square).

Panel c superposes the solutions from Panels a and b, illustrating that the answers provided
by the two approaches are, of course, related.c However, it is evident that the two methods
organize the computation very differently. In particular, notice that the output of Pontryagin’s
approach is more modest than that of HJB: the former yields only the optimal plan between a
particular start and goal; while the latter yields the optimal policy everywhere in space, afferent
to a particular goal. This difference is reflected in the much lower algorithmic complexity
of Pontryagin than of HJB. Notice that this makes Pontryagin’s approach intrinsically more
flexible under changing contingencies than HJB. If a new shortcut opens up, or if a new source
of reward appears at some location, it is easier in Pontryagin’s approach to discard only the
affected trajectories, and begin to recompute. On the other hand, notice also the qualitative
similarities between the forward and reverse shooting methods described here, and the coherent
paths observed in forward and reverse SWR-sequences in HPC (Section II.2.1 of the main text).
This, then, is our main takeaway of this Box: hippocampal computations appear qualitatively
to be consistent with Pontryagin’s approach to planning.
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aTo be precise: Pontryagin’s maximum principle provides only a necessary, not a sufficient,
condition for global optimality.

bOne can show that H is constant along any trajectory satisfying (iia–iic). The role of (iie) is
simply to determine the value of said constant; which indirectly determines the “time-of-flight”, T .

cDiscrepancies between the two types of solution can be observed in Panel c at distances far
from the goal. This is related to the notion of cut-loci in Riemannian geometry [218], and has
to do with the presence of singularities (e.g. fold and simple cusp catastrophes) in the cost-to-go
function [219]. (For reasons of numerical stability, the cost-to-go function plotted is the viscosity
solution to the HJB equation, which tends to smooth out said singularities [220]; this is why they
are not apparent in the contours.) In this regard, it is worth keeping in mind the remark from
footnote a.

II.3.4 On the mathematics of consolidation

According to our model, an individual episodic memory in HPC is an association (s1, s2) ↦
(p⋆1 ,p⋆2), between a pair of initial and terminal states and the pair of initial and terminal
co-states of the corresponding optimal plan. Notice that the exhaustive collection of all
such memories, corresponding to a particular context S, defines a mapping M ∶ S2 → R2n;
namely M(s1, s2) ≜ (p⋆1 ,p⋆2). It happens that M can be greatly compressed, because it is
the gradient of a scalar “generating function”, G ∶ S2 → R, in the sense that

p⋆1 = −
∂G(s1, s2)

∂s1
, p⋆2 = +

∂G(s1, s2)
∂s2

. (4)

This function G is just the cost-to-go function (the negative of the optimal value function)
appearing in the HJB equation, but viewed now as a function of both initial and terminal
states:

G(s1, s2) ≜ min
{all plans s1 → s2}

C[plan], (5)

where C is the cost functional from (1b).
This simple mathematical observation may provide the basis for a deeper understanding

of the process of consolidation, of hippocampal episodic memory traces into long-term
memory during sleep [47].3 Namely, it suggests that consolidation may be related to
the transcription, and simultaneous compression and knitting together, of a collection of
associations in HPC of the form (s1, s2) ↦ (p⋆1 ,p⋆2), into the corresponding cost-to-go

3It should be acknowledged that the consolidation process has not been considered in our models above.
In particular, the formation and strengthening of episodic memories in Algorithm 4 should not be confused
for consolidation.
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function, G(s1, s2), elsewhere in the brain. This rationale is synergistic with, but distinct
from, the traditional rationale in terms of learning rates and catastrophic interference [221].
It suggests a powerful way for the deliberative decision-making system to inform and
shape the procedural system during sleep, which is consistent with observed place-reward
information processing during sleep [87].

II.4 Discussion

II.4.1 Summary

We have proposed an algorithmic model of locale navigation by the deliberative decision-
making system. In our model, mPFC and HPC together carry out a hierarchical planning
scheme meant to produce flexible decisions in the face of changing contingencies. mPFC
leads by computing a high-level plan appropriate to the current context and internal moti-
vations, and then instructs dHPC to “fill in the details” of particular portions of its plan as
needed. We’ve seen how the computational task of dHPC reduces to integrating a system
of ordinary differential equations (Pontryagin’s maximum principle), and how the split
boundary conditions that come with these equations make this a challenging two-point
boundary value problem (TPBVP); too difficult to solve all at once at query time. In-
stead, the system is forced to rely on precomputing the solutions during periods of quiet
wakefulness and sleep. In the model, forward and reverse SWR-sequences correspond to
times when dHPC is implementing the forward and reverse shooting methods, respectively,
in order to solve this TPBVP. The model explains that, after each SWR-sequence, dHPC
commits to memory a small “seed” of the solution it just found—which gives a concrete
mathematical form to episodic memories. We’ve explained how this is a memory-efficient
way to later allow dHPC to quickly reconstruct the optimal plan at query time, whenever
needed, in the form of a θ-sequence. Over the course of multiple episodes of awake expe-
rience and sleep, this algorithm builds up a library of optimal plans, leading the system’s
θ-sequences, which were initially exploratory, to become goal-oriented; a transition that
enables the animal to proficiently perform locale navigation in this environment.

Along the way, the model provided functional interpretations for the theta rhythm,
the slow oscillation and spindle oscillations; and suggested novel insights into memory
consolidation during sleep.

II.4.2 Relationship to previous models

As already mentioned, the three models developed here (together, “our model”) draw several
of their elements from the models by Eichenbaum [57], Penagos et al. [56] and Redish
[55]. Namely: from Eichenbaum [57] we have adopted the idea for how, during the awake
theta state, thalamus mediates the communication between HPC and PFC; specifically,
with vHPC informing PFC of task context, and PFC gating the extraction of relevant
information from dHPC to guide behavior. From Penagos et al. [56] we have adopted
the suggestion that, during sleep, the nested slow oscillation and spindles in PFC, and
SWRs in HPC, serve as a means by which complex computations are decomposed into
elementary operations across brain regions. And from Redish [55] we have adopted the
idea that θ-sequences embody the exploration of future plans, as the basic computation
underlying deliberation. For each of the above, related models have been proposed by
other authors as well. Our model draws further inspiration from several other works in
the literature. For instance: the idea is a classical one that hierarchical planning is key
for producing flexible behavior [222]; and it has been argued that anterior PFC [223],
particularly anterior mPFC [174], is well-poised to operate at the top of such a planning
hierarchy. The general idea that hippocampal sequences are involved in planning has been



58 Part II. An algorithm for locale navigation in rodents. . .

explored by several authors [92, 95, 100–106]. And a model by Wang et al. [54] is similar
in spirit, but not in detail, to our system-level model. At the same time, our model puts
forth several novel ideas: that HPC exploits Pontryagin’s maximum principle to solve
its planning problem—rather than estimating optimal value functions—and the precise
manner in which cortical-hippocampal synchrony, and hippocampal sequences, map onto
the elements of this algorithm.

It is instructive to compare our model with alternatives which also ascribe to HPC an
active role in decision-making. We consider here two such alternatives.

The successor representation

In one influential model, hippocampal place cells are proposed to encode a successor rep-
resentation (SR) of the value function [61, 62]. This model occupies a middle ground
between model-based and model-free reinforcement learning; producing decision-making
that is flexible under reward revaluation, without sacrificing speed at query time.

Non-overlap. There are several points on which the scope of this model does not overlap
with that of ours. For instance, the SR makes a concrete proposal about the “basis” in terms
of which individual place cells encode space. As a result, the SR predicts, correctly, that
place fields should be shaped by the connectivity of space (as opposed to, e.g., Euclidean
distance) [62]. The SR also offers an interesting account of grid cells in entorhinal cortex,
as the “eigenvectors of the SR matrix” [62]. We have formulated our model at a higher level
of abstraction which is agnostic about the neuronal basis, so our model is silent on these
points. In the other direction, the SR has little to say regarding hippocampal sequences,
the theta rhythm (including phase relationships of cell firing), interactions between HPC
and PFC, or the processing of information during sleep. (But see [63, 99] for extensions
of the SR that incorporate roles for SWR-sequences.) Where the scopes of the two models
overlap, we find points of agreement and of disagreement.

Agreement. Both models correctly account for an experience-dependent backward ex-
pansion of place fields over the course of learning [224], although their explanations differ:
in the SR it is a consequence of the fields themselves coming to reflect the animal’s pol-
icy [62], while in our model it is a miss-attribution of late-phase spikes to the fields; late-
phase spikes come to represent the future by virtue of θ-sequences becoming goal-oriented.
The two models also succeed in producing decision-making that is flexible under reward
revaluations, although it is likely that there are differences to be explored in the degree of
this flexibility.

Disagreement. A point of disagreement is the flexibility under changes to movement
affordances, such as the opening or closing of shortcuts. Our model is designed to produce
flexible decision-making in this situation too, while the SR does not. (But see [99] for
extensions of the SR that display such flexibility, at least in simple non-spatial tasks.)
Another point of disagreement is the speed of decision-making at query time. In agreement
with observations [55], our model produces a sleep-enabled transition, from slow decisions
displaying vicarious trial and error early during learning, to streamlined decisions after
repeated experience and sleep; while in the SR decisions are always reflex-fast [99]. A
third point of disagreement concerns the intrinsic dimensionality, d, of the hippocampal
cognitive manifold.4 The SR predicts d = n, the dimensionality of the state space S. In

4For a population of N place cells, the population activity at any time can be regarded as a vector
v(t) ∈ RN . As the animal explores the state-space S, v(t) traces out some manifold S ′ embedded in RN .
S ′ is called the cognitive manifold represented by the population of neurons; d ≜ dimS′ is its intrinsic
dimensionality—not to be confused with the dimensionality N of the embedding space.
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contrast, as we will discuss in Section II.4.3, our model makes the strong prediction that
the dimension of the hippocampal manifold should be d = 2n, twice the dimensionality of
the state space. Testing this prediction is the subject of ongoing work by the author. The
analysis is complicated in n ≥ 2 due to animal’s tendency to develop stereotyped behaviors,
which keeps them from exploring all possible trajectories through “high”-dimensional state
spaces. For rats running laps on a one-dimensional track (n = 1), our analysis (unpublished,
not presented here) yields d = 2 across datasets from various animals and laboratories, in
agreement with our model. This also matches a report of d = 2 in a rat performing a
one-dimensional (n = 1) sound-frequency task [225].

An interesting point of disagreement concerns non-Markovian tasks; in which correct
choices are not simply a function of the present state, but depend on past states and must
be informed by memory. A simple example of such a task is the alternating T-maze [226].
(A trial on this maze is a run through the stem of the “T”, up to the choice point at the
junction, and out to either end at the top of the “T”. Reward is given only for a left turn
after having taken a right turn on the previous trial, and vice versa; so that above-chance
performance requires the animal to remember their previous choice.) I claim that such
tasks present a two-horned dilemma for value-based models of planning in HPC—to be
called the extravagant and austere horns—as we will now see. The extravagant horn of the
dilemma will impale any model which would have HPC cash the value function directly
(unlike the SR). For such a model, solving a non-Markovian task would require positing
a separate map and value function for each decision-context (the “multiple-map hypothe-
sis” [227, 228]); e.g., in the alternating T-maze, alternating runs would correspond to two
different hippocampal maps, each with its own value function. For simple non-Markovian
tasks this approach seems computationally appealing; and the remapping problem which it
introduces may explain the “trajectory coding” observed in the HPC of trained animals on
runs through different routes of T-like mazes [229, 230]. (Trajectory coding, aka trajectory-
dependent activity or splitter cells, refers to changes in the firing properties of place cells on
different runs through the same place; these changes have been found to depend on the past
and future of the animal’s trajectory [202, 229, 231–236].) However, an obvious scaling
problem emerges as task-complexity grows to ethological levels. To illustrate this, consider
the task of Pfeiffer & Foster [105]: a large open arena with 36 clearly separated locations
at which reward can be delivered. Trials of exploration and goal-directed navigation are
interleaved by baiting a random location on odd trials and a predictable location (“home”)
on even trials. The home location is chosen at random at the beginning of each day, and
remains the same throughout the day. To solve the goal-directed component of this task,
value-cashing models would be forced to posit that HPC has 36 separate maps and value
functions of this same space; one for each possible home location. It seems unlikely that
HPC operates in such an extravagant manner—the extravagant horn of the dilemma. The
SR model avoids the extravagant horn by having HPC cash not the value function directly,
but the SR matrix, M̂ , from which the value function can be quickly computed after re-
ward revaluations: V⃗new = M̂R⃗new [62]. Hence, the SR model can solve the goal-directed
component of Pfeiffer & Foster [105] using a single hippocampal map (which encodes the
matrix M̂); it requires only that the home location for the day (encoded in R⃗new) be held
in memory throughout the day. But now the SR is impaled by the austere horn of the
dilemma: since it predicts no trajectory coding on T-like mazes, in contradiction with em-
pirical observations [229, 231–236]. We will discuss in Section II.4.3 how our model avoids
both horns of the dilemma: solving non-Markovian tasks by using a single hippocampal
map, while providing a framework for trajectory coding in HPC.
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The model by Mattar & Daw [63]

A recent model by Mattar & Daw [63], which has received considerable attention, offers
another alternative. Their thesis is that planning in HPC, as well as memory processing
in HPC during sleep, can both be reduced to model-based learning of a cashed value
function; i.e. to reinforcement learning (RL) based on simulated experience, as in the
Dyna algorithm [212]. They propose a novel prioritization schedule, which they claim to
be normative, for the sampling of state-action pairs during simulations. (Samples (s,a)
are used in combination with a forward model, to simulate a transition (s,a) ↦ (s′, r) and
perform a one-step Bellman backup, in order to improve the estimate of the value function
at s.) Under different circumstances, their schedule produces long forward or backward
sweeps of backups, which they offer as a computationally-motivated account of forward
and reverse SWR-sequences, respectively. Their proposal is compelling by virtue of the
wide range of experimental phenomena that they are able to qualitatively account for [63].
We will refer to this model as Dyna+MD.

Computational issues with Dyna+MD. Before delving into a comparison between
models, I must say that I have a number of reservations about Dyna+MD, on computa-
tional grounds. One reservation is that computing their schedule requires that the agent
knows the effect of a backup on its policy prior to deciding whether to perform it, which
begs the question. Relatedly, their algorithm, as I understand it, requires that policy eval-
uation be re-computed (for all states) after every single one-step backup, which is out of
the question in terms of computational resources. A third concern is that their updating
schedule is only normative in the “myopic” sense (their word) that considers each update
in isolation; not in the important sense that would consider the joint effect of multiple
updates taken together. In connection to this, notice that a forward chain of k one-step
backups is an inefficient way to propagate value information. (Like trying to sweep a floor
by doing leftward broom sweeps, while taking steps to the right.) The authors ameliorate
this issue by introducing a special rule, which converts the one-step backups in such a for-
ward chain into k-step backups (each of which reaches the end of the chain), but this idea
only works for special forward sweeps which happen to replicate the path dictated by the
greedy policy at every step; other forward sweeps are left with the problem. In this regard,
it is unsatisfactory that the authors only show “performance comparison”5 with basic Dyna
(which makes no effort to schedule samples), not with the stronger Dyna with prioritized
sweeping (Dyna+PS), which is the standard in RL [212]. Dyna+PS is straightforward to
implement efficiently; and while it makes no claim to normativity, its heuristic motivation
specifically considers the joint effect of multiple backups taken together; making it the
natural null model against which to test their algorithm. These objections weaken the mo-
tivation behind their account of SWR-sequences: if HPC could perform Dyna better with
other priority schedules, for which there are more efficient algorithms, but which would not
reproduce hippocampal phenomenology, then the computational argument works against
their model, and empirical evidence is under double burden to support it.

Non-overlap. Setting these worries aside in the hope that they will be addressed in
future iterations of the model, we proceed to compare this model to ours. Dyna+MD has
a synergy with the SR model [63], and in this way one might say that the predictions
of the SR count as predictions of Dyna+MD. Leaving aside these predictions, which we
have already discussed, the scope of Dyna+MD is, for the most part, contained within
the scope of our model. That is: our model has something to say about most predictions

5Since Dyna+MD must be given unrealistic computing powers to overcome the above limitations, even
their comparison with basic Dyna needs to be interpreted carefully.



Section II.4. Discussion 61

of Dyna+MD; while, in the other direction, our model’s predictions regarding the theta
rhythm, θ-sequences, interactions between HPC and PFC, and memory consolidation, fall
outside the scope of Dyna+MD. Where the scopes of the two models overlap, we find
points of agreement and of disagreement.

Agreement. Both models ascribe crucial roles to SWR-sequences in spatial learning.
Therefore, they both correctly predict that spatial learning should be correlated with SWR
activity [237]; that suppression of plasticity during post-run-sleep [237], as well as disrup-
tion of awake [79] or sleep [88, 89, 238] SWRs, should impair spatial learning; and that
enhancement of sequence-related SWR activity should improve spatial learning [94]. Fur-
thermore, our prioritization of flagged origins and goals, discussed in Section II.3.3 (points
F1–F6), is meant to solve a similar resource-allocation problem as the priority schedule of
Dyna+MD (except at one level above in the planning hierarchy). As a result, both mod-
els make a number of similar predictions regarding the frequencies of forward and reverse
SWR-sequences at specific times and locations, which are in qualitative agreement with
a broad range of observations. These predictions are discussed in Mattar & Daw [63] for
one model, and in our Section II.4.3 for the other. They include: (i) a bias for forward
over reverse SWR-sequences at the start of a task [76], and (ii) a bias for reverse over
forward SWR-sequences after finding reward [76]. (iii) Awake [97] and post-run-sleep [238]
SWR-sequence activity increasing with the amount of reward found on the maze, even if
the reward was only perceived, without being consumed [239]. Specifically: with reverse
SWR-sequence activity at reward locations, but not forward SWR-sequence activity, being
monotonically modulated by reward magnitude (increasing as well as decreasing) [98]. (iv)
A bias of awake forward SWR-sequences for starting near the animal’s location [69, 240],
and being predictive of upcoming behavior during goal-directed navigation [105, 241]. (v)
A bias of SWR-sequences for specific locations that have been frequently visited [242].
And (vi) novel experiences increasing the incidence of SWRs and associated sequences,
both during and after experience, followed by decreasing incidence with increasing famil-
iarity [72, 243–245].

Disagreement. As mentioned earlier, our model produces a sleep-enabled transition,
from slow decisions displaying vicarious trial and error (VTE) early during learning, to
streamlined decisions after repeated experience and sleep. Presumably Dyna+MD pro-
duces a similar course of learning; except that, at query time, decisions must either be
reflex-fast or else HPC must go into LIA state to use SWR-sequences to plan. Thus,
Dyna+MD in its current state makes no allowance for VTE; which is characterized by
HPC remaining in theta state while the animal exhibits behavior of pausing to look in dif-
ferent directions before making its decision [55]. A second point of disagreement concerns
the dimensionality, d, of the hippocampal cognitive manifold. As mentioned above, our
model predicts d = 2n; twice the dimensionality of the state space S. (See Section II.4.3.)
Meanwhile Dyna+MD, like the SR, predicts d = n. Our prediction matches a report of
d = 2 in a rat performing a one-dimensional (n = 1) sound-frequency task [225]; it also
matches the results of an ongoing analysis of one-dimensional spatial tasks by the present
author (unpublished, not presented here). Cases with n ≥ 2 have yet to be carefully
tested. A third point of disagreement concerns non-Markovian tasks, discussed previously
in connection to the SR. We will discuss in Section II.4.3 how our model solves such tasks.
Meanwhile, Dyna+MD is impaled by one or the other (austere or extravagant) horn of the
dilemma discussed previously; depending on whether it is used to learn the SR or to learn
the value function directly [63]. A potential fourth point of disagreement is whether SWR-
sequences represent smooth (i.e. differentiable) trajectories through space, or are more
akin to drift-diffusion processes (aka Brownian motion). Dyna+MD predicts sequences
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that sometimes resemble the (smooth) trajectories of the animal [63], but it is unclear
to me wether smoothness is a categorical prediction of the model. As we will discuss in
Section II.4.3, our model categorically predicts smooth trajectories; which is in agreement
with a recent report on awake SWR-sequences [241], but in tension with an earlier report
on sleep SWR-sequences [246]. (See discussion in Section II.4.4.)

II.4.3 Predictions and further interpretation

In this Section we discuss various additional predictions and matters of interpretation of
our model.

Propensities of SWR-sequences

When comparing our model to Dyna+MD in Section II.4.2, we mentioned a number of
predictions regarding the propensities of forward and reverse SWR-sequences under various
conditions. Here we briefly explain where each of these predictions comes from. As men-
tioned in Section II.3.3, the selection of flagged locations in lines 4 and 17 of Algorithm 4
influences the SWR-sequences produced by that algorithm. In this way, the prioritiza-
tion properties F1–F6 of the flagging process (Section II.3.3) influence the propensities of
SWR-sequences, giving us the predictions in question. We go over this list of predictions
in the order they were mentioned in Section II.4.2.

(i) A bias for forward over reverse SWR-sequences at the start of a task [76].

This follows from F6, which recommends temporarily boosting the priority of the animal’s
current location as a flagged origin, in anticipation of upcoming goal-directed navigation,
since this will certainly be a point of origin for upcoming plans.

(ii) A bias for reverse over forward SWR-sequences after finding reward [76].

This follows from F2, which recommends increasing the priority of the rewarded location
as a flagged goal, since finding a reward at the location is a good heuristic predictor that
there will be reward there again in the future.

(iii) Awake [97] and post-run-sleep [238] SWR-sequence activity increasing with the amount
of reward found on the maze, even if the reward was only perceived, without being
consumed [239]. Specifically: with reverse SWR-sequence activity at reward loca-
tions, but not forward SWR-sequence activity, being monotonically modulated by
reward magnitude (increasing as well as decreasing) [98].

This follows directly from F2. However, in the case of decreasing reward magnitude there is
a counteracting effect from F5, which recommends increasing the priority of the rewarded
location as a flagged goal. Hence, we can predict that the increase in reverse SWR-sequence
activity resulting form an increase in reward magnitude should be more pronounced than
the decrease in the same resulting form a decrease in reward magnitude. This further
prediction is also borne out experimentally [98].

(iv) A bias of awake forward SWR-sequences for starting near the animal’s location [69,
240], and being predictive of upcoming behavior during goal-directed navigation [105,
241].

This follows from F6, the same as in point (i) above.

(v) A bias of SWR-sequences for specific locations that have been frequently visited [242].
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This follows from F2 and F3, since the frequency with which a flagged location has been
visited in the past is a good heuristic predictor of the frequency with which it will be
visited in the future.

(vi) Novel experiences increasing the incidence of SWRs and associated sequences, both
during and after experience, followed by decreasing incidence with increasing famil-
iarity [72, 243–245].

This follows from F5, which recommends increasing the priorities of flagged locations in
the vicinity of places where contingencies have changed; and from F4, which recommends
gradually decreasing the priority of flagged locations as Algorithm 4 proceeds to compute
more of the optimal plans to/from those locations.

We mention two further predictions regarding SWR-sequence propensities, which, to
my knowledge, have not yet been tested experimentally.

(vii) Remote SWR-sequences (those not stemming from the location of the animal) should
stem from discrete fixed locations on the map.

This follows from Algorithm 4, in which forward and reverse SWR-sequences always stem
from the discrete points {S1,S2, . . .} making up the high-level map (see Figure 3). The
exception is the present location of the animal (S0) during the awake offline mode; which,
of course, is not constrained to the discrete points making up the high-level map, yet can
serve as a point in the high-level plan (see Figure 3).

(viii) For an animal on a novel maze, SWRs should occur predominantly as singlets (SWR
trains of length one). SWR trains should gradually become longer (lengths two, three,
etc.) over repeated episodes of experience and sleep, simultaneously as the animal
becomes proficient at navigating the maze.

This follows from Algorithm 4. On a novel maze the collection of episodic memories (3)
starts out empty; so the algorithm produces only exploratory SWR-sequences (lines 12
and 25), which tend not to hit the required boundary condition to continue the train in
the multiple shooting method, triggering the break clause in lines 14–15 and 27–28. Over
the course of learning the algorithm builds up its collection of episodic memories, allowing
it to produce directed SWR-sequences more often (lines 9 and 22), which tend to hit the
required boundary condition to continue the train.

Role of θ-sequences in deliberation

We mention a couple of predictions regarding the role of θ-sequences in deliberation.

(ix) θ-sequences should transition, from being exploratory early during learning of a novel
maze [74], to becoming goal-directed after sufficient experience and sleep [55], hand
in hand with the animal becoming proficient at the task [55].

This follows from Algorithms 3 and 4. On a novel maze the collection of episodic memo-
ries (3) starts out empty; so Algorithm 3 produces only exploratory θ-sequences (line 7).
Over the course of learning Algorithm 4 builds up its collection of episodic memories, al-
lowing Algorithm 3 to produce goal-directed θ-sequences more often (line 5). This enables
the system to plan successfully in real time.

(x) Disruption of θ-sequences should disable the animal’s ability for locale navigation.
This should appear as a decrease in the animal’s performance on tasks which can
only be solved by locale navigation and not by any of the other strategies for nav-
igation (cf. Section II.2.3). On tasks that can be solved by either locale or route
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navigation, the disruption should cause the animal to switch to route navigation;
i.e. favoring taxon navigation between subgoals, over the nuanced avoidance of in-
tervening spaces which are exposed or have been fear-conditioned. Because route
navigation is computationally easier than locale navigation, this may manifest, coun-
terintuitively, as an improvement in performance as measured in trials-per-minute,
or even percentage-correct-trials—even if it is an inferior strategy under ethological
conditions.

This follows from the function of θ-sequences in Algorithm 3, as reconstructions at query
time of imminently-needed optimal plans. These are low-level plans, used to enable execu-
tion of the high-level plan of mPFC. As mentioned in Section II.3.2, taxon navigation can
serve as a HPC-independent substitute for these low-level plans,6 but has the disadvan-
tage of exposing the animal to regions of space that should be avoided under ethological
conditions. To my knowledge, prediction (x) has not been carefully tested. (But see Siegle
& Wilson [247], and further discussion in Section II.4.4.)

Smoothness of hippocampal sequences

(xi) Hippocampal sequences (both θ- and SWR-) should follow smooth (i.e. differentiabil-
ity class C1 almost-everywhere) paths, {s(t)}t; not jagged or Brownian-motion-like.

This follows from the numerical role of hippocampal sequences in our model, as instances
when dHPC is integrating the ODEs of Pontryagin’s maximum principle ((iia–iic) of Box 3)
either forward or backward through time. These ODEs imply that ṡ(t) exists and is an
almost-everywhere continuous function of time (and hence s(t) is continuous). Predic-
tion (xi) is in agreement with a recent analysis of awake SWR-sequences [241], and in
tension with an earlier analysis of sleep SWR-sequences [246]. (But see discussion in Sec-
tion II.4.4.)

Functions, informational contents, and geometries of cognitive manifolds, for
the subfields DG, CA3 and CA1

Our model says that the input to dHPC is a pair (S0,S1) of initial and terminal states
(Figure 4c). Accordingly, we might expect this to be the information represented at the
input of dHPC, in dentate gyrus (DG):

(xii) The DG field of dHPC should represent the cognitive manifold S2 = {(S0,S1)}, where
S0 represents the current state of the animal, and S1 the immediate subgoal of the
high-level plan from mPFC.

Admittedly, this prediction is vague regarding which of the two principal cell populations
of DG—granule cells or mossy cells [248]—should instantiate the manifold in question.

The representation (S0,S1) is not suitable for numerical integration of the ODEs ((iia–
iic) of Box 3). For that, (S0,S1) should be transformed to (S0,p

⋆
0), where p⋆0 is the initial

co-state of the corresponding optimal plan, as in (3). A natural place within HPC for
the integration of the ODEs to be computed is within the recurrent connections of CA3.7

6Refer to Redish et al. [49] for a review of anatomical structures involved in taxon navigation.
7Numerical integration of ODEs can naturally be performed by a recurrent neural network (RNN). Let

π⃗0 be a vector of initial probabilities over a set of discretized values for (s,p). Pontryagin’s ODEs, which
define a flow over the space {(s,p)}, induce a linear dynamics on π⃗; that is, ˙⃗π = M̂π⃗, where M̂ is some
matrix of coefficients (the transition matrix). Integrating this ODE over a small finite time step ∆t = 1 (in
some units):

π⃗t+1 = P̂ π⃗t, (6)
where P̂ = exp{tM̂} is a Markov matrix. By encoding P̂ in the synaptic connections of a linear RNN, the
RNN’s dynamics will precisely replicate (6), solving Pontryagin’s ODEs while elegantly handling uncer-
tainty in the initial conditions.
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Accordingly, we might expect that

(xiii) The CA3 field of dHPC should represent the cognitive manifold S ×Rn = {(s,p)}.8
During the awake theta state, at the start of the theta cycle, s = S0 represents the
current state of the animal and p = p0 the initial co-state of a candidate optimal plan
starting at S0.

Furthermore (cf. footnote 7),

(xiv) The CA3 field of dHPC should function as a numerical integrator for the ODEs of
Pontryagin’s maximum principle ((iia–iic) of Box 3). Having received as input from
DG a full set of initial conditions for these ODEs, (S0,p0), CA3 should, over the
course of a theta cycle or a SWR, compute an optimal plan {(s(t),p(t))}t from
those initial conditions; a hippocampal sequence.

This prediction pinpoints CA3 as the originator of hippocampal sequences. Consistent with
this prediction, SWRs in CA1 are known to be induced by CA3 activity [249]—suggesting
an interpretation in which SWR-sequences originate in CA3 before being communicated to
CA1. In agreement with this interpretation, chronic blockade of CA3 to CA1 transmission
resulted in a loss of SWR-associated reactivation in CA1 [250]; and a more targeted acute
silencing of CA3 revealed its dominant role in CA1 place field responses and ensemble
activity [251]. (The latter experiment found no effect of CA3 silencing on CA1 theta phase
precession, but it remains to be seen whether this entails intact CA1 θ-sequences—if it
did, that would be in tension with our prediction (xiv).)

We have just seen that a likely prediction of our model is that, over the course of each
theta cycle or SWR, CA3 computes a trajectory through {(s,p)}-space. Recall that the
co-state, p, is an auxiliary variable necessary for working with Pontryagin’s ODEs. Once
these ODEs have been solved, this auxiliary variable has served its purpose and can be
discarded. Thus it would make sense for CA3 to communicate only {s(t)}t downstream
to CA1. Now, of the computational task ascribed to dHPC by our model, the only part
we are still missing is the validation step at the output (step f of Box 2, and lines 14-15
and 27-28 of Algorithm 4), where it is checked whether the produced low-level plan {s(t)}t
indeed terminates near the requisite subgoal of mPFC, S1. CA1 is well poised to carry
out this final validation, since: (i) CA1 is located at the output of HPC; (ii) CA1 receives
input from area CA3 (which we have just argued conveys {s(t)}t) as well as from mPFC
(through RE, which conveys S1); and (iii) CA1 projects back to mPFC (both through RE
and directly, cf. Box 2), as would be needed to convey the output of the validation back
to mPFC (cf. Box 2). Hence, we might expect that

(xv) The CA1 field of dHPC should represent the cognitive manifold S2 = {(s(t),S1)},
where s(t) is the output from CA3, which sweeps out a sequence through S once
per theta cycle or SWR, and S1 is the immediate subgoal of the high-level plan from
mPFC.

It follows from predictions (xii, xiii, xv), in particular, that for a task with an n-
dimensional state-space S,

(xvi) The cognitive manifolds represented in the DG, CA3 and CA1 fields of dHPC should
each have intrinsic dimension d = 2n; twice that of the task’s state-space.

This prediction matches a report of d = 2 for the CA1 cognitive manifold in a rat performing
a one-dimensional (n = 1) sound-frequency task [225]. It also matches the results of an

8Strictly speaking, the manifold {(s,p)} is the cotangent bundle of S, denoted T ∗S. This is always
locally, but not always globally, isomorphic to the cartesian product S ×Rn.
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ongoing analysis of one-dimensional spatial tasks by the present author (unpublished, not
presented here). CA1 data from a rodent foraging in an open arena (n = 2) was analyzed
by Low et al. [225], who report finding d = 3. This does not quite match our prediction
of d = 4; however, it is possible that this may reflect incomplete sampling of the cognitive
manifold in this experiment. Indeed, cases with n ≥ 2 need to be carefully tested; these
are complicated by animal’s tendency to develop stereotyped behaviors, which keeps them
from exploring all possible trajectories through “high”-dimensional state spaces.

Locus of episodic memory traces

As has just been discussed, a likely prediction of our model is that the transformation
between representations (S0,S1) and (S0,p

⋆
0) takes place in the passage from DG to CA3.

As has been explained earlier in connection with equation (3), in our model this very
transformation is the content of episodic memory. Accordingly, we might expect that

(xvii) The locus of episodic memory traces (3) should be the synaptic connections of the
DG’s mossy fibers onto CA3 dendrites.

Senzai [248] reviews the hypotheses that DG functions as a pattern separator, while
CA3 functions as a pattern-completing auto-associative network, and that the locus of
episodic memory traces are the recurrent connections of CA3. Our model’s predictions are
different from these hypotheses, but we can see how it could look like that if our model’s
predictions were right: notice that an episodic memory in our model is only the “seed” of
an episode; the episode itself gets reconstructed from this seed in CA3.

Solving non-Markovian tasks

The general principle by which our algorithm is able to solve non-Markovian tasks is
quite simple. We illustrate it on the alternating T-maze. To solve this task our algorithm
requires one hippocampal map (not two); together with mPFC’s ability for representing the
necessary task rule (alternation), and mPFC’s access to adequate working memory. The
latter assumptions are both empirically supported [163, 164, 252]. Using these resources,
mPFC can use classical planning techniques for its high-level planning (Figure 3), which
takes care of the non-Markovian aspect of the task. The contribution of HPC remains the
same as in Markovian tasks: to work out the imminently-needed details of the high-level
plan. It is easy to see that this method of solution evades the extravagant horn—a bad
scaling of resources with number of decision contexts involved—of our extravagant-austere
dilemma, laid out in Section II.4.2. For example, to solve the goal-directed component
of the task by Pfeiffer & Foster [105], with its 36 distinct possible home locations, our
algorithm still requires just one hippocampal map; it is enough that PFC have access to
a memory of the home location throughout the day, so that it can perform its high-level
planning accordingly.

Trajectory coding in HPC

We have just seen that our model avoids the extravagant horn of our extravagant-austere
dilemma, by requiring only one hippocampal map to solve a given non-Markovian task, no
matter how many decision contexts may be involved. In this sense our model resembles
the successor representation (SR) model. But we saw in Section II.4.2 that the SR gets
impaled by the austere horn of the dilemma—an inability to accommodate trajectory
coding in HPC.9 As we will now explain, our model avoids also this horn of the dilemma.

9As a reminder, trajectory coding (aka trajectory-dependent activity or splitter cells) refers to changes
in the firing properties of place cells on different runs through the same place. These changes have been
found to depend on the past and future of the animal’s trajectory [202, 229, 231–236].
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Consider first the dentate gyrus (DG) field of dHPC. According to our prediction (xii),
during the awake theta state, neurons in DG should encode not just the present location of
the animal, S0, but also, conjunctively, the immediate subgoal of the high-level plan from
mPFC, S1. Moreover, since these data simply reflect the input to dHPC, they should be
manifest as soon as the map emerges. This means that

(xviii) DG place cells should exhibit trajectory-dependent prospective firing. This tuning
property should be manifest as soon as the map emerges; after only a few runs through
a novel environment.

(As in prediction (xii), this prediction is admittedly vague regarding which of the two
principal cell populations of DG—granule cells or mossy cells [248]—should exhibit this
tuning.) Prospective (resp. retrospective) firing means that the neuron’s activity depends
on the future (resp. past) animal trajectory. Trajectory coding in DG was indeed reported
by Senzai & Buzsáki [253], but as far as I’m aware no studies have been done to distinguish
whether this activity is prospective or retrospective, nor how soon this tuning emerges in
a novel environment.

We turn now to the CA3 field of dHPC. According to our prediction (xiii), during the
awake theta state, at the start of the theta cycle, neurons in CA3 should encode not just the
present location of the animal, S0, but also the initial co-state, p0, of a candidate optimal
plan starting from S0. Early during learning of a novel environment, before episodic
memories (3) have been created, this co-state p0 will be chosen at random according to
line 7 of Algorithm 3, and will bear little relation to the animal’s future trajectory. Hence,

(xix) Early during learning of a novel environment, CA3 place cells should exhibit no (or
only weak) trajectory-dependent prospective firing.

However, over the course of multiple episodes of awake experience and sleep, as dHPC
builds up its collection of episodic memories, this will enable Algorithm 3 to call on line 5
more often. This transition, which causes θ-sequences to become goal-oriented, means that
p0 becomes predictive of the PFC’s immediate subgoal S1. Hence,

(xx) After multiple episodes of awake experience and sleep, hand in hand with θ-sequences
becoming goal-oriented, CA3 place cells should develop trajectory-dependent prospec-
tive firing.

As far as I’m aware, no longitudinal studies have been reported to determine if, and how
soon, trajectory coding in CA3 emerges in a novel environment. However, Ito et al. [202]
reported weak prospective coding in CA3 (in rats trained until achieving 90% correct trials
on the alternating T-maze); which may represent a single snapshot along the transition,
from no prospective coding initially (prediction (xix)) to robust prospective coding as
θ-sequences become goal-oriented (prediction (xx)).

Finally we turn to the CA1 field of dHPC. According to our prediction (xv), during the
awake theta state, at the start of the theta cycle, the coding in CA1 is much like that in
DG: neurons in CA1 should encode the present location of the animal, S0, conjunctively
with the immediate subgoal of the high-level plan from mPFC, S1. And since these data
simply reflect the input to dHPC, they should be manifest as soon as the map emerges.
Therefore

(xxi) Like DG place cells, CA1 place cells should exhibit trajectory-dependent prospective
firing. This tuning property should be manifest as soon as the map emerges; after
only a few runs through a novel environment.

This prediction is in agreement with robust trajectory-dependent prospective firing ob-
served in CA1 [202, 233, 236]. It may also explain why CA1 place cells become directionally
selective on linear tracks [254, 255].
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We can make an additional prediction about where in space prospective tuning should
occur (for any subfield of HPC). We have seen that such prospective tuning comes about
in our model due to HPC encoding not only the present state, S0, but also, conjunctively,
the immediate subgoal, S1, of the high-level plan from mPFC (or in the case of CA3, the
corresponding initial co-state, p0, which comes to reflect S1 after the necessary episodic
memories (3) have been formed). Since S1 is the first upcoming subgoal of the high-level
plan, not any subgoal further ahead:

(xxii) Hippocampal trajectory-dependent prospective firing should never be present further
back from the choice point than the typical distance between the points making up
the high-level map in mPFC (as in Figure 3); this should be the same as the typical
length of a simple SWR-sequence (∼ 50cm in rodents).

This prediction has been tested and is consistent with observations [256].
In this way, our model provides a framework for prospective trajectory coding in HPC.

We note, however, that hippocampal place cells are also known to exhibit retrospective
trajectory coding [229, 232, 234, 235]. It does not seem that our model provides an
explanation for this phenomenon, which might best be addressed by the “multiple-map
hypothesis” [227, 228, 256].

II.4.4 Limitations and points of tension

In this section we make note of several limitations in the scope of our model, and of some
points of tension with available empirical evidence.

Limitations of scope

As any other model, our model is idealized in several ways and is limited in its scope. For
example: (i) as regards locale navigation, we have entirely neglected the key problems of
mapping;10 of model learning;11 of fear/reward conditioning;12 and of self-localization.13

We hope that thinking of our model as embedded in a larger system (cf. Box 2) may sug-
gest connections to existing as well as new hypotheses, for how the deliberative system as
a whole solves such problems. (ii) An important aspect of episodic memory is the binding
together of multimodal stimuli into a context in the form of a wholistic episode [47]. Our
model has offered a mathematical characterization of episodic memories which seems to
capture the sequential or “mental time travel” quality of such memories, but we have had
little to say about the binding together of multimodal stimuli. This omission relates to
the previously mentioned one regarding the problem of mapping. (iii) Our model posits
only two levels of hierarchical planning, as in Figure 3, but it may be possible to modify
our model to include more levels. Indeed, the grading of spatial scales observed along the
long axis of the hippocampal formation [155] may suggest such a modification. (iv) As
mentioned at the end of Section II.4.3, our model does not seem to provide an explana-
tion for the observed retrospective trajectory coding in HPC [229, 232, 234, 235]. This
phenomenon might best be addressed by the “multiple-map hypothesis” [227, 228, 256].

Consistent with the observations highlighted in Section II.2.1, our model distinguishes
two modes of operation for the deliberative system: online and offline. However, it is likely
that these modes subdivide further in ways our model does not capture. Studies of sleep
indicate three or four distinct stages of non-REM sleep [257]. Our model’s offline mode

10i.e. learning the state space S.
11i.e. learning the action space A and the transition function f .
12i.e. learning the cost-rate function L.
13i.e. determining the current context, S, and the current state, s ∈ S, and handling remaining uncer-

tainty.
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(Algorithm 4) may describe the computations involved in only one of those stages (e.g. stage
2), while memory consolidation (Section II.3.4) may take place during a different stage of
sleep (e.g. stage 3). Concerning the waking state, Wu et al. [240] performed strong fear
conditioning at one end of a track in rats running laps on a linear track. Before conditioning,
awake SWR-sequences were predictive of the animal’s upcoming behavior, consistent with
our model (prediction (iv) of Section II.4.3) and with other studies [105, 241]. However,
after strong fear conditioning SWR-sequences became predictive of paths that the animal
avoided. This happened hand in hand with an overall reduction in the animal’s running
speed. These observations suggest either a discrete transition in the mode of operation
of the deliberative system, from goal-directed to fear-aversion—in which case our model
would describe only the goal-directed mode—or else a takeover of decision-making by a
fear-aversion system, distinct from the deliberative system.

Tensions with empirical evidence

We have treated SWR-sequences as being always perfectly forward or perfectly reverse, but
in fact a fraction of SWR-sequences are mixtures—part forward, part reverse [69]—as seen
in Figure 1e. Within our model, perhaps this indicates a small error rate in Algorithm 4,
which allows jumping between the two for loops in lines 6 and 19.

Siegle & Wilson [247] used optogenetic stimulation to inhibit dorsal CA1 at specific
phases (either early or late) within each theta cycle, and tested the effect on task perfor-
mance when either manipulation was done during the context-cueing or memory-retrieval
phases of a spatial working-memory task. Surprisingly, they found combinations in which
their manipulation improved performance (specifically, when CA1 was inhibited at early
phases of theta during context cueing, as well as when it was inhibited at late phases
of theta during memory retrieval). On first impression this result seems to conflict with
any model in which θ-sequences play an active role in decision-making (as in our model).
Any such model would predict that disruption of θ-sequences should negatively impact the
system’s performance. Seemingly adding to this conflict are observations that rats are per-
fectly capable of solving the alternating T-maze (without delay) after complete lesioning
of their HPC [258]. However, it is possible that there is no conflict here. As highlighted in
prediction (x) of Section II.4.3, our model implicates θ-sequences, and HPC generally, in
locale navigation, but there are other HPC-independent strategies for navigation available
to the brain (Section II.2.3). In particular, the alternating T-maze and the task employed
by Siegle & Wilson [247] can both be solved by taxon navigation. So it is possible that
the sustained (or even improved) task performance they report after disruption of HPC is
a reflection of the brain switching to taxon navigation.

II.4.5 Future directions

In the near term, I’m interested in the questions of (i) how the hierarchy is extracted; (ii)
how to incorporate uncertainty into the model (see Part III); (iii) what is the neuronal-
level implementation of our algorithm; (iv) how, in detail, does memory consolidation work
(cf. Section II.3.4); and (v) beyond spatial navigation, what can our model say about goal-
directed decision-making in more abstract domains? I also look forward to collaborating
with my experimental colleagues to test the predictions from Section II.4.3.

In the long term, the highest form of success for our model would have it become estab-
lished as a paradigm—a conceptual framework—guiding the community in understanding
the “computational life” of hippocampus, and its relation to the larger deliberative system.
In such a happy scenario, our model would do for the deliberative system what the theory
of reinforcement learning has done for the habit system [212–215]. Much work would need
to be done in pinning down the model’s loose ends; this would require, in particular, the
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many experimental labs in the field, with their myriad windows into the deliberative sys-
tem, to grapple for alignment between our model and their views. Naturally, this would
involve experiments testing our model from many angles, including those highlighted in
Section II.4.3.
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A conjecture on intertemporal choice

Perhaps the structure of [quantum] theory denotes the optimal
way to reason and make decisions in light of some fundamental
situation—a fundamental situation waiting to be ferreted out in
a more satisfactory fashion.

C. Fuchs [39]

In this concluding part of the thesis, I attempt to explain how the two main parts (Parts I
and II) fit into the context of a broader research agenda. I make no attempt here at estab-
lishing results. Instead I present a thread of reasoning involving a number of speculative—
but I hope, stimulating—connections. The discussion involves ideas from a diversity of
fields: Hamiltonian mechanics, symplectic geometry, optimal control theory, reinforcement
learning, probability theory, decision theory, quantum mechanics and cognitive science.
For the sake of brevity, I’ve decided against stopping to define the various concepts and
equations invoked (as long as they are well-established in their fields); limiting myself to
providing entries to the literatures as appropriate. The punchline of this part will be a
conjecture, that the probability calculus of quantum mechanics holds a kind of normative
status for a class of decision problems involving intertemporal choice under uncertainty—a
class of problems of great importance to artificial intelligence, brain sciences, economics,
and, I argue, to physics too.

III.1 Symplectic geometry as the implicit common thread of
this thesis

We begin by pointing out symplectic geometry as a common element underlying the math-
ematics in the two main parts of this thesis. On the one hand we have Hamiltonian
mechanics (the subject of Part I), which is widely considered to be one of the crown jewels
of mathematical physics, and which is a confluence of differential, algebraic and symplectic
geometry, Lie algebra and Lie groups [17]. All of this structure follows from little more
than Hamilton’s principle of stationary action, which states that if an isolated physical
system evolves from configuration q1 to configuration q2 over a period of time [t1, t2], it
must do so along a trajectory which makes the action functional stationary (i.e. such that
the first variation δS = 0):

make stationary S[q] = ∫
t2

t1
dtL(q, q̇; t), (1a)

between q(t1) = q1 and q(t2) = q2. (1b)

(Here L is the Lagrangian function for the system, and S the action functional.) On
the other hand, optimal control theory (the mathematical underpinning for Part II) is

72



Section III.2. Exploiting symplectic geometry in reinforcement learning 73

concerned with solving the optimal control problem [46]:

control the system q̇ = f(q, a), (2a)

to minimize S[a] = ∫
t2

t1
dtL(q, a; t), (2b)

between q(t1) = q1 and q(t2) = q2. (2c)

(Here q(t) is the state of the system, a(t) is the control, or action, f(q, a) is the transi-
tion function specifying the effect of taking action a in state q, L(q, a; t) is the cost-rate
for taking action a in state q at time t, and S[a] is the cost of a given trajectory.) I’ve
used overlapping notations in (1, 2) to emphasize that the two mathematical problems
are closely interrelated. Indeed, the reader may be unsurprised to hear that the theory of
optimal control reuses (or extends) many of the same concepts and equations as Hamil-
tonian mechanics. Thus the Lagrangian becomes the cost-rate; the canonical momentum
becomes the co-state; the Hamiltonian becomes the control Hamiltonian; Hamilton’s equa-
tions become Pontryagin’s minimum principle; the Hamilton-Jacobi equation becomes the
Hamilton-Jacobi-Bellman (HJB) equation; and Hamilton’s principal function becomes the
cost-to-go function. Naturally, the rich symplectic geometry of Hamiltonian mechanics
also underlies the mathematics of optimal control. This prevalence of symplectic geometry
in variational problems was stated with authority by Arnold and Givental [259]:

Whenever the equations of a theory can be gotten out of a variational princi-
ple, symplectic geometry clears up and systematizes the relations between the
quantities entering into the theory. Symplectic geometry simplifies and makes
perceptible the frightening formal apparatus of [. . . ] the calculus of variations
in the same way that the ordinary geometry of linear spaces reduces cumber-
some coordinate computations to a small number of simple basic principles.

III.2 Exploiting symplectic geometry in reinforcement learn-
ing

I want to emphasize the great practical value of exploiting symplectic structure when it
is present in a problem. For this, recall some of the many momentous results in mechan-
ics that exploit symplectic structure: the existence of local canonical coordinates on any
symplectic manifold (Darboux’s theorem) [17]; the Poisson bracket, the algebra of observ-
ables, and the relation between symmetries and conservation laws (symplectic Noether’s
theorem) [17]; the invariant measure on phase space (Liouville’s theorem) [17], with its
far-reaching consequences in statistical mechanics [21]; the theory of integrable systems,
invariant tori, and action-angle coordinates (Liouville-Arnold theorem) [17]; the stability
of invariant tori, and the structure of soft chaos, in perturbed integrable systems (KAM
theorem) [17]; and symplectic numerical integration schemes, which vastly outperform
their non-symplectic counterparts [260, 261]. I’d also like to contrast this list with how
little, as of yet, symplectic structure has been recognized and exploited outside of physics
and mathematics. Indeed, as far as I’m aware, the only exploit of symplectic geometry in
optimal control has been a tepid adoption of symplectic integrators when optimal control
needs be exerted over prolonged periods of time [262–267].

With the thought that “symplectic geometry is a powerful resource” on our minds, the
problem that I would like to draw attention to is the following.

P: How does one solve a variational problem of the form (1) or (2) in a situation where
there is incomplete information available about the boundary conditions, q1, q2, the
transition function f , and/or the cost-rate function L?



74 Part III. A conjecture on intertemporal choice

This type of problem is of great interest in artificial intelligence, particularly in reinforce-
ment learning (RL); where an agent that begins with little to no prior knowledge tries
to accrue as much reward as possible (i.e. to solve (2)), while simultaneously trying to
infer q(t) from noisy sensory data and to learn f,L through experience. The standard
approach in RL has been to model the problem as a discrete-space, discrete-time, Markov
decision process (MDP), with unknown transition and reward probabilities [212]. That is:
state transitions and rewards are described as random variables, so that taking action a
in state s leads to state s′ and reward r, not deterministically, but at random, according
to some objective and initially-unknown probability distribution p(s′, r∣s, a). The power
of that approach, as far as I can tell, comes from the Bellman optimality equation—a
version of the HJB equation suited to discrete MDPs—and from the dynamic program-
ing techniques stemming from it [212]. (Among those techniques are staples of the field
such as value back-propagation and temporal-difference learning.) However, it seems to
me that a great resource is wasted in replacing the deterministic-but-uncertain problem,
P, with the inherently-stochastic MDP version of the problem. Namely, problem P—that
which remains of the optimal control problem (2) “modulo” knowing the exact value of
q1, q2, f,L—still has symplectic structure (we know the optimal trajectories must define
some symplectic flow on phase space; although we may not know exactly which flow nor
where we are in phase space); but that structure is completely absent from the MDP
version of the problem. By analogy to the way symplectic integrators are able to vastly
outperform conventional integrators by exploiting symplectic structure [260, 261], I expect
there must be symplectic algorithms for solving P which vastly outperform current RL
algorithms.

III.3 Quantum probability as a normative decision theory

What might a symplectic algorithm for solving problem P look like? I don’t have a
complete picture, but I’d like to point out what I believe will be a key element of the
answer.

It is clear that we need a probabilistic framework to handle the incomplete information
in problem P. However, the framework of classical probability doesn’t seem to be well
suited to exploit symplectic structure. To clarify what I mean, notice that the space of all
valid classical probability assignments, for a given problem, is some n-dimensional simplex,
∆n.1 But for n even there’s no useful way, as far as I know, to endow ∆n with a symplectic
structure; while for n odd, ∆n doesn’t even admit of a symplectic structure at all.2 So
there indeed seems to be a mismatch between the tool (classical probability) and the task
(exploiting symplecticity). Now, we do know of a non-classical probabilistic framework
that has a natural symplectic structure: it is a type of non-commutative probability [268];
specifically, that used in quantum mechanics [269]. In this framework, the space of all valid
probability assignments, for a given problem, consists of the convex linear combinations
of certain special elements called “pure states”. Pure states form a space of their own: a
2n-dimensional complex projective space, CPn. And indeed, CPn is a symplectic manifold
for any n [259].

These considerations suggest that a symplectic algorithm for solving problem P must
rely on quantum probability, not classical probability, to quantify uncertainties. I take this
suggestion one step further by proposing the following conjecture.

1Namely, for a random variable with n + 1 possible values, valid probability assignments are in one-to-
one correspondence with (n+1)-tuples of positive real numbers that sum to one: ∆n = {(p1, . . . , pn+1) ∣p1+
⋅ ⋅ ⋅ + pn+1 = 1}.

2Symplectic geometry requires an even-dimensional manifold.



Section III.3. Quantum probability as a normative decision theory 75

Q: Perhaps there is a precise normative sense in which quantum probability is the ra-
tional way to quantify uncertainty in problem P.

A few clarifications are in order. (i) In decision theory [270, 271], probability theory is
understood as a tool for making rational decisions under uncertainty.3 Regarded in this
way, the whole framework of (classical) probability theory comes about, not as a calculus
of empirical frequencies, nor as the logical consequences of a set of axioms, but as practical
normative rules; rules of conduct which we are free to violate, but we do so at our own peril
by exposing ourselves to the possibility of sure losses. This is the sense in which I use the
words “normative”, “probability” and “rational” in conjectureQ. (ii) I haven’t given a precise
definition of “quantum probability”. Just what part of the mathematics of quantum physics
am I proposing will play a role here? Am I perhaps suggesting that the special issues of the
particular relativistic quantum field theories appearing in the standard model of particle
physics will be relevant? Or that Planck’s constant h̵ ≈ 1× 10−34J⋅s will appear? Of course
not. Something like the following seems appropriate: that propositions can be made to
correspond to subspaces (equivalently, to orthogonal projection operators) of a Hilbert
space, H, over the field C;4 that real-valued functions over phase space can be made to
correspond to hermitian operators overH, in such a way that the Lie algebra of functions be
homomorphic to the Lie algebra of operators, as in canonical quantization;5 that probability
assignments can be made to correspond to von Neumann density operators over H in the
usual way; and that the optimal trajectories—the solutions to problem P—can be made
to correspond to unitary evolution over H. (iii) I’d like to emphasize that conjecture Q
is a mathematical conjecture, not, say, a philosophical perspective or even a scientific
hypothesis; it’s either true or false; and what it would take to settle the conjecture in the
positive is a Dutch Book theorem, analogous to those of classical decision theory [271], of
the following form. Faced with “such-and-such a family of decision problems of the form
P”, any agent whose choice preferences do not meet “such-and-such conditions to do with
quantum probability” is subject to “such-and-such a money pump” that guarantees a loss
in every possible outcome.

Aside from the argument presented above involving the desire to exploit symplectic
structure for algorithmic gains, further support for conjecture Q can be drawn from other
places, as follows. (i) Consider the fact that quantum probability is required in physics for
the microscopic description of systems, which macroscopically are very well described by
Hamiltonian mechanics. This empirical observation has, of course, a theoretical counter-
part, in Bohr’s correspondence principle [274], and in the various known prescriptions for
“taking the classical limit” of a quantum theory [273, 275, 276] and, in the other direction,
prescriptions for “quantizing” a classical theory [273]. Said prescriptions always relate a
quantum theory to a classical Hamiltonian theory. This correspondence speaks to a deep
compatibility between variational problems such as (1) (and hence such as (2)) and the
quantum probabilistic framework.

(ii) As we have seen in some detail in Part I, even in a hypothetical world governed
by classical Hamiltonian mechanics, uncertainty regarding the Hamiltonian of a system
seems to lead to uncertainty about the state of the system, which is of the same form as
Heisenberg’s uncertainty relation. In turn, Spekkens [41, 42] and Bartlett et al. [43] have
shown that in classical ontologies where the epistemology is restricted by a Heisenberg-
like uncertainty relation, many of the phenomena which were thought to be characteristic

3In decision theory, probabilities are, by definition, choice preferences. E.g. Let $p be the highest price
that You would be willing to pay now for a lottery ticket worth $1 if it rains tomorrow, $0 otherwise. We
call p the probability, for You, that it will rain tomorrow.

4It’s important that the field be C—not R or H—so that the Hilbert space be a symplectic manifold.
5I’m glossing over well-known issues to do with obstructions to quantization, such as the Groenewold-van

Hove no-go theorem [272, 273].
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Figure 1: Sphere of influence of a decision-theoretic result. If correct, conjecture
Q may have far-reaching consequences across the sciences and beyond.

of quantum mechanics can occur.6 Taken together, these results support the idea that
quantum probability is the natural way to quantify uncertainty in variational problems such
as (1) and (2). “Natural” in the sense that it will straightforwardly yield valid solutions
to problem P which would otherwise seem counterintuitive, or even paradoxical, if one
carelessly forced classical probability on the problem.

(iii) An independent line of evidence comes from behavioral studies in cognitive science.
Beginning in the 1970’s with the work of Tversky and Kahneman [277–281], psychologists
began to uncover decision tasks for which humans deviate systematically from classical de-
cision theory. These are sometimes called “paradoxical behaviors”. Examples are the Allais
paradox [282]; the Ellsberg paradox [283]; question-order effects [284, 285]; the conjunc-
tion fallacy [286]; the disjunction fallacy [287, 288][289, p. 126]; and violations of Savage’s
sure-thing principle, e.g. violations of the law of total probability, such as the disjunction
effect [290]. One approach to explain such paradoxical behaviors goes by the name of
quantum-like models of cognition [289]. The idea is to substitute quantum probability, in
place of classical probability, in otherwise classical decision models. The approach has been
gaining popularity over the last decade. It is noteworthy for its parsimonious account of
a substantial number paradoxical behaviors [289, 291–297]; and for successfully predict-
ing one novel paradoxical effect with quantitative accuracy [298]. (Note that this was a
zero-parameter, quantitative, a priori prediction, which is uncommon in social sciences.)
The success of these descriptive models lends support to our conjecture, Q, by suggesting
that the usage of quantum probability by certain brain system(s) has been selected for by
evolution, which could only happen if quantum probability conferred a selective advantage
over alternative approaches in some decision problem(s).

Finally, we should note that the idea is not new that quantum theory may enjoy some
sort of normative status. It can be found at least as far back as two decades, in the literature
on quantum foundations, specifically in ψ-epistemic interpretations [39, 299, 300] and in
the many-worlds interpretation [301, 302]. (An example is the epigraph at the beginning
of this Part III.) I do wonder if anybody has had in mind as mundane a decision problem
as P.

6The list of phenomena includes noncommutativity, coherent superposition, collapse, complementarity,
no-cloning, no-broadcasting, interference, teleportation, remote steering, key distribution, dense coding,
entanglement, monogamy of entanglement, ambiguity of mixtures, locally immeasurable product bases,
unextendible product bases, pre and post-selection effects, quantum eraser and many others.



Section III.4. A bigger picture 77

III.4 A bigger picture

We’ve motivated problem P and conjecture Q from the point of view of artificial intelli-
gence and reinforcement learning. But P is a quite general statement of the problem of
intertemporal choice under uncertainty; so that conjectureQ, if it were to prove true, would
be a general result in decision theory. As indicated in Figure 1, such a breakthrough would
be consequential for many fields of human endeavor aside from A.I. Outside of academia:
policy making, management and finance are just some of the endeavors informed by deci-
sion theory. In academia: cognitive science routinely draws from the normative results of
decision theory, to inspire new computational models of decision-making in living organ-
isms. Neuroscience cares about how such computations may be implemented by the central
nervous system. And of course, intertemporal choice in humans is a central theme of eco-
nomics. In philosophy, epistemology cares about the proper ways to quantify knowledge,
and what their limits may be—both of which have been directly informed by Bayesian
probability theory in the past, and would be so again if conjecture Q proved true. I be-
lieve that physics, too, would stand to gain. A positive answer to conjecture Q would be
informative to debates around quantum foundations. Concretely, I can see it bolstering
support for certain so-called “retrocausal”, or “all-at-once”, ψ-epistemic interpretations of
quantum mechanics [303].
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