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Abstract

Dark matter, a missing puzzle piece in our understanding of the Universe, remains
dark despite abundant evidence for its existence and concerted experimental searches
for candidate particles. In recent decades, experiments with atomic systems, driven
by unprecedented developments in precision, have been providing tests for the Stan-
dard Model (SM), our current understanding of the Universe, and probing physics
beyond the SM, including dark matter. In particular, it has been proposed that
a new hypothetical elementary boson, a dark-matter candidate, can violate an SM
prediction: linear distributions of measured isotope shifts (ISs) mapped onto graphs
called King plots [1, 2, 3]. The prediction can be tested purely experimentally. If
the violation is observed, however, possible new-physics contribution has to be dis-
tinguished from higher-order SM corrections originating from nuclear physics.

This thesis reports IS spectroscopy experiments with laser-cooled and trapped
singly ionized Ytterbium (Yb+) ions to search for new physics through the proposed
novel method. The King-plot nonlinearities thus observed for the optical clock tran-
sitions in Yb+ ions with significance up to 240 standard deviations 𝜎 and their im-
plications to the new boson and nuclear physics are presented. In particular, there is
a dominant, common source of nonlinearity originating from nuclear charge distribu-
tions and yet a small, second source of unknown origin with 4.3𝜎 significance. Pattern
analysis of the nonlinearity in the King plots has been developed as a method for
identifying or removing the sources of the observed nonlinearity. Atomic and nuclear
structure calculations translate the measured nonlinearity patterns into bounds on
new-boson interaction between subatomic particles as well as information on nuclear
properties. The atomic structure calculations performed for Yb+ ions are illustrated
in detail. Outlook and future works are discussed, including measurements for more
transitions and isotopes and improving the experimental precision.

Thesis Supervisor: Vladan Vuletić
Title: Professor of Physics
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tric quadrupole (E2) transitions 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) and 𝛽:
2𝑆1/2 → 2𝐷3/2 (436 nm), and an electric octupole (E3) transition 𝛾:
2𝑆1/2 → 2𝐹7/2 (467 nm). Details on the transitions and decay channels

(gray dashed arrows) are summarized in Table B.1 with the references

therein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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4-1 Schematic drawing of the experimental setup. A single ytterbium ion

is trapped 135µm away from the surface of a microfabricated planar

Paul trap housed in an ultrahigh vacuum chamber. The propagation

directions of the laser beams used for cooling, repumping, ground-state

optical pumping, and optical clock transition probing (see Fig. 3-1)

are indicated by labeled arrows. Fluorescence from trapped ions is

collected using either a PMT or an EMCCD camera (see Section 4.1.3).

The probe laser beam is linearly polarized along the trap axis (the 𝑧

direction in this figure). . . . . . . . . . . . . . . . . . . . . . . . . . 63
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4-2 Schematic drawing of the configuration of optics and electronic compo-

nents for the PDH error and RAM monitor signal generation. 4MHz

local oscillator (LO) signal is split by power splitters (⊕ symbols) and

drives the RF port (𝑉RF) of EOM and the LO ports (L) of frequency

mixers (⊗ symbols) for PDH error and RAM monitor signals. The

beams reflected from the cavity or picked off by a beamsplitter (BS)

before the cavity go to the photodiode modules for PDH error (PHD

PD) or RAM monitor (RAM Mon PD) signals, respectively. The pho-

todiode signals go to the RF port (R) of the corresponding mixers.

The output signal from the IF port (X) of each mixer serves as PDH

error or RAM monitor signal after lowpass filtered to kill RF compo-

nents. The phases of local oscillator signals for the two mixers (𝜑PDH

and 𝜑RAM) are adjusted to make sure that RAM monitor sees the

same in-phase component of RAM effect in PDH error signal. Optical

isolators (ISO) placed in front of PDs suppress the crosstalk between

the PDs. To compensate the effect of RAM in PDH error signal, RAM

monitor signal goes into integrator (I) and fed back to the DC voltage

(𝑉DC) input of the EOM. 𝑉DC is picked off and goes into proportional

and integral (PI) transimpedance gains and the current (𝐼T) is fed to

the thermoelectric cooler (TEC) module attached to the EOM body,

to prevent required 𝑉DC from drifting out of the control range. Pol,

PBS, and QW stand for polarizer, polarizing beamsplitting cube, and

quarter-wave plate, respectively. Labels S, 1, and 2 refer to the input

and the two outputs of each power splitter, respectively. . . . . . . . . 72
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4-3 Fiber-coupled electro-optic modulator (EOM) for stabilization and

continuous tuning of the Ti:sapphire laser frequency. (Top) EOM

mounted on thermoelectric cooler (TEC) module over a metal sub-

strate, with negative-temperature-coefficient (NTC) thermistor attached

to the opposite side of EOM from the TEC module. (Bottom) com-

plete setup. Acrylic enclosure is filled with foam sheets for thermal

isolation. A port for DC input has been added afterward. . . . . . . . 75

4-4 Drift in PDH error signal offset and EOM’s DC input voltage and

temperature over 2 hours, while RAM-induced PDH error signal off-

set drift was actively stabilized. Data taken by Eugene Knyazev, a

research team member and fellow PhD student. The dips in EOM

temperature are spurious readings. . . . . . . . . . . . . . . . . . . . 76

4-5 Measured drift in a longitudinal mode’s frequency vs. temperature

of the ULE cavity, using 𝛼: 411 nm clock transition in Yb+ ions

(see Fig. 3-1). The 𝑦-axis shows the detuning of the Ti:sapphire

laser (before frequency-doubled) from the cavity mode. The cav-

ity mode frequency is 𝑓𝑐 = 365THz as the beam after frequency-

doubled probes the clock transition (see Section 4.1.5.1). The laser

frequency is referenced to the transition, and therefore the direction

of the change in the cavity mode’s frequency is the opposite of the

frequency change in the 𝑦-axis. Fitting the results gives the cavity’s

zero-crossing temperature 𝑇ZC = 29.46(1) °C and quadratic coefficient

𝐴 = −𝑎𝑓𝑐 = +194.0(15) kHz/K2. . . . . . . . . . . . . . . . . . . . . . 79

4-6 Zero-field MasterFrequency of 𝛾: 467 nm transition over time (see

Section 4.1.5.1 and Chapter 5; cf. Fig. 6-4) measured in (a) previous

[4] and (b) new measurements in this thesis. . . . . . . . . . . . . . . 81
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4-7 Setup for active stabilization of probe beam power. BS refers to beam

sampler, AOM to acousto-optic modulator, Set V to set voltage, and

L1 and L2 for focusing lenses. See the caption in Fig. 4-2 for other

notations and symbols. The set voltage is subtracted from the photo-

diode signal. Amplifiers used in the circuit are omitted. . . . . . . . . 82

4-8 Probe beam alignment monitor and 369 nm optical pump beam po-

larization control setup. L1–4 refer to focusing lenses, LC to liquid

crystal, QW to quarter-wave plate, (P)BS to (polarizing) beam split-

ter, and Quad PD to quadrant photodiode module. The separation of

optical pump and probe beams is exaggerated; the beams are almost

overlapped in practice. A shutter before PBS closes to protect the tip

of fiber for the optical pump beam while strong probe beam is on. . . 84

4-9 Position of a single ion in the plane of the trap as a function of time:

along the trap axis (black; 𝑧 direction), and perpendicular to the trap

axis and parallel to the plane of the trap (red; 𝑥 direction) (see Fig. 4-

1 for the direction assignments). The ion was interrogated with the

same laser pulse sequence used during the IS spectroscopy experiment

for 𝛾: 467 nm clock transition [see Fig. 5-3(c)], but the probe laser was

far-detuned from the resonance. . . . . . . . . . . . . . . . . . . . . . 86

4-10 Measured transition frequency offset by a cavity mode (Section 4.1.5.1)

vs time for (a) 𝛼: 411 nm and (b) 𝛾: 467 nm clock transitions. The

transmission power-dependent shifts are obtained in essentially the

same way described in Section 6.4. . . . . . . . . . . . . . . . . . . . 88

5-1 Area of a 𝛾: 467 nm transition peak (see Fig. 6-3) vs quadrant photo-

diode (Quad PD) reading in the 𝑥 and 𝑦 directions of the Quad PD

(corresponding to horizontal and vertical alignments of the probe beam). 96
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5-2 Zeeman structures of (a) 𝛼: 411 nm, (b) 𝛽: 436 nm, and (c) 𝛾: 467 nm

clock transitions. A pair of transitions that are red (𝑅) and blue (𝐵)-

detuned from the center transition frequency (i.e., the frequency for

zero magnetic field) by the same amount are measured and averaged

for each clock transition. The 𝑅 and 𝐵 transitions are chosen to be

measured, while 𝑅′ and 𝐵′ transitions are off-resonantly driven and

induce light shifts (see Section 7.2.1.1). . . . . . . . . . . . . . . . . 98

5-3 Pulse sequences for (a) 𝛼: 411 nm, (b) 𝛽: 436 nm, and (c) 𝛾: 467 nm

spectroscopy. The sequences in (a) and (b) are for Ramsey interfer-

ometry, while (c) is for transition-rate spectroscopy. The sequences in

(a) and (c) describe single-shot measurements (see Sections 5.4 and

6.1.1), while (b) describes integrated measurement (see Section 5.6

and 6.3). The durations 1○ – 6○, 𝜏 , and 𝑇 can be found in Table 5.1. 102

5-4 Scanned transition peak for 𝐵 Zeeman transition of 𝛾: 467 nm clock

transition [see Fig. 5-2(c)] (a) before and (b) after 369 nm beams leaked

through AOMs were blocked by shutters (see Section 5.4). In (a), the

same peak was scanned twice for each of 𝜎+ (red) or 𝜎− (blue) circular

polarizations of 369 nm optical pump beam (see Section 5.3.4), shown

by different symbols and line styles. In (b), the peak is scanned for �̂�+,

�̂�−, and linear (black) [= (�̂�+ + 𝑒𝑖𝜑�̂�−)/
√
2 with an arbitrary relative

phase 𝜑] polarizations. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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6-1 Time-resolved PMT counts (see Section 5.3.7) in each of 100 time bins

during a pulse sequence cycle for 𝛾: 467 nm transition [see Fig. 5-3(c)].

(a) The averaged PMT counts over 10 cycles for each MasterFrequency

step (see Section 6.1.2). Other figures shows the example PMT counts

for [QO, QJ] = (b) [true, false], (c) [true, true], and (d) [false,−]

(see Section 5.4). Figure (e) shows a cycle in which ion is repumped

from 2𝐹7/2 state in the middle of repumping and cooling segment (red

vertical line). This kind of cycles might be determined to have false

QOand discarded from the data, depending on the total PMT counts

collected after the ion is repumped (i.e., [QO, QJ] = [ ? , false]). . . . . 111

6-2 Typical histograms of PMT counts during QO (blue) and QJ (read)

(see Section 5.4) readouts [segments 1○ and 6○; see Fig. 5-3(c)] per

cycle, over a scan for 𝛾: 467 nm transition. The vertical dashed lines

show the threshold PMT counts for determination of QO and QJ flags’

states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6-3 Scanned 𝑅 (red) and 𝐵 (blue) Zeeman transitions of 𝛾: 467 nm clock

transition [see Fig. 5-2(c)] at the same time (see Section 5.3.4). A fixed

amount of frequency jumps Δ𝑓Master = 2, 105 kHz were made between

measurements for the two transitions. The vertical dashed lines show

the resonant MasterFrequency (see Section 4.1.5.1) of the two tran-

sitions obtained from the statistical means of the MasterFrequency

steps weighted by the measured 𝑃𝑒’s [see Eq. (6.2)]. . . . . . . . . . 115
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6-4 Example of data taken over the course of an IS spectroscopy experi-

ment for 𝛾: 467 nm transition and for a pair of isotopes [170Yb+ (blue)

and 172Yb+ (red) for this data]. The drift in (a) measured zero-field

MasterFrequency (see Section 4.1.5.1) (Common drift ; 𝑓Comm
Master) and

(b) the frequency separation of𝑅 and𝐵 Zeeman transitions [see Fig. 5-

2(c) and Section 5.3.4] (Differential drift ; 𝑓Diff
Master) are presented. Fig-

ure (c) shows the values of various experimental parameters recorded

during the experiment (see Section 4.2.7). Each of the values at the

right shows the correlation between the nonlinear components of zero-

field MasterFrequency and the corresponding recorded value. . . . . 117

6-5 Typical Rabi oscillation of excitation probabilities 𝑃𝑒 through 𝛼: 411 nm

transition for different probe pulse times 𝜏 (see Fig. 5-3). The data are

fitted using Eq. (6.5), assuming exponential [red; Eq. (6.4d)] or Gaus-

sian [blue; Eq. (6.6)] decay of the Rabi oscillation’s contrast. 𝜋
2
-pulse

time is fitted to be 𝜏𝜋/2 = 7.7 µs at typical probe power 𝑃 ∼ 1mW at

the focus with 𝑤 = 60 µm waist (see Table B.1). . . . . . . . . . . . 118

6-6 Ramsey fringes (excitation probability 𝑃𝑒 vs MasterFrequency) mea-

sured for 𝛼: 411 nm transition with different 𝜋
2

pulse times 𝜏𝜋/2 and

two pulses’ separations 𝑇 of the probe beam: (𝜏𝜋/2, 𝑇 ) = (a) (5, 5) µs,

(b) (5, 10) µs, (c) (5, 20) µs, (d) (5, 40) µs, and (e,f) (8, 10) µs. Figs. (e)

and (f) differ only by the scan ranges and step sizes. The data are

fitted using Eqs. (6.8) and (6.7). Green vertical lines show the fitted

resonant MasterFrequency values. . . . . . . . . . . . . . . . . . . . 120

6-7 Example of data taken over the course of an IS spectroscopy exper-

iment for 𝛼: 411 nm transition and for a pair of isotopes [168Yb+

(blue) and 170Yb+ (red) for this data]. The drift in the resonant

MasterFrequency’s (see Section 4.1.5.1) of (left) 𝑅 and (right) 𝐵 Zee-

man transitions [see Fig. 5-2(a)] over time. . . . . . . . . . . . . . . . 122
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6-8 Example of data taken over the course of an IS spectroscopy experi-

ment for 𝛼: 411 nm transition and for a pair of isotopes [168Yb+ (blue)

and 170Yb+ (red) for this data]. The drift in (a) measured zero-field

MasterFrequency (see Section 4.1.5.1) (Common drift) and (b) the

frequency separation of 𝑅 and 𝐵 Zeeman transitions [see Fig. 5-2(a)

and Section 5.3.4] (Differential drift) are presented. . . . . . . . . . . 123

6-9 Measured zero-field MasterFrequency of 𝛼: 411 nm transition (a) be-

fore and (b) after the experimental setup was upgraded (see Sec-

tion 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6-10 Typical time-resolved PMT counts (see Section 5.3.7) in each of 100

time bins averaged over 20 pulse sequence cycles for 𝛽: 436 nm tran-

sition [see Fig. 5-3(b) and Section 5.6]. The ratio of the averaged

PMT counts during readouts (segment 6○) in calibration (blue area)

and measurement (red area) subsequences is given as the excitation

probability 𝑃𝑒 of the ion through the clock transition. . . . . . . . . 125

6-11 Ramsey fringes (excitation probability 𝑃𝑒 vs MasterFrequency) mea-

sured for 𝛽: 436 nm transition with (𝜏𝜋/2, 𝑇 ) = (5, 10) µs (see the cap-

tion of Fig. 6-6) over frequency ranges for (a) 5 peaks and (b) center

peak. The data are fitted using Eqs. (6.8) and (6.7). Green vertical

lines show the fitted resonant MasterFrequency values. . . . . . . . . 126

6-12 Example data taken over the course of an experiment for 𝛽: 436 nm

transition and for a pair of isotopes [172Yb+ (blue) and 174Yb+ (red)

for this data]. The drift in (a) measured zero-field MasterFrequency

(see Section 4.1.5.1) (Common drift) and (b) the frequency separation

of 𝑅 and 𝐵 transitions [see Fig. 5-2(b) and Section 5.3.4] (Differential

drift) are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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6-13 Measured values of ISs (values along edges in kHz) for different pairs

of Yb+ isotopes (vertices labeled with the mass numbers 𝐴 of isotopes
𝐴Yb+) and consistency of values forming shortest loops (𝜎-significance

in the center of each triangle). The IS value 𝜈𝐴𝐴′
= 𝜈𝐴− 𝜈𝐴′ is shown

for an edge directed from vertex 𝐴 to vertex 𝐴′. The measured values

agree overall with 0.86𝜎 significance. . . . . . . . . . . . . . . . . . . 133

8-1 (a) Standard King plot [Eq. (8.10)] for the 𝛼: 411 nm and 𝛽: 436 nm

transitions for pairs of neighboring even Yb+ isotopes in Ref. [5]. The

inset shows the full King plot. The main figure is zoomed into the

data points by a factor of 106. A deviation from linearity (red line) by

3 standard deviations 𝜎 is observed. The larger diagonal uncertainty

for the (168, 170) pair is due to the larger mass uncertainty for the
168Yb+ isotope by the time that the result was published [5, 6, 7]. (b)

Frequency-normalized King plot [Eq. (8.11)] and residuals. The error

bars and error ellipses indicate 1𝜎 measurement uncertainties. . . . . 165

8-2 (a) Nonlinearity measure (𝜁+, 𝜁−) for next-neighbor isotope pairs (see

Section 11.7) in Ref. [5]. The red shaded region indicates the 95%

confidence interval from our data. The green solid line and the blue

dashed line indicate the required ratio 𝜁−/𝜁+ if the nonlinearity is

purely due to a new boson 𝜑 and the QFS, respectively. (b) Nonlin-

earity measure along the axes of a new boson (𝑥-axis) and the QFS

(𝑦-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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10-1 Frequency-normalized King plot [top; see Eq. (8.15)] and residuals

(bottom, blue) for the 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) transition and ref-

erence transition 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) for nearest-neighboring

even-𝐴 pairs (𝐴′ = 𝐴 + 2) of Yb+ isotopes from the measured ISs

values in Table A.2, fitted using EiVGLS method (see Section 9.2), in

Ref. [8]. A deviation from linearity (red line) by 41 standard devia-

tions 𝜎 is observed. For reference, residuals for the 𝛽 : 2𝑆1/2 → 2𝐷3/2

(436 nm) transition, magnified 20-fold, are also plotted in gray, which

has 3𝜎 nonlinearity [see Fig. 8-1(b)]. The error bars indicate 2𝜎 uncer-

tainties; for correlations between the errors, see Table A.2. The results

of the fits (slopes, 𝑦-intercepts, and significance) for all different pairs

of transitions (see Fig. 10-2) can be found in Table C.4. . . . . . . . 193

10-2 King plots for transition pairs not shown in Fig. 10-1: (a) (𝛼, 𝛿), (b)

(𝛼, 𝜖), (c) (𝛽, 𝛾), (d) (𝛽, 𝛿), (e) (𝛽, 𝜖), (f) (𝛾, 𝛿), (g) (𝛾, 𝜖), and (h) (𝛿, 𝜖)

transition pairs. 𝛿: 1𝑆0 → 3𝑃0 (578 nm) and 𝜖: 1𝑆0 → 1𝐷2 (361 nm)

are the optical transitions in neutral Yb atoms. See the caption in

Fig. 10-1 for other details. All relevant data can be found in Table A.2. 194
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10-3 Decomposition of the measured nonlinearity onto the (𝜆+, 𝜆−) ba-

sis (solid ellipses, 95% confidence interval; see Section 8.3.1) for the

transitions 𝛼 : 2𝑆1/2 → 2𝐷5/2 (blue), 𝛽 : 2𝑆1/2 → 2𝐷3/2 (green), and

𝛾 : 2𝑆1/2 → 2𝐹7/2 (red) in Yb+ ions (see Fig. 3-1); and 𝜖 : 1𝑆0 → 1𝐷2

(dark gray) in Yb atoms [9], in Ref. [8]. The corresponding frequency-

normalized King plot [Eq. (8.15)] is generated with the reference tran-

sition 𝛿 : 1𝑆0 → 3𝑃0 in Yb atoms [10] (𝜆(𝛿)± ), for which the isotope shifts

have been measured with the highest precision (see Table A.2). The

dotted ellipse indicates a preliminary measurement for the 𝛾 transition

[4]. The dashed lines indicate the ratio 𝜆+/𝜆− that would arise solely

from a new boson (light blue dashed) or the QFS (pink dash-dotted)

(see Section 8.3.3). The arrows indicate the direction in which a given

nonlinearity changes with increasing value of its associated electronic

factor (i.e. 𝐷𝜅𝛿 or 𝐺(2)
𝜅𝛿 ). The brown solid line is a single-source fit

to all four transitions 𝛼, 𝛽, 𝛾, and 𝜖, yielding evidence for a second

nonlinearity source with 4.3𝜎 significance (�̂�2 = 25.4). The nonlin-

earity maps for other choices of reference transition can be found in

Figs. 10-4 and 10-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

10-4 Nonlinearity maps (𝜆
(𝛼)
+ , 𝜆

(𝛼)
− ) with the reference transition 𝛼. Open

symbols indicate the nonlinearity due to ⟨𝑟4⟩𝐴𝐴′ from nuclear DFT

calculations with SV-min (square), RD-min (diamond), UNEDF1 (cir-

cle), and Fy(Δ𝑟) (star) energy density functionals (see Section 11.1.1).

Thick solid lines across the open symbols indicate the uncertainty in

atomic structure calculations (see Section 11.1.1.1). The thin dashed

lines with the colors matched to the open symbols show the corre-

sponding predicted directions of 𝜆(𝛼) when the calculated ⟨𝑟4⟩𝐴𝐴′ are

normalized by the measured isotope shifts 𝜈𝐴𝐴′
𝛼 (see Section 11.1.1.1).

The yellow solid ellipse indicates the 95% confidence interval for 𝛿 :

1𝑆0 → 3𝑃0 transition in Yb atoms [10]. The correlations between the

ellipses are not displayed. See the caption in Fig. 10-3 for other details. 198
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10-5 Nonlinearity maps (𝜆(𝜏)+ , 𝜆
(𝜏)
− ) with reference transitions 𝜏 not shown in

Figs 10-3 or 10-4: (a) 𝜏 = 𝛽, (b) 𝛾, and (c) 𝜖. The yellow solid ellipse

indicates the 95% confidence interval for 𝛿 : 1𝑆0 → 3𝑃0 transition in

Yb atoms [10]. The correlations between the ellipses are not displayed.

See the caption in Fig. 10-3 for other details. . . . . . . . . . . . . . 199

10-6 Plane fitted to a 3D inverse-mass-normalized King plot constructed

from isotope shifts measured for the 𝛼 : 2𝑆1/2 → 2𝐷5/2 (411 nm), 𝛽 :

2𝑆1/2 → 2𝐷3/2 (436 nm), and 𝛾 : 2𝑆1/2 → 2𝐹7/2 (467 nm) transitions

for nearest-neighboring pairs of even-𝐴 Yb+ isotopes, as described by

Eq. (8.24). Insets display a magnified view of each point to show

deviation from the fitted plane. The origin of the inset axes has been

set to the center of each point. The red ellipsoids depict 1𝜎 confidence

intervals of the data. The fit to the plane gives 3.2𝜎 significance of

nonlinearity (see Table C.5). Each point in the King plot is correlated

with other points (see Table A.2). . . . . . . . . . . . . . . . . . . . . 202
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11-1 Product of coupling constants 𝑦𝑒𝑦𝑛 of a new boson with spin 𝑠 versus

boson mass𝑚𝜑 [Eq. (8.16)], derived from 3D King plots [Eq. (8.24)] for

three transitions (𝛼, 𝛾, 𝛿) (blue), (𝛾, 𝛿, 𝜖) (red), and (𝛽, 𝛾, 𝛿) (green),

assuming that the observed second nonlinearity is dominated by a

new boson [Eq. (11.4)]. Dashed lines indicate the upper bounds on

𝑦𝑒𝑦𝑛’s magnitude. Solid lines show the center values of 𝑦𝑒𝑦𝑛 obtained

using the configuration-interaction calculations’ (see Section 12.2) re-

sults with ambit [8] [see Fig. C-3(d,j,g)]. Shaded area along the solid

lines show the ≈ 95% confidence interval that arises from the sta-

tistical uncertainty in the measured isotope shifts. The systematic

uncertainty in the atomic structure calculations is larger; the dash-

dotted line shows the center value of 𝑦𝑒𝑦𝑛 for the (𝛼, 𝛾, 𝛿) transitions

using GRASP2018 calculation results in Part IV, for comparison. The

yellow line indicates the bound derived from electron 𝑔𝑒 − 2 measure-

ments [11, 12, 13, 14] in combination with with neutron scattering

measurements [15, 16, 17, 18], from Ref. [3]. . . . . . . . . . . . . . . 209

28



11-2 (a) Comparison plot of derived values for the ratio of the mean-square

nuclear charge radius differences ⟨𝑟2⟩𝐴,𝐴+2/⟨𝑟2⟩𝐴−2,𝐴 between nearest-

neighboring even-𝐴 isotope pairs in Ref. [8] (drawn by Diana P. L.

Aude Craik). Open symbols mark the values derived from nuclear

density functional theory (DFT) calculations using SV-min, RD-min,

UNEDF1, and Fy(Δ𝑟) energy density functionals (see Fig. 10-4 for

symbol assignments). The red filled square symbols are values derived

from measured isotope shifts for the 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) tran-

sition in Yb+ ions measured in Part II in combination with mass shifts

from configuration-interaction (CI) calculations (see Section 12.2). (b)

Plot of derived values for the ratios of the mean-square nuclear radius

differences between sequential isotope pairs as a function of 𝐾𝛼, show-

ing very weak dependence on𝐾𝛼. (c, d) Derived values of 𝐹𝛽, 𝐹𝛾, 𝐹𝛿, 𝐹𝜖

(𝐾𝛽, 𝐾𝛾, 𝐾𝛿, 𝐾𝜖) as a function of 𝐹𝛼 (𝐾𝛼), using the experimentally-

determined quantities 𝑓𝜅𝛼 (𝐾𝜅𝛼) for 𝜅 = 𝛽, 𝛾, 𝛿, 𝜖 in Table C.4. In (b),

(c), and (d), dashed (dotted) vertical lines and round (square) mark-

ers indicate values from CI calculations using GRASP2018 (ambit

[8]). Dash-dotted lines and open triangle markers correspond to CI

and many-body perturbation theory (CI+MBPT) calculations (see

Section 12.2) using ambit. . . . . . . . . . . . . . . . . . . . . . . . . 213

11-3 Two-source-nonlinearity analysis in a nonlinearity map 𝜆
(𝛼)
± with ref-

erence transition 𝛼. Thick black arrows indicate the measured 𝜈𝛽 and

𝜈𝛾. The nonlinearity from 𝑥𝐴𝐴′ (𝑦𝐴𝐴′) is coded with red (blue) color.

The blue dotted line shows the direction of 𝜆± due to 𝑦𝐴𝐴′ . The 3D

King plot corresponds to stretching the nonlinearity from 𝜈𝛽 (dashed

black arrow; 𝑓𝛾𝛽𝛼�⃗�𝛽) and moving along 𝑦𝐴𝐴′ ’s direction (thin black

arrow; 𝑌𝛾𝛽𝛼�⃗�) to form a triangle with nonlinearity for 𝜈𝛾. . . . . . . . 217
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14-1 (a) Radial electron densities 4𝜋𝑟2𝜌Ψ(𝑟) over 𝑟 in the unit of the Bohr

radius 𝑎0 ≈ 52.9 pm for 2𝑆1/2 (blue), 2𝐷5/2 (orange), 2𝐷3/2 (yellow),

and 2𝐹7/2 (purple) states in Yb+ ions (see Fig. 3-1) from atomic struc-

ture calculations (ASCs). The difference in the densities between dif-

ferent states are much smaller than the total density of 69 electrons

(see also Figs. 14-2 and 14-3). (b) Magnified 𝜌Ψ(𝑟) near the origin,

shown in logarithmic scale. The density is exponential ∝ 𝑒−𝛼𝑟 to 𝑟

(i.e., linear in the graph) down to 𝑟 ≈ 0.002𝑎0 and starts to show

relativistic divergence below the distance (see Section 16.1). . . . . . 292

14-2 Changes in radial electron densities (a) 4𝜋𝑟2𝜌𝜒(𝑟) and (b) 𝜌𝜒(𝑟) =

𝜌
Ψ

(𝑒)
𝜒
(𝑟) − 𝜌

Ψ
(𝑔)
𝜒
(𝑟) over 𝑟 in the unit of the Bohr radius 𝑎0 ≈ 52.9 pm

for 𝛼: 411 nm (red), 𝛽: 436 nm (blue), and 𝛾: 467 nm (black) optical

clock transitions in Yb+ ions (see Fig. 3-1) from atomic structure cal-

culations (ASCs). The densities converge as 𝑠𝑝𝑑𝑓 orbital correlation

layers with higher 𝑛 are added in the ASCs to take account of the cor-

relations between electrons (see Section 14.3.1). (Figures and caption

continue on the next page.) . . . . . . . . . . . . . . . . . . . . . . . 293

14-2 (Continued) The results for 4sp5spS core excitation configuration for

valence-core or core-core correlations (see Section 14.3.2 and Fig. 14-

3) are presented. Green vertical line in (b) shows the RMS nuclear

charge radius
√︀
⟨𝑟2⟩ = 5.294 fm of 172Yb [19]. . . . . . . . . . . . . . 294

14-3 Changes in radial electron densities (a) 4𝜋𝑟2𝜌𝜒(𝑟) and (b) 𝜌𝜒(𝑟) =

𝜌
Ψ

(𝑒)
𝜒
(𝑟) − 𝜌

Ψ
(𝑔)
𝜒
(𝑟) over 𝑟 in the unit of the Bohr radius 𝑎0 ≈ 52.9 pm

for 𝛼: 411 nm (red), 𝛽: 436 nm (blue), and 𝛾: 467 nm (black) optical

clock transitions in Yb+ ions (see Fig. 3-1) from atomic structure

calculations (ASCs). Valence-core or core-core electron correlations

are taken into account in CI calculations via different configurations of

active set method (see Section 14.3.2): (Figures and caption continue

on the next page.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
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14-3 (Continued) no core electron excitation (None; dotted), single exci-

tation from each orbital in 5𝑠𝑝 (5spS; dashed) or 4𝑠𝑝5𝑠𝑝 (4sp5spS;

solid), and single or double excitations from each of 5𝑠 and 5𝑝 orbitals

(5spSD; dash-dotted) (see also the caption in Table C.2 for the no-

tations). 𝑠𝑝𝑑𝑓 orbital correlation layers up to 𝑛 = 8 is added in the

ASCs (see Section 14.3.1 and Fig. 14-2). Green vertical line in (b)

shows the RMS nuclear charge radius
√︀
⟨𝑟2⟩ = 5.294 fm of 172Yb [19]. 296

15-1 (a) Electron density change 𝜌𝛼(𝑟) during 𝛼: 411 nm transition in Yb+

ions, for different RMS nuclear charge radii
√︀
⟨𝑟2⟩ [see Eq. (8.4)]. The

finite size of nuclear charge caps the increase in the magnitude of the

density as getting closer to the origin. (b) Comparison of the electron

density 𝜌𝛼(0; ⟨𝑟2⟩) at the origin for the nucleus with second radial

nuclear moment ⟨𝑟2⟩ to the electron density 𝜌𝑃𝛼 (𝑟) for point-charge

nucleus at 𝑟 =
√︀
⟨𝑟2⟩. The two quantities are essentially the same,

with a constant 4% difference, if the charge radius is not too big:

⟨𝑟2⟩ ≳ (10 fm)2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
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17-1 Illustration of Ti:sapphire laser frequency active stabilization via dual

feedback loops with piezoelectric control of Ti:sapphire cavity optical

length and acousto-optic modulator (AOM) drive frequency. 𝑓piezo and

𝑓AOM refer to the first resonant frequency of the piezoelectric control

and the bandwidth of the beam frequency control using the AOM,

respectively, which are the upper limits of the corresponding feedback

loops’ bandwidths and thus determine the maximum magnitudes of

gains 𝐺piezo (blue) and 𝐺AOM (red) of the loops. By capping 𝐺AOM

by a proportional gain below 𝑓piezo, the frequency range that each

loop mainly works in is divided by the gain-crossing frequency 𝑓cross.

Consequently, the 𝐺piezo can be increased from the maximum values

with piezoelectric loop alone (dashed blue) to the level that makes

𝑓cross ≲ 𝑓piezo (solid blue). The gross gain 𝐺 = 𝐺piezo + 𝐺AOM then

resembles a continuous integration gain, of which magnitude is limited

by 𝑓AOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

18-1 Illustration of cotrapped two ions of different isotopes 𝐴Yb+ and 𝐴′Yb+

in an ion trap of which states are entangled as described by Eq. (18.1).

For a transition 𝜒, the ground state for an isotope 𝐴 is entangled with

the excited state of another isotope 𝐴′ (
⃒⃒
𝑔𝐴
⟩︀ ⃒⃒
𝑒𝐴

′⟩︀) and vise versa

(
⃒⃒
𝑒𝐴
⟩︀ ⃒⃒
𝑔𝐴

′⟩︀) with equal amplitudes. The energy difference between the

two states is given as the isotope shifts between the isotopes times the

Plank constant ℎ𝜈𝐴𝐴′
𝑥 , which is encoded in the relative phase evolution

𝜑(𝑡) = −2𝜋𝜈𝐴𝐴′
𝑥 𝑡 between the two states. . . . . . . . . . . . . . . . . 320
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19-1 (a) Hyperfine (HF) structure of a state with two HF levels with asso-

ciated 𝐴 coefficient of magnetic dipole interaction (see Section 19.1.1).

First-order HF shifts 𝑊 (1)
± for each of 𝐹± levels from HF-free energy

𝐸0 are shown [Eq. (19.13)]. Further shifts from higher-order pertur-

bation theory (HOHF; higher-order HF shifts) are also shown. (b)

Estimation of HF structure for the case in (a) (see Section 19.2.1).

The values of 𝐴′ and centroid energy 𝐸𝑐, obtained from measured HF

splitting Δ𝑊 and 𝐹± numbers, estimate 𝐴 and 𝐸0, respectively. Dif-

ference between true HF-free energy 𝐸0 and centroid energy 𝐸𝑐 due

to HOHF effects is highlighted. (c) HF structure of 369 nm cooling

transition in 171Yb+ ions with 𝐼 = 1
2

nuclear spins as a simplest exam-

ple. Transition frequencies 𝜈171369(𝐹
(𝑔)�𝐹 (𝑒)) between 2𝑆1/2 ground and

2𝑃1/2 excited states’ HF levels are shown. HF-free transition frequency

𝜈171369 between HF-free energies of the two states is estimated to add the
171Yb+ isotope in King plots (see Section 19.2.2). (d) HF structure

of 399 nm cooling transition in neutral 173Yb atoms with 𝐼 = 5
2

nu-

clear spins, with more than two HF levels in the 1𝑃1 excited state.

The centroid energy 𝐸𝑐 and 𝐴 and 𝐵 coefficients for magnetic dipole

and electric quadrupole interactions, respectively, are estimated using

Eq. (19.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
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19-2 Frequency-normalized King plots [Eq. (8.11)] for transitions pairs be-

tween 𝛼: 411 nm and 𝛾: 467 nm transitions in Yb+ ions (see Fig. 3-1)

and 𝛿: 578 nm (1𝑆0 → 3𝑃0) and 399 nm (1𝑆0 → 1𝑃1) transitions in Yb

atoms with 171Yb+ or 173Yb+ isotopes, listed in the order of the signif-

icance of the deviations of odd-𝐴-isotope-involved pairs from the line

formed by even-𝐴 pairs: (b) 578 nm vs 467 nm, (a) 578 nm vs 411 nm,

(c) 411 nm vs 467 nm, (d) 578 nm vs 399 nm, (f) 467 nm vs 399 nm, and

(e) 411 nm vs 399 nm, from centroid ISs in Table A.2 and Table 19.2.

The values of 𝜇𝐴𝐴′ for even-𝐴 can also be found in Table A.2, and

𝜇171,172 = 34.027 069 78(70) u−1 and 𝜇172,173 = 33.692 856 53(65) u−1

from 𝑚172 in Table A.3, 𝑚171 = 170.935 782 944(14) u, and 𝑚173 =

172.937 667 642(12) u [6, 7, 20, 21, 22] (see the caption in Table A.3).

The error bars indicate 1𝜎 uncertainties. . . . . . . . . . . . . . . . . 340

19-3 Partial level diagram for 171Yb+ ions with 𝐼 = 1
2

nuclear spins. Solid

lines show transitions between the ground and excited states’ hyperfine

levels, to be driven with laser beams, of which frequencies are available

in Table 19.2. Dashed lines are decay channels. See Fig. 3-1 and

Table B.1 for details including usages of shown transitions. Details on

hyperfine structure of each state, including exact values and references

for hyperfine splittings, can be found in Table 19.1. . . . . . . . . . . 349

19-4 Partial level diagram for 173Yb+ ions with 𝐼 = 5
2

nuclear spins. Solid

lines show transitions to be driven with laser beams. Dashed lines

are decay channels. See Fig. 3-1 and Table B.1 for details including

usages of shown transitions. See Tables 19.1 and 19.2 for known values

of hyperfine splittings and transition frequencies, respectively. Orders

of the hyperfine energy levels and splittings between them in 2𝐷5/2,
2𝐷3/2, 2𝐹7/2, and 1𝐷[3/2]3/2 states are unknown. . . . . . . . . . . . 350
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19-5 Measured excitation probability from 𝐹 = 0 to 1 hyperfine states in

the 2𝑆1/2 ground state of a trapped 171Yb+ ion, driven by microwave

field. (Top) Rabi oscillation over different microwave pulse time. (Bot-

tom) Rabi fringe scanned over different detunings of the microwave

field from the hyperfine splitting, with a nearly-𝜋
2

microwave pulse.

Full credit to Diana P. L. Aude Craik for the measurements and this

figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

C-1 Single-transition factors 𝐷𝜒 vs new-boson mass 𝑚𝜑 for five transitions

𝜒 coded with different colors (see legend) derived from atomic struc-

ture calculations using CI method. Solid, dashed, and dash-dotted

lines are for ambit [8, 23], GRASP2018 [8, 24] (see Section 13), and

Ref. [9], respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

C-2 Two-transition factors 𝐷𝜅𝜒 vs new-boson mass 𝑚𝜑 for variable tran-

sition pairs (𝜒,𝜅) coded with different colors (see legend) calculated

using 𝐷𝜒 and 𝐷𝜅 in Fig. C-1. Solid, dashed, and dash-dotted lines are

for ambit [8, 23], GRASP2018 [8, 24] (see Section 13), and Ref. [9],

respectively (some of dashed and dash-dotted lines are missing as the

corresponding 𝐷𝜅𝜒 are not available; see Table C.4). . . . . . . . . . . 385

C-3 Calculated 𝐷𝜂𝜅𝜒 vs new-boson mass 𝑚𝜑 for all different choices of

three transitions (𝜒, 𝜅, 𝜂) out of five available transitions 𝛼, 𝛽, 𝛾, 𝛿,

and 𝜖, each corresponding to one of the subfigures (a – j). Solid lines

correspond to the 𝐷𝜂𝜅𝜒 obtained from 𝐷𝜅𝜒 and 𝐷𝜂𝜒 in Fig. C-2, and

𝑓𝜂𝜒𝜅 = 𝐺
(4)
𝜂𝜒/𝐺

(4)
𝜅𝜒 ratio from the linear fit in 3D King plots (see Ta-

ble C.5). (Figures and caption continue on the next page.) . . . . . . 389
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C-3 (Continued) Shaded regions for 𝐷𝜂𝜅𝜒 indicate 95% confidence inter-

vals that arise from fitted 𝑓𝜂𝜒𝜅’s uncertainty. Dashed lines show 𝐷𝜂𝜅𝜒

calculated purely from ASCs (i.e., using calculated 𝑓𝜂𝜒𝜅). Blue, red,

and green colors correspond to ASCs performed using GRASP2018

[8, 24] (see Section 13), ambit [8, 23], and in Ref. [9], respectively.

(Figures continued on the next page.) . . . . . . . . . . . . . . . . . . 390

C-3 (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

D-1 The polarization �̂� and propagation direction 𝑘 of the probe beam,

with respect to the quantization axis along magnetic field B, that

maximize the Rabi frequency 𝜔𝑅 for each Zeeman transition, and

the relative magnitudes of the maximum squared Rabi frequencies

𝜔2
𝑅 for 𝛼: 411 nm transition in Yb+ ions [see also Fig. 5-2(a)]. Each

peak is labeled by the change in magnetic quantum number Δ𝑚 =

𝑚𝐷 −𝑚𝑆 from the 2𝑆1/2 ground state to 2𝐷5/2 excited state, and the

𝑚𝑆 of the ground Zeeman level that the transitions starts from [e.g.,

(Δ𝑚, sgn(𝑚𝑆)) = (+1,+) or (−2,−)]. The position of each peak in

the 𝑥 axis shows the 𝑔 factor of the transition (i.e., Zeeman shift from

the zero-field transition frequency in the unit of 𝜇𝐵𝐵). Some errors

were corrected by Eugene Knyazev. . . . . . . . . . . . . . . . . . . . 393

D-2 The same illustration to Fig. D-1 for 𝛽: 436 nm transition in Yb+ ions

[see also Fig. 5-2(b)] derived by Eugene Knyazev. . . . . . . . . . . . 394

D-3 The shifts of Zeeman transitions in 𝛾: 467 nm transition in Yb+ ions in

the unit of 𝜇𝐵𝐵 [see also Fig. 5-2(c)]. The Zeeman transitions shown

as blue and red lines start from 𝑚𝑆 = −1
2

and 1
2

ground-state Zeeman

levels, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
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frequencies are measured with better precision; 60MHz, 20MHz, and

20MHz are given as upper bounds of the uncertainties due to the drift

of the wavemeter. The frequencies for 2𝐹7/2 → 1𝐷[5/2]5/2 (638 nm)

repumping transitions can be found in Ref. [4]. . . . . . . . . . . . . . 370

B.1 The properties of transitions in Yb+ ions (see Fig. 3-1) and neutral Yb

atoms and beams driving the transitions in the experimental setup. All

data is for 172Yb+ isotope unless otherwise noted. If equations are given in
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urations in 8𝑠𝑝𝑑𝑓 calculation. The energy eigenvalues 𝐸𝑛𝑘 of each orbital
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C.2 Electronic factors for 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm optical clock transitions

in Yb+ ions (see Fig. 3-1) calculated for 172Yb+ (see Chapter 15) with different

correlation layers and core orbitals allowed to be excited while generating lists of

CSFs via active set approach (Section 12.2). First column (Excited core) shows

the core orbitals (e.g., 4sp5sp for 4𝑠, 4𝑝, 5𝑠, and 5𝑝) from which electrons can be

excited, and the number of electrons that can be excited from each core shell (e.g.,

SD for single or double-electron excitation) (see Section 14.3.2). Second column

(Correl. layer) shows the correlation orbital layers with highest 𝑛 (e.g., 8spdf for

all correlation 𝑠, 𝑝, 𝑑, and 𝑓 orbitals for 𝑛 ≤ 8) (see Section 14.3.1). The third

column (# CSFs) shows the total number of CSFs, for all 2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and

2𝐹7/2 states for 𝛼, 𝛽, and 𝛾 transitions, generated with each configuration of the

core excitation and the correlation layer set. The fourth to sixth columns show

the calculated transition frequencies 𝐸𝜒/ℎ for each transition 𝜒. The remaining

columns shows the one-transition electronic factors 𝑍𝜒 and two-electron factors

𝑧𝜅𝜒 = 𝑍𝜅/𝑍𝜒 and 𝑍𝜅𝜒 = (𝑧𝜅𝜒 − 𝑓𝜅𝜒)𝑍𝜒 (see Sections 8.1, 8.2, and Chapter 15):
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C.3 Calculated values of single-transition electronic factors 𝑍𝜒 (𝑍 ∈ {𝐹,𝐾,𝐺(4), 𝐺(2), 𝐷})

(see Sections 8.1, 8.2, and 15) for 𝜒 = 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm), 𝛽:

2𝑆1/2 → 2𝐷3/2 (436 nm), and 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) transitions in

Yb+ ions (see Fig. 3-1); and 𝛿: 1𝑆0 → 3𝑃0 (578 nm), and 𝜖: 1𝑆0 → 1𝐷2

(361 nm) transitions in neutral Yb atoms. 𝜔𝜒/(2𝜋) are transition frequen-

cies. Calculated values for each transition are obtained from CI method

using GRASP2018 [8, 24] (see Section 13) or ambit [8, 23]. The units of

𝜔𝜒/(2𝜋), 𝐹𝜒, 𝐾𝜒, 𝐺(4)
𝜒 , 𝐺(2)

𝜒 , and 𝐷𝜒 are THz, GHz/fm2, GHz·u, MHz/fm4,

MHz/fm4, and 103 THz, respectively. . . . . . . . . . . . . . . . . . . . 380

C.4 Calculated and experimental values of two-transition electronic factors 𝑓𝜅𝜒

and 𝑍𝜅𝜒 (𝑍 ∈ {𝐾,𝐺(4), 𝐺(2), 𝐷}) (see Sections 8.1 and 8.2) for 𝜒, 𝜅 ∈

{𝛼, 𝛽, 𝛾, 𝛿, 𝜖}. The values are calculated from the single-transition values in

Table C.3. 𝑓𝜒𝜅 is dimensionless. The units of 𝐾𝜅𝜒, 𝐺
(4)
𝜅𝜒 , 𝐺

(2)
𝜅𝜒 , and 𝐷𝜅𝜒

are GHz·u, kHz/fm4, kHz/fm4, and 103 THz, respectively. The last two

columns (Fit) are for data from linear fit of corresponding 2D King plots

𝜈𝐴𝐴′
𝜅 = 𝑓𝜅𝜒 + 𝐾𝜅𝜒𝜇

𝐴𝐴′ [Eq. (8.15)] with (X corr.) and without (No X

corr.) uncertainties in and correlations between independent variables (see

Sections 9.3 and 11.3). 𝜒2
𝜅𝜒 and 𝑠𝜅𝜒 are �̂�2 and the significance of linear fit,

respectively (see Sections 9.2 and 9.3). . . . . . . . . . . . . . . . . . . 382

C.5 Calculated and experimental values of three-transition electronic factors

𝑓𝜂𝜅𝜒 and 𝑍𝜂𝜅𝜒 (𝑍 ∈ {𝐾,𝐺(2), 𝐷}) (see Section 8.4) for 𝜒, 𝜅, 𝜂 ∈ {𝛼, 𝛽, 𝛾, 𝛿, 𝜖}.

The values are calculated from the two-transition values in Table C.4.

𝑓𝜂𝜅𝜒 is dimensionless. The units of 𝐾𝜂𝜅𝜒, 𝐺
(2)
𝜂𝜅𝜒, 𝐷𝜂𝜅𝜒, and 𝜐𝑛𝑒𝐷𝜒𝜅 are

GHz·u, kHz/fm4, kHz/fm4, 103 THz, and kHz, respectively. The last

three columns (Fit) are for data from fit of corresponding 3D King plots

𝜈
𝐴𝐴′

𝜂 = 𝐾𝜂𝜅𝜒 + 𝑓𝜂𝜅𝜒𝜈
𝐴𝐴′

𝜒 + 𝑓𝜂𝜒𝜅𝜈
𝐴𝐴′

𝜅 (Linear), and 𝐺
(2)
𝜂𝜅𝜒[𝛿⟨𝑟2⟩2]

𝐴𝐴′

(QFS)

or 𝜐𝑛𝑒𝐷𝜂𝜅𝜒𝑎
𝐴𝐴′

(New boson) terms in addition to the relation (see Sec-

tions 8.4, 11.1.2, and 11.1.3). 𝜒2
𝜂𝜅𝜒 and 𝑠𝜂𝜅𝜒 are �̂�2 and the significance of

fit, respectively (see Sections 9.2 and 9.3). . . . . . . . . . . . . . . . . . 386
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Chapter 1

The concert of cold ion trapping,

precision spectroscopy, and atomic

and nuclear calculations to go beyond

the Standard Model

1.1 Physics beyond Standard Model and dark mat-

ter

The Standard Model (SM) of particle physics describes virtually all measurements of

elementary particles exquisitely well. However, there have been various observations

that have not been explained by the SM, which implies the necessity of physics

beyond the SM (BSM), or simply new physics. Naturally, a vast variety of classes of

BSM physics have been proposed aiming to solve at least a part of such anomalies,

and experimental efforts to probe them have been made in various fields of physics

with their own techniques [34, 35].

One of the significant evidences for BSM physics is dark matter: preponderance

of mass with unknown composition in our Universe. The existence of dark matter

has been suggested from astronomical observations with several different method-
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ologies such as the rotation curves of galaxies [36], the motion of colliding galaxy

clusters [37], gravitational lensing [38], and the power spectrum of the cosmic mi-

crowave background [39]. Various candidates for dark matter have been proposed

including, but far from limited to, weakly interacting massive particles (WIMPs) [34],

primordial black holes [40], axion, axionlike particles (ALP), and light force carriers

[34, 35] (cf. Fig. 4-7 in Ref. [41]), and numerous laboratory experiments have been

conducted to find evidence for the candidates. Despite the extensive efforts, however,

there has been no decisive confirmation for any of the candidates and the nature of

dark matter is still unknown. In particular, the search for dark matter has been

largely focused on theoretically well-motivated WIMPs with mass of ≳10GeV/c2

[42] until relatively recently, with no significant success. In consequence, relatively

light candidates with intermediate mass of ∼10 eV/c2 to ∼100MeV/c2 or lighter has

been gaining increasing attention.

1.1.1 New boson as the carrier of fifth force

In this thesis, one of the classes of light dark matter will be considered as the new

physics to probe: a new hypothetical boson 𝜑 as a force carrier, which can be charac-

terized by its mass 𝑚𝜑, spin 𝑠, and interactions. If the new boson interacts with the

particles in the SM such as leptons and quarks, it may include a new fundamental

force (fifth force) in the corresponding BSM physics via exchange of a virtual boson

between the particles (see a Feynman diagram in Fig. 1-1). The potential between

the particles from the new force is given as Yukawa-like potential:

𝑉 𝜑
𝑋𝑌 (𝑟) = ℏ𝑐 (−1)𝑠+1𝑦𝑋𝑦𝑌

4𝜋ℏ𝑐⏟  ⏞  
≡𝜐𝑋𝑌

𝑒−𝑟/𝜆𝜑
𝑐

𝑟
(1.1)

in general, where 𝑦𝑋 and 𝑦𝑌 are the coupling constants of the boson to two par-

ticles 𝑋 and 𝑌 , respectively (e.g., 𝑋 = 𝑛: neutron and 𝑌 = 𝑒: electron), in the

unit of rationalized charge (i.e. 4𝜋 factor) and the 𝜆𝜑𝑐 = ℏ/(𝑚𝜑𝑐) is the reduced

Compton wavelength of the boson. The expression is given with an emphasis of the
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natural units, and 𝜐𝑋𝑌 ≡ (−1)𝑠+1𝑦𝑋𝑦𝑌 /(4𝜋ℏ𝑐) serves effectively as the fine-structure

constant of the new force just as the fine-structure constant 𝛼 ≈ 1/137 for the elec-

tromagnetic interactions. The mass of a boson limits the length scale of the potential

to 𝜆𝜑𝑐 through the exponential decay.

It is noteworthy that the Yukawa potential is not a consequence of real bosons

(i.e., excited field of bosons with energy of 𝑚𝜑𝑐
2 per boson) interacting with (SM)

particles. As far as there are the dimensions to accommodate the potential existence

of such bosons in the Universe, the creation and exchange of virtual bosons will

always occur to exert the new force. It is comparable to the fact that there are

always Coulomb potentials between charged particles regardless of the existence of

light (i.e. real photons) around the charges. Therefore, efforts to observe the effect

of new Yukawa-like potential can be regarded as searches for the virtual new boson.

1.2 Atomic systems as low-energy probes for the

Standard-Model tests and new-physics searches

The traditional approaches to search for new physics can be largely categorized as

the following: directly probing new physics via processes under high energy involved

via particle colliders (e.g., observation of Higgs boson [43]); detecting rare events by

increasing the amount of samples (e.g., neutrino experiments [44, 45]); or obtaining

observational evidences from astrophysical phenomena, complementing laboratory

experiments (e.g., SN1987A supernova [46] giving bounds on axion [47, 48, 49]; see

also Fig. 1-2). In addition to the relatively traditional methods, there has been a con-

certed effort in the field of atomic, molecular, and optical (AMO) physics to test the

SM and probe new physics of various kinds [50]. It is motivated by unprecedented

developments in experimental precision in AMO physics since lasers had been in-

vented. The SM tests or new-physics searches are typically established by measuring

the deviations from predictions of the SM, which could be originated from the effect

of BSM physics of particular types. The deviations may be tiny at the low energy
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Figure 1-1: New interatomic force arising from the exchange of a hypothetical
𝜑 boson between neutrons and electrons (left), and simplified Yb+ level structure
(right). In this work, the two electric quadrupole optical transitions at 411 nm and
436 nm (blue arrows) and the highly forbidden octupole transition at 467 nm (red
arrow) are measured.

scale of atomic systems, which might be nevertheless measurable taking advantage

of the high precision of recent AMO experiments’ techniques. The high-precision

techniques include atomic clocks [51, 52, 53, 54, 55, 56] as a representative example

and also atomic mass spectroscopy [20, 26, 57], optical magnetometry [58, 59], atom-

wave interferometry [60], and more [50], and non-exhaustive examples of SM tests

and new-physics searches are tests on symmetries [61, 62, 63], variation in physical

constants [64, 65], fundamental particles’ properties such as 𝑔− 2 and electric dipole

moments [66, 67], gravitational wave detection [68, 69, 70], search for dark energy

[71, 72] and new elementary particles [2, 3, 28].

1.2.1 Trapped ions as a probe for new boson

This thesis probes the effect of a new, hypothetical boson described in Section 1.1.1.

If the Universe has dimensions to accommodate the new bosons, the new Yukawa-

like potentials between subatomic particles may overlap with the particles’ wave-

functions and perturb their states. In particular, if the new boson mediates the new

force between electrons and nucleons in an atomic system, the new overlap with the

wavefunctions of the electrons shifts the frequencies of transitions between bound

states of the electrons in the Coulomb potential well, which have low energy scales
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(e.g., few eV for optical transitions), as described in Fig. 1-1. If the 𝜆𝜑𝑐 is longer

than the size of the nucleus in the atomic system, corresponding to the mass range

≲100MeV/c2 of a new boson, then the overlap will be dominated by the wavefunc-

tion of the electrons outside the nucleus. The effect of the new boson, therefore,

would not be sensitive to the internal structure of the nucleus which might affect the

intranuclear wavefunction. If the coupling of the new boson to the subatomic parti-

cles is strong enough and the shifts in the transition frequencies can be resolved with

a state-of-art precision experiment for the atomic system, it may provide evidence

for the new boson. Therefore, precision spectroscopy for atomic systems may be a

suitable probe for the new boson with ∼100MeV/c2 or lighter mass.

The direct detection of such shifts is challenging, however, because the accuracy

of calculations for transition frequencies (unshifted in the case of no new boson)

is far worse than the measurement precision of real transition frequencies; state-of-

art atomic clocks, which are essentially absolute transition frequency measurements,

have fractional uncertainty of ∼ 10−18 or better [51, 52, 53, 54, 55], while the accu-

racy of ab initio atomic structure calculations is limited to ∼ 10−5 for the species

commonly used in atomic clocks [73, 74] (see Chapter 12 for more discussion). The

precision calculation might be feasible for species with very simple structures such

as hydrogen [74], but the calculation accuracy has been bound to the proton radius

puzzle [75, 76, 77],1 and trapping or laser cooling to a sufficiently low velocity are

technically challenging for the species [78, 79, 80].

There have been proposals to sidestep the difficulty in the direct detection by

measuring isotope shifts (ISs) in atomic transitions [2, 3]. Properly normalized ISs

in different transitions exhibit a highly linear relationship when they are mapped

onto two-dimensional (2D) graphs called King plots [1]. Refs. [2, 3] argue that a

deviation from the linearity may indicate the effect of a new force mediator 𝜑 (see

Chapter 8). The (non)linearity in a King plot is an observable which can be tested

purely through experiments, making the knowledge of the detailed structure of the
1Which might be the effect of new physics.
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Figure 1-2: Limits on new boson couplings 𝑦𝑒𝑦𝑛 (absolute value; in the unit of ℏ𝑐) to
electrons and neutrons vs new boson mass 𝑚𝜑 for transitions in Ca+, Sr+, neutral Sr
and Yb+ in Ref. [3]; bounds from other laboratory experiments or cosmic data are
shown as colored areas with the details in the reference therein.

probe (e.g, the wavefunction of electrons) irrelevant for the test.2 The price paid

for the sidestep, however, is higher-order nuclear effects within the SM, which can

also result in nonlinearities that might limit the sensitivity to new physics unless the

associated atomic and nuclear structures are examined [5, 8, 81, 82, 83, 84, 85, 86].

Therefore, the sources of nonlinearity have to be identified once the nonlinearity

is observed experimentally, and a strategy to distinguish the sources is proposed

(Section 8.3) and demonstrated (Section 10.2) in this thesis.

Ref. [3] proposed suitable atomic systems for the King linearity test, individual
2The shift from comparing absolute frequencies to testing King-plot linearity also illuminates

the importance of finding suitable observables for tests in general.
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neutral or ionized atoms, based on the calculated sensitivity of the atomic species

to the shift induced by the new Yukawa potential. As shown in Fig. 1-2, IS mea-

surements in the species with the precision of 1Hz, especially for the heavier ele-

ments Sr and Yb+, are expected to give bounds on the new boson’s interactions

which are comparable to some of the bounds from other experiments or astrophys-

ical observations, and probe a part of the area which has not been explored in

10 keV ≲ 𝑚𝜑𝑐
2 < 100MHz mass range.3

The work in this thesis uses singly-ionized Ytterbium (Yb+) atoms among atomic

species including in Ref. [3] as Yb+ is one of the preferred choices for several reasons.

First, Yb+ has a wide transition from the ground state for efficient laser cooling

and state detection as described in Section 3.1.1. It also has transitions for efficient

optical repumping to keep the population in the ground state. All the transitions

have the wavelengths for which lasers are technically straightforward to achieve.

Second, there are enough numbers of transitions and isotopes in Yb+ ions to test the

King linearity. For the test, at least two narrow transitions for the IS measurement

(i.e., two axes in the King plot) and three independent isotope pairs (i.e., three points

to test the linearity, implying four isotopes; see Section 11.5) are required. In Yb+,

there are three known optical clock transitions that have the linewidths on the order

of 10Hz or narrower, which are suitable for precision spectroscopy (see Section 3.1.2).

Yb has also 7 stable isotopes (mass number 𝐴 ∈ {168, 170, 171, 172, 173, 174, 176}),

and 5 of them with even 𝐴 have no nuclear spin to avoid complications from the

hyperfine structure.4 It is important to note that there are one extra transition and

isotope than the minimum requirement for the King linearity test, and they provide

essential information on the physical origin of the King nonlinearity as described

in Section 10.2. Also, Yb is a relatively heavy element among the species of which

ISs have been measured (see the last paragraph in this section). The masses of

isotopes in Yb measured by atomic mass spectrometry have been reported with
3Note that the bounds for the atomic species were obtained from the effect of new boson only;

the effect of the higher-order SM corrections are not considered in the figure.
4Uses of isotopes with nuclear spins or unstable isotopes are discussed in Chapters 19 and 20,

respectively.
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better fractional uncertainty than lighter species in general [6, 7], presumably due to

their heavier masses. Yb+ is also sensitive to both new-physics and nuclear-physics

contributions by having many electrons in general. As a potential consequence, the

measured ISs in a lighter species Ca+ [87], reported at the same time as the first

result of the thesis work was published [5], showed no King nonlinearity despite the

10-fold better precision in the IS measurement.

Lastly, ions are relatively less demanding to perform spectroscopy with than neu-

tral atoms in general. An ion can be trapped in a (pseudo)potential formed by

external electromagnetic fields (e.g., Paul or Penning trap) which provide tighter

and deeper confinement compared to the trap for neutral atoms (e.g., optical lat-

tice). The tight confinement enables precise and accurate measurements of transition

frequencies by letting the ions in the Lamb-Dicke regime with well-resolved carrier

and sideband vibronic transitions (see Sections 3.2 and 7.1). The external-field traps

also allow to turn off the other beams to avoid light shifts while the clock transi-

tions are interrogated. On the other hand, neutral atoms are subject to light shifts

from the optical lattices, and the magic wavelengths for the transitions have to be

predicted [88, 89] and measured [90] to suppress the light shifts.5

ISs had been measured for various other atomic species including Ca+ [87, 91, 92],

Sr+ [93], Sr [94], Cd [95], Ba+ [96], Ba [97], Nd+ [98], and Dy [99] until the first result

of the thesis work was published [5]. However, there was no significant evidence of the

King nonlinearity to the best of the thesis author’s knowledge, unless isotopes with

nuclear spins are involved as in Refs. [94, 99] which might be from the complications

in their hyperfine structures (see Chapter 19).6 The King nonlinearity for spinless

isotopes has been confirmed only with Yb+ ions by this thesis work or with neutral

Yb atoms [9, 10] to date.

5Note, however, experiments with careful analysis for systematic effects enable spectroscopy with
neutral atoms as in Refs. [9, 10]; the precisely measured ISs in Refs. [9, 10] have been essential parts
of data to derive conclusions of this thesis work as described in Section 10.2.

6There is an old example of King nonlinearity with even-𝐴 isotopes of Sm [100], which is due
to the mixing of two closely-spaced electronic levels [101]. It is also not relevant to new-physics or
nuclear effects.
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Chapter 2

Thesis overview

This thesis reports isotope-shift (IS) spectroscopy experiments with laser-cooled and

trapped singly ionized Ytterbium (Yb+) atoms to probe a new hypothetical bo-

son and presents the results. After the brief introduction on background concepts,

research goal, and experimental platform, the details on the IS spectroscopy exper-

iments and data analysis with King plots follow. The results including observed

violation of King linearity and the source of the nonlinearity are shown. In par-

ticular, from the measured ISs with ≲500Hz uncertainty, King nonlinearities were

observed with the significance up to 240 standard deviations 𝜎. It is shown that there

is a dominant, common source of nonlinearity originating from particular shapes of

charge distributions inside nuclei and yet a small, second source of unknown ori-

gin with 4.3𝜎 significance, which could be from the new boson. Pattern analysis

of King nonlinearities has been developed as a method for identifying or removing

the sources of the observed nonlinearity. Calculations on atomic structures, rather

independent from the other parts of this work, performed to translate the measured

nonlinearity patterns into bounds on new-boson interactions or nuclear properties,

are illustrated in detail. Finally, future works and outlook are discussed subsequently.

The thesis is structured as follows:

• Part I provides introductions on physics beyond the Standard Model, dark
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matter, and search for them (Chapter 1); the outline of this thesis (Chapter 2);

and a brief overview of Yb+ ions in an ion trap for spectroscopy (Chapter 3).

• Part II describes experiments for IS spectroscopy performed in the thesis work.

This part starts with the description of the experimental setup in detail, includ-

ing the upgrades that have been made since the last thesis on this new-physic

probing research [4] (Chapter 4). The procedure of the IS spectroscopy exper-

iment for each clock transition follows (Chapter 5). The data obtained from

the experiments are presented and analyzed in Chapter 6 to derive the val-

ues of ISs. The systematic effects to the measured ISs are carefully analyzed

(Chapter 7). The summary of the measured ISs can be found in Appendix A.

• Part III presents the main subject of the thesis. King plots and the associated

linearity are introduced, and methods of analyzing the observed King-plot non-

linearities are developed in Chapters 8 and 9. Chapter 10 presents the results:

the King plots from the ISs measured in Part II and the observed nonlinear

patterns in the plots with high significance. Discussion of the results follows in

Chapter 11, including the physical origin of the observed nonlinearities.

• Part IV illustrates calculations of atomic structures and IS electronic factors

used in Part III. The atomic structure calculations (ASCs) of different meth-

ods (Chapter 12) and a software package GRASP2018 [24] used for this work

(Chapter 13) are introduced. The step-by-step procedure of atomic structure

calculations for the optical clock transitions in Yb+ is presented in Chapter 14.

Chapter 15 introduces the methods to calculate the electronic factors from the

electronic wavefunctions that GRASP2018 outputs, which translate the mea-

sured ISs into the new boson or nuclear properties. In particular, an add-on

package for GRASP2018 named REDF for extracting Radial Electron Density

Function over space has been developed by the thesis author as introduced in

Section 13.2. The summary of the calculated electronic factors can be found

in Appendix C.
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• Part V discusses various future works and research directions to further in-

vestigate possible new-physics and nuclear effects: upgrading the experimen-

tal setup to improve the precision of IS spectroscopy (Chapter 17), cotrapping

ions of different isotopes (Chapter 18), using isotopes with hyperfine structures

(Chapter 19) or radioactive isotopes (Chapter 20), and driving transitions that

involve Rydberg states (Chapter 21). The general outlook on the search for new

physics with IS spectroscopy and King plots is briefly discussed in Chapter 22,

the last chapter of this thesis.

This thesis contains the following appendices:

• Appendix A for the summary of the measured ISs and the values with re-

duced uncertainties (see Section 6.7). The absolute frequencies derived from

the measured ISs are also presented.

• Appendix B for the summary of the transitions in Yb+ ions relevant to this

work and the properties of the laser beams addressing the transitions.

• Appendix C for the summary of the calculated IS electronic factors for the

transitions in Yb+ ions and neutral Yb atoms from the atomic structure cal-

culations.

• Appendix D for the theory of electric multipole transitions and, subsequently,

the selection rules and relative transition rates for the optical clock transitions

in Yb+ ions.

• Appendices E and F for the reprints of the publications from this work, Refs. [5]

and [8], respectively.
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Chapter 3

Singly ionized Ytterbium atoms in

ion trap

A singly ionized Ytterbium (Yb+) ion in an ion trap, the most essential part of the

whole experimental setup for this thesis work, is introduced in this chapter.

3.1 Transitions

Figure 3-1 shows a partial level diagram of Yb+ ions (with no nuclear spin) with all

the relevant electronic states and the transitions between them for this work. The

transitions’ uses are divided into two parts: the transitions for cooling and controlling

ions; and the optical clock transitions for which the ISs will be measured with high

precision.

The details on the transitions are summarized in Table B.1 with the references

therein. Tables A.3 and A.2 also list the absolute frequencies and ISs of the transi-

tions, respectively, to address each individual isotope; most of the values have been

either the first reports in literature or with reduced uncertainties.
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Figure 3-1: Partial level diagram for Yb+ ions with zero nuclear spin (𝐼 = 0). Tran-
sitions for cooling (369 nm; purple), 2𝐷3/2-state repumping (935 nm; brown), and
2𝐹7/2-state repumping (760 nm or 638 nm; red) are presented. Blue arrows show the
optical clock transitions: two electric quadrupole (E2) transitions 𝛼: 2𝑆1/2 → 2𝐷5/2

(411 nm) and 𝛽: 2𝑆1/2 → 2𝐷3/2 (436 nm), and an electric octupole (E3) transition 𝛾:
2𝑆1/2 → 2𝐹7/2 (467 nm). Details on the transitions and decay channels (gray dashed
arrows) are summarized in Table B.1 with the references therein.
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3.1.1 Cooling and control

There is a wide transition from the ground state, 2𝑆1/2 → 2𝑃1/2 at 369 nm with

19.6MHz linewidth. It provides efficient laser cooling, fast optical pumping for initial

state preperation (see Section 4.1.4), and state detection (see Section 5.1).

The ion falls into the metastable 2𝐷3/2 and 2𝐹7/2 states spontaneously or by

driving the optical clock transitions (see Fig. 3-1). To bring the population in the

metastable states to the ground state, suitable transitions for optical repumping are

necessary. 2𝐷3/2 → 2𝐷[3/2]1/2 transition at 935 nm is the primary choice as a 2𝐷3/2-

state repumper. To repump the 2𝐹7/2 state, 2𝐹7/2 → 2𝐷[5/2]5/2 at 638 nm were used

in initial works [4], which has been replaced by 2𝐹7/2 → 2𝐷[3/2]3/2 at 760 nm for

faster repumping (see Section 4.2.6).

The detailed procedure of trapping and cooling is described in Section 4.1.2 for

the experimental setup used in the thesis work.

3.1.2 Clock transitions

There are total three optical clock transitions at the blue wavelengths: 𝛼: 6𝑠 2𝑆1/2 →

5𝑑 2𝐷5/2 at 411 nm, 𝛽: 6𝑠 2𝑆1/2 → 5𝑑 2𝐷3/2 at 435.5 nm (or simply 436 nm), and 𝛾:

4𝑓 146𝑠 2𝑆1/2 → 4𝑓 136𝑠2 2𝐹7/2 at 467 nm, labeled with the Greek letters for conve-

nience.

The first two transitions 𝛼 and 𝛽 are electric quadrupole (E2) transitions and

have reasonably narrow linewidths from the ms-level excited-state lifetimes. It is

noteworthy that the two transitions have very similar electron configurations. The

excited states’ energies differ primarily by the spin-orbit coupling, which leaves their

radial wavefunctions largely the same (see Section 10.2). The two transitions are also

relatively simple in the sense that it excites only a valence electron while maintaining

the core electrons.

The remaining 𝛾 transition is an electric octupole (E3) transition. This transition

is highly forbidden and a lifetime of a few years is expected (see Table B.1). It is

known to be the narrowest optical transition found to date and is regarded as one of
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the suitable transitions for an atomic clock.1 The transition takes out an electron in

a closed 𝑓 shell and put it into the valence 𝑠 shell, resulting in a significant change in

the electrons’ wavefunction. The 𝛾 transition thus provides higher sensitivity to new

boson and nuclear effects compared to the 𝛼 and 𝛽 transitions, manifested by the

increased size of measured nonlinearity in King plots (see Fig 10-1 and Table C.3).

The knowledge of selection rules for transitions is helpful for identifying the sub-

structure of the transition: different peaks from, for instance, Zeeman structure,

vibronic transitions due to the trap (see Section 3.2), and the micromotion of ions.

The selection rules for the 𝛼, 𝛽, and 𝛾 transitions can be found in Appendix D.

3.2 Spectroscopy of trapped ion

Spectroscopy without strong confinement of resonators (e.g., gas in vapor cells) is

subject to huge Doppler broadenings typically on the order of GHz. Propagating

beams to flying atomic beams at a perpendicular angle can reduce the broadening,

but the linewidth is still typically on the order of 10MHz, and also subject to the

Doppler shift by an imperfect angle. Saturation absorption spectroscopy is not a

choice in general for narrow transitions, presumably because the saturation of tran-

sitions is fundamentally based on spontaneous emission processes which are slow for

the narrow transitions, as well as the high power required to saturate the transitions.

Confining atoms’ positions makes the first-order Doppler shift in the center of

a transition vanishes due to the zero velocity of atoms on average,2 and enables

continuous cooling of the atoms to the low temperature. Furthermore, a tight trap

gives two more advantages. First, a trap with motional energy spacing ℏ𝜔 bigger

than photon recoil energy suppresses photon recoils (Lamb-Dicke regime), which is

quantum mechanically the source of the Doppler shift [103]. Second, if the trap’s

energy spacing in frequency 𝜔 is bigger than the linewidth Γ of the transition to be

measured, the Doppler broadening is resolved in the form of carrier and sideband
1The transition is a recommended secondary representation of the second in the International

System of Units (SI) [51, 102].
2Unless the center of the confinement moves.

58



vibronic transitions. The effect of the confinement and the remaining systematic

shifts from the Doppler effect are described in Section 7.1 in detail.
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Part II

Isotope Shift Spectroscopy

60



Chapter 4

Experimental setup

This chapter describes the experimental setup for precision isotope-shift (IS) spec-

troscopy of trapped Yb+ ions, the means to probe new physics in this thesis. The

setup used here has been designed as a versatile ion trap platform, and it has been

used for various research topics [5, 8, 104, 105, 106, 107] with appropriate customiza-

tion for each project.

This chapter consists of two parts. A rather brief overview of the setup as an

ion trapping system and essential customization for IS spectroscopy are presented in

Section 4.1. More details on this part, including step-by-step procedures of trapping

and cooling ions and associated beam configurations, can be found in Ref. [4], a thesis

that covers the earlier works on this new-physics probing research. The following

Section 4.2 then describes the upgrades in the setup that have been made, especially

after the work of Ref. [4], to adapt the setup more for the precision experiment.

The details on the fundamental parts of the setup and relevant initial works, from

the fabrication of the ion trap chip to building vacuum chambers, lasers, and optics

setups, are elaborated in the theses of former Ph.D. students [4, 108, 109, 110].

4.1 Overview of setup

The composition and basic controls of the system for trapping, cooling, and imaging

ions as a versatile ion trap apparatus are overviewed in the first few subsections. The
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subsections with more focus on spectroscopy experiment then follow: state prepara-

tion of ions and the generation and frequency control of the probe beam that drives

optical clock transitions in Yb+ ions.

4.1.1 Yb+ ion trap system

Figure 4-1 illustrates the setup in the experimental chamber. All the experiments

with trapped ion samples undergo in an ultrahigh vacuum (UHV) chamber with the

internal pressure below 10−9Torr.1 A surface Paul trap is placed in the vacuum

chamber upside-down. The trap chip, fabricated by a former PhD student Marko

Cetina [108], generates an axial potential along the chip by outer, segmented elec-

trodes to which DC voltages are applied (see Fig. 4-1). A two-dimensional radial

pseudopotential (i.e. cylindrical trap) is formed by RF electric field from a pair

of the thin, linear electrodes placed inner than the DC electrodes and driven by

𝜔RF/(2𝜋) = 16.16MHz signal. The confinements along the axial and radial direc-

tions can be tuned by changing the (amplitude of) voltages at the electrodes, up to

the secular frequency 𝜔𝑡𝑟/(2𝜋) = 2.3MHz in the radial direction [105]. The radial

potential is tilted (i.e. elliptical trap in the radial plane), with the principal axes not

parallel to the surface of the chip, by applying DC voltages of opposite polarity to

each of the RF linear electrodes, and applying opposite-polarity compensating volt-

ages to the outer DC electrodes [109]. The tilted potential makes trapped ions cooled

in both the radial dimensions with a single cooling beam parallel to the surface of

the chip (see also Section 4.1.2).

The center of the trap for Yb+ ions is placed 135µm below the surface of the

chip. The secular frequencies of the trap along the radial and axial directions are

listed in Table 4.1. A neutral Yb flux is generated from an oven inside the chamber

that contains an Yb sample (having all stable isotopes with their natural abundance

[111]), heated up by flowing electric current. The Yb atoms fly toward the potential

well that the trap chip creates.

The values of parameters regarding the ion trap for the experiments in this thesis
1From an ion pump current reading.
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Figure 4-1: Schematic drawing of the experimental setup. A single ytterbium ion is
trapped 135µm away from the surface of a microfabricated planar Paul trap housed
in an ultrahigh vacuum chamber. The propagation directions of the laser beams used
for cooling, repumping, ground-state optical pumping, and optical clock transition
probing (see Fig. 3-1) are indicated by labeled arrows. Fluorescence from trapped
ions is collected using either a PMT or an EMCCD camera (see Section 4.1.3). The
probe laser beam is linearly polarized along the trap axis (the 𝑧 direction in this
figure).
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Table 4.1: Trap parameters for the experiments in this thesis. Each column corre-
sponds to one of 𝑖 ∈ {𝑡𝑥, 𝑡𝑟1, 𝑡𝑟2}: the trapping potentials along the axial direction
(𝑡𝑥) and the principal axes of the radial direction (𝑡𝑟1, 𝑡𝑟2). If equations are given
in a table footnote, all the necessary values are from this table.

Parmeter 𝑡𝑥 𝑡𝑟1 𝑡𝑟2

RF drive frequency 𝜔RF 16.16MHz

Secular frequencies 𝜔𝑖/(2𝜋) 364 kHza 1.38MHzb 0.88MHzb

Mathieu parameters
DC 𝑎𝑖 2.0× 10−3c −1.0× 10−3d −1.0× 10−3d

RF |𝑞𝑖| 0 0.23c 0.14c

a via tickle spectroscopy [109]. b From the secular-motional sideband peaks in
measured spectra of 𝛼: 411 nm transition in Yb+ ions (see Chapter 5).
c Eq. (4.1c) d Eq. (4.1a)

are listed in Table 4.1, which will be useful to estimate some of systematic effects

in Chapter 7. The relevant relations between the parameters are also listed below

[112]:

𝑎𝑡𝑟1 = 𝑎𝑡𝑟2 = −
1

2
𝑎𝑡𝑥 ∝

1

𝑚
(4.1a)

𝑞𝑡𝑟1 = −𝑞𝑡𝑟2 ∝
1

𝑚
, 𝑞𝑡𝑥 = 0 (4.1b)

𝜔𝑖 ≃
1

2
𝜔RF

√︂
𝑎𝑖 +

1

2
𝑞2𝑖 (4.1c)

where 𝑚 is the mass of a trapped ion.

4.1.2 Trapping, cooling, and repumping

As soon as Yb atoms fly into the trapping area of the Paul-trap chip, they meet two

beams to get ionized: a 399 nm beam to drive 1𝑆0 → 1𝑃1 transition (see Table B.1)

and a 369 nm beam to excite the population in the 1𝑃1 state to continuum. The

399 nm transition has ISs of ≳250MHz between nearest neighboring isotopes [113]

and thus allows isotope-selective Yb+ ion loading by tuning the 399 nm beam’s fre-

quency. At the moment the Yb atoms get ionized, the same 369 nm beam starts

to drive 2𝑆1/2 → 2𝑃1/2 transition (see Fig. 3-1 and Table B.1) and Doppler-cools
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the Yb+ ions.2 The 369 nm beam is parallel to the trap chip’s surface (𝑥𝑧 plane)

and diagonal to the axis of the chip (𝑧 direction; see Fig. 4-1) so that the beam

cools the ions’ kinetic energy in all directions (the RF trap potential is tilted so that

the principal axes are not along 𝑦 or 𝑧 direction; see Section 4.1.1). Two beams

are placed to repump the population that leaks from the 2𝑆1/2 – 2𝑃1/2 subspace to

other states back to the two-level subspace. A 935 nm beam repumps the popula-

tion in 2𝐷3/2 states, which is leaked from the 2𝑃1/2 states in every ∼50µs in this

setup,3 through saturated 2𝐷3/2 → 3𝐷[3/2]1/2 transition and subsequent decay to

the 2𝑆1/2 ground state, with the repumping time well below 5 µs.4 A 760 (638) nm

beam drives 2𝐹7/2 →1 𝐷[3/2]3/2 (1𝐷[5/2]5/2) transition and, with following decay to

the 2𝑆1/2 (2𝐷3/2) state, repumps the population that falls into 2𝐹7/2 state in every

few hours, presumably due to the trapped ion’s collision with with background gas

[114, 115]. Note that the repumpers pump the 2𝐷3/2 and 2𝐹7/2 states populated by

driving the optical clock transitions as well.

The beams with shorter wavelengths 369 nm and 399 nm are generated by external

cavity diode lasers (DL Pro HP and MDL Pro Yb+, respectively, Toptica) with

typical maximum powers of 35mW and 85mW before isolators, and operating at

∼10mW and ∼20mW, respectively. The 935 nm and 760 nm repumping beams

are obtained from distributed feedback (DFB) lasers (MDL Pro Yb+, Toptica). A

homemade 638 nm laser had been used for the earlier measurements for 𝛼: 411 nm

and 𝛽: 436 nm clock transitions [4], which has been replaced by the 760 nm laser for

the later measurements for 𝛾: 467 nm clock transition (see Section 4.2.6). The waist

and power of each beam can be found in Table B.1.
2To Doppler temperature 𝑇Doppler = ℏΓ369 nm/(2𝑘B) = 470 µK (see Table B.1).
3It depends on the rate of the 369 nm transition and thus on the power and detuning of the beam

and the the ions’ temperature. Minimum decay time is 1/[Γ369×0.5× (0.5%)]) ≈ 3.2µs where Γ369

(see Table B.1), 0.5, and 0.5% are the cooling transition’s linewidth, maximum probability in the
excited state, and the branching ratio to the 2𝐷3/2 state, when the transition is highly saturated.

4The transition is highly saturated by the 935 nm beam; see Table B.1.
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4.1.3 Fluorescence imaging

Collecting scattered 369 nm light from trapped ions is the primary way to achieve

information on the ions’ states. The scattered beam that propagates below the

surface trap is collected by a folding mirror and then a large convex lens with a high

numerical aperture (NA). The collected beam is bandpass filtered to block other

laser beams (e.g., repumpers) and either measured by a photomultiplier tube (PMT)

(H10682-210, Hamamatsu) [109, 110] through a 4𝑓 system or an electron-multiplying

charge-coupled device (EMCCD) camera (LucaEM R 604, Andor). In the path for

the PMT, a pinhole is placed at the focus of the 4𝑓 system to reduce the effect of

the ambient light. The EMCCD camera is slow (≳0.5 s per image) but gives the

number and positions of trapped ions. The existence of dark ions, ions of different

isotopes that do not scatter the cooling beam but stay in the trap via sympathetic

cooling, can be discovered through the distribution of bright ions’ positions. Once

the correct number of ions with no dark ion is confirmed, the scatter beam’s path is

folded to the PMT by placing a mirror, and the PMT measures the fluorescence with

a higher signal-to-noise ratio and broader bandwidth. With the PMT, the count rate

of photons is limited by the scattering rate (limited by the linewidth of the 369 nm

transition) and the total yield of the detection (e.g., the NA of photon collection and

quantum efficiency of the PMT).

4.1.4 State preparation

In the presence of an external magnetic field, Zeeman splitting occurs for the states

with nonzero total angular momentum 𝐽 or 𝐹 . Another 369 nm beam from the same

Toptica laser is along the quantization axis of the ions that the magnetic field defines

and optically pumps the population in either of the two Zeeman levels (𝑚𝐽 = ±1
2
)

of the 2𝑆1/2 ground state to another, for state preparation. In the thesis work,

the external magnetic field of ∼1.1G is applied along the 𝑥 direction by flowing DC

currents in Helmholtz coil pairs in 𝑥, 𝑦, and 𝑧 directions around the vacuum chamber.

The background fields including the earth’s magnetic field are compensated by the
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coils. The 369 nm optical pump beam propagates in 𝑥 direction, parallel to the

magnetic field. The beam’s polarization is set to be either of circular polarizations

�̂�± (see Section 4.2.5) and thus �̂�± polarizations with respect to the quantization

axis.

The alignment and polarization of the optical pump beam are optimized by mea-

suring the characteristic time of the pumping.5 The pumping time of ≲10 µs is

typically achieved with about 80 µW power at the focus (see Table B.1).

4.1.5 Probe beam for driving clock transitions

The probe beams to drive 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm), 𝛽: 2𝑆1/2 → 2𝐷3/2 (436 nm),

and 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) clock transitions, which are of the main interest in this

thesis, are generated by a Ti:sapphire laser (SolsTis 4000 XF, M Squared) followed

by either a waveguide frequency doubler (MgO:LN Ridge Waveguide, AdvR) (for

the 𝛼 and 𝛽 transitions) or a frequency-doubling cavity (ECD-X, M Squared) (for

the 𝛾 transition). The beam propagates along the −𝑥 direction (antiparallel to the

external magnetic field) and has linear horizontal polarization along the 𝑧 direction.6

The beam is focused on the center of the trap by an achromatic lens (see L1 in

Fig. 4-8) to minimize the difference in the deflection angles and focal lengths of the

411, 436, and 467 nm beams. See Table B.1 for the powers and focal waists of the

beam at each wavelength.

Ref. [4] contains more details on the beam setup (Fig. 8-7 therein) and the pro-

cedure to align and focus the probe beam (Chapter 8.5 therein); note, however, the

way to precisely align the probe beam to an ion for IS spectroscopy, after the initial

alignment and focusing, has been changed from the way using a 369 nm align beam,

as described in Section 5.3.3.
5Measured through the repeated pulse sequence and time-resolved integration of the PMT counts

(see, e.g., Sections 5.3.7, 5.6, and Fig. 6-10).
6The propagation direction and the polarization of the beam with respect to the quantization

axis determine the selection rules for the clock transitions; see Appendix D.
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4.1.5.1 Frequency stabilization and control

The Ti:sapphire laser’s frequency is actively stabilized to a 10 cm-long optical two-

mirror cavity [1.5GHz free spectral range (FSR)] with a cylindrical ultralow-thermal-

expansion (ULE) spacer, that has the finesse ℱ ∼ 50, 000 and linewidth 𝜅𝑐 ∼ 30 kHz,

in a cylindrical vacuum chamber (Stable Laser System), which serves as the fre-

quency reference in the IS spectroscopy experiment. A laser beam before frequency-

doubled is picked off from the main beam path and goes through a broadband

electro-optic modulator (EOM) (PM-0k5-10-PFA-PFA-850-DC, EOSPACE) to gen-

erate sidebands. One of the sidebands (called branching sideband here) is stabilized

to the reference cavity so to continuously tune the frequency of the carrier by tun-

ing the EOM’s modulation frequency. The EOM is driven at few GHz by a signal

synthesizer (8672A, HP). The synthesizer has 1 kHz resolution of the set frequency,7

which gives coarse tuning of the probe’s frequency before frequency-doubled. The

first-order red sideband is stabilized to a cavity mode so that the change in the

synthesize set frequency and the change in the probe frequency have the same sign.

To employ Pound-Drever-Hall (PDH) technique [116, 117], the EOM is driven

by an additional 4MHz signal. The two added driving signals with the different

frequencies have the same effect to two independent EOMs in series driven by each

signal: exp[𝑖(𝜑1(𝑡) + 𝜑2(𝑡))] = exp[𝑖𝜑1(𝑡)] exp[𝑖𝜑2(𝑡)]. Therefore, each of the GHz

branching carrier and sidebands has its own 4MHz PDH carrier and sidebands,

generating its own PDH error signal.

A fine tuning is given by an acousto-optic modulator (AOM) after the probe

beam is frequency-doubled. The AOM is driven by ≈120MHz signal from frequency-

mixing of a ≈25MHz signal generated by a function generator [DS345, Standard

Research Systems (SRS)] and a 95MHz signal from a direct digital synthesizer (DDS)

(AD9959, Analog Devices, mounted on an evaluation board EVAL-AD9958). The

exact AOM drive frequency is controlled by the SRS function generator which has

the 1 µHz resolution of the frequency control. The blue-detuned first-order deflection

beam is delivered to the ions. Therefore, the frequency change in the SRS function
7up to 6.2GHz. It has bigger frequency steps at higher frequencies.
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generator is given as the change in the probe frequency at the ions.

It is useful to define some frequencies to describe how the frequency of the probe

beam at ions is controlled and how far it is detuned from a mode of the reference

cavity [i.e. 𝑛×FSR of the cavity]. First, two frequencies tuned by the HP synthesizer

and SRS function generator are defined:

CoarseFrequency = 𝑓Coarse = 𝑓HP (4.2)

FineFrequency = 𝑓Fine = 𝑓SRS, (4.3)

(4.4)

respectively. The two frequency controls have different effects to the probe beam

that ions see. While the FineFrequency tunes the probe frequency at ions with

the same scale, change in CoarseFrequency changes the probe frequency by twice.

Taking that into account, another frequency that captures the total effect of 𝑓HP and

𝑓SRS tuning is defined:

MasterFrequency = 𝑓Master = 2𝑓Coarse + (𝑓Fine − 25MHz) (4.5)

The 25MHz offset has been placed for a historical reason in the laboratory; it makes

the value of (𝑓Fine−25MHz) the detuning of AOM drive from 120MHz, the resonant

frequency of the AOM. The absolute frequency of the probe beam at an ion is, then,

given as:

𝑓probe = 𝜔probe/(2𝜋) = 2𝑛× FSR⏟  ⏞  
Cavity

+ 120MHz⏟  ⏞  
AOM resonance

+ 𝑓Master⏟  ⏞  
Control

(4.6)

when the branching sideband is stabilized to the 𝑛’s longitudinal mode of the refer-

ence cavity. Note also that the probe beam is picked off before frequency-doubled

and goes into a wavemeter (WS/7, HighFinesse/Ångstrom) to measure the beam’s

frequency, WMFrequency or 𝑓WM, with 50MHz uncertainty. The WMFrequency and
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the probe’s frequency at an ion is related as follows:

𝑓probe = 2𝑓WM + 𝑓Fine + 95MHz⏟  ⏞  
AOM

≈ 2𝑓WM + 120MHz. (4.7)

The last approximation is from the fact that the value of (𝑓Fine − 25MHz) has been

controlled within 0 to 8 kHz range, which is much narrower than the wavemeter’s

precision.

Most importantly, if the frequencies of a transition in different isotopes are mea-

sured at the same time with the same cavity mode 𝑛, the ISs between the isotopes are

simply given by the difference in the measured MasterFrequencys at the resonance

of the transition.

All the signal generators that are relevant to the probe beam’s frequency at

ions are synchronized to a 10MHz signal generated by another SRS DS345 function

generator named master clock. Its accuracy is ±5 ppm between 20–30 °C according

to the manual. By assuming the linear dependence of the signal’s frequency on the

temperature and considering 1 °C drift in the device temperature, <5GHz signal

from the HP signal synthesizer, and optical frequency doubling, the temperature-

dependent long-term contribution to the probe frequency drift is estimated to be

≲5Hz. Very recently, after all the IS measurements in this thesis were performed,

the master clock has been synchronized to a rubidium frequency standard (FS725,

SRS) which provide <2 × 10−12 stability (i.e., 20 µHz stability in probe frequency)

over 100 s (cf. ≲2 hr isotope switching period; see Section 5.3.2).

4.2 Upgrading setup

The experimental setup for IS spectroscopy has been upgraded after the works in

Ref. [5]. The goals of the upgrades have been mainly in two parts. One is to im-

prove the stability of the overall setup, primarily for better convenience in running

the experiment, which will not be described in detail in this thesis. However, It is

important, for instance, to make the frequency stabilization of lasers robust to envi-

70



ronmental disturbance, to build automated detection of problems, and to properly

handle runtime errors in control software, for experiments with long running time; a

single continuous run for isotope-shift measurement takes more than 15 hours (see

Fig. 6-4). It makes the experiments mentally and physically less demanding for

researchers, and thus improves the time efficiency of the experiments and reduces

potential human errors.

Another goal of the upgrades is to improve the precision of the experiment, by

reducing systematic effects and statistical uncertainties. The works for this goal are

elaborated in the following subsections.

4.2.1 Suppressing the effect of residual amplitude modulation

on laser frequency stabilization.

During the first-round data was being taken [4], the probe beam’s frequency was

drifting due to residual amplitude modulation (RAM), dominantly from the EOM

used for PDH frequency stabilization [118, 119, 120], by adding DC or AC modula-

tions to the PDH error signal. Long-term drift in the probe’s frequency with a time

scale comparable to or longer than the time scale of isotope switching is especially

harmful to the IS measurement (see Section 5.3.2) as a source of systematic shift and

uncertainty. Therefore, the RAM-induced drift in the PDH error signal is actively

compensated as elaborated below.

Figure 4-2 describes the setup used for monitoring and compensating the RAM

effect in the PDH error signal. It is started by copying the work in Ref. [120]. To

monitor the RAM before the beam couples to the reference cavity, a beam splitter is

placed right before the cavity. A beam splitter with an appropriate reflection/trans-

mission ratio is chosen so that the RAM monitor photodiode sees higher beam power

than the PDH photodiode and thus has a higher signal-to-noise ratio (SNR) for the

shot noise. Placing the beam splitter right before the cavity helps the RAM monitor

captures RAM from all the optics that the beam goes through before the cavity. The

same photodiode modules (PDA10A2, Thorlabs) are used to measure the beams for
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Figure 4-2: Schematic drawing of the configuration of optics and electronic compo-
nents for the PDH error and RAM monitor signal generation. 4MHz local oscillator
(LO) signal is split by power splitters (⊕ symbols) and drives the RF port (𝑉RF) of
EOM and the LO ports (L) of frequency mixers (⊗ symbols) for PDH error and RAM
monitor signals. The beams reflected from the cavity or picked off by a beamsplitter
(BS) before the cavity go to the photodiode modules for PDH error (PHD PD) or
RAM monitor (RAM Mon PD) signals, respectively. The photodiode signals go to
the RF port (R) of the corresponding mixers. The output signal from the IF port (X)
of each mixer serves as PDH error or RAM monitor signal after lowpass filtered to
kill RF components. The phases of local oscillator signals for the two mixers (𝜑PDH

and 𝜑RAM) are adjusted to make sure that RAM monitor sees the same in-phase
component of RAM effect in PDH error signal. Optical isolators (ISO) placed in
front of PDs suppress the crosstalk between the PDs. To compensate the effect of
RAM in PDH error signal, RAM monitor signal goes into integrator (I) and fed back
to the DC voltage (𝑉DC) input of the EOM. 𝑉DC is picked off and goes into pro-
portional and integral (PI) transimpedance gains and the current (𝐼T) is fed to the
thermoelectric cooler (TEC) module attached to the EOM body, to prevent required
𝑉DC from drifting out of the control range. Pol, PBS, and QW stand for polarizer,
polarizing beamsplitting cube, and quarter-wave plate, respectively. Labels S, 1, and
2 refer to the input and the two outputs of each power splitter, respectively.

72



the RAM monitoring and the PDH error signal generation. An optical isolator is

placed in front of each photodiode to suppress the crosstalk between the photodiodes.

To cover the frequencies of all the probe beams before frequency-doubled, broadband

optical isolators (EURYS, Electro-optics Technology) are used; they have over 30 dB

(27 dB) isolation and 95% (80%) transmission at 822 and 871 nm (at 934 nm). A

polarizer (GL10-B, Thorlabs) in a rotation mount is placed before the free-space-to-

fiber coupling of the beam for polarization filtering and axis matching to the fiber

axis.8

A crucial difference in the setups here and in Ref. [120] is the use of the tem-

perature control of the EOM. Reference [120] has two separate feedback loops which

measure in-phase and quadrature components of the RAM signal (using IQ mixer)

and stabilize them by controlling the EOM’s DC input voltage and temperature,

respectively, achieving 56 dB suppression of the RAM effect. In such a case, the ab-

solute size of the RAM is fixed as both components of the RAM signal are stabilized.

In this work, we use the temperature control as the slow and wider control of the

RAM effect. It slowly takes over the DC voltage’s role and keeps the DC voltage

within the range of the voltage that the EOM’s DC input port can take. In this

case, not the absolute size but only a component of RAM signal is stabilized. There-

fore, it is vital to make the RAM monitor signal sees the same component of the

RAM signal in the PDH error signal. The procedure of matching the components is

as follows. The frequency of EOM modulation is slightly detuned from the mixers’

local oscillator frequency, and then the PDH and RAM monitor signals oscillate at

the frequency of the detuning with certain phases. The phases are then matched

by adjusting the phases of local oscillator signals 𝜑PDH and 𝜑RAM to the mixers for

the PDH error and RAM monitor signals, respectively. In practice, 𝜑PDH is adjusted

first to optimize the shape of the PDH error signal (when there is no detuning, of

course), and then 𝜑RAM is adjusted to match the phases of oscillations in the PDH
8Using the Glan-Taylor calcite polarizers with 50 dB extinction ratio might be an overkill for

the purpose here. The extinction ratios of polarization-maintaining optical fiber patchcords (OZ
Optics) or the axis matching between the fiber and the crystal in the EOM typically do not exceed
30 dB.
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error9 and the RAM monitor signals (with detuning). In this work, the minimum

resolution of phase control was ∼0.5° at 4MHz, made by a pair of male-to-male and

female-to-female BNC connectors. The relative phase of the two signals was mea-

sured using an oscilloscope10, but it would be more straightforward and precise (i.e.,

less systematic shifts) if a phasemeter is used instead. After all, the relative phase of

the signals are matched with ∼0.5° = 0.001 rad accuracy, giving ∼30 dB suppression

of the RAM effect. It is helpful to deliberately increase the size of the RAM for the

procedure above, by disturbing axis matching of free-space-to-fiber coupling before

the EOM or adjusting the EOM temperature.

The effects of the EOM’s DC voltage and temperature changes are somewhat

different [120], and there is a risk that the RAM stabilization fails if the system’s

condition drifts too much from the starting point. Nevertheless, the stabilization has

been sufficiently stable for most of the time in practice.

The temperature stabilization and control were done by following the work of

Enrique Mendez, a fellow Ph.D. student in Vuletić Group. As shown in Fig. 4-3, a

fiber-coupled waveguide EOM with DC input port (PM-0k5-10-PFA-PFA-850-DC,

EOSPACE), used to generate branching and PDH sidebands (see Section 4.1.5.1),

was attached on top of a thermoelectric cooler (TEC) module mounted on a metal

substrate for heat dissipation. Thermal paste was applied to the contact areas. Then

the EOM was sealed by an acrylic enclosure filled with foam sheets to reduce the

temperature fluctuation and gradient.

As shown in Fig. 4-2, the current flowing through the TEC module is given by

a temperature controller with proportional and integral (PI) transimpedance gain.

The temperature response of the EOM is slow (order of minutes). Therefore, the

input signal11 has been integrated digitally for reliable integration over a long time

period.
9The frequency of the laser should be far from the cavity’s resonant frequencies to see the effect

of the RAM only.
10A long BNC cable assembly is prepared so that it gives 90° phase delay at 4MHz; the length

is adjusted by adding short cables or connectors while measuring the total phase delay using a
network analyzer. The cable assembly is added to the cable for one of the signals. The two signals
are then mixed and lowpass-filtered using multiplication and averaging functions of the scope.

11The EOM’s temperature or DC voltage for temperature or RAM stabilization, respectively.
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Figure 4-3: Fiber-coupled electro-optic modulator (EOM) for stabilization and con-
tinuous tuning of the Ti:sapphire laser frequency. (Top) EOM mounted on ther-
moelectric cooler (TEC) module over a metal substrate, with negative-temperature-
coefficient (NTC) thermistor attached to the opposite side of EOM from the TEC
module. (Bottom) complete setup. Acrylic enclosure is filled with foam sheets for
thermal isolation. A port for DC input has been added afterward.
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Figure 4-4: Drift in PDH error signal offset and EOM’s DC input voltage and tem-
perature over 2 hours, while RAM-induced PDH error signal offset drift was actively
stabilized. Data taken by Eugene Knyazev, a research team member and fellow PhD
student. The dips in EOM temperature are spurious readings.
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The amplitude and phase of the RAM signal depend on various factors (e.g.,

axis matchings, the EOM’s input DC voltage and temperature, mechanical stress on

and temperature of optical fibers), and are subject to potential significant drift over

time. Stabilizing the RAM signal’s in-phase component does not suppress or stabilize

the signal’s amplitude and rather increases the amplitude fluctuation over time in

general,12 Therefore, it is not straightforward to predict the size of the remaining

RAM effect after the RAM signal is suppressed by 30 dB, and the typical size of

the effect was estimated empirically by recording the PDH error signal, far from the

cavity’s resonances, while RAM compensation is engaged.13

The result is shown in Fig. 4-4. The PDH signal drifts typically by ±1mV, which

would shift laser frequency by ±300Hz if the PDH lock was engaged, considering

the 300Hz/mV slope of the PDH error signal in this setup. The drift’s effect on

the measured ISs is expected to be further reduced by the isotope switching several

times (see Section 5.3.2). Note that no visible correlation between the PDH signal

drift and the measured EOM DC voltage or temperature was observed.

4.2.2 Temperature stabilization of reference cavity

The ULE cavity is the ultimate frequency reference for the isotope shift measurement

in this work (see Section 4.1.5.1). Therefore, it is hard to overstate the importance

of the cavity’s stability, especially over the long time periods for the same reason

described in Section 4.2.1. As the temperature drift of the cavity is one of the most

obvious sources of the slow drift, the dependence of the cavity’s resonant frequencies

on the temperature has been examined, and the effort to stabilize the temperature

has been made, as follows.

For a single trapped 174Yb+ ion, the resonant frequency of 𝛼: 2𝑆1/2 → 2𝐷5/2

(411 nm) optical clock transition (see Fig. 3-1) offset by a cavity mode is measured
12For instance, the in-phase component of the RAM signal can be suppressed at the expense of a

bigger increase in the quadrature component by changing the EOM’s DC voltage and temperature;
in other words, the phase of the RAM signal is shifted to be orthogonal to the local oscillator while
the signal’s amplitude increases, potentially by a large factor.

13The PDH stabilization should be off, of course.
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(see Chapter 5) after stabilizing the cavity’s temperature to different values. The

drift in the cavity mode’s frequency is then shown as the drift in the measured

frequency from the reference.

Figure 4-5 shows the result of the measurement. It shows a clear quadratic

dependence of the the cavity with a ULE spacer near the zero-crossing temperature:

𝛿𝑓𝑐
𝑓𝑐

= −𝛿𝐿𝑐

𝐿𝑐

= 𝑎(𝑇 − 𝑇ZC)
2 (4.8)

where 𝑓𝑐 = 𝑛 × FSR is resonant frequency of 𝑛th longitudinal cavity mode for a

given free spectral range (FSR), 𝐿𝑐 is the length of the cavity, 𝑇ZC is the cavity’s

zero-crossing temperature, and 𝑎 is the quadratic coefficient of the temperature de-

pendence.

Fitting the measured dependence gives the values 𝑇ZC = 29.46(1) °C and 𝑎 =

−5.32(4)×10−10K−2 (𝑎𝑓𝑐 ∼ −20 kHz/K2 for 𝑓𝑐 between 2×411 nm and 2×467 nm).

It gives 𝛿𝑓𝑐 = 20Hz shift of the cavity’s resonant frequency, and thus 40Hz shift

in probe beam’s frequency 𝑓probe after frequency-doubled, for 0.01 °C temperature

change from 𝑇𝑧𝑐, which corresponds to the uncertainty in the measurd 𝑇𝑧𝑐 and the

resolution of the temperature reading of the temperature controller (LFI-3751, Wave-

length Electronics) used to stabilize the temperature inside the vacuum chamber.

To reduce the effect of the temperature further,14 the volume around the vacuum

chamber and the relevant optics has been enclosed by an acrylic box that sits on

the optical breadboard. The temperature inside the box has been actively stabilized

using a thermistor hanging from the ceiling and wide planar heat sheets (5692T49,

McMaster-Carr) attached to the inner sides of the box. The half-inch-thick foam

sheets cover the whole outer side of the box to decrease heat conductivity (by a

factor of 4 to 8; 2–4W/K after the sheets are attached) and reduce the acoustic

noise that the enclosure picks up from the environment.

Figure 6-4 shows the measured temperature inside the box while the main exper-
14e.g., residual fluctuation of the cavity spacer’s temperature after being stabilized by the tem-

perature controller and change in temperature gradient and subsequent mechanical stress in the
supporting structure such as vacuum chamber.
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Figure 4-5: Measured drift in a longitudinal mode’s frequency vs. temperature
of the ULE cavity, using 𝛼: 411 nm clock transition in Yb+ ions (see Fig. 3-1).
The 𝑦-axis shows the detuning of the Ti:sapphire laser (before frequency-doubled)
from the cavity mode. The cavity mode frequency is 𝑓𝑐 = 365THz as the beam
after frequency-doubled probes the clock transition (see Section 4.1.5.1). The laser
frequency is referenced to the transition, and therefore the direction of the change
in the cavity mode’s frequency is the opposite of the frequency change in the 𝑦-axis.
Fitting the results gives the cavity’s zero-crossing temperature 𝑇ZC = 29.46(1) °C
and quadratic coefficient 𝐴 = −𝑎𝑓𝑐 = +194.0(15) kHz/K2.
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iment was running. Periodic oscillation in the temperature was inevitable with the

PI feedback due to the slow response time of the temperature inside the enclosure.

Nevertheless, it should keep the temperature stable on average and thus prevent sys-

tematic shifts in measured ISs. Furthermore, the temperature oscillation has a much

shorter period (≲10min) than the typical period of the isotope switching (≲2 hr; see

Section 5.3.2) and barely leads to the systematic shifts. Note that Figure 6-4 also

shows that the measured transition frequency has no noticeable correlation with the

temperature oscillation.

4.2.3 Stabilizing probe beam intensity

The probe beam has high intensities to drive the narrow clock transitions. The strong

field can, however, off-resonantly drive other transitions and shift the energies of

associated states. If one of those states is involved in a clock transition as well, it will

result in a systematic shift in the frequency measurement for the clock transition (i.e.

probe-induced AC Stark shift; see Section 7.2.1). The light shift has been especially

an issue for the extremely narrow 𝛾: 467 nm transition which requires a high intensity

of the probe beam [121, 122, 123] (see Table B.1). While the absolute size of the shifts

is largely in common across the different isotopes, the fluctuation of the probe beam’s

intensity during the ≲2 hr isotope switching period (see Section 5.3.2) will introduce

a differential systematic shift. The long-term drift in the measured frequency indeed

has been measured in the previous measurement for the 𝛾: 467 nm transition [4] [see

Fig. 4-6(a)], and the intensity instability of the probe was suspected as the primary

contribution.

The stability of the probe beam intensity has been improved in three different

methods: actively stabilizing the power of the probe beam, precisely aligning the

center of the beam to an ion, and increasing the beam waist. The details are described

in the following subsections.

After the upgrades, the long-term drift in the measured frequency over time has

been indeed reduced in new experiments as shown in Fig. 4-6.

In the future, narrowing the probe beam’s linewidth will reduce the required
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Figure 4-7: Setup for active stabilization of probe beam power. BS refers to beam
sampler, AOM to acousto-optic modulator, Set V to set voltage, and L1 and L2 for
focusing lenses. See the caption in Fig. 4-2 for other notations and symbols. The set
voltage is subtracted from the photodiode signal. Amplifiers used in the circuit are
omitted.

beam power to drive the transition (see Section 17.1) and thus the absolute size of

the light shift (Section 7.2.1).

4.2.3.1 Active stabilization of probe beam power

The probe beam power is actively stabilized as shown in Fig. 4-7 as the first step

of the intensity stabilization. An AOM is used to control the beam power; the

amplitude of the AOM drive signal (see Section 4.1.5.1) determines the power of

the deflected beams. A beam sampler picks off ∼1% of the probe beam (BSF10-A,

Thorlabs; p-polarization at 45° incident angle) after the AOM and before passing

through the chamber. The power of the sampled beam is measured by a photodiode

module (PDA100A2, Thorlabs). A set voltage is subtracted from the photodiode

signal to set the beam power during the stabilization. The error signal goes through

the integrator gain and subsequently to the IF port of a mixer (ZFM-2-S+, Mini-

Circuits). It controls the amplitude of the AOM drive output from the RF port of

the mixer, for a given input drive to the LO port. The range of the voltages to the
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IF port is limited to 0–2V so that it linearly controls the drive amplitude and also

maintains the polarity of the control.

The drift in the probe beam’s polarization at the beam sampler from p-polarization

would cause the increase in the pick-off ratio from ∼1%. The polarization drift is

prevented by placing a polarizer (GL10-A, Thorlabs).

Optical tubes (1 in diameter and total 2 in length) and two irises, one at the end

of the tubes and another in the middle, are attached to the photodiode module to

block the ambient light. A lens with 𝑓 = 5 cm focal length is also placed at the

beginning of the optical tubes which focuses the beam at the iris in the middle, so

that the iris hole can be as small as possible. This configuration has provided ≳50 dB

suppression of the ambient light.

Considering, e.g., drifts in or temperature dependence of the pick-off ratio, the

photodiode reading, and operational amplifiers (op amps) for the set voltage sub-

traction and the integration gain, the drift in the probe beam power is conservatively

bound to 0.1%.

4.2.3.2 Probe beam alignment monitor

Precise alignment of the probe beam’s center to an ion is also crucial. If the ion is

placed at the side of the beam, the intensity that the ion sees would be sensitive to a

small displacement of the beam or drift in the ion trap’s center (see Section 4.2.3.4).

Furthermore, the misalignment would not allow driving the transition with the peak

intensity of the beam.

Due to the limited accuracy of the earlier alignment method [4] (see Section 5.3.3),

a direct method to align the beam has been developed: scanning transition proba-

bilities through a clock transition over different beam alignments. However, precise

and reproducible control of the beam angle better than 0.1 µrad is required for the

alignment scan,15 which would be difficult to achieve by the mechanical precision of

tilting mirrors. In this work, to realize such alignment control, the position of the

beam on the other side of the vacuum chamber has been directly measured using a
15Focal waist O(10) um over O(10) cm-long beam path from tilting mirrors to an ion.
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Figure 4-8: Probe beam alignment monitor and 369 nm optical pump beam polar-
ization control setup. L1–4 refer to focusing lenses, LC to liquid crystal, QW to
quarter-wave plate, (P)BS to (polarizing) beam splitter, and Quad PD to quadrant
photodiode module. The separation of optical pump and probe beams is exagger-
ated; the beams are almost overlapped in practice. A shutter before PBS closes to
protect the tip of fiber for the optical pump beam while strong probe beam is on.

84



quadrant photodiode as follows.

Figure 4-8 shows the setup for the probe beam alignment monitoring. A 50:50

beam splitter (BSW26, Thorlabs) picks off the probe beam after the beam passes

through the vacuum chamber. The polarization of the beam changes by a liquid

crystal and quarter-wave plate (see Section 4.2.5) and change the exact beam splitting

ratio which, however, does not affect the position measurement of the beam.

A quadrant photodiode module (PDQ80A, Thorlabs) measures the power of the

probe beam split by the quadrant areas of the photodiode. The module provides

three signals: the sum of all quadrants’ readings (SUM ), the difference in the sum

of the two left quadrants and the sum of the right quadrants (X ), and the difference

in top and bottom readings (Y ). The position in the 𝑥 and 𝑦 directions of the

photodiode16 can be obtained by normalizing X and Y signal by SUM. The beam

waist at the photodiode was measured to be 360µm for 467 nm probe beam.

A steering mirror in Fig. 4-8 initially aligns the beam to the origin of the quadrants

for the maximum beam position sensitivity. The optical tubes (1 in diameter and

total 2 in length) with an iris in the middle are attached to the quadrant photodiode

to block the ambient light.

The procedure of aligning the probe beam to an ion is described in Section 5.3.3.

The position of the probe beam is also recorded while the main experiments of IS

measurement are running, to check if there is any correlation between the measured

transition frequency and the beam position (see Fig. 6-4 and Section 7.2.1.2).

4.2.3.3 Increased beam waist

Thanks to the precise alignment (see Section 4.2.3.2) and longer pulse time (due to

faster 2𝐹7/2-state repumping; see Sections 4.2.6 and 5.4) of the probe beam, 𝛾: 467 nm

transition could be driven by a 4-fold weak probe beam compared to the previous

experiments [4] (see Section 5.3.3). It enabled increasing the focal waist of the beam

by twice instead of reducing the beam power, from 15 µm [4] to 30 µm.17. Due to the
16Aligned to ±𝑥 and ±𝑧 in the lab frame defined in Fig. 4-1.
17Increasing the waist further might start to bring issues from the excessive scattering of the

probe beam from the surface of the trap chip (the trapping site is 135 µm away from the surface
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Figure 4-9: Position of a single ion in the plane of the trap as a function of time:
along the trap axis (black; 𝑧 direction), and perpendicular to the trap axis and
parallel to the plane of the trap (red; 𝑥 direction) (see Fig. 4-1 for the direction
assignments). The ion was interrogated with the same laser pulse sequence used
during the IS spectroscopy experiment for 𝛾: 467 nm clock transition [see Fig. 5-
3(c)], but the probe laser was far-detuned from the resonance.

increased waist, the probe beam intensity became less sensitive to the drift in the

relative position of the beam and an ion (see 4.2.3.4).

4.2.3.4 Ion trap center drift

While the probe’s power and alignment have been improved, reducing the ion’s mo-

tion due to the drifts of the trap’s center is not straightforward. The drift was mea-

sured directly via the EMCCD camera image (see Section 4.1.3) to, e.g., estimate

the resulting change in the probe beam intensity.

Figure 4.2.3.4 shows the measured drift of an ion in the trap. The pulse sequence

for the IS spectroscopy experiments for 𝛾: 467 nm clock transition [see Fig. 5-3(c)]

was running during the measurement to reproduce the environment for the ion (e.g.,

trap surface charging from laser beam scattering), except that the probe beam was

far-detuned not to drive the clock transitions. The displacement of the trap center

; see Section 4.1.1), such as systematic shifts from the surface charge (Chapter 7) and potential
damages on the chip.
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was shown to be ≲2 µm in the measurement. The decreased ion displacement along

the radial direction of the trap (red line) presumably reflected the tighter confinement

along the direction (see Table 4.1).

The measurement has been also useful to estimate other systematic shifts as in

7.1.3 and 7.5. Note, however, that the camera could not measure the ion’s mo-

tion along the direction perpendicular to the trap chip, leaving uncertainty in the

systematic shift estimation based on the trap center displacement.

4.2.4 Active stabilization of transmission power through ref-

erence cavity

Another setup in the research group has experienced transmission power-dependent

frequency shifts in cavity modes, presumably due to the thermalization of the mirror

coatings by a high-power beam built inside the cavity. The effect was measured to

be ∼50Hz per 1 µW of the transmitted power (out of the cavity) for the cavity with

the finesse of ℱ = 𝑂(10, 000). It could be a significant source of systematic shift if

it is valid for the setup in this thesis as well, as the cavity finesse is ℱ = 𝑂(50, 000)

for the clock transitions, and the transmission power had been typically ∼100µW,

which would result in ∼5 kHz absolute shift. As the cavity input beam power was

not stabilized, if the power drifted by 5% between the measurements for different

isotopes (see Section 5.3.2), ∼250Hz differential shift could occur.

To investigate the effect on the cavity in this work, the transition frequencies of

clock transitions from a cavity mode have been measured for different cavity trans-

mission powers, as shown in Fig. 4-10. The measurement procedure was essentially

the same for the IS measurement for each clock transition in Chapter 5, except that

the cavity transmission power was switched during the measurement, instead of the

isotope.

Slightly nonzero transmission power-dependent shifts in cavity mode frequencies

were measured as results. However, the rate of the shift per transmission power was

much lower than the previously reported ∼50Hz/µW for another cavity. Further-
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Figure 4-10: Measured transition frequency offset by a cavity mode (Section 4.1.5.1)
vs time for (a) 𝛼: 411 nm and (b) 𝛾: 467 nm clock transitions. The transmission
power-dependent shifts are obtained in essentially the same way described in Sec-
tion 6.4.
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Table 4.2: Measured shifts in (frequency-doubled) probe beams’ frequencies from
different reference cavity transmission powers. Bound on the shift rates is deter-
mined from 95% confidence intervals measured for 𝛼: 411 nm clock transition (see
Section 4.2.4).

𝛼: 411 nm 𝛾: 467 nm
Low High Low High

Power [µW] 18 47 29 42
Shift [kHz] -0.26(13) +1.11(85)
Rate [Hz/µW] -9.0(4.5) 85(65)
Bound [Hz/µW] -18 to 0

more, the measured values were consistent with zero within their 2𝜎 uncertainties,

and the shift rate had opposite signs for the different transitions, which is in fact

unlikely. Therefore, it has been concluded that the shifts in cavity modes due to

the beam power were too small to be measured with the precision of the experi-

ments, and thus an upper bound on the rate from 95% confidence interval for more

accurately measured 𝛼: 411 nm transition has been used to calculate the associated

systematic shifts (see Section 7.9.3.2). It has also been assumed that there is no

much wavelength dependence between 822–934 nm (the wavelengths of probe beams

for 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm transitions before frequency-doubled; see

Section 4.1.5.1).

To suppress the effect of the beam power, the transmitted beam power through

the reference cavity has been stabilized in a very similar way to the active stabilization

of the probe beam power described in Section 4.2.3.1: using an AOM18 and frequency

mixer to control the beam power, measuring the transmitted beam power with a

sensitive photodiode module (C10439-02, Hamamatsu), and engaging an integration

gain to stabilize the power. The residual long-term drift in the actively stabilized

transmission power is conservatively bound to 0.1% as in Section 4.2.3.1.
18The zeroth-order (i.e., not deflected) beam from the AOM has been used in this case, as a

frequency control is not desired.
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4.2.5 Electrical control of 369 nm optical pump polarization

The initial state of an Yb+ ion should be prepared in the different Zeeman levels𝑚𝐽 =

±1
2

of the 2𝑆1/2 ground state to drive two different symmetric Zeeman transitions

in each optical clock transition (see Section 5.3.4). The choice of the Zeeman levels

is done by choosing the polarization of the 369 nm optical pump beam between �̂�+

(for 𝑚𝐽 = +1
2
) and �̂�− (for 𝑚𝐽 = −1

2
). In the earlier works [4], the control of

the polarization was done by manually rotating a quarter-wave plate (QWP) that

the optical pump beam passes through before the ion. Obviously, the human control

provides a limited number, speed, and consistency of the control. Therefore, electrical

control of the polarization has been introduced for this thesis work by using a liquid

crystal (LC) variable retarder.

It is basically a thin layer of birefringent material (LC), just like a wave plate, that,

however, provides variable differences in the refractive indices along the ordinary and

extraordinary axes (i.e., retardation). The LC retarder is controlled by a square-wave

AC voltage of which amplitude controls the size of the retardation.

Figure 4-8 illustrates the setup for the polarization control. The LC retarder

used (LCC1413-A, Thorlabs) provides a moderately fast control (≲40ms)19 and the

retardance of nearly -0.05 to 1.2 wavelengths 𝜆. The circular polarizations �̂�± could be

achieved by setting the LC retarder to have 1
4
𝜆 or 3

4
𝜆 retardances for the input beam

with linear polarization. However, to avoid the steep dependence of retardance to

the control voltage at large retardances, another quarter-wave plate has been placed

to provide −1
4
𝜆 retardance. The total retardance, then, has been controlled between

±1
4
𝜆 retardances by letting the LC retarder has zero or +1

2
𝜆 retardances.

The electrical control allows automated, fast, and frequent switching of the po-

larization between �̂�+ and �̂�−. It not only enables fully automated experiments for a

clock transition and isotope (see Chapter 5) but also provides a qualitative improve-

ment in the transition frequency measurement: simultaneous scanning of different

Zeeman transitions described in Section 5.3.4.
1940ms rise time and 0.3ms fall time at 25 °C and faster responses at higher temperature, ac-

cording to the data sheet.
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There are drawbacks of using LC retarders: their performance is temperature-

dependent and also subject to long-term drift due to a residual DC component in the

AC drive. An alternative way to control the polarization is to divide the beam into

two different paths, place a QWP and an optical shutter in each path, recombine the

beams to a common path toward the ion, and choose one of the beams by the optical

shutters at each time. Zero-order waveplates typically have much better temperature

stability and no long-term drift in their performances. Faster polarization controls

can also be achieved by using fast optical shutters (below few ms [124]).

4.2.6 760 nm 2𝐹7/2 state repumper

In earlier works [4], 2𝐹7/2 → 1𝐷[5/2]5/2 transition at 638 nm had been used to repump
2𝐹7/2 state in Yb+ ions (see Fig. 3-1). The repumping through this transition is slow;

the characteristic time is around 100ms.20 It brought a significant overhead in the

pulse sequence for 𝛼: 411 nm transition (see Section 5.5) of which excited state decays

to the 2𝐹7/2 state with 83% chances (see Fig. 3-1). The pulse time for the 638 nm

repumper was also comparable to the probe beam’s pulse time in the pulse sequence

for 𝛾: 467 nm transition (Section 5.4).

On the other hand, 2𝐹7/2 → 1𝐷[3/2]3/2 transition at 760 nm provides at least 10

times faster repumping than the 638 nm transition [122, 125, 126, 127, 128, 129]. The
1𝐷[3/2]3/2 excited state has 28.6 ns lifetime [130] and directly decays to the ground

state (see Fig. 3-1 and Table B.1). The time that takes for the repumping has been

measured to be ≲10ms in this experiment, with ∼7mW power of a focused beam

with 100µm waist, which is consistent with Refs. [122, 125] (see Section 6.6 for the

measurement procedure).

By replacing the 2𝐹7/2-state repumper from the 638 nm to the 760 nm beam, at

least 4-fold fast experiments (i.e., 4 times many data from the experiments during a
20Note that the 1𝐷[5/2]5/2 state does not decay directly to the ground state but decays to the

2𝐷3/2 state which needs to be repumped again by the 935 nm repumper (see Fig. 3-1 and Table B.1).
The excited state could also decay into 2𝐷5/2 state which likely decays back to the 2𝐹7/2 state.
The latter decay takes 7.2ms, and then it has to be repumped again.
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given period) for 𝛼: 411 nm transition21 and a nearly twice longer probe pulse time

for 𝛾: 467 nm transition have been achieved.

Table A.4 lists the measured frequencies and ISs for the 760 nm transition for all

the stable even-𝐴 isotopes. The values are either the first reports in literature [8]

or with the highest precision known so far. The procedure of the measurement is

described in Section 6.6.

4.2.7 Monitoring experimental parameters

During the later experiments for 𝛾: 467 nm clock transition, various experimental

parameters, conceivably affect the measurement precision, have been monitored as

shown in Fig. 6-4. The correlation of each parameter with the measured transition

frequencies has been investigated, and no significant correlation has been so far

observed with the current precision of the experiments.

214 times faster pulse sequence and higher probability of successful repumping (i.e., higher quan-
tum opportunity QO; see Section 5.4).
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Chapter 5

Isotope-shift measurement protocol

The scheme and procedure of IS measurements will be described in this chapter. As

the preliminary works and the detailed experimental procedure have been elaborated

in Ref. [4] in a step-by-step manner, this thesis will present them rather briefly, and

focus on the changes that have been made after the work in Ref. [4] was estab-

lished. In short, one ion of an isotope was loaded in the ion trap at a time, and the

ion’s state was prepared in a Zeeman sublevel of the ion’s ground state. An optical

clock transition was driven repeatedly while scanning a probe beam’s frequency to

achieve a spectrum, from which the resonant frequency can be obtained. The reso-

nant frequencies of two symmetrically red and blue-detuned Zeeman transitions were

measured and averaged as the measure of the zero-magnetic-field resonant frequency

of the clock transition. Finally, the frequencies for two different isotopes were alter-

nately measured by replacing the trapped ion with an ion of another isotope, and

the difference in the measured transition frequencies was taken as the IS between the

isotopes.

5.1 Electron-shelving state readout

The first thing to consider is what is measured for spectroscopy. Due to slow re-

sponses of the narrow transitions, measuring fluorescence or absorption is inefficient

or practically impossible. In this work, the states of atoms after driving transitions of
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interest are measured. In particular, by driving the fast 369 nm cooling transition (see

Fig. 3-1) and measuring whether the ion scatters the light or not (see Section 4.1.3),

it can be quickly determined whether an ion is in the ground state 2𝑆1/2 or not. As

all the optical clock transitions in Yb+ start from the ground state, reading for the
2𝑆1/2 state is sufficient to check if the transitions were made. This readout scheme is

valid also because of the long lifetimes of the excited states of the transitions. Once

the electronic state is excited to a metastable state, the population is shelved in the

state while the fast 2𝑆1/2-state readout is performed (i.e., electron-shelving scheme

[131]).

5.2 Types of spectroscopy

There are two types of spectroscopy used in this work.

Ramsey interferometry [132, 133] has been used for 𝛼: 411 nm and 𝛽: 436 nm

transitions as the transitions could be driven coherently; the total interrogation time

has been ∼30 µs while the decoherence time has been ∼100µs (see Fig. 6-5).

For 𝛾: 467 nm transition, transition rate has scanned over probe frequency instead,

as the Rabi period was much longer (>10ms at the probe intensity used in this work

[121]) than the decoherence time.

In retrospect, there was not much benefit to using Ramsey interferometry com-

pared to Rabi spectroscopy [133, 134]. Using Rabi spectroscopy might be preferred

for future measurements as it does not introduce excessive phase chirp, has less sen-

sitivity to laser frequency noise [135], and provides more suppression to recoil shift

(see Section 7.1.1).

5.3 General procedure

5.3.1 Setup initialization

Before starting each cycle of IS measurement experiments for a pair of isotopes, all

the necessary devices are powered up and the lasers are turned on for at least 24

94



hours to achieve the temperature stabilization and test the stability of the system.

It is also checked whether the sufficient power and the desired frequencies for both

the isotopes can be achieved for each laser.1 In particular, external cavity diode lasers

(ECDLs) are subject to drift in their frequency modes. The angle of the grating that

serves as the external cavity is adjusted when the desired laser frequency can not be

achieved (or is unstable) by adjusting the diode current or the voltage applied to a

piezoelectric module for adjusting the cavity length.

Micromotion compensation of ions is also achieved at this stage [4].

5.3.2 Isotope-selective ion loading

The IS measurements are performed on individual cold trapped 𝐴Yb+ ions with zero

nuclear spin (𝐴 ∈ {168, 170, 172, 174, 176}). One ion is loaded, isotope-selectively

(see Section 4.1.2), at a time (i.e., single-ion spectroscopy). The beams for cooling

and repumping are always on while the main experiments are not running to keep

the ion in the trap; the ion never escapes from the trap in practice.

During the course of the measurement for one isotope pair, one isotope is in-

terrogated for 1–2 hr and replaced by another isotope for the same measurement

(see Figs. 6-4, 6-8, 6-12). The isotope switching is repeated so that each isotope is

measured 3–4 times.

5.3.3 Aligning probe beam to an ion

When the system and an ion are ready for an experiment, the probe beam is aligned

to the trapped ion, only at the beginning of the experiment (i.e., before measuring

spectra of the first isotope). In the earlier measurements, it is done by using 369 nm

align beam, co-aligned with the probe beam [4]: the 369 nm align beam is aligned

to the ion by measuring the ion’s fluorescence and steering common mirrors for the

two beams, and by checking if the probe beam can drive the clock transitions (see

the following sections for measuring the clock transitions). It has been an efficient
1The frequency is measured by a wavemeter (HighFinesse/Ångstrom WS/7) (see Section 4.2.6).
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Figure 5-1: Area of a 𝛾: 467 nm transition peak (see Fig. 6-3) vs quadrant photodiode
(Quad PD) reading in the 𝑥 and 𝑦 directions of the Quad PD (corresponding to
horizontal and vertical alignments of the probe beam).

method for the initial alignment of the probe beam. However, despite the time-

consuming procedure of co-aligning, the accuracy of the overlap of two beams at

their focuses has been questioned. Therefore, a direct approach for the alignment

has been developed for later experiments for 𝛾: 467 nm transition: scanning the probe

beam’s alignment and measuring the rate of the clock transition.

Figure 5-1 shows the transition rate vs probe beam’s horizontal and vertical

alignments. The beam is tilted by a steering mirror placed before the vacuum cham-

ber, and a quadrant photodiode measures the change in the beam’s position at the

opposite side of the chamber (see Section 4.2.3.2). It enables precise and, more im-

portantly, reproducible scan of the beam alignment. After the scans in each direction,

the beam can be aligned to the quadrant photodiode readings that gave the max-

imum transition rate. This process has taken about an hour to achieve a reliable
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alignment.

Indeed, the transition rate for a given optical power of the probe beam has been

enhanced by at least factor of 4 after the direct and precise alignment.2

5.3.4 Selection of Zeeman transitions

Out of numerous possible transitions between Zeeman sublevels in Fig. 5-2, two

transitions that are symmetrically detuned from the zero-field transition, labeled as

𝑅 and 𝐵 transitions, are chosen for the frequency measurements. Magnetic field of

∼1.1G is applied which gives 0.6–2.5MHz separation between the Zeeman transitions

depending on the clock transitions [see, Figs. 6-4(b), 6-8(b), and 6-12(b)]. The zero-

field transition frequencies are then determined by taking the mean of the measured

frequencies of the two 𝑅 and 𝐵 Zeeman transitions.

The 𝑅 and 𝐵 transitions necessarily start from the different Zeeman levels of

the 2𝑆1/2 ground state 𝑚𝐽 = ±1
2
. Therefore, the initial state is prepared to be

the corresponding ground-state Zeeman level via a 369 nm optical pump beam (see

Section 4.1.4 and Fig. 5-3).

In the earlier works, the 𝛼: 411 nm and 𝛽: 436 nm clock transitions had been

scanned for one of 𝑅 and 𝐵 transitions and then for another [4], in every ∼5min (see

Figs. 6-7, 6-8, and 6-12). The drift in the magnetic field3 between the measurement

for the 𝑅 and 𝐵 transitions can induce a systematic shift in the zero-field transi-

tion frequency obtained above. In the later measurement for 𝛾: 467 nm transition in

this thesis work, the corresponding 𝑅 and 𝐵 transitions have been measured nearly

simultaneously, with the help of the electrical control of the optical pump beam’s

polarization (see Section 4.2.5). The procedure is as follows: for each frequency

step in a scan, one of the 𝑅 and 𝐵 transitions is first measured. The optical pump

polarization is switched after the measurement, and the probe beam’s frequency is

detuned by a fixed amount Δ𝑓Master (as close to the separation of the two transitions
2Similar probe beam powers 𝑃 = 150→ 160mW, twice wide focal waist 𝑤 = 15→ 30 µm, and

nearly twice long pulse time 𝜏 = 200 → 390ms (see Ref. [4], Tables B.1, and 5.1) gave more than
twice of the excitation probability 𝑃𝑒 ∼ 0.1→≳ 0.2 (see Fig. 6-3) through the 𝛾 transition.

3Due to, for instance, a local subway station and elevator.
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Figure 5-2: Zeeman structures of (a) 𝛼: 411 nm, (b) 𝛽: 436 nm, and (c) 𝛾: 467 nm
clock transitions. A pair of transitions that are red (𝑅) and blue (𝐵)-detuned from
the center transition frequency (i.e., the frequency for zero magnetic field) by the
same amount are measured and averaged for each clock transition. The 𝑅 and 𝐵
transitions are chosen to be measured, while 𝑅′ and 𝐵′ transitions are off-resonantly
driven and induce light shifts (see Section 7.2.1.1).
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as possible) by switching the AOM drive frequency (i.e., FineFrequency; see Sec-

tion 4.1.5.1) at the same time to address to another transition. After a short pulse

time (500ms) for the polarization and probe frequency to settle down, the second

transition is measured at the switched probe frequency. After the measurement, the

polarization and probe frequency are switched back to the first values, and then the

scan moves on to the next frequency scan step. Through this process, the two Zee-

man transitions in different frequency ranges can be scanned nearly at the same time,

and the temporal separation between the two transitions (i.e., the time that a scan

step for each Zeeman transition takes) has been reduced to ∼5 s for the 𝛾: 467 nm

transition.

5.3.5 Finding transitions and testing scans

The exact locations of the symmetric Zeeman transitions (i.e. the values of

MasterFrequency in the system here; see Section 4.1.5.1) are pinpointed by ini-

tial scans (see Section 5.3.6 for the scan procedure). The ranges of the initial scans

are determined from the previously found MasterFrequencys for the transitions [4].

The performance of the 369 nm optical pump beam is also tested by measuring the

increased or suppressed peak heights (i.e., excitation probabilities; see Sections 5.3.7,

6.1.1, and 6.3) for the Zeeman transitions depending on the polarization of the pump

beam [see Fig. 5-4(b)].

For 𝛼: 411 nm and 𝛽: 436 nm transitions with the Ramsey interferometry (see

Section 5.2), the 𝜋
2
-pulse time 𝜏𝜋/2 for the probe beam is determined by scanning

the excitation probability 𝑃𝑒 over different pulse times 𝜏 , as shown in Fig. 6-5. The

measured Rabi oscillation is fitted by Eqs. (6.4) and (6.5) to obtain the value of 𝜏𝜋/2.

The exact determination of the Rabi frequency 𝜔𝑅 (and thus 𝜏𝜋/2) is not required as

it is one of the fit parameters in Eq. (6.5).
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5.3.6 Scanning spectrum over probe frequency

At this point, the measurement for a Zeeman transition is ready. The excitation

probability 𝑃𝑒 of the transition (measured as in Section 5.3.7) is scanned over the

probe frequency to obtain the Ramsey fringe, for 𝛼: 411 nm and 𝛽: 436 nm transi-

tions (see Figs. 6-6 and 6-11), or the transition peak for 𝛾: 467 nm transition 6-3.

The scanned 𝑃𝑒 vs 𝑓Master are either fitted or statistically averaged to obtain the

center of the spectrum (i.e., resonant MasterFrequency of the Zeeman transition),

as described in Eqs. (6.2), (6.7), and (6.8).

5.3.7 Measuring transition probability and pulse sequence

This part is the heart of the experiment: driving the optical clock transitions and

measuring the excitation probabilities 𝑃𝑒 through the transitions. All the beams

in the system follow programmed pulse sequences to be turned on and off at the

desired timings, which consist of three different parts: to prepare and check the

initial state of the ion, to drive a clock transition in a way to perform a desired type

of spectroscopy, and to measure the state of the ion after the transition is driven.

The beams are controlled mainly by AOMs through signals generated by a field

programmable gate arrays (FPGA) module, with the aid of optical shutters in some

cases (see Section 5.4).

The 369 nm fluorescence scattering from the ion is measured through a photo-

multiplier tube (PMT) (see Fig. 4-1). The same FPGA module used for the pulse

generation also counts the number of pulse signals arrived from the PMT in a time-

resolved manner [4, 109]. It divides a period of pulse sequence into 100 different time

bins and counts the number of PMT pulses that arrived within each bin separately.

The expectation value of the PMT counts per bin is less than one in general (the du-

ration of the bins are 5 µs to 5ms depending on the clock transitions; see Table 5.1).

Nonetheless, the FPGA module accumulates the PMT counts in the same order of

bins over many different cycles until a computer for experimental control reads the

total counts in the bins, providing a time-resolved integration of fluorescence read-
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Table 5.1: Durations of segments in pulse sequences in Fig. 5-3.

𝛼: 411 nm 𝛽: 436 nmc 𝛾: 467 nm
[µs] [µs] [ms]

Repumping & cooling 1○ ∼35 195a 100 50
Pause 2○ 5 1
Optical pumping 3○ 10 1
Pause 4○ 5 7
Probe pulse time 𝜏 ∼10a 5a 390
Pulse separation 𝑇 10 10
Pause 5○ 5 1
Readout 6○ 14 759 100 50

Total 50 000b 500b d 500

a exact value adjusted to achieve 𝜋
2

probe pulses (see Sec-
tion 5.3.5).

b Note that there are two probe pulses.
c Approximated values used in Ref. [4]’s work.
d Consecutive sequences with the same total duration, for cali-

bration and data acquisition.

ing over many consecutive cycles. It enables the averaged spectroscopy described in

Section 5.6.

The cycle of the preparation, drive, and state readout is repeated many times

to obtain the statistics of the ion’s excitation through the clock transitions. In

particular, the excitation probability 𝑃𝑒 is given by the ratio of the number of times

that the ion is read to be in the excited state (i.e., being in the dark state for the

369 nm transition; see Section 5.1) to the number of total (successful) attempts.

The particular pulse sequence and the associated method of state readout and 𝑃𝑒

calculation for each clock transition are introduced in Sections 5.4, 5.5, and 5.6, and

summarized in Fig. 5-3 and Table 5.1.
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Figure 5-3: Pulse sequences for (a) 𝛼: 411 nm, (b) 𝛽: 436 nm, and (c) 𝛾: 467 nm spectroscopy. The sequences in (a) and (b)
are for Ramsey interferometry, while (c) is for transition-rate spectroscopy. The sequences in (a) and (c) describe single-shot
measurements (see Sections 5.4 and 6.1.1), while (b) describes integrated measurement (see Section 5.6 and 6.3). The durations
1○ – 6○, 𝜏 , and 𝑇 can be found in Table 5.1.
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5.3.8 Repeated procedures for isotope-shift measurement

A pulse sequence is repeated to measure the excitation probability 𝑃𝑒 of ion through a

clock transition for a given MasterFrequency (see Section 4.1.5.1) as in Section 5.3.7.

Such measurement is repeated for different MasterFrequency steps to obtain a de-

sired 𝑃𝑒 vs 𝑓Master spectrum (Section 5.3.6) and thus the resonant MasterFrequency

for a Zeeman transition. The 𝑃𝑒 for the different symmetric Zeeman transitions

are alternately measured in a single scan or in different scans (Section 5.3.4). The

resonant MasterFrequencys of the two Zeeman transitions are properly averaged

to obtain the center, zero-field MasterFrequency of the clock transition for an iso-

tope (Sections 6.1.2 and 6.2). The clock transition’s zero-field MasterFrequency is

repeatedly measured for one isotope at a time for ≲2 hr, and then for another by

trapping an ion of another isotope (Section 5.3.2). Finally, the measurements for

the different isotopes are alternately repeated over 8–16 hr or longer (see Figs. 6-4,6-

8, and 6-12), depending on the clock transitions, and the overall difference in the

measured zero-field MasterFrequencys for the two isotopes is given as the IS of the

isotope pair.

5.4 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) transition

Figure 5-3(c) shows the pulse sequence and the possible patterns of the time-resolved

369 nm fluorescence reading through the PMT for the 𝛾 transition, with the duration

of each time segment listed in Table 5.1. The sequence starts with the cooling and

repumping beams in segment 1○ to repump and cool the ion that might be driven

to the 2𝐹7/2 state or heated up during the remaining duration of the sequence in the

last cycle. The 369 nm cooling beam is replaced by the optical pump beam during

segment 3○ (1ms), after a 1ms pause time during segment 2○ (both beam are off).

After another 1ms pause time (segment 4○), the probe is on for 𝑇 = 390ms to drive

the clock transition. All the other beams are properly blocked (see below paragraphs)

during the probe beam is on to avoid light shifts from the beams (see Section 7.2.2).

After the last 1ms pause time (segment 5○), all the non-probe beams except the
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760 nm 2𝐹7/2-state repumper are turned on to read the ion’s state during segment

6○.

The 𝛾 clock transition excites the ion to the extremely long-lived 2𝐹7/2 state

(see Fig. 3-1 and Table B.1). Due to the extremely narrow linewidth, a long probe

pulse time (chosen to be 390ms here) is necessary to excite the ion with a visible

probability 𝑃𝑒. The total period of the pulse sequence, 500ms, was long enough

that the ion’s state after each cycle can be measured (i.e., single-shot spectroscopy)

without losing the efficiency of the measurement cycle; reading out the ion state

with high fidelity by collecting enough number of scattered photons takes ≳10ms in

the experimental setup used here (see Section 6-2). In each pulse sequence period,

the 369 nm fluorescence is measured during segment 1○ and 6○ to read quantum

opportunity (QO) and quantum jump (QJ), respectively. QO is the flag for successful

repumping of the ion from the 2𝐹7/2 state; QO is true (or there is QO) if the ion is in

the 2𝑆1/2 state, and false (or no QO) if it is not. It can be read by measuring if there

is fluorescence from the ion; true QO if the ion is bright and false QO if the ion is in

a dark state. The definition and reading of QJ are similar. If the ion is dark after

the optical transition is driven, it implies the ion is excited and thus QJ is true (i.e.,

a quantum jump is made). QJ is false if the ion is bright after the clock transition

is driven. Among many cycles of the sequence for the same Zeeman transition and

MasterFrequency value, the cycle with false QO is dropped from the data set for an

obvious reason. The total number 𝑁QJ of cycles with true QJ out of the 𝑁QO remaining

cycles, all with true QO, are counted and divided by 𝑁QO to obtain 𝑃𝑒(𝑓Master):

𝑃𝑒(𝑓Master) =
𝑁QJ

𝑁QO
. (5.1)

In the relatively later experiments for the 𝛾: 467 nm transition in this work, the

sequence ran until a fixed number of 𝑁QO were obtained before moving onto the next

MasterFrequency step (see Section 5.3.6).

During the long probe pulse time, any leakage beams through the AOMs or

stray lights can compromise the measurements. In particular, 369 nm light has high
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Figure 5-4: Scanned transition peak for 𝐵 Zeeman transition of 𝛾: 467 nm clock
transition [see Fig. 5-2(c)] (a) before and (b) after 369 nm beams leaked through
AOMs were blocked by shutters (see Section 5.4). In (a), the same peak was scanned
twice for each of 𝜎+ (red) or 𝜎− (blue) circular polarizations of 369 nm optical pump
beam (see Section 5.3.4), shown by different symbols and line styles. In (b), the
peak is scanned for �̂�+, �̂�−, and linear (black) [= (�̂�++ 𝑒𝑖𝜑�̂�−)/

√
2 with an arbitrary

relative phase 𝜑] polarizations.

efficiency for pumping the 2𝑆1/2 Zeeman states back to have 50:50% population,

only by the 369 nm cooling beam leaked through the AOM while the AOM is not

driven. To block the AOM leakage beams, optical shutters have been placed for

369 nm cooling and optical pump beams and controlled together with the beams.4

The timings of the shutter controls have been adjusted carefully to ensure the full use

or block of the beams, which is one of the main purposes of the pauses in segments

2○, 4○, and 6○. Laser safety black fabric has been also placed to block the stray

beams from the 369 nm laser system to the experimental chamber. Figures 5-4(a)

and (b) show the scans for a Zeeman transition before and after the optical shutters

and the fabric were placed, respectively. In this figure, 𝐵 Zeeman transition was

scanned [see Fig. 5-2(c)] which requires 𝑚𝐽 = +1
2

for the ion’s initial state and thus

�̂�+ polarization of the optical pump beam. Fig. (b) indeed shows clear contrasts

between the scanned excitation probabilities 𝑃𝑒 with linear, �̂�−, and �̂�+ polarizations,

while Fig. (a) does not.

There have been several upgrades for the later experiments for the 𝛾 transi-
4The shutter for the optical pump beam also prevents the fiber tip damage from the counter-

propagating probe beam (see Fig. 4-8).
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tions since the preliminary results were obtained in Ref. [4], described in Section 4.2

and earlier in this chapter. In summary, the probe beam power has been actively

stabilized (Section 4.2.3.1), the beam has been aligned precisely using a quadrant

photodiode (Section 5.3.3), the beam focal size has increased (Section 4.2.3.3) to

suppress the systematic effect from the drift in probe beam intensity that an ion

sees (Section 7.2.1), and the drift in the beam alignment has been recorded during

the experiments by the quadrant photodiode to check if there has been any excessive

drift or the correlation of the drift with the measured transition frequencies over time

[see Figs. 6-4(a,c)]. The new introduced 760 nm repumping beam, that replaces the

previous 638 nm repumper [4], has pumped the 2𝐹7/2 state at least 10 times faster

(≳ 100ms →≲ 10ms characteristic time) (Section 4.2.6). It has enabled the twice

longer probe beam (200 → 390ms) in the pulse sequence cycles of the same total

duration, increasing the efficiency of the measurements effectively twice.

5.5 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) transition

Figure 5-3(a) shows the pulse sequence for the 𝛼 transition. This transition excites

the ion to 2𝐷5/2 states, which decays more likely to the extremely long-lived 2𝐹7/2

state (83% branching ratio) than back to the 2𝑆1/2 ground state, in 7.2ms (see

Fig. 3-1 and Table B.1). Therefore, the duration of a pulse sequence cycle is limited

by the 7.2ms decay time and ≲10ms 2𝐹7/2-state repumping by the 760 nm beam

(see Section 4.2.6). The total period of the pulse sequence 50ms is long enough to

perform single-shot spectroscopy as in Section 5.4.

Naturally, the pulse sequence and state readout scheme are similar to the 𝛾

transition, except for the overall durations of the segments and, more importantly, the

two 𝜏 ∼ 10 µs (near-)𝜋
2

probe pulses separated by 𝑇 = 10ms to perform the Ramsey

interferometry. The pulse time 𝜏 is found in the initial stage of the experiment (see

Section 5.3.5).

Replacing the 638 nm 2𝐹7/2-state repumping beam to the 760 nm repumper (see

Section 4.2.6) has more significant effect for the 𝛼 transition than the 𝛾 transition
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described in Section 5.4. The ≳100ms characteristic repumping time of 638 nm dom-

inated the total period of the corresponding pulse sequence cycle for the 𝛼 transition

[4]. By achieving ≲10ms of repumping time with the 760 nm repumper, 4 times

faster cycle has been achieved (200ms→ 50ms). Together with the active stabiliza-

tion of RAM (in Section 4.2.1), the new measurements have demonstrated ∼100Hz

precision of the IS measurement over 1 hr [see Fig. 4-10; it is not for measuring ISs

but essentially identical in terms of the form and analysis of the data]. Given the

suppressed long-term systematic drift in the system since the earlier experiments, a

naïve projection would give ≲30Hz for the measurement over ≥9 hr, which would be

an order-of-magnitude improvement in the precision from the first-round measure-

ments (see Table A.1).

Due to the short duration of driving the clock transition (total ∼30 µs), no optical

shutter has been placed to date. However, it would be worth sparing a few ms5 for

the shutters to block the 369 nm beams while the clock transition is being driven, to

prevent the 1.3 kHz absolute light shift from the leakage beams through the AOMs

(see Section 7.2.2).

Note that, however, no IS measurement has been made with such upgrades yet,

and the values of the measure ISs in Table A.1 are from the first-round experiments

[4, 5] performed before any upgrades in Section 4.2 were established or simultaneous

measurements of Zeeman transitions in Section 5.3.4 was employed.

5.6 𝛽: 2𝑆1/2 → 2𝐷3/2 (436 nm) transition

The pulse sequence for the 𝛽 transition is shown in Fig. 5-3(b). It is somewhat

different from the sequences for the 𝛼 and 𝛾 transitions, due to the difference in the

state readout methods.

The 𝛽 transition excites the ion to the 2𝐷3/2 states. However, when the ion is

in the 2𝑆1/2 state and the 369 nm cooling transition is driven to read the ion’s state,

the ion decays from 2𝑃1/2 (the excited state of 369 nm transition) to the 2𝐷3/2 states

5Considering the typical response time of optical shutters.
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in ∼50 µs (see Section 4.1.2). It is not enough time to collect enough number of

photons, which takes ≳10ms as mentioned in Section 5.4, before the ion falls in the
2𝐷3/2 and the previous state6 right after the clock state is driven becomes indistin-

guishable. Thanks to the time-resolved integration of the PMT counts over cycles

(see Section 5.3.7), the averaged ratio of the ion’s state after the transition is driven

(i.e., the excitation probability 𝑃𝑒) over many cycles (i.e., averaged spectroscopy)

can be measured as below.

One cycle of the pulse sequence consists of two subsequences, of the same period,

that are almost similar. The only difference is the existence of a probe pulse. In

the first subsequence, the probe is off and the transition is not driven, assuring that

the ion is in the 2𝑆1/2 ground state when the state readout begins in segment 6○.

By averaging many cycles, the averaged peak showing the scattered 369 nm photons

decaying in the ∼50 µs can be observed. On the other hand, when the probe drives

the ion to the excited state in the fraction of the cycles with the ratio of 𝑃𝑒, those

cycles do not add scattered photons in the peak, and the peak area is reduced in

the second state readout by a factor of 𝑃𝑒. Therefore, the first peak serves as a

calibration peak, of which area normalizes the second peak’s area to obtain the value

of 𝑃𝑒.7

As the repumping of 2𝐷3/2 state with the 935 nm beam is very quick (<5 µs; see

Section 4.1.2), and there is no ≳10ms overhead for the single-shot state readout

in Sections 5.4 and 5.5, the period of the pulse sequence can be as short as 500µs

(250µs per subsequence). This constitutes another reason for preferring the average

spectroscopy to the single-shot spectroscopy.

Just as in Section 5.5 for the 𝛼: 411 nm transition, a new experiment for IS
6An alternative view of this limitation is from the fact that the number of 369 nm photons that

the ion can scatter before decayed to the 2𝐷3/2 state (200 photons) is determined by the branching
ratio of the 935 nm decaying channel to the 2𝐷3/2 state, regardless of the scattering or decay rates
given by the rate of 369 nm transitions (i.e., the 369 nm beam’s intensity and detuning). Given the
limited numerical aperture (NA) of the imaging system in the experimental setup and quantum
efficiency of the PMT, the expectation value of the scattered photons detected by the system would
be less than one.

7See Footnote 6 for the reason why the peak area is a more appropriate measure than peak
height.
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spectroscopy after the upgrades have not been performed for the 𝛽 transition yet,

and the values reported in Table A.1 are from the earlier measurements published in

Ref. [5] carried out by Ian Counts, a former research team member and fellow PhD

student [4].
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Chapter 6

Results

In this chapter, the results of the isotope-shift (IS) spectroscopy experiments intro-

duced in Chapter 5 are presented, and the obtained data are analyzed to obtain the

experimental values of ISs.

The measured values of the ISs between different pairs of isotopes for 𝛼: 411 nm,

𝛽: 436 nm, and 𝛾: 467 nm optical clock transitions in Yb+ ions (see Fig. 3-1) are

summarized in Appendix A (see Table A.1). The updated values with reduced un-

certainties from the measured ISs between redundant isotope pairs (see Section 6.7)

were presented in the appendix as well (see Table A.2). The appendix also lists the

absolute frequencies of all the 5 stable even-𝐴 isotopes (𝐴 ∈ {168, 170, 172, 174, 176}),

in Table A.3, obtained from the absolute transitions frequency of a reference isotope

for each clock transition (see Section 6.5). The absolute frequencies and ISs for the

369 nm cooling, 935 nm 2𝐷3/2-state repumping, and 760 nm 2𝐹7/2-state repumping

transitions (see Fig. 3-1), of which measurements are described in Section 6.6, has

been also listed in Table A.4 in the appendix.
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Figure 6-1: Time-resolved PMT counts (see Section 5.3.7) in each of 100 time bins
during a pulse sequence cycle for 𝛾: 467 nm transition [see Fig. 5-3(c)]. (a) The aver-
aged PMT counts over 10 cycles for each MasterFrequency step (see Section 6.1.2).
Other figures shows the example PMT counts for [QO, QJ] = (b) [true, false], (c)
[true, true], and (d) [false,−] (see Section 5.4). Figure (e) shows a cycle in which
ion is repumped from 2𝐹7/2 state in the middle of repumping and cooling segment
(red vertical line). This kind of cycles might be determined to have false QOand
discarded from the data, depending on the total PMT counts collected after the ion
is repumped (i.e., [QO, QJ] = [ ? , false]).
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6.1 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) transition

6.1.1 Single-shot spectroscopy

Figure 6-1 shows selected PMT counts over different pulse sequence cycles in Fig. 5-

3(c), to describe the determination of QO and QJ in each cycle (see Section 5.4). If

the ion scatters the 369 nm cooling beam in the state readout segments 1○ or 6○,

measured by the PMT, it implies that the ion was in the 2𝑆1/2 ground state before

the readout (see Section 5.1). The ion is, then, ready for the experiment (segment

1○; true QO) or was not excited through the clock state (segment 6○; false QJ). On the

other hand, if no scattering is measured, the ion is not in the ground state, implying

the ion’s state is not properly prepared and the cycle is to be ignored (segment 1○;

false QO), or the ion made a transition to the excited state (segment 6○; true QJ)

given that the ion’s state was properly prepared (i.e., true QO) at the beginning of

the cycle.

Figure 6-1(b–e) shows different possible results of the readouts during a cycle.

Fig. (d) shows the case that there is no (sufficient) 369 nm scattering during the first

readout, and thus no QO, and this cycle is ignored. Fig. (b) and (c) show enough

PMT counts during the first segment and the control software determines that those

cycles have true QO. The two cycles have different results for the next readout: enough

counts (i.e, false QJ) for cycle (b) and not enough counts (i.e., true QJ) for cycle (c).

The case in Fig. (e) shows a tricky situation. The ion was in the excited state of the

clock transition at the beginning of the cycle, due to the true QJ in the last cycle

(or even before and failure of repumping until the last cycle). The ion is repumped,

then, in the middle of the segment 1○ for readout and repumping at the same time.

Then, depending on the timing that the repumping happened, the total PMT counts

after the repumping might not exceed the threshold counts for assigning true QO to

the cycle, and the cycle is dropped from the data set. It is obvious that this does not

harm the data quality (i.e., systematic shifts). The repumping and the QO readout

can be separated to avoid such a case, in principle, but doing so brings only a worse

time efficiency of the measurement. Note also that the second readout for QJ could
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Figure 6-2: Typical histograms of PMT counts during QO (blue) and QJ (read) (see
Section 5.4) readouts [segments 1○ and 6○; see Fig. 5-3(c)] per cycle, over a scan for
𝛾: 467 nm transition. The vertical dashed lines show the threshold PMT counts for
determination of QO and QJ flags’ states.

be either true or false for the cycle with the indefinite QO, and only the latter case is

shown in Fig. (e).

As implied in the earlier paragraphs, a threshold number of PMT counts have to

be set to determine the QO and QJ flags’ states. A proper choice of the number is

important when there is a dark signal : low, but nonzero PMT counts when the ion is

not scattering the 369 nm beam, which was observed consistently as in Fig. 6-1. To

determine the threshold, the distribution of the PMT counts per cycle across each

transition scan (see Section 6.1.2) was analyzed as shown in Fig. 6-2. The histograms

of PMT counts per cycle were obtained separately for the QO and QJ readouts, and

each histogram was fitted with the bimodal Poisson distribution:

𝑃 (PMT counts = 𝑘) = 𝑃d
𝑒−𝜆d𝜆𝑘d
𝑘!

+ 𝑃b⏟ ⏞ 
=1−𝑃d

𝑒−𝜆b𝜆𝑘b
𝑘!

(6.1)

where the subscript d and b denote dark and bright states of the ion (i.e., ion does not

or does scatter the 369 nm beam, respectively), 𝑃𝑑,𝑏 are the overall fractions of the

cases, across the scan, that the ion is in the dark or bright states during a readout,
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and 𝜆 is the parameter for the Poisson distribution for each of dark and bright ion’s

states. The values of 𝑃𝑑 (or 𝑃𝑏) and 𝜆𝑑,𝑏 are fit parameters in Eq. (6.1), and the

fitted 𝜆𝑑,𝑏 are used to determine the threshold counts for QO and QJ determination

as below.

For QO, a false negative reading [i.e., QO is determined to be false when it should

be true as the ion is in fact bright] is safe; the cycle is just dropped from the data set.

However, false positive reading is troublesome, as the following invalid QJ reading will

be included in the data set to calculate 𝑃𝑒 [Eq. (5.1)]. Therefore, relatively higher

PMT counts were chosen as the threshold to suppress the false positive reading

with over 4𝜎 significance as shown in Fig. 6-2. In contrast, the false positive and

false negative readings are equally undesirable for QJ, and the threshold counts that

equally minimize both the false readings were chosen (with ≈ 3.2𝜎 significance in

the figure).

6.1.2 Scanning Zeeman transitions

The 𝑅 and 𝐵 Zeeman transitions in Fig. 5-2(c) were simultaneously measured during

each scan as described in Section 5.3.4. Figure 6-3 shows the typical results from

the simultaneous scan. The probe frequency was bridged by 𝑓𝐵
Master − 𝑓𝑅

Master =

+2, 105 kHz (very close to the separation of the transition frequencies), and the two

frequencies were scanned with the same MasterFrequency (see Section 4.1.5.1) step

size.

After each scan, the resonant frequency of each Zeeman transition was obtained by

calculating the statistical mean of MasterFrequency steps weighted by the measured

excitation probabilities 𝑃𝑒:

𝑓𝑅,𝐵
Master =

∑︀
𝑓 𝑓 × 𝑃𝑅,𝐵

𝑒 (𝑓)∑︀
𝑓 𝑃

𝑅,𝐵
𝑒 (𝑓)

. (6.2)

From these values, the center, zero-field MasterFrequency of the clock transition
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Figure 6-3: Scanned 𝑅 (red) and 𝐵 (blue) Zeeman transitions of 𝛾: 467 nm clock
transition [see Fig. 5-2(c)] at the same time (see Section 5.3.4). A fixed amount of
frequency jumps Δ𝑓Master = 2, 105 kHz were made between measurements for the
two transitions. The vertical dashed lines show the resonant MasterFrequency (see
Section 4.1.5.1) of the two transitions obtained from the statistical means of the
MasterFrequency steps weighted by the measured 𝑃𝑒’s [see Eq. (6.2)].
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and the separation of the two Zeeman transitions were obtained for each scan:

𝑓Comm
Master =

𝑓𝑅
Master + 𝑓𝐵

Master

2
(6.3a)

𝑓Diff
Master = 𝑓𝐵

Master − 𝑓𝑅
Master (6.3b)

For 𝛾: 467 nm transition, the pulse sequence cycles were repeated until 10 cycles

with true QO were accumulated and the excitation probability 𝑃𝑒 was obtained (see

Section 5.4), for each MasterFrequency step in a scan. As a cycle had 500ms

period (see Table 5.1), 𝑃𝑒 for one MasterFrequency scan took ∼5 s. It could have

been slightly longer due to the unsuccessful repumping (i.e., no QO) dropped in the

data set. A 0.5 s pause time was given between Zeeman transitions to settle down the

369 nm optical pump polarization and probe frequency (see Section 5.3.4). Therefore,

the measurement for one MasterFrequency step took total ∼11 s. The size of the

scan step was 2 kHz. Considering ≲50MHz linewidth, 𝑃𝑒 was scanned over 100 kHz

range (i.e., 50 MasterFrequency steps). Therefore, ∼10min was taken per scan.

At the resonance of each Zeeman transition, 𝑃 ∼ 160mW probe power at the

focus with 𝑤 = 30 µs waist has been necessary to obtain sufficient excitation proba-

bility 𝑃𝑒 ≳ 0.2 (see Table B.1).

6.1.3 Measurements for isotope pair

Figure 6-4 shows the data taken across the IS measurement for a pair of isotopes.

The trapped ion of one isotope was switched to another in every ∼1.5 hr (i.e., 9–

10 consecutive transition scans per isotope segment). Fig. (a) and (b) show the

measured 𝑓Comm
Master and 𝑓Diff

Master, respectively, over time. Fig. (a) shows the linear drift

in 𝑓Comm
Master as expected (see Section 6.4). Various parameters were monitored and

recorded (Section 4.2.7) as shown in Fig. (c). The correlations between the nonlinear

components of each parameter value and 𝑓Comm
Master over time were calculated, as shown

in the figure, but no significant correlation was observed.
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Figure 6-4: Example of data taken over the course of an IS spectroscopy experiment for
𝛾: 467 nm transition and for a pair of isotopes [170Yb+ (blue) and 172Yb+ (red) for this data].
The drift in (a) measured zero-field MasterFrequency (see Section 4.1.5.1) (Common drift ;
𝑓Comm

Master) and (b) the frequency separation of 𝑅 and 𝐵 Zeeman transitions [see Fig. 5-2(c)
and Section 5.3.4] (Differential drift ; 𝑓Diff

Master) are presented. Figure (c) shows the values of
various experimental parameters recorded during the experiment (see Section 4.2.7). Each of
the values at the right shows the correlation between the nonlinear components of zero-field
MasterFrequency and the corresponding recorded value.
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Figure 6-5: Typical Rabi oscillation of excitation probabilities 𝑃𝑒 through 𝛼: 411 nm
transition for different probe pulse times 𝜏 (see Fig. 5-3). The data are fitted using
Eq. (6.5), assuming exponential [red; Eq. (6.4d)] or Gaussian [blue; Eq. (6.6)] decay
of the Rabi oscillation’s contrast. 𝜋

2
-pulse time is fitted to be 𝜏𝜋/2 = 7.7 µs at typical

probe power 𝑃 ∼ 1mW at the focus with 𝑤 = 60 µm waist (see Table B.1).

6.2 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) transition

𝛼: 411 nm transition’s PMT counts per cycle and the determination of QO and QJ for

single-shot spectroscopy were essentially the same to the 𝛾: 467 nm transition (see

Section 6-1), except for the timings and durations of the readouts (see Table 5.1).

The 𝜋
2

probe pulse time 𝜏𝜋/2 was obtained from the Rabi oscillation scan shown

in Fig. 6-5; the excitation probabilities 𝑃𝑒 were measured for different pulse times 𝜏 .

The results were fitted with the expression:

𝛿 = 2𝜋(𝑓 − 𝑓0) (6.4a)

Ω =
√︁
𝜔2
𝑅 + 𝛿2 (6.4b)

𝑃 0
𝑒 =

𝜔2
𝑅

Ω2
sin2 Ω𝜏

2
(6.4c)

𝑃𝑒 =
𝜔2
𝑅

Ω2

1

2

(︀
1− 𝑒−𝜏/𝜏dec cosΩ𝜏

)︀
(6.4d)

where 𝑓 is the probe frequency, 𝑓0 is the resonant frequency of the transition to be

measured, 𝛿/(2𝜋) is the detuning of the probe beam from the resonance, Ω/(2𝜋) is
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the generalized Rabi frequency,1 𝑃 0
𝑒 is the ideal Rabi oscillation of the excited-state

population when there is no decoherence in the system (e.g., from the excited state’s

lifetime or probe beam’s phase noise) [133, 134]. 𝑃𝑒 describes the exponentially

decaying contrast of the Rabi oscillation with the characteristic time constant 𝜏dec,

and the convergence of 𝑃𝑒 to 1/2. Finally, the following expression was used:

𝑃 fit
𝑒 = 𝑎𝑃𝑒(𝜔𝑅, 𝜏, 𝜏dec, 𝑓0, 𝑓) (6.5)

with an additional fit parameter 𝑎 for the overall scale to take account of imperfect

369 nm optical pumping (i.e., the ion’s initial state is not prepared purely in the

desired ground-state Zeeman level) due to, e.g., impurity of the circular polarization

of the beam or the imperfect alignment of the beam along the magnetic field. The 𝑎,

𝜔𝑅, 𝜏dec, and 𝑓0 were fitting parameters while 𝜏 and 𝑓 were input parameters. The

decoherence in Gaussian form was also tried:

𝑃𝑒 =
𝜔2
𝑅

Ω2

1

2

(︁
1− 𝑒−(𝜏/𝜏dec)

2

cosΩ𝜏
)︁
. (6.6)

However, the Gaussian decay could not be distinguished from the exponential decay,

at least during the 𝜋
2

time, as shown in Fig. 6-5. 𝜏𝜋/2 ≲ 10 µs was typically measured

as the 𝜋
2
-pulse time, as shown in Fig. 6-5, at typical probe power 𝑃 ∼ 1mW and

𝑤 = 60 um focal waist (see Table B.1).

After 𝜏𝜋/2 was obtained for a given probe beam power and alignment, the Ramsey

fringe of each Zeeman transition was measured, as demonstrated in Fig 6-6 for differ-

ent 𝜏𝜋/2 pulse times and separation 𝑇 between the pulses. For the IS measurement,

the Ramsey scanning was tested by scanning 3 peaks as in Fig. (e), and then the

center peak was scanned repeatedly over time, as shown in Fig. (f).
1The frequency of Rabi oscillation of the excited-state probability for a transition driven by a

nonresonant light (i.e., 𝛿 ̸= 0).
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Figure 6-6: Ramsey fringes (excitation probability 𝑃𝑒 vs MasterFrequency) mea-
sured for 𝛼: 411 nm transition with different 𝜋

2
pulse times 𝜏𝜋/2 and two pulses’ sep-

arations 𝑇 of the probe beam: (𝜏𝜋/2, 𝑇 ) = (a) (5, 5) µs, (b) (5, 10) µs, (c) (5, 20) µs,
(d) (5, 40) µs, and (e,f) (8, 10) µs. Figs. (e) and (f) differ only by the scan ranges and
step sizes. The data are fitted using Eqs. (6.8) and (6.7). Green vertical lines show
the fitted resonant MasterFrequency values.

120



The expression for Ramsey fringes under decoherence in the system is given as:

𝑃 0
𝑒 = 4

𝜔2
𝑅

Ω2
sin2 Ω𝜏

2

(︂
cos

Ω𝜏

2
cos

𝛿𝑇 − 𝜑
2

− 𝛿

Ω
sin

Ω𝜏

2
sin

𝛿𝑇 − 𝜑
2

)︂2

= 𝐴𝑝 cos
2

[︂
𝛿𝑇 − 𝜑

2
+ tan−1

(︂
𝛿

Ω
tan

Ω𝜏

2

)︂]︂
(6.7a)

𝐴𝑝 = 4
𝜔2
𝑅

Ω2
sin2 Ω𝜏

2

(︂
1− 𝜔2

𝑅

Ω2
sin2 Ω𝜏

2

)︂
(6.7b)

𝑃𝑒 =
𝐴𝑝

2
+

(︂
𝑃 0
𝑒 −

𝐴𝑝

2

)︂
𝑒−𝑇/𝜏dec

= 𝑃 0
𝑒 𝑒

−𝑇/𝜏dec +
𝐴𝑝

2

(︀
1− 𝑒−𝑇/𝜏dec

)︀
(6.7c)

where 𝜑 is the additional phase between the two pulses,2 𝑃 0
𝑒 is the expression for the

ideal Ramsey oscillation of the excited-state probability over 𝑇 with the amplitude

𝐴𝑝 when there is no decoherence [132, 133], and 𝑃𝑒 is the probability when the

decoherence is introduced in the system. The following expression was used for the

fitting:

𝑃 fit
𝑒 = 𝑎𝑃𝑒(𝜔𝑅, 𝜏, 𝑇, 𝜑, 𝜏dec, 𝑓0, 𝑓) (6.8)

with fit parameters 𝑎, 𝜔𝑅, 𝜏dec, and 𝑓0, and input parameters 𝜏 , 𝑇 , 𝜑, and 𝑓 .

In the earlier measurements for 𝛼: 411 nm transitions [5], The two 𝑅 and 𝐵

Zeeman transitions in Fig. 5-2(a) were scanned one at a time, alternately: (𝑓𝑅
Master)1,

(𝑓𝐵
Master)2, (𝑓𝑅

Master)3, · · · , measured at 𝑡1, 𝑡2, 𝑡3, · · · , as shown in Fig. 6-7. Then, the

zero-field frequency 𝑓Comm
Master and the separation of the transitions 𝑓Diff

Master were obtained

through the following way: if the 𝑅 transition was measured at time 𝑡𝑘, the (𝑓𝐵
Master)𝑘

was obtained from the linear interpolation of the nearest-neighboring measurements:

(𝑓𝐵
Master)𝑘 ≈

(𝑡𝑘+1 − 𝑡𝑘)(𝑓𝐵
Master)𝑘−1 + (𝑡𝑘 − 𝑡𝑘−1)(𝑓

𝐵
Master)𝑘+1

𝑡𝑘+1 − 𝑡𝑘−1

(6.9)

and vise versa if the 𝐵 transition was measured at another time 𝑡𝑘′ . 𝑓Comm
Master and

𝑓Diff
Master were then obtained using Eq. (6.3) for each 𝑘. In this way, total 𝑁 − 2 data

2If the first pulse is of the field ∝ cos(𝜔𝑡) during 𝑡 = 0 to 𝜏 , then the second pulse is of the field
∝ cos(𝜔𝑡 + 𝜑) during 𝑡 = 𝜏 + 𝑇 to 𝜏 + 𝑇 + 𝜏 . 𝜑 = 90° gives the maximum slope at the resonance
(i.e., 𝛿 = 0). However, 𝜑 = 0 was used for the most of the scans to ensure the symmetry of the
Ramsey fringes.
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Figure 6-7: Example of data taken over the course of an IS spectroscopy experiment
for 𝛼: 411 nm transition and for a pair of isotopes [168Yb+ (blue) and 170Yb+ (red)
for this data]. The drift in the resonant MasterFrequency’s (see Section 4.1.5.1) of
(left) 𝑅 and (right) 𝐵 Zeeman transitions [see Fig. 5-2(a)] over time.

points could be obtained for 𝑘 = 2, · · · , 𝑁 − 1.

∼40 cycles were taken to measure 𝑃𝑒 for each MasterFrequency step, which took

∼8 s (the period of a cycle was 200ms in the earlier measurements for 𝛼: 411 nm).

The size of MasterFrequency step was 2 kHz, and the typically 80 kHz range was

scanned over, taking total ∼5min per scan.

Figure 6-8 shows the measured (a) 𝑓Comm
Master and (b) 𝑓Diff

Master for a pair of isotopes

over time. The trapped ion of one isotope was switched to another in every ∼2 hr

(∼10 consecutive scans per isotope segment).

After the experimental setup was upgraded as described in Section 4.2, more

linear and much faster measurements of 𝑓Comm
Master have been demonstrated, as shown in

Fig. 6-9. The pulse sequence in Table 5.1 has been used for the new measurement.

It is expected that the ISs for 𝛼: 411 nm transition can be measured with lower

uncertainties in the future (see also Section 5.5).
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Figure 6-8: Example of data taken over the course of an IS spectroscopy experiment
for 𝛼: 411 nm transition and for a pair of isotopes [168Yb+ (blue) and 170Yb+ (red) for
this data]. The drift in (a) measured zero-field MasterFrequency (see Section 4.1.5.1)
(Common drift) and (b) the frequency separation of 𝑅 and 𝐵 Zeeman transitions
[see Fig. 5-2(a) and Section 5.3.4] (Differential drift) are presented.
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Figure 6-9: Measured zero-field MasterFrequency of 𝛼: 411 nm transition (a) before and (b) after the experimental setup was
upgraded (see Section 4.2).
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Figure 6-10: Typical time-resolved PMT counts (see Section 5.3.7) in each of 100 time
bins averaged over 20 pulse sequence cycles for 𝛽: 436 nm transition [see Fig. 5-3(b)
and Section 5.6]. The ratio of the averaged PMT counts during readouts (segment
6○) in calibration (blue area) and measurement (red area) subsequences is given as
the excitation probability 𝑃𝑒 of the ion through the clock transition.

6.3 𝛽: 2𝑆1/2 → 2𝐷3/2 (436 nm) transition

As described in Section 5.6, the PMT counts in each time bin were averaged over

many cycles. Figure 6-10 shows the typical results for the averaged PMT counts over

20 cycles. The average number ⟨𝑁read⟩ of PMT counts during the readout (segment

6○; see Fig. 5-3) in the read subsequence (red area) was divided by the average

number ⟨𝑁calib⟩ during the same segment in the calibration subsequence (blue area),

to obtain the excitation probability 𝑃𝑒:

𝑃𝑒(𝑓Master) = 1− ⟨𝑁read⟩
⟨𝑁calib⟩

(6.10)

The remaining procedures to measure 𝜋
2

probe pulse time, scan Ramsey fringes

(see Fig. 6-11), and measure zero-field MasterFrequency 𝑓Comm
Master over time for a pair

of isotopes (see Fig. 6-12) were essentially the same to the corresponding procedures

for 𝛼: 411 nm transition in Section 6.2. 𝜏𝜋/2 ≲ 5 µs was typically measured as the
𝜋
2
-pulse time at typical probe power 𝑃 ∼ 0.2mW and 𝑤 = 15 um focal waist (see
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Figure 6-11: Ramsey fringes (excitation probability 𝑃𝑒 vs MasterFrequency) mea-
sured for 𝛽: 436 nm transition with (𝜏𝜋/2, 𝑇 ) = (5, 10) µs (see the caption of Fig. 6-6)
over frequency ranges for (a) 5 peaks and (b) center peak. The data are fitted using
Eqs. (6.8) and (6.7). Green vertical lines show the fitted resonant MasterFrequency
values.
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Figure 6-12: Example data taken over the course of an experiment for 𝛽: 436 nm
transition and for a pair of isotopes [172Yb+ (blue) and 174Yb+ (red) for this data].
The drift in (a) measured zero-field MasterFrequency (see Section 4.1.5.1) (Common
drift) and (b) the frequency separation of 𝑅 and 𝐵 transitions [see Fig. 5-2(b) and
Section 5.3.4] (Differential drift) are presented.
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Table B.1). The excitation probability 𝑃𝑒 was measured for 5 s (i.e., PMT counts

were averaged over 100 pulse sequence cycles; see Table 5.1 for the period of a cycle)

per MasterFrequency step. MasterFrequency was stepped by 1 kHz over ∼60 kHz

range as shown in Fig. 6-11(b), taking ∼5min per scan. The isotopes were switched

in every ∼1 hr as shown in Fig. 6-12.

Note that this section describes the earlier experiments for 𝛽: 436 nm transition

in Ref. [5]. A new IS measurement after the system upgrade (Section 4.2) has not

been performed for this clock transition yet.

6.4 Determination of isotope shift

Figures 6-4(a), 6-8(a), and 6-12(a) present the linear drifts measured in the clock

transition frequency offset by a cavity mode (i.e., MasterFrequency; see

Section 4.1.5.1), manifesting the well-known fact that the cavity is subject to highly

linear drift [136] (see also Section 7.9.3.3). The drifting 𝑓Comm
Master for the two isotopes

were fitted with a function:

(𝑓Comm
Master)𝑘 = 𝑎+ 𝑏𝑡𝑘 + 𝑐𝑧𝑘 (6.11)

where 𝑎, 𝑏, and 𝑐 are fit parameters, 𝑘 is the index for each 𝑓Comm
Master measured, and 𝑡𝑘

is the time that (𝑓Comm
Master)𝑘 is measured, and 𝑧𝑘 is the label for different isotopes: 1

for 𝐴 and 0 for 𝐴′. Then, 𝑎 is given as the (𝑓Comm
Master)

𝐴′ of the isotope 𝐴′ at 𝑡 = 0, 𝑏

is the (average) rate of the drift d𝑓Comm
Master/d𝑡, and, most importantly, 𝑐 is given as the

IS 𝜈𝐴𝐴′
𝜒 between the isotopes.

Two different methods of the fitting have been considered for the linear fit: ordi-

nary least squares (OLS)3 and bootstrapping (see Chapter 9 in Ref. [137]). To per-

form the bootstrapping, a new set of data points is formed by randomly re-sampling

points from the set of measured data points, allowing for multiple instances of each

point, until the number of elements in the re-sampled set is the same as the original
3A special case of the standard GLS method with an identity matrix as the VCM (see Sec-

tion 9.2.1).
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set. The OLS fit is applied to the re-sampled set to find a value for the IS. Repeating

the procedure 𝑁 times (with sufficiently large 𝑁) gives the histogram of ISs from the

different re-sampled sets. The mean and standard deviation of the distribution are

taken as the measured IS and its uncertainty, respectively. The inset in Figs. 6-8(a)

and 6-12(a) show the bootstrapping statistics. The results from the two methods are

in good agreement within their uncertainties. Given that, only the OLS fit was used

for 𝛾: 467 nm transition.

6.5 Absolute frequencies of optical clock transitions

in Yb+

Ref. [121] has reported very precise values of 𝛼: 411 nm and 𝛾: 467 nm optical

clock transitions’ absolute frequencies for 172Yb+ isotope, with only few-Hz un-

certainties. Using these values, the absolute frequencies for all the five isotopes

𝐴 ∈ {168, 170, 172, 174, 176} can be obtained by adding the ISs measured in this

work. The results are listed in Table A.3.

For 𝛽: 436 nm transition, the absolute transition frequency has not been measured

for any of those even-𝐴 isotopes to date, to the best of the thesis author’s knowledge,

while the absolute frequency of a transition between the ground and excited states’

hyperfine levels 𝜈171𝛽 (0�2) in 171Yb+ isotope has been measured precisely [138, 139].

Therefore, the difference in 𝜈171𝛽 (0 � 2) from the frequency 𝜈172𝛽 for 172Yb+ isotope

is estimated from other transitions in Yb+ ions or Yb atoms by inter/extrapolating

the King plots, as elaborated in Section A.1.
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6.6 Absolute frequencies of 370 nm cooling, 935 nm

2𝐷3/2-state and 760 nm 2𝐹7/2-state repumping tran-

sitions in Yb+

For the experiments in this work, the frequencies of the transitions for trapping, cool-

ing, and repumping (e.g., 399 nm, 369 nm, 935 nm, and 760 nm transitions; see Fig. 3-

1 and Table B.1) should be known for all the five isotopes𝐴 ∈ {168, 170, 172, 174, 176}.

While the frequencies for the 399 nm 1𝑆0 → 1𝑃1 transition in neutral Yb atoms have

been measured with high precision [113], the accurate measurements for the transi-

tions in Yb+ ions were largely missing. Furthermore, the values for less abundant
168Yb+ isotope [111] were not available in literature. The resonant frequencies for

the 760 nm 2𝐹7/2-state repumping transition (see Section 4.2.6) had been also re-

ported only for the most abundant 172Yb+ and 174Yb+ isotopes with limited precision

[125, 126, 127].

In this work, all the transition frequencies were found and measured with a Fizeau

wavemeter (WS/7, HighFinesse/Ångstrom) that has been periodically calibrated to

an atomic reference (Rb). To maximize the accuracy for ISs between the isotopes,

all the isotopes were trapped and measured in a few hours. The measured transition

frequencies and ISs are shown in Table A.4. The uncertainties in the absolute fre-

quencies are specified by the manufacturer of the wavemeter, while observed daily

drifts in the wavemeter readings give upper bounds on the ISs’ uncertainties. See

Ref. [4] for the resonant frequencies for 638 nm 2𝐹7/2-state repumping transition for

all the 5 isotopes.

The resonant frequency of the 760 nm transition for each isotope was measured

as follows. The beam’s frequency was measured through and actively stabilized

to the wavemeter reading, with the resolution of 5MHz (half of the last digit of

the wavemeter reading). At each frequency step, the pulse sequence in 5-3(a) was

repeatedly driven for 𝛼: 411 nm transition to prepare the ion into the 2𝐹7/2 state

(see Fig. 3-1 for the decay channel), and the PMT counts were averaged over many
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cycles (see Section 5.3.7). In consequence, the exponential repumping of the ion from

the 2𝐹7/2 state was observed in segment 1○. Finally, the 760 nm beam’s frequency

was scanned (i.e., the set point of the frequency stabilization to the wavemeter was

stepped by 5MHz) until the shortest characteristic time constant of the exponential

repumping curve was obtained.

The procedures of the measurements for the 369 nm and 935 nm transitions were

similar, except that the frequencies that produce maximum ion fluorescence were

measured for the 935 nm transition, while, for the 369 nm transition, the frequencies

at which the ion suddenly stops scattering the beam were measured while increasing

the 369 nm beam frequency, due to the change in the effect of the 369 nm beam’s

scattering from cooling to heating the ion.

6.7 Consistency check and reduced uncertainty from

redundant isotope pair

To check for systematic errors and improve the uncertainties, redundant measure-

ments of the IS were performed by measuring ISs between next-nearest-neighboring

even-𝐴 (NNNE) isotopes pairs: (168, 172), (170, 174), and (172, 176), in addition

to the nearest-neighboring even-𝐴 (NNE) isotopes pairs: (𝐴,𝐴 + 2) with 𝐴 ∈

{168, 170, 172, 174}.

Redundant pairs, in addition to independent pairs (see Section 11.5), provide are

useful in two different ways. First, they provide consistency check with other mea-

sured isotope pairs. For instance, if the ISs between the two NNE pairs (𝐴,𝐴′),

(𝐴′, 𝐴′′), and a NNNE pair (𝐴,𝐴′′) are measured for three isotopes 𝐴 < 𝐴′ < 𝐴′′

(see, e.g., a triangle in Fig. 6-13), the consistency between the ISs can be con-

firmed by checking if the two values 𝜈𝐴𝐴′
+ 𝜈𝐴

′𝐴′′ and 𝜈𝐴𝐴′′ agree within their

uncertainties,
√︀

(Δ𝜈𝐴𝐴′)2 + (Δ𝜈𝐴′𝐴′′)2 and Δ𝜈𝐴𝐴′′ ,4 respectively, or, equivalently,

by checking how much 𝜈𝐴𝐴′
+ 𝜈𝐴

′𝐴′′ − 𝜈𝐴𝐴′′ deviates from zero in its uncertainty
4Assuming the ISs 𝜈𝐴𝐴′

, 𝜈𝐴
′𝐴′′

, and 𝜈𝐴𝐴′
are independently measured.
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√︀
(Δ𝜈𝐴𝐴′)2 + (Δ𝜈𝐴′𝐴′′)2 + (Δ𝜈𝐴𝐴′′)2 (i.e., the 𝜎-significance of disagreement).

Another power of the redundant pairs is to improve the precision of each measured

value. For the example above, there are two independent measurements for each

quantity: e.g., measured 𝜈𝐴𝐴′ and 𝜈𝐴𝐴′′ − 𝜈𝐴
′𝐴′′ as 𝜈𝐴𝐴′ . Then, a new estimate

(𝜈𝐴𝐴′
)′ with a better uncertainty (Δ𝜈𝐴𝐴′

)′ can be obtained as follows:

1

[(Δ𝜈𝐴𝐴′)′]2
=

1

(Δ𝜈𝐴𝐴′)2
+

1

(Δ𝜈𝐴′𝐴′′)2 + (Δ𝜈𝐴𝐴′′)2

(𝜈𝐴𝐴′
)′ = [(Δ𝜈𝐴𝐴′

)′]2
[︂

𝜈𝐴𝐴′

(Δ𝜈𝐴𝐴′)2
+

𝜈𝐴𝐴′′ − 𝜈𝐴′𝐴′′

(Δ𝜈𝐴𝐴′′)2 + (Δ𝜈𝐴′𝐴′′)2

]︂
,

(6.12)

and so for other pairs (𝜈𝐴
′𝐴′′

)′ and (𝜈𝐴𝐴′′
)′.

A general approach for more complicated relations between the pairs is as follows.

First, determine the minimum number of isotope pairs 𝑝 and a particular such set

that can determine the values of all the 𝑁 pairs of which the ISs were measured. For

instance, for the NNE and NNNE pairs instroduced above, knowing the ISs for all

the NNE pairs, but not less, are sufficient to determine all the pairs’ values. As the

next step, express the relation between all the measured set and the reduced set in

the following form: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜈168,170𝛼

𝜈170,172𝛼

𝜈172,174𝛼

𝜈174,176𝛼

𝜈168,172𝛼

𝜈170,174𝛼

𝜈172,176𝛼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

y𝑁

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

𝑋𝑁×𝑝

⎡⎢⎢⎢⎢⎢⎢⎣
𝜈168,170𝛼

𝜈170,172𝛼

𝜈172,174𝛼

𝜈174,176𝛼

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

𝛽𝑝

(6.13)

Then, finding the best estimates of the 𝑝 = 4 ISs �̂� from the 𝑁 observations y

becomes a typical least square problem y = 𝑋𝛽 (see, e.g., Section 9.2.1). The

improved IS values �̂� are obtained via a weighted least squares (WLS) fit with
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Figure 6-13: Measured values of ISs (values along edges in kHz) for different pairs
of Yb+ isotopes (vertices labeled with the mass numbers 𝐴 of isotopes 𝐴Yb+) and
consistency of values forming shortest loops (𝜎-significance in the center of each
triangle). The IS value 𝜈𝐴𝐴′

= 𝜈𝐴− 𝜈𝐴′ is shown for an edge directed from vertex 𝐴
to vertex 𝐴′. The measured values agree overall with 0.86𝜎 significance.

the weights given by inverse-squared measurement uncertainties.5 It can be also

confirmed, at this stage, whether the choice of the reduced pairs is really minimal

by checking if 𝑋 has full (column) rank (i.e., the column vectors in 𝑋 are linearity

independent). The overall 𝜎-significance of the measured ISs’ disagreement can be

obtained from the �̂�2 value of the fit [see Eq. (9.18c)]. The significance of the fit

tests the consistency of samples with the model, and the model (i.e., the relation

between the ISs) has to be true by the ISs’ construction. Therefore, the significance

of the fit serves as a quantity showing if the measured ISs were compromised by some

systematic effects. It can also be checked, in this step, whether the choice of 𝛽 is

sufficient for all the measured pairs. The fit would give an excessive �̂�2 value if the

pairs in 𝛽 are not enough and thus cannot approximate all the measured IS values.

The graphical representation of the values and relations of measured ISs are shown

in Fig. 6-13. In particular, the significance of each three-isotope triangular pair is

shown in the corresponding triangles. The values, uncertainties, and correlations of

the reduced ISs �̂� using the method developed above are listed in Table A.2. The

overall significance of the measured ISs is given to be 0.86𝜎 from the �̂�2 of the fit.
5A special case of GLS with Σy = diag(𝜎2

𝑦1
, · · · , 𝜎2

𝑦𝑁
) in Section 9.2.1 when the measured ISs

are independent. The GLS fit can be used instead if the measured ISs are already correlated for
some reasons.
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It is straightforward to generalize this method for any other pairings for measure-

ment y or reduced pairs 𝛽.6 The method can be also applied to converting a pairing

to another (𝑁 = 𝑝 in this case), always yielding a perfect fit.

6Or any arbitrary variables that parameterize the measured ISs, if needed.
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Chapter 7

Analysis of systematic effects

Investigating systematic effects is one of the essential parts of precision measure-

ments. In the experiments for IS spectroscopy in this thesis, most of the systematic

effects pertaining in the measurements of absolute transition frequencies in atoms are

common-mode between the isotopes, with only small differential components that af-

fect the measured ISs. Drifts in experimental parameters can lead to uncertainties

in these differential shifts, however, and these are the main source of the statistical

uncertainties in the measured ISs (see Table A.1).

In this chapter, the sources of the systematic shifts and their estimated sizes and

long-term drifts are investigated. The results are summarized in Table 7.1 for the

absolute and differential sizes of the systematic shifts and drifts, for each of the optical

clock transitions 𝛼 : 2𝑆1/2 → 2𝐷5/2 (411 nm), 𝛽 : 2𝑆1/2 → 2𝐷3/2 (436 nm), and 𝛾 :

2𝑆1/2 → 2𝐹7/2 (467 nm) in Yb+ ions. While most of the long-term differential drifts

are estimated to be smaller than the statistical uncertainties in the measured ISs

(∼300Hz for 𝛼 and 𝛽 transitions and ∼500Hz for 𝛾 transition; see Table A.1), some

of the effects give drifts that are potentially comparable to the uncertainties. Note,

however, that such drifts show up as the drift in the measured zero-field transition

frequencies and averaged over 8 to 16 hr or longer (see Figs. 6-4, 6-8, and 6-12), and

their effects on the measured ISs are reduced by switching isotopes several times over

the course of the measurements (see Section 5.3.2).

A significant portion of the analysis has been done by Diana P. L. Audo Craik,
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a research team member and postdoctoral researcher, and also partially contributed

by Luke Caldwell, a research collaborator [8].
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Table 7.1: Estimated systematic shifts and long-term drifts in the IS spectroscopy experiments for 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm
transitions. Absolute shifts in each isotope and differential shifts between different isotopes are listed. The values followed by square
parentheses show the center value while the values inside the square parentheses are the magnitude of long-term drifts, with the following
notation: 𝑥[𝑦]× 10𝑏 for the center value of 𝑥× 10𝑏 and long-term drift of 𝑦 × 10𝑏.

Absolute shift (Hz) Differential shift (Hz)
Effect 𝛼: 411 nm 𝛽: 436 nm 𝛾: 467 nm 𝛼: 411 nm 𝛽: 436 nm 𝛾: 467 nm

Doppler
0st-order (recoil) ±1.3a[.25a]× 100 ±1.1a[.22a]× 100 ±2.3a × 10−1 1.5a[25.a]× 10−2 1.4a[22.a]× 10−2 5.5a × 10−3

1st-order +O(1)ab[O(1)ab]× 10−3 0[O(1)a]× 10−3

2nd-order −1.a[1.a]× 101 2a[100.a]× 10−1

AC Stark
Laser-induced +1.5[.2a]× 103 +2.5a[.3a]× 103 +1.a[O(0.01)a]× 104 0.[2.a]× 102 0.[3.a]× 102 0.[O(1)a]× 102

BBR −4.[0.15]× 10−1 −6.[0.25]× 10−2 0.[1.5]× 10−2 0.[2.5]× 10−3

Micromotional −7.a[7.a]× 101 ±1.a[1.a]× 102 −1.a[1.a]× 101 0.[7.a]× 101 0.[1.a]× 102 0.[1.a]× 101

Off-resonant excitation ±2.a[1.a]× 101 ±1.a[0.02a]× 100 0.a[1.a]× 101 0.a[2.a]× 10−2

Zeeman
1st-order 0.a[5.a]× 102 0.a[1.a]× 101 0.a[5.a]× 102 0.a[1.a]× 101

2nd-orderc +4.2a[0.042a]× 103 +6.3a[0.063a]× 102 −2.5a[0.025a]× 101 0.[4.2a]× 101 0[6.3a]× 100 0.[2.5a]× 10−1

Electric quadrupole ±O(1)a[O(1)a]× 100 ±O(1)a[O(1)a]× 10−2 0[O(1)a]× 100 0[O(1)a]× 10−2

Gravitational redshift 0.[8.a]× 10−5 0.[8.a]× 10−5

Probe freq. stability
Master clock 0.[5.a]× 100 0.[5.a]× 100

RAM 0.[1.]× 103 0.[3.a]× 102 0.[1.]× 103 0.[3.a]× 102

Reference cavity
Temp. drift 0.[4.a]× 101 0.[4.a]× 101

Beam power 0.[8.a]× 101 0.[5.a]× 10−1 0.[8.a]× 101 0.[5.a]× 10−1

Nonlinear drift 0.[[O(1).a]× 10−1 0.[[O(1).a]× 10−1

AOM phase chirp ±O(1)a[O(1)a]× 100 0[O(1)a]× 100

a Upper bound on the magnitude.
b Omitted potential absolute shift due to the ion trap’s motion correlated to the laser pulses.
c Potentially much smaller; see Section 7.6.2.
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7.1 Doppler Shifts

The Doppler shift in an atomic transition is the result of the interaction between light

and atom’s motional state (i.e. photon recoil) [103]. The fractional Doppler shift to

the atomic transition, Δ𝜈𝐷/𝜈0, caused by the motion of the ion in the classical limit1

is given by:
Δ𝜈𝐷
𝜈0

=
ℎ

2𝑚𝜆2
+ 𝑘 · v

𝑐
− 𝑣2

2𝑐2
+𝒪

(︂(︁v
𝑐

)︁3)︂
(7.1)

where v is the velocity of the ion relative to the lab frame, 𝜆 and 𝑘 are the wavelength

and the direction of a photon’s momentum in the lab frame, respectively, 𝑚 is the

atom’s mass, and 𝜈0 is the frequency of the atomic transition in the rest frame of the

ion. The first two terms can be obtained by the semiclassical description of a free

atom’s absorption2 of a photon’s momentum in the nonrelativistic limit:

Δ𝑇 =
1

2
𝑚(v +Δv)2 − 1

2
𝑚𝑣2 =

ℏ2𝑘2

2𝑚
+ ℏk · v (7.2)

where Δ𝑇 and Δv = ℏk/𝑚 is the change in the atom’s kinetic energy and velocity,

respectively. The photon’s energy has to compensate the change in the kinetic energy

in addition to the transition energy: ℎ𝑓photon = ℎ𝑓transition + Δ𝑇 . The first term,

the zeroth-order Doppler shift, or recoil shift, originates from the quantumness of

photons; it vanishes in the limit ℎ → 0. The second term is the first-order Doppler

shift which is proportional to the atom’s velocity and also depends on the relative

direction of the atom’s and photon’s motions. The third term in Eq. (7.1), the second-

order Doppler shift, is due to a relativistic effect, the time dilation in the moving

frame, which can be obtained from the same approach through the corresponding

relativistic description [140].

Tight confinement of an atom in a trap with well-resolved motional eigenstates

of the atom suppresses the zeroth and first-order shifts due to the Mössabauer effect

as described in the following subsections, while the second-order Doppler shift is
1i.e., no quantum effect. It does not exclude the relativistic effect that causes the second-order

Doppler shift as follows.
2Considering the case of the photon emission doesn’t change the result.
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essentially not affected by the confinement.

7.1.1 Zeroth-order Doppler Shift

In a tight trap, the minimum change in the atom’s motional energy is given by

the spacing ℏ𝜔𝑡 between quantized motional eigenstates. Therefore, when the recoil

energy (ℏ𝑘)2/2𝑚 in Eq. (7.2) is smaller than the spacing, the effect of the photon

recoil is suppressed (the Mössbauer effect; see, e.g., Chapter 6 in Ref. [141]). The

factor of the suppression is given by the ratio of the two energies which is defined as

the squared Lamb-Dicke parameter:

𝜂2 =
(ℏk · �̂�𝑡)2/(2𝑚)

ℏ𝜔𝑡

≤ 𝛿recoil

𝜔𝑡

(7.3)

where 𝜔𝑡/(2𝜋) is the vibration frequency of an atom in a trap along the direction

�̂�𝑡 and 𝛿recoil/(2𝜋) = (ℏ𝑘)2/(2𝑚ℎ) is the recoil shift. In particular, the atom is

said to be in the Lamb-Dicke regime when the motional sideband transitions (the

transition that changes the motional state of the atom as well as its electronic state)

is suppressed: 𝜂2(2𝑛+1)≪ 1. In the system for this work, 𝜔𝑡/(2𝜋) = 364 kHz along

the axis of the RF potential and higher along the other directions (see Table 4.1),

which gives 𝜂2 ≤ 0.0193, 0.0172, and 0.0150 for 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm

transitions, respectively (maximum values given for k ‖ ±�̂�𝑡 and 𝑚 ≈ 168 u for the

lightest Yb+ isotope used). Then, ⟨𝑛⟩ ≲ 14.3 from an ion’s temperature ≈500µK3 4

gives 𝜂2(2⟨𝑛⟩+ 1) ≲ 0.6, a moderate Lamb-Dicke regime.

7.1.1.1 Transition-rate spectroscopy

𝛾: 467 nm transition in Yb+ ions has been driven in the regime of Fermi’s golden

rule5 by a long single pulse (see Section 5.2). In this case, the shift results from

the difference between the transition rates of the red sideband (∝ 𝜂2𝑛; 𝑛 → 𝑛 − 1)
3 1
2𝑘B𝑇 = ℏ𝜔𝑡⟨𝑛⟩ in each principal direction of the three-dimensional trap.

4See Footnote 2 in Section 4.1.1 for the temperature.
5the transition probability is linear over time as the transition is driven much longer than the

decoherence time of the system (see Section 5.2).
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and blue sideband (∝ 𝜂2(𝑛 + 1); 𝑛 → 𝑛 + 1). The tails of the sidebands reach the

carrier transition peak (𝑛→ 𝑛) and shift the frequency at the maximum of the peak.

The lineshape of the transition is dominated by the probe beam’s frequency noise

as the natural linewidth is very small for the clock transitions. Therefore, giving a

Voigt profile is given as the peak’s shape, depending on the noise profile of the laser

frequency. In particular, the tails of the peaks will follow the Lorentzian curve, while

the center of the peak is likely dominated by the Gaussian profile in the presence of

the white noise or Lorentizan shape otherwise [142, 143]. The Lorentzian distribution

of tails is assumed to have the full width at half maximum (FWHM) of the measured

peak to obtain an upper bound on the carrier peak frequency’s shift,6 because the

FWHM of the underlying Gaussian and Lorentzian distributions do not exceed the

FWHM of the Voigt profile.

In case the center of the peak is given by the Lorentzian distribution:

𝐴(𝛿) = 𝐴0
(Γ/2)2

(Γ/2)2 + 𝛿2
(7.4)

where 𝐴 is the transition rate as a function of the detuning of the beam from the

resonant frequency of the transition, and the Γ is the FWHM of the peak. For the

detuning 𝛿 of the beam from the carrier transitions frequency, the maximum of the

peak is shifted to the point where the slopes of the carrier and sidebands are net

zero:

0 = − 2𝛿(Γ/2)2

[(Γ/2)2 + (𝛿)2]2⏟  ⏞  
carrier

−𝜂2𝑛 2(𝛿 + 𝜔𝑡)(Γ/2)
2

[(Γ/2)2 + (𝛿 + 𝜔𝑡)2]
2⏟  ⏞  

red sideband

−𝜂2(𝑛+ 1)
2(𝛿 − 𝜔𝑡)(Γ/2)

2

[(Γ/2)2 + (𝛿 − 𝜔𝑡)2]
2⏟  ⏞  

blue sideband

≈ − 2𝛿

(Γ/2)2
+ 𝜂2

2(Γ/2)2

𝜔3
𝑡

(7.5)

when 𝛿 ≪ Γ/2≪ 𝜔𝑡, which gives the shift

𝛿 ≈ 𝜔𝑡𝜂
2

[︂
Γ/2

𝜔𝑡

]︂4
= 𝛿recoil

[︂
Γ/2

𝜔𝑡

]︂4
(7.6)

6The shift will be smaller, of course, if the underlying Lorentizan distribution of the tails is
narrower.

140



which is given by the recoil shift 𝛿recoil = 2𝜋 × ℎ/(2𝑚𝜆2) that is suppressed by

the fourth power of the resolution of carrier and sidebands (Γ/2)/𝜔𝑡. Note that the

frequency pulling of the blue sideband does not depend on the atom’s motion 𝑛 as the

difference in blue and red-sideband transition rates is constant over 𝑛. Therefore, the

shift is expressed purely by the suppressed zeroth-order shift, and the higher-order

Doppler shifts which depend on the motional energy vanish (see also Section 7.1.2).

The shift is also independent of the transition rate (i.e., independent of oscillator

strength or beam intensity) unless the transition is saturated and changes the shape

of the peaks.

When the center of the peak is Gaussian instead:

𝐴(𝛿) = 𝐴0 exp

[︃
− ln(2)

(︂
𝛿

Γ/2

)︂2
]︃
, (7.7)

the shift is given by

0 ≈ −2 ln(2) 𝛿

(Γ/2)2
+ 𝜂2

2(Γ/2)2

𝜔3
𝑡

(7.8)

and thus

𝛿 ≈ 1

ln(2)
𝜂2𝜔𝑡

[︂
Γ/2

𝜔𝑡

]︂4
=

1

ln(2)
𝛿recoil

[︂
Γ/2

𝜔𝑡

]︂4
(7.9)

that is bigger than the shift for the Lorentzian center by factor of 1/ ln(2) ≈ 1.44.

Therefore, the Gaussian peak center serves as the case for the upper bound on the

shift. Γ/(2𝜋) is not bigger than 50 kHz in the experiments done here (see, e.g., Fig. 6-

3). Using the values 𝛿recoil/(2𝜋) = 5.32 kHz and 𝜔𝑡/(2𝜋) = 364 kHz, 𝛿/(2𝜋) = 0.23Hz

is obtained for the 𝛾: 467 nm transition.

The differential shift between different isotopes comes from the different values of

𝛿recoil and 𝜔𝑡𝑥 for the different atomic masses 𝑚𝐴 and 𝑚𝐴′ . From 𝜔𝑡𝑥 ∝
√
𝑎 ∝ 𝑚−1/2

(see Section 7.1.3), 𝛿 ∝ 𝑚 is given, and the biggest differential shift is 5.5mHz from

the maximum 2.4% mass difference for 168Yb+ and 172Yb+ pair (see Table A.3).
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7.1.1.2 Ramsey interferometry

The motion-independent shift for the Ramsey spectroscopy used for 𝛼: 411 nm and

𝛽: 436 nm transitions (see Section 5.2) is examined in Ref. [144]. The size of the shift

is given by:

𝛿 =
2𝜔𝑅𝜂

2

2 + 𝜔𝑅𝑇

(︂
𝜔𝑅

𝜔𝑡

)︂2

⏟  ⏞  
𝛿0

cos
𝜔𝑡(𝑇 + 2𝜏𝜋/2)

2
sin

𝜔𝑡𝑇

2
(7.10)

where 𝛿/(2𝜋) and 𝛿0/(2𝜋) are the shift in the transition frequency and the upper

bound of its magnitude oscillating over the changes in 𝜋
2
-pulse time 𝜏𝜋/2 and sepa-

ration 𝑇 between the two 𝜋
2
-pulses, respectively, and 𝜔𝑅/(2𝜋) is the Rabi frequency

for given transition and beam intensity. Roughly speaking, the maximum size of

the shift 𝛿0 = 2𝛿recoil(𝜔𝑅/𝜔𝑡)
3/(2 + 𝜔𝑅𝑇 ) is given by the recoil frequency 𝛿recoil sup-

pressed by the ratio of pulse and separation times 𝜏𝜋/2/𝑇 = 𝜋/(2𝜔𝑅𝑇 ) (only when

𝜏𝜋/2/𝑇 ≫ 1) and the ratio of the Rabi and trap frequencies cubed: (𝜔𝑅/𝜔𝑡)
3. The

parameter values for the system, 𝜔𝑡 ≥ 364 kHz (see Table 4.1) and pulse sequence

𝜏𝜋/2 = 𝑇 = 10 µs [i.e., 𝜔𝑅/(2𝜋) ∼ 1/(4𝜏𝜋/2) = 25 kHz] (see Fig. 5-3 and Table 5.1),

give the suppression from (𝜔𝑅/𝜔𝑡)
3 ≤ 3.24 × 10−4 but not from 𝜏𝜋/2/𝑇 = 1, giving

𝛿0/(2𝜋) ≤ 1.24Hz which is smaller than the statistical uncertainty in the measured

ISs by 2 orders of magnitude.

A generous, 10% bound on the drift in 𝜔𝑅 (i.e., 20% in the probe beam intensity)

and durations 𝑇 and 𝜏𝜋/2 from the ideal case 𝜔𝑅𝜏𝜋/2 = 𝜋/2 (i.e., 𝛿 = −𝛿0/2) gives

∼ 20% of the drift in 𝛿 over time, which corresponds to ≲0.25Hz. The slow drift

between the measurement periods of different isotopes could result in a systematic

shift at this level.

Besides the drift, the differential systematic shift between the isotopes comes

from the slightly different masses 𝑚𝐴 and 𝑚𝐴′ for different isotopes: 𝛿0 ∝
√
𝑚 from

𝜔𝑡𝑥 ∝
√
𝑎 ∝ 𝑚−1/2 [see Eq. 4.1]. The maximum 2.4% mass difference for 168Yb+

and 172Yb+ pair (see Table A.3) gives ≲15mHz difference in the carrier-transition

Doppler shift between the isotopes.

While the differential effect is negligible compared to the statistical uncertainty
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in the measured ISs in this work, the future experiment with ∼10mHz uncertainty

might resolve the effect (see Chapter 18). It can be solved by improving the de-

coherence time of the system, which is also one of the future works described in

Section 17.1. Once it is accomplished, one can either make 𝑇 longer and reduce

𝜏𝜋/2/𝑇 , or, more preferably, perform Rabi spectroscopy and have long 𝜋-pulse time

𝜏𝜋 and thus small 𝜔𝑅 as the shift 𝛿0 is proportional to 𝜔4
𝑅 for the Rabi spectroscopy

[144].

A difference in overall values in Table 7.1 for 𝛼: 411 nm and 𝛽: 436 nm transi-

tions are due to the difference in the values of 𝛿recoil/(2𝜋): 6.87 kHz and 6.12 kHz,

respectively.

7.1.2 First-order Doppler Shift

The first-order Doppler shift vanishes in the frame of a trap as ⟨𝑣⟩ = 0, especially for

the thermal states. The motion of the trap center will result in the linear Doppler

shift in the lab frame. In particular, the slow drift of the center due to the change

in charge distribution over the trap surface (see Section 4.2.3.4) may give a nonzero

contribution. The observed few-µm drift over the course of few hours (see Fig. 4-

9) gives 𝑂(10−18) fractional shift, which corresponds to 𝑂(1mHz) shift in optical

transition frequencies. Such a small shift is completely dominated by the zeroth-

order Doppler shift within the trap center’s frame, as estimated in Section 7.1.1.

No differential shift is expected except from the slow drift occurring between the

measurement for different isotopes.

The micromotion of an ion due to the RF electric field that exerts a force on the

ion can be understood as the oscillation in the position of the trap center. The effect

is purely classical, and thus adds symmetric pairs of sidebands, resulting in zero shift

at the carrier peak’s center.

The trap center’s motion is possibly correlated to the laser pulses due to various

factors such as stray charges built up on the trap surface due to the pulsed lasers,

thermal transients, or optical shutters [65]. The fractional shift was small in Ref. [65],

< 10−17. More importantly, the shifts are common across different isotopes [92].
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Taking those into account, those contributions are omitted here.

7.1.3 Second-order Doppler Shift

The third term in Eq. (7.1), the second-order Doppler shift, shifts the atomic tran-

sition frequency due to relativistic time dilation. The contributions from the micro-

motion and secular motion of an ion in the trap are calculated here:

Δ𝜈𝐷
𝜈0

= −⟨𝑣
2
𝑠⟩

2𝑐2
+

(︂
Δ𝜈

𝜈0

)︂𝜇motion

(7.11)

where ⟨𝑣2𝑠⟩ is the mean-square velocity of the secular motion due to a finite tem-

perature of the ion, and
(︁

Δ𝜈
𝜈0

)︁𝜇motion
is the micromotion-induced fractional Doppler

shift.

The Doppler limit on the 369 nm cooling transition (≈500µK; see Section 4.1.1)

gives ⟨𝑣2𝑠⟩
2𝑐2
≈ 4× 10−19.7

Stray DC electric field around ions in the trap, from, for instance, light-induced

stray charges on the surface of the trap chip, shifts the ions’ positions from the RF

null of the trap and makes the ion under excess micromotion [112]. The micromotion

contributes to the second-order Doppler shift of which expression can be found in

Ref. [112] [see Eq. (30) therein] with the definition of variables therein:

(︂
Δ𝜈

𝜈0

)︂𝜇motion

𝑖

≈ − 4

𝑚2𝑐2

(︂
𝑄𝑞𝑖EDC · �̂�𝑖
(2𝑎𝑖 + 𝑞2𝑖 )𝜔RF

)︂2

− (𝑞𝑥𝑅𝛼𝜑AC𝜔RF)
2

64𝑐2
𝛿𝑖,𝑥 (7.12)

for the two radial directions 𝑖 = 𝑥, 𝑦 of the cylindrical RF trap,8 which can be

calculated from the trap parameters [see Table 4.1 and Eq. (4.1)] and an Yb+ ion’s

mass 𝑚𝐴 (see Table A.3) and charge 𝑄 = +𝑒. The second term is ignored here as

the phase difference 𝜑AC between different RF electrodes has been minimized [108].
7⟨𝑣2𝑠⟩ = (27 cm/s)2 from 3

2𝑘B𝑇 = 1
2𝑚⟨𝑣

2
𝑠⟩.

8There is no RF field along the axial direction 𝑧 of the RF confinement (i.e., 𝑞𝑧 = 0).
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Together with 𝑎𝑖 ≪ 𝑞𝑖, it reduces the Eq. (7.12) further:

(︂
Δ𝜈

𝜈0

)︂𝜇motion

𝑖

≲ − 4

𝑚2𝑐2

(︂
𝑒|EDC|
𝑞𝑖𝜔RF

)︂2

(7.13)

The size of the DC electric field EDC that the ion experiences is estimated from

the observed ±2 µm drift in an ion’s position (i.e., trap center) (see Fig. 4-9). The

field shifts the center of the trap by

𝑢0𝑡 =
𝑄EDC · �̂�𝑡
𝑚𝜔2

𝑡

(7.14)

where �̂�𝑡 is the direction of a principal axis of the trap and 𝜔2
𝑡 is the associated

secular frequency [see Eq. (16) in [112]].

Using the maximum 𝜔𝑡 = 1.4MHz in a radial direction (see Table 4.1), the

maximum 𝐸DC is estimated to be 280V/m. Considering the known typical values of

𝐸DC and potential displacement of ion perpendicular to the trap chip which could

not be measured in Section 4.2.3.4, 𝐸DC ≲ 500V/m has been taken as a conservative

bound. The bound gives −(Δ𝜈/𝜈0)𝜇motion ≲ 10−14, dominating over the secular-

motion shift and giving the absolute shift −Δ𝜈 ≲ 7.3Hz.

The differential second-order Doppler shift of 200mHz is estimated arising from

the maximum 2.4% mass difference for 168Yb+ and 172Yb+ pair (see Table A.3) and

(Δ𝜈/𝜈0)
𝜇motion
𝑖,max ∝ 1/𝑚 as 𝑞𝑖 ∝ 1/𝑚 [Eq. (4.1b)]. The main source of the uncertainty

in this differential shift is expected to be temporal drifts in the micromotion. As 𝐸DC

is expected to drift between zero (at the RF null) to ≲500V/m (at the maximum

deviation from the RF null), the magnitude of the estimated absolute shift is taken

also as the long-term drift in the differential shift.

7.2 Laser-induced AC Stark shift

The energies of the two states in a transition to be driven can be shifted through

other transitions that involve those states, resonantly or off-resonantly driven by the

laser beams in the setup.
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The amount of the AC Stark shift through a transition is given by (see, e.g.,

Chapter 7.2 in Ref. [141] and Section 7.7 in Ref. [145]):

Δ𝜈(𝑔) = +
1

8𝜋

𝛿

𝛿2 + (Γ/2)2
𝜔2
𝑅 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+ 1

8𝜋

𝜔2
𝑅

𝛿
𝛿 ≫ Γ/2

± 1
8𝜋

𝜔2
𝑅

Γ
𝛿 = ±Γ/2

+ 1
8𝜋

𝛿
(Γ/2)2

𝜔2
𝑅 𝛿 ≪ Γ/2

Δ𝜈(𝑒) = −Δ𝜈(𝑔)

(7.15)

in the weak field limit 𝜔𝑅 ≪ 𝛿,Γ, where Δ𝜈(𝑔) and Δ𝜈(𝑒) are the shifts in the ground

and excited states,9 respectively,

𝜔𝑅 = Γ

√︂
𝐼

2𝐼sat
(7.16)

is the (angular) Rabi frequency for the intensity of light 𝐼 and the transition’s

linewidth Γ and saturation intensity 𝐼sat [see also Eq. (B.3)], and 𝛿/(2𝜋) is the

light’s detuning from the atomic resonance, with the maximum magnitude of the

shift at 𝛿 = ±Γ/2. The ground and excited states pull each other towards them (i.e.,

Δ𝜈(𝑔) > 0 and Δ𝜈(𝑒) < 0) for blue-detuned light (𝛿 > 0), and push each other away

(i.e., Δ𝜈(𝑔) < 0 and Δ𝜈(𝑒) > 0) for red detuning (𝛿 < 0).

There are mainly two kinds of beams that cause the light shift in this experiment:

the probe beam that drives the optical clock transitions and other beams for cooling

and repumping that are supposed to be turned off but leaked through the AOMs

that control the beams (see Fig. 5-3). The analysis of each case is presented in the

following subsections, and the estimated shifts and long-term drifts are summarized

in Table 7.2.
9In the form of (energy)/ℎ (i.e., they are not angular frequencies, while the Rabi frequency 𝜔𝑅

and the detuning of light 𝛿 are).
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Table 7.2: Estimated laser-induced AC Stark shifts and long-term drifts due to the
probe and leakage beams. See the caption in Table 7.1 for the notation of the values.

Shift [Hz]
𝛼: 411 nm 𝛽: 436 nm 𝛾: 467 nm

Probe
Zeeman 0[40a] 0[0.6] pHz
Other +120[O(1)] +240[O(1)] +7,000[O(100)]

Leakage
369 nm +1,300[130a] +1,300[1a]
935 nm +0.4[0.04a] ±1, 000a[100a]
760 nm ±3, 300a[330a]

402 nm +30[10a]
Total +1,500[180a] +2,500a[280a] +10,300a[O(100)]

a upper bound on magnitude.

7.2.1 Probe beam-induced shift

The contribution of the probe beam is again divided into two parts: the shifts due

to the relatively close-detuned other Zeeman transitions while a Zeeman transition

is resonantly driven (Fig. 5-2) and far-detuned transitions in Yb+ ions other than

the clock transitions (see Fig. 3-1)

The shifts in 𝛼: 411 nm and 𝛽: 436 nm transitions are mainly from the Zee-

man transitions (before two symmetric transition frequencies are averaged; see Sec-

tion 7.2.1.1) due to their smaller detunings, while 𝛾: 467 nm transition is dominated

by the shift from the far-detuned other transitions due to the high power of probe

beam (see Table B.1) and yet much smaller Rabi frequency for the clock transition

compared to the 𝛼: 411 nm and 𝛽: 436 nm transitions (see Section 5.2).

The power of the probe beam was also actively stabilized only in the later ex-

periments for the 𝛾: 467 nm transition in this thesis work (see Section 4.2.3.1), while

it was not the case for the earlier measurements for the 𝛼: 411 nm and 𝛽: 436 nm

transitions in Ref. [4], causing bigger long-term drifts for the two transitions.

The effect of each case is analyzed in the following subsections.
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7.2.1.1 From other Zeeman components

While a Zeeman transition is driven, other closely detuned Zeeman transitions (see

Fig. 5-2) may be driven off-resonantly if the polarization and propagation direc-

tion of the probe beam meets the selection rules for the transitions (see 𝑅′ and 𝐵′

transitions in Fig. 5-2 and Appendix D). Ref. [4] elaborates the procedures and

provides the estimated absolute shifts for 𝛼: 411 nm and 𝛽: 436 nm transitions:

−1 kHz (−1.16 kHz) for 𝑅 transition and +1kHz (+1.16 kHz) for 𝐵 transition, for

the 𝛼: 411 nm (𝛽: 436 nm) clock transition. In the reference, it is not clear whether

the selection rules, the Zeeman transitions with the same ground Zeeman levels, and

the relative Rabi frequencies of the transitions for given probe beams’ polarization

and propagation directions were considered for the estimation. This thesis confirms

that it was indeed the case, considering the selection rules and relative peak heights

described in Appendix D. The drift in the probe’s polarization, which would change

the relative Rabi frequencies of the different Zeeman transitions, has been suppressed

by 50 dB by a Glan-Tayler calcite polarizer (see Section 4.2.3.1).

The average of the two Zeeman transitions’ frequencies as our measure of zero-

field transition frequency (see Section 5.3.4) will be highly close to zero. However,

the drift in the probe power or magnetic field between the measurements for different

Zeeman transitions reveals the underlying close-detuned AC Stark shift. This can

be regarded as the absolute systematic uncertainty for each isotope, which is also

the differential systematic uncertainty between different isotopes. While the mag-

netic field drift is measured to be <0.5% (see Section. 7.6.1), probe powers were

not actively stabilized for the 𝛼: 411 nm and 𝛽: 436 nm transitions, and thus the

conservative 3% bound on the drift over ∼5min between scans for different Zeeman

transitions (see Section 5.3.4), yielding <40Hz drifts for the both transitions.

The Rabi frequency for 𝛾: 467 nm transition was much smaller than 𝛼: 411 nm

and 𝛽: 436 nm, and only 0.6 nHz shift for each Zeeman transition was estimated

in Ref. [4]. Furthermore, the two Zeeman transitions were scanned in the same

scans at only 5 s period of the Zeeman transition switching (see Section 5.3.4). By
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conservatively bounding the drift of the probe beam power or magnetic field within

every 5 s to 0.1%, 0.6 pHz of the absolute and differential drifts are estimated.

7.2.1.2 From other Yb+ transitions

𝛾: 467 nm transition has extremely narrow linewidth (see Table B.1) and thus re-

quires a high optical power to be driven [51, 122, 138].10 It results in the significant

shifts by far-off-resonantly driving other transitions in Yb+ ions (e.g., 369 nm cool-

ing transition; see Fig. 3-1). The shift was measured to be 59(8)mHz/(mW/mm2)

[121], yielding 7 kHz absolute shift for the probe intensity used in this experiment

(see Table B.1). While the power of the probe beam has been actively stabilized

during 𝛾: 467 nm transition measurements (with the drift bound to 0.1%; see Sec-

tion 4.2.3.1), the trapped ion’s motion (see Section 4.2.3.4) results in the drift in the

probe intensity that the ion sees. Considering the ion’s few-µm long-term displace-

ment and the probe beam size (see Table B.1), a few % of beam intensity drift is

estimated, yielding 𝑂(100)Hz.

For the 𝛼: 411 nm and 𝛽: 436 nm transitions, much lower probe powers were used

(see Table B.1), and thus total shifts of +120Hz for 𝛼: 411 nm and +240Hz for

𝛽: 436 nm transitions are estimated in Ref. [4] (with corrected signs). From the few

% bound for probe beam intensity drift, 𝑂(1)Hz differential drifts are expected.

7.2.2 Non-probe light leakage

The AOM leakage of 369 nm cooling beam while a clock transition is interrogated

by the probe beam can shift the 2𝑆1/2 ground state and thus the clock transition’s

frequency (see Fig 3-1). The leakage is estimated to be ≲5 nW (from a <100µW,

≳20MHz red-detuned beam focused to a beam waist of 75 µm; see Table B.1), which

leads to a shift of +1.3 kHz (in Ref. [4] with corrected sign).

Similarly, the 100 nW leakage of the 935 nm beam shifts the excited 2𝐷3/2 state

of the 𝛽: 436 nm transition by maximum ±1 kHz [see Eq. (7.15) for the maximum
10Unless the probe beam has very narrow linewidth so that the transition can be coherently

driven [121].
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shift] through the rempumping transition (see Fig. 3-1). A less significant light shift

arises for 𝛼: 411 nm transitions, through the 1070 nm transition connecting the 2𝐷5/2

state to the 3𝐷[3/2]1/2 state. This shift is estimated to be +0.4Hz, contributing to

the drift by only ≈40mHz.

The 760 nm or 638 nm repumping transitions are not relevant to the 𝛼: 411 nm

and 𝛽: 436 nm transitions. It can, however, shift the 2𝐹7/2 state the in 𝛾: 467 nm

transition.

The shifts from other transitions or beams are negligible compared to the con-

tributions considered above. All the shifts above, total +1.3 kHz for 𝛼: 411 nm,

<2.3 kHz for 𝛽: 436 nm, and <4.6 kHz for 𝛾: 467 nm, are common-mode between

isotopes

The differential drifts are estimated from the drifts in the leakage beams’ inten-

sities. For the 369 nm beam’s shift in the 𝛾: 467 nm transition measurement, the

beam was blocked further by an optical shutter during the long probe pulse time

(see Section 6.1), and the shift from 369 nm stray beams at the ion is conservatively

bound to 0.1% of the shift estimated above: <1Hz. For all other cases, the intensity

drifts are bound to 10% during ≲2 hr of isotope switching time (see Section 5.3.2).

The optical power drift would, then, contribute to the long-term drifts by ≲130Hz,

≲230Hz, and ≲330Hz, for 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm, respectively.

Finally, a 402 nm laser beam was also used during the experiments for the 𝛼: 411 nm

and 𝛽: 436 nm transitions, to transfer-lock an optical cavity used for increasing the

ionization power during ion loading [105]. The associated long-term drift is estimated

to be <10Hz, assuming a maximum intensity drift of 30%. The 402 nm beam was

blocked during the experiments for the 𝛾: 467 nm transition.
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7.3 Shift in spectrum center by off-resonant excita-

tion

For 𝛼: 411 nm and 𝛽: 436 nm transitions, the measured Ramsey fringe from a Zeeman

transition of interest is perturbed by other Zeeman transitions that are being driven

off-resonantly at the same time [see Eq. (6.7)]. The observed signal can be either

a sum of different Ramsey fringes, or there may be quantum interference if the

off-resonant transitions share a state with the transition to be probed. Here the

magnitude of the frequency pulling is numerically estimated by fitting a sum of

different Ramsey fringes from off-resonantly driven Zeeman transitions (see 𝑅′ and

𝐵′ transitions and the 𝑔 factors in Fig. 5-2) with the associated detunings obtained

from the measured magnetic field ∼1.1G (see Section 7.6.1).

The maximum size of the pulling is∼20Hz for a detuning∼1MHz. The frequency

pullings have opposite signs for the symmetric 𝑅 and 𝐵 Zeeman transitions, and the

effect will cancel out after the measured frequencies of the Zeeman transitions are

averaged. The drift in the pulling due to magnetic field fluctuation can be significant

and 𝑂(10)Hz is taken as the upper bound of the effect.

For 𝛾: 467 nm transition, the effect of the off-resonant transition is estimated in a

similar way used in Section 7.1.1.1 [e.g., Eq. (7.6) with the ∼1MHz detuning of other

Zeeman transitions as 𝜔𝑡 and 𝜂2 = 𝑂(1) for the same order of peak heights), yielding

<1Hz shift. The measured 0.5% drift in the magnetic field (see Section 7.6.2) leads

2% of drift in the shift (i.e., <20mHz).

7.4 Blackbody-radiation Shift

The blackbody-radiation (BBR) shifts on the transitions probed here are well ap-

proximated by [146, 147]:

ℎΔ𝜈BBR = −1

2
𝛼
(𝑒𝑔)
0 (831.9 V/m)2

(︂
𝑇

300 K

)︂4

(1 + 𝜂) (7.17)
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where ℎ is the Plank constant, 𝛼(𝑒𝑔)
0 ≡ 𝛼

(𝑒)
0 − 𝛼

(𝑔)
0 is the difference in scalar polar-

izability between the atomic states in the transition of interest, and 𝜂 is dynamic

correction factor which is typically less than few percent [148].

The values of 𝛼(𝑒𝑔)
0 are calculated to be 7.8(5) × 10−40 Jm2V−2 [149] and mea-

sured to be 6.9(1.4) × 10−40 Jm2V−2 [150] for 𝛽: 436 nm transition. A similar value

is expected for 𝛼: 411 nm transition since the difference in orbital wavefunctions

of the 2𝐷3/2 and 2𝐷5/2 states is relativistically small (see Section 10.2). 1.3(6) ×

10−40 Jm2V−2 is the measured value for 𝛾: 467 nm transition [122], which is consis-

tent with a calculated value 1.93× 10−40 Jm2V−2 [151].

Using the typical temperature 𝑇 ≈ 293K in the laboratory, the BBR shifts are

estimated: Δ𝜈BBR ≈ −0.4Hz for the 𝛼 and the 𝛽 transitions and ≈−0.06Hz for the

𝛾 transition. The main source of a differential BBR shift in our experiment will be

temperature drifts. The temperature drift is conservatively bound to 3K over the

course of the IS measurement in this work, which yields a drift in Δ𝜈BBR of ≈ 15mHz

for the 𝛼 and 𝛽 transitions and ≈2.5mHz for the 𝛾 transition.

7.5 Micromotional Stark shift

If an ion is shifted off the RF null of the Paul trap by stray DC fields, the RF field

will induce Stark shift to the transitions to be probed. This shift is given by [152]:

ℎΔ𝜈 = −⟨𝐸
2⟩
2

(︂
Δ𝛼0 +

1

2
𝛼2(3 cos

2 𝛽 − 1)

[︂
3𝑚2

𝐽 − 𝐽(𝐽 + 1)

𝐽(2𝐽 − 1)

]︂)︂
(7.18)

where ℎ is the Plank constant, ⟨𝐸2⟩ is the mean-squared value of the electric field

experienced by the ion, 𝛽 is the angle between the electric field and the quantization

axis of the ion, and 𝛼
(𝑒𝑔)
0 = 𝛼

(𝑒)
0 − 𝛼

(𝑔)
0 is the difference in the scalar polarizabilities

between the ground and excited states of the transition. 𝛼(𝑒)
2 is the tensor polariz-

ability of the excited level (the 2𝑆1/2 ground state has zero tensor polarizability), and

𝐽 and 𝑚𝑗 are the angular-momentum quantum numbers for the excited state.

Eq. (32) in Ref. [112] gives an expression for the ⟨𝐸2⟩ of the RF field that an ion
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displaced from the RF null due to the stray DC electric field EDC experiences:

⟨𝐸2
𝑖 ⟩ ≃ 8

(︂
𝑞𝑖EDC · �̂�𝑖
2𝑎𝑖 + 𝑞2𝑖

)︂2

≃ 8

(︂
EDC · �̂�𝑖

𝑞𝑖

)︂2

(7.19)

The bound on the 𝐸DC, ≲500V/m used in Section 7.1.3, gives bound on ⟨𝐸2⟩ ≲

(10, 000V/m)2.

The values of the scalar and tensor polarizabilities are [𝛼
(𝑒𝑔)
0 , 𝛼

(𝑒)
2 ] =

[6.9(1.4),−13.6(2.2)] × 10−40 Jm2V−2 (measured) [150] and [7.8(5),−12.3(3)]×

10−40 Jm2V−2 (calculated) [149] for 𝛽: 436 nm transition, and similar values are ex-

pected for 𝛼: 411 nm transition (see Section 7.4). For 𝛾: 467 nm transition,

[1.3(6),−0.18(8)] × 10−40 Jm2V−2 were measured [122], which are consistent with

calculated values [1.93,−0.2]× 10−40 Jm2V−2 [151].

From all the above values for the polarizabilities and ⟨𝐸2⟩ ≈ (10, 000V/m)2,

the micromotional Stark shifts are estimated to be −72Hz ≲ Δ𝜈 ≲ −42Hz for the

𝛼: 411 nm, −100Hz ≲ Δ𝜈 ≲ 51Hz for the 𝛽: 436 nm, and −10Hz ≲ Δ𝜈 ≲ −9.5Hz

for the 𝛾: 467 nm transitions, between cos2 𝛽 = 0 to 1 (𝑚𝐽 = 3
2

for the excited state

of each clock transition; see Fig. 5-2). The values of the largest magnitude are taken

as the bounds on the shifts. As ⟨𝐸2⟩ is expected to drift between zero (at the RF

null) to ≲ (10, 000V/m)2 (at the maximum deviation from the RF null), the bounds

on the absolute shifts are also taken as the bounds on the differential drifts between

different isotopes.

7.6 Zeeman shift

7.6.1 First-order Zeeman shift

The drift in the separation of two Zeeman transitions’ frequencies (i.e., Zeeman split-

ting) was measured to be ≲0.5% during all the experiments with ∼1.1G magnetic

field (see Figs. 6-4, 6-8, and 6-12 for the splittings and drifts, and Fig. 5-2 for the 𝑅

and 𝐵 Zeeman transitions used and the associated 𝑔 factors). It implies that there are

typically <5mG magnetic field drift, which is expected from local subways or eleva-

153



tors in the building. The effect of the linear Zeeman shift is, however, suppressed by

the alternating or simultaneous measurements of two symmetric Zeeman transitions

and subsequent averaging of the transitions’ frequencies (see Section 5.3.4).

The time scale of the magnetic field drift was slow: ≳30min (i.e., ≲ 0.5%/30min

drift rate). Given that, for 𝛼: 411 nm and 𝛽: 436 nm transitions, of which the 𝑅 and

𝐵 symmetric Zeeman transitions were alternatively measured in every ∼5min (see

Section 5.3.4), <500Hz of the long-term drift is expected. For 𝛾: 467 nm transitions,

the Zeeman transitions were measured in the same scan with switching between the

transitions in every 5 s (see Section 5.3.4), and therefore the size of the drift was

<10Hz.

7.6.2 Second-order Zeeman shift

The second-order Zeeman shifts are calculated from the measured values of the coef-

ficients in literature, 350(1)mHz/µT2 [153] for 𝛼: 411 nm, 52.13(9)mHz/µT2 [138] for

𝛽: 436 nm, and −2.08(1)mHz/µT2 [138] for 𝛾: 467 nm transitions, yielding +4.2 kHz,

+630Hz, and −25Hz shifts, respectively, from the measured ∼1.1G magnetic field

(see Section 7.6.1). The <5mG long-term drift used in Section 7.6.1 gives the differ-

ential shifts of 42Hz, 6.3Hz, and 0.25Hz. It is important to note, however, that the

coefficients above were measured for 171Yb+ isotope with the hyperfine structure.

The quadratic Zeeman shift for spinless isotopes could be much smaller, possibly

by 3 orders of magnitude or more, due to the difference in the energy scales of the

fine structure (few tens of THz) and hyperfine structure (few to few tens of GHz).

Indeed, the coefficients on the order of a few tens of µHz/µT2 or smaller have been

reported for 40Ca+ [154] and 88Sr+ [155] ions. Therefore, the estimated absolute and

differential shifts above should be regarded as very generous upper bounds on their

magnitudes.
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7.7 Electric quadrupole shift

A frequency shift results from the interaction of the quadrupole moment of the

electronic state with electric field gradients from the trap [156, 157]:

ℎΔ𝜈quad ∼ Θ · ∇𝐸 (7.20)

where ℎ is the Plank constant, Θ is the quadrupole moments of a state in Yb+

ion, and ∇𝐸 is the electric field gradient. The quadrupole moments for the 2𝐷5/2

and 2𝐷3/2 states in 𝛼: 411 nm and 𝛽: 436 nm transitions have been calculated to be

3.116(15)𝑒𝑎20 and 2.068(12)𝑒𝑎20 (consistent with the measured value 2.08(11)𝑒𝑎20 [150]),

respectively [158], and measured to be −0.041(5)𝑒𝑎20 for 2𝐹7/2 state in 𝛾: 467 nm tran-

sition [122]. The 2𝑆1/2 ground state for all the clock transitions has zero quadrupole

moment.

Time-varying electric field gradients due to patch potentials on the chip trap

can lead to a differential shift between isotopes. The typical size and variation of

the electric field gradient ∇𝐸 is 𝑂(1)V/mm2 (see, e.g., Refs. [92, 154, 159] and

Section 7.4.2 in Ref. [160]), which would lead to a differential quadrupole shift of

𝑂(1)Hz for the 𝛼 and 𝛽 transitions and of order 𝑂(10)mHz for 𝛾 transition.

7.8 Gravitational redshift

The gravitational redshift shifts the light’s frequency travelling across the points with

gravitational potential difference [161, 162]:

𝜈(𝑅 + ℎ)

𝜈∞
=

(︂
1− 2𝐺𝑀

𝑐2(𝑅 + ℎ)

)︂−1/2

= 𝛼− 𝛼3 𝑔ℎ

𝑐2

[︂
1 +𝑂

(︂
ℎ

𝑅

)︂]︂
(7.21)

and thus
Δ𝜈

𝜈
≈ −𝑔Δℎ

𝑐2
(7.22)

where 𝑔 = 𝐺𝑀/𝑅2 = 9.807m/s2 is the earth’s gravitational acceleration, 𝑐 is the

speed of the light, and Δℎ is the height between the two points from the earth
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ground. 𝐺 is the gravitational constant, 𝑀 and 𝑅 are the mass and radius of the

earth, and 𝛼 ≡ (1− 2𝑔𝑅/𝑐2)−1/2 ≈ 1.

While the absolute size of the shift is arbitrary depending on the gravitational po-

tential difference between the atom and the observer (and thus zero value is assigned

for the absolute shift), the drift in positions of different parts in the apparatus, includ-

ing atoms, probe lasers, and the reference cavity, can cause drift in the measured

transition frequency. Considering the thermal expansion of the setup, a generous

bound of 1mm is given to such relative height changes, which would lead to a bound

on differential shift uncertainty: < 0.08mHz.

7.9 Absolute frequency stability of probe beam

The frequency of the probe beam at an ion is affected by the stability of the signal

sources that drive, e.g., EOMs and AOMs, offset in the laser frequency stabilization,

and the reference cavity modes to which the laser frequency is stabilized. Each effect

will be described in the following subsections.

7.9.1 Reference clock stability

The long-term drift in the probe frequency due to the finite stability of the master

clock that synchronizes all the relevant signal sources is estimated to be ≲5Hz as

described in Section 4.1.5.1.

7.9.2 Residual-amplitude-modulation-induced drift in stabi-

lized probe frequency

Residual amplitude modulation (RAM) induces the drift in the Pound-Drever-Hall

(PDH) stabilized laser frequency as introduced in Section 4.2.1. The residual long-

term shift after the RAM is actively stabilized is bound to be ±300Hz from the

measurement introduced in Section 4.2.1. The RAM was stabilized during only

𝛾: 467 nm transition measurements, however, and the RAM drift for 𝛼: 411 nm and
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𝛽: 436 nm transitions could be estimated only from the nonlinear drift in the mea-

sured zero-field frequencies over time: ∼±1 kHz (see Figs. 6-8 and 6-12).

7.9.3 Reference cavity mode stability

7.9.3.1 Temperature dependence

The temperature of the inner side of the vacuum chamber for the ULE reference

cavity was actively stabilized (see Section 4.2.2) and monitored while IS spectroscopy

experiments were running (Fig. 6-4). The monitored temperature occasionally shifted

by 0.002 °C, possibly due to the noise in the reading. Considering the temperature

gradient across the cavity from the measurement point and the uncertainty in the

measured zero-crossing temperature 𝑇𝑧𝑐, the long-term drift in the probe beams’

frequencies is bound to 40Hz as described in Section 4.2.2.

7.9.3.2 Transmission power dependence

The dependence of the reference cavity mode frequencies on the optical powers of

transmitted beams for PDH frequency stabilization (see Section 4.1.5.1) is inves-

tigated in Section 4.2.4. For earlier measurements for 𝛼: 411 nm and 𝛽: 436 nm

transitions, the transmission power was not actively stabilized, and thus the drift in

the powers is conservatively bound to 10% of the total power ∼40 µW. For 𝛾: 467 nm

transition, the power was actively stabilized at 24.9 µW, and the residual drift in the

stabilized power is conservatively bound to 0.1% (see Section 4.2.4). Using the bound

on the (doubled) cavity modes’ resonant frequency shift rate in Table 4.2, ≲80Hz for

the 𝛼: 411 nm and the 𝛽: 436 nm transitions, and ≲0.5Hz for the 𝛾: 467 nm transition

are obtained as the bounds on the long-term drift.

7.9.3.3 Nonlinear temporal drift of cavity mode frequency

A smooth, but nonlinear drift in a cavity mode’s resonant frequency over time was

reported in a system for measuring the absolute frequency of 𝛾: 467 nm transition, in

Ref. [123] (see Fig. 5 therein). A 934 nm beam was frequency-stabilized to a 10mm-
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long ULE cavity in the reference work, which is a very similar configuration to the

system in this thesis work (see Section 4.1.5.1). The drift rate was also measured

to be 0.50Hz/s in the reference, which is of the same order as the rate measured for

the reference cavity in this work: 0.13Hz/s (see Fig. 6-4).

In Ref. [123], the deviation of the drift from the linear tendency by 3.5Hz over

35,000 s, which implies 2.3 × 10−9Hz/s2 rate if the deviation is dominated by the

quadratic drift. It gives deviation from the linear drift by 0.14Hz during ≲2 hr of

isotope switching time (see 5.3.2), which would contribute to the differential shift.

The deviation would be even smaller if there are contributions from higher-order

drifts. Therefore, the differential shift from the nonlinear drift in the cavity modes

is estimated to be 𝑂(0.1)Hz.

7.10 AOM switching-induced phase chirp

Phase shifts in 𝜋
2
-pulses induced when an AOM switches the light are known to

cause systematic errors in transition frequencies measured via Ramsey spectroscopy

[163, 164] used for 𝛼: 411 nm and 𝛽: 436 nm transitions. Ref. [163] reported the

shift in transition frequency by 1.6 Hz when the pulse time 𝜏 = 1.5 µs and the pulse

separation time 𝑇 = 21.6 µs were used for 657 nm transition in neutral Ca atoms.

As the pulse time in our experiment is longer (which makes the effect smaller), the

interrogation time is of the same order of magnitude, and the wavelengths of the

probe beams are similar, the shift is expected to be 𝑂(1)Hz or smaller.

The phase instability is not relevant for 𝛾: 467 nm transition for which the inco-

herent transition rate has been measured instead (See Section 5.4).
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Part III

Search for New Physics
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Chapter 8

Search for new physics via King-plot

nonlinearity pattern

As introduced in Section 1.2.1, new physics has been probed by testing the linearity

of the measured ISs in Part II, mapped onto King plots. In this chapter, King plots

and the predicted linearity in the plots are introduced, and the idea of probing new

physics from the violation of the linearity due to new-physics effects is developed.

Refer to Chapter 2 for an entire overview of this part.

8.1 King plot and linearity

Isotope shifts (ISs), small differences in transition frequencies between different iso-

topes of an atomic species, have been an active research topic since at least the 1930s,

as a sensitive probe for atomic and nuclear structure [100, 165, 166, 167, 168, 169,

170, 171]. In particular, in 1963, W. H. King proposed a way to present measured

ISs in two-dimensional (2D) graphs called King plots, with an interesting general

property of the ISs mapped onto the graphs: all the points in a King plot lie on a

straight line [1, 172].

The way to construct a King plot is the following. It is required that the ISs

between different pairs of isotopes for two different transitions are available. A King

plot has two axes, one for the ISs for each transition. One pair of isotopes is then
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mapped as a point in the plot. As adding the two transitions’ ISs of more isotope

pairs, the King plot reveals a linear distribution in the plot.

In short, the reason behind the linearity is that there are two primary sources of

ISs in general, and each source is factorized into transition-dependent and indepen-

dent parts.

8.1.1 Field shift

One of the two contributions originates from the difference in the charge distributions

𝜌𝑁(r) in the nuclei between different isotopes, which is called field shift (FS). Given

that an atomic system’s (nonrelativistic) Hamiltonian is given as:1

𝐻 =
P2

𝑁

2𝑚𝑁

+
𝑍−𝐼∑︁
𝑖=1

[︃
P2

𝑒,𝑖

2𝑚𝑒

+ 𝑉 (r𝑖)

]︃
(8.1)

for an isotope, where P𝑁(𝑒,𝑖) and 𝑚𝑁(𝑒) are the momentum and mass of the nucleus

(𝑖th electron), r𝑖 = r𝑒,𝑖−r𝑁 is the relative position of 𝑖th electron to the nucleus, and

𝑍 − 𝐼 is the number of electrons in an 𝐼-ionized atom with atomic number 𝑍, the

interacting Hamiltonian that describes the difference in 𝜌𝑁(r) between two isotopes

(𝐴,𝐴′), labeled by their atomic mass numbers, is given as the following:2

𝐻𝐴𝐴′

FS =
𝑍−𝐼∑︁
𝑖=1

𝑉 𝐴𝐴′
(r𝑖) =

𝑍−𝐼∑︁
𝑖=1

∫︁ ∞

0

dr′
(−𝑒)𝜌𝐴𝐴′

𝑁 (r′)

4𝜋 |r𝑖 − r′|
(8.2)

where the subscrips 𝐴𝐴′ refers to the difference in the variables between the two

isotopes.3 The Seltzer expansion expresses the shift (in frequency) due to the inter-

action Hamiltonian in the first-order perturbation theory as a series of radial moment

differences ⟨𝑟𝑘⟩𝐴𝐴′ of the 𝜌𝑁(r) [168]:

⟨𝐻𝐴𝐴′

FS ⟩Ψ
ℎ

=
∞∑︁
𝑘=0

𝐹
(𝑘)
Ψ ⟨𝑟

𝑘+2⟩𝐴𝐴′
(8.3)

1 The relativistic description of FS and MS can be found in, e.g., Refs. [169, 173].
2in Lorentz-Heaviside units with rationalized charges (i.e., the 4𝜋 factor).
3The convention of sign is as follows: 𝑋𝐴𝐴′

= 𝑋𝐴 −𝑋𝐴′
.
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for an electrons’ state Ψ, where ℎ is the Plank constant,

⟨𝑟𝑘⟩𝐴𝐴′
= ⟨𝑟𝑘⟩𝐴 − ⟨𝑟𝑘⟩𝐴′

=

∫︁
dr 𝑟𝑘𝜌𝐴𝑁(r)−

∫︁
dr 𝑟𝑘𝜌𝐴

′

𝑁 (r) =

∫︁
dr 𝑟𝑘𝜌𝐴𝐴′

𝑁 (r),
(8.4)

and 𝐹 (𝑘)
Ψ with the lowest odd order appears at 𝑘 = 7 or higher due to the relativistic

effects [169].4 Naturally, the FS for a transition 𝜒 from the state Ψ
(𝑖)
𝜒 to Ψ

(𝑓)
𝜒 is given

by

(𝜈FS)
𝐴𝐴′

𝜒 =
⟨𝐻𝐴𝐴′

FS ⟩Ψ(𝑓)
𝜒
− ⟨𝐻𝐴𝐴′

FS ⟩Ψ(𝑖)
𝜒

ℎ
=

∞∑︁
𝑘=0

𝐹 (𝑘)
𝜒 ⟨𝑟𝑘+2⟩𝐴𝐴′

(8.5)

where subscript 𝜒 indicates the difference in the quantities for Ψ(𝑓)
𝜒 and Ψ

(𝑖)
𝜒 electronic

states, and thus 𝐹 (𝑘)
𝜒 are field-shift electronic factors for the 𝜒 transition. As the

contribution gets smaller for higher-order terms, the FS is given by 𝐹𝜒⟨𝑟2⟩𝐴𝐴′ with

the omitted (0) superscript, coupled to the difference in the mean-squared charge

radius of the nuclei.

8.1.2 Mass shift

Another significant source of ISs is the difference in the nuclear masses between

isotopes, resulting in mass shift (MS). The (total) mass shift can be, again, divided

into two parts, normal mass shift (NMS), due to the difference in the reduced masses

of electrons in the frames of nuclei, and specific mass shift (SMS) originating from

the kinetic correlations between electrons [1].5 The distinction is not relevant for

King linearity, however, as both effects are proportional to the same nuclear factors

as below:6

𝐻𝐴𝐴′

MS =
P2

𝑁

2
𝜇𝐴𝐴′

=

(︃
𝑍−𝐼∑︁
𝑖=0

P2
𝑒,𝑖

2

)︃
𝜇𝐴𝐴′

⏟  ⏞  
NMS

+

(︃∑︁
𝑖 ̸=𝑗

P𝑒,𝑖 ·P𝑒,𝑗

2

)︃
𝜇𝐴𝐴′

⏟  ⏞  
SMS

(8.6)

4𝐹 (0) and 𝐹 (2) are defined as 𝐹 and 𝐺(4), respectively, throughout this thesis for convenience.
5The division was first introduced in Ref. [165] according to Ref. [174]
6See Footnote 1.
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where P𝑁 +
∑︀𝑍−𝐼

𝑖=0 P𝑒,𝑖 = 0 in the frame of the atom and 𝜇𝐴𝐴′
= 1/𝑚𝐴

𝑁 − 1/𝑚𝐴′
𝑁 is

the inverse-mass difference of the nuclei.

As in Section 8.1.1, the MS of a transition 𝜒, in the first-order perturbation

theory, is given by

(𝜈MS)
𝐴𝐴′

𝜒 = 𝐾𝜒𝜇
𝐴𝐴′

(8.7)

where 𝐾𝜒 is the difference in ⟨(
∑︀𝑍−𝐼

𝑖=0 P𝑒,𝑖)
2⟩/(2ℎ) between the initial and final states

of the transition.

In general, the MSs dominate over the FSs for light atomic species, and the FSs

take over the MSs as the atomic number increases; the FSs are at least 7 times bigger

than MSs for Yb, in the transitions of interest in this work.

8.1.3 Electronic and nuclear factorization

It is important to notice that each term in the expression for ISs is factorized into the

corresponding electronic and nuclear factors. 𝐹𝜒 and 𝐾𝜒 depend only on the elec-

tronic properties, related to the electrons’ wavefunction at the origin [see Eq. (15.1)]

and momenta, respectively, and thus carry only the subscript 𝜒 which is the label

for electronic transitions. On the other hand, ⟨𝑟2⟩𝐴𝐴′ and 𝜇𝐴𝐴′ are solely determined

by nuclei, and carry only the superscript 𝐴𝐴′ for the isotope pair, which is a suf-

ficient label for nuclear differences. This factorization turns out to be true for any

contributions to ISs that will be introduced later in this thesis. For instance, each

term in the higher-order FS in Eq. (8.5) is a product of the derivatives of electronic

wavefunctions at the origin and the corresponding order of radial charge moment

[see Eq. (15.1)].

A general perspective on the expansion of ISs and the factorization is presented

in Section 11.6.

8.1.4 Linearity from shared nuclear factor

Due to the factorization, an important consequence appears while the IS measure-

ments are extended in one direction: increasing the number of transitions 𝜒, 𝜅, 𝜂,

163



and so on of which the ISs are to be measured. For two transitions 𝜒 and 𝜅, the

total isotope shifts 𝜈𝐴𝐴′
𝜒,𝜅 are given by

𝜈𝐴𝐴′

𝜒 = 𝐹𝜒⟨𝑟2⟩𝐴𝐴′
+𝐾𝜒𝜇

𝐴𝐴′

𝜈𝐴𝐴′

𝜅 = 𝐹𝜅⟨𝑟2⟩𝐴𝐴′
+𝐾𝜅𝜇

𝐴𝐴′
.

(8.8)

While the electronic factors 𝐹𝜒,𝜅 and 𝐾𝜒,𝜅 depend on the transitions, the nuclear

factors ⟨𝑟2⟩𝐴𝐴′ and 𝜇𝐴𝐴′ are in common. It is natural, then, to solve the system of

equations to remove the shared variables in the equations. In this case, in particular,

𝜇𝐴𝐴′ are generally known with high precision thanks to the atomic mass spectrometry

[20, 26, 57], and therefore, the two equations are solved to remove relatively poorly

measured ⟨𝑟2⟩𝐴𝐴′ in the expression:

𝜈𝐴𝐴′

𝜅 = 𝑓𝜅𝜒𝜈
𝐴𝐴′

𝜒 +𝐾𝜅𝜒𝜇
𝐴𝐴′

(8.9)

where 𝑓𝜅𝜒 = 𝐹𝜅/𝐹𝜒 and 𝐾𝜅𝜒 = 𝐾𝜅 − 𝑓𝜅𝜒𝐾𝜒 are two-transition electronic factors.

Finally, to reduce the geometric dimension of the expression, the equation is divided

by one of the known parameters. The standard choice of normalization parameter is

𝜇𝐴𝐴′ and the expression is reduced to

𝜈
𝐴𝐴′

𝜅 = 𝑓𝜅𝜒𝜈
𝐴𝐴′

𝜒 +𝐾𝜅𝜒 (8.10)

where the double overlines show that the variables are normalized by 𝜇𝐴𝐴′ .

The last equation immediately shows the linearity in (inverse-mass-normalized)

King plots. If the normalized ISs in two transitions are taken as two axes, and the

ISs for different pairs of isotopes,7 the points should show linear distribution with

𝑓𝜅𝜒 as the slope and 𝐾𝜅𝜒 as the 𝑦-intercept [see, e.g., the inset in Fig. 8-1(a)].

This thesis work has alternatively proposed King plots that are normalization by

𝜈𝐴𝐴′
𝜒 :

𝜈𝐴𝐴′

𝜅 = 𝑓𝜅𝜒 +𝐾𝜅𝜒𝜇
𝐴𝐴′

(8.11)
7e.g., (𝐴,𝐴′), (𝐴′, 𝐴′′), (𝐴′′, 𝐴′′′) and so on for nearest-neighbor pairing
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Figure 8-1: (a) Standard King plot [Eq. (8.10)] for the 𝛼: 411 nm and 𝛽: 436 nm
transitions for pairs of neighboring even Yb+ isotopes in Ref. [5]. The inset shows
the full King plot. The main figure is zoomed into the data points by a factor of
106. A deviation from linearity (red line) by 3 standard deviations 𝜎 is observed.
The larger diagonal uncertainty for the (168, 170) pair is due to the larger mass
uncertainty for the 168Yb+ isotope by the time that the result was published [5, 6, 7].
(b) Frequency-normalized King plot [Eq. (8.11)] and residuals. The error bars and
error ellipses indicate 1𝜎 measurement uncertainties.
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where the overlines show the normalization with 𝜈𝐴𝐴′
𝜒 . The frequency-normalized

King plots have been used throughout this thesis, as discussed in Section 11.3 [see,

e.g., Fig. 8-1(b)].

8.2 Violation of King-plot linearity

If there is more than two contributions in ISs with an additional source 𝑋𝜒𝑥
𝐴𝐴′ :

𝜈𝐴𝐴′

𝜒 = 𝐹𝜒⟨𝑟2⟩𝐴𝐴′
+𝐾𝜒𝜇

𝐴𝐴′
+𝑋𝜒𝑥

𝐴𝐴′
, (8.12)

the linear relation between two transitions does not hold anymore:

𝜈𝐴𝐴′

𝜅 = 𝑓𝜅𝜒 +𝐾𝜅𝜒𝜇
𝐴𝐴′

+𝑋𝜅𝜒𝑥
𝐴𝐴′

(8.13)

where 𝑋𝜅𝜒 = 𝑋𝜅−𝑓𝜅𝜒𝑋𝜒, unless the 𝑋𝜅𝜒 vanishes or the 𝑥𝐴𝐴′ is a linear combination

of ⟨𝑟2⟩𝐴𝐴′ and 𝜇𝐴𝐴′ for arbitrary isotope pairs 𝐴𝐴′ (i.e., x can be decomposed with

⟨r2⟩ and 𝜇; see Section 8.3.1).

Adding all the contributions described in the following subsections, the total ISs

are given by:
𝜈𝐴𝐴′

𝜒 =𝐹𝜒𝛿⟨𝑟2⟩𝐴𝐴′
+𝐾𝜒𝜇

𝐴𝐴′

+𝐺(4)
𝜒 ⟨𝑟4⟩𝐴𝐴′

+𝐺(2)
𝜒 [⟨𝑟2⟩2]𝐴𝐴′

+ · · ·

+ 𝜐𝑛𝑒𝐷𝜒𝑎
𝐴𝐴′

(8.14)

with the terms in the order of the expected sizes of the contributions. The corre-

sponding frequency-normalized King-plot relation is:

𝜈𝐴𝐴′

𝜅 =𝑓𝜅𝜒 +𝐾𝜅𝜒𝜇
𝐴𝐴′

+𝐺(4)
𝜅𝜒⟨𝑟4⟩

𝐴𝐴′

+𝐺(2)
𝜅𝜒 [⟨𝑟2⟩2]

𝐴𝐴′

+ · · ·

+ 𝜐𝑛𝑒𝐷𝜅𝜒𝑎
𝐴𝐴′

.

(8.15)
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8.2.1 New boson 𝜑

The most important possible contribution for the purpose of this work is the shift

due to the new-boson coupling between neutrons in nuclei and electrons in atoms:

𝑉 𝜑
𝑛𝑒(𝑟) = ℏ𝑐 (−1)𝑠+1 𝑦𝑒𝑦𝑛

4𝜋ℏ𝑐⏟  ⏞  
≡𝜐𝑛𝑒

𝑒−𝑟/𝜆𝜑
𝑐

𝑟
(8.16)

from Eq. (1.1). The new field from a nucleus overlaps with the extranuclear wave-

function of electrons and shifts ISs by (𝜈𝜑)
𝐴𝐴′
𝜒 = 𝜐𝑛𝑒𝐷𝜒𝑎

𝐴𝐴′ where 𝑎𝐴𝐴′
= 𝐴 − 𝐴′ is

the difference in the number of neutrons [(see Eqs. (15.2) and (15.3)].

As the mass of a boson 𝑚𝜑 increases (i.e., the corresponding reduced Compton

wavelength 𝜆𝜑𝑐 decreases), the overlap of the Yukawa-like potential and electronic

wavefunction reduces, which results in the decreasing sensitivity 𝐷𝜒 of an atom as a

probe for the new boson (for given coupling constants 𝑦𝑛 and 𝑦𝑒) (see Figs. 1-2 and

11-1). If 𝑚𝜑 is bigger than 100MeV/c2 and 𝜆𝜑𝑐 becomes comparable to (or shorter

than) nuclear sizes (𝑂(10) fm), the most of the overlap happens inside the nuclei

where the new field depend on the neutrons’ distributions in the nucleus, which are

not precisely known in general (e.g., neutron skin [175]).

It is also noteworthy that 𝐷𝜅𝜒 = 𝐷𝜒(𝑑𝜅𝜒 − 𝑓𝜅𝜒) occasionally vanishes (i.e., the

ratio 𝑑𝜅𝜒 ≡ 𝐷𝜅/𝐷𝜒 becomes the same to the field-shift factors’ ratio 𝑓𝜅𝜒) at certain

boson masses 𝑚𝜑, shown up as dips in the atom’s sensitivity (i.e., peaks in, e.g.,

Figs. 1-2 and 11-1). The intuition behind such cases is that the new-boson shifts

occasionally move the points along the King line [i.e., (𝜈𝜑)𝐴𝐴′
𝜅 /(𝜈𝜑)

𝐴𝐴′
𝜒 = 𝑑𝜅𝜒 = 𝑓𝜅𝜒:

the slope of the line], which do not cause the violation of King linearity.

8.2.2 Higher-order Standard-Model isotope shifts

Unfortunately, hypothetical effects of physics beyond the Standard Model (SM) is not

the only additional contributions to ISs. An example is already described in Eq. (8.5):

higher-order FSs (𝑘 > 0) that capture particular shapes of the nuclear charge dis-

tributions, including fourth-moment FS (FFS) 𝐺(4)
𝜒 ⟨𝑟4⟩𝐴𝐴′ , in the first-order pertur-
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bation theory. The higher-order perturbation theory, which takes account of the

change in wavefunctions due to the interaction Hamiltonian, brings the higher-order

SM corrections of another kind: e.g., quadratic FS (QFS) 𝐺(2)
𝜒 [⟨𝑟2⟩2]𝐴𝐴′ , quadratic

MS 𝐿𝜒[𝜇
2]𝐴𝐴′ , and field-mass shift 𝐶𝜒[⟨𝑟2⟩𝜇]𝐴𝐴′ , where [𝑥]𝐴𝐴′ ≡ 𝑥𝐴𝐴0 − 𝑥𝐴′𝐴0 with

irrelevant choice of a reference isotope 𝐴0 [5] from which the perturbation occurs

(see Section 11.6).

Considering the results from atomic and nuclear calculations (see Sections 11.1.1

and 11.1.2) and the fact that FSs are bigger than MSs for Yb, the sizes of the

contributions are expected to be ordered as in Eq. (8.15) except for the hypothetical

contribution from new boson 𝜐𝑛𝑒𝐷𝜒𝑎
𝐴𝐴′ .

8.3 Pattern analysis: revealing the origin of King

nonlinearity

Figure 8-1 shows the first experimental evidence of King nonlinearity for new-physics

search [5]. As the evidence started to be obtained, the physical origin of the violation

had to be identified. This thesis work has proposed that extending IS measurements

in another direction, increasing the number of isotope pairs (𝐴,𝐴′), in addition to

the number of transitions (see Section 8.3.4), can provide crucial information on the

sources of the nonlinearity.

At least three points (i.e., three isotope pairs) in a King plot are required to

test the (non)linearity of the points’ distribution. On the other hand, at least 𝑛+ 1

isotope should be available for the IS measurement to obtain 𝑛 independent isotope

pairs (see Section 11.5). Therefore, at least 4 isotopes are required for the linearity

test.

However, the test with three points can show only if King nonlinearity exists or

not. Once the nonlinearity is observed, it would not be possible to determine whether

it is from new physics, unless the sizes of all the higher-order SM corrections are

exhaustively and accurately investigated, which requires precise information on both
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atomic and nuclear structures of the atom.

A solution for the problem starts from the observation that there are infinitely

many different possible shapes of the residuals when the least-squares (�̂�2) fit is per-

formed for more than 4 points in a 2D plane. For instance, Yb has 5 observationally

stable isotopes (i.e., 4 King-plot points) with zero nuclear spins (to avoid hyperfine

structures; see Section 19.2.2), and Fig. 8-1(a) shows a zigzag shape (− + −+) of

the observed residuals, but it could be instead a curved, bowline shape (− + +−)

of the same overall scale.8

The most essential idea here is that not only the size but also the shape of the

pattern should be predictable for a particular source of nonlinearity. By comparing

observed nonlinearities with the predicted pattern shapes from different possible

sources, the dominant contribution might be pointed out even in the case that the

size of the contribution is unknown (e.g., new physics). Moreover, they are the

isotope pairs that determine the relative positions of the points in the King plot.

Therefore, the shape of the pattern is determined only by isotope-dependent nuclear

terms (e.g., 𝑎𝐴𝐴′ and ⟨𝑟4⟩𝐴𝐴′) while the electronic factors such as 𝜐𝑛𝑒𝐷𝜅𝜒 and 𝐺
(4)
𝜅𝜒

affect the overall signs and magnitudes of the contributions [see Eq. (8.15)]. This

point is essential for new-physics search as the associated nuclear parameter (e.g.,

neutron number difference 𝑎𝐴𝐴′ for the new-boson contribution) is independent of

the new physics’ properties (e.g., 𝜐𝑛𝑒) which would be unknown by its definition.

8.3.1 Vector representation of King plot and nonlinearity

To develop the methodology of the pattern analysis, an alternative approach for

investigating the King nonlinearity has been developed: vector analysis.

The following vector notation for isotope-pair-dependent parameters is defined:

x = (𝑥𝐴1𝐴′
1 , 𝑥𝐴2𝐴′

2 , 𝑥𝐴3𝐴′
3 , 𝑥𝐴4𝐴′

4) ≡ (𝑥1, 𝑥2, 𝑥3, 𝑥4) (8.17)
8Note that this is not the case if there are only three points in a King plot; regardless of the

overall scale, the ratio of the points’ deviations from the �̂�2-fit line is invariant under small changes
in their position, once the positions of the points are largely determined by the ISs 𝜈𝐴𝐴′

𝜒 and 𝜈𝐴𝐴′

𝜅

and the inverse-mass-difference factor 𝜇𝐴𝐴′
.
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where 𝐴𝑘𝐴
′
𝑘 are the isotopes in the 𝑘-th pair. This notation provides an alternative

view of King plot: if the King plot is linear, then the vector with components 𝜈𝐴𝐴′
𝜅 =

𝜈𝐴𝐴′
𝜅 /𝜈𝐴𝐴′

𝜏 resides in the plane that two King vectors 1 and 𝜇 define, with 𝑓𝜅𝜏 and

𝐾𝜅𝜏 as the coefficient of the vectors, respectively [see Eq. (8.15)]:

𝜈𝜅 = 𝑓𝜅𝜏1+𝐾𝜅𝜏𝜇. (8.18)

Since the vectors are four-dimensional (4D) for the 5 stable, even-𝐴 Yb isotopes, one

can define two vectors Λ̂+ and Λ̂− (named nonlinearity vectors) that span the space

orthogonal to the King plane. When measured ISs 𝜈𝐴𝐴′
𝜅 do not exactly lie in the King

plane, the out-of-plane component can be decomposed along the nonlinearity vectors

with components 𝜆+ and 𝜆−. In other words, the King plane and nonlinearity plane

corresponds to the best fit and the remaining residuals of the ordinary-least-square

(OLS) fit in the King plot, respectively:

𝜈𝜅 = 𝑓𝜅𝜏1+𝐾𝜅𝜏𝜇+ 𝜆+Λ̂+ + 𝜆−Λ̂−. (8.19)

Furthermore, the nonlinearity vectors Λ̂± decompose the observed nonlinearity to

𝜆 = (𝜆+, 𝜆−) components, reducing the geometric dimension of the nonlinearity

from 4D to 2D.

There is an infinite number of ways to define nonlinearity vectors, and this thesis

suggests the following unit vectors:

Λ̂+ ∝ (𝜇3 − 𝜇2, 𝜇1 − 𝜇4, 𝜇4 − 𝜇1, 𝜇2 − 𝜇3)

Λ̂− ∝ (𝜇4 − 𝜇2, 𝜇1 − 𝜇3, 𝜇2 − 𝜇4, 𝜇3 − 𝜇1)
(8.20)

where 𝜇𝑘 ≡ 𝜇𝐴𝑘𝐴
′
𝑘 . The proposed nonlinearity vectors have several advantages: They

have fairly simple, linear forms while being orthogonal to the King vectors, which

simplify the error propagation in the measured quantities 𝜇𝐴𝐴′ , 𝜈𝐴𝐴′
𝜏 , and 𝜈𝐴𝐴′

𝜅 to Λ±

and 𝜆±. Furthermore, the Λ̂+ and Λ̂− vectors represent zigzag (+ –+–) and curved

(+– –+) patterns of nonlinearity if 𝜇1 to 𝜇4 are in increasing order (i.e., 𝜇𝑘 < 𝜇𝑘+1),
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Figure 8-2: (a) Nonlinearity measure (𝜁+, 𝜁−) for next-neighbor isotope pairs (see
Section 11.7) in Ref. [5]. The red shaded region indicates the 95% confidence in-
terval from our data. The green solid line and the blue dashed line indicate the
required ratio 𝜁−/𝜁+ if the nonlinearity is purely due to a new boson 𝜑 and the QFS,
respectively. (b) Nonlinearity measure along the axes of a new boson (𝑥-axis) and
the QFS (𝑦-axis).

replacing the role of 𝜁± = (1,−1,±1,∓1) in the earlier work of the thesis [5] (the

choice of 𝜁± vs Λ± is discussed in Section 11.7).

8.3.2 Nonlinearity map

As the nonlinearity vectors provide 2D representation 𝜆± of 4-point nonlinearities, the

values (𝜆+, 𝜆−) can be mapped onto a 2D graph, named nonlinearity map, as (𝑥, 𝑦)

coordinates. Figure 8-2(a) shows the graphical representation in the earlier thesis

work [5]. The observed nonlinearity in the King plot for 𝛼: 411 nm and 𝛽: 436 nm

transitions is mapped as an ellipse rather than a point, representing the uncertainties

in the measured ISs.
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8.3.3 Pattern shape prediction for particular sources

An important feature of the nonlinearity map is that the shape of a pattern is shown

as a straight line in the nonlinearity map that crosses the origin,9, with a slope given

by the ratio 𝜆−/𝜆+ of the two basis patterns. The direction is given by decomposing

the associated nuclear factor of a nonlinearity source (e.g., [⟨r2⟩2] for QFS) with

Λ̂±, and it also set the scale or unit along the line; when the associated electronic

factor (e.g. 𝐺(2)
𝜅𝜏 ) is multiplied to [⟨r2⟩2], then the resulting nonlinearity coefficient

will have the unit of normalized ISs 𝜈𝜅.10 11 Given that, each source’s line can serve

as an axis with the unit of the associated electronic factor (e.g., kHz/fm4 for 𝐺(2)
𝜅𝜏 ).

As an application of the idea, the measured IS nonlinearity is decomposed with the

two axes for the QFS and the new boson 𝜑 in Fig. 8-2(b).

8.3.4 Pattern shape comparison as a probe for next-order

sources

Extending the idea of having more transitions in Section 8.1.4 further, another in-

teresting test has been proposed in this thesis work [8]. If the ISs are measured for

𝑛 transitions 𝜏 , 𝜅, 𝜂, and so on, then the transitions 𝜏 can be taken as a reference

transition, and all the other transitions can be paired with the reference transition:

(𝜏, 𝜅), (𝜏, 𝜂), and so on. Subsequently, the King nonlinearity pattern for each of the

𝑛− 1 transition pairs can be obtained and compared.

In particular, if there is only one underlying source for the nonlinearities, namely

𝑋x, while the overall magnitudes and signs of the patterns may differ by the differ-

ence in 𝑋𝜅𝜏 , 𝑋𝜂𝜏 , and so on, the shapes of the patterns should be the same as they

are determined by the nuclear factor x. It implies that the patterns mapped onto

the nonlinearity map 𝜆± should lie on the same line that crosses the origin. If it is

not the case, however, there is the only possible explanation: there is at least one

another nonlinearity source, 𝑌 y (y ∦ x), and different ratios 𝑌/𝑋 of the two elec-
9when there are no other nonlinearity sources

10Dimensionless for frequency-normalized King plots.
11Recall that Λ̂± are dimensionless unit vectors.
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tronic factors between different transitions pairs make total nonlinearities 𝑋x+ 𝑌 y

have different directions from the origin in the nonlinearity map.

It shows that comparing the shapes of the patterns from different transition pairs

serves as a test for the minimum numbers of the nonlinearity sources in an atomic

system. The test can be done by fitting the points 𝜆(𝜏)
𝜅 =

(︁
(𝜆+)

(𝜏)
𝜅 , (𝜆−)

(𝜏)
𝜅

)︁
, 𝜆(𝜏)

𝜂 ,

and so on12 in the nonlinearity map with a line that crosses the origin (see, e.g.,

Fig. 10-3).

This new test is interesting in two different ways. First, the test is again for

linearity in a useful graph, just as the King-plot linearity test in the beginning.

More importantly, the test is purely experimental; it is not necessary to know the

physical origin or 𝜆−/𝜆+ ratios associated with the sources 𝑋x or 𝑌 y, and all that

needs to be done is to compare patterns from measured ISs.

It can be shown that testing whether there are at most 𝑛 sources or more can be

done with 𝑛 + 2 transitions and 𝑛 + 3 isotope pairs (i.e. 𝑛 + 4 isotopes) in general,

which is, in fact, straightforward to understand in the context of Section 8.4. Yb+

alone has 3 transitions and 5 stable isotopes, so it just meets the requirements for the

test at the minimum level: testing if there is only one nonlinearity source or more.

8.4 𝑛-dimensional King plot

An alternative way to accommodate more than two transitions is to generalize King

plots for higher-dimension [82, 176]. For three transitions 𝜒, 𝜅, 𝜂, for instance, with

two nonlinearity sources 𝑋𝛼𝑥
𝐴𝐴′ ≫ 𝑌𝛼𝑦

𝐴𝐴′ :

𝜈𝐴𝐴′

𝜒,𝜅,𝜂 = 𝐹𝜒,𝜅,𝜂⟨𝑟2⟩𝐴𝐴′
+𝐾𝜒,𝜅,𝜂𝜇

𝐴𝐴′
+𝑋𝜒,𝜅,𝜂𝑥

𝐴𝐴′
+ 𝑌𝜒,𝜅,𝜂𝑦

𝐴𝐴′
(8.21)

12𝜆± for nonlinearity in King plot for transition 𝜅 (in 𝑦 axis) paired with reference transition 𝜏

(in 𝑥 axis). 𝜆𝜅𝜏 ≡ 𝜆(𝜏)
𝜅 might be a useful alternative notation.
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can be expressed as⎡⎢⎢⎢⎣
𝜈𝐴𝐴′
𝜒

𝜈𝐴𝐴′
𝜅

𝜈𝐴𝐴′
𝜂

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣
𝑌𝜒

𝑌𝜅

𝑌𝜂

⎤⎥⎥⎥⎦ 𝑦𝐴𝐴′
=

⎡⎢⎢⎢⎣
𝐾𝜒 𝐹𝜒 𝑋𝜒

𝐾𝜅 𝐹𝜅 𝑋𝜅

𝐾𝜂 𝐹𝜂 𝑋𝜂

⎤⎥⎥⎥⎦
⏟  ⏞  

𝑇

⎡⎢⎢⎢⎣
𝜇𝐴𝐴′

⟨𝑟2⟩𝐴𝐴′

𝑥𝐴𝐴′

⎤⎥⎥⎥⎦ (8.22)

and the solution for 𝜇𝐴𝐴′ is expressed as:

𝜇𝐴𝐴′
=
∑︁

𝜄=𝜒,𝜅,𝜂

(︀
𝑇−1

)︀
1𝜄

(︁
𝜈𝐴𝐴′

𝜄 − 𝑌𝜄𝑦𝐴𝐴′
)︁
. (8.23)

By rearranging Eq. (8.23), the expression for inverse-mass-normalized three-dimensional

(3D) King plots is obtained as follows:

𝜈
𝐴𝐴′

𝜂 = 𝐾𝜂𝜅𝜒 + 𝑓𝜂𝜅𝜒𝜈
𝐴𝐴′

𝜒 + 𝑓𝜂𝜒𝜅𝜈
𝐴𝐴′

𝜅 + 𝑌𝜂𝜅𝜒𝑦
𝐴𝐴′

(8.24)

where 𝑧𝐴𝐴′
≡ 𝑧𝐴𝐴′

/𝜇𝐴𝐴′ (𝑧 ∈ {𝜈𝜒, 𝜈𝜅, 𝜈𝜂, 𝑦}) are inverse-mass-normalized quantities

(see Section 8.1.4),

𝑓𝜂𝜅𝜒 =

𝐹𝜂

𝐹𝜅
− 𝑋𝜂

𝑋𝜅

𝐹𝜒

𝐹𝜅
− 𝑋𝜒

𝑋𝜅

=
𝑋𝜂𝜅

𝑋𝜒𝜅

and (8.25)

𝑓𝜂𝜒𝜅 =

𝐹𝜂

𝐹𝜒
− 𝑋𝜂

𝑋𝜒

𝐹𝜅

𝐹𝜒
− 𝑋𝜅

𝑋𝜒

=
𝑋𝜂𝜒

𝑋𝜅𝜒

(8.26)

are the slopes of the plane in 3D the King plot along the axes corresponding to the

transitions 𝜒 and 𝜅, respectively,

𝑍𝜂𝜅𝜒 = 𝑍𝜂 − 𝑓𝜂𝜅𝜒𝑍𝜒 − 𝑓𝜂𝜒𝜅𝑍𝜅

= 𝑍𝜂𝜒 −
𝑋𝜂𝜒

𝑋𝜅𝜒

𝑍𝜅𝜒

= 𝑍𝜅𝜒(𝑧𝜂𝜒𝜅 − 𝑓𝜂𝜒𝜅)

(8.27)

where 𝑍 = 𝐾,𝑌 are the 𝑧-intercept of the plane and the electronic factor associated

with the nonlinearity source 𝑦𝐴𝐴′ , respectively, and 𝑧𝜂𝜒𝜅 ≡ 𝑧𝜂𝜒/𝑧𝜅𝜒.
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The 3D King plot has two related effects. The leading-order nonlinearity nuclear

source 𝑥𝐴𝐴′ disappears in Eq. (8.24). It is because the three equations in Eq. (8.22

are solved to remove two shared unknowns ⟨𝑟2⟩𝐴𝐴′ and 𝑥𝐴𝐴′ , just as a 2D King plot is

obtained by solving two equations for one unknown ⟨𝑟2⟩𝐴𝐴′ . As result, there is only

one source of nonlinearity in the 2D King plots (namely 𝑋𝜒𝑥
𝐴𝐴′) if all the points in

the 3D King plot lie in a plane, barring the case that y can be decomposed to ⟨r2⟩,

𝜇, and x (see Section 8.3.1 for the vector notation) or 𝑌𝜒, 𝑌𝜅, and 𝑌𝜂 cancel out in

𝑌𝜂𝜅𝜒. Therefore, fitting the points in the 3D King plot with a linear plane serves as

a test if there are only one or more contributions to the ISs besides the FS and the

MS (see, e.g., Fig. 10-6). At least 4 points in the 3D King plot (i.e., 5 isotopes) are

required to test their King planarity. It is straightforward to generalize the results for

𝑛 transition, with which an 𝑛-dimensional (𝑛D) King plot can be formed, (𝑛− 1)D

hyperplanarity can be tested with 𝑛 points (i.e. 𝑛+1 isotopes), and it can be tested

whether there are at most 𝑛− 2 nonlinearity sources or more.

It can be noticed that the capabilities and requirements of the pattern shape

comparison and 𝑛D King plot are very similar. It indeed turns out that the 𝑛D-

King-plot hyperplanarity test is equivalent to the comparison of corresponding 𝑛− 1

different nonlinearity patterns developed in Section 8.3, as proved in Section 11.4.

Given that, the pattern comparison may be more preferred for its lower geometric

dimension and capability of the test with a limited number of available isotopes, as

discussed in Section 11.4 (see, e.g., Fig. 10-3).

175



Chapter 9

Uncertainty propagation and

King-plot fitting

To obtain uncertainties of the variables for King plots and the correlations between

them from measured values,1 the uncertainties and correlations need to be properly

propagated during arithmetic operations. In particular, the uncertainty propagation

becomes somewhat complicated for vector analysis in Section 8.3.1.2 The basics of

the method will be covered in Section 9.1 with some complicated examples used in

the thesis work.

The uncertainty propagation in an analysis can be achieved in an alternative

way based on the Monte Carlo approach: generating numerous random sample sets

of values of all necessary variables, which have the distribution that the measured

values have (i.e., mean values, uncertainties, and correlations), and observing the

distribution of analysis results from each sample set. The Monte Carlo analysis

has been established by Diana P. L. Aude Craik, a research team member and a

postdoctoral researcher (results not presented here), and the results agreed well with

the analytic analysis of the uncertainty propagation described here.

On the other hand, it is straightforward to fit data in 2D graphs with uncer-

1e.g., 𝜈𝐴𝐴′

𝛼,𝛽 = 𝜈𝐴𝐴′

𝛼,𝛽 /𝜇𝐴𝐴′
from measured 𝜈𝐴𝐴′

𝛼 , 𝜈𝐴𝐴′

𝛽 , and 𝜇𝐴𝐴′
(see Section 8.1.4); see, e.g., the

ellipse for (168, 170) isotope pair in Fig. 8-1(a)
2e.g., propagating uncertainties in vectors x, Λ+, and Λ− to the coefficients 𝜆± under the

two-vector decomposition of x with Λ±.
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tainties along the 𝑦 direction, possibly with the correlations between them, through

the standard generalized-least-square (GLS) regression. However, fitting points in

King plots in correct way may not be as straightforward. It is because there is un-

certainty in the 𝑥 coordinates of the points as well (𝜈𝐴𝐴′

𝜒 or 𝜇𝐴𝐴′ ; see Section 11.3),

and there can be correlations between the 𝑥 and 𝑦-coordinates of each point (e.g.,

from the uncertainties in parameters normalizing King relation; see Section 8.1.4)

or between the points (e.g., from improving precisions of ISs using redundant ISs;

see Section 6.7). The procedure for the proper Errors-in-Variables GLS (EiVGLS)

fit that accommodates the uncertainties in both the 𝑥 and 𝑦 directions and all the

possible correlations will be presented in Section 9.2. In particular, obtaining the sig-

nificance of nonlinearity is important as it is the significance of the signal potentially

from new physics under test.

9.1 Uncertainty propagation

Suppose there are two (set of) random variables x = (𝑥1, 𝑥2, · · · , 𝑥𝑀) and y =

(𝑦1, 𝑦2, · · · , 𝑦𝑁) as column vectors,3 with associated variance-covariance matrices

(VCMs) Σx and Σy, respectively;4 the diagonal elements (Σx)𝑖𝑖 = 𝜎2
𝑥𝑖

are the vari-

ances of the random variables 𝑥𝑖, while the off-diagonal elements (Σx)𝑖𝑗 = 𝜎𝑥𝑖𝑥𝑗
are

the covariances between 𝑥𝑖 and 𝑥𝑗 (and as well for Σy).

The most fundamental relation in this chapter is the following: if the random

variables x and y are related by a linear transformation

y𝑁 = 𝑇𝑁×𝑀x𝑀 + b, (9.1)

with 𝑇 named propagation matrix, then the VCMs are related as

(Σy)𝑁×𝑁 = 𝑇𝑁×𝑀(Σx)𝑀×𝑀(𝑇 ⊺)𝑀×𝑁 . (9.2)
3Inline arrays with round brackets are assumed to represent column vectors: (𝑎1, · · · , 𝑎𝑁 ) ≡

[𝑎1, · · · , 𝑎𝑁 ]⊺.
4Σx ≡ ⟨(x− ⟨x⟩)(x− ⟨x⟩)⊺⟩.
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If x and y have multivariate normal distributions, the mean values:

⟨y⟩ = 𝑇 ⟨x⟩+ b (9.3)

and the VCM is sufficient to identify the distributions of the variables x and y, as it

is one of the most important properties of the normal distributions in general. Note

that the normal distribution is defined as

x𝑀 = (𝐴x)𝑀×𝐿 z𝐿 (9.4)

where z = (𝑧1, · · · , 𝑧𝐿) is the set of independent standard normal variables and 𝐴x

is a matrix such that Σx = 𝐴x𝐴
⊺
x, and the probability density function is given as

𝑓x(x) =
1√︀

(2𝜋)𝑀 |Σx|
exp

[︂
−1

2
(x− ⟨x⟩)⊺ Σ−1

x (x− ⟨x⟩)
]︂

(9.5)

(and so for y).5

If the relation between x and y is not linear:

y = f(x), (9.6)

the instantaneous rate of change in y with respect to change in x replaces the role

of 𝑇 in Eq. (9.2):

dy =
𝜕y

𝜕x
dx =

⎡⎢⎢⎢⎣
𝜕𝑦1
𝜕𝑥1

· 𝜕𝑦1
𝜕𝑥𝑀

...
...

𝜕𝑦𝑁
𝜕𝑥1

· 𝜕𝑦𝑁
𝜕𝑥𝑀

⎤⎥⎥⎥⎦ (x)dx ≡ 𝑇 (x)dx ≈ 𝑇 (⟨x⟩) dx (9.7)

and Eq. (9.2) is approximately true as far as the variances of x are small enough that

the slopes 𝜕y/𝜕x barely change within the variances.6 Note that the propagation
5For the case of degenerate normal distributions (i.e., 𝑀 > 𝐿), |Σx| and Σ−1

x are replaced by
the pseudodeterminant and pseudoinverse Σ+

x of the VCM, respectively, in Eq. (9.5).
6This quasilinearity condition also guarantees that the distribution of y is approximately normal

for normally distributed x.
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matrices 𝑇 (⟨x⟩) depend on the center values of measured x for the nonlinear cases.

From the relations in Eqs. (9.1), (9.2) and (9.7), one can propagate any uncertain-

ties from one set of variables to another. A simple example is a linear combination

of two normal random variables:

𝑦 = 𝑎𝑥1 + 𝑏𝑥2 =
[︁
𝑎 𝑏

]︁⎡⎣𝑥1
𝑥2

⎤⎦ (9.8)

gives

𝜎𝑦 =
[︁
𝑎 𝑏

]︁⎡⎣ 𝜎2
𝑥1

𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎2
𝑥2

⎤⎦⎡⎣𝑎
𝑏

⎤⎦ = 𝑎2𝜎2
𝑥1

+ 𝑏2𝜎2
𝑥2

+ 2𝑎𝑏𝜎𝑥1𝑥2 (9.9)

as well known. For a nonlinear case, the division of two variables:

𝑦 =𝑥1/𝑥2 (9.10a)

d𝑦 =
[︁

𝜕𝑦
𝜕𝑥1

𝜕𝑦
𝜕𝑥2

]︁ [︁
d𝑥1 d𝑥2

]︁
=
[︁

1
𝑥2
−𝑥1

𝑥2
2

]︁
⏟  ⏞  

=𝑇 (x)

dx (9.10b)

𝜎2
𝑦 ≈𝑇 (⟨x⟩)

⎡⎣ 𝜎2
𝑥1

𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎2
𝑥2

⎤⎦𝑇 ⊺ (⟨x⟩) (9.10c)

=
1

⟨𝑥2⟩2
𝜎2
𝑥1

+
⟨𝑥1⟩2

⟨𝑥2⟩4
𝜎𝑥1 −

2𝑥1
⟨𝑥2⟩3

𝜎𝑥1𝑥2 (9.10d)

≈⟨𝑦⟩2
[︃(︂

𝜎𝑥1

⟨𝑥1⟩

)︂2

+

(︂
𝜎𝑥2

⟨𝑥2⟩

)︂2

− 2
𝜎𝑥1𝑥2

⟨𝑥1⟩⟨𝑥2⟩

]︃
(9.10e)

is achieved as expected. In this manner, the uncertainty propagation through various

vector operations have been achieved including addition x+y and subtraction x−y;

elementwise multiplication 𝑥𝑖𝑦𝑖, division 𝑥𝑖/𝑦𝑖, and inversion 𝑥−1
𝑖 ; magnitude of a

vector |x|; scalar multiplication cx; a vector x to the unit vector x/|x|; and inner

product x · y.

Lastly, the uncertainty propagation via two complicated but important opera-

tions will be presented, as they are used in the King-plot nonlinearity analysis in

Section 8.3.1:
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Vector component of x along a

y =
(x · a)a
|a|2

(9.11a)

dy = 𝑇

⎡⎣dx
da

⎤⎦ (9.11b)

𝑇 =
[︁
𝜕y
𝜕x

𝜕y
𝜕a

]︁
=
[︁

1
|a|2aa

⊺ 1
|a|2ax

⊺ − 2(x·a)
|a|4 aa⊺ + (x·a)

|a|2 𝐼
]︁

(9.11c)

Σy = 𝑇Σ(x,a)𝑇
⊺ = 𝑇

⎡⎣Σx Σxa

Σax Σa

⎤⎦𝑇 ⊺ (9.11d)

where 𝐼 is an identity matrix and Σxa = Σ⊺
ax is the cross-covariance matrix (CCM)

between x and a,7 which is a zero matrix if x and a are independent.
7Σxy ≡ ⟨(x− ⟨x⟩)(y − ⟨y⟩)⊺⟩.
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Two-vector decomposition of x with a and b

x =𝛼a+ 𝛽b (9.12a)

𝑀 ≡

⎡⎣ |a|2 a · b

a · b |b|2

⎤⎦ , |𝑀 | = |a|2|b|2 − (a · b)2 (9.12b)

⎡⎣𝛼
𝛽

⎤⎦ =𝑀−1

⎡⎣x · a
x · b

⎤⎦ =
1

|𝑀 |

⎡⎣|b|2(x · a)− (x · b)(a · b)

|a|2(x · b)− (x · a)(a · b)

⎤⎦ (9.12c)

𝛼
a↔b←−−−−→ 𝛽 (9.12d)⎡⎣d𝛼

d𝛽

⎤⎦ =

⎡⎣𝜕𝛼
𝜕x

𝜕𝛼
𝜕a

𝜕𝛼
𝜕b

𝜕𝛽
𝜕x

𝜕𝛽
𝜕a

𝜕𝛽
𝜕b

⎤⎦
⎡⎢⎢⎢⎣
dx

da

db

⎤⎥⎥⎥⎦ = 𝑇

⎡⎢⎢⎢⎣
dx

da

db

⎤⎥⎥⎥⎦ (9.12e)

𝜕𝛼

𝜕x
=
|b|2a− (a · b)b

|𝑀 |
(9.12f)

𝜕𝛼

𝜕a
=
|b|2x+ (x · b)b

|𝑀 |
(9.12g)

+
2|b|2

|𝑀 |2
[︀{︀(︀

(x · b)(a · b)− |b|2(x · a)
)︀
a
}︀
+ {a↔ b}

]︀
(9.12h)

𝜕𝛼

𝜕b
=
−(a · b)x+ (x · b)a

|𝑀 |
(9.12i)

+
2 [(x · a)(a · b)− |a|2(x · b)]

|𝑀 |2
[︀
|b|2a− (a · b)b

]︀
(9.12j)

𝜕𝛼

𝜕x

a↔b←−−−→ 𝜕𝛽

𝜕x
,

𝜕𝛼

𝜕a

a↔b←−−−→ 𝜕𝛽

𝜕b
,

𝜕𝛼

𝜕b

a↔b←−−−→ 𝜕𝛽

𝜕a
(9.12k)

Σ(𝛼,𝛽) =

⎡⎣ 𝜎2
𝛼 𝜎𝛼𝛽

𝜎𝛼𝛽 𝜎2
𝛽

⎤⎦ = 𝑇Σ(x,a,b)𝑇
⊺ = 𝑇

⎡⎢⎢⎢⎣
Σx Σxa Σxb

Σax Σa Σab

Σbx Σba Σb

⎤⎥⎥⎥⎦𝑇 ⊺ (9.12l)
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9.2 Errors-in-Variables generalized-least-square fit-

ting

9.2.1 Standard generalized least squares

Suppose that 𝑁 different observations are made for different values of 𝑝 independent

variables:

y =

⎡⎢⎢⎢⎣
𝑦1
...

𝑦𝑁

⎤⎥⎥⎥⎦ , 𝑋 =

⎡⎢⎢⎢⎣
x⊺
1

...

x⊺
𝑁

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑥11 · · · 𝑥1𝑝
...

...

𝑥𝑁1 · · · 𝑥𝑁𝑝

⎤⎥⎥⎥⎦ (9.13)

In the case where the points’ positions have uncertainties only in 𝑦 direction (i.e.,

dependent variable), finding statistically the most likely solution of a linear function

y𝑁 = 𝑋𝑁×𝑝 𝛽𝑝 (9.14)

where 𝛽 = (𝛽1, · · · , 𝛽𝑝), for given uncertainties in the points’ positions and the

correlations between them (i.e., Σy) is straightforward via the (standard) generalized-

least-square (GLS) method; the best fit parameter values �̂� are given in Eq. (9.18a),

with the uncertainties and correlations of the fit parameters Σ�̂� in Eq. (9.18b), and

the significance of the fit can be derived from �̂�2 value from the residuals [Eq. (9.18c)]

for the chi-squared distributions with 𝑛− 𝑝 degrees of freedom.

The reasoning behind the GLS is the following. The distribution of the positions

of points is the representation of underlying independent standard normal distribu-

tions under transformation 𝐴y [see Eq.(9.4)]: y = 𝐴y z+ ⟨y⟩ such that Σy = 𝐴y𝐴
⊺
y.

Therefore, the transformation 𝑋 ′ = 𝐴−1
y 𝑋 and y′ = 𝐴−1

y y = ⟨y′⟩+ z turns the GLS

fit

y = 𝑋𝛽 (9.15)

into an OLS fit (i.e., Σy′ = Σz = 𝐼):

⟨y′⟩+ z = 𝑋 ′𝛽 (9.16)
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of which the solution �̂� for the minimum 𝜒2 defined as:8 9

𝜒2(𝛽) ≡ r⊺(𝛽)Σ−1
y r(𝛽) (9.17)

and the significance of the model is known:

�̂� =(𝑋 ′)+y′ = [(𝑋 ′)⊺𝑋 ′]−1(𝑋 ′)⊺y′ = (𝑋⊺Σ−1
y 𝑋)−1𝑋⊺Σ−1

y y (9.18a)

Σ�̂� = [(𝑋 ′)⊺𝑋 ′]−1 = (𝑋⊺Σ−1
y 𝑋)−1 (9.18b)

�̂�2 = r̂′⊺r̂′ = r̂⊺Σ−1
y r̂ ∼ 𝜒2

𝜈 (9.18c)

where r̂ and r̂′ = 𝐴−1
y r̂ are the residuals of points (in 𝑦 direction) after the best

fit �̂� is achieved in the original coordinate and the coordinate transformed by 𝐴−1
y ,

respectively, and 𝜒2
𝜈 is the chi-squared distribution with 𝜈 = 𝑁−𝑝 degrees of freedom

for 𝑁 points and 𝑝 fit parameters.10

9.2.2 Propagating 𝑥-uncertainties to 𝑦-residuals

When the positions of the points have uncertainties along the 𝑥 direction as well,

the (𝑦-)residuals of the points r, defined as the deviations of the points from a given

model with parameters 𝛽 along 𝑦 direction, are not only from the points’ distribution

along 𝑦 but also contributed by the distributions of the independent variables 𝑥𝑗
8The variable is named chi-squared value because it has the chi-squared distribution; it is some-

what confusing.
9The condition of minimum 𝜒2 gives the model with maximum likelihood with no prior knowledge

on the likelihood, in the context of the Bayesian probability.
10The degrees of freedom of the fit 𝜈 = 𝑁 − 𝑝 reflects that the dimension of distribution in the

residuals r̂′ for the best fit �̂� is reduced by 𝑝 fitting parameters from the original 𝑁 -dimensional
distribution in the 𝑦′-coordinate of the points: z = (𝑧1, · · · , 𝑧𝑁 ). The best fit’s residuals still
have normal distribution as r′̂ = y′ −𝑋 ′�̂� = [𝐼 −𝑋 ′[(𝑋 ′)⊺𝑋 ′]−1(𝑋 ′)⊺]y′ = 𝑄z + (constant) [see
Eq. (9.4)], and it can be proved that the sum-squared of the residuals �̂�2 ≡ r′̂

⊺
r′̂ has the chi-

squared distribution with the reduced 𝑁 − 𝑝 degrees of freedom from 𝑄2 = 𝑄 and Tr(𝑄) = 𝑛 − 𝑝
(cf. Cochran’s theorem).
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propagated by the slopes 𝛽𝑗:

dr𝑁(𝛽) =

⎡⎢⎢⎢⎣
𝑑𝑟1
...

𝑑𝑟𝑁

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−
∑︀𝑝

𝑗=1 𝑥1𝑗𝛽𝑗 + 𝑑𝑦1
...

−
∑︀𝑝

𝑗=1 𝑥𝑁𝑗𝛽𝑗 + 𝑑𝑦𝑁

⎤⎥⎥⎥⎦ = −(d𝑋)𝑁×𝑝 𝛽𝑝 + dy𝑁 (9.19)

To describe the VCM of all variables it is convenient to define a column vector

for all variables in 𝑋 and y:

(cp)𝑁(𝑝+1) ≡
[︁
c⊺p1 · · · c⊺p𝑁

]︁⊺
(9.20a)

(cp 𝑖)𝑝+1 ≡
[︁
x⊺
𝑖 𝑦𝑖

]︁⊺
=
[︁
𝑥𝑖1 · · · 𝑥𝑖𝑝 𝑦𝑖

]︁⊺
(9.20b)

Then, Eq. (9.19) becomes:

dr𝑁(𝛽) =

⎡⎢⎢⎢⎣
−𝛽⊺ 1

. . .

−𝛽⊺ 1

⎤⎥⎥⎥⎦
⏟  ⏞  
≡(𝐵p)𝑁×𝑁(𝑝+1)=𝐼𝑁×𝑁⊗[−𝛽⊺ 1]

⎡⎢⎢⎢⎣
dcp1

...

dcp𝑁

⎤⎥⎥⎥⎦ = 𝐵p(𝛽) dcp (9.21)

If variances of the 𝑥 and 𝑦 variables and the correlations between them are known

and expressed in the proper order in Σcp , propagating them into the residuals r is

straightforward [see Eqs. 9.1 and 9.2]:

[Σr(𝛽)]𝑁×𝑁 = [𝐵p(𝛽)]𝑁×𝑁(𝑝+1)(Σcp)𝑁(𝑝+1)×𝑁(𝑝+1)[𝐵p(𝛽)]
⊺
𝑁(𝑝+1)×𝑁 (9.22)

Once the VCM of the residuals Σr is obtained, it can be treated in a similar
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manner to the standard GLS:

r(𝛽) =y −𝑋𝛽 (9.23a)

�̂� = argmin
𝛽

𝜒2(𝛽) = argmin
𝛽

[r⊺(𝛽)Σr(𝛽)r(𝛽)] (9.23b)

r̂ = r(�̂�) (9.23c)

Σ�̂� =(𝑋⊺Σ−1
r (�̂�)𝑋)−1 (9.23d)

�̂�2 =r̂⊺Σ�̂�r̂ ∼ 𝜒2
𝜈 (9.23e)

with 𝜈 = 𝑁 − 𝑝. One crucial difference in solving the EiVGLS is that the analytic

solutions are not given in general, unlike in Eq. (9.18) for the standard GLS fit, due

to the parameter-dependent VCM of residuals Σr(𝛽). Therefore the minimum-𝜒2

solution in Eq. (9.23b) has to be found numerically in general. Nonetheless, if the

uncertainties in points’ positions are so small that the slopes 𝛽 barely changes within

the uncertainties,11 which has been exactly the case for King plots, then the analytic

expression in Eq. (9.18) works well for EiVGLS as well, with an initial value of �̂�0

obtained by, e.g., simple ordinary-least-squares (OLS) fit. For better accuracy and

consistency check, the �̂�1 obtained from the analytic solution can be fed back into

Σr(�̂�1) and obtain a new analytic solution �̂�2, and so on (i.e., iterative EiVGLS).

9.2.2.1 Variable groupings and conversions

Eqs. (9.20) and (9.21) show the grouping variables for each points 𝑖, x𝑖 and 𝑦𝑖, and

then concatenating them into a column vector cp (i.e., the subscript p for pointwise

grouping). An alternative grouping might be preferred in some cases (e.g., corre-

lations between ISs with reduced uncertainties; see Section 6.7), which groups the
11e.g., cases that the separations between points are much larger than the uncertainties.
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different observations 𝑖 of the same variables first (i.e., variablewise grouping):

(cv)𝑁(𝑝+1) ≡
[︁
c⊺v1 · · · c⊺v(𝑝+1)

]︁⊺
(9.24a)

(cv 𝑗)𝑁 ≡

⎧⎪⎨⎪⎩[𝑥1𝑗 · · · 𝑥𝑁𝑗]
⊺ 1 ≤ 𝑗 ≤ 𝑝

[𝑦1 · · · 𝑦𝑁 ]
⊺ = y 𝑗 = 𝑝+ 1

(9.24b)

Then, Eq. (9.19) becomes

dr𝑁(𝛽) =

⎡⎢⎢⎢⎣
−𝛽1 −𝛽𝑝 1

. . . · · · . . . . . .

−𝛽1 −𝛽𝑝 1

⎤⎥⎥⎥⎦
⏟  ⏞  

≡(𝐵v)𝑁×𝑁(𝑝+1)=[−𝛽⊺ 1]⊗𝐼𝑁×𝑁

⎡⎢⎢⎢⎢⎢⎢⎣
dcv1

...

dcv𝑝

dcv(𝑝+1)

⎤⎥⎥⎥⎥⎥⎥⎦
=𝐵v(𝛽) dcv

(9.25)

and consequently:

[Σr(𝛽)]𝑁×𝑁 = [𝐵v(𝛽)]𝑁×𝑁(𝑝+1)(Σcv)𝑁(𝑝+1)×𝑁(𝑝+1)[𝐵v(𝛽)]
⊺
𝑁(𝑝+1)×𝑁 (9.26)

[cf. Eq. (9.22)].

The conversion between the two groupings can be done using perfect shuffle ma-

trices 𝑆𝑝,𝑞, defined as [177, 178]:

(𝑆𝑝,𝑞)𝑝𝑞×𝑝𝑞 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
𝐼𝑝𝑞(1 : 𝑞 : 𝑝𝑞, :)

𝐼𝑝𝑞(2 : 𝑞 : 𝑝𝑞, :)
...

𝐼𝑝𝑞(𝑞 : 𝑞 : 𝑝𝑞, :)

⎤⎥⎥⎥⎥⎥⎥⎦ (9.27)

where 𝐼𝑝𝑞 is the identity matrix of size (𝑝𝑞)× (𝑝𝑞) and (𝑚 : 𝑛 : 𝑙) is the well-known

colon notation used in MATLAB [each block matrix has the size of 𝑝× (𝑝𝑞)]. Then,

186



the conversions between the groupings are given as:

𝐶v = 𝑇vp𝐶p, 𝐵v = 𝐵p𝑇pv (9.28a)

𝐶p = 𝑇pv𝐶v, 𝐵p = 𝐵v𝑇vp (9.28b)

𝑇vp = 𝑆𝑁,𝑝+1, 𝑇pv = 𝑆𝑝+1,𝑁 (9.28c)

𝑇vp = 𝑇 ⊺
pv = 𝑇−1

pv (9.28d)

as 𝐵 ⊗ 𝐴 = 𝑆𝑘,𝑚(𝐴𝑘×𝑙 ⊗𝐵𝑚×𝑛)𝑆𝑙,𝑛 [see Eq. (9.21) and (9.25)].

9.3 Fitting King plot

From Eq. (8.11),

y = 𝜈𝜅 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜈168,170𝜅

𝜈170,172𝜅

𝜈172,174𝜅

𝜈174,176𝜅

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑋 =
[︁
1 𝜇

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 𝜇168,170

1 𝜇170,172

1 𝜇172,174

1 𝜇174,176

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝛽 =

⎡⎣ 𝑓𝜅𝜒
𝐾𝜅𝜒

⎤⎦ (9.29)

with 𝑁 = 4 and 𝑝 = 2 [see Eq. (8.17) for the vector notation of isotope-dependent

quantities]. The first step for the EiVGLS fit is to configure the VCM of all vari-

ables for the fit, 𝜈𝜅 = 𝜈𝜅./𝜈𝜒 and 𝜇 = 𝜇./𝜈𝜒 (./ denotes the elementwise di-

vision). Here, the relevant measured variables are 𝜈𝜒, 𝜈𝜅 for the 4 isotopes and

m = (𝑚168,𝑚170,𝑚172,𝑚174,𝑚176) for 5 isotopes (see Tables A.1 and A.3). The

values and VCM of 𝜇 are obtained by applying elementwise inversion to the masses
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(m𝑒𝑖) and transform the inverted masses via the propagation matrix (see Section 9.1):

𝜇 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜇168,170

𝜇170,172

𝜇172,174

𝜇174,176

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

=𝑇

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/𝑚168

1/𝑚170

1/𝑚172

1/𝑚174

1/𝑚176

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.30)

Σ𝜇 = 𝑇Σm𝑒𝑖𝑇 ⊺, (9.31)

The values and VCM of each of 𝜈𝜒 and 𝜈𝜅 are obtained by improving the ISs’s un-

certainties from all measured ISs including redundant isotope pairs (see Section 6.7).

The propagation matrix from (𝜇,𝜈𝜒,𝜈𝜅) to (𝜇,𝜈𝜅) is, then, formed:

d

⎡⎢⎢⎢⎣
𝜇

𝑏𝑣𝑒𝑐𝜈𝜅

⎤⎥⎥⎥⎦
8

=

⎡⎣ [𝑇./(𝜇,𝜈𝜒)]4×8 𝑂4

𝑂4 [𝑇./(𝜈𝜅,𝜈𝜒)]4×8

⎤⎦
⏟  ⏞  

=𝑇8×12

d

⎡⎢⎢⎢⎣
𝜇

𝜈𝜒

𝜈𝜅

⎤⎥⎥⎥⎦
12

(9.32)

where 𝑇./ are the propagation matrix for the elementwise divisions (with proper

orderings of the matrix elements) (see Section 9.1) and 𝑂4 is the zero matrix of the

size 4× 4, and the VCM of (𝜇,𝜈𝜅) is obtained from the the VCMs obtained above:

(Σ(𝜇,𝜈𝜅))8×8 = 𝑇Σ(𝜇,𝜈𝜒,𝜈𝜅)𝑇
⊺ = 𝑇8×12

⎡⎢⎢⎢⎣
(Σ𝜇)4×4

(Σ𝜈𝜒)4×4

(Σ𝜈𝜅)4×4

⎤⎥⎥⎥⎦𝑇 ⊺
12×8 (9.33)

(Σ(𝜇,𝜈𝜒,𝜈𝜅) is block-diagonal as the measured 𝜇, 𝜈𝜒, and 𝜈𝜅 would be measured inde-

pendently in general). The first independent variable in 𝑋 (i.e., the first column) is

constant which cannot have uncertainty or correlation with other variables. There-
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fore, the VCM of all variables for the fit is given by:

(Σc𝑣)12×12 =

⎡⎣𝑂4

[Σ(𝜇,𝜈𝜅)]8×8

⎤⎦ (9.34)

for c𝑣 = [1⊺ 𝜇⊺ 𝜈⊺
𝜅]

⊺. The remaining step is performing EiVGLS using Eqs. (9.26)

and (9.23).

The best-fit electronic factors 𝑓𝜅𝜒 and 𝐾𝜅𝜒 and the significance of the model (i.e.,

King linearity) are of the special interest in this thesis. The former is obtained using

Eq. (9.23b). The significance is obtained by calculating the �̂�2 value in Eq. (9.23e)

and obtain corresponding 𝑝-value for chi-squared distribution 𝜒2
𝜈 with 𝜈 = 𝑁−𝑝 = 2

degrees of freedom. Standard deviation (𝜎)-significance is given by the amount of

deviation from the center of the standard normal distribution with the corresponding

(two-sided) 𝑝-value.

9.4 Fitting three-dimensional King plot

For 3D King plots in Eq. (8.24), the fit variables are set to be

y = 𝜈𝜂 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜈
168,170
𝜂

𝜈
170,172
𝜂

𝜈
172,174
𝜂

𝜈
174,176
𝜂

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑋 =
[︁
1 𝜈𝜒 𝜈𝜅

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 𝜈

168,170
𝜒 𝜈

168,170
𝜅

1 𝜈
170,172
𝜒 𝜈

170,172
𝜅

1 𝜈
172,174
𝜒 𝜈

172,174
𝜅

1 𝜈
174,176
𝜒 𝜈

174,176
𝜅

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝛽 =

⎡⎢⎢⎢⎣
𝐾𝜂𝜅𝜒

𝑓𝜂𝜅𝜒

𝑓𝜂𝜒𝜅

⎤⎥⎥⎥⎦
(9.35)

with 𝑁 = 4 and 𝑝 = 3. The procedure of fitting is straightforward as the extension

of the procedure for (2D) King plots in Section 9.3, with an additional measured

values 𝜈𝜂 and change in the variable for the normalization from 𝜈𝜒 to 𝜇.
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9.5 Drawing and Fitting nonlinearity map

Nonlinearity maps 𝜆 = (𝜆+, 𝜆−) introduced in Sections 8.3.1 and 8.3.2 can be fitted

with a line that crosses origin 𝑦 = (𝜆−/𝜆+)𝑥 to test the number of nonlinearity

sources as shown in Section 8.3.4. The fit variables are given by, then,

y =

⎡⎢⎢⎢⎣
(𝜆−)

(𝜏)
𝜅

(𝜆−)
(𝜏)
𝜂

...

⎤⎥⎥⎥⎦ , 𝑋 =

⎡⎢⎢⎢⎣
(𝜆+)

(𝜏)
𝜅

(𝜆+)
(𝜏)
𝜂

...

⎤⎥⎥⎥⎦ , 𝛽 =
(𝜆−)

(𝜏)

(𝜆+)(𝜏)
. (9.36)

From measured 𝜇, 𝜈𝜒, 𝜈𝜅, 𝜈𝜂, · · · with the associated VCMs, 𝜇, 𝜈𝜅, 𝜈𝜂, · · ·

are obtained by propagating uncertainties through elementwise divisions, as in Sec-

tion 9.3. To obtain the nonlinearity component each of 𝜈𝜅, 𝜈𝜂, · · · (i.e., the vector

component that is orthogonal to King plan formed by 1 and 𝜇; see Section 8.3.1),

the vector component along 1 is first obtained using Eq. (9.11) and subtracted from

the original vector (𝜈 ′ = 𝜈−(𝜈 ·1)1/|1|2), and then the vector component along 𝜇 is

subtracted from 𝜈 ′ in the same manner ( 𝜈⊥ = 𝜈 ′− (𝜈 ′ ·𝜇)𝜇/|𝜇|2).12 It is important

to note that the normalization and subtraction procedures have to be done for all

𝜈 vectors (𝜈𝜅, 𝜇𝜂, · · · ) together to achieve the correlation between the vectors. On

the other hand, the nonlinearity vectors Λ̂
(𝜏)

± in Eq. (8.20) are constructed from 𝜇

through the propagation matrix:

⎡⎣(Λ+)4

(Λ−)4

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 0

1 0 0 −1

−1 0 0 1

0 1 −1 0

0 −1 0 1

1 0 −1 0

0 1 0 −1

−1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(𝜇)4 (9.37)

and then propagate the uncertainties and correlations through the normalization of
12The order of the vector-component subtractions is irrelevant.
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the vectors Λ̂± = Λ±/|Λ±|. Finally, the nonlinear components 𝜆(𝜒)
𝜅 , 𝜆(𝜒)

𝜂 , · · · are

obtained by decomposing 𝜈⊥ obtained above with the Λ̂± using Eq. (9.12).

The rest of work is to perform the EiVGLS fitting using Eqs. (9.26) and (9.23)

with the 𝜆 and their overall VCMs13 calculated above, and to obtain the common

slope 𝛽 = 𝜆−/𝜆+ and the significance of the test (i.e., second source of nonlinearities).

9.5.1 Pattern prediction for nonlinearity source

The predicted pattern of a particular (possible) source of nonlinearity 𝑋𝜒𝑥
𝐴𝐴′ and

the corresponding direction (𝜆−/𝜆+)x in the nonlinearity map can be obtained in

the same manner, from the associated nuclear factor x: decomposing x into 𝜆(𝜏)
x by

Λ
(𝜏)
± . The angular uncertainty in the direction can be obtained from by propagating

the VCM of (𝜆+, 𝜆−) to the ratio 𝛽 = 𝜆−/𝜆+ using Eq. (9.10), and then propagate

the 𝛽’s uncertainty through the inverse tangent function, which turns out to be:

𝜃 = tan−1 𝛽 = tan−1 𝜆−
𝜆+

(9.38a)

d𝜃 =
1

1 + 𝛽2
d𝛽 =

[−𝜆− 𝜆+]

(𝜆+)2 + (𝜆−)2
d

⎡⎣𝑥
𝑦

⎤⎦ (9.38b)

𝜎2
𝜃 ≈

𝜎2
𝛽

(1 + ⟨𝛽⟩2)2
≈
⟨𝜆−⟩2𝜎2

𝜆+
+ ⟨𝜆+⟩𝜎2

𝜆+
− 2⟨𝜆+⟩⟨𝜆−⟩𝜎𝜆+𝜆−

|𝜆|4
. (9.38c)

13i.e., the VCM of each of 𝜆(𝜏)
𝜅 , 𝜆(𝜏)

𝜂 , · · · and the CCM between them.
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Chapter 10

Results

In this chapter, the results of the King-plot analyses introduced in Chapters 8 and

9 for the isotope shifts (ISs) measured in Part II are presented. In short, King non-

linearities have been observed with very high significance (240𝜎), and 4.3𝜎 evidence

that there are at least two sources of the King nonlinearities (A dominant source

and small additional contributions) in Yb+/Yb transitions has been obtained. The

various discussions including the possible physical origin of the sources follow in

Chapter 11.

10.1 King plots and nonlinearities

Following Section 9.3, the values and variance-covariance matrix (VCM) for all rel-

evant variables are obtained from the measured quantities to draw King plots. The

inverse-mass differences 𝜇𝐴𝐴′ are obtained from the known atomic masses 𝑚𝐴 of Yb+

isotopes from atomic mass spectroscopy [6, 7, 20, 26], listed in Tables A.2 and A.3.

The values of 𝜈𝐴𝐴′
𝜒 for different transitions 𝜒 with improved precisions in Table A.2

are obtained from the isotope shifts (ISs) measured in Part II, listed in Table A.1, in-

cluding redundant isotope pairs (see Section 6.7). Frequency-normalized King plots

(𝜇, 𝜈𝐴𝐴′
𝜅 ) normalized by 𝜈𝐴𝐴′

𝜏 for a reference transition 𝜏 (see Eq. 8.15, Sections 8.3.4

and 11.3) are obtained subsequently, and the points in each King plot are fitted with

the EiVGLS method described in Section 9.2.
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Figure 10-1: Frequency-normalized King plot [top; see Eq. (8.15)] and residuals
(bottom, blue) for the 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) transition and reference transition
𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) for nearest-neighboring even-𝐴 pairs (𝐴′ = 𝐴+2) of Yb+

isotopes from the measured ISs values in Table A.2, fitted using EiVGLS method
(see Section 9.2), in Ref. [8]. A deviation from linearity (red line) by 41 standard
deviations 𝜎 is observed. For reference, residuals for the 𝛽 : 2𝑆1/2 → 2𝐷3/2 (436 nm)
transition, magnified 20-fold, are also plotted in gray, which has 3𝜎 nonlinearity [see
Fig. 8-1(b)]. The error bars indicate 2𝜎 uncertainties; for correlations between the
errors, see Table A.2. The results of the fits (slopes, 𝑦-intercepts, and significance)
for all different pairs of transitions (see Fig. 10-2) can be found in Table C.4.
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Figure 10-2: King plots for transition pairs not shown in Fig. 10-1: (a) (𝛼, 𝛿), (b)
(𝛼, 𝜖), (c) (𝛽, 𝛾), (d) (𝛽, 𝛿), (e) (𝛽, 𝜖), (f) (𝛾, 𝛿), (g) (𝛾, 𝜖), and (h) (𝛿, 𝜖) transition
pairs. 𝛿: 1𝑆0 → 3𝑃0 (578 nm) and 𝜖: 1𝑆0 → 1𝐷2 (361 nm) are the optical transitions
in neutral Yb atoms. See the caption in Fig. 10-1 for other details. All relevant data
can be found in Table A.2.
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Figure 10-1 shows a frequency-normalized King plot for the recently measured

𝛾: 467 nm (2𝑆1/2 → 2𝐹7/2) optical clock transition in Yb+ ions, with 𝛼: 411 nm

(2𝑆1/2 → 2𝐷5/2) transition measured in earlier thesis work [5] as the reference tran-

sition 𝜏 . The residuals from the linear fit reveal a nonlinearity at the 10−5 level,

corresponding to the significance of 41 standard deviations 𝜎, confirming the obser-

vation of King-plot nonlinearity.

For comparison, the residuals in the King plot for 𝛽: 436 nm (2𝑆1/2 → 2𝐷3/2)

transition measured earlier in this work [4, 5] are also presented in Fig. 10-1 [see

also Fig. 8-1(b)], which show only 3𝜎 evidence of the nonlinearity. The nonlinearity

for 𝛾 transitions is observed to be bigger, as expected from the bigger sensitivity of

𝛾 to nonlinearity sources compared to the very similar (𝛼, 𝛽) transition pairs (see

Sections 3.1.2, 10.2, and Table C.4), by a factor of 20. Furthermore, the two 𝛽 and

𝛾 transitions (referenced with the third 𝛼 transition) show different shapes of the

nonlinearity patterns: a zigzag pattern for the 𝛽 transition while a curved shape

for the 𝛾 transition. The pattern shapes are further investigated in the following

Section 10.2. The results of the linear fits (slopes, 𝑦-intercepts, and significance) are

listed in Table C.4.

Very recently, measured ISs for optical transitions in neutral Yb atoms have been

also reported: 𝛿: 578 nm (1𝑆0 → 3𝑃0) [10] and 𝜖: 361 nm (1𝑆0 → 1𝐷2) [9]. Accordingly,

the King plots and their significance of nonlinearity for all different possible pairs

between the 𝛼, 𝛽, and 𝛾 transitions in Yb+ ions measured in this work; and the

𝛿 and 𝜖 transitions in Yb atoms have been investigated as shown in Fig. 10-2.1 In

particular, the pair of the 𝛾 transition in Yb+, the latest work in this thesis, and

the 𝛿 transition in Yb with the highest precision reported for Yb+/Yb (≲3Hz; see

Table A.2) shows the King nonlinearity with the highest significant, 240𝜎, among all

the transition pairs (see Table C.4).
1The transitions in the ions and neutral atoms can be paired for the King plots as they share

the same nuclei; recall the factorization of ISs to electronic and nuclear factors as described in
Section 8.1.4
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10.2 Pattern analysis with nonlinearity maps

The nonlinear components 𝜆(𝜏)
𝜅 =

(︁
(𝜆+)

(𝜏)
𝜅 , (𝜆−)

(𝜏)
𝜅

)︁
in the ISs 𝜈𝜅 in the different

transitions 𝜅 referenced to a transition 𝜏 are calculated and mapped onto nonlinearity

maps as described in Sections 8.3.1, 8.3.2, and 9.5.

Figure 10-3 shows the nonlinearity map 𝜆(𝛿)
𝜅 for all the available transitions,

𝜅 = 𝛼, 𝛽, 𝛾 (in Yb+), and 𝜖 (in Yb), referenced to 𝛿 transition (in Yb). 𝛿 transition

is chosen in this figure as the reference because the measured ISs for the transition

have much smaller uncertainties than the ISs for other transitions (see Table A.2),

letting the points in the map are barely correlated with each other.

The 𝛾 transition paired with the 𝛿 transition indeed shows the furthest deviation

from the origin relative to the point’s uncertainty (the size of the ellipse), reflecting

the highest significance of the King nonlinearity (see Section 10.1). It also shows the

good agreement of the lasted measurements in this thesis work to the preliminary

measurements in Ref. [4] (red filled ellipse vs dotted ellipse).

One of the crucial results derived from this nonlinearity map is from the ob-

servation that all of the points from the different transitions have almost parallel

directions from the origin. It implies that there is a dominant, common source of

the nonlinearity, of which the associated nuclear factor determines the direction (see

Section 8.3.3). Note also that the choice of ionized or neutral species is relevant only

to the scale of the nonlinearity (i.e., the distance of the points from the origin) but

not to the direction, allowing the comparison of Yb+ and Yb under the same basis.

The observed common direction is compared with the directions predicted by

several possible contributions as described in Section 8.3.3. In particular, the pat-

tern shapes of the two of such sources can be accurately calculated. The new boson,

introduced in Section 1.1.1 as the new physics to probe, has the neutron number

difference 𝑎𝐴𝐴′
= 𝐴− 𝐴′ between the nuclei of the 𝐴Yb and 𝐴′Yb isotopes (see Sec-

tion 8.2.1), as the associated nuclear factor. Therefore, the directions from the origin

in nonlinearity maps are calculated from 𝑎𝐴𝐴′ , following the method in Section 9.5.1.

The uncertainty in the predicted direction is from the accurately measured 𝜈𝛿 for

196



O
ne-source fit

New Boson
QFS

-4 -2 2 4 6

( )
+  (10-5)

-2

2

4

6

( )
-  (10-5)

Figure 10-3: Decomposition of the measured nonlinearity onto the (𝜆+, 𝜆−) basis
(solid ellipses, 95% confidence interval; see Section 8.3.1) for the transitions 𝛼 :
2𝑆1/2 → 2𝐷5/2 (blue), 𝛽 : 2𝑆1/2 → 2𝐷3/2 (green), and 𝛾 : 2𝑆1/2 → 2𝐹7/2 (red) in
Yb+ ions (see Fig. 3-1); and 𝜖 : 1𝑆0 → 1𝐷2 (dark gray) in Yb atoms [9], in Ref. [8].
The corresponding frequency-normalized King plot [Eq. (8.15)] is generated with the
reference transition 𝛿 : 1𝑆0 → 3𝑃0 in Yb atoms [10] (𝜆(𝛿)± ), for which the isotope
shifts have been measured with the highest precision (see Table A.2). The dotted
ellipse indicates a preliminary measurement for the 𝛾 transition [4]. The dashed
lines indicate the ratio 𝜆+/𝜆− that would arise solely from a new boson (light blue
dashed) or the QFS (pink dash-dotted) (see Section 8.3.3). The arrows indicate the
direction in which a given nonlinearity changes with increasing value of its associated
electronic factor (i.e. 𝐷𝜅𝛿 or 𝐺(2)

𝜅𝛿 ). The brown solid line is a single-source fit to all
four transitions 𝛼, 𝛽, 𝛾, and 𝜖, yielding evidence for a second nonlinearity source with
4.3𝜎 significance (�̂�2 = 25.4). The nonlinearity maps for other choices of reference
transition can be found in Figs. 10-4 and 10-5.
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Figure 10-4: Nonlinearity maps (𝜆
(𝛼)
+ , 𝜆

(𝛼)
− ) with the reference transition 𝛼. Open

symbols indicate the nonlinearity due to ⟨𝑟4⟩𝐴𝐴′ from nuclear DFT calculations with
SV-min (square), RD-min (diamond), UNEDF1 (circle), and Fy(Δ𝑟) (star) energy
density functionals (see Section 11.1.1). Thick solid lines across the open symbols
indicate the uncertainty in atomic structure calculations (see Section 11.1.1.1). The
thin dashed lines with the colors matched to the open symbols show the correspond-
ing predicted directions of 𝜆(𝛼) when the calculated ⟨𝑟4⟩𝐴𝐴′ are normalized by the
measured isotope shifts 𝜈𝐴𝐴′

𝛼 (see Section 11.1.1.1). The yellow solid ellipse indicates
the 95% confidence interval for 𝛿 : 1𝑆0 → 3𝑃0 transition in Yb atoms [10]. The
correlations between the ellipses are not displayed. See the caption in Fig. 10-3 for
other details.
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Figure 10-5: Nonlinearity maps (𝜆
(𝜏)
+ , 𝜆

(𝜏)
− ) with reference transitions 𝜏 not shown

in Figs 10-3 or 10-4: (a) 𝜏 = 𝛽, (b) 𝛾, and (c) 𝜖. The yellow solid ellipse indicates
the 95% confidence interval for 𝛿 : 1𝑆0 → 3𝑃0 transition in Yb atoms [10]. The
correlations between the ellipses are not displayed. See the caption in Fig. 10-3 for
other details.
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the normalization, as a are a vector of integers, giving negligible angular uncertainty

(10−4 °). The resulting direction is shown as a light blue dashed line in Fig. 10-3.

The same calculation is carried out for the quadratic field shift (QFS) from the

associated nuclear factor [⟨𝑟2⟩2]𝐴𝐴′ (see Section 8.2.2), of which the shape of the

nonlinearity pattern (i.e., the ratio of the values between different isotope) is accu-

rately given [see Section 11.2.1 and Fig. 11-2(b)] and the result is shown as a pink

dash-dotted line in Fig. 10-3. The angular uncertainty is negligible again: ∼ 10−5 °.

However, the common direction across all the transitions does not agree with

either of the predicted directions for the new boson or QFS. The combination of

significant sizable nonlinearity from both contributions would reach the measured

nonlinearities in principle, but such sizes of the effects are not consistent with the

calculated values of 𝐺(2) (in Table C.4) or bounds on new-boson couplings 𝑦𝑒𝑦𝑛 from

other experiments (see Figs. 11-1 and 1-2).

The origin of the common nonlinearity source has recently been suggested to be

the fourth-order field shift (FFS) with the associated nuclear factor ⟨𝑟4⟩𝐴𝐴′ , which

essentially captures the details in the shapes of charge distributions inside nuclei.

To investigate the contribution of the effect to the King nonlinearities, nuclear den-

sity functional theory (DFT) calculations were performed by research collaborators

Witold Nazarewicz and Paul-Gerhard Reinhard [8], as elaborated in Section 11.1.1.

On the other hand, the existence of second nonlinearity source is tested by fit-

ting the points with a line that crosses the origin in the nonlinearity map (see Sec-

tions 8.3.4 and 9.5). In Fig. 10-3, the points from different transitions are noticeably

deviated from the brown solid fit line, giving 4.3𝜎 evidence of a small, second source

of the nonlinearities. Note that the different choices of the reference transition (shown

in Figs. 10-4 and 10-5) are irrelevant to the calculated significance, showing that the

uncertainties along the 𝑥 and 𝑦 directions and the correlations between coordinates

and points are well taken into account by the EiVGLS fit developed in Section 9.2.

Although the significance has not been reached to the criterion for observation, 5𝜎

with corresponding 𝑝-value of 3× 10−7, it is of high significance with 𝑝 = 1.7× 10−5.

In contrast, the two-source significant is only 3𝜎 (𝑝 = 0.003) for only 𝛼, 𝛽, and

200



𝛾 transitions in Yb+ measured in this work, shown in Fig. 10-4. As proved in

Section 11.4, it is equivalent to the significance of the plane fit in the corresponding

3D King plot (see Section 8.4 and 9.4) for the three transitions, shown in Fig. 10-

6. Furthermore, none of the possible groups of three transitions out of the 𝛼 to 𝜖

transitions gives the two-source significances above 4𝜎 (see Table C.5). The 4.3𝜎

significance is indeed a joint effect of all the 5 transitions’ ISs that have been timely

measured.

The possible physical origin of the dominant common component and the small

second source of the observed nonlinearities is discussed in Section 11.1.

As the last remark, Figure 10-4 highlights the higher sensitivity of the 𝛾 transi-

tion (red solid ellipse) to the King nonlinearity compared to the 𝛽 transition (green

solid ellipse) when the transitions are referenced to the 𝛼 transition. The size of

the nonlinearity 𝜆
(𝛼)
𝛽 , from the earlier IS measurements in this work, was compara-

ble to the uncertainty in the 𝜆
(𝛼)
𝛽 (i.e., the deviation of the green ellipse from the

origin in Fig. 10-4 are comparable to the size of the ellipse; see also Fig. 8-2), lim-

iting the angular resolution to resolve the predicted lines for different nonlinearity

sources. While improving the precision of the IS spectroscopy is one way to improve

the resolution, measuring King nonlinearities with bigger sizes is another way for a

given level of precision. In this work, the uncertainties in the measured ISs for 𝛾

transition (∼500Hz) were similar to, or slightly worse than, the uncertainties for 𝛼

and 𝛽 transitions (∼300Hz). Nevertheless, the recently measured 𝛾 transition has

provided much better angular resolution due to the bigger size of the nonlinearity

observed. The higher sensitivity of 𝛾 transition is partly due to the bigger change in

the electronic wavefunction during the transitions, as pointed out in Section 3.1.2.

Another, possibly more significant reason is the high similarity in 𝛼 and 𝛽 transitions’

wavefunctions. The transitions start from the same ground state 2𝑆1/2, and thus all

the difference in the wavefunctions comes from the excited states 2𝐷5/2 and 2𝐷3/2,

respectively, which have the same electron configuration 5𝑑. Therefore, the radial

wavefunctions of the two excited states are identical in the nonrelativistic limit,2 and
2The significant energy difference of the two excited states (i.e., different wavelengths of the
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Figure 10-6: Plane fitted to a 3D inverse-mass-normalized King plot constructed
from isotope shifts measured for the 𝛼 : 2𝑆1/2 → 2𝐷5/2 (411 nm), 𝛽 : 2𝑆1/2 → 2𝐷3/2

(436 nm), and 𝛾 : 2𝑆1/2 → 2𝐹7/2 (467 nm) transitions for nearest-neighboring pairs
of even-𝐴 Yb+ isotopes, as described by Eq. (8.24). Insets display a magnified view
of each point to show deviation from the fitted plane. The origin of the inset axes
has been set to the center of each point. The red ellipsoids depict 1𝜎 confidence
intervals of the data. The fit to the plane gives 3.2𝜎 significance of nonlinearity
(see Table C.5). Each point in the King plot is correlated with other points (see
Table A.2).
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the small difference in the wavefunctions are solely from the relativistic effect (i.e.,

the difference in Dirac wavefunctions for different 𝐽 ’s). As a consequence, comparing

the two very similar transitions in the King plot has low sensitivity to any effects

that are to be probed through the coupling to the electronic wavefunctions.

transitions 411 nm vs 436 nm) comes from the different alignments of the angular momenta (i.e.,
spin-orbit coupling) to form different total angular momenta 𝐽 = 5

2 vs 3
2 .
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Chapter 11

Discussion

11.1 Possible Sources of observed nonlinearities

This section discusses the possible sources of the observed nonlinearities in Chap-

ter 10. In short, the fourth-order field shift (FFS) 𝐺(4)⟨𝑟4⟩𝐴𝐴′ is suggested as the

common, dominant nonlinearity source, the quadratic field shift (QFS) 𝐺(2)[⟨𝑟2⟩2]𝐴𝐴′

is rejected as the small, second source, and the bound on the new-boson coupling

𝑦𝑒𝑦𝑛 is obtained by assuming the new boson as the second source, using new-boson

electronic factor 𝐷 calculated in Part IV (see Section 8.2 for the definitions of the

shifts and the associated electronic and nuclear factors), as described in the following

subsections in detail.

11.1.1 Fourth-moment field shift 𝐺(4)⟨𝑟4⟩

To investigate the possibility of other SM contributions as the sources of the King

nonlinearity, calculations on the nuclear structures have been performed by research

collaborators Witold Nazarewicz and Paul-Gerhard Reinhard [8]. In particular, the

difference in fourth-order nuclear charge distribution ⟨𝑟4⟩𝐴𝐴′ had been once believed

to be highly correlated with [⟨𝑟2⟩2]𝐴𝐴′ and thus be a part of QFS [5], assuming the

shape of nuclear charge distribution does not change while more neutrons are added

in a nucleus. However, Ref. [179] pointed out that the FFS might have dominated
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the observed nonlinearity by then (the zigzag-pattern nonlinearity in Fig. 8-1) due

to the deformation in the nuclear charge distribution, which would have served as

another degree of freedom for the charge distributions’ shapes.

To investigate the effect of ⟨𝑟4⟩𝐴𝐴′ , quantified nuclear calculations for each isotope

were performed by the collaborators using nuclear density functional theory (DFT)

with realistic energy density functionals (EDFs). While the details of the calculations

performed for this work can be found in Ref. [8], the crucial feature of the calculations

was that the nuclear charge radial moments including ⟨𝑟2⟩𝐴 and ⟨𝑟4⟩𝐴 were obtained

directly from the calculated nuclear charge densities 𝜌𝑁(r) [180, 181]. Using the

values of ⟨𝑟2⟩𝐴 and ⟨𝑟4⟩𝐴 (which can be found in the Supplemental Material of

Ref. [8]), the nonlinearity component in ⟨𝑟4⟩𝐴 was calculated carefully as described

in Section 11.1.1.1.

On the other hand, the associated two-transition electronic factor 𝐺(4)
𝜅𝜒 = 𝐺

(4)
𝜅 −

𝑓𝜅𝜒𝐺
(4)
𝜒 (see Section 8.2) was calculated by the thesis author, by performing atomic

structure calculations (ASCs) as described in Part IV. 𝛼: 411 nm and 𝛾: 467 nm

transition pair in Yb+ ions were chosen for the reliable calculation of two-transition

electronic factors (see Section 16.3). The calculated 𝐺(4)
𝛾𝛼 value was multiplied by the

calculated ⟨𝑟4⟩𝐴𝐴′ to obtain the the predicted nonlinearity for the FFS 𝐺(4)
𝛾𝛼⟨𝑟4⟩𝐴𝐴′ .

Figure 10-4 shows the predicted nonlinearity patterns mapped onto the corre-

sponding 𝛼 transition-referenced nonlinearity map 𝜆(𝛼). To explore a possible span of

predictions, four different EDFs were used in the nuclear DFT calculations: Skyrme

functionals SV-min and UNEDF1, extended Skyrme functional RD-min, and the

Fayans functional Fy(Δ𝑟). While all the predicted directions from the calculations

(dotted lines) are consistent with the direction of the points from measured ISs (solid

ellipses), the Fy(Δ𝑟) functional’s prediction supports the FFS particularly well as the

dominant nonlinearity source; it is the only functional of which predicted direction

agrees to the measured 𝜆(𝛼)
𝛾 (red solid ellipse) within the 95% confidence interval. It

also predicts the size of 𝜆(𝛼)
𝛾 reasonably well, and the less accuracy on the magnitude

could be from the limited accuracy of the ASC for the 𝛾 transition performed in this

work (see Section 14.5). The better reliability of Fy(Δ𝑟) functional is also supported
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by comparisons with other types of experimental data including nuclear deformation

from the measured nuclear transitions probabilities [182] (see Fig. S13 in the Sup-

plementary Material of Ref. [8]) and the ratio of nuclear charge radius differences

⟨𝑟2⟩𝐴𝐴′ obtained from the measured ISs in this work (see Section 11.2.1).

The predicted values of ⟨𝑟2⟩𝐴 and ⟨𝑟4⟩𝐴 are impacted by several effects [180, 181,

183, 184], including the neutron skin thickness; intrinsic nucleon form factors; and

nuclear deformation and pairing effects, spin-orbit contributions, all of which could

be taken into account in the collaborators’ DFT calculations. In this respect, the

nonlinearity from FFS may be rooted in several different nuclear structure effects

impacting nuclear charge moments ⟨𝑟𝑛⟩𝐴, not just one as discussed in Ref. [179].

11.1.1.1 Predicting nonlinearity pattern shape from calculated nuclear

charge distributions 𝜌𝑁(𝑟)

Caution is necessary when deriving nonlinearity patterns associated to higher-order

charge moments ⟨𝑟𝑛⟩𝐴𝐴′ (𝑛 > 2) from nuclear calculations. As ⟨𝑟𝑛⟩𝐴𝐴′ of different

𝑛 are obtained from the same nuclear charge distribution difference 𝜌𝐴𝐴′
𝑁 (r) from

the nuclear calculations, and thus the ⟨𝑟𝑛⟩𝐴𝐴′ are highly correlated with each other.

Since the (linear) field shifts (FSs), which are proportional to ⟨𝑟2⟩𝐴𝐴′ , are the domi-

nant sources of total ISs for Yb+/Yb, calculated ISs using ⟨𝑟2⟩𝐴𝐴′ the from nuclear

calculations should be used to ensure self-consistency in the derivation of King non-

linearities from ⟨𝑟𝑛⟩𝐴𝐴′ . It is especially important when the calculated ⟨𝑟2⟩𝐴𝐴′ do

not reflect the actual, experimentally determined pattern of ISs [see Fig. 11-2(a)],

because the positions of the points in the King plot will be different, which changes

the nonlinearity pattern significantly.

𝐺
(4)
𝛾𝛼⟨𝑟4⟩

𝐴𝐴′

⊥ , the nonlinearity from ⟨𝑟4⟩𝐴𝐴′ , is given as the component of the vector

𝐺(4)
𝛾𝛼⟨𝑟4⟩

𝐴𝐴′

= 𝐺(4)
𝛾𝛼

⟨𝑟4⟩𝐴𝐴′

𝜈𝐴𝐴′
𝛼

=
𝐺

(4)
𝛾𝛼

𝐹𝛼

⟨𝑟4⟩𝐴𝐴′

⟨𝑟2⟩𝐴𝐴′ + 𝐾𝛼

𝐹𝛼
𝜇𝐴𝐴′ + 𝐺

(4)
𝛼

𝐹𝛼
⟨𝑟4⟩𝐴𝐴′

(11.1)
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which is orthogonal to 1 and

𝜇𝐴𝐴′ ∝ 𝜇𝐴𝐴′

⟨𝑟2⟩𝐴𝐴′ + 𝐾𝛼

𝐹𝛼
𝜇𝐴𝐴′ + 𝐺

(4)
𝛼

𝐹𝛼
⟨𝑟4⟩𝐴𝐴′

(11.2)

(see Section 8.3.1 for the vector notation). One can see that the nonlinearity arises

mainly from the difference in ⟨𝑟2⟩𝐴𝐴′ and ⟨𝑟4⟩𝐴𝐴′ ’s patterns, and it is thus important

to use not only ⟨𝑟4⟩𝐴𝐴′ from nuclear calculations, but also ⟨𝑟2⟩𝐴𝐴′ from the same

nuclear calculations for self-consistency.

Figure 10-4 clearly confirms the above argument. The predicted nonlinearities

from the normalization with the calculated IS 𝜈𝐴𝐴′
𝛼 using Eqs. (11.1) and (11.2) (dot-

ted lines) agree well with the measured nonlinearity, despite the significant difference

in the measured and calculated ⟨𝑟2⟩’s distribution as shown in Fig. 11-2. In contrary,

the normalization with the measured 𝜈𝐴𝐴′
𝛼 in Table A.2 (thin dashed lines) results in

a significantly different 𝜆(𝛼)− /𝜆
(𝛼)
+ ratio from the observed nonlinearity.

While ⟨𝑟2⟩𝐴𝐴′ and ⟨𝑟4⟩𝐴𝐴′ largely determine the shape of nonlinearity pattern,

the change in the ratio 𝐾𝛼/𝐹𝛼 and 𝐺
(4)
𝛼 /𝐹𝛼 in Eqs. (11.1) and (11.2) can affect the

predicted shape. In Fig. 10-4, the thick solid lines across the open symbols show

the change in 𝜆
(𝛼)
± when 𝐺

(4)
𝛼 /𝐹𝛼 ratio changes by ±50% of the calculated value.

Changing 𝐾𝛼 in between -2604.4 GHz·u and +174.2 GHz·u, which covers three times

the difference in 𝐾𝛼 values for the different atomic structure calculations (ASCs),

GRASP2018 and ambit (see Table C.3), moves 𝜆(𝛼)± points along the solid lines by

smaller amounts. Interestingly, it is observed in Fig. 10-4 that the change in the

𝐾𝛼/𝐹𝛼 or 𝐺(4)
𝛼 /𝐹𝛼 ratios in Eq. (11.1) merely scales the size of the nonlinearities

𝜆(𝛼) along the 𝜆−/𝜆+ ratio lines [i.e., the thick solid lines are almost parallel to the

corresponding dotted lines], just as the change in 𝐺
(4)
𝛾𝛼/𝐹𝛼 ratio does. This suggests

that the calculated 𝜆−/𝜆+ ratios (i.e., the direction of the dotted lines) are robust

with respect to the uncertainty in the calculated electronic factors 𝐹𝛼, 𝐾𝛼, 𝐺(4)
𝛼 , and

𝐺
(4)
𝛾𝛼 .
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11.1.2 Quadratic field shift 𝐺(2)[⟨𝑟2⟩2]

As the dominant source of the nonlinearities observed in the 2D King plots is expected

to be from the FFS 𝐺(4)⟨𝑟4⟩𝐴𝐴′ , it can be eliminated by drawing a 3D King plot (see

Section 8.4). Assuming that the nonlinearity remaining in the 3D King plot originates

from the QFS, the value of 𝐺(4)
𝜂𝜅𝜒 can be obtained by fitting the 3D King plot using

the relation:

𝜈
𝐴𝐴′

𝜂 = 𝐾𝜂𝜅𝜒 + 𝑓𝜂𝜅𝜒𝜈
𝐴𝐴′

𝜒 + 𝑓𝜂𝜒𝜅𝜈
𝐴𝐴′

𝜅 +𝐺(2)
𝜂𝜅𝜒[𝛿⟨𝑟2⟩2]

𝐴𝐴′

(11.3)

As there is no degree of freedom of the fit (i.e., the number of fitting parameters and

points are the same), all the points are always fitted perfectly, effectively attributing

the observed 3D King-plot nonlinearity in Fig. 10-6 solely to the QFS.

The fitted value of𝐺(2)
𝛽𝛾𝛼 in Table C.5 has bigger magnitude than the two-transition

factor 𝐺(2)
𝛽𝛼 in Tables C.4. However, the three-transition factor 𝐺(2)

𝛽𝛾𝛼 is expected to

be significantly smaller than the two-transition factor 𝐺(2)
𝛽𝛼 (see Section 16.3). This

implies that the observed nonlinearity might not be mainly from the QFS, and the

fitting overestimates 𝐺(2)
𝛽𝛾𝛼 as a consequence. Note, however, future measurements

for the 𝛼 and 𝛽 transitions with the better precision might result in smaller fitted

𝐺
(2)
𝛽𝛾𝛼 (i.e., the green ellipse in Fig 10-4 shrinks towards the origin).

11.1.3 New boson

As the QFS is rejected as the second source of nonlinearity, there is no significant

candidate for the observed second source to date. Given the situation, the bound

on a new boson’s coupling 𝑦𝑒𝑦𝑛 to a neutron and electron is obtained from the

unexplained component in the nonlinearity. As in Section 11.1.2, the values of the

associated electronic factor 𝜐𝑛𝑒𝐷𝜂𝜅𝜒 can be obtained by fitting the King plots using

the relation

𝜈
𝐴𝐴′

𝜂 = 𝐾𝜂𝜅𝜒 + 𝑓𝜂𝜅𝜒𝜈
𝐴𝐴′

𝜒 + 𝑓𝜂𝜒𝜅𝜈
𝐴𝐴′

𝜅 + 𝜐𝑛𝑒𝐷𝜂𝜅𝜒𝑎
𝐴𝐴′

, (11.4)
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Figure 11-1: Product of coupling constants 𝑦𝑒𝑦𝑛 of a new boson with spin 𝑠 versus
boson mass 𝑚𝜑 [Eq. (8.16)], derived from 3D King plots [Eq. (8.24)] for three transi-
tions (𝛼, 𝛾, 𝛿) (blue), (𝛾, 𝛿, 𝜖) (red), and (𝛽, 𝛾, 𝛿) (green), assuming that the observed
second nonlinearity is dominated by a new boson [Eq. (11.4)]. Dashed lines indicate
the upper bounds on 𝑦𝑒𝑦𝑛’s magnitude. Solid lines show the center values of 𝑦𝑒𝑦𝑛
obtained using the configuration-interaction calculations’ (see Section 12.2) results
with ambit [8] [see Fig. C-3(d,j,g)]. Shaded area along the solid lines show the ≈ 95%
confidence interval that arises from the statistical uncertainty in the measured iso-
tope shifts. The systematic uncertainty in the atomic structure calculations is larger;
the dash-dotted line shows the center value of 𝑦𝑒𝑦𝑛 for the (𝛼, 𝛾, 𝛿) transitions using
GRASP2018 calculation results in Part IV, for comparison. The yellow line indicates
the bound derived from electron 𝑔𝑒− 2 measurements [11, 12, 13, 14] in combination
with with neutron scattering measurements [15, 16, 17, 18], from Ref. [3].
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attributing the 3D King-plot nonlinearity solely to the new boson. The fitted values

for different transition groups are listed in Table C.5.

On the other hand, the three-transition new-boson sensitivity of the atom𝐷𝜂𝜅𝜒(𝑚𝜑)

can be calculated as a function of a new boson’s mass 𝑚𝜑 through ASCs (see Sec-

tions 15.1.2 and 15.2). Therefore, the value of new-boson-coupling product 𝑦𝑒𝑦𝑛 can

be obtained by dividing the fitted 𝜐𝑛𝑒𝐷𝜂𝜅𝜒 by the calculated 𝐷𝜂𝜅𝜒(𝑚𝜑):

𝑦𝑒𝑦𝑛 = (−1)𝑠+14𝜋ℏ𝑐
[𝜐𝑛𝑒𝐷𝜂𝜅𝜒]fit

[𝐷𝜂𝜅𝜒(𝑚𝜑)]cal
(11.5)

as 𝜐𝑛𝑒 = (−1)𝑠+1𝑦𝑒𝑦𝑛/(4𝜋ℏ𝑐) (see Section 8.2.1).

Figure 11-1 shows the 𝑦𝑒𝑦𝑛 vs 𝑚𝜑 for some of possible three-transition groups of

transitions: (𝛼, 𝛾, 𝛿) (blue solid line), (𝛾, 𝛿, 𝜖) (red solid), and (𝛽, 𝛾, 𝛿) (green dashed

line). The transition groups are chosen as they have relatively small uncertainty in

the 𝐷𝜂𝜅𝜒 across the different 𝑚𝜑 [see Figs. C-3(d,j,g), respectively]; the calculated

𝐷𝜂𝜅𝜒 has statistical uncertainty from the fitted value of 𝑓𝜂𝜒𝜅 (see Section 15.2). To

obtain the statistical uncertainties in 𝑦𝑒𝑦𝑛 in Eq. (11.5) from the measured ISs, a

simple way to treat uncertainties in the numerator and the denominator is used:

a certain range of each value is considered [e.g., 95% confidence intervals: (⟨𝑥⟩ −

2𝜎𝑥, ⟨𝑥⟩+2𝜎𝑥) and (⟨𝑦⟩− 2𝜎𝑦, ⟨𝑦⟩+2𝜎𝑦)], and the minimum and maximum value of

𝑥/𝑦 in the ranges of 𝑥 and 𝑦 is taken as the confidence interval of 𝑥/𝑦. From the 95%

confidence interval of each value, the range of 𝑦𝑒𝑦𝑛 is conservatively obtained here.

For the transitions groups considered in Fig. 11-1, the fractional uncertainty in the

fitted 𝜐𝑛𝑒𝐷𝜂𝜅𝜒 is much larger than the calculated 𝐷𝜂𝜅𝜒’s uncertainties, except for the

boson mass 𝑚𝜑 at which the sensitivity 𝐷𝜂𝜅𝜒 vanishes. Therefore, the uncertainty

in the ratio (𝜐𝑛𝑒𝐷𝜂𝜅𝜒)fit/(𝐷𝜂𝜅𝜒)cal is given by the numerator in the above simple

approach, and so does the fractional uncertainty in the resulting 𝑦𝑒𝑦𝑛, except for the

𝑚𝜑 at which the 𝑦𝑒𝑦𝑛 diverges.

All the bounds from the different transition groups are consistent within the

accuracy of the ASCs, which is estimated by the difference in the bounds from the

different ASCs (blue solid line vs blue dash-dotted line). Although the nonzero ranges
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of finite 𝑦𝑒𝑦𝑛 values are obtained from (𝛼, 𝛾, 𝛿) and (𝛾, 𝛿, 𝜖) groups, they still serve as

bounds on 𝑦𝑒𝑦𝑛, just as the remaining group (𝛽, 𝛾, 𝛿), as the values are obtained upon

the assumption that the new boson is the sole contribution to the second nonlinearity

source.

The green dashed line for (𝛽, 𝛾, 𝛿) transition group provides the best bound in

this work. The bound is improved nearly by two orders of magnitude from the

previous bound obtained in this work (see Fig. 4 in Ref. [5]). It is now comparable

to another bound from other types of experiments: measurements on electron 𝑔 − 2

[11, 12, 13, 14] and neutron scattering[15, 16, 17, 18]; the bound from this work is

even slightly better in a narrow range of the boson mass 𝑚𝜑 = 2 to 7 keV/c2. The

bound is expected to be further improved, or the value of 𝑦𝑒𝑦𝑛 vs 𝑚𝜑 is found if the

new boson exists, as ISs are measured for more transitions and isotopes in the future

(see Sections 8.3.4, 8.4, 21, and 20).

11.2 Contribution of isotope-shift spectroscopy to

atomic and nuclear structure calculations

While the atomic structure calculations (ASCs) and nuclear density functional the-

ory (DFT) calculations provide the information for interpreting the measured King

nonlinearity as in Section 11.1, the measured ISs can also provide valuable data for

improving the calculations by, e.g., the testing the validity of a certain model for

the calculations, comparing accuracies of different models, and tuning or develop-

ing calculation models further to better adapt the predictions to the experimental

observations.

Comparing the predicted nonlinearity from the calculated 𝐺(4)⟨𝑟4⟩𝐴𝐴′ to the mea-

sured nonlinearities is already one such example; it is determined that Fayans func-

tional Fy(Δ𝑟) explains better than the other energy density functionals used (see

Section 11.1.1). This section will introduce two other examples that the measured

ISs in this thesis contribute to nuclear and atomic structure calculations in the fol-
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lowing subsections 11.2.1 and 11.2.2, respectively.

11.2.1 Nuclear charge radius pattern data

From the measured ISs 𝜈𝐴𝐴′
𝛼 for the 𝛼: 411 nm transition in Yb+ ions (see Fig. 3-1),

the difference in mean-square nuclear charge radii ⟨𝑟2⟩𝐴𝐴′ between different isotope

can be derived using the calculated values of single-transition electronic factors 𝐹𝜒

and 𝐾𝜒 (in Table C.3) as follows:

⟨𝑟2⟩𝐴𝐴′
=
𝜈𝐴𝐴′
𝜒 −𝐾𝜒𝜇

𝐴𝐴′

𝐹𝜒

. (11.6)

While the overall scale of ⟨𝑟2⟩𝐴𝐴′ depends strongly on the calculated value of 𝐹𝜒

which might not be reliable due to the limited accuracy of ASCs, the ratios of ⟨𝑟2⟩𝐴𝐴′

between different isotope pairs do not rely on 𝐹𝜒 and largely determined by the ratio

of ISs 𝜈𝐴𝐴′
𝜒 /𝜈𝐴

′𝐴′′
𝜒 as follows:

⟨𝑟2⟩𝐴𝐴′

⟨𝑟2⟩𝐴′𝐴′′ =
𝜈𝐴𝐴′
𝜒 −𝐾𝜒𝜇

𝐴𝐴′

𝜈𝐴′𝐴′′
𝜒 −𝐾𝜒𝜇𝐴′𝐴′′

=
𝜈𝐴𝐴′
𝜒

𝜈𝐴′𝐴′′
𝜒

[︁
1−

(︁(︀
𝐾𝜇
𝜈

)︀𝐴𝐴′

𝜒
−
(︀
𝐾𝜇
𝜈

)︀𝐴′𝐴′′

𝜒

)︁(︁
1 +

(︀
𝐾𝜇
𝜈

)︀𝐴′𝐴′′

𝜒

)︁
+ · · ·

]︁
.

(11.7)

with the omitted terms of third order or higher. The ratio is not sensitive to the value

of calculated 𝐾𝜒 for heavy atomic species for two reasons : the contribution of mass

shifts (MS) to the total ISs is small [1] (see Section 8.1.2);
(︀
𝐾𝜇
𝜈

)︀𝐴′𝐴′′

𝜒
< 10% for the

𝛼: 411 nm transition in Yb+ ions. The similar MS-to-IS ratios (𝐾𝜇/𝜈)𝐴𝐴′
𝜒 between

different isotope pairs further suppress the effect of𝐾𝜒 [i.e.,
(︀
𝐾𝜇
𝜈

)︀𝐴𝐴′

𝜒
−
(︀
𝐾𝜇
𝜈

)︀𝐴′𝐴′′

𝜒
≪ 1].

Figure 11-2(b) shows the ⟨𝑟2⟩𝐴,𝐴+2/⟨𝑟2⟩𝐴−2,𝐴 for the nearest-neighboring pairs of

nearest-neighboring even-𝐴 isotope pairs from Eq. (11.7) and the ISs for 𝛼: 411 nm

transition measured in this work (red filled square), over a range of 𝐾𝛼 values that

covers the uncertainty in the ASCs. The ratios of all the pairs of isotope pairs are

insensitive to the value of 𝐾𝛼 and thus precisely obtained, as expected.

Figure 11-2(a) then compares the trend of the measured 𝜈𝐴,𝐴+2
𝜒 /𝜈𝐴−2,𝐴

𝜒 values for
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Figure 11-2: (a) Comparison plot of derived values for the ratio of the mean-square
nuclear charge radius differences ⟨𝑟2⟩𝐴,𝐴+2/⟨𝑟2⟩𝐴−2,𝐴 between nearest-neighboring
even-𝐴 isotope pairs in Ref. [8] (drawn by Diana P. L. Aude Craik). Open sym-
bols mark the values derived from nuclear density functional theory (DFT) calcu-
lations using SV-min, RD-min, UNEDF1, and Fy(Δ𝑟) energy density functionals
(see Fig. 10-4 for symbol assignments). The red filled square symbols are values
derived from measured isotope shifts for the 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm) transition in
Yb+ ions measured in Part II in combination with mass shifts from configuration-
interaction (CI) calculations (see Section 12.2). (b) Plot of derived values for the
ratios of the mean-square nuclear radius differences between sequential isotope pairs
as a function of 𝐾𝛼, showing very weak dependence on 𝐾𝛼. (c, d) Derived values of
𝐹𝛽, 𝐹𝛾, 𝐹𝛿, 𝐹𝜖 (𝐾𝛽, 𝐾𝛾, 𝐾𝛿, 𝐾𝜖) as a function of 𝐹𝛼 (𝐾𝛼), using the experimentally-
determined quantities 𝑓𝜅𝛼 (𝐾𝜅𝛼) for 𝜅 = 𝛽, 𝛾, 𝛿, 𝜖 in Table C.4. In (b), (c), and (d),
dashed (dotted) vertical lines and round (square) markers indicate values from CI
calculations using GRASP2018 (ambit [8]). Dash-dotted lines and open triangle
markers correspond to CI and many-body perturbation theory (CI+MBPT) calcu-
lations (see Section 12.2) using ambit.
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increasing 𝐴 with the predictions from the nuclear DFT calculations (open symbols).

The ratios obtained from nuclear theory show monotonically increasing trends for

the three EDFs SV-min, RD-min, and UNEDF1. Only Fy(Δ𝑟) produces a trend that

complies with the experimentally determined trend, highlighting the better reliability

of the calculations with the Fayans functional.

11.2.2 Relating electronic factors

The fitted values of two-transition electronic factors 𝑓𝜅𝜒 = 𝐹𝜅/𝐹𝜒 and 𝐾𝜅𝜒 = 𝐾𝜅 −

𝑓𝜅𝜒𝐾𝜒 in the corresponding (2D) King plots relate the value of the single-transition

electronic factors calculated for different transitions. Therefore, if at least 3 ISs are

measured for different transitions in the same atomic species, the values of 𝐹𝜒 and

𝐾𝜒 for one transition determine the values for all other transitions, providing strong

tests on the consistency of predicted values from ASCs. In particular, if calculations

of 𝐹𝜒 and 𝐾𝜒 for a particular transition 𝜒 are reliable, then the derived electronic

factors 𝐹𝜅 and 𝐾𝜅 for other transitions 𝜅 that are challenging for ASCs will be useful

as themselves, or for testing the validity of ASCs for the other transitions 𝜅.

Figures 11-2(c) and (d) shows such test for 𝛽: 436 nm and 𝛾: 467 nm transitions

in Yb+ ions, and 𝛿: 578 nm and 𝜖: 361 nm transitions in neutral Yb atoms, referenced

to 𝛼: 411 nm transition in Yb+ (see Fig. 3-1). It is known to be challenging tasks

to calculate mass-shift coefficients 𝐾𝜒 for heavy atoms precisely [185, 186]. This

turns out to be especially the case for the 𝛾 transition; values from calculations with

GRASP2018 and ambit don’t agree on the sign, and neither of them predicts 𝐾𝛾𝛼

close enough to the experimental value from the King plot [see Tables C.3, C.4, and

Fig. 11-2(d)]. On the other hand, the 𝐾𝛽𝛼 for the 𝛼 and 𝛽 transition are relatively

reliable; values from GRASP2018 and ambit agree in about a factor of two, and the

experimental value of 𝐾𝛽𝛼 agrees relatively well with the values from GRASP2018

and ambit. This is presumably because of the similar electronic structures of 𝛼 and

𝛽 transitions and, in contrast, the significant disturbance during the 𝛾 transition,

which are discussed in Sections 3.1.2 and 10.2. Given that, the one-electron factors

calculated for all different transitions are presented with respect to the 𝛼 transitions,
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and their accuracy (or at least their consistency with the 𝛼 transition) are tested in

Figs. 11-2(c) and (d).

11.3 Normalization of King plot

Two different ways to normalize ISs to obtain 2D King plots are introduced in Sec-

tion 8.1.4: normalization with inverse-mass differences 𝜇𝐴𝐴′ as the standard choice

or with ISs 𝜈𝐴𝐴′
𝜏 for a reference transition 𝜏 (frequency-normalized King plot) used

in this work.

In this thesis work, two motivations to use the frequency-normalized King plot

instead of the more conventional choice have been found. First, It makes the 𝑦-axis of

King plots 𝜈𝐴𝐴′
𝜅 /𝜈𝐴𝐴′

𝜏 dimensionless, and so thus the nonlinearity components from

the 𝑦-residuals in King plots. Equivalently, the King and nonlinearity vectors in

Section 8.3.1 become dimensionless.

The frequency-normalized King plots also allow avoiding the complex fit with

errors and correlations in the 𝑥-direction developed in Section 9.2. It can be ob-

served from Eq. (8.11) that the uncertainties in the 𝑥 coordinate 𝜇𝐴𝐴′ are propa-

gated through the slope given by the mass-shift electronic factor 𝐾𝜒 which is small

for heavy atomic species [1] (see Section 8.1.2). In particular, as long as the frac-

tional uncertainty in the measured mass difference 𝜇𝐴𝐴′ is smaller than the fractional

precision of the IS measurements (i.e., 𝑥 and 𝑦 uncertainties are dominated by the

measured ISs’ uncertainties), the ratio of the propagated 𝑥 uncertainty to the native

𝑦 uncertainty can be written as:

𝐾𝜅𝜒𝜎𝜇
𝜎𝜈𝜅

=
𝐾𝜅𝜒

𝜇
𝜈𝜒

√︂(︁
𝜎𝜇

𝜇

)︁2
+
(︁

𝜎𝜈𝜒

𝜈𝜒

)︁2
𝜈𝜅
𝜈𝜒

√︂(︁
𝜎𝜈𝜅

𝜈𝜅

)︁2
+
(︁

𝜎𝜈𝜒

𝜈𝜒

)︁2
∼ 𝐾𝜅𝜒𝜇

𝜈𝜅
≲
𝐾𝜅𝜇

𝜈𝜅

=
(MS)𝜅

(FS)𝜅 + (MS)𝜅
≪ 1,

(11.8)
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(with omitted 𝐴𝐴′ superscripts) where it is assumed that the fractional uncertainties

in the measured isotope shifts 𝜈𝐴𝐴′
𝜒 and 𝜈𝐴𝐴′

𝜅 are similar.

Table C.4 compares the results of the fits with and without 𝑥-errors and corre-

lations, which are in good agreement. Therefore, the standard GLS fit with simple

analytic solutions (see Section 9.2.1) would be enough to obtain a sufficiently reli-

able preliminary significance of the King nonlinearity, before performing the more

complicated EiVGLS fit in Section 9.2.

11.4 Equivalence of 𝑛-dimensional King plot and non-

linearity pattern comparison

This section provides a geometric proof of the equivalence of a 3D King plot (Sec-

tion 8.4) and 2-pattern comparison in a nonlinearity map 𝜆± (Section 8.3.4), which

is readily generalized for higher dimensions.

Consider a frequency-normalized 3D King plot for (𝛼, 𝛽, 𝛾) transitions [equivalent

to Eq. (8.24); see Section 8.1.4]:

𝜈𝛾 = 𝐾𝛾𝛽𝛼𝜇+ 𝑓𝛾𝛽𝛼1+ 𝑓𝛾𝛼𝛽𝜈𝛽 + 𝑌𝛾𝛽𝛼y (11.9)

[see Eq. (8.17) for the vector notation] with 𝑋𝑥𝐴𝐴′ ≫ 𝑌 𝑦𝐴𝐴′ as in Section 8.4. From

Fig. 11-3, one can easily see that the linear fit in 3D King plot corresponds to finding

the values of 𝑓𝛾𝛼𝛽 = 𝑋𝛾𝛼/𝑋𝛽𝛼 and 𝑌𝛾𝛽𝛼 = 𝑌𝛾𝛼 − 𝑓𝛾𝛼𝛽𝑌𝛽𝛼 to form a triangle along

nonlinearity patterns for 𝜈𝐴𝐴′

𝛽 , 𝜈𝐴𝐴′
𝛾 , and 𝑦𝐴𝐴′ . Therefore, if the 3D King plot is linear,

the area of the corresponding triangle vanishes, (i.e., 𝜈𝛽 and 𝜈𝛾 are parallel to each

other). Thus a test of whether two nonlinearity points have the same direction from

the origin can be used to probe for the existence of a second nonlinearity source 𝑦𝐴𝐴′

(see Fig. 2 in the main text).

It is straightforward to see that the 𝜆−/𝜆+ ratio for 𝑦𝐴𝐴′ (dotted lines’ direction

in Fig. 11-3) determines the ratio 𝑓𝜂𝜒𝜅 = 𝑋𝜂𝜒/𝑋𝜅𝜒 (ratio of red arrows’ lengths) and

vice versa, independent of the 𝜆−/𝜆+ ratio of the dominant source of nonlinearity
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Figure 11-3: Two-source-nonlinearity analysis in a nonlinearity map 𝜆
(𝛼)
± with ref-

erence transition 𝛼. Thick black arrows indicate the measured 𝜈𝛽 and 𝜈𝛾. The
nonlinearity from 𝑥𝐴𝐴′ (𝑦𝐴𝐴′) is coded with red (blue) color. The blue dotted line
shows the direction of 𝜆± due to 𝑦𝐴𝐴′ . The 3D King plot corresponds to stretching
the nonlinearity from 𝜈𝛽 (dashed black arrow; 𝑓𝛾𝛽𝛼�⃗�𝛽) and moving along 𝑦𝐴𝐴′ ’s di-
rection (thin black arrow; 𝑌𝛾𝛽𝛼�⃗�) to form a triangle with nonlinearity for 𝜈𝛾.

𝑥𝐴𝐴′ (i.e., the direction of the red arrow). The former is equivalent to fitting the

3D King plot with a known nonlinearity pattern from nuclear parameters 𝑦𝐴𝐴′ (see

Eqs. 11.3 and 11.4). The latter suggests that if 𝑓𝜂𝜒𝜅 can be calculated precisely in

the future, the pattern shape of second nonlinearity source 𝑦𝐴𝐴′

⊥ can be deduced and

compared with the predicted shapes from the QFS, new boson, or any other proposed

sources.

Pattern comparison performed in Section 10.2 (see Fig. 10-3) demonstrates the

advantage of pattern comparison tests (with the aid of nonlinearity maps) compared

to 𝑛-dimensional King plots which can not provide tests without having 𝑛+2 available
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isotopes (see Section 8.4).

11.5 Independent isotope pairs

It might be argued that three different isotopes 𝐴, 𝐴′, and 𝐴′′ are enough to form

three different isotope pairs. However, if the ISs for (𝐴,𝐴′) and (𝐴′, 𝐴′′) are mapped

in a King plot, for instance, the point for a remaining pair (𝐴,𝐴′′) is mathematically

guaranteed to be linear with the other two points as it does not introduce new infor-

mation on the three isotopes (e.g., IS 𝜈𝐴𝐴′′ is simply 𝜈𝐴𝐴′
+ 𝜈𝐴

′𝐴′′). Therefore, each

isotope pair should be independent of other pairs in a way that the pair introduces

a new isotope that does not belong to any other pairs. In general, at least 𝑛 + 1

isotopes are required to form 𝑛 independent isotope pairs. One of such constructions

used in the thesis work is forming nearest-neighboring pairs of isotopes ordered in

their mass numbers 𝐴. Measuring next-neighboring pairs (𝐴,𝐴′′) for 𝐴 < 𝐴′ < 𝐴′′,

for instance, is still useful to test the consistency of the measured ISs for (𝐴,𝐴′) and

(𝐴′, 𝐴′′) pairs. It has not been used by adding more points in King plots, however,

but rather in a way to improve the precision of the measured ISs for the nearest

pairs (𝐴,𝐴′) and (𝐴′, 𝐴′′) as discussed in Sections 6.7 in detail, to enable simple and

consistent pattern analysis.

Proving the linearity of the third point (𝐴,𝐴′′) is simple. First, the values 𝜈𝐴𝐴′
𝜒 ,

𝜈𝐴𝐴′
𝜅 , 𝜇𝐴𝐴′ and 𝜈𝐴𝐴′

𝜒 , 𝜈𝐴′𝐴′′
𝜅 , 𝜇𝐴′𝐴′′ are given. The third set of values, then, must be

given as 𝜈𝐴𝐴′′
𝜒,𝜅 = 𝜈𝐴𝐴′

𝜒,𝜅 + 𝜈𝐴
′𝐴′′

𝜒,𝜅 and 𝜇𝐴𝐴′′
= 𝜇𝐴𝐴′

+ 𝜇𝐴′𝐴′′ . If the two values 𝐹 and 𝐾

exist (as they should) such that

𝜈𝐴𝐴′

𝜅 = 𝐹𝜈𝐴𝐴′

𝜒 +𝐾𝜇𝐴𝐴′

𝜈𝐴
′𝐴′′

𝜅 = 𝐹𝜈𝐴
′𝐴′′

𝜒 +𝐾𝜇𝐴′𝐴′′
(11.10)

Then

𝜈𝐴𝐴′′

𝜅 = 𝐹𝜈𝐴𝐴′′

𝜒 +𝐾𝜇𝐴𝐴′′
(11.11)

must be true. King plot is then about normalizing each equation with one of
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the isotope-dependent parameters; e.g., for frequency-normalized King plot [see

Eq. (8.15)], each equation is normalized by the associated 𝜈𝐴𝐴′
𝜒 , giving

𝜈𝐴𝐴′

𝜅 = 𝐹 +𝐾𝜇𝐴𝐴′

𝜈𝐴
′𝐴′′

𝜅 = 𝐹 +𝐾𝜇𝐴′𝐴′′

𝜈𝐴𝐴′′

𝜅 = 𝐹 +𝐾𝜇𝐴𝐴′′

(11.12)

which guarantees the linearity of the three points.

It is straightforward to generalize the proof for more isotope pairs with underlying

(deterministic) correlations between them (i.e., redundant isotope pairs; more pairs

than the internal degrees of freedom).

11.6 Expansion of isotope shifts

In Sections 8.1 and 8.2, the contributions to ISs are introduced in the context of

the Seltzer expansion of nuclear charge distribution and the first and second-order

perturbation theory. While these concepts provide constructive ways to understand,

e.g., the electronic-nuclear factorization (Section 8.1.3) and the properties of elec-

tronic states that determine the electronic factors (Sections 8.1 and 15.1), there is a

simple abstract view of how each term in the expression of ISs (should) occurs: the

Taylor series. If an isotope 𝐴 is taken as a reference system and the IS of another

isotope 𝐴′ from the isotope 𝐴 is to be described as the change in the transition fre-

quency due to the change in the system from 𝐴 to 𝐴′, then IS should be described

as a function of all parameters that determine the system’s change. The external

change that is made by hand is of the nucleus, and thus the nuclear parameters are

given as the independent variables (or arguments) of the function. Parameters such

as ⟨𝑟2⟩𝐴𝐴′ and 𝑎𝐴𝐴′ are merely particular examples of them. On the other hand,

the change in the electronic structure is the result of the external change in the

nucleus, and the electronic structure as well as all the quantities derived from the

electronic structures are dependent variables (or images); transition frequency is just
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one example in this view. Therefore, the IS can be expressed in the following form:

𝜈𝐴𝐴′
= 𝜈

(︁
𝜇𝐴𝐴′

, ⟨𝑟2⟩𝐴𝐴′
, ⟨𝑟4⟩𝐴𝐴′

, ⟨𝑟6⟩𝐴𝐴′
, · · · , 𝑎𝐴𝐴′

, 𝑥𝐴𝐴′
, · · ·

)︁
(11.13)

with 𝜈(0, 0, · · · ) = 0, where 𝑥𝐴𝐴′ represents nuclear properties that have not been

considered.

Then, the function can be expanded in the form of the Taylor expansion, as-

suming that the change of the system from one isotope to another is not too big

for the function to be analytic. The first-order terms will give the terms with

the nuclear parameters of first order, including MS 𝐾⟨𝑟2⟩𝐴𝐴′ , FS 𝐹 ⟨𝑟2⟩𝐴𝐴′ , FFS

𝐺(4)⟨𝑟4⟩𝐴𝐴′ , 𝐹 (4)⟨𝑟6⟩, boson shift 𝐷𝑎𝐴𝐴′ , and 𝑋𝑥𝐴𝐴′ . The second-order expansion

gives the terms with the nuclear parameters of the second order, e.g., QMS 𝐿(𝜇2)𝐴𝐴′

and QFS 𝐺(2)(⟨𝑟2⟩2)𝐴𝐴′ as well as the terms with mixed nuclear parameters of to-

tal second order, e.g., mass-field shift 𝐶(𝜇⟨𝑟2⟩)𝐴𝐴′ . There are, obviously, third or

higher-order terms in the expansion, in principle.

As a side insight, the expression for QFS between two arbitrary isotopes 𝐴′ and

𝐴′′ given in Section 8.2.2 is natural in this view:

(𝜈QFS)
𝐴′𝐴′′

= (𝜈QFS)
𝐴𝐴′′−(𝜈QFS)

𝐴𝐴′
= 𝐺(2)

[︁
(⟨𝑟2⟩2)𝐴𝐴′′ − (⟨𝑟2⟩2)𝐴𝐴′

]︁
≡ 𝐺(2)[⟨𝑟2⟩2]𝐴′𝐴′′

(11.14)

as the shifts for any isotopes should be described from a fixed reference isotope 𝐴 for

the consistency of the description, especially for the nonlinear terms (i.e., 𝑛th order

with 𝑛 > 1).

11.7 Basis for nonlinear pattern decomposition

There are two sets of basis vectors suggested in this thesis: 𝜁± = (1,−1,±1,∓1) in

the earlier thesis works [5] and Λ̂± [Eq. 8.20] in the later work [8]. Both bases, or any

other choices are mathematically valid to describe the nonlinearity components x⊥

of a given vector x (i.e., the component of x that are orthogonal to the King plane),

as far as the basis vectors are not parallel to the King plane that 1 and 𝜇 form, as
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such basis can uniquely determine an arbitrary orthogonal component x⊥.

The advantage of 𝜁± is their maximum conceptual simplicity; it is two orthogonal

vectors, and two vectors clearly represent two qualitatively different pattern shapes:

zigzag (𝜁+) and bowline (𝜁−). Generalizing the nonlinearity vectors for higher di-

mensions by having more isotopes would also be relatively easier: finding orthogonal

vectors that consist of some simple forms of numbers (e.g., integers or square-root

of integers) with zero sum, possibly with associated qualitatively meaningful shapes.

The downside of the 𝜁± is that they are not orthogonal to 𝜇 or thus the King plane

in general. Therefore, to describe the nonlinearity component in x, the orthogonal

component with respect to the King plane x⊥ is first obtained, and it is projected to

the plane that 𝜁± form, and the projected vector is decomposed with the two vectors.

Given that, the nonlinearity map 𝜁±(x) cannot be regarded as the coordinate of x

in a frame with (1,𝜇, 𝜁+, 𝜁−) as the axes.

The disadvantage of the 𝜁± basis can be resolved if the nonlinearity vectors are

orthogonal to the King vectors, which is one of the motivations for using Λ̂±. They

are constructed to be orthogonal to both 1 and 𝜇. There are still infinite numbers of

different possible choices that satisfy the condition, and Λ̂± are chosen to retain 𝜁±’s

representation of different shapes and the linear constructions for straightforward

error propagation, as introduced in Section 8.3.1.

A drawback of the above basis is that Λ̂+ and Λ̂− are not orthogonal to each

other in general. One can alternatively, for instance, keep Λ̂+ and define Λ̂− as the

vector that is orthogonal to the two King vectors and Λ̂+. With choices of this kind,

however, the propagation of the uncertainty is less straightforward (see Section 9.5).

Interestingly, the values of 𝜇𝐴𝐴′ for Yb are given that the nonlinearity vectors in

Eq. (8.20) are very close to be perpendicular to each other (Λ̂+ · Λ̂− = 0.0014). The

vectors Λ̂+ are also less straightforward to generalize for higher dimensions.

Note also that the orthogonality of nonlinearity basis vectors is not significant

because the metric (i.e., defining the distances between points) hardly has its physical

meaning in a nonlinearity map, or in the whole space (e.g, 4D space for 4 points in

a King plot). It fundamentally stems from the fact that comparing the (somehow
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defined) sizes of two patterns of different shapes is not so much useful as they are

different just by their underlying sources. The comparison of the size is meaningful

only when the comparison is for the same effect along the certain associated direction

in the nonlinearity map, which does not require a metric defined.
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Part IV

Atomic Structure Calculation
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Chapter 12

Atomic Structure Calculation:

translating measured isotope shift

into new boson and nuclear physics

Once measurements for King nonlinearity are established as in Chapter 8, the result

should be interpreted in terms of the new boson or nuclear physics. If the points

in King plots are linear within the measurement uncertainty, the uncertainty is to

be used to set a bound on the strength of new-boson-mediated electron-neutron

coupling. If the King nonlinearity is observed, and especially when the contribution

of each source of the nonlinearity is distinguished from others, the measured size

of the contribution should be translated into the source’s properties (e.g., the new-

boson coupling or nuclear properties). Given that the change in atoms’ spectra is

ultimately due to the electrons’ coupling to those sources, obtaining the electronic

wavefunctions in the atoms is the key for such translations.

There is virtually no way to determine an atom’s electronic wavefunction purely

by experiments, however. Wavefunctions are values over continuously-infinite dimen-

sions while the measurable quantities for the atomic system are not so many.1

1In practice, it is common to reduce the effective dimensions of a quantum system by focusing
on the states of interest (e.g., using a 171Yb+ ion’s ground state as a two-level hyperfine qubit).
However, in this particular case, we are interested in the wavefunction over space with sufficient
resolution in general. Therefore, the required number of dimensions is still massive even after, for
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Therefore, the determination of wavefunction is fundamentally a modeling prob-

lem. It is inevitable to start with some models built upon our prior knowledge about

the system (i.e., quantum theory), calculate the values of the measurable quantities

that the models predict, and compare the predicted values with the measured values

to test the validity of the models or even refine the models2, which constitute the

field of atomic structure calculation (ASC).

Because of the nature of underdetermined problems, the accuracy of the results

is not straightforward to examine and not comparable to the precision of present-day

state-of-art atomic, molecular, and optical (AMO) physics experiments. The trans-

lation from the King nonliterary to the sources’ properties, however, does not often

require such high precision; the bounds on the new physics are typically presented

in log scale, for instance (see Figs. 11-1 and 1-2).

Note that this point reveals one important distinction between the test using

King plots and the direct comparison of measured and calculated absolute transition

frequencies described in Section 1.2.1. The uncertainty in the calculation propagates

directly to the observable under the test (the difference in measured and calculated

frequencies here) in the latter approach, making the test limited by the calculation

accuracy. Contrarily, the linearity in King plots can be tested purely by experiments,

letting the test takes full advantage of the high experimental precision, and the

uncertainty in calculations is taken into account only while interpreting the result

for the details of the system.

Here in Part IV, different methods of ASCs, including ones that are used by

the thesis author the research collaborators, are briefly introduced in the first two

sections 12.1 and 12.2. A package used by the thesis author, GRASP2018 [24], is

introduced in Chapter 13. In particular, the add-on packages REDF, which has been

instance, (real) space of interest is limited to a finite range (e.g., some factor times the atomic sizes)
and divided by a grid. In other words, on the other hand, if wavefunction’s properties relevant
to some particular observables have the associated subspace of which the number dimensions is
manageable, then wavefunction in the particular subspace might be able to be determined by
experiments; an example is in Section 19.4: obtaining wavefunction at the origin from measured
hyperfine splittings.

2For instance, one can decide to add more terms in the model for better compliance in the
measured value, or tune some free parameters to make the prediction closer to the measurement.
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developed by the thesis author, and RIS4 [173] are introduced in Sections 13.2 and

13.1, respectively. The procedures of ASCs for an Yb+ ion and a neutral Yb atom

using GRASP2018 are described in Chapter 14, and, finally, obtaining electronic

factors in ISs, which are the electron’s coupling strengths (i.e., the atoms’ sensitivity)

to King nonlinearity sources, from the ASC results is detailed in Chapter 15. The

part ends with several discussions in Chapter 16.

12.1 Methods of atomic structure calculation

There are largely two branches of ASCs for many-electron atomic systems: density

functional theory (DFT) and wavefunction-based approach, e.g., Hartree-Fock (HF)

method and its descendants. For the purpose of this research, the latter has been

regarded as the better choice for several reasons. HF-based methods provide ab

initio calculations on the electronic structures in a given atomic system, while DFT

involves rather an arbitrary choice of energy functional [187]. Presumably due to this

fact, HF-based methods have traditionally been regarded to provide more reliable

calculation results compared to DFT-based approaches. HF-based calculations also

provide the total wavefunctions of all the electrons in an atomic system, while DFT

calculates the density of the electrons. The wavefunctions are obviously more useful

for further analyses of the system following after ASCs, e.g., through the perturbation

theory to calculate the effect of a small perturbation to the system (Section 15 shows

nice examples), although knowing the electrons’ density is sufficient in some of the

cases. A limitation of the HF-based methods is that the calculation becomes too

complicated for relatively complex atomic systems, e.g., molecules, letting DFT has

an advantage in the field of quantum chemistry for its relative simplicity of the

calculation [188]. However, it has been not an issue in this research, as individual

atoms have been atomic systems in consideration.
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12.2 Hartree-Fock-based methods

Elaborating on the derivation of the HF method and its descendants, e.g, post-HF

methods introduced later in this section is beyond the scope of this thesis. There-

fore, comprehensive references [27, 189] are suggested instead, and only a very brief

introduction to the subjects is presented here.

The HF method itself treats each electron in an atomic system to be indepen-

dent (i.e., neglecting the correlation between electrons) and solves the approximated,

separable Hamiltonian of the system:

𝐻 ≈
𝑁∑︁
𝑖=1

𝐻𝑖 =
𝑁∑︁
𝑖=1

[︃
− ℏ2

2𝑚

(︂
𝜕

𝜕r𝑖

)︂2

+ 𝑉𝑁−𝑒(r𝑖) + 𝑉𝑒−𝑒(r𝑖)

]︃
(12.1)

from the central-field approximation, where 𝑁 is the total number of the electrons in

the system, 𝐻𝑖 and r𝑖 are the Hamiltonian and position of 𝑖th electron, respectively,

𝑉𝑁−𝑒(r𝑖) is the Coulomb potential between the electron and nuclei (e.g., for a single

atom, 𝑉𝑁−𝑒(r𝑖) ≈ 1
4𝜋𝜖0

𝑍𝑒2

𝑟𝑖
with the proton number 𝑍 in the nucleus3), and 𝑉𝑒−𝑒(r𝑖)

is the effective potential that describes effect of the Coulomb repulsion of all other

electrons to the 𝑖th electron. As the Hamiltonian is separable for each electron,

the solution state Ψ can be given as the product of each electron’s state 𝜑𝑖(r𝑖),

which is constrained by the Pauli exclusion principle [i.e., no multiple occupancies

of the electrons in the same state and antisymmetrized wavefunction in the form of

(linear combination of) Slater determinant(s)]. Considering the effective potential

𝑉𝑒−𝑒(r𝑖) and also the antisymmetry, the effective Hamiltonian of each one-electron

wavefunction is given as the Fock operator 𝐹 which depends on the state of the

electron.4 The one-electron wavefunction and the associated energy should be an

eigenstate and the eigenvalue the Fock operator 𝐹 which is the function of its own

solutions (i.e., self-dependent). One way to solve this kind of problem is what is

called the self-consistent-field (SCF) procedure: to start from an initial solution,
3which is not exact due to the finite size of the nucleus.
4The dependence is especially obvious for the effective potential 𝑉𝑒−𝑒(r); the state of other

electrons will determine their effects on a single electron.
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obtain the 𝐹 for the solution, solve the 𝐹 for its eigenstates and values, compare

the new solution to the previous one, and repeat the procedure until the solution

converges sufficiently.

The solution of the HF method provides an approximated solution for one-

electron wavefunctions 𝜑(r) for the orbitals involved in the system, and the to-

tal wavefunction for the dominant electron configuration 𝛾 of the system (e.g.,

[Xe 4𝑓 14 6𝑠 for the ground state of Yb+ ions) or, rigorously, the configuration state

function (CSF) Φ which further specify the property of the state such as the cou-

plings of angular momenta of the one-electron states (see Section 14.2.2). The real

state of the electrons, called atomic state function (ASF) Ψ, does not consist of only

one CSFs which omits the electron-electron correlations. Various post-HF methods

have been introduced, therefore, to take the correlations into account, and let ASFs

be given to be linear combinations of CSFs corresponding to different electron con-

figurations 𝛾. Taking the correlations into account would be especially important for

states with open electron subshells (e.g., 2𝐹7/2 state in Yb+ ions or the excited states

in neutral Yb atoms considered in this work), of which ASFs are not dominated by

single CSFs.

One of such methods is the configuration interaction (CI) method [190, 191, 192,

193]. The idea starts from the fact that all possible different electron configurations

and the associated CSFs Φ𝑖 will span the physical Hilbert space for the (bound)

states of the atomic system. Therefore, if the full Hamiltonian 𝐻 of the system is

expressed as the matrix elements ⟨Φ𝑖|𝐻 |Φ𝑗⟩ with respect to the CSFs {Φ𝑖} as a

basis, a better solution for the states and energy levels of the system can be obtained

by diagonalizing the matrix:

𝐻Ψ = 𝐸Ψ (12.2)

where the ASF Ψ = (𝑐1, · · · , 𝑐𝑁CSF) is given as a linear combination of the basis

CSFs:

Ψ =

𝑁CSF∑︁
𝑖=1

𝑐𝑖Φ𝑖 (12.3)

with mixing coefficients 𝑐𝑖 (see also Section 14.2.2). In practice, having all the possi-
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ble CSFs in the basis set {Φ𝑖} (Full CI ) would not be feasible except for very simple

atomic systems, and the CSFs that are expected to be sufficiently relevant to the

states of interest are considered in general. The active set approach is a popular

method of preparing the set of the CSFs: exciting electrons in the dominant configu-

ration 𝛾 of the state. For instance, for [Xe]4𝑓 14 6𝑠 2𝑆1/2 state in Yb+ ions, the CSFs

from the configurations including 7𝑠, 8𝑠, 4𝑓 13 6𝑠 5𝑓 , and 4𝑓 13 7𝑠 5𝑓 can be derived.

The excitation of the electrons and the new CSF are constrained to have the same

properties as the ASF, e.g., total angular momentum 𝐽 or parity 𝑃 of the state.

One another advantage of the CI procedure is that more contributions to the full

Hamiltonian of an atomic system that has not been considered in the HF calculation

[e.g., relativistic or quantum electrodynamic (QED) corrections] can be included in

the Hamiltonian for the diagonalization, as described in Section 14.3.

There are other post-HF methods including CI combined with many-body pertur-

bation theory (CI+MBTP) [3, 88, 194] (used in this work by a collaborator Prof. Ju-

lian C. Berengut at the University of New South Wales, Sydney) and CI+All order

method [146, 195], both for efficiently describing valence-core electron correlations in

the CI calculations, and coupling-cluster (CC) method which excites CSFs from the

HF method in the exponential form 𝑒𝑇Φ with the cluster operator 𝑇 , rather than in

the linear manner as in the CI method.

Furthermore, more than one CFSs can be considered when the solution for the

one-electron wavefunctions 𝜑(r) are calculated through the iterative SCF procedure,

which is called multiconfigurational HF (MCHF) method (Chapter 4 in Ref. [189]).

On the other hand, the relativistic effect should be considered for relatively heavy

species, including Yb (see Section 16.1), as the velocities of orbital motions of some

of the electrons in the system reach the speed of light.5 While one approach is to con-

sider the leading-order relativistic corrections in the frame of Schrödinger equation

(i.e., HF method) (Chapter 7 in Ref. [189]), the HF method can be reformulated for

the Dirac equation, yielding Dirac-Hartree-Fock (DHF) method [27, 196, 197] used
5The lighter species with 𝑍𝛼 ≪ 1 are free from the relativistic correction in general (see Sec-

tion 16.1).
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in this thesis work.
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Chapter 13

GRASP2018: package for

multiconfigurational-Dirac-Hartree-

Fock and configurational-interaction

calculations

In this work, the multiconfigurational Dirac-Hartree-Fock (MCDHF) method fol-

lowed by the configuration interaction (CI) method, introduced in Section 12.1, has

been used with a software package called GRASP2018. GRASP (an acronym of a

General-purpose Relativistic Atomic Structure Program) is a popular package that

has been developed at least since 1989 [24, 197, 198, 199, 200], and GRASP2018 [24]

is the last version of the package. GRASP2018 can be downloaded at Ref. [201] or

from the official GitHub repository [202].

A selection of features of GRASP2018 will be introduced here. First, it solves

the Dirac equation for the system (and thus DHF) and derives a four-component

Dirac wavefunction for each electron 𝜑(r) in Eq. (14.3) as detailed in Section 14.2.

Second, the basis of describing the radial parts 𝑃 (𝑟) and 𝑄(𝑟) of wavefunctions 𝜑(r)

[see Eq. (14.3)] is given to be a discretized real space. In other word, 𝑃 (𝑟) and 𝑄(𝑟)

are approximately expressed by arrays of the values 𝑃𝑖 = 𝑃 (𝑟𝑖) and 𝑄𝑖 = 𝑄(𝑟𝑖)
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over a properly-spaced radial grid {𝑟𝑖} over the real space. The real-space grids

are not the only choice in general, but there are other common basis sets to de-

scribe wavefunctions including Slater ∝ 𝑟𝑙𝑒−𝛼𝑟 and Gaussian ∝ 𝑟𝑙𝑒−𝛼𝑟2 orbital bases.

The real-space representation of wavefunctions in GRASP2018 would be particularly

more suitable for this thesis’ work, as it will naturally provide a more versatile de-

scription of the wavefunctions near nuclei, which probe the leading-order King-plot

nonlinearity sources within the Standard Model and new boson with relatively heavy

mass (see Chapter 15, Sections 8.2, and 16.3). In this regards, GRASP2018 also uses

logarithmic grids (see Chapter 9 in Ref. [203]):

𝑟𝑖 = RNT
(︀
𝑒H(𝑖−1) − 1

)︀
𝑎0 (13.1)

where 𝑎0 is the Bohr radius, which can provide a fine discretization inside and near

the nucleus.

Third, the active set approach described in Section 12.1 is taken in GRASP2018

to generate a configuration set for MCDHF and CI calculations (Section 5.3 in

Ref. [203]). Furthermore, a concept called multireference (MR) is introduced in

the package: when the CSFs are generated through the active set method, more

than one reference configuration can be set, from which new CSFs are generated by

the electron excitations (see Sections 5.2 in Ref. [203] and 14.3 in this thesis). The

generation of CSF sets from MR configurations would cover the significant CSFs for

given states more efficiently, as discussed at the beginning of Section 14.3.

Lastly, parallel computing with more than one processor has been supported

in the lasted GRASP2018 version, which allows the use of high power computing

clusters for calculations with significant numbers of CSFs, as demonstrated in Sec-

tion 14.3.

The full details on the GRASP2018 package can be found in the manual of the

package [201, 202] (GRASP2018-manual.pdf; titled A practical guide to GRASP2018

– A collection of Fortran 95 programs with parallel computing using MPI ), which

includes installation (Chapter 2), available features and how-to-use (Section 3.2 and
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Chapter 8), the flow of calculations (Section 3.3), ample examples (Chapters 6 – 12),

and troubleshooting and general tips for calculation (Part IV).

The preferred operating system is Linux. The package has been running well

with 18.04 LTS and 20.04 LTS versions of Ubuntu Desktop [204].

The procedure of setting and performing ACSs using GRASP2018 will be elabo-

rated in Chapter 14 for Yb+ ions as an example atomic system.

13.1 RIS4 add-on subroutine package

There is an add-on package called RIS4 [173] which can load the results of ACSs

from GRASP2018 and calculate the electronic factors 𝐹𝜒 and 𝐾𝜒 of the two major

contributions, field shifts (FSs) and mass shifts (MSs), respectively (see Section 8.1).

For the MSs, RIS4 constructs the interaction Hamiltonians for normal MSs (NMSs)

and specific MSs (SMSs) (see Section 8.1.2) and calculates the expectation values of

each Hamiltonian for the calculated ASFs (i.e., the first-order perturbation theory).

The sum of the two effects is, then, given as the total MSs.

For the FSs, the radial electron density function 𝜌Ψ(𝑟) over space inside and

near the nucleus is derived from an ASF Ψ, and the density is fitted to obtain the

field-shifts electronic factors, as described in Section 15.1.1.

The results are saved in a generated file with the extension .i (if the electronic

factors are derived from the results of DHF calculations) or .ci (for CI calculations);

Listing 14.17 shows an example output in the file.

In this thesis work, the RIS4 has been used to obtain only the mass-shift coeffi-

cients 𝐾𝜒 as described in Section 14.4.

13.2 REDF: add-on GRASP2018 subroutine for ex-

tracting radial electron density function

GRASP2018 does not have a built-in subroutine for extracting the density functions

𝜌Ψ(𝑟) of the electrons from wavefunctions Ψ calculated by GRASP2018. Therefore,
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an add-on package name REDF (an acronym for Radial Electron Density Function)

has been developed by the thesis author for this research, by modifying and merging

the source codes of the RIS4 routine [173] introduced in Section 13.1.1 In particular,

RIS4 extract the wavefunction only near the nucleus, and the codes have been mod-

ified to expand the extraction to the full range of the radial grid used for calculating

Ψ.

The routine is available in Ref. [205]. Just as RIS4, it can be installed together

with GRASP2018 or after GRASP2018 is installed. The installation procedure and

how-to-use can be found in the README file in the root folder. A very simple example

with the ground state of the hydrogen is included in the test folder with the way to

run the example code in the README file in the folder. Similar to RIS4, the extracted

density functions are stored in a generated file with the extension .ed (for the results

of DHF calculations) or .ced (for CI calculations); Listing 14.15 shows an example

output in the file. The package REDF is MIT-licensed.

Refer to Section 14.4 also to see how the electron density functions 𝜌Ψ(𝑟) were

obtained using REDF for Yb+ ions.

1Note that RIS4 [173] is MIT-licensed.
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Chapter 14

Calculations of Yb+ and Yb

structures

In this chapter, the procedures of DHF and CI calculations with GRASP2018 are

elaborated in step-by-step manner. In short, the parameters for 172Yb nucleus were

setup (Section 14.1), DHF calculations were performed to build up the basis wave-

functions of core, valence, and correlation orbitals (Section 14.2), and the CI calcu-

lations for the 2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states involved in 𝛼: 411 nm, 𝛽: 436 nm,

or 𝛾: 467 nm optical clock transitions in Yb+ ions (see Fig. 3-1) were followed. The

calculations for 𝛿: 578 nm and 𝜖: 361 nm optical transitions in neutral Yb atoms, per-

formed by Calvin Leung, a research collaborator and a PhD student in MIT, through

almost the same procedure to Yb+ states, are also briefly introduced in Section 14.6.

Although the procedure described here is implemented for GRASP2018, the strat-

egy of the calculations could be used for any other packages using the same methods,

(D)HF and CI.

14.1 Yb Nucleus

The calculation starts from identifying the nucleus using rnucleus command:
1 >>rnucleus
2 Enter the atomic number:
3 >>70
4 Enter the atomic number:
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5 >>172
6 Enter the mass number (0 if the nucleus is to be modelled as a

point source:
7 The default root mean squared radius is 5.2192449328117521

fm;
8 the default nuclear skin thickness is 2.2999999999999998

fm;
9 Revise these values?

10 >>y
11 Enter the root mean squared radius of the nucleus (in fm):
12 >>5.294
13 Enter the skin thickness of the nucleus (in fm):
14 >>2.18
15 Enter the mass of the neutral atom (in amu) (0 if the nucleus is to

be static):
16 >>0
17 Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
18 >>0
19 Enter the nuclear dipole moment (in nuclear magnetons):
20 >>0
21 Enter the nuclear quadrupole moment (in barns):
22 >>0

The default charge distribution factors are overridden to the experimental values for
172Yb: 𝑟172rms =

√︀
⟨𝑟2⟩172 = 5.294 fm (line 12) and 𝑡172 = 2.18 fm (line 14) [19].1 The

values of parameters in the last four queries are set to zero (lines 15–22) as they

are not used in the calculation here. The command outputs a text file isodata

that contains the below contents, which will be used as an input file for some of the

following commands in the calculations.2

Listing 14.1: Nuclear parameters in isodata file.
1 Atomic number:
2 70.000000000000000
3 Mass number (integer) :
4 172.00000000000000
5 Fermi distribution parameter a:
6 0.52338755531043146
7 Fermi distribution parameter c:
8 6.2523918780155956
9 Mass of nucleus (in amu):

10 171.96159940678999
11 Nuclear spin (I) (in units of h / 2 pi):
12 0.0000000000000000
13 Nuclear dipole moment (in nuclear magnetons):
14 0.0000000000000000
15 Nuclear quadrupole moment (in barns):
16 0.0000000000000000

1𝑐172 = 6.227 fm and 𝑡172 = 2.18 fm in Ref. [19] give 𝑟172rms = 5.294 fm.
2It is possible to create isodata file and set the parameter values directly without using rnucleus

command.
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14.2 Yb+: Dirac-Hartree-Fock calculation

Next steps are for DHF calculations of the target atomic states: [Xe] 4𝑓 14 6𝑠 2𝑆1/2,

[Xe] 4𝑓 14 5𝑑 2𝐷5/2 and 2𝐷3/2, and [Xe] 4𝑓 13 6𝑠2 2𝐹7/2. For a given states with the

configuration 𝛾, parity 𝑃 , and total angular momentum 𝐽 , CSF-configurations3 𝛾𝑖

(𝑖 = 1, · · · , 𝑁MR for the MR; 𝑁MR is the number of the chosen MR configurations)

are chosen and, from them, all other configurations 𝛾𝑖 (𝑖 = 𝑛MR +1, · · · , 𝑁CSF; 𝑁CSF

is the total number of the CSFs) involving excitation of electrons in the MR and

associated CSFs Φ(𝛾𝑖𝑃𝐽) with the given states’ 𝑃 and 𝐽 are generated via active set

approach (see Section 12.2 and Chapter 13). For such atomic states, the radial parts

𝑃𝑛𝑘(𝑟) and 𝑄𝑛𝑘(𝑟) of one-electron four-component Dirac wavefunctions 𝜑𝑛𝑘(r):4

𝜑𝑛𝑘(r) =
1√
4𝜋

1

𝑟

⎛⎝ 𝑃𝑛𝑘(𝑟)𝜒
𝑚
+𝑘(𝜃, 𝜑)

𝑄𝑛𝑘(𝑟)𝜒
𝑚
−𝑘(𝜃, 𝜑)

⎞⎠ (14.3)

where

𝑘 = ∓(𝑗 + 1

2
) for 𝑗 = 𝑙 ± 1

2
= −[sgn(𝑗 − 𝑙)](𝑗 + 1

2
) =

⎧⎪⎨⎪⎩+𝑙, 𝑗 = 𝑙 − 1
2

−(𝑙 + 1), 𝑗 = 𝑙 + 1
2

,

(14.4)

𝑗, and 𝑙 are the relativistic, total, and orbital angular quantum numbers, respectively,

𝜒𝑚
𝑘 =

1√
2𝑘 + 1

⎛⎝ √︁
𝑘 + 1

2
−𝑚𝑌 𝑚− 1

2
𝑘 (𝜃, 𝜑)

−sgn 𝑘
√︁
𝑘 + 1

2
−𝑚𝑌 𝑚+ 1

2
𝑘 (𝜃, 𝜑)

⎞⎠ , (14.5)

and 𝑌 𝑚
𝑙 (𝜃, 𝜑) is spherical harmonics, are self-consistently obtained through MCDHF

calculation (see Section 12.2). The self-consistent-field (SCF) procedures start with
3Configurations with the angular coupling trees, (see Section 5.1 in Ref. [203]).
4The wavefunction is normalized as:

1 =

∫︁
dr𝜑†(r)𝜑(r) =

∫︁ ∞

0

d𝑟
[︀
|𝑃 (𝑟)|2 + |𝑄(𝑟)|2

]︀
=

∫︁ ∞

0

4𝜋𝑟2d𝑟 𝜌(𝑟) (14.1)

where
𝜌(𝑟) =

[︀
|𝑃 (𝑟)|2 + |𝑄(𝑟)|2

]︀
/(4𝜋𝑟2) (14.2)

is the radial electron density (see also Section 14.4).
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appropriate seed functions (i.e., initial wavefunctions). The usual choice of the seed

functions has been approximate wavefunctions from Thomas-Fermi potential (see,

e.g., line 18 in Listing 14.2). Finally the ASFs were given as the superposition of the

calculated CSFs: Ψ(𝛾𝑃𝐽) ≈
∑︀𝑁CSF

𝑖=1 𝑐𝑖Φ(𝛾𝑖𝑃𝐽) and the mixing coefficients 𝑐𝑖.

Before starting the DHF calculation procedure with GRASP2018, a customized

ordering of different subshells was prepared in a text file named clist.ref, as fol-

lows:
1 1s
2 2s
3 2p
4 3s
5 3p
6 3d
7 4s
8 4p
9 4d

10 5s
11 5p
12 4f
13 5d
14 6s
15 6p
16 5f
17 6d
18 7p
19 8s

Unfortunately, the GRASP2018 manual does not specify the exact role of the or-

dering in the calculations or for what the preset orderings (default, reverse, and

symmetry) are (see Section 6.9 in the manual). An example in the section, however,

suggests that the ordering should follow the increasing order of energy levels of the

orbitals. Given the observation, a customized ordering is set as above so that the

spectroscopic orbitals (see Section 4.4 in Ref. [203]) follow the order of energy levels

from DHF calculations (see Table C.1) and correlation orbitals follow the Madelung

rule.5 Customizing the order stopped at 8𝑠 as the higher orbitals are far from the

spectroscopic orbitals and thus have a tiny occupation,6 but it might be worth adding

more orbitals ordered by the Madelung rule. In a practical sense, the customized

ordering was one of the essential parts of reliably achieving the convergence of the

DHF calculations in this work (see Section 14.2.2); it was increasingly difficult to
5There has been an error in the order of 6𝑠 and 5𝑑, in retrospect.
6The number of electrons in an orbital.
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achieve the convergence with the typical strategies (see Part IV in the GRASP2018

manual) as higher correlation orbitals were added, with the default ordering.

14.2.1 Core electrons: [Xe] 𝑓 14

The state of a Yb’s core electrons were calculated first: 𝛾 = [Xe] 4𝑓 14.7 Note that the

calculation of core electrons does not have to be accurate, as the resulting one-electron

wavefunctions will serve as seed wavefunctions in the following calculations of the

states of interest in Yb+ (see Section 14.2.2). Therefore, only a single CSF for the

configuration consisting of spectroscopic orbitals was allowed for DHF calculation.8

In other words, the configuration 𝛾 above was the only reference and there were only

one CSF that approximated the ASF (i.e., 𝑁MR = 𝑁CSF = 1), and the excitation

from 𝛾 was not allowed for the active set approach, reducing the calculation to the

simplest form of DHF method: Ψ(𝛾𝑃𝐽) = Φ(𝛾1𝑃𝐽).

14.2.1.1 1𝑠, 2𝑠𝑝, 3𝑠𝑝𝑑, and 4𝑠𝑝 shells

As the calculation with all the shells in the 𝛾 failed to converge (see Listing 14.4 for

an example GRASP2018 output in the case of such failure), the calculation ran for

1𝑠 to 4𝑝 shells9 at once as the start. First, the list of CSFs for the calculation was

generated using rcsfgenerate command:
1 >>rcsfgenerate
2

3 RCSFGENERATE
4 This program generates a list of CSFs
5

6 Configurations should be entered in spectroscopic notation
7 with occupation numbers and indications if orbitals are
8 closed (c), inactive (i), active (*) or has a minimal
9 occupation e.g. 1s(2,1)2s(2,*)

10 Outputfiles: rcsf.out , rcsfgenerate.log
11

12 Default , reverse , symmetry or user specified ordering? (*/r/s/u)
13 >>*
14

15 Select core
16 0: No core
17 1: He ( 1s(2) = 2 electrons)

7The full configuration is 𝜑𝑟 = 1𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑10 4𝑠2 4𝑝6 4𝑑10 5𝑠2 5𝑝6 4𝑓14.
8The configuration 𝛾 has only one associated CSF-configuration 𝛾1 as 𝛾 contains no open shell.
91𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑10 4𝑠2 4𝑝6
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18 2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
19 3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
20 4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
21 5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
22 6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
23 >>0
24

25 Enter list of (maximum 100) configurations. End list with a blank
line or an asterisk (*)

26

27 Give configuration 1
28 >>1s(2,c)2s(2,c)2p(6,c)3s(2,c)3p(6,c)3d(10,c)4s(2,i)4p(6,i)
29 Give configuration 2
30 >>
31 Give set of active orbitals , as defined by the highest principal

quantum number
32 per l-symmetry , in a comma delimited list in s,p,d etc order , e.g.

5s,4p,3d
33 >>4s,4p,3d
34 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
35 >>0,0
36 Number of excitations (if negative number e.g. -2, correlation
37 orbitals will always be doubly occupied)
38 >>0
39 Generate more lists ? (y/n)
40 >>n
41 Excitationdata file opened
42

43 ...(skipped)...
44

45 Group CSFs into symmetry blocks
46

47 1 blocks were created
48

49 block J/P NCSF
50 1 0+ 1

The ordering of orbitals in line 13 was set to default for now, but changed for corre-

lations orbitals lying on higher levels, as described in Section 14.2.2.1. Lines 15–30

set the reference configuration for the calculation. No pre-selected core is used to

manually set up the core configuration. The shells up to 3𝑑 were set to closed shells

in the calculation (e.g., c in 3d(10,c)) as the electrons in those shells would never

be excited to higher shells to generate CSFs in this work. On the other hand, 4𝑠 and

4𝑝 shells were set to inactive shells (i’s in 4s(2,i)4p(6,i)) so that their electrons

could be excited for the future calculations to capture the effect of core-core and

core-valence electrons’ correlation (see Section 14.3.2). The maximum and minimum

values of 2𝐽 were set to 0 as any closed shells have zero total angular momenta.No

correlation orbital (i.e., non-spectroscopic orbitals) was involved by setting active
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orbital of highest level to be the highest spectroscopic orbital in each orbital angular

momentum state 𝑙: 4𝑠, 4𝑝, and 3𝑑 in line 33. It made the input reference configura-

tion the only configuration for the calculation. It was printed out that 𝑁CSF = 1 in

line 50indeed. The list of the generated CSF-configuration 𝛾1 could be found in an

output file from rcsfgenerate command, rcsf.out.
1 Core subshells:
2 3d- 3d 3p- 3p 3s 2p- 2p 2s 1s
3 Peel subshells:
4 4p- 4p 4s
5 CSF(s):
6 4p-( 2) 4p ( 4) 4s ( 2)
7

8 0+

The CSF-configuration was too simple and had no angular coupling tree in this case.

More complicated examples can be found in, e.g., Listing 14.12.

Spin-angular integration, which takes care of the angular part of the calculations

(e.g., angular part of an operator’s matrix element for a given CSFs as bases) [173,

206, 207, 208], followed using rangular command.
1 >>cp rcsf.out rcsf.inp
2 >>rangular
3

4 RANGULAR
5 This program performs angular integration
6 Input file: rcsf.inp
7 Outputfiles: mcp.30, mcp.31, ....
8 rangular.log
9

10 Full interaction? (y/n)
11 >>y
12 Block 1 , ncf = 1
13 Loading CSF file ... Header only
14 There are/is 12 relativistic subshells;
15

16 ...(skipped)...
17

18 RANGULAR: Execution complete.

Before running the rangular command, the CSF-configuration list file rcsf.out was

copied as rcsf.inp to be an input of rangular, as in line 1:

Next, the seed one-electron wavefunctions were generated using rwfnestimate

command.

Listing 14.2: rwfnestimate input and output to generate initial wavefunctions with
which rmcdhf routine starts.

1 >>rwfnestimate
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2 RWFNESTIMATE
3 This program estimates radial wave functions
4 for orbitals
5 Input files: isodata , rcsf.inp , optional rwfn file
6 Output file: rwfn.inp
7 Default settings ?
8 >>y
9 Loading CSF file ... Header only

10 There are/is 12 relativistic subshells;
11 The following subshell radial wavefunctions remain to be estimated:
12 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p
13

14 Read subshell radial wavefunctions. Choose one below
15 1 -- GRASP92 File
16 2 -- Thomas -Fermi
17 3 -- Screened Hydrogenic
18 >>2
19 Enter the list of relativistic subshells:
20 >>*
21 All required subshell radial wavefunctions have been estimated:
22 Shell e p0 gamma P(2) Q(2)

MTP SRC
23

24 1s 0.2471D+04 0.2339D+04 0.1000D+01 0.3427D-05 -0.1525D-10
328 T-F

25 2s 0.5459D+03 0.9090D+03 0.1000D+01 0.1332D-05 -0.5940D-11
345 T-F

26 2p- 0.5394D+03 0.5514D+02 0.1000D+01 0.1474D-11 0.3163D-06
344 T-F

27 ...(skipped)...
28 4p- 0.9077D+02 0.1913D+02 0.1000D+01 0.5117D-12 0.1097D-06

365 T-F
29 4p 0.8643D+02 0.4499D+04 0.2000D+01 0.9655D-14 -0.4310D-19

366 T-F
30 RWFNESTIMATE: Execution complete.
31 Note: The following floating -point exceptions are signalling:

IEEE_UNDERFLOW_FLAG IEEE_DENORMAL

By the second input (2) in the line 18, the radial wavefunction (𝑃𝑛𝑘(𝑟), 𝑄𝑛𝑘(𝑟))
T

of an electron in each shell (𝑛, 𝑘) was solved for the Thomas-Fermi model.10 The

third input (*) in the line 20 set all the orbitals to be relativistic. The standard

output (stdout) from the command has rich information. The notation for each

shell consists of the principal quantum number 𝑛 followed by the symbol for orbital

angular momentum 𝑙 and, optionally, minus sign if the total angular momentum 𝑗

is lower possible value (i.e., 𝑗 = 𝑙 − 1
2
); for instance, 3p- and 3p refer 𝑝1/2 and 𝑝3/2

with 𝑛 = 3, respectively. For each shell, several parameters are shown. e is the

calculated orbital energy eigenvalue in Hartree energy 𝐸ℎ = ℏ𝑐𝛼/𝑎0. p0 and gamma

10The model treats the effect of all other electrons to an electron as a screening potential of a
particular form in addition to the Coulomb potential between the electron and nucleus.
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are dimensionless parameters 𝑝(0)𝑛𝑘 and 𝛾 in

𝑢𝑛𝑘(𝑟) = �̃�𝛾
(︁
𝑢
(0)
𝑛𝑘 + 𝑢

(1)
𝑛𝑘 �̃� + 𝑢

(2)
𝑛𝑘 �̃�

2 + · · ·
)︁
, 𝑢

(𝑚)
𝑛𝑘 =

⎛⎝ 𝑝
(𝑚)
𝑛𝑘

𝑞
(𝑚)
𝑛𝑘

⎞⎠ . (14.6)

where �̃� = 𝑟/𝑎0 is the 𝑟 normalized by the Bohr radius 𝑎0. P(2) and Q(2) is the

value of 𝑃𝑛𝑘(𝑟) and 𝑄𝑛𝑘(𝑟), in the unit of 𝑎−1/2
0 , at the grid point that is closest to

(but not at) the origin.

Then it was ready to run MCDHF calculation using rmcdhf command.
1 >>rmcdhf
2

3 RMCDHF
4 This program determines the radial orbitals
5 and the expansion coefficients of the CSFs
6 in a self -onsistent field proceedure
7 Input file: isodata , rcsf.inp , rwfn.inp , mcp.30, ...
8 Outputfiles: rwfn.out , rmix.out , rmcdhf.sum , rmcdhf.log
9

10 Default settings? (y/n)
11 >>y
12 Loading CSF file ... Header only
13 There are/is 12 relativistic subshells;
14 Loading CSF File for ALL blocks
15 There are 1 relativistic CSFs ... load complete;
16 Loading Radial WaveFunction File ...
17 There are 1 blocks (block J/Parity NCF):
18 1 0+ 1
19

20 Enter ASF serial numbers for each block
21 Block 1 ncf = 1 id = 0+
22 1
23 Radial functions
24 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p
25 Enter orbitals to be varied (Updating order)
26 >>*
27 Which of these are spectroscopic orbitals?
28 >>*
29 Enter the maximum number of SCF cycles:
30 >>1000
31

32 Average energy = -1.3283229562D+04 Hartrees
33

34 Optimise on the following level(s):
35

36 Level 1 Energy = -1.328322956181D+04 Weight = 1.00000D+00
37

38 Weights of major contributors to ASF:
39

40 Block Level J Parity CSF contributions
41

42 1 1 0 + 1.0000
43 1
44
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45 Generalised occupation numbers:
46

47 2.0000D+00 2.0000D+00 2.0000D+00 4.0000D+00 2.0000D+00
2.0000D+00

48 4.0000D+00 4.0000D+00 6.0000D+00 2.0000D+00 2.0000D+00
4.0000D+00

49

50 Iteration number 1
51 --------------------
52

53 Lagrange multipliers are not required
54 Self - Damping
55 Subshell Energy Method P0 consistency Norm -1 factor JP

MTP INV NNP
56

57 1s 2.2870480D+03 1 2.327D+03 1.05D-01 1.24D-02 0.000 276
355 0 0

58 ...(skipped)...
59 4s 6.1356652D+01 1 2.269D+02 1.47D-01 1.26D-02 0.100 338

371 0 3
60

61 Average energy = -1.3415109114D+04 Hartrees
62

63 Optimise on the following level(s):
64

65 Level 1 Energy = -1.341510911444D+04 Weight = 1.00000D+00
66

67 Weights of major contributors to ASF:
68

69 Block Level J Parity CSF contributions
70

71 1 1 0 + 1.0000
72 1
73

74 Generalised occupation numbers:
75

76 2.0000D+00 2.0000D+00 2.0000D+00 4.0000D+00 2.0000D+00
2.0000D+00

77 4.0000D+00 4.0000D+00 6.0000D+00 2.0000D+00 2.0000D+00
4.0000D+00

78

79 Iteration number 2
80 --------------------
81 ...(skipped)...
82 Iteration number 3
83 --------------------
84 ...(skipped)...
85 Iteration number 5
86 --------------------
87 ...(skipped)...
88 Generalised occupation numbers:
89

90 2.0000D+00 2.0000D+00 2.0000D+00 4.0000D+00 2.0000D+00
2.0000D+00

91 4.0000D+00 4.0000D+00 6.0000D+00 2.0000D+00 2.0000D+00
4.0000D+00

92

93 Wall time:
94 28 seconds
95
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96 Finish Date and Time:
97 Date (Yr/Mon/Day): 2022/03/14
98 Time (Hr/Min/Sec): 16/15/15.915
99 Zone: -0400

100

101 RMCDHF: Execution complete.
102 Note: The following floating -point exceptions are signalling:

IEEE_UNDERFLOW_FLAG IEEE_DENORMAL

The second input (*) in the line 24 set all orbitals to be solved for their one-electron

radial wavefunctions. The third input (*) set all orbitals to be spectroscopic orbitals

so that the number of nodes in each radial wavefunction was forced to be 𝑛− 𝑙 − 1

(see Sections 4.4 and 3.3 in the GRASP2018 manual and Ref. [189], respectively).

An output file rmcdhf.sum, rather than the long stdout, contains useful data in a

better form, including information about nucleus; parameters for radial grid; e, p0,

gamma, P(2), and Q(2) as in the stdout of the rwfnestimate command; the radial

moments of the distribution of electrons; and the energy of the state.
1 There are 36 electrons in the cloud
2 in 1 relativistic CSFs
3 based on 12 relativistic subshells.
4

5 The atomic number is 70.0000000000;
6 the mass of the nucleus is 3.133508267869D+05 electron masses;
7 Fermi nucleus:
8 c = 1.210654914042D-04 Bohr radii ,
9 a = 9.374560516004D-06 Bohr radii;

10 there are 169 tabulation points in the nucleus.
11

12 Speed of light = 137.0359991390D+00 atomic units.
13

14 Radial grid: R(I) = RNT*(exp((I-1)*H) -1), I = 1, ..., N;
15

16 RNT = 2.857142857143D-08 Bohr radii;
17 H = 5.000000000000D-02 Bohr radii;
18 N = 590;
19 R(1) = 0.000000000000D+00 Bohr radii;
20 R(2) = 1.464888467886D-09 Bohr radii;
21 R(N) = 1.761588423842D+05 Bohr radii.
22

23 OL calculation.
24 Level 1 will be optimised.
25

26 Radial wavefunction summary:
27

28

Self
29 Subshell e p0 gamma P(2) Q(2)

Consistency MTP
30

31 1s 2.3189453392D+03 2.328D+03 1.00 3.411D-06 -1.517D-11
5.749D-06 359

32 ...(skipped)...
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33 4p 5.5776736585D+01 3.270D+03 2.00 7.017D-15 -3.130D-20
6.360D-06 372

34

35 -3 -1 2
4 Generalised

36 Subshell < r > < r > < r > < r >
< r > occupation

37

38 1s 0.00000D+00 8.06082D+01 1.96608D-02 5.29929D-04
7.56510D-07 2.00000D+00

39 ...(skipped)...
40 4p 9.20523D+02 3.06249D+00 4.58798D-01 2.37563D-01

7.91511D-02 4.00000D+00
41

42 Eigenenergies:
43

44 Level J Parity Hartrees Kaysers
eV

45

46 1 0 + -1.342679356171D+04 -2.946840567440D+09
-3.653616625917D+05

47

48 Weights of major contributors to ASF:
49

50 Block Level J Parity CSF contributions
51

52 1 1 0 + 1.0000
53 1

rmcdhf also outputs rwfn.out, a binary file that stores the calculated radial wave-

functions.

The one cycle of DHF calculation typically ends here or by running rsave com-

mand for the following CI calculations, which rename all the output files from the

last procedure to the input argument of the command; for instance, rcsf.inp,

rmcdhf.sum, and rwfn.out are renamed as Yb_core.c, Yb_core.sum, and Yb_core.w,

respectively, by the following line:
1 rsave Yb_core

14.2.1.2 4𝑑 shell

The orbitals higher than 4𝑝 is to be added next in the reference configuration.11 To

achieve convergence of the calculation, no more than two orbitals were added at one

cycle of DHF calculation. It is not necessary to start from rnucleus again. Rather,

rcsfgenerate was run to add shells in the configuration. Adding orbitals started
11𝛾 = 1𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑10 4𝑠2 4𝑝6 4𝑑10
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from 4𝑑.
1 >>rcsfgenerate
2

3 RCSFGENERATE
4 ...(skipped)...
5 Default , reverse , symmetry or user specified ordering? (*/r/s/u)
6 >>*
7

8 Select core
9 ...(skipped)...

10 >>0
11 ...(skipped)...
12 Give configuration 1
13 >>1s(2,c)2s(2,c)2p(6,c)3s(2,c)3p(6,c)3d(10,c)4s(2,i)4p(6,i)4d(10,i)
14 ...(skipped)...
15 Give set of active orbitals , as defined by the highest principal

quantum number
16 per l-symmetry , in a comma delimited list in s,p,d etc order , e.g.

5s,4p,3d
17 >>4s,4p,4d
18 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
19 >>0,0
20 Number of excitations (if negative number e.g. -2, correlation
21 orbitals will always be doubly occupied)
22 >>0
23 Generate more lists ? (y/n)
24 >>n
25 ...(skipped)...
26 block J/P NCSF
27 1 0+ 1

The excitation of electrons in the reference configuration to higher orbitals was not

allowed again, as well as all the following DHF calculations, resulting in 𝑁CSF = 1

for the configuration with the closed shells.

The angular integration with rangular and generating seed wavefunctions using

rwfnestimate followed.
1 >>cp rcsf.out rcsf.inp
2 >>rangular < rangular_input
3 RANGULAR
4 ...(skipped)...
5 RANGULAR: Execution complete.

1 >>rwfnestimate
2 RWFNESTIMATE
3 This program estimates radial wave functions
4 for orbitals
5 Input files: isodata , rcsf.inp , optional rwfn file
6 Output file: rwfn.inp
7 Default settings ?
8 >>y
9 Loading CSF file ... Header only

10 There are/is 14 relativistic subshells;
11 The following subshell radial wavefunctions remain to be estimated:
12 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d
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13

14 Read subshell radial wavefunctions. Choose one below
15 1 -- GRASP92 File
16 2 -- Thomas -Fermi
17 3 -- Screened Hydrogenic
18 >>1
19 Enter the file name (Null then "rwfn.out")
20 >>
21 Enter the list of relativistic subshells:
22 >>*
23 The following subshell radial wavefunctions remain to be estimated:
24 4d- 4d
25

26 Read subshell radial wavefunctions. Choose one below
27 1 -- GRASP92 File
28 2 -- Thomas -Fermi
29 3 -- Screened Hydrogenic
30 >>2
31 Enter the list of relativistic subshells:
32 >>*
33 All required subshell radial wavefunctions have been estimated:
34 Shell e p0 gamma P(2) Q(2)

MTP SRC
35

36 1s 0.2319D+04 0.2334D+04 0.1000D+01 0.3419D-05 -0.1549D-10
359 rwf

37 ...(skipped)...
38 4d 0.5935D+02 0.1859D+05 0.3000D+01 0.5843D-22 -0.2656D-27

369 T-F
39 RWFNESTIMATE: Execution complete.
40 Note: The following floating -point exceptions are signalling:

IEEE_UNDERFLOW_FLAG IEEE_DENORMAL

The calculated wavefunctions in rwfn.out file from the previous calculation for

𝛾′ = 1𝑠2 · · · 4𝑝6 was used as the seed wavefunctions for all the previous orbitals,

by choosing 1 as the first input in the line 18. The only new orbital is 4𝑑,12 and

the wavefunction from Thomas-Fermi model was chosen for the seed wavefunction

by the input in the line 30. All the orbitals were set to be relativistic again here (the

lines 22 and 32) and for all the following DHF calculations.

Finally, rmcdhf command was executed for the DHF calculation.
1 >>rmcdhf
2

3 RMCDHF
4 ...(skipped)...
5 Default settings? (y/n)
6 >>y
7 ...(skipped)...
8 Enter ASF serial numbers for each block
9 Block 1 ncf = 1 id = 0+

10 >>1
11 Radial functions

124d- and 4d (i.e., 4𝑑3/2 and 4𝑑5/2), relativistically.

248



12 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d
13 Enter orbitals to be varied (Updating order)
14 >>*
15 Which of these are spectroscopic orbitals?
16 >>*
17 Enter the maximum number of SCF cycles:
18 >>1000
19

20 Average energy = -1.3753595143D+04 Hartrees
21 ...(skipped)...
22 Iteration number 1
23 --------------------
24 ...(skipped)...
25 Iteration number 5
26 --------------------
27 ...(skipped)...
28 Wall time:
29 ...(skipped)...
30 RMCDHF: Execution complete.
31 Note: The following floating -point exceptions are signalling:

IEEE_UNDERFLOW_FLAG IEEE_DENORMAL

An input to be emphasized here is for the second query at the line 13. The pre-

viously calculated one-electron wavefunctions for 1𝑠 to 4𝑝 shell are loaded when

rwfnestimate was run, but the orbitals participated in the DHF calculation again

when 4𝑑 shell was included in the configuration, by setting all orbitals to be varied.

Therefore, the interaction between electrons in 4𝑑 and all other shells was taken

into account, resulting in the perturbation in 1𝑠–4𝑝 orbital wavefunctions from the

previous solution with no electron in 4𝑑 shell. The same technique will be used

whenever possible (i.e., the convergence can be achieved), especially for the valence

and low-lying correlation orbitals described in Section. 14.2.2 in addition to the core

orbitals.

The convergence is obtained again with the small number of iterations. (see

line 25)

14.2.1.3 4𝑓 shell

4𝑓 orbital was added next. The convergence of DHF calculation could not be achieved

via the procedure described above, and a technique to handle such a case introduced

in Section 4.4 in the GRASP2018 manual was used: increasing the nuclear charge

number from 𝑍 to 𝑍 ′, performing DHF calculation, and using the resulting wave-

function as seed wavefunctions for DHF calculation for the original charge 𝑍. Here
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𝑍 was increased by one at a time until the convergence was achieved at 𝑍 = 72. The

atomic number in the isodata file was directly modified to 72:
1 Atomic number:
2 72.000000000000000
3 Mass number (integer) :
4 ...(skipped)...

and the solutions for all the orbitals that had been included by then were updated

for 𝑍 = 72:
1 >>cp rcsf.out rcsf.inp
2 >>rangular
3

4 RANGULAR
5 ...(skipped)...
6 Full interaction? (y/n)
7 >>y
8 ...(skipped)...
9 RANGULAR: Execution complete.

1 >>rwfnestimate
2 RWFNESTIMATE
3 ...(skipped)...
4 Default settings ?
5 >>y
6 Read subshell radial wavefunctions. Choose one below
7 1 -- GRASP92 File
8 2 -- Thomas -Fermi
9 3 -- Screened Hydrogenic

10 >>1
11 Enter the file name (Null then "rwfn.out")
12 >>
13 Enter the list of relativistic subshells:
14 *
15 All required subshell radial wavefunctions have been estimated:
16 ...(skipped)...
17 RWFNESTIMATE: Execution complete. ...(skipped)

[here, seed wavefunctions for all orbitals were set to be the solutions of the previous

DHF calculations for 𝑍 = 70 (the input in the line 10)]
1 >>rmcdhf
2

3 RMCDHF
4 ...(skipped)...
5 Default settings? (y/n)
6 >>y
7 ...(skipped)...
8 Enter ASF serial numbers for each block
9 Block 1 ncf = 1 id = 0+

10 >>1
11 Radial functions
12 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d
13 Enter orbitals to be varied (Updating order)
14 >>*
15 Which of these are spectroscopic orbitals?
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16 >>*
17 Enter the maximum number of SCF cycles:
18 >>1000
19 ...(skipped)...
20 Iteration number 5
21 --------------------
22 ...(skipped)...
23 Wall time:
24 ...(skipped)...
25 RMCDHF: Execution complete. ...(skipped)

Then, 4𝑓 shell was added in the configuration,13

1 >>rcsfgenerate
2

3 RCSFGENERATE
4 ...(skipped)...
5 Default , reverse , symmetry or user specified ordering? (*/r/s/u)
6 >>*
7

8 Select core
9 ...(skipped)...

10 >>0
11 ...(skipped)...
12 Give configuration 1
13 >>1s(2,c)2s(2,c)2p(6,c)3s(2,c)3p(6,c)3d(10,c)4s(2,i)4p(6,i)4d(10,i)4

f(14,i)
14 Give configuration 2
15 >>
16 Give set of active orbitals , ...(skipped)...
17 >>4s,4p,4d,4f
18 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
19 >>0,0
20 Number of excitations ...(skipped)...
21 >>0
22 Generate more lists ? (y/n)
23 >>n
24 ...(skipped)...
25 block J/P NCSF
26 1 0+ 1

a seed wavefunctions for the new 4𝑓5/2 and 4𝑓7/2 orbitals were given from the Thomas-

Fermi model,
1 >>rwfnestimate
2 ...(skipped)...
3 Read subshell radial wavefunctions. Choose one below
4 ...(skipped)...
5 >>1
6 Enter the file name (Null then "rwfn.out")
7 >>
8 Enter the list of relativistic subshells:
9 >>*

10 The following subshell radial wavefunctions remain to be estimated:
11 4f- 4f
12

13 Read subshell radial wavefunctions. Choose one below

13𝛾 = 1𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑10 4𝑠2 4𝑝6 4𝑑10 4𝑓14
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14 ...(skipped)...
15 >>2
16 Enter the list of relativistic subshells:
17 >>2
18 ...(skipped)...
19 RWFNESTIMATE: Execution complete. ...(skipped)

and the DHF calculation was run.
1 >>rmcdhf
2 ...(skipped)...
3 >>y
4 ...(skipped)...
5 >>1
6 ...(skipped)...
7 >>*
8 Which of these are spectroscopic orbitals?
9 >>*

10 Enter the maximum number of SCF cycles:
11 >>1000
12 ...(skipped)...
13 Iteration number 8
14 --------------------
15 ...(skipped)...
16 RMCDHF: Execution complete. ...(skipped)

Since the DHF calculation with the 4𝑓 shell converged, all the orbitals were solved

again for 𝑍 = 70. The isodata file were edited again for 𝑍 = 70, and rcsfgenerate,

rangular (after copying rcsf.out to rcsf.inp), rwfnestimate (setting all the seed

wavefunctions to be the DHF solution for 𝑍 = 72), and rmcdhf were executed in the

listed order.

14.2.1.4 5𝑠𝑝 shells

As the last step for the core electrons in Yb+, 5𝑠 and 5𝑝 shells were added at the

same time14 by running rcsfgenerate,
1 >>rcsfgenerate
2 ...(skipped)...
3 >>*
4 ...(skipped)...
5 >>0
6 ...(skipped)...
7 Give configuration 1
8 >>1s(2,c)2s(2,c)2p(6,c)3s(2,c)3p(6,c)3d(10,c)4s(2,c)4p(6,c)4d(10,c)4

f(14,c)5s(2,i)5p(6,i)
9 Give configuration 2

10 >>
11 Give set of active orbitals , ...(skipped)...
12 >>5s,5p,4d,4f

14𝛾 = 1𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑10 4𝑠2 4𝑝6 4𝑑10 5𝑠2 5𝑝6 4𝑓14 = [Xe] 4𝑓14

252



13 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
14 >>0,0
15 Number of excitations ...(skipped)...
16 >>0
17 Generate more lists ? (y/n)
18 >>n
19 ...(skipped)...
20 block J/P NCSF
21 1 0+ 1

rangular, rwfnestimate (previous DHF solutions and Thomas-Fermi solutions as

seed functions for all the previously counted orbitals and the new orbitals, respec-

tively), and rmcdhf.

The resulting energy eigenvalues of all the orbitals are compared with Ref. [27]

in Table C.1.

14.2.2 Valence and correlation electrons up to 8𝑠𝑝𝑑𝑓

The calculations for valence and correlation electrons were somewhat different from

the calculations for core electrons in several aspects: custom orbital ordering, ra-

dial grid, way to add orbitals, simultaneous calculations of different configurations,

manual choice of integration method, and comparison for energy orders. Also, as

the energies of orbitals got closer to the continuum (i.e., the energy of unbound

electrons), the convergence and the convergence with the right order of energies of

different orbitals were increasingly difficult to achieve. To endure the right results,

several new strategies were employed as described below, and the relations between

orbital energies were checked after each step:

𝐸𝑛𝑗 < 𝐸(𝑛+1)𝑗 (14.7a)

𝐸𝑛,𝑙+1/2 < 𝐸𝑛,𝑙−1/2 (14.7b)

where 𝐸𝑛𝑗 is the energy of the relativistic orbital with the principal number 𝑛 and

total angular momentum number 𝑗 = 𝑙 ± 1
2
.15 16.

15For instance, 𝐸(6p) < 𝐸(7p) and 𝐸(6p) < 𝐸(6p-).
16𝐸𝑛𝑗 < 0 as it is the energy of a bound state. Lower energy means state bound more tightly.
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14.2.2.1 6𝑠𝑝 and 5𝑑 shells

First, the valence shells 6𝑠 and 5𝑑 in 2𝑆1/2, 2𝐷3/2, or 2𝐷5/2 states, and a corre-

lation shell 6𝑝 were added,17 which are the lowest shells over the core orbitals.

Here, calculating different configurations at the same time was introduced. The

ASFs of different states with configurations 𝛾(𝑚) were approximated with the form

Ψ(𝛾(𝑚)𝑃 (𝑚)𝐽 (𝑚)) ≈
∑︀𝑁

(𝑚)
CSF

𝑖=1 𝑐
(𝑚)
𝑖 Φ(𝛾

(𝑚)
𝑖 𝑃 (𝑚)𝐽 (𝑚)), while all the CSFs for the differ-

ent states were constructed over the same set of one-electron orbital wavefunctions

𝜑𝑛𝑘(r). In other words, MCDHF calculations found the solutions to 𝑐(𝑚)
𝑖 of each state

and shared 𝜑𝑛𝑘(r) to approximate all the states, for the list of CFS-configurations

given for each of the states.
1 >>rcsfgenerate
2

3 RCSFGENERATE
4 ...(skipped)...
5 Default , reverse , symmetry or user specified ordering? (*/r/s/u)
6 >>u
7

8 Select core
9 ...(skipped)...

10 4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
11 ...(skipped)...
12 >>4
13

14 Enter list of (maximum 100) configurations. End list with a blank
line or an asterisk (*)

15

16 Give configuration 1
17 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)6s(1,i)
18 Give configuration 2
19

20 Give set of active orbitals , ...(skipped)...
21 >>6s,5p,4d,4f
22 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
23 >>1,1
24 Number of excitations ...(skipped)...
25 >>0
26 Generate more lists ? (y/n)
27 >>y
28 Enter list of (maximum 100) configurations. End list with a blank

line or an asterisk (*)
29

30 Give configuration 1
31 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)6p(1,i)
32 Give configuration 2
33 >>
34 Give set of active orbitals , ...(skipped)...

176𝑝 shell could be a valence shell if, for instance, [Xe] 4𝑓14 6𝑝 2𝑃1/2 state was of interest, which
is the excited state of the cooling transition 2𝑆1/2 ↔ 2𝑃1/2.
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35 >>5s,6p,4d,4f
36 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
37 >>1,3
38 Number of excitations ...(skipped)...
39 >>0
40 Generate more lists ? (y/n)
41 >>y
42 Enter list of (maximum 100) configurations. End list with a blank

line or an asterisk (*)
43

44 Give configuration 1
45 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5d(1,i)
46 Give configuration 2
47 >>
48 Give set of active orbitals , ...(skipped)...
49 >>5s,5p,5d,4f
50 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
51 >>3,5
52 Number of excitations ...(skipped)...
53 >>0
54 Generate more lists ? (y/n)
55 >>n
56 Excitationdata file opened
57 ...(skipped)...
58 block J/P NCSF
59 1 1/2+ 1
60 2 1/2- 1
61 3 3/2+ 1
62 4 3/2- 1
63 5 5/2+ 1

The first input (u) at the line 6 chose to use the customized orbital ordering intro-

duced in the beginning of Section 14.2, which will be used for all the DHF calcula-

tions here and below. A preset core configuration 4: Kr18 was chosen at the line 12

to simplify the configuration inputs. The first set of inputs for state configurations

(lines 16–25) set the configuration 𝛾𝑆 ≡ 𝛾(1) = [Xe] 4𝑓 14 6𝑠 with 2𝐽 = 1.19 The inputs

(y) in lines 27 and 41 were to add more states by repeating the same set of queries.

The second (lines 30–39) and third (lines 44–53) sets of inputs set 𝛾𝑃 ≡ 𝛾(2) = 𝛾(3) =

[Xe] 4𝑓 14 6𝑝 with 2𝐽 = 1, 3 and 𝛾𝐷 ≡ 𝛾(4) = 𝛾(5) = [Xe] 4𝑓 14 5𝑑 with 2𝐽 = 3, 5.

Therefore, there are total five ASFs to be calculated:
(︀
𝛾(𝑚), 𝑃 (𝑚), 𝐽 (𝑚)

)︀
= (𝛾𝑆,+, 1

2
),

(𝛾𝑃 ,−, 1
2
), (𝛾𝑃 ,−, 3

2
), (𝛾𝐷,+, 3

2
), and (𝛾𝐷,+, 5

2
),20 which correspond to the block 1,

2, 4, 3, and 5 in the output lines 58–63, respectively. For each configuration, all
181𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑10 4𝑠2 4𝑝6
19The superscript is omitted if the occupation of an orbital is one (e.g., 6𝑠 = 6𝑠1).
20The corresponding term symbols are 2𝑆1/2, 2𝑃1/2, 2𝑃3/2, 2𝐷3/2, and 2𝐷5/2, respectively, con-

sidering the configurations. The terms symbol of ASFs in a calculation can be obtained using
jj2lsj command, see Section 9.2 in the GRASP2018 manual.
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possible values of 𝐽 were listed (e.g., 2𝐽 = 1, 3 for 𝛾𝑃 ) as it helped achieve conver-

gence. The rangular command was run as usual. rwfnestimate had new inputs to

manually set the grid parameters:

Listing 14.3: rwfnestimate for 6𝑠𝑝5𝑑 configuration.
1 rwfnestimate
2 RWFNESTIMATE
3 ...(skipped)...
4 Default settings ?
5 >>n
6 Generate debug printout?
7 >>n
8 File erwf.sum will be created as the ERWF SUMmary File;
9 enter another file name if this is not acceptable; null otherwise:

10 >>
11 Loading CSF file ... Header only
12 There are/is 26 relativistic subshells;
13 Change the default speed of light or radial grid parameters?
14 >>y
15 The physical speed of light in atomic units is 137.03599913900001

;
16 revise this value?
17 >>n
18 The default radial grid parameters for this case are:
19 RNT = 2.8571428571428569E-008 ;
20 H = 5.0000000000000003E-002 ;
21 HP = 0.0000000000000000 ;
22 N = 590 ;
23 revise these values?
24 >>y
25 Enter RNT:
26 > >2.857142857143D-08
27 Enter H:
28 > >5.000000000000D-02
29 Enter HP:
30 >>0
31 Enter N:
32 >>590
33 The following subshell radial wavefunctions remain to be estimated:
34 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d-

5d 6s 6p-
35 6p 5f- 5f
36

37 Read subshell radial wavefunctions. Choose one below
38 ...(skipped)...
39 >>1
40 Enter the file name (Null then "rwfn.out")
41 >>
42 Enter the list of relativistic subshells:
43 >>*
44 The following subshell radial wavefunctions remain to be estimated:
45 5d- 5d 6s 6p- 6p
46

47 Read subshell radial wavefunctions. Choose one below
48 ...(skipped)...
49 >>2
50 Enter the list of relativistic subshells:
51 >>*
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52 All required subshell radial wavefunctions have been estimated:
53 Shell e p0 gamma P(2) Q(2)

MTP SRC
54

55 1s 0.2268D+04 0.2334D+04 0.1000D+01 0.3419D-05 -0.1549D-10
379 rwf

56 ...(skipped)...
57 6p 0.6182D+00 0.5087D+03 0.2000D+01 0.1092D-14 -0.4872D-20

412 T-F
58 Revise any of these estimates?
59 >>n
60 RWFNESTIMATE: Execution complete. ...(skipped)

The lines 23–32 sets the parameters for the radial grid R(I) = RNT*(exp((I-1)*H)-1),

I = 1, ..., N, where RNT has 𝑎0 as its unit, H is dimensionless, and N is the total

number of the grid points (see Section 9.1 in the GRASP2018 manual).21 The grid

parameters were manually set for future calculations while varying nuclear param-

eters, as described in Section 15.1.3. The seed wavefunctions for the core orbitals

were loaded from the calculations in Section 14.2.1 while the Thomas-Fermi model’s

solutions were assigned for the new, valence and correlation shells, as usual.
1 >>rmcdhf
2 ...(skipped)...
3 Default settings? (y/n)
4 >>n
5 Generate debug output? (y/n)
6 >>n
7 Loading CSF file ... Header only
8 There are/is 24 relativistic subshells;
9 Loading CSF File for ALL blocks

10 There are 5 relativistic CSFs ... load complete;
11 Change the default speed of
12 light or radial grid parameters? (y/n) y
13 Speed of light = 137.03599913900001 ; revise ?
14 >>n
15 The default radial grid parameters for this case are:
16 RNT = 2.8571428571428569E-008
17 H = 5.0000000000000003E-002
18 HP = 0.0000000000000000
19 N = 590
20 revise these values?
21 >>y
22 Enter RNT:
23 > >2.857142857143D-08
24 Enter H:
25 > >5.000000000000D-02
26 Enter HP:
27 >>0
28 Enter N:
29 >>590
30 Revised RNT = 2.8571428571430001E-008

21GRASP2018 uses logarithmic grids in which the spacing between neighboring grid points is
exponentially increasing.
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31 Revised H = 5.0000000000000003E-002
32 Revised HP = 0.0000000000000000
33 Revised N = 590
34 Revise the default ACCY = 1.5625000000000006E-008
35 >>n
36 Loading Radial WaveFunction File ...
37 There are 5 blocks (block J/Parity NCF):
38 1 1/2+ 1 2 1/2- 1 3 3/2+ 1

4 3/2- 1
39 5 5/2+ 1
40

41 Enter ASF serial numbers for each block
42 Block 1 ncf = 1 id = 1/2+
43 >>1
44 Block 2 ncf = 1 id = 1/2-
45 >>1
46 Block 3 ncf = 1 id = 3/2+
47 >>1
48 Block 4 ncf = 1 id = 3/2-
49 >>1
50 Block 5 ncf = 1 id = 5/2+
51 >>1
52 level weights (1 equal; 5 standard; 9 user)
53 >>1
54 Radial functions
55 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d-

5d 6s 6p-
56 6p
57 Enter orbitals to be varied (Updating order)
58 >>*
59 Which of these are spectroscopic orbitals?
60 >>*
61 Enter the maximum number of SCF cycles:
62 >>1000
63 Modify other defaults? (y/n)
64 >>y
65 An oscillation in the large -component of the radial wavefunction is

diregarded
66 for the purposes of node counting if its amplitude is less than

1/20 the
67 maximum amplitude. Revise this?
68 >>n
69 Method 1 is used for integrating the radial

differential equation for subshells
70 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d

- 5d 6s 6p-
71 6p
72 Select a different integration method for any subshell radial

wavefunction?
73 >>y
74 Method 1 :
75 >>*
76 Method 2 :
77 >>
78 Method 3 :
79 >>
80 Method 4 :
81 >>
82 The first oscillation of the large component
83 of all radial wavefunctions will be required to be positive.

258



Revise this?
84 >>n
85 Set accelerating parameters for subshell radial wavefunctions?
86 >>n
87 Set accelerating parameters for the eigenvectors?
88 >>n
89 Following the improvement of each of the subshell radial

wavefunctions in turn ,
90 the 6 least self -consistent functions will be improved

at the
91 end of the first SCF cycle. Revise this setting?
92 >>n
93 The maximum number of cycles in attempting to solve each radial

equation is
94 3 times the principal quantum number of the radial
95 wave -function to be estimated. Revise this setting?
96 >>n
97 Subshell radial wavefunctions will be Schmidt orthogonalised

immediately
98 following their estimation to all functions with poorer self -

consistency.
99 Revise this?

100 >>n
101 Orthonomalization order?
102 1 -- Update order
103 2 -- Self consistency connected
104 >>1
105

106 Average energy = -1.4067080329D+04 Hartrees
107 ...(skipped)...
108 Iteration number 1
109 --------------------
110 ...(skipped)...
111 Iteration number 7
112 --------------------
113 ...(skipped)...
114 RMCDHF: Execution complete. ...(skipped)

Choosing not to use default settings (line 6) showed a long list of additional queries.

The same grid parameters used for rwfnestimate were input in lines 23–29. Another

new step was to compare the results of the different integration methods specified

in the lines 72–81; one of the four methods can be chosen for each of the relativistic

orbitals. Here, all the orbitals in the calculation (an asterisk symbol *)22 chose

Method 1. Although the GRASP2018 manual does not specify what the methods

are about, they sometimes give significant differences in DHF calculation results.

For this run, for instance, Method 1 gave convergence, the right order of energies

[Eq. (14.7)], and consistent energy levels with the results previously obtained for core
22The asterisk * is not merely a mark for choosing a method. It refers to any orbitals in the

calculation.
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electrons only (Section 14.2.1 and Table C.1). On the other hand, Method 2 did not

converge the calculation for 6𝑝3/2 orbital as shown in the stdout:

Listing 14.4: rmcdhf run that failed to achieve a convergence.
1 (skipped including inputs)...
2 Method 2 unable to solve for 6p orbital
3 Iteration number: 18, limit: 18
4 Present estimate of P0; 0.57921939441735D+03
5 Present estimate of E(J): 0.81812498927639D+02, DELEPS:

-0.18572643659401D+02
6 Lower bound on energy: 0.81189740939245D+02, upper bound:

0.82435256916032D+02
7 Join point: 324, Maximum tabulation point: 434
8 Number of nodes counted: 6, Correct number: 4
9 Sign of P at first oscillation: 1.

10

11 Failure; equation for orbital 6p could not be solved using method
2

12

13

14 ****** Error in SUBROUTINE IMPROV ******
15 Convergence not obtained
16 ...(skipped)

Method 3 converged but gave inconsistent energies with the core-electron calculation.

Method 4 failed to make some states to be bound states:23

1 (skipped including inputs)...
2 IN: maximum tabulation point exceeds
3 dimensional limit (currently 590);
4 radial wavefunction may indicate a
5 continuum state.
6 Note: The following floating -point exceptions are signalling:

IEEE_UNDERFLOW_FLAG IEEE_DENORMAL

Obviously, the choice was Method 1.

There was a new query in between the typical queries: level weights in line 53.

It appears when there are more than one states to be calculated, and asks the relative

weight of each state for calculating the shared orbital wavefunctions 𝜑𝑛𝑘(r). The

usual choice is the standard weights (5) which weights each state with the value of

2𝐽 + 1 (i.e., the number of internal states). For this run, however, the standard

weights failed to converge the calculation, so equal weights (1) were chosen instead.

14.2.2.2 5𝑓 shell

5𝑓 was added by adding a reference configuration 𝛾𝐹 ≡ 𝛾(6) = 𝛾(7) = [Xe] 4𝑓 14 5𝑓 :
23i.e., the radial wavefunctions do not decay out at some positions away from the origin by many

𝑎0.
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1 >>rcsfgenerate
2 ...(skipped)...
3 >>u
4 ...(skipped)...
5 >>4
6 ...(skipped for the previous state configurations)...
7 Generate more lists ? (y/n)
8 >>y
9 ...(skipped)...

10 Give configuration 1
11 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5f(1,i)
12 Give configuration 2
13 >>
14 Give set of active orbitals , ...(skipped)...
15 >>5s,5p,5d,5f
16 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
17 >>5,7
18 Number of excitations ...(skipped)...
19 >>0
20 Generate more lists ? (y/n)
21 >>n
22 ...(skipped)...
23 block J/P NCSF
24 1 1/2+ 1
25 2 1/2- 1
26 3 3/2+ 1
27 4 3/2- 1
28 5 5/2+ 1
29 6 5/2- 1
30 7 7/2- 1

There were then two more ASFs added:
(︀
𝛾(𝑚), 𝑃 (𝑚), 𝐽 (𝑚)

)︀
= (𝛾𝐹 ,−, 5

2
) and (𝛾𝐹 ,−, 7

2
)

in block 6 and 7 in the output lines 23–30, respectively.

rangular, rwfnestimate were run just as for the last time. rmcdhf were mostly

the same as the last time except for several inputs:
1 >>rmcdhf
2 ...(skipped)...
3 Default settings? (y/n)
4 >>n
5 ...(skipped including inputs)...
6 Enter RNT:
7 > >2.857142857143D-08
8 Enter H:
9 > >5.000000000000D-02

10 Enter HP:
11 >>0
12 Enter N:
13 >>590
14 ...(skipped including inputs)...
15 level weights (1 equal; 5 standard; 9 user)
16 >>1
17 ...(skipped)...
18 Enter orbitals to be varied (Updating order)
19 >>5f*
20 ...(skipped including inputs)...
21 Select a different integration method for any subshell radial
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wavefunction?
22 >>y
23 Method 1 :
24 >>
25 Method 2 :
26 >>
27 Method 3 :
28 >>
29 Method 4 :
30 >>*
31 ...(skipped including inputs)...
32 Iteration number 1
33 --------------------
34 ...(skipped)...
35 Iteration number 6
36 --------------------
37 ...(skipped)...
38 RMCDHF: Execution complete. ...(skipped)

From here, the previous orbitals were not varied when the new orbitals were added.

In other words, all orbitals calculated in a calculation were fixed in the following

calculations. To do so, the query at line 18 was answered with the input 5f*,

meaning 5f and 5f- (i.e., all possible relativistic 5𝑓 orbitals). Method 1 and 3

gave no convergence and continuum state, respectively. Method 2 gave an example

violating Eq. (14.7b):
1 (skipped)...
2 Subshell e ...(skipped)...
3 ...(skipped)...
4 5f- 7.1630736498D-02 ...(skipped)...
5 5f 1.2509928741D-01 ...(skipped)...
6 ...(skipped)

in the rmcdhf.sum file. Method 4 gave the right values:
1 5f- 5.5631754199D-02
2 5f 5.5625231837D-02

Therefore, Method 4 was the choice.

14.2.2.3 6𝑑𝑓 shells

The correlation orbitals higher than 6𝑠𝑝 or 5𝑑𝑓 were added not by adding them in

the reference configurations 𝛾(𝑚) but by setting higher maximum active orbitals:
1 >>rcsfgenerate
2 ...(skipped)...
3 >>u
4 ...(skipped)...
5 >>4
6 ...(skipped)...
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7 ...(skipped for the previous state configurations for 𝛾𝑆 and 𝛾𝑃 )...
8 Give configuration 1
9 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5d(1,*)

10 Give configuration 2
11

12 Give set of active orbitals , ...(skipped)...
13 >>5s,5p,6d,4f
14 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
15 >>3,5
16 Number of excitations ...(skipped)...
17 >>1
18 ...(skipped including inputs)...
19 Give configuration 1
20 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5f(1,*)
21 Give configuration 2
22 >>
23 Give set of active orbitals , ...(skipped)...
24 >>5s,5p,5d,6f
25 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
26 >>5,7
27 Number of excitations ...(skipped)...
28 >>1
29 ...(skipped including inputs)...
30 block J/P NCSF
31 1 1/2+ 1
32 2 1/2- 1
33 3 3/2+ 2
34 4 3/2- 1
35 5 5/2+ 2
36 6 5/2- 2
37 7 7/2- 2

The 5𝑑 orbital’s configuration in 𝛾𝐷 had an asterisk (*) in line 9 instead of i for

being inactive, which allowed single or double-electron excitations from the orbital.24.

The highest active 𝑑 orbital was increased from 5𝑑 to 6𝑑 in line 13, so to allow

the electron’s excitation from 5𝑑 to 6𝑑. In this way, 6𝑑 orbital was involved in the

calculation, and DHF found the solution for 𝜑6,2±1/2(r). The maximum total number

of excitation needed to be also set (line 27); it was one in this calculation. Similarly,

The 5𝑓 orbital’s configuration in 𝛾𝐹 was allowed for excitations (line 20), and the

highest active 𝑓 orbital was set to be 6𝑓 (line 24).

A states with 𝛾𝐷 (𝛾𝐹 ) configurations had two CSFs, as shown in lines 30–37, as the

configurations obtained by exciting the electron in 5𝑑 (5𝑓) to 6𝑑 (6𝑓) is additionally

included in the list of CSFs for the states. rcsf.out file showed the generated list

of CFSs for, e.g., 2𝐷3/2 and 2𝐷5/2 states (see Section 14.2.1):
1 (skipped)...

24Maximum one electron could be excited here as there is only one electron in the shell.
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2 5s ( 2) 5p-( 2) 5p ( 4) 4f-( 6) 4f ( 8) 5d-( 1)
3 3/2
4 3/2+
5 5s ( 2) 5p-( 2) 5p ( 4) 4f-( 6) 4f ( 8) 6d-( 1)
6 3/2
7 3/2+
8 *
9 ...(skipped)...

10 5s ( 2) 5p-( 2) 5p ( 4) 4f-( 6) 4f ( 8) 5d ( 1)
11 5/2
12 5/2+
13 5s ( 2) 5p-( 2) 5p ( 4) 4f-( 6) 4f ( 8) 6d ( 1)
14 5/2
15 5/2+
16 *
17 ...(skipped)

rangular, rwfnestimate were run like the last time. The MCDHF calculations

for 6𝑑 and 6𝑓 shells were run separately as the convergence of calculations for both

shells at the same time could not be achieved.
1 >>rmcdhf
2 ...(skipped including inputs)...
3 level weights (1 equal; 5 standard; 9 user)
4 >>5
5 ...(skipped)...
6 Enter orbitals to be varied (Updating order)
7 >>6d*
8 ...(skipped including inputs)...
9 Method 1 :

10 >>6d*
11 ...(skipped including inputs)...
12 Iteration number 2
13 --------------------
14 ...(skipped)...
15 RMCDHF: Execution complete. ...(skipped)

Only 6𝑑3/2 and 6𝑑5/2 orbitals (i.e., 6d*) were solved while all other, previously solved

orbitals were fixed as before. Method 1 was chosen for 6d* orbitals to achieve conver-

gence and the correct energy orders [Eq. (14.7)]. A similar calculation was followed

for 6f* orbitals, except that Method 4 was chosen in the calculation.

14.2.2.4 7𝑠𝑝𝑑𝑓 shells

The correlation layer of 𝑛 = 7 is configured by allowing excitation of an electron in

the last orbitals in 𝛾𝑆,𝑃,𝐷,𝐹 to 7𝑠𝑝𝑑𝑓 shells:
1 >>rcsfgenerate
2 ...(skipped for the previous state configurations for 𝛾𝑆 and 𝛾𝑃 )...
3 Give configuration 1
4 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)6s(1,*)
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5 ...(skipped)...
6 Give set of active orbitals , ...(skipped)...
7 >>7s,5p,4d,4f
8 ...(skipped including inputs)...
9 Give configuration 1

10 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)6p(1,*)
11 ...(skipped)...
12 Give set of active orbitals , ...(skipped)...
13 >>5s,7p,4d,4f
14 ...(skipped including inputs)...
15 Give configuration 1
16 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5d(1,*)
17 ...(skipped)...
18 Give set of active orbitals , ...(skipped)...
19 >>5s,5p,7d,4f
20 ...(skipped including inputs)...
21 Give configuration 1
22 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5d(1,*)
23 ...(skipped)...
24 Give set of active orbitals , ...(skipped)...
25 >>5s,5p,5d,7f
26 ...(skipped including inputs)...
27 block J/P NCSF
28 1 1/2+ 2
29 2 1/2- 2
30 3 3/2+ 3
31 4 3/2- 2
32 5 5/2+ 3
33 6 5/2- 3
34 7 7/2- 3

In particular, 6s* and 6p* shells in 𝛾𝑆 and 𝛾𝑃 were also allowed for the excitation

in lines 4 and 10, respectively. Maximum active orbitals were set to be 7𝑠, 7𝑝, 7𝑑,

and 7𝑓 for 𝛾𝑆, 𝛾𝑃 , 𝛾𝐷, and 𝛾𝐹 in lines 7, 13, 19, and 25, respectively.

As for 6𝑑𝑓 shells, The DHF calculations were executed for each of 7𝑠𝑝𝑑𝑓 shells

separately. For 7𝑠, all the method failed; Method 1, 3, or 4 gave 𝐸(6𝑠) (i.e., 𝐸6,1/2)

reasonably close to but slightly bigger than 𝐸(6𝑠), violating Eq. (14.7a). To fix the

issue, new approach was introduced: calculating 6s* and 7s* shells at the same time

(line 7):
1 >>rmcdhf
2 ...(skipped including inputs)...
3 level weights (1 equal; 5 standard; 9 user)
4 >>5
5 ...(skipped)...
6 Enter orbitals to be varied (Updating order)
7 >>6s*, 7s*
8 ...(skipped including inputs)...
9 Method 1 :

10 >>*
11 ...(skipped including inputs)...
12 Iteration number 2
13 --------------------
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14 ...(skipped)...
15 RMCDHF: Execution complete. ...(skipped)

which gave the correct energy relations [Eq. (14.7)] including for 6𝑠 and 7𝑠 or-

bitals:
1 (skipped)...
2 Subshell e ...(skipped)...
3 ...(skipped)...
4 6s 4.1606928904D-01 ...(skipped)...
5 ...(skipped)...
6 7s 4.1481811979D-01 ...(skipped)...
7 ...(skipped)

in rmcdhf.sum. The same approach was used for 7𝑝 shell as well; 6p* and 7p* were

calculated at the same time using Method 1 and the standard level weights, giving

convergence in 2 iterations. 7𝑑 shell could be calculated alone with Method 3 and

the standard level weights, converged in 2 iterations. For 7𝑓 shell, another, slightly

different method was introduced: 7d* and 7f* shells were calculated together for the

correct energy orders:
1 >>rmcdhf
2 ...(skipped including inputs)...
3 level weights (1 equal; 5 standard; 9 user)
4 >>5
5 ...(skipped)...
6 Enter orbitals to be varied (Updating order)
7 7d*, 7f*
8 ...(skipped including inputs)...
9 Method 1 :

10 >>7f*
11 Method 2 :
12 >>
13 Method 3 :
14 >>7d*
15 Method 4 :
16 >>
17 ...(skipped including inputs)...
18 Iteration number 2
19 --------------------
20 ...(skipped)...
21 RMCDHF: Execution complete. ...(skipped)

Method 1 and 3 were chosen for 7𝑓 and 7𝑑 shells as shown in lines 10 and 14,

respectively.

14.2.2.5 8𝑠𝑝𝑑𝑓 shells

The last correlation layer 8𝑠𝑝𝑑𝑓 was calculated in a similar fashion:
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1 >>rcsfgenerate
2 ...(skipped for the previous state configurations for 𝛾𝑆 and 𝛾𝑃 )...
3 Give configuration 1
4 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)6s(1,*)
5 ...(skipped)...
6 Give set of active orbitals , ...(skipped)...
7 >>8s,5p,4d,4f
8 ...(skipped including inputs)...
9 Give configuration 1

10 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)6p(1,*)
11 ...(skipped)...
12 Give set of active orbitals , ...(skipped)...
13 >>5s,8p,4d,4f
14 ...(skipped including inputs)...
15 Give configuration 1
16 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5d(1,*)
17 ...(skipped)...
18 Give set of active orbitals , ...(skipped)...
19 >>5s,5p,8d,4f
20 ...(skipped including inputs)...
21 Give configuration 1
22 >>4d(10,c)5s(2,i)5p(6,i)4f(14,i)5f(1,*)
23 ...(skipped)...
24 Give set of active orbitals , ...(skipped)...
25 >>5s,5p,5d,8f
26 ...(skipped including inputs)...
27 block J/P NCSF
28 1 1/2+ 3
29 2 1/2- 3
30 3 3/2+ 4
31 4 3/2- 3
32 5 5/2+ 4
33 6 5/2- 4
34 7 7/2- 4

For this layer, the standard level weights were used in all the rmcdhf calculations.

8𝑠 shell was calculated together with 6𝑠 and 7𝑠 shells using Method 1 for all the

orbitals, giving convergence in 2 iterations. 8𝑝 and 7𝑝 shells were calculated together,

with Method 4 and 1, respectively. The stdout of rmcdhf showed an error message for

8𝑝 orbital, this fails the accuracy criterion in the stdout, after total 2 iterations:
1 (skipped including inputs)...
2 Subshell Energy Method P0 consistency Norm -1 factor JP

MTP INV NNP
3

4 7p- 3.0210023D-01 1 9.799D+04 4.99D-09 -3.54D-03 0.000 387
450 0 5

5 7p 2.8910585D-01 1 4.709D+06 6.12D-08 -1.66D-02 0.000 388
451 0 5

6 8p- 2.8677497D-01 4 1.188D+05 1.47D-08 0.00D+00 0.000 388
454 0 6

7 START: 8p subshell: accuracy 5.5D-01
8 attained after 36 iterations; this fails the
9 accuracy criterion 1.6D-08.

10 8p 2.4289008D-01 4 8.918D+06 7.16D-07 3.74D+01 0.000 391
468 0 5
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11 E( 8p ) = -8.0010D-02; adjusted to EPSMIN
12 START: 8p subshell: accuracy 5.5D-01
13 attained after 36 iterations; this fails the
14 accuracy criterion 1.6D-08.
15 8p 2.7681947D-02 4 9.702D+05 1.13D-07 1.24D+01 0.100 435

462 0 10
16 ...(skipped)

However, it gave correct energy relations in rmcdhf.sum:
1 (skipped)...
2 Subshell e ...(skipped)...
3 ...(skipped)...
4 8p- 2.8677497255D-01 ...(skipped)...
5 8p 2.7681946544D-02 ...(skipped)...
6 ...(skipped)...
7 ...(skipped)... Generalised
8 Subshell ...(skipped)... occupation
9 ...(skipped)...

10 8p- ...(skipped)... 2.23634D-15
11 8p ...(skipped)... 1.87034D-15
12 ...(skipped)

so the result was accepted. In general, the accuracy of correlation layers is less

important as its 𝑛 increases because the occupations of electrons in the orbitals

become smaller (see Table C.1). The occupation was only 10−15 level for 8p* orbitals

as shown in the file.

8𝑑 shell was calculated alone with Method 3, and took only 1 iteration.

8𝑓 was calculated alone. As no integration methods gave convergence with the

correct orders of energies, The requirement for the 8𝑓 shell to be spectroscopic (see

Section 14.2.1) was lifted by input nothing in line 6, and Method 3 was chosen:
1 >>rmcdhf
2 ...(skipped including inputs)...
3 Enter orbitals to be varied (Updating order)
4 >>8f*
5 Which of these are spectroscopic orbitals?
6 >>
7 ...(skipped including inputs)...
8 Iteration number 8
9 --------------------

10 ...(skipped)...
11 RMCDHF: Execution complete. ...(skipped)

Adding correlation layers was stopped at 𝑛 = 8 as achieving reliable calculation

results (i.e., convergence and the correct energy orders) failed. The full list of the

energies and occupations of the orbitals can be found in Table C.1.
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14.3 Yb+: configuration interaction calculation

After the basis one-electron orbital wavefunction set {𝜑𝑛𝑘(𝑟)} was prepared for

core, valence, and correlation orbitals via the the DHF calculations, configuration-

interaction (CI) calculations (see Section 12.2) were carried out for 2𝑆1/2, 2𝐷3/2,
2𝐷5/2, and 2𝐹7/2 states in the Yb+’s optical clock transitions (see Fig. 3-1).

The first step was to configure an appropriate CSF list for each state. The active

set approach generated configurations by exciting the reference configurations. It

was worth having more than one such reference configurations called multireference

(MR) (see Chapter 13). A practical way to choose MR configurations is to run some

reasonable calculations for a target state (e.g., MCDHF caculations or CI calcula-

tions with a relatively simple CSF set), and choose CSFs with significant mixing

coefficients as MRs. By doing so, one can efficiently capture most of the significant

configurations, the MRs themselves and the configurations excited from the MRs;

too many configurations may be generated if the active approach is used with only

one reference configuration instead to generate all the configurations generated from

the reference. The calculated values of the mixing coefficients 𝑐𝑖 can be extracted by

executing rmixextract command which save the results in [Name of state].(c)ed

file.25. Finding a good MR set is not straightforwards but rather an iterative proce-

dure in general: carrying out calculations using a MR and active set approach and

checking if the resulting 𝑐𝑖 agrees to MR that had been selected. The converged

MR may depends also on the detail of the active set approach (e.g., the number of

correlation layers and the maximum allowed excitations total and from each orbital).

The MR sets used in the following CI calculations were not from such exhaustive

searches and will be left as suggested, working MR sets.

As the numbers of CSFs for the following calculations were significant (see Ta-

ble C.2), a high-power computing cluster was used: MIT Satori [209], a POWER9

[210] cluster system from IBM with Red Hat Enterprise Linux 8 [211] as the operating

system (OS).
25.ed for DHF calculations and .ced for CI calculations.
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The following inputs and outputs shows the procedure for a CI calculation for

all the four 2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states. First of all, the following set of

configurations was chosen as the MR configurations used for all the states of interest:

{6𝑠, 6𝑝, 5𝑑, 4𝑓 136𝑠2, 4𝑓 13 6𝑠 5𝑑, 4𝑓 13 6𝑝2, 4𝑓 13 5𝑑2} (14.8)

From the MR configurations, a list of CSFs {𝛾𝑖} was generated using rcsfgenerate

command and the active set approach. For 2𝑆1/2 state:

Listing 14.5: rcsfgenerate inputs and ouputs to generate the list of CSFs for 2𝑆1/2-
state calculations

1 >>rcsfgenerate
2

3 RCSFGENERATE
4 ...(skipped)...
5 Default , reverse , symmetry or user specified ordering? (*/r/s/u)
6 >>u
7

8 Select core
9 ...(skipped)...

10 3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
11 ...(skipped)...
12 >>3
13 ...(skipped)...
14 Give configuration 1
15 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14 ,13)6s(1,*)
16 Give configuration 2
17 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14 ,13)6p(1,*)
18 Give configuration 3
19 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14 ,13)5d(1,*)
20 Give configuration 4
21 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13 ,12)6s(2,*)
22 Give configuration 5
23 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13 ,12)6s(1,*)5d

(1,*)
24 Give configuration 6
25 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13 ,12)6p(2,*)
26 Give configuration 7
27 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13 ,12)6p(2,*)
28 Give configuration 8
29 >>
30 Give set of active orbitals , ...(skipped)...
31 >>8s,8p,8d,8f
32 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
33 >>1,1
34 Number of excitations ...(skipped)...
35 >>2
36 Generate more lists ? (y/n)
37 >>n
38 Excitationdata file opened
39 ...(skipped)...
40 block J/P NCSF
41 1 1/2+ 472
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42 2 1/2- 27682
43 >>cp rcsf.out rcsf.inp

The output rcsf.out file that contained the generated CSFs was copied as rcsf.inp

(line 43) for later use. The active approach was set up in a way that single or double-

electron excitations were allowed from 6𝑠, 6𝑝, or 5𝑑 (asterisk symbols *), only single

excitation was allowed from 4𝑓 shell [4f(14,13) or 4f(13,12)], and maximum total

two electrons were allowed for the excitation (line 35). The stdout showed that 472

CSFs were generated for the state with (𝑃, 𝐽) = (+, 1
2
) (line 41) which corresponds

to the 2𝑆1/2 state, while there were also 27,682 CSFs with (𝑃, 𝐽) = (−, 1
2
) (line 42)

which were not relevant to the state of interest. The rscf.inp file indeed contained

those 27,682 CSFs (lines 14–20):

Listing 14.6: List of CSFs {𝛾𝑖} for 2𝑆1/2-state calculations in rscf.inp before re-
moving lines 13–20.

1 Core subshells:
2 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
3 Peel subshells:
4 4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d- 5d 6s 6

p- 6p
5 CSF(s):
6 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 6s ( 1)
7

1/2
8

1/2+
9 ...(skipped)...

10 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p
( 4) 4f-( 6) 4f ( 7) 8d-( 1) 8f-( 1)

11

7/2 3/2 5/2
12

3 1/2+
13 *
14 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 6p-( 1)
15

1/2
16

1/2-
17 ...(skipped)...
18 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 6) 6p-( 1) 8f-( 2)
19

4 1/2 4
20

9/2 1/2-

Therefore, the undesired CSFs were manually deleted in the file, leaving only lines 1–
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12 as the CSF list for the 2𝑆1/2 state. The MR CSFs {(𝛾MR)𝑖} relevant to the 2𝑆1/2

state out of the MR configurations in Eq. (14.8) were also generated by changing

only the input configurations (lines 14–27 in Listing 14.5), the active orbitals with

highest 𝑛 (line 31 in Listing 14.5), and the maximum total number of excited electrons

(line 35 in Listing 14.5), as in lines 4–16, 20, and 22 in Listing 14.7, respectively:

Listing 14.7: rcsfgenerate inputs and ouputs to generate MR set for 2𝑆1/2 state.
1 >>rcsfgenerate
2 ...(skipped)...
3 Give configuration 1
4 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14,i)6s(1,i)
5 Give configuration 2
6 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14,i)6p(1,i)
7 Give configuration 3
8 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14,i)5d(1,i)
9 Give configuration 4

10 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13,i)6s(2,i)
11 Give configuration 5
12 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13,i)6s(1,i)5d(1,i)
13 Give configuration 6
14 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13,i)6p(2,i)
15 Give configuration 7
16 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(13,i)5d(2,i)
17 Give configuration 8
18 >>
19 Give set of active orbitals , ...(skipped)...
20 >>6s,6p,5d,4f
21 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
22 >>1,1
23 Number of excitations ...(skipped)...
24 >>0
25 ...(skipped)...
26 block J/P NCSF
27 1 1/2+ 1
28 2 1/2- 14
29 >>cp rcsf.out rcsfmr.inp

The resulting CSFs in the rcsf.out file was copied in rcsfmr.inp (line 29 above), as

follows, to use rcsfinteract command as described in a later paragraph. Again, the

14 CSFs with (𝑃, 𝐽) = (−, 1
2
) (line 28) should be manually deleted in the rscfmr.inp

file, leaving a CSF for the 2𝑆1/2 state (line 27):

Listing 14.8: MR set {(𝛾MR)𝑖} for 2𝑆1/2-state calculations in rcsfmr.inp.
1 Core subshells:
2 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
3 Peel subshells:
4 4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d- 5d 6s 6

p- 6p
5 CSF(s):
6 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 6s ( 1)
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7

1/2
8

1/2+

Similarly, by changing only the range of 2𝐽 values (e.g., line 33 in Listing 14.5)

and deleting the irrelevant CFSs in the rscf.inp and rscfmr.inp files, lists of CSFs

and MR sets were prepared for the other states of interest. For the 2𝐷5/2 and 2𝐷3/2

states, lists of CSFs were generated from the MR configurations in Eq. (14.8):
1 >>rcsfgenerate
2 ...(skipped)...
3 Give configuration 1
4 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14 ,13)6s(1,*)
5 ...(skipped)...
6 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
7 >>3,5
8 ...(skipped)...
9 block J/P NCSF

10 1 3/2+ 844
11 2 3/2- 51030
12 3 5/2+ 1047
13 4 5/2- 66729
14 >>cp rcsf.out rcsf.inp

The 1047 and 844 CSFs for 2𝐷5/2 and 2𝐷3/2 states, respectively, were remained in

the rcsf.inp:

Listing 14.9: Lists of CSFs {𝛾𝑖} for 2𝐷5/2 and 2𝐷3/2-state calculations in rscf.inp,
separated by a asterisk symbol *.

1 (skipped)...
2 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 5d ( 1)
3

5/2
4

5/2+
5 ...(skipped)...
6 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 7) 8d-( 1) 8f-( 1)
7

7/2 3/2 5/2
8

5 5/2+
9 *

10 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p
( 4) 4f-( 6) 4f ( 8) 5d-( 1)

11

3/2
12

3/2+
13 ...(skipped)...
14 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 7) 8d-( 1) 8f-( 1)
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15

7/2 3/2 5/2
16

4 3/2+

MR sets were generated by:
1 >>rcsfgenerate
2 ...(skipped)...
3 Give configuration 1
4 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14,i)6s(1,i)
5 ...(skipped)...
6 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
7 >>3,5
8 ...(skipped)...
9 block J/P NCSF

10 1 3/2+ 1
11 2 3/2- 26
12 3 5/2+ 1
13 4 5/2- 33
14 >>cp rcsf.out rcsfmr.inp

and CSFs with (𝑃, 𝐽) = (+, 5
2
) and (+, 3

2
) were remained in the rcsfmr.inp as MR

sets:

Listing 14.10: MR sets {(𝛾MR)𝑖} for 2𝐷5/2 and 2𝐷3/2-state calculations in
rscfmr.inp.

1 (skipped)...
2 CSF(s):
3 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 5d ( 1)
4

5/2
5

5/2+
6 *
7 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 5d-( 1)
8

3/2
9

3/2+

For the 2𝐹7/2 state, a list of CSFs was generated:
1 >>rcsfgenerate
2 ...(skipped)...
3 Give configuration 1
4 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14 ,13)6s(1,*)
5 ...(skipped)...
6 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
7 >>7,7
8 ...(skipped)...
9 block J/P NCSF

10 1 7/2+ 1059
11 2 7/2- 73286
12 >>cp rcsf.out rcsf.inp
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and the 1059 CSFs for the 2𝐹7/2 were remained in the rcsf.inp:

Listing 14.11: List of CSFs {𝛾𝑖} for 2𝐹7/2-state calculations in rscf.inp.
1 (skipped)...
2 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 8) 5f ( 1)
3

7/2
4

7/2-
5 ...(skipped)...
6 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 6) 6p-( 1) 8f-( 2)
7

6 1/2 4
8

13/2 7/2-

An MR set was generated by:
1 >>rcsfgenerate
2 ...(skipped)...
3 Give configuration 1
4 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,i)5p(6,i)4f(14,i)6s(1,i)
5 ...(skipped)...
6 Resulting 2*J-number? lower , higher (J=1 -> 2*J=2 etc.)
7 >>7,7
8 ...(skipped)...
9 block J/P NCSF

10 1 7/2- 33
11 >>cp rcsf.out rcsfmr.inp

in the rcsfmr.inp:

Listing 14.12: MR set {(𝛾MR)𝑖} for 2𝐹7/2-state calculations in rscfmr.inp.
1 (skipped)...
2 CSF(s):
3 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 5) 4f ( 8) 5d ( 2)
4

5/2 2
5

7/2-
6 ...(skipped)...
7 4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p

( 4) 4f-( 6) 4f ( 7) 6p-( 2)
8

7/2
9

7/2-

Finally, for the following CI calculation, the lists of the CSFs in Listings 14.6,

14.9, and 14.11, and the MR sets in Listings 14.8, 14.10, and 14.12, for all the 2𝑆1/2,
2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states, were placed in a single rscf.inp and rscfmr.inp
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files, respectively, separated by asterisk symbols between the lists for different states

(see line 9 in Listing 14.9).

The last step of preparing a CSF list for each state was to reduce the number of the

CSFs using rcsfinteract command which takes existing rcsf.inp and rcsfmr.inp

as input files and copies CSFs in the rcsf.inp file that interacts with CSFs in the

rcsfmr.inp file into rcsf.out file generated by the command (see Section 5.6 in

Ref. [203]):
1 >>rcsfinteract
2

3 RCSFinteract: Determines all the CSFs (rcsf.inp) that interact
4 with the CSFs in the multireference (rcsfmr.inp)
5 (C) Copyright by G. Gaigalas and Ch. F. Fischer
6 (Fortran 95 version) NIST (2017).
7 Input files: rcsfmr.inp , rcsf.inp
8 Output file: rcsf.out
9

10 Reduction based on Dirac -Coulomb (1) or
11 Dirac -Coulomb -Breit (2) Hamiltonian?
12 >>1
13 Loading Configuration Symmetry List File ...
14 There are 44 relativistic subshells;
15 Block MR NCSF Before NCSF After NCSF
16 1 1 472 463
17 2 1 1047 1047
18 3 1 844 832
19 4 33 73286 72775
20

21 Wall time:
22 5 seconds
23

24 Finish Date and Time:
25 Date (Yr/Mon/Day): 2022/04/30
26 Time (Hr/Min/Sec): 20/33/00.420
27 Zone: -0400
28

29 RCSFinteract: Execution complete.

The reduction of the number of CSFs was shown in lines 16, 17, 18, and 19 for the
2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states, respectively.

It would have been the time to run rangular command. However, a similar

command, rangular_mpi was used instead:
1 >>cp rcsf.out rcsf.inp
2 >>mpirun -np (number of processors to assign) rangular_mpi
3 ====================================================
4 RANGULAR_MPI: Execution Begins ...
5 ====================================================
6 Participating nodes:
7 ...(skipped)...
8 Date and Time:
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9 ...(skipped)...
10 Start Dir:
11 ...(skipped)...
12 Serial I/O Dir (node -0 only):
13 ...(skipped)...
14 Work Dir (Parallel I/O):
15 ...(skipped)...
16 Full interaction? (y/n)
17 >>y
18 Block 1 , ncf = 472
19 Block 2 , ncf = 1047
20 Block 3 , ncf = 844
21 Block 4 , ncf = 73286
22 Loading CSF file ... Header only
23 There are/is 44 relativistic subshells;
24

25 Block 1 , ncf = 472
26 Loading CSF File for block 1
27 There are 472 relativistic CSFs ... load complete;
28 ...(skipped)...
29 ====================================================
30 RANGULAR_MPI: Execution Finished ...
31 ====================================================
32 Wall time:
33 ...(skipped)...
34 Finish Date and Time:
35 ...(skipped)...
36 mpi stopped by node - 0 from RANGULAR_MPI: Execution

complete.
37 ...(skipped)

The two commands perform the same calculation, and the difference is that

rangular_mpi enables parallel computing with more than one processor by utilizing

the OpenMPI library [212], as described in Sections 1.2, 4.11, and 7.4 in Ref. [203].

The number of processors to be used, which has to be the power of 2 (e.g. 128), is

assigned with the command as in line 1 above. Most of the time-consuming com-

mands in GRASP2018 have their MPI version with the suffix _mpi in the command

names, and some of them were used as in the following paragraphs. The runtime

of the calculation here was investigated and showed a proportional increase in the

calculation speed with the number of processors at least up to 128, in the high-power

computing cluster introduced at the beginning of this section.

The rmcdhf_mpi command followed as the next step:
1 >>mpirun -np (number of processors to assign) rmcdhf_mpi
2 ====================================================
3 RMCDHF_MPI: Execution Begins ...
4 ====================================================
5 ...(skipped)...
6 Default settings? (y/n)
7 >>y
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8 Loading CSF file ... Header only
9 There are/is 44 relativistic subshells;

10 Loading CSF File for ALL blocks
11 There are 75649 relativistic CSFs ... load complete;
12 There are 4 blocks (block J/Parity NCF):
13 1 1/2+ 472 2 5/2+ 1047 3 3/2+ 844

4 7/2- 73286
14

15 Enter ASF serial numbers for each block
16 Block 1 ncf = 472 id = 1/2+
17 >>1
18 Block 2 ncf = 1047 id = 5/2+
19 >>1
20 Block 3 ncf = 844 id = 3/2+
21 >>1
22 Block 4 ncf = 73286 id = 7/2-
23 >>1
24 level weights (1 equal; 5 standard; 9 user)
25 >>5
26 Radial functions
27 1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d-

5d 6s 6p-
28 6p 5f- 5f 6d- 6d 7p- 7p 8s 6f- 6f 7s 7d- 7d 7f- 7f 8p- 8p 8d- 8d 8f

- 8f
29 Enter orbitals to be varied (Updating order)
30 >>
31 All subshell radial wavefunctions are fixed; performing CI

calculations with RCI.
32 Which of these are spectroscopic orbitals?
33 >>*
34 Enter the maximum number of SCF cycles:
35 >>1000
36

37 Average energy = -1.4066261013D+04 Hartrees
38 Average energy = -1.4066267588D+04 Hartrees
39 Average energy = -1.4066263216D+04 Hartrees
40 Average energy = -1.4065001056D+04 Hartrees
41 Calling dvdson !!! 200 1
42 DVDSON: 34 loops; 35 matrix -vector multiplies.
43

44 Optimise on the following level(s):
45

46 Level 1 Energy = -1.406745810602D+04 Weight = 1.00000D-01
47 Level 1 Energy = -1.406733995433D+04 Weight = 3.00000D-01
48 Level 1 Energy = -1.406734414678D+04 Weight = 2.00000D-01
49 Level 1 Energy = -1.406733751686D+04 Weight = 4.00000D-01
50

51 Weights of major contributors to ASF:
52

53 Block Level J Parity CSF contributions
54

55 1 1 1/2 + 0.9902 0.0624 -0.0529 0.0459
0.0376

56 1 256 258 36
263

57 2 1 5/2 + 0.9967 0.0443 0.0295 0.0247
0.0177

58 1 548 75 565
89

59 3 1 3/2 + 0.9953 0.0516 0.0329 0.0267
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-0.0226
60 1 463 65 476

623
61 4 1 7/2 - 0.9169 0.1919 -0.1754 -0.1255

-0.1113
62 28 747 746 15

22
63

64 Weighted average energy of these levels = -1.4067351633D+04
65 Weighted average energy: -1.4067351633D+04
66

67 Generalised occupation numbers:
68

69 2.0000D+00 2.0000D+00 2.0000D+00 4.0000D+00 2.0000D+00
2.0000D+00

70 4.0000D+00 4.0000D+00 6.0000D+00 2.0000D+00 2.0000D+00
4.0000D+00

71 4.0000D+00 6.0000D+00 2.0000D+00 2.0000D+00 4.0000D+00
5.9885D+00

72 7.5942D+00 2.1160D-01 3.1630D-01 8.1707D-01 1.0128D-02
1.3011D-02

73 1.6318D-04 2.3614D-04 1.3982D-03 2.1978D-03 2.7123D-03
4.6362D-03

74 2.9972D-04 1.1798D-03 4.5704D-04 2.7836D-02 1.8448D-04
3.0504D-04

75 6.7334D-03 3.2703D-05 7.7298D-05 2.0551D-04 1.4854D-06
1.5523D-06

76 5.0100D-04 1.4222D-05
77

78 Iteration number 1
79 --------------------
80 ...(skipped)...
81 ====================================================
82 RMCDHF_MPI: Execution Finished ...
83 ====================================================
84 ...(skipped)

The rmcdhf command here did not (re-)calculate any basis orbital wavefunctions

(line 30), but only prepared the basis wavefunctions obtained in Section 14.2 in the

generated output files (see Fig. 3.2 in Ref. [203]) for the following CI calculations, as

implied in line 31.

Before running CI calculations, rsave command should have been also run to

save the results obtained so far to files with a file name assigned in line 1 below (see

Sections 3.2, 3.3, and Fig. 3.2 in Ref. [203]):

Listing 14.13: Execution of rsave command to assign the name of a calculation.
1 >>rsave (name of state to assign)
2 Created (the assigned name).w, (the assigned name).c, (the assigned

name).m, (the assigned name).sum (the assigned name).alog and (the
assigned name).log

As the final step, rci_mpi command was run for the CI calculation for all the
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2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states at once:
1 >>mpirun -np (number of processors to assign) rci_mpi
2 Invalid MIT -MAGIC -COOKIE -1 key

====================================================
3 RCI_MPI: Execution Begins ...
4 ====================================================
5 Participating nodes:
6 ...(skipped)...
7 Date and Time:
8 ...(skipped)...
9 Start Dir:

10 ...(skipped)...
11 Serial I/O Dir (node -0 only):
12 ...(skipped)...
13 Work Dir (Parallel I/O):
14 ...(skipped)...
15 Default settings?
16 >>y
17 Name of state:
18 >>(the name of state assigned in Listing 14.13)
19 Block 1 , ncf = 463
20 Block 2 , ncf = 1047
21 Block 3 , ncf = 832
22 Block 4 , ncf = 72775
23 Loading CSF file ... Header only
24 There are/is 44 relativistic subshells;
25 Calling SETISO ...
26 ...(skipped)...
27 Calling SETISO ...
28 Include contribution of H (Transverse)?
29 >>y
30 Modify all transverse photon frequencies?
31 >>y
32 Enter the scale factor:
33 >>1.d-6
34 Include H (Vacuum Polarisation)?
35 >>y
36 Include H (Normal Mass Shift)?
37 >>n
38 Include H (Specific Mass Shift)?
39 >>n
40 Estimate self -energy?
41 >>y
42 Largest n quantum number for including self -energy for orbital
43 n should be less or equal 8
44 >>8
45 There are 4 blocks (block J/Parity NCF):
46 1 1/2+ 463 2 5/2+ 1047 3 3/2+ 832

4 7/2- 72775
47

48 Enter ASF serial numbers for each block
49 Block 1 ncf = 463 id = 1/2+
50 >>1
51 Block 2 ncf = 1047 id = 5/2+
52 >>1
53 Block 3 ncf = 832 id = 3/2+
54 >>1
55 Block 4 ncf = 72775 id = 7/2-
56 >>1
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57 Allocating space for 354711 Rk integrals
58 ...(skipped)...
59 RCI90 MIXing coefficients File generated.
60 ====================================================
61 RCI_MPI: Execution Finished ...
62 ====================================================
63 Wall time:
64 ...(skipped)...
65 Finish Date and Time:
66 ...(skipped)...
67 mpi stopped by node - 0 from RCI_MPI: Execution complete.
68 ...(skipped)

The correction to the atom’s Hamiltonian including the contributions from the trans-

verse photon (Breit) interaction [213], the vacuum polarization, and the self-energy

correction,26 were included as shown in lines 28–33, 35, and 41, respectively, while

the mass shifts were not considered during the CI calculation (lines 37 and 39) as

they were to be calculated using the RIS4 subroutine (Section 13.1) as described in

Section 14.4.

The one set of ASCs for the 2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states were over at this

point, and the desired quantities (e.g., electrons’ density over space) were extracted

from the output files generated through the ASCs for future use, as described in

Sections 14.4 and Chapter 15.

14.3.1 Calculations with correlation layers up to 𝑛 = 6–8

The CI calculations introduced so far involved all the correlation orbital layers with

𝑛 = 6 to 8 prepared in Section 14.2.2 via the DHF calculations, as shown in, e.g.,

line 31 in Listing 14.5. To observe the convergence of the calculation results as the

layer with higher 𝑛 was introduced, and thus determine whether the layers up to

𝑛 = 8 were enough, the CI calculations with the correlation layers up to 𝑛 = 7

and 𝑛 = 6, respectively, were performed through the same procedure in Section 14.3

except that the highest 𝑛 values for correlation orbitals were set to be:
1 >>rcsfgenerate
2 ...(skipped including inputs)...

26The Breit interaction is the leading relativistic correction to the electron-electron Coulomb
interaction beyond Dirac-Coulomb approximation, while the vacuum polarization and self-energy
effects are known to be the leading quantum electrodynamic (QED) corrections (see Section 4.7 in
Ref. [203]).
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3 Give set of active orbitals , ...(skipped)...
4 >>7s,7p,7d,7f
5 ...(skipped including inputs)

or
1 >>6s,6p,6d,6f

instead of inputting 8s,8p,8d,8f as in Listing 14.5, when the CSFs for each state

were generated by rcsfgenerate command. As shown in Table C.2, most of the

IS electronic factors derived from the ASC results show a good convergence of the

values, which will be further discussed in Section 14.5.

14.3.2 Calculations with excited core electrons

In the calculations described so far, only the valence electrons in the orbitals listed

in Eq. (14.8) were allowed to be excited to the orbitals with higher 𝑛, while all the

core electrons, especially in the closed 𝑠 or 𝑝 orbitals, were not. It implies that only

the correlations between the valence electrons were taken into account during the CI

calculation, while the core electrons’ states remain the same across the 2𝑆1/2, 2𝐷5/2,
2𝐷3/2, and 2𝐹7/2 states in the results of the ASCs above. First of all, it is wrong

results, as the change in the valence electrons’ state perturbs the core electrons’ state

as well, regardless of how small the effect would be. Furthermore, taking account of

the small changes in the 𝑠1/2 and 𝑝1/2 core electrons’ states during the transitions

were in fact crucial for IS electronic factors including 𝐹𝜒, 𝐺
(4)
𝜒 and 𝐺(2)

𝜒 ,27 as discussed

in Section 16.3.

Indeed, most of the electronic factors in Table C.2 showed big changes as the

5𝑠𝑝 electrons were excited, while further excitation of 4𝑠𝑝 electrons demonstrated

good convergence of the calculations, implying the valence-core interactions28 are

dominated by the interaction with 5𝑠𝑝 electrons.

In this work, the electrons in the core 𝑠 and 𝑝 orbitals were allowed to be excited,

and the following different configurations of the active set approach were considered.

First, the electrons in 5𝑠 and 5𝑝 shells were allowed to be excited, with the maxi-
27which are especially important in this thesis work (see Section 11.1).
28cf. Section 6.2 and 6.3 in Ref. [203].
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mum number of excited electrons limited to one per shell (i.e., single excitation); the

configuration is labeled as 5spS (S for single excitation). In another configuration,

named 4sp5spS, the 4𝑠𝑝 shells were additionally involved in the core excitation con-

figuration, with the maximum number from each shell still limited to one. In the

last configuration, labeled as 5spSD, only 5𝑠𝑝 shells were considered, but at most

two electrons were allowed to be excited from each shell (i.e., SD for single or double

excitations). The previous calculations without core excitation were labeled as None.

Finally, in all the configurations, the core excitations were allowed only from the most

representative configuration 𝛾 of each state [i.e., 𝛾 in the state’s ASF Ψ(𝛾𝑃𝐽)] out of

the 7 MRs in Eq. (14.8) used to generate the list of CSFs; for instance, 𝛾 = 4𝑓 13 6𝑠2

for the 2𝐹7/2 state.

The new configurations for the active set method were implemented by changing

inputs for rcsfgenerate command in, e.g., Listing 14.5. For 2𝑆1/2 state, the first

input configuration for 6𝑠 in line 15 was replaced by
1 Give configuration 1
2 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,1)5p(6,5)4f(14 ,13)6s(1,*)

for 2𝐷5/2 and 2𝐷3/2 states, the third input configuration for 5𝑑 in line 19 was replaced

by
1 Give configuration 3
2 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,1)5p(6,5)4f(14 ,13)5d(1,*)

and for 2𝐹7/2 state, the fourth input configuration for 4𝑓 13 6𝑠2 in line 21 was replaced

by
1 Give configuration 4
2 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,1)5p(6,5)4f(13 ,12)6s(2,*)

for the 5spS core excitation configuration. Similarly, the input configurations were

replaced by
1 Give configuration 1
2 >>3d(10,c)4s(2,1)4p(6,1)4d(10,i)5s(2,1)5p(6,5)4f(14 ,13)6s(1,*)

1 Give configuration 3
2 >>3d(10,c)4s(2,1)4p(6,1)4d(10,i)5s(2,1)5p(6,5)4f(14 ,13)5d(1,*)

or
1 Give configuration 4
2 >>3d(10,c)4s(2,1)4p(6,1)4d(10,i)5s(2,1)5p(6,5)4f(13 ,12)6s(2,*)
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for the 4sp5spS configuration, and
1 Give configuration 1
2 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,*)5p(6,*)4f(14 ,13)6s(1,*)

1 Give configuration 3
2 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,*)5p(6,*)4f(14 ,13)5d(1,*)

or
1 Give configuration 4
2 >>3d(10,c)4s(2,i)4p(6,i)4d(10,i)5s(2,*)5p(6,*)4f(13 ,12)6s(2,*)

for the 5sdSD configuration, respectively, depending on the states.

The increased numbers of total CSFs by allowing the core excitation are presented

in Table C.2. The 4sp5spSD configuration could not be tried as it introduces too

many CSFs for the computing resources that were available for this work. Therefore,

the ASC results with 4sp5spS with verified convergence were taken as the final results

(see Section 14.5).

14.4 Yb+: extracting radial electron density 𝜌Ψ(𝑟)

and mass-shift electronic factor 𝐾Ψ

As introduced in Section 13.2, the radial number density of electrons 𝜌Ψ(𝑟) for each

state Φ can be extracted using REDF package [205] developed for this work. It is

very straightforward to use:

Listing 14.14: redf input and output to extract electron density functions.
1 >>redf
2

3 REDF1
4 This is the radial electron density function program
5 Input files: isodata , name.c, name.(c)m, name.w
6 Output files: name.(c)ed
7

8 Default settings?
9 >>y

10

11 Name of state
12 >>(the name of state assigned in Listing 14.13)
13

14 Mixing coefficients from a CI calc.?
15 >>y
16 Loading Configuration Symmetry List File ...
17 There are 44 relativistic subshells;
18 There are 75117 relativistic CSFs;

284



19 ... load complete;
20 Loading Radial WaveFunction File ...
21 nelec = 69
22 ncftot = 75117
23 nw = 44
24 nblock = 4
25

26 block ncf nev 2j+1 parity
27 1 463 1 2 1
28 2 1047 1 6 1
29 3 832 1 4 1
30 4 72775 1 8 -1
31 --------------------------------
32 REDF_CAL: Execution Begins ...
33 --------------------------------
34 Column 100 complete;
35 Column 200 complete;
36 ...(skipped)...
37 Column 75100 complete;
38 NELEC = 69
39 No Pos J Parity Total population from ED
40 1 1 1/2 + 69.000000000001
41 2 1 5/2 + 69.000000000001
42 3 1 3/2 + 69.000000000022
43 4 1 7/2 - 69.000000000095
44 --------------------------------
45 REDF_CAL: Execution Finished ...
46 --------------------------------
47

48 REDF: Execution complete.

generating a [the name of state assigned in Listing 14.13].ced file which

contains the electron density n(r) [𝜌Ψ(𝑟) in this thesis] over different radial grid

points r in the unit of 𝑎−3
0 and 𝑎0, respectively, where 𝑎0 is the Bohr radius.

Listing 14.15: Result of REDF in .ced file.
1 REDF1: Radial (volume) electron density function over r
2 NNNP = 590
3 No Pos J Parity Total population from ED
4 1 1 1/2 + 69.000000000001
5 r (a_0) n(r) (a_0^(-3))
6 0.000000000000D+00 0.000000000000D+00
7 0.146488846789D-08 0.102398896636D+07
8 0.300488337359D-08 0.102398896609D+07
9 ...(skipped)...

10 0.167567474262D+06 0.000000000000D+00
11 0.176158842384D+06 0.000000000000D+00
12

13 No Pos J Parity Total population from ED
14 2 1 5/2 + 69.000000000001
15 r (a_0) n(r) (a_0^(-3))
16 0.000000000000D+00 0.000000000000D+00
17 0.146488846789D-08 0.102395150198D+07
18 ...(skipped)...
19 0.176158842384D+06 0.000000000000D+00
20

21 No Pos J Parity Total population from ED
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22 3 1 3/2 + 69.000000000022
23 r (a_0) n(r) (a_0^(-3))
24 0.000000000000D+00 0.000000000000D+00
25 0.146488846789D-08 0.102395154180D+07
26 ...(skipped)...
27 0.176158842384D+06 0.000000000000D+00
28

29 No Pos J Parity Total population from ED
30 4 1 7/2 - 69.000000000095
31 r (a_0) n(r) (a_0^(-3))
32 0.000000000000D+00 0.000000000000D+00
33 0.146488846789D-08 0.102408443284D+07
34 ...(skipped)...
35 0.176158842384D+06 0.000000000000D+00
36

37 REDF1: End of file

The above outputs were for 8spdf None configurations (see Sections 14.3.1 and

14.3.2). The normalization of radial electron number density 𝜌Ψ(𝑟) is given as:

∫︁ ∞

0

4𝜋𝑟2d𝑟 𝜌Ψ(𝑟) = 𝑍 − 𝐼 (14.9)

where 𝑍 − 𝐼, for the proton number 𝑍 and ionization number 𝐼, is the total number

of electrons in the atomic system. The stdout in lines 40–43 in Listing 14.14 and the

population values in lines 4, 14, 22, and 30 in Listing 14.15 show if the normalization

was properly obtained for each state (e.g., 69 electrons in an Yb+ ion).

While all the other IS electronic factors were derived from the electron density

obtained above (see Section 15), the density is not enough to calculate the mass-shift

factor 𝐾𝜒 [173]. The values of 𝐾𝜒 were obtained using RIS4 instead as introduced

in Section 13.1. The usage of RIS4 is also simple:

Listing 14.16: ris4 input and output to extract mass-shift electronic factors 𝐾Ψ.
1 >>ris4
2

3 RIS: Execution begins ...
4 ====================================================
5 RIS: Execution Begins ...
6 ====================================================
7

8 Default settings?
9 >>y

10

11 Name of state
12 >>(the name of state assigned in Listing 14.13)
13

14 Mixing coefficients from a CI calc.?
15 >>y
16
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17 Loading Configuration Symmetry List File ...
18 There are 44 relativistic subshells;
19 There are 75117 relativistic CSFs;
20 ... load complete;
21 Loading Radial WaveFunction File ...
22 nelec = 69
23 ncftot = 75117
24 nw = 44
25 nblock = 4
26

27 block ncf nev 2j+1 parity
28 1 463 1 2 1
29 2 1047 1 6 1
30 3 832 1 4 1
31 4 72775 1 8 -1
32 -------------------------------
33 RIS_CAL: Execution Begins ...
34 -------------------------------
35 Compute higher order field shift electronic factors?
36 >>y
37 One -body angular file not available
38 Two -body angular file not available
39 Save ang. coefficients of one - and two -body op.?
40 >>n
41

42 Columns 100 complete;
43 Columns 200 complete;
44 ...(skipped)...
45 Column 75100 complete;
46 -------------------------------
47 RIS_CAL: Execution Finished ...
48 -------------------------------
49

50 ====================================================
51 RIS: Execution Finished ...
52 ====================================================
53 Wall time:
54 ...(skipped)...
55 Finish Date and Time:
56 ...(skipped)...
57 RIS: Execution complete.

generating a [the name of state assigned in Listing 14.13].ci file which con-

tains normal mass shift (NMS) and specific mass shift (SMS) factors (<Kˆ1 + Kˆ2 +

Kˆ3>; see Ref. [173] for the notations), as in lines 11–27 and 30–46 in Listing 14.17,

respectively. The total mass-shift (MS) factors 𝐾Ψ for each state Ψ can be obtained

by adding the values for NMS and SMS. Then, the MS factors 𝐾𝜒 for transitions 𝜒

can be obtained by taking difference in the 𝐾Ψ for the ground and excited states of

the transition:

𝐾𝜒 = 𝐾
Ψ

(𝑒)
𝜒
−𝐾

Ψ
(𝑔)
𝜒
. (14.10)
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The calculated values of 𝐾𝜒 for 𝜒 = 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm opti-

cal clock transitions in Yb+ ions (see Fig. 3-1) and for different active set method

configurations (see Sections 14.3.1 and 14.3.2) are listed in Table C.2.
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Listing 14.17: Result of RIS4 in .ci file.
1 Number of eigenvalues: 4
2

3

4 Level J Parity Energy
5 1 1/2 + -0.1404395345D+05 (a.u.)
6 1 5/2 + -0.1404383577D+05 (a.u.)
7 1 3/2 + -0.1404383987D+05 (a.u.)
8 1 7/2 - -0.1404383514D+05 (a.u.)
9

10

11 Level J Parity Normal mass shift parameter
12

13 <K^1> <K^2+K^3> <K^1+K^2+K^3>
14 1 1/2 + 0.1909439412D+05 -0.5651931010D+04 0.1344246311D+05 (a.u.)
15 0.6892087971D+08 -0.2040054556D+08 0.4852033415D+08 (GHz u)
16

17 <K^1> <K^2+K^3> <K^1+K^2+K^3>
18 1 5/2 + 0.1909468546D+05 -0.5651709216D+04 0.1344297625D+05 (a.u.)
19 0.6892193130D+08 -0.2039974500D+08 0.4852218630D+08 (GHz u)
20

21 <K^1> <K^2+K^3> <K^1+K^2+K^3>
22 1 3/2 + 0.1909455081D+05 -0.5651727760D+04 0.1344282305D+05 (a.u.)
23 0.6892144527D+08 -0.2039981193D+08 0.4852163334D+08 (GHz u)
24

25 <K^1> <K^2+K^3> <K^1+K^2+K^3>
26 1 7/2 - 0.1907929325D+05 -0.5652476677D+04 0.1342681657D+05 (a.u.)
27 0.6886637336D+08 -0.2040251514D+08 0.4846385823D+08 (GHz u)
28

29

30 Level J Parity Specific mass shift parameter
31

32 <K^1> <K^2+K^3> <K^1+K^2+K^3>
33 1 1/2 + -0.5239182548D+04 0.9363466851D+03 -0.4302835863D+04 (a.u.)
34 -0.1891073725D+08 0.3379726889D+07 -0.1553101036D+08 (GHz u)
35

36 <K^1> <K^2+K^3> <K^1+K^2+K^3>
37 1 5/2 + -0.5239794800D+04 0.9363873152D+03 -0.4303407485D+04 (a.u.)
38 -0.1891294716D+08 0.3379873543D+07 -0.1553307362D+08 (GHz u)
39

40 <K^1> <K^2+K^3> <K^1+K^2+K^3>
41 1 3/2 + -0.5239657256D+04 0.9364098069D+03 -0.4303247449D+04 (a.u.)
42 -0.1891245070D+08 0.3379954726D+07 -0.1553249597D+08 (GHz u)
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43

44 <K^1> <K^2+K^3> <K^1+K^2+K^3>
45 1 7/2 - -0.5224887787D+04 0.9362233442D+03 -0.4288664443D+04 (a.u.)
46 -0.1885914056D+08 0.3379281692D+07 -0.1547985887D+08 (GHz u)
47

48

49 Level J Parity Electron density in atomic units
50

51 Dens. (a.u.)
52 1 1/2 + 0.1023988966D+07
53 1 5/2 + 0.1023951502D+07
54 1 3/2 + 0.1023951542D+07
55 1 7/2 - 0.1024084433D+07
56

57

58 Level J Parity Field shift electronic factors and average point discrepancy in fit
59

60 F0 (GHz/fm^2) F2 (GHz/fm^4) F4 (GHz/fm^6) F6 (GHz/fm^8)
Disc. (per mille)

61 1 1/2 + 0.3527399882D+06 -0.3306780853D+03 0.9383553890D+00 -0.1623716858D-02
0.0018

62 1 5/2 + 0.3527270826D+06 -0.3306659286D+03 0.9383209201D+00 -0.1623657185D-02
0.0018

63 1 3/2 + 0.3527270963D+06 -0.3306659410D+03 0.9383209555D+00 -0.1623657246D-02
0.0018

64 1 7/2 - 0.3527728741D+06 -0.3307090677D+03 0.9384432737D+00 -0.1623869142D-02
0.0018

65

66

67 Level J Parity Field shift electronic factors (corrected for varying density inside nucleus)
68

69 F0VED0 (GHz/fm^2) F0VED1 (GHz/fm^4)
70 1 1/2 + 0.3334181222D+06 -0.2832708734D+03
71 1 5/2 + 0.3334059270D+06 -0.2832604560D+03
72 1 3/2 + 0.3334059400D+06 -0.2832604665D+03
73 1 7/2 - 0.3334491976D+06 -0.2832974206D+03
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14.5 Yb+: Results and convergence

Figure 14-1 shows the extracted radial electron density functions 𝜌Ψ(𝑟) obtained in

Section 14.4 for 2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states in Yb+ ions. In Fig. 14-1(a), the

density function is dominated by the core electrons with a relatively shorter extent

over space (𝑟 ≤ 𝑎0), and the densities for different states, which differ by only one

electron’s configurations, look almost identical.

Once the 𝜌Ψ(𝑟) were obtained for the states Ψ involved in the transitions of inter-

est, the change in the radial electron density function 𝜌𝜒(𝑟) = 𝜌
Ψ

(𝑒)
𝜒
(𝑟)−𝜌

Ψ
(𝑔)
𝜒
(𝑟) dur-

ing a transition 𝜒 with the ground and excited states denoted as Ψ(𝑔)
𝜒 and Ψ

(𝑒)
𝜒 , respec-

tively, can be also obtained. Figures 14-2 and 14-3 show the 𝜌𝜒(𝑟) for 𝜒 = 𝛼: 411 nm,

𝛽: 436 nm, and 𝛾: 467 nm transitions in Yb+ ions for different numbers of correlations

orbital layers and core electron excitation configurations, respectively. The 𝜌Ψ(𝑟) for

each transition indeed converged as the 𝑠𝑝𝑑𝑓 layers with higher 𝑛 were introduced in

the CI calculations; in Fig. 14-2, the calculation with up to 7𝑠𝑝𝑑𝑓 (dashed line) and

8𝑠𝑝𝑑𝑓 (solid line) almost agree to each other. In particular, the 𝛼 and 𝛽 transitions

showed better convergence, presumably due to the simpler configurations, 6𝑠→ 5𝑑,

compared to the 𝛾 transition (4𝑓 14 6𝑠 → 4𝑓 13 6𝑠2). Similarly, in Fig, 14-3, single

excitation of electrons in 5𝑠𝑝 (5spS; dashed line) and additional 4𝑠𝑝 (4sp5spS; solid

line) demonstrate a good convergence of the results, implying the valence-core cor-

relations are dominantly from the electrons in 5𝑠𝑝 shells while core-core correlations

between 4𝑠𝑝 and 5𝑠𝑝 are not significant. Allowing double excitation from the 5𝑠𝑝

shells (5spSD; dash-dotted line) shows slightly different 𝜌𝜒(𝑟), of which convergence

might be worth being investigated in the future. It has not been done to date due

to the limited available computing resources (see Section 14.3.2).

As a consequence of the converging wavefunctions, the same trends appeared in

the isotope-shift (IS) electronic factors (see Chapter 15) derived from the electron

densities 𝜌𝜒(𝑟) as well, as shown in Table C.2, while the rates of the convergence

were different for different factors and transitions 𝜒. In particular, while the factors

for 𝜒 = 𝛼 and 𝛽 transitions showed great convergences due to the associated 6𝑠 2𝑆1/2
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Figure 14-1: (a) Radial electron densities 4𝜋𝑟2𝜌Ψ(𝑟) over 𝑟 in the unit of the
Bohr radius 𝑎0 ≈ 52.9 pm for 2𝑆1/2 (blue), 2𝐷5/2 (orange), 2𝐷3/2 (yellow), and 2𝐹7/2

(purple) states in Yb+ ions (see Fig. 3-1) from atomic structure calculations (ASCs).
The difference in the densities between different states are much smaller than the
total density of 69 electrons (see also Figs. 14-2 and 14-3). (b) Magnified 𝜌Ψ(𝑟) near
the origin, shown in logarithmic scale. The density is exponential ∝ 𝑒−𝛼𝑟 to 𝑟 (i.e.,
linear in the graph) down to 𝑟 ≈ 0.002𝑎0 and starts to show relativistic divergence
below the distance (see Section 16.1).

292



0 1 2 3 4 5 6 7

r (a
0
)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
4

r2
(r

) 
 [a

0-1
]

: 411 nm -- 6spdf
: 411 nm -- 7spdf
: 411 nm -- 8spdf
: 436 nm -- 6spdf
: 436 nm -- 7spdf
: 436 nm -- 8spdf
: 467 nm -- 6spdf
: 467 nm -- 7spdf
: 467 nm -- 8spdf

Ext. core: 4sp5spS

(a)

Figure 14-2: Changes in radial electron densities (a) 4𝜋𝑟2𝜌𝜒(𝑟) and (b) 𝜌𝜒(𝑟) =
𝜌
Ψ

(𝑒)
𝜒
(𝑟) − 𝜌

Ψ
(𝑔)
𝜒
(𝑟) over 𝑟 in the unit of the Bohr radius 𝑎0 ≈ 52.9 pm for 𝛼: 411 nm

(red), 𝛽: 436 nm (blue), and 𝛾: 467 nm (black) optical clock transitions in Yb+ ions
(see Fig. 3-1) from atomic structure calculations (ASCs). The densities converge as
𝑠𝑝𝑑𝑓 orbital correlation layers with higher 𝑛 are added in the ASCs to take account of
the correlations between electrons (see Section 14.3.1). (Figures and caption continue
on the next page.)
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Figure 14-2: (Continued) The results for 4sp5spS core excitation configuration for
valence-core or core-core correlations (see Section 14.3.2 and Fig. 14-3) are presented.
Green vertical line in (b) shows the RMS nuclear charge radius

√︀
⟨𝑟2⟩ = 5.294 fm of

172Yb [19].
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Figure 14-3: Changes in radial electron densities (a) 4𝜋𝑟2𝜌𝜒(𝑟) and (b) 𝜌𝜒(𝑟) =
𝜌
Ψ

(𝑒)
𝜒
(𝑟) − 𝜌

Ψ
(𝑔)
𝜒
(𝑟) over 𝑟 in the unit of the Bohr radius 𝑎0 ≈ 52.9 pm for 𝛼: 411 nm

(red), 𝛽: 436 nm (blue), and 𝛾: 467 nm (black) optical clock transitions in Yb+ ions
(see Fig. 3-1) from atomic structure calculations (ASCs). Valence-core or core-core
electron correlations are taken into account in CI calculations via different configu-
rations of active set method (see Section 14.3.2): (Figures and caption continue on
the next page.)
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Figure 14-3: (Continued) no core electron excitation (None; dotted), single excitation
from each orbital in 5𝑠𝑝 (5spS; dashed) or 4𝑠𝑝5𝑠𝑝 (4sp5spS; solid), and single or
double excitations from each of 5𝑠 and 5𝑝 orbitals (5spSD; dash-dotted) (see also the
caption in Table C.2 for the notations). 𝑠𝑝𝑑𝑓 orbital correlation layers up to 𝑛 = 8
is added in the ASCs (see Section 14.3.1 and Fig. 14-2). Green vertical line in (b)
shows the RMS nuclear charge radius

√︀
⟨𝑟2⟩ = 5.294 fm of 172Yb [19].

296



and 5𝑑 2𝐷5/2,3/2 states’ simple electron configurations, the convergences for the 𝛾

transition were slower due to the complex excited-state configuration: 4𝑓 13 6𝑠2 2𝐹7/2.

Indeed, the ASCs for the states with open 𝑓 shells have been known to be challenging

because of the strong valence electron correlations and nearly generate configurations,

which require higher correlation layers and larger numbers of the CSFs [214] (i.e.,

slower convergence). Also, the convergence of mass-shift factors 𝐾𝜒 is noticeably

slower than other electronic factors, demonstrating that the calculation of 𝐾𝜒 is

challenging for heavy atomic species [185, 186] (see also Section 11.2.2).

Considering the verified convergences in the correlation layers and core excita-

tions, the results [the radial density function change 𝜌𝜒(𝑟) and the IS electronic

factors] from 𝑠𝑝𝑑𝑓 correlation layers up to 𝑛 = 8 with single excitation from each of

4𝑠𝑝5𝑠𝑝 core shells (i.e., 8spdf 4sp5spS) has been taken as the final quantities to be

used in the King-plot analysis in Part III. The values of the electronic factors can be

found in Tables C.3, C.4, and C.5, and Figs. C-1, C-2 and C-3.

14.6 Neutral Yb: Dirac-Hartree-Fock and

configuration-interaction calculations

The ASCs were performed for 𝛿: 578 nm and 𝜖: 361 nm optical transitions in neu-

tral Yb atoms (see Section 10.1) as well; full credit to Calvin Leung, a research

collaborator and a PhD student at MIT.

The general strategy and procedure of the ASCs were the same to the Yb+

ions: constructing one-electron basis wavefunctions (Section 14.2), performing CI

calculations with the lists of CFSs generated from a selected MR set:

{4𝑓 14 6𝑠2, 4𝑓 14 6𝑠 6𝑝, 4𝑓 13 6𝑠2 5𝑑, 4𝑓 14 6𝑠5𝑑} (14.11)

like in Section 14.3, and extracting the electron densities 𝜌Ψ(𝑟) and the mass-shift

electronic factors 𝐾Ψ (Section 14.4). There were several differences between the

ASCs for Yb atoms and Yb+ ion, however, which are potentially significant.
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First, while the core and valence orbital wavefunctions were constructed through

DHF calculations as in Section 14.2, wavefunctions obtained from the Thomas-Fermi

approximation of the effective screening potential29 were used for the correlation

orbitals, to avoid DHF calculations for them. Preparing correlation layers in this way

is much easier as it can avoid the convergence issues in the DHF calculations which

are increasingly tricky to deal with as 𝑛 increases (see Section 14.2.2). A question is

how well the approximated correlation basis can describe the effect of the electron

correlations in ASFs within or near nuclei, which would be important to calculate

the IS electronic factors of interest in this work (see Section 16.3). This aspect will

be investigated in the future. In GRASP2018, the Thomas-Fermi wavefunctions can

be obtained by simply running rwfnestimate command with the relevant choices

of inputs (see, e.g., line 18 in Listing 14.2). 𝑠𝑝𝑑𝑓𝑔 correlation orbitals up to 𝑛 = 10

could be obtained in this way for the neutral Yb calculations.

Another difference was that only one electron was allowed to be excited from any

of the orbitals (e.g.,
1 Number of excitations ...(skipped)...
2 >>1

in line 35 in Listing 14.5), while maximum two total electrons were allowed in the

calculations for Yb+ ions.

Finally, the core electrons in 4𝑠𝑝𝑑 and 5𝑠𝑝 shells were allowed to be excited (i.e.,

additional 4𝑑 core orbital from the case of Yb+ calculations; see Section 14.3).

The values of IS electronic factors derived from the ASCs for 𝛿: 578 nm and

𝜖: 361 nm optical transitions in neutral Yb atoms can be found in Tables C.3, C.4,

and C.5, and Figs. C-1, C-2 and C-3.

29The effective potential that each electron feels from all the other electrons due to the Coulomb
interaction.
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Chapter 15

Calculation of isotope-shift electronic

factors

The procedures for calculating isotope-shift (IS) electronic factors used in this the-

sis are introduced in this chapter. The results are presented in Appendix C; see

Tables C.3, C.4, and C.5, and Figs. C-1, C-2 and C-3.

15.1 Calculation for one-transition electronic factors

The IS electronic factors including 𝐹𝜒, 𝐺
(4)
𝜒 , 𝐺(2)

𝜒 , and 𝐷𝜒, introduced in Sections 8.1

and 8.2, can be derived from the calculated electron density change 𝜌𝜒(𝑟) during

transition 𝜒 (see Section 14.5), as described in the following subsections. The only

exception in this work is the mass-shift factors 𝐾𝜒, which are calculated directly

from the results of ASCs using the software package RIS4 introduced in Section 13.1

(see Section 14.4).
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15.1.1 𝐹𝜒 and 𝐺
(4)
𝜒 for linear and fourth-moment field shifts

The Seltzer moment expansion relates field shifts and the expansion of 𝜌𝜒(𝑟) at the

origin [82, 168, 169]:

𝜌𝜒(𝑟) =
1

4𝜋

[︀
𝜉(0)𝜒 + 𝜉(2)𝜒 𝑟2 + · · ·

]︀
(15.1a)

(𝜈FS)
𝐴𝐴′

𝜒 =
∞∑︁
𝑘=0

𝑐𝛼𝑍

2𝜋

𝜉
(𝑘)
𝜒

(𝑘 + 2)(𝑘 + 3)⏟  ⏞  
𝐹

(𝑘)
𝜒

⟨𝑟𝑘+2⟩𝐴𝐴′
(15.1b)

where 𝛼 ≈ 1/137 in Eq. (15.1b) is the fine-structure constant and 𝑍 is the proton

number. 𝐹𝜒 ≡ 𝐹
(0)
𝜒 and 𝐺

(4)
𝜒 ≡ 𝐹

(2)
𝜒 in this thesis. Therefore, 𝜉(0)𝜒 and 𝜉

(2)
𝜒 obtained

by fitting 𝜌𝜒(𝑟) with a power series at the origin can be converted into 𝐹𝜒 and 𝐺(4)
𝜒 ,

respectively.

15.1.2 𝐷𝜒 for new-boson shift

The shift in transition frequency due to a new boson:

(𝜈𝜑)
𝐴𝐴′

𝜒 =
⟨
𝑎𝐴𝐴′

𝑉𝑛𝑒(𝑟)
⟩
𝜒
/ℎ = 𝜐𝑛𝑒𝐷𝜒𝑎

𝐴𝐴′
(15.2)

[all quantities are defined for Eq. (8.16)] gives an expression for 𝐷𝜒:

𝐷𝜒(𝑚𝜑) =
𝑐

2𝜋

∫︁ ∞

0

4𝜋𝑟2d𝑟𝜌𝜒(𝑟)
𝑒−𝑚𝜑𝑟𝑐/ℏ

𝑟
. (15.3)

The numerical calculation of 𝐷𝜒 for a given 𝜌𝜒(𝑟) and 𝑚𝜑 is straightforward.

15.1.3 𝐺
(2)
𝜒 for quadratic field shift

The quadratic FS (QFS) 𝐺(2)
𝜒 [⟨𝑟2⟩2]𝐴𝐴′ captures the change in wavefunction itself due

to the change in nuclear size, which is illustrated in the expression for the electronic
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factor 𝐺(2)
𝜒 :

𝐺(2)
𝜒 =

1

2

𝜕2𝜈𝜒
(𝜕⟨𝑟2⟩)2

⃒⃒⃒⃒
⟨𝑟2⟩𝐴0

=
1

2

𝜕𝐹𝜒

𝜕⟨𝑟2⟩

⃒⃒⃒⃒
⟨𝑟2⟩𝐴0

=
𝑐𝛼𝑍

24𝜋

𝜕𝜉
(0)
𝜒

𝜕⟨𝑟2⟩

⃒⃒⃒⃒
⃒
⟨𝑟2⟩𝐴0

=
𝑐𝛼𝑍

6

𝜕𝜌𝜒(0; ⟨𝑟2⟩)
𝜕⟨𝑟2⟩

⃒⃒⃒⃒
⟨𝑟2⟩𝐴0

(15.4)

where the last two equation are obtained from Eq. (15.1), 𝑐 is the speed of light,

𝛼 ≈ 1/137 is the fine structure constant, 𝑍 = 70 is the proton number of Yb, 𝐴0

is a reference isotope (𝐴0 = 172 here; see Sections 8.2.2 and 11.6), and 𝜌𝜒(0; ⟨𝑟2⟩)

is the electron number density change during the transition 𝜒 at the origin (𝑟 = 0)

for a nucleus with the second charge moment ⟨𝑟2⟩. Therefore, 𝐺(2)
𝜒 is given as the

rate of change in electron density change at the origin as the nuclear size changes,

and evaluating such change requires repeated atomic structure calculations while

gradually varying the nuclear size, in principle.

The repeated calculations were performed while varying the nuclear size (line 8 in

Listing 14.1), but the calculated values of wavefunctions at origin showed significant

numerical noises, presumably due to the nature of the iterative self-consistent-field

procedure (see Section 16.2). Such noise did not allow to obtain reliable values of two-

transition factors 𝐺(2)
𝜅𝜒 . The numerical noises were also pointed out in Ref. [179], and

the reference developed a method to suppress the noise in the repeated calculations.

Furthermore, the DHF calculation procedures described in Section 14.2 did not give

the convergence for some of the nuclear sizes ⟨𝑟2⟩, shown as the nonuniform data in

Fig. 14-1(b) along 𝑥-axis. GRASP2018 adapts the default grid parameters in, e.g.,

lines 19–22 in Listing 14.3 to input nuclear parameters in isodata file (Listing 14.1),

and the fraction of the cases with no convergence and the size of the numerical noise

could be reduced by disabling the adaptation and fixing the grid parameters for all

the repeated ASCs, as described in Section 14.2.2.1. Nevertheless, a visible size of

the numerical noise was observed, as shown in Fig. 14-1(b).

In this work, the strategy to calculate 𝐺(2)
𝜒 without the repeated ASCs has been

developed instead (i.e., determination of 𝐺(2)
𝜒 from a single ASC result). It is as-

sumed that the finite size of the nucleus caps the electronic wavefunction which
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Figure 15-1: (a) Electron density change 𝜌𝛼(𝑟) during 𝛼: 411 nm transition in Yb+

ions, for different RMS nuclear charge radii
√︀
⟨𝑟2⟩ [see Eq. (8.4)]. The finite size of

nuclear charge caps the increase in the magnitude of the density as getting closer
to the origin. (b) Comparison of the electron density 𝜌𝛼(0; ⟨𝑟2⟩) at the origin for
the nucleus with second radial nuclear moment ⟨𝑟2⟩ to the electron density 𝜌𝑃𝛼 (𝑟) for
point-charge nucleus at 𝑟 =

√︀
⟨𝑟2⟩. The two quantities are essentially the same, with

a constant 4% difference, if the charge radius is not too big: ⟨𝑟2⟩ ≳ (10 fm)2.
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would diverge at the origin if the nucleus were a point charge. The assumption is

demonstrated in Fig. 15-1(a) for 𝛼: 411 nm transition in Yb+ ions. The radial elec-

tron number density change 𝜌𝛼(𝑟) calculated for the nuclear size of 0.001 fm (blue

line) serves effectively as the density change 𝜌𝑃𝛼 (𝑟) for point-charge nucleus, which

diverges as it approaches the origin. For all other 𝜌𝛼(𝑟) for the finite sizes of nuclei,

they follow the line for 𝜌𝑃𝛼 (𝑟) as approaching the origin and then stop growing at

around the RMS charge radii of the nuclei.

From this observation, a further assumption that the electron density change

𝜌𝜒(0; ⟨𝑟2⟩) at the origin (𝑟 = 0) for a nucleus with the second charge moment ⟨𝑟2⟩

is given by the value of 𝜌𝑃𝜒 (⟨𝑟2⟩) for a point-charge nucleus at the RMS size of the

nucleus (𝑟2 = ⟨𝑟2⟩):

𝜌𝜒(0; ⟨𝑟2⟩) = 𝐶𝜌𝑃𝜒 (⟨𝑟2⟩) (15.5)

with a constant 𝐶 close to the unity has been made. This assumption is demonstrated

for the 𝛼 transition as shown in Fig. 15-1(b). The ratio of 𝜌𝛼(0; ⟨𝑟2⟩) and 𝜌𝑃𝛼 (⟨𝑟2⟩)

(i.e., 𝐶) is indeed constant and only 4% deviated from the unity, until the charge

radius become too big [⟨𝑟2⟩ > (10 fm)2], within the numerical noise from the repeated

ASCs to obtain 𝜌𝛼(0; ⟨𝑟2⟩) values. Within ⟨𝑟2⟩ = 0 to (10 fm)2, the variation of the

𝐶 ratio is largely linear with the slope of only ≲ 2× 10−6/fm2.

The relation in Eq. 15.5 allows the determination of 𝐺(2)
𝜒 from a 𝜌𝑃𝜒 (𝑟) as follows:

𝐺(2)
𝜒 =

𝑐𝛼𝑍

6

𝜕𝜌𝜒(0; ⟨𝑟2⟩)
𝜕⟨𝑟2⟩

⃒⃒⃒⃒
⟨𝑟2⟩𝐴0

= 𝐶
𝑐𝛼𝑍

6

𝜕𝜌𝑃𝜒
𝜕(𝑟2)

⃒⃒⃒⃒
⃒
⟨𝑟2⟩𝐴0

(15.6)

Therefore, a single atomic structure calculation with a point-charge nucleus is suffi-

cient to obtain 𝐺(2)
𝜒 . In particular, this method provided reliable suppression factors

of the two-electron factors 𝐺(2)
𝜅𝜒 = 𝐺

(2)
𝜒 (𝑔

(2)
𝜅𝜒 − 𝑓𝜅𝜒) (see Section 15.2):

𝑔(2)𝜅𝜒 − 𝑓𝜅𝜒 =
𝐺

(2)
𝜅

𝐺
(2)
𝜒

− 𝐹𝜅

𝐹𝜒

=
𝜕𝜌𝑃𝜅 /𝜕⟨𝑟2⟩
𝜕𝜌𝑃𝜒 /𝜕⟨𝑟2⟩

⃒⃒⃒⃒
⟨𝑟2⟩𝐴0

− 𝜌𝜅(0; ⟨𝑟2⟩𝐴0)

𝜌𝜒(0; ⟨𝑟2⟩𝐴0)
(15.7)

as shown in Tables C.2 and C.4.

It turned out that a similar idea on relating the finite-nuclear-size electron density
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and the point-nucleus density as in Eq. (15.5) appeared in Ref. [81] for the analytic

estimation of the King plot nonlinearity as well.

15.2 Calculation for two and three-transition elec-

tronic factors

Two-transition electronic factors 𝑓𝜅𝜒 = 𝐹𝜅/𝐹𝜒, 𝑧𝜅𝜒 = 𝑍𝜅/𝑍𝜒, and 𝑍𝜅𝜒 = 𝑍𝜅 −

𝑓𝜅𝜒𝑍𝜒 = (𝑧𝜅𝜒−𝑓𝜅𝜒)𝑍𝜒 where 𝑍 ∈ {𝐾,𝐺(4), 𝐺(2), 𝐷}, defined for (2D) King plots (see

Sections 8.1 and 8.2), are calculated from the single-transition factors in Section 15.1.

In particular, the factors 𝑧𝜅𝜒 − 𝑓𝜅𝜒 serve as the suppression factors for the two-

transition factors 𝑍𝜅𝜒 from single-transition factors 𝑍𝜒.

Similarly, three-transition electronic factors 𝑓𝜂𝜒𝜅 = 𝐺
(4)
𝜂𝜒/𝐺

(4)
𝜅𝜒 , 𝑧𝜂𝜒𝜅 = 𝑧𝜂𝜒/𝑧𝜅𝜒,

and 𝑍𝜂𝜅𝜒 = 𝑍𝜂𝜒 − 𝑓𝜂𝜒𝜅𝑍𝜅𝜒 = (𝑧𝜂𝜒𝜅 − 𝑓𝜂𝜒𝜅)𝑍𝜅𝜒 where 𝑍 ∈ {𝐾,𝐺(2), 𝐷} are de-

fined for the 3D King plot (see Section 8.4), assuming that the fourth-moment field

shifts 𝐺(4)
𝜒,𝜅,𝜂⟨𝑟4⟩𝐴𝐴′ are the dominant source of the nonlinearity in 2D King plot

(see Section 11.1.1), and calculated from the two-transition factors. As in the two-

transition case, the factors 𝑧𝜂𝜒𝜅 − 𝑓𝜂𝜒𝜅 are given as the suppression factors for the

three-transition factors 𝑍𝜂𝜅𝜒 from two-transition factors 𝑍𝜅𝜒.

There are two choices of using either the calculated values or the fitted values of

𝑓𝜅𝜒 or 𝑓𝜂𝜒𝜅 in 2D [see Eq. (8.15) and Table C.4] or 3D King plots [see Eq. (8.24) and

Table C.5] to obtain 𝑍𝜅𝜒 = (𝑧𝜅𝜒−𝑓𝜅𝜒)𝑍𝜒 or 𝑍𝜂𝜅𝜒 = (𝑧𝜂𝜒𝜅−𝑓𝜂𝜒𝜅)𝑍𝜅𝜒, respectively. It

has been determined that using calculated values for the two-transition factors 𝑓𝜅𝜒

and experimental, fitted values for the three-transition factors 𝑓𝜂𝜒𝜅 are the better

choices, as argued in Supplemental Material of Ref. [8].
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Chapter 16

Discussion

16.1 Relativistic effect in Yb+

Fig. 14-1(b) highlights a crucial aspect of the wavefunctions of Yb+ states. One of

the significant differences of Dirac wavefunctions from the corresponding Schrödinger

wavefunctions is the divergence of 𝑠1/2 and 𝑝1/2 orbitals’ wavefunctions at the ori-

gin (see Section 1.2.5 in Ref. [27]): 𝑃 (𝑟), 𝑄(𝑟) ∼ 𝑟𝛾 and thus 𝜌(𝑟) ∼ 𝑟2(𝛾−1) [see

Eqs. (14.3) and (14.2)] where 𝛾 < 1 for Dirac wavefunctions [e.g., for hydrogen-like

atoms, 𝛾 =
√
𝑘2 − 𝛼2𝑍2 where 𝑘 = ±1 for 𝑠1/2 and 𝑝1/2 orbitals as in Eq. (14.4), 𝛼

is the fine structure constant, and 𝑍 is the proton number; 𝛾 = 0.86 for Yb69+].

The 𝜌Ψ(𝑟) in Fig. 14-1(b) increases exponentially as getting closer to the origin

(i.e., linear increase in the graph with the logarithmic 𝑦 axis), just as the Schrödinger

wavefunction for 1𝑠 orbital, and then, at the distances 𝑟 below ∼ 0.001𝑎0, it manifests

the Dirac wavefunctions’ divergence.

Such divergence is especially important for the King-plot analysis. Considering

the nuclear charge radius
√︀
⟨𝑟2⟩ ∼ 6 fm (i.e. ∼ 10−4𝑎0) which determines the value

of the wavefunction at the origin (see Section 15.1.3), the values of IS electronic

factors that are derived from the wavefunctions near the origin, including 𝐹𝜒, 𝐺
(4)
𝜒 ,

𝐺
(2)
𝜒 , and 𝐷𝜒 for heavy new bosons (see Section 16.3), are dominated by the Dirac

wavefunctions’ divergence.

Note that not only at the origin but also the overall distributions of the Schrödinger
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and Dirac wavefunctions in Yb (𝑍 = 70) are likely different as well, as demonstrated

in Figs. 1.1–3 in Ref. [27] for Hg (𝑍 = 80).

16.2 Advantage of electronic-factor calculation from

wavefunction

Two approaches of calculating IS electronic factors can be found in literature. One

of the methods is to observe the shifts in calculated transition energy while varying

associated nuclear parameters, which seemingly is a more popular approach, at least

in the works for King-plot analysis including Refs. [3, 9, 84, 176, 215]. If a source of

isotope shift (IS) is given by 𝑋𝜒𝑥
𝐴𝐴0 (see Sections 8.1, 8.2 and 11.6):

𝜈𝐴𝐴0
𝜒 = · · ·+𝑋𝜒𝑥

𝐴𝐴0 + · · · ; (16.1)

where 𝐴0 denotes a reference isotope, then the electronic factor𝑋𝜒 is given by the rate

of the change in the calculated value of 𝜈𝐴𝜒 while the essentially the same calculations

with varied values of 𝑥𝐴 from 𝑥𝐴0 are repeated.1 2 In other words, 𝑋𝜒 is given by a

partial derivative:3

𝑋𝜒 =
𝜕𝜈𝐴𝜒
𝜕𝑥𝐴

⃒⃒⃒⃒
⃒
𝐴0

. (16.2)

The advantage of this approach is that one does not need to extract wavefunctions

from the results of ASCs; it is not straightforward to deal with the wavefunctions of a
1An insignificant exception, in concept, is new-boson contribution (−1)𝑠+1𝑦𝑒𝑦𝑛/(4𝜋ℏ𝑐)𝐷𝜒𝑎

𝐴 =
[Eqs. 15.2,15.3, and 8.16]. The new-boson effect is turned on by increasing coupling strength 𝑦𝑒𝑦𝑛:
𝐷𝜒 = (−1)𝑠+14𝜋ℏ𝑐/𝑎𝐴[𝜕𝜈𝐴𝜒 /𝜕(𝑦𝑒𝑦𝑛)].

2Another type of exceptions is when two parameters are intrinsically correlated. For in-
stance, ⟨𝑟2⟩𝐴 and (⟨𝑟2⟩𝐴)2 are of the same variable with different powers, so one can fit the
change in the transition frequency with the power series up to the second order, 𝜈𝐴𝐴0

𝜒 =

𝑐+𝐹𝜒⟨𝑟2⟩𝐴𝐴0+𝐺
(2)
𝜒 (⟨𝑟2⟩2)𝐴𝐴0 , while varying ⟨𝑟2⟩𝐴, and obtain 𝐹𝜒 = (𝜕𝜈𝐴𝜒 )/(𝜕⟨𝑟2⟩2)|𝐴0 and 𝐺

(2)
𝜒 =

1
2 (𝜕

2𝜈𝐴𝜒 )/(𝜕⟨𝑟2⟩)2|𝐴0 . Similarly, the mass-field shift 𝐶𝜒(𝜇⟨𝑟2⟩)𝐴𝐴0 can be investigated by varying 𝜇𝐴

and ⟨𝑟2⟩𝐴, fitting with the relation 𝜈𝐴𝐴0
𝜒 = 𝑐+𝐹𝜒⟨𝑟2⟩𝐴𝐴0+𝐺

(2)
𝜒 (⟨𝑟2⟩2)𝐴𝐴0+𝐾𝜒𝜇

𝐴𝐴0+𝐶𝜒(𝜇⟨𝑟2⟩)𝐴𝐴0 ,
and obtaining 𝐶𝜒 = (𝜕2𝜈𝐴𝜒 )/(𝜕𝜇𝜕⟨𝑟2⟩)|𝐴0

.
3𝜈𝐴𝜒 and 𝑥𝐴 are the (absolute) transition 𝜒’s frequency and nuclear parameters for an isotope 𝐴,

respectively. 𝜈𝐴𝐴0
𝜒 = 𝜈𝐴𝜒 − 𝜈𝐴0

𝜒 is then the IS between a pair of isotopes (𝐴,𝐴0), and the difference
in the isotopes’ nuclear parameter values 𝑥𝐴𝐴0 = 𝑥𝐴−𝑥𝐴0 is the IS’s associated nuclear parameter.
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few tens of electrons, and the large set of values to describe the wavefunctions might

be a significant overhead for a few scalar values 𝑋𝜒. Moreover, the basis for the

representation of wavefunctions is often not the real space, and retrieving electron

densities 𝜌Ψ(r) over real space r might not be straightforward in such a case.

There are two potential disadvantages of the method above, however. The key-

word partial is highlighted above to point out that all other parameters relevant to

ISs should remain the same while a parameter of interest 𝑥𝐴 varies, which involves

careful examination for some parameters. For example, the nuclear charge distribu-

tion moments ⟨𝑟𝑛⟩ [Eq. (8.4)] of different orders 𝑛 are easily correlated via the change

in the charge distribution 𝜌𝐴(𝑟). To get the partial derivative, the shape of charge

distribution4 should be tuned so to change the value of a moment, e.g., ⟨𝑟4⟩, while

maintaining the moments of all other orders. Unfortunately, GRASP2018 does not

support an arbitrary shaping of the nuclear charge distribution and thus provides

limited investigation in this approach; GRASP2018 takes Fermi distribution:

𝜌𝐴(𝑟) ∝ 1/
[︀
1 + exp[(𝑟 − 𝑐𝐴)/𝑎𝐴]

]︀
, (16.3)

a popular choice as a model for nuclear densities [19, 216]. By tuning the two

parameters, 50%-density radius 𝑐𝐴 and 90%-to-10% tail thickness 𝑡𝐴 = (4 ln 3)𝑎𝐴,

⟨𝑟2⟩ and ⟨𝑟4⟩ can be tuned independently, with possible effects from the correlated

changes in higher moments (⟨𝑟𝑛⟩ with 𝑛 > 4).

Another drawback is that the repeated ASCs with different initial conditions

are subject to numerical noise. It is partly from the nature of iterative processes

seeking for convergence (the self-consistent-field approach here; see Section 12.2);

setting too small tolerance of the process (i.e., the maximum difference in neighboring

steps’ results to stop the process) results in high computational costs. The effect

of the noise is significant especially for the electronic factors for more than one

transition with small suppression factors (e.g., a two-transition electronic factor 𝑋𝜅𝜒

with 𝑥𝜅𝜒 − 𝑓𝜅𝜒 ≪ 1) (see Section 16.3). It is because the value of 𝑛-transition

4Beyond mere scaling: 𝜌𝐴1 (𝑟) ∝ 𝜌𝐴2 (𝑐𝑟) with a constant c.
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factor is, then, very sensitive to the noises in the values of the (𝑛 − 1)-transition

factors involved. Due to this effect, 𝐺(2)
𝛽𝛼 could be calculated with the uncertainty

comparable to the center value in Ref. [5]. New-boson factor 𝐷𝜒 for high boson mass

𝑚𝜑 is another such example (i.e., 𝑑𝜅𝜒 − 𝑓𝜅𝜒 ≪ 1).

As already introduced in Section 15.1, another approach is to use the wavefunc-

tions from ASCs to calculate the electronic factors. This approach was taken also

in, for instance, Ref. [82].5 This method does not require the repeated ASCs for the

most of the electronic factors considered in this work,6 and thus gives no place for

the numerical noise or the difficulty in varying only one nuclear parameter.

16.3 Calculation strategy for electronic factors with

high correlations with wavefunction near the

origin

When electronic factors 𝑍𝜒 are highly correlated with the field-shift factors 𝐹𝜒 across

the different transitions 𝜒, the ratios of the electronic factors 𝑧𝜅𝜒 = 𝑍𝜅/𝑍𝜒 and

𝑓𝜅𝜒 = 𝐹𝜅/𝐹𝜒 are very similar. In other words, the corresponding two-transition

electronic factors 𝑍𝜅𝜒 = (𝑧𝜅𝜒 − 𝑓𝜅𝜒)𝑍𝜒 are highly reduced from the single-transition

factors 𝑍𝜒 (i.e., the suppression factor’s magnitude |𝑧𝜅𝜒 − 𝑓𝜅𝜒| ≪ 1). Such strong

correlations can be observed in Table C.2 for FFS 𝐺(4), QFS 𝐺(2), and new-boson

shift factors 𝐷(𝑚𝜑) for the heavy boson mass (𝑚𝜑 = 17MeV/c2).

The correlations originate from the fact that all those electronic factors are de-

termined by the wavefunctions near the origin. For instance, the 𝐹𝜒 and 𝐺
(4)
𝜒 are

determined by the electron density differences 𝜌𝜒(𝑟) and their curvatures at the ori-

gin, respectively, as shown in the Seltzer moment expansion [Eq. (15.1)]. The 𝐺(2)

5The Ref. [82] took the wavefunctions of only a valence electron in an Yb+ ion.
6It is true for the terms from the first-order perturbation theory (i.e., the terms that are linearly

proportional to the nuclear parameters such as 𝐺
(4)
𝜒 ⟨𝑟4⟩𝐴𝐴′

and 𝜐𝑛𝑒𝐷𝜒𝑎
𝐴𝐴′

). The terms that arise
from the higher-order perturbation theory capture the change in wavefunctions, and thus repeating
ASCs is unavoidable to calculate such changes. QFS is an example that arises from the second-
order perturbation theory, and a reasonable assumption on the change in the wavefunction had to
be imposed to avoid the repeated ASCs; see Section 15.1.3.
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are given by the slopes of the density differences 𝜌𝑃𝜒 (𝑟) (for the point-charge nuclei) at

the sizes of the nuclei [see Eq. (15.6)]. The new-boson-induced Yukawa-like potential

[Eq. (8.16)] has short interaction range given by the reduced Compton wavelength

of the boson 𝜆𝜑𝑐 = ℏ/(𝑚𝜑𝑐) and couples to the electrons’ wavefunction only near the

origin [Eq. (15.2)] for heavy bosons (e.g., 𝜆𝜑𝑐 ∼ 10 fm for 𝑚𝜑 = 17MeV/c2 while the

size of Yb nuclei is ∼6 fm [19]). Naturally, the properties of a wavefunction near

the origin are highly correlated in terms of their ratios, and thus the suppression

factors 𝑧𝜅𝜒 − 𝑓𝜅𝜒 which capture the differences in the ratios are tiny. Note, on other

hand, the mass-shift factors 𝐾 and new-boson factors 𝐷 for massless bosons (i.e.,

the Yukawa-like potential is reduced to a Coulomb-like 1/𝑟 potential), the small sup-

pression factor is not expected in general nor observed in Table C.4, as they encode

the global properties of the wavefunctions (see Sections 8.1.2 and 15.1.2).

Furthermore, the change in the wavefunctions during the 𝛼 and 𝛽 transitions are

intrinsically very similar (see Section 3.1.2), giving further suppression of the two-

transition factors. Indeed, the calculated suppression factors 𝑧𝛽𝛼 − 𝑓𝛽𝛼 for the two

transitions were consistently smaller by an order of magnitude than the corresponding

suppression factors 𝑧𝛾𝛼 − 𝑓𝛾𝛼 for the (𝛼, 𝛾) transition pair, as shown in Table C.2.

To capture such strong correlations and yet calculate the tiny differences between

the ratios accurately, self-consistency across the calculations for different atomic

states is required. In this work, the shared basis orbital wavefunctions (see Sec-

tion 12.2) for all the relevant states (2𝑆1/2, 2𝐷5/2,3/2, and 2𝐹7/2) were constructed

through one stream of DHF calculations (Section 14.2) and used in the following CI

calculation (Section 14.3). By doing so, the numerical noise from different DHF cal-

culations7 due to the nature of the SCF procedures (Section 16.2) could be avoided,

and the differences in the states’ wavefunctions (i.e., ASFs) were described by the cor-

responding mixing coefficients (see Section 12.2) using the same basis wavefunctions,

maximizing the self-consistency in the comparison for different states.

Note that a new set of basis wavefunctions was built for neutral Yb atoms (see
7MCDHF calculations (see Sections 12.2 and 13) could have been performed for each state

separately (they were tried in fact), which might be argued as a better estimation of each atomic
state.
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Section 14.6). Therefore, the thesis author regards the two-(and three-)transition

factors and the associated suppression factors that involve the neutral Yb atoms’

transitions, in Tables C.4 and C.5, less reliable than the factors for only the 𝛼, 𝛽,

and 𝛾 transitions in Yb+ ions.

One side remark is that the wavefunctions at the origin are dominated by 𝑠1/2

or 𝑝1/2 Dirac wavefunctions with 𝑘 = ±1 [Eq. (14.3)] as argued in Section 16.1; the

wavefunctions for |𝑘| > 1 vanishes at the origin. Therefore, the contributions in

the electronic factors above are mainly from the electrons in 𝑠1/2 and 𝑝1/2 orbitals.

Furthermore, the 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm clock transitions share the

same 2𝑆1/2 ground state, and thus the one valence 𝑠 electron in the ground state does

not contribute to the sensitivity to the King nonlinearity sources: FFS 𝐺(4), QFS

𝐺(2), or 𝐷 for heavy bosons. As no excited state of the clock transitions has a valence

electron in a 𝑠 shell, the sensitivity to those sources originates dominantly from the

perturbation of the valence-electron state’s change to the 𝑠1/2 and 𝑝1/2 core electrons.

Therefore, the valence-core correlations involving 𝑠1/2 and 𝑝1/2 core shells have been

taken into account in the ASCs performed in this work (see Section 14.3.2).
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Part V

Outlook
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Chapter 17

Improving experimental setup: more

precise isotope-shift measurement

Various plans or ongoing works to improve the precision of IS spectroscopy are in-

troduced in the following sections.

17.1 Reducing noise and drift in the probe beam

To date, the coherence time of the experimental setup used for the IS spectroscopy

has been demonstrated only ∼100µs coherence time (see Fig. 6-5), limiting the res-

olution of Ramsey interferometry for the 𝛼: 411 nm and 𝛽: 436 nm transitions due

to the short pulse and phase evolution times (see Table 5.1). It has also prevented

coherent excitation of ions’ states through the 𝛾: 467 nm transition (see Section 5.2).

Therefore, the linewidth of the probe beam at an ion will be narrowed by improving

the active stabilization of probe laser frequency to the reference cavity and mechani-

cal stability of the reference cavity, and potentially compensating fiber-induced phase

noises, as introduced in the following subsections.
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17.1.1 Acousto-optic-modulator laser frequency feedback

The probe beam used in this experiment is generated by a Ti:sapphire laser system

(see Section 4.1.5). The frequency of the Ti:sapphire laser is controlled through a

round-trip optical length of the optical cavity in which a Ti:sapphire crystal resides.

The length is typically adjusted by piezoelectric modules (piezos) which move a

cavity mirror. Such a mechanical control provides limited bandwidth, determined by

the lowest resonant frequency of the mechanical oscillator that the piezos and mirror

form, due to the phase delay that the oscillator introduces to a feedback loop that

stabilizes the laser frequency; roughly speaking, the additional phase delay near the

resonant frequency makes the loop forms positive feedback, which is set to provide

negative feedback at lower frequencies without the phase delay.

To widen the bandwidth of the laser frequency control over the piezo’s resonant

frequency, an AOM is placed for the Ti:sapphire laser beam. The double-pass AOM

scheme is used to suppress the change in the deflection angle of the beam [217], which

would result in the optical power modulation, correlated to the frequency feedback

through the AOM, due to the change in free-space-to-fiber coupling efficiency. The

bandwidth of an AOM is ultimately given by the time that the acoustic wave takes to

pass through the beam spot and deliver the change in the acoustic wave’s frequency

to the beam frequency. For instance, the acoustic wave’s velocity in the AOM crystal

is 𝑣 = 4.26mm/µs for an AOM selected for this work (ATM-802DA1, IntraAction

Corp.). Assuming the beam size is ≤1mm, the bandwidth of the control will be

≥4.26MHz. The response time of the resonator in the AOM would not be a problem,

as far as the bandwidth of the resonator is wider than ≥4.26MHz. As the piezo in

the Ti:sapphire laser used has the first resonance at ≈100 kHz, an order-of-magnitude

increase in the laser frequency control bandwidth is expected as explained below.

The bandwidth of the control does not only limit the feedback at the frequencies

higher than the band, but also the size of the open-loop gain 𝐺 at lower frequencies,1

which suppress the amplitude of noises in the system by a factor of 𝐺cl = 1/(1−𝐺)

(closed-loop gain). It is because the gain 𝐺 should be smaller than 0 dB at the
1𝐺 ≡ −|𝐺|𝑒𝑖𝜑, implying negative feedback (𝐺 < 0) when there is no phase 𝜑, for convenience.
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Figure 17-1: Illustration of Ti:sapphire laser frequency active stabilization via dual
feedback loops with piezoelectric control of Ti:sapphire cavity optical length and
acousto-optic modulator (AOM) drive frequency. 𝑓piezo and 𝑓AOM refer to the first
resonant frequency of the piezoelectric control and the bandwidth of the beam fre-
quency control using the AOM, respectively, which are the upper limits of the corre-
sponding feedback loops’ bandwidths and thus determine the maximum magnitudes
of gains 𝐺piezo (blue) and 𝐺AOM (red) of the loops. By capping 𝐺AOM by a propor-
tional gain below 𝑓piezo, the frequency range that each loop mainly works in is divided
by the gain-crossing frequency 𝑓cross. Consequently, the 𝐺piezo can be increased from
the maximum values with piezoelectric loop alone (dashed blue) to the level that
makes 𝑓cross ≲ 𝑓piezo (solid blue). The gross gain 𝐺 = 𝐺piezo +𝐺AOM then resembles
a continuous integration gain, of which magnitude is limited by 𝑓AOM.

frequency at which the gain has 180° phase (i.e., 0 < 𝐺 < 1) to prevent the noise

at the frequency is amplified through the positive feedback [i.e., 𝐺cl diverges]. In

other words, the 180°-phase frequency determines the maximum overall level (i.e.,

total gain) of a gain profile (𝐺 vs 𝑓) given by, e.g, integration (𝐼) gain, as described

in Fig. 17-1.2 Therefore, increasing the bandwidth of the feedback loop not only

stabilizes higher-frequency noises but also suppresses the noise at low frequencies

further.
2There is, in fact, a double integrator in the feedback loop for the Ti:sapphire laser to achieve

higher gain |𝐺| at lower frequencies (i.e., higher suppression of 𝐺cl).
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The latter effect is the real benefit that is expected in the Ti:sapphire laser system

used here. There are several relatively low-frequency sources of the laser frequency

noise, including etalon dither, acoustic noise from the optical table that the laser is

mounted on, and especially the vibration propagated from a chiller to the Ti:sapphire

cavity module through the liquid coolant. On the other hand, the high-frequency

noises have been measured to be small and decay as the frequency increases, presum-

ably due to the quieter nature of optically pumped lasers compared to electrically

driven lasers (e.g., diode lasers). The remaining noise after engaging the feedback

with the piezo has been indeed measured to be significant compared to the high-

frequency noise.

AOMs have no lower bandwidth of the frequency control in general. However,

the limited range of the control (only a few-MHz width for the AOM used here)

and possible remaining change in the beam deflection angle in the double-pass AOM

setup, after counteracting to the relatively bigger amplitude of the noises at low

frequencies, make the laser frequency stabilization with an AOM alone not feasible.

Therefore, it is desired to engage the two feedback loops, each for either the piezo or

AOM. As illustrated in Fig. 17-1, the maximum gain magnitude |𝐺|AOM of the AOM

feedback loop, given by the AOM’s bandwidth 𝑓AOM, is capped by a proportional (𝑃 )

gain applied in parallel with an 𝐼 gain below the piezo feedback loop’s bandwidth

(𝑓piezo), and thus the gains of the two loops 𝐺piezo and 𝐺AOM cross at 𝑓cross. In this

configuration, the feedback loop with higher gain mainly compensates for the noise

at each frequency while the effect of another loop is suppressed. Therefore, at the

frequency lower than 𝑓cross is taken care by the piezo loop, while the AOM loop

works for the higher frequencies 𝑓cross ≲ 𝑓 < 𝑓AOM. Furthermore, the total gain of

the piezo loop can be increased as far as 𝑓cross ≲ 𝑓piezo to prevent positive feedback

by the piezo, and then the gross gain of two loops 𝐺 = 𝐺piezo + 𝐺AOM looks like a

continuous gain profile from a single integrator.3 Due to the unity slope of a single 𝐼

gain in log-log Bode plots, the increase in the piezo-loop gain 𝐺piezo is proportional

to the increase in the bandwidth of the gross feedback loop: 𝐺/𝐺piezo = 𝑓AOM/𝑓piezo.
3Plus multiple integrators if exist; see Footnote 2.
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The implementation of the double-pass AOM feedback at high frequencies is

recently achieved by Eugene Knyazev, a research team member, starting from the

idea and design by the thesis author and an initial setup built by Diana P. L. Aude

Craik another team member, and indeed demonstrated the strong suppression of the

noises at frequencies lower than the bandwidth of the feedback loop with the piezo, at

least by 20 dB in power (i.e., 10 dB in amplitude) as expected above (𝑓AOM/𝑓piezo >

10).

The stabilized beam after the AOM is fed to one of waveguide frequency doublers

for 𝛼: 411 nm and 𝛽: 436 nm probe beams (see Section 4.1.5), taking full benefit of

the increased bandwidth of the gross feedback. For 𝛾: 467 nm probe beam, how-

ever, ∼3W of 934 nm beam out of the Ti:sapphire cavity module goes directly to a

frequency-doubling cavity (see Section 4.1.5), in which the frequency noise is not com-

pensated by the AOM. Nevertheless, given that the low-frequency noises (𝑓 < 𝑓piezo)

dominate over high-frequency noises, the 𝛾: 467 nm probe beam would get almost the

same benefit from the increased 𝐺piezo thanks to the AOM loop, which is somewhat

counterintuitive in a sense. If high-frequency noises turn out to be an issue in the

future, additional feedforwarding of the high-frequency components in PDH error

signal to the AOM frequency control can be considered, with careful consideration

of offset drift in the feedforward signal.

In the experiment for the 𝛼: 411 nm and 𝛽: 436 nm transitions, the >10 times

suppressed noise might increase the coherence time in the measurements and allow

longer probe pulse time for Rabi and Ramsey spectroscopy [see Section 5.2 and Fig. 5-

3(a,b)]. It results in narrower spectra of the transitions in frequency [see Eqs. (6.4])

and (6.7)], which are directly translated into the reduced statistical uncertainties in

the measured resonant transition frequencies. It will improve the precision further

from already demonstrated ∼100Hz/
√
hr uncertainty in ISs for the 𝛼: 411 nm transi-

tion [see Section 5.5 and Fig. 4-10(a)]. Furthermore, the required probe beam powers

will be reduced significantly if the Rabi spectroscopy is performed with a longer pulse

time.

For 𝛾: 467 nm transition, if a long enough coherence time (>10ms) can be
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achieved, it lets the transition driven at a moderate, few mW power of the probe

beam4 with a Rabi frequency 𝜔𝑅 of the time scale comparable to the coherence time

[121]. Alternatively, if the coherent transition is not feasible even after the upgrade,

it will still reduce the amount of the probe power by increasing the power density

at the peak frequency, as the transition is driven in broadband excitation limit (i.e.,

laser linewidth ≫ the 𝛾 transition’s natural linewidth). In either case, reducing the

probe beam intensity also reduces the absolute size of probe-induced AC Stark shift

(see Section 7.2.1), one of the significant systematic effects for the 𝛾: 467 nm transi-

tion in this work.

17.1.2 Vibration isolation platform for reference cavity

Despite the mechanical design of the reference cavity suspension to minimize the

transmission of mechanical vibration, the remaining amplitude of the vibration might

cause low-frequency noises in cavity modes’ resonant frequencies, which will propa-

gate to the probe frequency through the active stabilization to a cavity mode. If the

observed low-frequency noise is contributed significantly by the vibration in fact, the

upgrade implemented in Section 17.1.1 has not much effect to improve the coherence

in the measurement, or even propagate the cavity mode frequency noise slightly fur-

ther. This effect may be significant for the reference cavity system used here, as the

optical breadboard on which the cavity chamber is mounted is placed on an optical

table without air-compressed table supports; there is only a 1
4
-inch-thick urethane

polymer layer between the breadboard and the table.

To reduce the possible low-frequency noise, a passive benchtop vibration isolation

platform (150BM-1, Minus K Technology) has been planned to be placed between the

breadboard and the table, which provides the suppression of vibration transmission

starting from 1Hz and up to nearly 50 dB (in power) near 50Hz, according to the

datasheet. It is expected to provide information on the effect of the vibration from the

support to the cavity system and maximize the mechanical stability of the reference

cavity for better precision of the probe beam frequency.
4With the typical waist of focused beams (few tens of µm).
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17.1.3 Active stabilization of fiber-induced phase noise

Phase noise in the beam transmitted through an optical fiber can be subject to a

phase noise induced by the instability in the fiber’s optical length (e.g., due to the

acoustic vibration), which can be actively compensated using AOMs [218]. Note,

however, that the fibers in the current setup have relatively short lengths ≤3m, and

Eugene Knyazev, a research team member, demonstrated recently that the noise

level is under 1Hz, so it is not likely an issue in the near future.

17.2 Faster and more sensitive transition frequency

measurement scheme

In the experiment performed so far, the entire structure of a peak in each spectrum

has been scanned, and then the resonant frequency of the transition is obtained by

fitting the peak (see Sections 5.3.6 and Figs. 6-3, 6-6, and 6-11). This measurement

is slow; it has taken ∼5min in this work (see Sections 6.1.2, 6.2, and 6.3). More-

over, these full scans of peaks compromise the efficiency of the measurements, as 𝑃𝑒

measured at the nodes or antinodes of the spectra have no sensitivity to the center

positions of the peaks, while the 𝑃𝑒 at the steepest slopes of the peaks have maximal

information on the resonant frequencies. Both issues can be resolved by measuring

only the two points at the symmetric slopes instead. After one initial full scan, 𝑃𝑒 are

alternately measured while the probe frequency jumps between the two frequencies

at the slopes, and take the difference between 𝑃𝑒 at the two frequencies as the error

signal for an active stabilization, which can be fed back to the center of the two

frequencies after a proper gain (e.g., integration) is applied to the error signal. This

measurement scheme would provide much improved time resolution (≲15 s for two

𝑃𝑒 measurements; see Sections 6.1.2, 6.2, and 6.3) and maximized sensitivity of the

measured 𝑃𝑒 to the resonant frequency. The statistics of the measured resonant tran-

sition frequency can then be obtained from the distribution of the center frequency

of the two 𝑃𝑒 measurements used for each trial over time.
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Chapter 18

Cotrapping isotopes: quantum jump

of the precision

In this work, the optical clock transitions’ frequencies (offset by cavity modes; see

Section 4.1.5.1) have been measured for one isotope at a time, and the IS of an

isotope pair has been measured by switching a trapped ion of one isotope to another

(see Section 5.3.2). A better idea would be to trap ions of different isotopes in

the same trap, which would be separated by the Coulomb repulsion between them

as illustrated in Fig. 18-1, and measure their transition frequencies simultaneously.

Just by doing so, the drift of cavity modes does not need to be considered when ISs

are derived from the measured frequencies (see Sections 6.4 and 7.9.3.3), and many

of the contributions to the systematic shift in Section 7 would be in common for the

trapped ions and canceled out in the measured ISs.

There is a qualitatively advanced use of the cotrapped ions of different isotopes,

which has been already demonstrated for 86Sr+ and 88Sr+ ions [93]. Consider two

cotrapped ions of different isotopes 𝐴 and 𝐴′ as the simplest case of the cotrapping.

Then, the ions’ state that entangles a clock transition 𝜒’s ground state of one ion
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| ۧ𝑔𝐴

| ۧ𝑒𝐴

| ൿ𝑔𝐴′

| ൿ𝑒𝐴
′

𝐴Yb
+ 𝐴′Yb

+

ℎ𝜈𝜒
𝐴𝐴′

𝜙 = −2𝜋𝜈𝐴𝐴′𝑡

Figure 18-1: Illustration of cotrapped two ions of different isotopes 𝐴Yb+ and 𝐴′Yb+

in an ion trap of which states are entangled as described by Eq. (18.1). For a
transition 𝜒, the ground state for an isotope 𝐴 is entangled with the excited state
of another isotope 𝐴′ (

⃒⃒
𝑔𝐴
⟩︀ ⃒⃒
𝑒𝐴

′⟩︀) and vise versa (
⃒⃒
𝑒𝐴
⟩︀ ⃒⃒
𝑔𝐴

′⟩︀) with equal amplitudes.
The energy difference between the two states is given as the isotope shifts between
the isotopes times the Plank constant ℎ𝜈𝐴𝐴′

𝑥 , which is encoded in the relative phase
evolution 𝜑(𝑡) = −2𝜋𝜈𝐴𝐴′

𝑥 𝑡 between the two states.

and excited state of another ion:

|𝜓(𝑡)⟩ = 1√
2

[︁
𝑒−𝑖(2𝜋)𝜈𝐴

′
𝜒 |𝑔𝐴⟩|𝑒𝐴′⟩+ 𝑒−𝑖(2𝜋)𝜈𝐴𝜒 |𝑒𝐴⟩|𝑔𝐴′⟩

]︁
=
𝑒−𝑖(2𝜋)𝜈𝐴

′
𝜒

√
2

[︁
|𝑔𝐴⟩|𝑒𝐴′⟩+ |𝑒𝐴⟩|𝑔𝐴′⟩ exp

(︁
−𝑖(2𝜋)𝜈𝐴𝐴′

𝜒 𝑡
)︁]︁ (18.1)

can be prepared using a vibrational normal mode of the two ions in the ion trap;

the procedure of the preparation is described well in, e.g., Refs. [93, 219]. The

energy different between the two terms |𝑔𝐴⟩|𝑒𝐴′⟩ and |𝑒𝐴⟩|𝑔𝐴′⟩ in Eq. (18.1) is given

by the IS ℎ𝜈𝐴𝐴′
𝜒 , which will be manifested by their relative phase evolution rate

d𝜑/d𝑡 = −2𝜋𝜈𝐴𝐴′
𝜒 over time.

The ISs is then measured via parity measurement [93, 220, 221]. The two ions’

of isotopes 𝐴 and 𝐴′ are driven with the beams with the probe frequencies 𝑓𝐴 and

𝑓𝐴′ , respectively, with a common phase noise 𝜑𝑛. The relative phase of the state of
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each ion and the beam is then given as:

𝜑𝐴(𝑡) = 2𝜋(𝜈𝐴𝜒 − 𝑓𝐴)𝑡− 𝜑𝑛(𝑡) (18.2)

and the same for isotope 𝐴′, and the difference in such relative phases between the

ions,

𝜑𝐴𝐴′
(𝑡) = 𝜑𝐴 − 𝜑𝐴′

= 2𝜋(𝜈𝐴𝐴′

𝜒 − 𝑓𝐴𝐴′
)𝑡 (18.3)

where 𝑓𝐴𝐴′
= 𝑓𝐴−𝑓𝐴′ is the difference in the beams’ frequencies, is measured through

the Ramsey sequence with a 𝜋
2
-pulse applied to each ion as follows, after time 𝑇 since

the entangled state in Eq (18.1) is formed. The ions’ state in the rotating frame of

the two beams’ electric fields:

𝑅(𝑡) =
(︁
𝑒−𝑖𝜋[𝑓𝐴𝑡+𝜑𝑛(𝑡)]|𝑔𝐴⟩⟨𝑔𝐴|+ 𝑒+𝑖𝜋[𝑓𝐴𝑡+𝜑𝑛(𝑡)]|𝑒𝐴⟩⟨𝑒𝐴|

)︁
⊗
(︁
𝑒−𝑖𝜋[𝑓𝐴′

𝑡+𝜑𝑛(𝑡)]|𝑔𝐴′⟩⟨𝑔𝐴′|+ 𝑒+𝑖𝜋[𝑓𝐴′
𝑡+𝜑𝑛(𝑡)]|𝑒𝐴′⟩⟨𝑒𝐴′ |

)︁
∝
(︁
|𝑔𝐴⟩⟨𝑔𝐴|+ 𝑒+𝑖(2𝜋)[𝑓𝐴𝑡+𝜑𝑛(𝑡)]|𝑒𝐴⟩⟨𝑒𝐴|

)︁
⊗
(︁
|𝑔𝐴′⟩⟨𝑔𝐴′ |+ 𝑒+𝑖(2𝜋)[𝑓𝐴′

𝑡+𝜑𝑛(𝑡)]|𝑒𝐴′⟩⟨𝑒𝐴′ |
)︁

(18.4)

is given to be

|𝜓(𝑡)⟩ 𝑅(𝑇 )−−−→ 1√
2

[︁
𝑒−𝑖𝜑𝐴′

(𝑇 )|𝑔𝐴⟩|𝑒𝐴′⟩+ 𝑒−𝑖𝜑𝐴(𝑇 )|𝑒𝐴⟩|𝑔𝐴′⟩
]︁

∝ 1√
2

[︁
|𝑔𝐴⟩|𝑒𝐴′⟩+ 𝑒−𝑖𝜑𝐴𝐴′

(𝑇 )|𝑒𝐴⟩|𝑔𝐴′⟩
]︁

𝜋/2−−−→
pulses

1

23/2

[︁
(|𝑔𝐴⟩+ |𝑒𝐴⟩)(|𝑒𝐴′⟩ − |𝑔𝐴′⟩) + 𝑒−𝑖𝜑𝐴𝐴′

(𝑇 )(|𝑒𝐴⟩ − |𝑔𝐴⟩)(|𝑔𝐴′⟩+ |𝑒𝐴′⟩)
]︁

=
1 + 𝑒−𝑖𝜑𝐴𝐴′

(𝑇 )

23/2

(︁
−|𝑔𝐴𝑔𝐴′⟩+ |𝑒𝐴𝑒𝐴′⟩

)︁
+

1− 𝑒−𝑖𝜑𝐴𝐴′
(𝑇 )

23/2

(︁
|𝑔𝐴𝑒𝐴′⟩ − |𝑒𝐴𝑔𝐴′⟩

)︁
(18.5)

which yields

𝑃𝑝(𝑇 ) ≡ (𝑃𝑒𝑒 + 𝑃𝑔𝑔)⏟  ⏞  
≡𝑃+

− (𝑃𝑒𝑔 + 𝑃𝑔𝑒)⏟  ⏞  
≡𝑃−

=
1

2
cos𝜑𝐴𝐴′

(𝑇 )

=
1

2
cos
[︁
2𝜋(𝜈𝐴𝐴′

𝜒 − 𝑓𝐴𝐴′
)𝑇
]︁ (18.6)
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where 𝑃𝑔𝑔, 𝑃𝑔𝑒, 𝑃𝑒𝑔, and 𝑃𝑒𝑒 denote the probabilities of the ions’ state measured to

be |𝑔𝐴𝑔𝐴′⟩, |𝑔𝐴𝑒𝐴′⟩, |𝑒𝐴𝑔𝐴′⟩, and |𝑒𝐴𝑒𝐴′⟩, respectively.

One of the great advantages of such an entangled state is that it alone forms a

decoherence-free subspace. The change in the energy of the two terms due to the

common-mode magnetic field noise and systematic shifts are the same, not affecting

the relative phase evolution which encodes the value of 𝜈𝐴𝐴′
𝜒 . The common-mode laser

noise 𝜑𝑛 in Eq. (18.2) also disappears in Eq. (18.6) while the state interferes with

the beams. Furthermore, using the long coherence time of the state, an unentangled,

separable state:

|𝜓′(0)⟩ = 1√
2
(|𝑔𝐴⟩+ |𝑒𝐴⟩)⊗ 1√

2
(|𝑔𝐴′⟩+ |𝑒𝐴′⟩)

=
1

2
|𝑔𝐴𝑔𝐴′⟩+ 1

2
|𝑒𝐴𝑒𝐴′⟩+ 1√

2
|𝜓(0)⟩

(18.7)

which can be obtained simply by driving the clock transition by a resonant 𝜋
2

pulse

for each ion. Then, as the state evolves, the first two terms in Eq. (18.7) are sensitive

to such noises and shifts and quickly decohere to yield the following mixed state:

𝜌′(𝑡) =
1

4

(︁
|𝑔𝐴𝑔𝐴′⟩⟨𝑔𝐴𝑔𝐴′ |+ |𝑒𝐴𝑒𝐴′⟩⟨𝑒𝐴𝑒𝐴′ |

)︁
+

1

2
|𝜓(𝑡)⟩ ⟨𝜓(𝑡)| (18.8)

for 𝑡≫ 𝜏dec where 𝜏dec is the decoherence time. The effect of the state 𝜌′(𝑡) is merely

the halved contrast in the parity measurement 𝑃𝑝(𝑇 ), compared to the pure, entan-

gled state |𝜓(𝑡)⟩, which would be a fair price for skipping the entangling procedure.

18.1 Plans for experimental realization

18.1.1 Two-frequency beams for different isotopes

Two frequency components in each laser beam, separated by the IS between the iso-

topes for the corresponding transition, would be a more convenient and reliable way

to address both ions almost simultaneously, compared to the fast switching of laser

frequencies over GHz distances. Considering the >30% difference between ISs for dif-
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ferent nearest-neighboring even-𝐴 (NNE) pairs of isotopes, a resonant EOM or AOM

might not be the first choice. If more than one laser is available for the same wave-

length, bridging the laser frequencies by beating the two beams and stabilizing the

beat frequency (i.e., optical power modulation frequency measured by a photodiode

module) using a phase-locked loop (PLL) would be an ideal method, which is planned

for the 369 nm lasers. With only one source of laser beams, fiber-coupled broadband

EOMs are also a popular choice, especially for relatively longer wavelengths for suf-

ficient power handling. Therefore, fiber-coupled, 6GHz 3 dB bandwidth EOMs for

935 nm and 760 nm beams that can handle 500mW and 200mW input powers, re-

spectively, with the insertion loss of ≤6 dB have been purchased for this purpose

(WPM-K0935-P85P85AL0 and WPM-K0760-P63P63AL0, AdvR).

Generating probe beams of different frequencies is not as straightforward as the

beams for cooling and repumping, unless there is more than one Ti:sapphire laser

system or high-power laser system for each of 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm

beams, which would be costly options. High-power (see Table B.1 for the power of

the beams used) and broadband EOMs at those blue wavelengths are technically

challenging to obtain, but free-space waveguide EOMs potentially handle ∼10mW

and ∼100mW for 𝛼: 411 nm and 𝛾: 467 nm beams with ≤5 dB and ≤4 dB insertion

losses, respectively, might be available.1 Considering maximum 34% of the power in

each first-order sideband out of the total output power, it would be able to obtain

∼1mW for 𝛼: 411 nm and 𝛽: 436 nm beams, which would be enough,2 3 and ∼13mW

for 𝛾: 467 nm beam, which might be enough [121] after narrowing the linewidth of

the probe beam as described in Section 17.1.1.

Modulating the probe beams with broadband EOMs before frequency-doubled

may be also an option. It is not possible for 𝛾: 467 nm beam, as an optical cavity

used for the frequency doubling would filter the sidebands out. Considering the con-

version efficiency of the waveguide frequency doublers (see Section 4.1.5.1), 69mW

1According to a private conversation with AdvR.
2The power handling of EOMs for 𝛽: 436 nm beam is assumed to have the same power handling,

which likely has higher value in fact.
3See also Section 17.1.1 for the possible reduction in the required power for the Rabi spectroscopy.
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and 5.1mW second-harmonics power out of 300mW and 360mW input power for

𝛼: 411 nm and 𝛽: 436 nm, respectively, sufficient powers should be possible to ob-

tain from the max𝛽 4𝐽
2
0 (𝛽)𝐽

2
1 (𝛽) = 46% (with 𝛽 = 0.344𝜋) maximum power of each

sideband after frequency-doubled as follows:

|𝐸out(𝑡)|2 ≈ |𝐸in(𝑡) + 𝜂SH𝐸
2
in(𝑡) + · · · |2

= |𝐸in(𝑡)|2⏟  ⏞  
fundamental power

+ 𝜂2SH|𝐸2
in(𝑡)|2⏟  ⏞  

=𝑃SH

+ · · · (18.9)

where 𝐸in(𝑡) and 𝐸out(𝑡) are the electric fields of input and output beams of the fre-

quency doubler, respectively, and 𝑃SH is the total power of second-harmonics beams

with the frequencies ≈ 2𝜔/(2𝜋), and

𝑃SH ≈ 𝜂2SH

⃒⃒⃒[︀
𝐸0[𝐽0(𝛽) + 𝐽1(𝛽)(𝑒

𝑖𝜔𝑚𝑡 − 𝑒−𝑖𝜔𝑚𝑡) + · · · ]𝑒𝑖𝜔𝑡
]︀2 ⃒⃒⃒2

= 𝜂2SH

⃒⃒
𝐸2

0 [𝐽
2
0 (𝛽)− 𝐽2

1 (𝛽) + 2𝐽0(𝛽)𝐽1(𝛽)(𝑒
𝑖𝜔𝑚𝑡 − 𝑒−𝑖𝜔𝑚𝑡) + · · · ]𝑒𝑖(2𝜔)𝑡

⃒⃒2
= 𝜂2SH

(︀
𝐽2
0 (𝛽)− 𝐽2

1 (𝛽)
)︀
|𝐸2

0𝑒
𝑖(2𝜔)𝑡|2 (carrier)

+ 𝜂2SH4𝐽
2
0 (𝛽)𝐽

2
1 (𝛽)|𝐸2

0𝑒
𝑖(2𝜔+𝜔𝑚)𝑡|2 (blue sideband)

+ 𝜂2SH4𝐽
2
0 (𝛽)𝐽

2
1 (𝛽)|𝐸2

0𝑒
𝑖(2𝜔−𝜔𝑚)𝑡|2 (red sideband)

+ · · ·

(18.10)

where 𝐸in(𝑡) = 𝐸0 [𝐽0(𝛽) + 𝐽1(𝛽)(𝑒
𝑖𝜔𝑚𝑡 − 𝑒−𝑖𝜔𝑚𝑡) + · · · ] 𝑒𝑖𝜔𝑡 is the EOM-modulated

input beam to the frequency doubler driven with the modulation freuqency 𝜔𝑚/(2𝜋).

Broadband EOMs for 200mW input powers with ≤6 dB insertion loss should be

available for 2× 411 nm to 2× 436 nm beams considering the EOMs for 935 nm and

760 nm introduced above.

One another, less preferred way is using two pairs of resonant EOMs of which

resonant frequency can be slightly tuned, as the ISs 𝜈168,170𝜒 and 𝜈170,172𝜒 are differ

only by ∼6% and 𝜈168,170𝜒 and 𝜈170,172𝜒 are different by ∼4% (see Tables A.2 and

A.4). Therefore, <10% tunability is sufficient (e.g., EOMs from Qubig). The two

EOMs per beam can be placed in the beam path in series, and then the next-

nearest-neighboring even-𝐴 isotope pairs can be addressed by driving both the EOMs.
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However, only the pairs of the stable even-𝐴 isotopes can be addressed in this way,

which is not desirable for future experiments with odd-𝐴 isotopes (Chapter 19) or

radioactive isotopes (Chapter 20).

18.1.2 Beam alignments

Unfortunately, the setup used for this work has a two-mirror optical cavity along

the axial direction of the trap chip, along which a chain of ions is arranged, and

transmitting a strong probe beam through the cavity mirrors might cause undesirable

effects such as the accumulation of charge on the trap chip’s surface due to the

scattered blue beams (see Section 4.2.3.4) or excessive difference in the probe beam

intensities that the two ions see and the intensities’ position sensitivity, due to the

optical lattice formed inside the cavity. Therefore, the probe beam has to be applied

to the ion chain from its side. A major concern is then the differential light shift

between the two ions due to the different intensities at the different ions’ positions.

One method to address each ion with a center of the beam is to split the beam using

an acousto-optic deflector (AOD), in case the two ions are separated further than

the focal diameter of each beam. If it is not the case, then the two beam spots can

be merged in a way that the two maxima of the overlapped (Guassian) beams are

distant by the distance between the ions. The latter is the case for the ion trap used

in this work; the two trapped ions are separated by ∼6.8 µm.4

The 935 nm and 760 nm repumping beams (see Fig. 3-1) are free from the issues

described above. Therefore, it would be enough to align the beams with few-mW

power to the axis of the trap, through the cavity that does not couple to the wave-

lengths, and to generate sidebands using broadband EOMs.

For the 369 nm beams, the two ions can be addressed with the beams with typical

focal waists of ≥30 µm (see Table B.1) as the distance between the ions is closer

than the beam sizes, and the slight difference in the intensities at the different ions

would not be an issue for cooling, optical pumping (Section 5.3.4), and state readout

(Section 5.1).
4Calculated from the axial trap frequency 364 kHz (see Table 4.1)
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Chapter 19

Odd-𝐴 isotopes: their own anomaly

The differences in the transition frequencies between isotopes that includes odd-𝐴

isotopes with hyperfine (HF) structures can be measured through essentially the

same procedure introduced in Part II. However, those frequency differences are not

isotope shifts (ISs) in the usual sense, as the transitions in the odd isotopes are be-

tween the HF states of which energies are shifted by the HF interactions. Therefore,

the transition frequencies before the HF structures are introduced (i.e., HF-free fre-

quencies) should be obtained to map the isotope shifts onto King plots for the King

nonlinearity test. The usual way of experimentally estimating the HF-free transition

frequencies, the centroid frequency, has been used for such tests with Sr [94] and Dy

[99], reporting the deviation of odd-𝐴-isotope-involved pairs by few MHz from the

lines in the King plots formed by even-𝐴 isotope pairs without HF structure.

On the other hand, there are other interesting research topics on the HF structures

such as HF anomaly, extracting electrons’ wavefunctions at the origin, and probing

electric hexadecapole nuclear moments.

In this chapter, the theory of HF structure is summarized, possible contributions

of HF structures to the MHz-level King nonlinearity are investigated, and the other

research subjects are introduced. Finally, The experimental realization of IS and HF

splitting measurements with 171Yb+ and, more interestingly, 173Yb+ ions to study

all the topics above is discussed.
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19.1 Hyperfine structure

If the nucleus inside an atom has spin 𝐼, the energy levels of the atom for an electronic

state with nonzero total angular momentum 𝐽 are split by the interaction between the

magnetic dipole moments of the electrons and nucleus. In fact, the dipole interaction

is not the only source of the energy splitting. In general, HF structure in an atom

is about all the couplings between electric or magnetic 2𝑘-poles of the electrons and

the nucleus for 𝑘 ≥ 1.1

The expression for the HF interactions is as follows [222, 223]:

𝐻HF =
∞∑︁
𝑘=1

(𝐻HF)𝑘 =
∞∑︁
𝑘=1

𝑘∑︁
𝑚=−𝑘

(−1)𝑚(𝑇𝑒)𝑚𝑘 (𝑇𝑁)−𝑚
𝑘 (19.1)

where (𝐻HF)𝑘 is the HF structure for 2𝑘-pole, and (𝑇𝑒)
𝑚
𝑘 and (𝑇𝑁)

𝑚
𝑘 are the spherical

tensors of rank 𝑘 acting on the electronic and nuclear spaces. Due to the symmetry of

the nuclear structure, nuclear 2𝑘-poles are electric for even 𝑘 = 2𝑞 [(𝑇𝑁)𝑚2𝑞 = (𝒬𝑁)
𝑚
2𝑞]

and magnetic for odd 𝑘 = 2𝑞 + 1 [(𝑇𝑁)𝑚2𝑞+1 = (ℳ𝑁)
𝑚
2𝑞+1]. The highest order of

nuclear poles (i.e., the maximum value of 𝑘 for nucleus) is determined by the nuclear

spin: 𝑘max
𝑁 = 2𝐼. Similarly, the highest pole for electrons is given by the their angular

momentum: 𝑘max
𝑒 = 2𝐽 . Therefore, the HF structure is given by

𝐻HF =
𝑘max∑︁
𝑘=1

(𝐻HF)𝑘

=
1∑︁

𝑚=−1

(ℳ𝑒)
𝑚
1 (ℳ𝑁)

−𝑚
1 +

2∑︁
𝑚=−2

(𝒬𝑒)
𝑚
2 (𝒬𝑁)

−𝑚
2

+ · · ·+
𝑘max∑︁

𝑚=−𝑘max

(𝑇𝑒)
𝑚
𝑘max

(𝑇𝑁)
−𝑚
𝑘max

𝑘max = min(𝑘max
𝑒 , 𝑘max

𝑁 ) = min(2𝐽, 2𝐼)

(19.2)

where 𝑘max refers to the maximum 2𝑘-pole interaction in the HF structure. In short,

a nucleus with spin 𝐼 can have up to 22𝐼-pole, while the electronic state with angular
1𝑘 = 0 corresponds to the coupling of the electric and nuclear electric monopoles (i.e., charges),

which is the Coulomb interaction that gives the gross structure of the atom.
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momentum 𝐽 can probe up to 22𝐽 -pole of the nucleus.

The matrix elements of (𝐻HF)𝑘 for total angular momentum F = J + I basis

|𝛾𝐽𝐼𝐹𝑚𝐹 ⟩ are:

⟨𝛾′𝐽 ′𝐼𝐹 ′𝑚′
𝐹 | (𝐻HF)𝑘 |𝛾𝐽𝐼𝐹𝑚𝐹 ⟩

= 𝛿𝐹 ′𝐹 𝛿𝑚′
𝐹𝑚𝐹

(−1)𝐼+𝐽+𝐹

⎧⎨⎩𝐹 𝐽 𝐼

𝑘 𝐼 𝐽 ′

⎫⎬⎭ ⟨𝛾′𝐽 ′||(𝑇𝑒)𝑘||𝛾𝐽⟩⟨𝐼||(𝑇𝑁)𝑘||𝐼⟩
(19.3)

where {·} is the Wigner’s 6-𝑗 symbol and 𝛾 contains more quantum numbers to

describe the electronic state. Using this relation, the energy shifts 𝑊 from the

gross-structure energy due to the 2𝑘-pole interactions can be obtained from the per-

turbation theory. The shifts from the first-order perturbation theory are given by

the diagonal elements of Eq. (19.3) [222]:

𝑊 (1)(𝐹 ) =
𝑘max∑︁
𝑘=1

⟨(𝑇𝑒)𝑘⟩𝛾𝐽⟨(𝑇𝑁)𝑘⟩𝐼⏟  ⏞  
≡ℎ𝑉𝑘

𝑋𝑘(𝐽𝐼𝐹 )

= ℎ𝐴
𝐹 (𝐹 + 1)− 𝐽(𝐽 + 1)− 𝐼(𝐼 + 1)

2⏟  ⏞  
=⟨J·I⟩≡𝐾(𝐽𝐼𝐹 )

+ ℎ𝐵
8𝐼(2𝐼 − 1)𝐽(2𝐽 − 1)

3(𝐾(𝐾 + 1)− 4𝐼(𝐼 + 1)𝐽(𝐽 + 1)

+ · · ·

(19.4)

for different HF states 𝐹 with the same remaining quantum numbers 𝛾𝐽𝐼, where ℎ

is the plank constant,

⟨(𝑇𝑒)𝑘⟩𝛾𝐽 =

⎛⎝ 𝐽 𝑘 𝐽

−𝐽 0 𝐽

⎞⎠ ⟨𝛾𝐽 ||(𝑇𝑒)𝑘||𝛾𝐽⟩ (19.5)

and

⟨(𝑇𝑁)𝑘⟩𝐼 =

⎛⎝ 𝐼 𝑘 𝐼

−𝐼 0 𝐼

⎞⎠ ⟨𝐼||(𝑇𝑁)𝑘||𝐼⟩ (19.6)
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are stretched matrix elements,

𝑋𝑘(𝐽𝐼𝐹 ) ≡ (−1)𝐽+𝐼+𝐹

⎧⎨⎩𝐹 𝐽 𝐼

𝑘 𝐼 𝐽

⎫⎬⎭
⎡⎣⎛⎝ 𝐽 𝑘 𝐽

−𝐽 0 𝐽

⎞⎠⎛⎝ 𝐼 𝑘 𝐼

−𝐼 0 𝐼

⎞⎠⎤⎦−1

(19.7)

and 𝐾(𝐽𝐼𝐹 ) ≡ ⟨I ·J⟩ = [𝐹 (𝐹 +1)−𝐽(𝐽+1)− 𝐼(𝐼+1)]/2 are 𝐹 -dependent angular-

momentum factors, (·) is the Wigner’s 3-𝑗 symbol, and 𝑉𝑘 are the HF coefficients

assosiated to the 2𝑘-pole shifts with the relations to the conventional coefficients: 𝐴 ≡

𝑉1/(𝐽𝐼) (magnetic dipole) and 𝐵 ≡ 4𝑉2 (electric quadrupole). Note also that the

nuclear moments are conventionally expressed as: 𝜇 ≡ ⟨(𝑇𝑁)1⟩𝐼 (magnetic dipole),

𝑄 ≡ 2⟨(𝑇𝑁)2⟩𝐼 (electric quadrupole), Ω ≡ −⟨(𝑇𝑁)3⟩𝐼 (magnetic octupole), and Π ≡

⟨(𝑇𝑁)4⟩𝐼 (electric hexadecapole). Furthermore, the second-order perturbation theory

gives [222]:

𝑊 (2)(𝐹 ) =
∑︁

𝛾′𝐽 ′ ̸=𝛾𝐽

| ⟨𝛾′𝐽 ′𝐼𝐹𝑚𝐹 |𝐻HF |𝛾𝐽𝐼𝐹𝑚𝐹 ⟩ |
𝐸𝛾𝐽 − 𝐸𝛾′𝐽 ′

=

⃒⃒⃒⃒
⃒⃒
⎧⎨⎩𝐹 𝐽 𝐼

1 𝐼 𝐽 − 1

⎫⎬⎭
⃒⃒⃒⃒
⃒⃒
2

𝜂 +

⎧⎨⎩𝐹 𝐽 𝐼

1 𝐼 𝐽 − 1

⎫⎬⎭
⎧⎨⎩𝐹 𝐽 𝐼

2 𝐼 𝐽 − 1

⎫⎬⎭ 𝜁

(19.8)

where the state-dependent parameters 𝜂 and 𝜁 are the constants over 𝐹 .

Out of the full HF structure, the first-order magnetic dipole interaction is of

particular interest and is described in the following subsection.

19.1.1 Magnetic dipole interaction

A physical intuition behind the dipole interaction between electrons and nucleus is

the magnetic moment of the nucleus 𝜇𝐼 = 𝑔𝐼𝜇𝑁I interacting with the magnetic field

B𝑒 that the electrons generate (see, e.g., Section 6.1 in Ref. [145] and Section 9.1 in

Ref. [224] for more details):

(𝐻HF)1 = −𝜇𝐼 ·B𝑒(0) (19.9)
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where 𝑔𝐼 is the isotope-dependent nuclear 𝑔 factor and 𝜇𝑁 = 𝜇𝐵(𝑚𝑒/𝑚𝑝) is the

nucleon magneton, given by the Bohr magneton 𝜇𝐵 = 𝑒ℏ/(2𝑚𝑒) ≈ ℎ × 1.4MHz/G

that is suppressed by electron-proton mass ratio 𝑚𝑒/𝑚𝑝 ≈ 1/1836. The magnetic

field generated by the electrons is divided into the contributions from the electrons’

orbital motions and spins. The magnetic field from the (total) spin S is again divided

into the field from a dipole −𝜇0

4𝜋
𝑔𝑠𝜇𝐵

1
𝑟3
[3(S · r̂)r̂ − S] at a distance r and the Fermi

contact term −𝜇0

4𝜋
𝑔𝑠𝜇𝐵

8𝜋
3
𝛿3(r)S, where 𝑔𝑠 ≈ 2 is the electron’s 𝑔 factor and 𝜇0 is the

vacuum permeability.

For 𝑠 orbitals, there is no magnetic field from the orbital angular momentum

and the finite-range magnetic field of spins also averages out, and only the contact

interaction term is left, giving:

𝑊 (1)(𝐹 ) =
𝜇0

4𝜋
𝑔𝐼𝜇𝐼𝑔𝑠𝜇𝐵

8𝜋

3
𝜌𝑒(0)⏟  ⏞  

=ℎ𝐴

⟨I · J⟩ = ℎ𝐴𝐾(𝐽𝐼𝐹 ) (19.10)

where 𝜌𝑒(0) is the number density of the electrons that form the S total spin, at the

nucleus, and J = L+ S = S.2

For states with a nonzero angular momenta 𝐿 > 0, the electrons’ density vanishes

at the origin and the magnetic field at the nucleus is from the electrons’ orbital motion

and spin outside the nucleus, which can be well approximated to be [224]:

𝑊 (1)(𝐹 ) =
𝜇0

4𝜋
𝑔𝐼𝜇𝐼𝑔𝑠𝜇𝐵

⟨
1

𝑟3

⟩
𝐿(𝐿+ 1)

𝐽(𝐽 + 1)⏟  ⏞  
=ℎ𝐴

⟨I · J⟩ = ℎ𝐴𝐾(𝐽𝐼𝐹 ) (19.11)

Therefore, the first-order HF shifts are of the form ℎ𝐴⟨I · J⟩ in either cases. Note

that, however, the shifts for 𝑠 orbitals probe electron density at the origin, while the

shifts depend on the global shape of the electronic wavefunctions over space (through

⟨1/𝑟3⟩) for the 𝑙 > 0 orbitals, complementing each other.

Finally, if only the first-order shifts are considered, the energy splitting between
2All the other electrons in closed 𝑠 orbitals have zero net spin (𝑆 = 0) and do not participate in

the HF coupling. It is in contrast to the electron density change 𝜌𝜒(𝑟) that appears in the field-shift
electronic factor in Eq. (15.1), which is of all the electrons in the atomic system; see Section 19.4
for more discussions.
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nearest neighboring states 𝐹 and 𝐹 − 1 among |𝐽 − 𝐼| ≤ 𝐹 ≤ 𝐽 + 𝐼 is given to be

𝑊 (1)(𝐹 )−𝑊 (1)(𝐹 − 1) = ℎ𝐴𝐹 (19.12)

which is the Landé interval rule. Furthermore, if the nuclear spin is 𝐼 = 1
2
, then

possible values of 𝐹 are 𝐽 ± 1
2
≡ 𝐹± and the shifts from the (HF-free) gross energies

𝐸0 are given to be:

𝑊 (1)(𝐹 ) =

⎧⎪⎨⎪⎩+1
2
ℎ𝐴𝐽 = +1

4
ℎ𝐴(2𝐹− + 1) ≡ 𝑊+ , 𝐹 = 𝐽 + 1

2
≡ 𝐹+

−1
2
ℎ𝐴(𝐽 + 1) = −1

4
ℎ𝐴(2𝐹+ + 1) ≡ 𝑊− , 𝐹 = 𝐽 − 1

2
≡ 𝐹−,

(19.13)

as illustrated in Fig. 19-1(a), and the ratio of the shifts is 𝑊 (1)
+ /𝑊

(1)
− = −(2𝐹− +

1)/(2𝐹+ + 1). Therefore, the average of the shifts weighted by the number of the

Zeeman sublevels, 2𝐹± + 1, in each HF state vanishes:

[2𝐹+ + 1]𝑊
(1)
+ + [2𝐹− + 1]𝑊

(1)
− = 0. (19.14)

For this reason, the HF-free energy estimated from this relation is called center-of-

mass or centroid energy.

19.2 Odd-𝐴 isotopes in King plots: hyperfine split-

ting ratio test

For isotopes with nuclear spins, the coupling between angular momenta of electrons

and nuclei further shifts (and splits) the energy level of each electronic state, in ad-

dition to the previous IS contributions that originate from non-angular couplings be-

tween electrons and the nuclear properties (e.g., nuclear charge distributions, masses,

and the possible new-boson potentials from nuclei; see Sections 8.1 and 8.2). There-

fore, to compare the transition frequency between isotopes with and without nuclear

spin, such additional HF shifts should be eliminated, so that the comparison (i.e.,
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isotope shift involving an isotope with nuclear spin) become sensitive to the nuclear

properties that have been of interest in the thesis work. In other words, for the

isotopes with HF structures, the energy levels of the states in the atoms before split,

and thus HF-free frequencies of transitions have to be determined.

In this section, the problem of getting the HF-free transition frequencies is re-

viewed and discussed, and the resulting deviation of the points in King plots for

odd-𝐴 isotopes with nuclear spins is demonstrated for Yb+ ions and neutral Yb

atoms, using the ISs measured in this work for the even-𝐴 isotopes and the mea-

sured transitions frequencies for the odd-𝐴 isotopes found in literature. The future

studies of understanding and possibly using or canceling the odd-𝐴 isotopes’ King-

plot deviations are explored subsequently.

19.2.1 Determination of hyperfine-free frequency

As briefly mentioned at the end of Section 19.1.1, the HF-free energy of an atomic

state, before the HF structures are introduced, is largely given by the center-of-mass

(i.e., centroid) energy, the mean energies of two HF states weighted by the number

of Zeeman sublevels in each state, for the simplest case of the HF structure: the

first-order HF from spin-1
2

interaction [i.e., min(𝐽, 𝐼) = 1
2
; see Eq (19.1)]. In such a

case, measuring the energy splitting Δ𝑊 between the two HF states with 𝐹+ and

𝐹− (𝐹+ − 𝐹− = 1) is enough to determine the centroid frequency, as the ratio of the

absolute shifts 𝑊 (1)(𝐹±) is given. Explicitly, from Eq. (19.13),

Δ𝑊 (𝐹+, 𝐹−) ≡ 𝑊 (1)(𝐹+)−𝑊 (1)(𝐹−) = ℎ𝐴𝐹+ (19.15)

as in Eq. (19.12), and thus

𝑊 (1)(𝐹±) =
2𝐹∓ + 1

4𝐹+

Δ𝑊 (𝐹+, 𝐹−) (19.16)

from Eqs. (19.13) or (19.14) (note the order of ∓ sign in 𝐹∓), as illustrated in Fig. 19-

1(b). Note that Eq. (19.15) also provides a simple way to obtain the value of the
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𝐴 coefficient from a measured splitting Δ𝑊 . Developing the idea further, if the

energies of the two states 𝐸(𝐹±) are known, both the 𝐴 coefficient and the centroid

energy 𝐸𝑐 can be obtained as below:⎡⎣𝐸(𝐹+)

𝐸(𝐹−)

⎤⎦
⏟  ⏞  

y

= 𝐸𝑐 +
ℎ𝐴

4

⎡⎣+(2𝐹− + 1)

−(2𝐹+ + 1)

⎤⎦ =

⎡⎣1 +2𝐹−+1
4

1 −2𝐹++1
4

⎤⎦
⏟  ⏞  

𝑋

⎡⎣𝐸𝑐

ℎ𝐴

⎤⎦
⏟  ⏞  

𝛽

. (19.17)

The values of 𝐸𝑐 and 𝐴 and their uncertainties can be obtained from the known

energies 𝐸(𝐹±) by fitting the above relation (see Section 9.2.1).

The last idea provides a straightforward generalization for the higher-spin inter-

actions [e.g., min(𝐽, 𝐼) > 1
2
], which have additional contributions in the HF shifts

from the electric or magnetic higher-pole couplings, as described in Section 19.1.

For a given atomic states with 𝐽 and nuclear spin 𝐼, there are contributions from

the dipole (i.e., 21-pole) to 2𝑘max-pole HF interactions with 𝑘max = min(2𝐽, 2𝐼) [see

Eq. (19.2)], and there are total 𝑘max + 1 HF states, 𝐹1 = |𝐽 − 𝐼| to 𝐹𝑘max+1 = 𝐽 + 𝐼.

Then, from Eq. (19.4), the following relation can be fitted:

⎡⎢⎢⎢⎣
𝐸(𝐹1)

...

𝐸(𝐹𝑘max+1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 𝑋1(𝐽𝐼𝐹1) · · · 𝑋𝑘max(𝐽𝐼𝐹1)
...

...
...

1 𝑋1(𝐽𝐼𝐹𝑘max+1) · · · 𝑋𝑘max(𝐽𝐼𝐹𝑘max+1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

𝐸𝑐

ℎ𝑉1
...

ℎ𝑉𝑘max

⎤⎥⎥⎥⎥⎥⎥⎦ (19.18)

where 𝑋𝑘(𝐽𝐼𝐹 ) are the angular-momentum factors for the 2𝑘-pole couplings, de-

fined in Eq. (19.7), to obtain the centroid frequencies 𝐸𝑐 and all the corresponding

HF coefficients 𝑉𝑘 [e.g., 𝐴 ≡ 𝑉1/(𝐽𝐼), and 𝐵 ≡ 4𝑉2; see Eq. (19.4)] from the exper-

imentally determined energy 𝐸(𝐹𝑖) for each HF state with 𝐹𝑖. Here, the energy 𝐸𝑐

from the first-order HF effects will be still called centroid frequency for convenience

(first-order HF-free frequency would be a more precise name). An example of such

a case is illustrated in Fig. 19-1(d).

There is an important observation that follows. The energies can be offset by an
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Figure 19-1: (a) Hyperfine (HF) structure of a state with two HF levels with asso-
ciated 𝐴 coefficient of magnetic dipole interaction (see Section 19.1.1). First-order
HF shifts 𝑊 (1)

± for each of 𝐹± levels from HF-free energy 𝐸0 are shown [Eq. (19.13)].
Further shifts from higher-order perturbation theory (HOHF; higher-order HF shifts)
are also shown. (b) Estimation of HF structure for the case in (a) (see Section 19.2.1).
The values of 𝐴′ and centroid energy 𝐸𝑐, obtained from measured HF splitting Δ𝑊
and 𝐹± numbers, estimate 𝐴 and 𝐸0, respectively. Difference between true HF-
free energy 𝐸0 and centroid energy 𝐸𝑐 due to HOHF effects is highlighted. (c) HF
structure of 369 nm cooling transition in 171Yb+ ions with 𝐼 = 1

2
nuclear spins as a

simplest example. Transition frequencies 𝜈171369(𝐹
(𝑔)�𝐹 (𝑒)) between 2𝑆1/2 ground and

2𝑃1/2 excited states’ HF levels are shown. HF-free transition frequency 𝜈171369 between
HF-free energies of the two states is estimated to add the 171Yb+ isotope in King
plots (see Section 19.2.2). (d) HF structure of 399 nm cooling transition in neutral
173Yb atoms with 𝐼 = 5

2
nuclear spins, with more than two HF levels in the 1𝑃1

excited state. The centroid energy 𝐸𝑐 and 𝐴 and 𝐵 coefficients for magnetic dipole
and electric quadrupole interactions, respectively, are estimated using Eq. (19.18).
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arbitrary reference level. For instance, 𝐸(𝐹1) can be set to zero, and then all other

energies are given by the HF splittings Δ𝑊 (𝐹𝑖, 𝐹1) from the 𝐹1 state:

[𝐸(𝐹1), · · · , 𝐸(𝐹𝑘max+1)]
⊺ = [0,Δ𝑊 (𝐹2, 𝐹1), · · · ,Δ𝑊 (𝐹𝑘max+1, 𝐹1)]

⊺ . (19.19)

As there are 𝑘max + 1 states (i.e., 𝑘max splittings) when there are 𝑘max HF couplings

(i.e., 𝑘max HF coefficients 𝑉𝑘), experimentally measuring all 𝑘max independent HF

splittings are always just enough to determine the values of 𝑉𝑘 and the centroid energy

relative to the energies of HF states [i.e., 𝐸𝑐 − 𝐸(𝐹𝑖)]. However, if the HF effects

from the higher-order perturbation theory are considered as described in Section 19.1,

fitting the corresponding equations becomes an underdetermined problem due to the

additional HF coefficients [i.e., 𝜂 and 𝜁 in 𝑊 (2); see Eq. (19.8)].

Returning to the consideration of the first-order HF contributions only, the cen-

troid frequency (𝜈𝑐)
𝐴
𝜒 of a transition 𝜒 for an isotope 𝐴 with nuclear spin can be

obtained by measuring, e.g., all the independent HF splittings Δ𝑊 in both the

ground and excited states of the transition, and the frequency 𝜈𝐴𝜒 (𝐹
(𝑔) � 𝐹 (𝑒)) =[︀

𝐸(𝑒)(𝐹 (𝑒))− 𝐸(𝑔)(𝐹 (𝑔))
]︀
/ℎ of any one of the possible transitions between the HF

states of the ground and excited states. If the higher-order HF effects are considered

properly in the future, it would give the true HF-free frequency (𝜈0)
𝐴
𝜒 or simply 𝜈𝐴𝜒 .

In this view, the (𝜈𝑐)𝐴𝜒 is a purely experimental estimate of 𝜈𝐴𝜒 , which however ignores

the higher-order perturbation theory effects as highlighted in Figs. 19-1(a,b).

Finally, if the HF-free (or centroid) frequency 𝜈𝐴𝜒 [or (𝜈𝑐)
𝐴
𝜒 ] is offset by the cor-

responding transition frequency 𝜈𝐴′
𝜒 of another isotope 𝐴′, the derived quantity 𝜈𝐴𝐴′

𝜒

is regarded as (centroid) isotope shift of the isotope pair (𝐴,𝐴′) that involves an

isotope with nuclear spin.

19.2.2 Hyperfine splittings, centroid isotope shifts, and King-

plot deviations for 171Yb and 173Yb

For 𝐴Yb+ ions and 𝐴Yb atoms with 𝐴 = 171 and 173, which have nuclear spins

𝐼 = 1
2

and 5
2
, respectively, all the experimentally measured HF splittings Δ𝑊 and
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transition frequencies 𝜈𝐴𝜒 (𝐹 (𝑔)�𝐹 (𝑒)) in literature are listed in Tables 19.1 and 19.2,

respectively. From the data, the centroid ISs that involve the odd-𝐴 isotopes were

obtained, as described in Section 19.2.1, and listed in Table 19.2 for the 𝛼: 411 nm,

𝛽: 436 nm, and 𝛾: 467 nm transitions in Yb+ ions (see Fig. 3-1) and 𝛿: 578 nm and

𝜖: 361 nm transitions in Yb atoms. Those new ISs were added in King plots together

with the ISs between the five even-𝐴 isotopes measured in this work or in Refs. [9, 10]

as shown in Fig. 19-2 (see the caption in the figure for the inverse-mass-difference

factors 𝜇𝐴𝐴′), just as the King plots in Figs. 8-1(b), 10-1, and 10-2 were obtained in

Part III.

For the 171Yb isotope with 𝐼 = 1
2
, there is always at most the dipole interaction

[i.e., 𝑘max = min(2𝐽, 2𝐼) ≤ 1], implying measuring only one HF splitting Δ𝑊 (𝐹+, 𝐹−)

is enough to determine the centroid energy 𝐸𝑐 and 𝐴 coefficient. Also, trapping, cool-

ing 171Yb+ ions, and performing spectroscopy of them are well-established technology

(see Section 19.6.1). As a consequence, the Δ𝑊 (𝐹+, 𝐹−) and 𝜈𝐴𝜒 (𝐹
(𝑔) �𝐹 (𝑒)) for all

the relevant states and transitions of interest have been reported in literature, and

thus ISs could be also obtained for those transitions.

The situation is rather different for 173Yb+ ions. To the best of the author’s

knowledge, trapping 173Yb+ ions has not been reported in the community yet, al-

though there are some preliminary works for it [156, 225] (see Section 19.6.2). The

data for HF effects are largely missing as a result.

The transition frequencies and HF splittings have been reported also for 171Yb

and 173Yb atoms. 𝛿: 578 nm transitions is an ideal transition for the purpose of

this work, as none of the ground and excited states have an HF structure as their

electronic states (𝐽 = 0) have no sensitivity to the nuclear spins. On the other hand,

the 1𝑃1 excited state of the 399 nm cooling transition has the electric quadrupole

HF coupling as well (i.e., 𝐵 coefficient), yielding three HF states. The transition

frequencies of and HF splittings between the states were measured with fairly high

precision (sub-MHz) despite the more states and the broad linewidth (28MHz; see

Table B.1), through very careful experiments with a frequency comb and analysis of

the interferences between the HF states [113]. The 1𝑃1 state is the only state of which
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the 𝐵 coefficient value is experimentally determined in Table 19.1, and the associated

399 nm transition paired with the 𝛿: 578 nm transition is the only transition pair that

provides the points for the 173Yb isotope in the King plot [Fig. 19-2(d)].

Indeed, the odd-𝐴-isotope-involved pairs (171, 172) and (172, 173) consistently

show few-MHz deviations (deviations of 𝜈𝜅/𝜈𝜒 by ≲2 × 10−3 and 𝜈𝜒 of ≲3GHz)

from straight lines determined by the even-𝐴 isotope pairs accross the King plots for

different transitions pairs, which are also consistent with the reported deviations in

Refs. [94, 99] for Sr and Dy, respectively.
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Table 19.1: The 𝐹 numbers of all the hyperfine states, hyperfine splittings Δ𝑊 between the states,
and hyperfine coefficients 𝐴, 𝐵, and so on for the states in Yb+ ions and neutral Yb atoms. All
the values that are not from a reference are derived from other values in this table. The convention
of the values’ signs is 𝑥(𝑓) − 𝑥(𝑖) for state 𝑖→ state 𝑓 . All the values except 𝐹 numbers are shown
in the unit of MHz. The values with the blue color are theoretically estimated values.

𝐴 171 173

2𝑆1/2

(Yb+)

𝐹 0, 1 2, 3
Splitting 𝐹 = 0→ 1: +12,642.812 118 466(2)c 𝐹 = 2→ 3: −10,491.720 239 55(9)h

HF Coeff. 𝐴 =+12,642.812 118 466(2)a 𝐴 =−3,497.240 079 85(3)a
−3,482.41(18)b

2𝑃1/2

(Yb+)

𝐹 0, 1 2, 3
Splitting 𝐹 = 0→ 1: +2,104.9(1.3)d 𝐹 = 2→ 3: −1,743.6(1.2)d

HF Coeff. 𝐴 =+2,104.9(1.3)d a 𝐴 =−581.2(4)d a, −579.79(36)b

2𝐷5/2

(Yb+)

𝐹 2, 3 0, 1, 2, 3, 4, 5
Splitting 𝐹 = 2→ 3: −190.104(3)e ?

HF Coeff. 𝐴 =−63.368(1)a
𝐴 =+17.455(1)b, +3.47j

𝐵 =+1,190.4j

𝐶,𝐷,𝐸 =?

2𝐷3/2

(Yb+)

𝐹 1, 2 1, 2, 3, 4
Splitting 𝐹 = 1→ 2: +860(20)f ?i

HF Coeff. 𝐴 =+430(10)a
𝐴 =−118(3)b, −110.31j i

𝐵 =+951.4j i

𝐶 =?

2𝐹7/2

(Yb+)

𝐹 3, 4 1, 2, 3, 4, 5, 6
Splitting 𝐹 = 3→ 4: +3,620.5(1)g r ?m

HF Coeff. 𝐴 =+905.13(3)a
𝐴 =−249.314(15)b m

𝐵k l m, 𝐶k m, 𝐷k m

𝐸 =?

3𝐷[3/2]1/2
(Yb+)

𝐹 0, 1 2, 3
Splitting 𝐹 = 0→ 1: −2,209.5(1.1)f 𝐹 = 2→ 3: +1,825.8(9)a

HF Coeff. 𝐴 =−2,209.5(1.1)a 𝐴 =+608.6(3)b

1𝐷[3/2]3/2
(Yb+)

𝐹 1, 2 1, 2, 3, 4
Splitting 𝐹 = 1→ 2: +8,880(10)g r ?

HF Coeff. 𝐴 =+4,440(5)a 𝐴 =−1,223.0(1.4)b
𝐵,𝐶 =?

1𝑃1

(Yb)

𝐹 1
2 , 3

2
3
2 , 5

2 , 7
2

Splitting 𝐹 = 1
2 →

3
2 : −318.49(32)o 𝐹 = 3

2 →
5
2 : −754.00(77)o

𝐹 = 5
2 →

7
2 : +840.53(47)o

HF Coeff. 𝐴 =−212.33(30)p a 𝐴 =+59.52(20)q a, +58.485(83)b
𝐵 =+601.87(49)q a

a Derived assuming first-order HF only [Eq. (19.4)] b Eq. (19.21) and 𝑔173𝐼 /𝑔171𝐼 = −0.275446(14)
(see Footnote 6) c Ref. [226] d Ref. [227] e Refs. [129, 153] f Ref. [115] g Ref. [225]
h Ref. [228] i See experimental investigations in Ref. [225]. j Ref. [229] k Ref. [230]
l Refs. [231, 232] m See theoretical investigations in Refs. [230, 231, 232]. o Table 19.2
p Ref. [113] q Ref. [233] r Uncertainty not specified; the order of least significant digit is taken
as the uncertainty.
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Table 19.2: Transition frequencies 𝜈𝐴𝜒 (𝐹 (𝑔)�𝐹 (𝑒)) between hyperfine states of transition 𝜒’s
ground and excited states, and centroid isotope shift (IS) (𝜈𝑐)𝐴𝐴′

𝜒 obtained in Section 19.2.1,
for the transitions in Yb+ ions and neutral Yb atoms. All the values that are not from a
reference are derived from other values in this table and Table 19.1. For 399 nm, 396 nm,
935 nm, and 760 nm transitions for trapping and cooling Yb+ ions values in this table and
Table 19.1 are sufficient to trap ions of 171Yb+ isotope, while data for 935 nm and 760 nm
transitions are missing for 173Yb+ isotope due to the complicated hyperfine structures of the
2𝐷3/2, 2𝐹7/2, and 2𝐷[3/2]3/2 states in the transitions (see Table 19.1, Sections 19.6.1, and
19.6.2). The transition frequencies are either shown in their absolute quantities or offset
by the corresponding transition frequencies of other isotopes. The convention of the values’
signs is 𝑥(𝑓) − 𝑥(𝑖) for state 𝑖 → state 𝑓 . All the values are shown in the unit of MHz
unless otherwise noted. The values with the blue color are estimated ISs from King-plot
inter/extrapolations (see Section A.1).

𝐴 171 173

369 nm
2𝑆1/2 → 2𝑃1/2

(Yb+)

Transition
From 172Yb+:
𝐹 = 1→ 0: −3.705.1(1.3)a
𝐹 = 0→ 1: +11.042.63(87)a

From 172Yb+:
𝐹 = 3→ 2: +4818.75(99)a
𝐹 = 2→ 3: −7416.57(86)a

IS 𝜈171,172369 =+1,034.3(8)b 𝜈173,172369 =−569.9(7)b

935 nm
2𝐷3/2 → 3𝐷[3/2]1/2

(Yb+)

Transition
IS

𝐹 = 1→ 0: 320.569 30(7)THzc

𝜈173,172935 =+1,144(20)

760 nm
2𝐹7/2 → 1𝐷[3/2]3/2

(Yb+)

Transition 𝐹 = 3→ 1: 394.424 700THzd

𝐹 = 4→ 2: 394.429 957THzd

IS 𝜈171,172760 =+1,319.536(153) 𝜈173,172760 =−1,268(20)

𝛼: 411 nm
2𝑆1/2 → 2𝐷5/2

(Yb+)

Transition From 172Yb+:
𝐹 = 0→ 2: +10,912.539(153)e f

IS 𝜈171,172𝛼 =+1,319.536(153) 𝜈173,172𝛼 =−700(10)

𝛽: 436 nm
2𝑆1/2 → 2𝐷3/2

(Yb+)

Transition
𝐹 = 0→ 2:
688,358,979.309 308 42(42)g
Centroid: 688,349,174.7(7.5)

IS 𝜈171,172𝛽 =+1,338(10) 𝜈173,172𝛽 =−712(10)

𝛾: 467 nm
2𝑆1/2 → 2𝐹7/2

(Yb+)

Transition From 172Yb+:
𝐹 = 0→ 3: +4,711.821 757 3(23)f

IS 𝜈171,172𝛾 =−2,733.756(57) 𝜈173,172𝛾 =+1,362(10)
𝛿: 578 nm
1𝑆0 → 3𝑃0

(Yb)
ISh 𝜈171,174𝛿 =+1,811.281 646 9(23)i 𝜈173,174𝛿 =+551.536 050(10)l

399 nm
1𝑆0 → 1𝑃1

(Yb)

Transition
From 174Yb:
𝐹 = 1

2 →
1
2 : +1,153.68(25)j

𝐹 = 1
2 →

3
2 : +835.19(20)j

From 174Yb:
𝐹 = 5

2 →
3
2 : +503.22(70)k

𝐹 = 5
2 →

5
2 : −250.78(33)j

𝐹 = 5
2 →

7
2 : +589.51(33)k

IS 𝜈171,174399 =+941.353(157) 𝜈173,174399 =+290.24(24)

a Via inverse process of Section 19.2.1: estimating transition frequencies 𝜈𝐴369(𝐹
(𝑔) � 𝐹 (𝑒)) from ISs

𝜈𝐴369 and HF splittings Δ𝑊 . b Ref. [227] c Ref. [234] d Ref. [125]
e Ref. [235] f Ref. [121] g Ref. [138] h This transition have no associated hyperfine structure.
i Ref. [10] j Ref. [113] k Ref. [233] l Refs. [236, 237]
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Figure 19-2: Frequency-normalized King plots [Eq. (8.11)] for transitions pairs between 𝛼: 411 nm and 𝛾: 467 nm transitions
in Yb+ ions (see Fig. 3-1) and 𝛿: 578 nm (1𝑆0 → 3𝑃0) and 399 nm (1𝑆0 → 1𝑃1) transitions in Yb atoms with 171Yb+ or 173Yb+

isotopes, listed in the order of the significance of the deviations of odd-𝐴-isotope-involved pairs from the line formed by even-𝐴
pairs: (b) 578 nm vs 467 nm, (a) 578 nm vs 411 nm, (c) 411 nm vs 467 nm, (d) 578 nm vs 399 nm, (f) 467 nm vs 399 nm, and (e)
411 nm vs 399 nm, from centroid ISs in Table A.2 and Table 19.2. The values of 𝜇𝐴𝐴′ for even-𝐴 can also be found in Table A.2,
and 𝜇171,172 = 34.027 069 78(70) u−1 and 𝜇172,173 = 33.692 856 53(65) u−1 from 𝑚172 in Table A.3, 𝑚171 = 170.935 782 944(14) u,
and 𝑚173 = 172.937 667 642(12) u [6, 7, 20, 21, 22] (see the caption in Table A.3). The error bars indicate 1𝜎 uncertainties.
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19.2.3 Hyperfine shift ratio test and cancellation of King-plot

deviation

The HF-free energy 𝐸0 of an atomic state is not a directly measurable quantity, and

so thus the absolute HF shifts 𝑊 (𝐹 ) of each HF state from 𝐸0. The only measurable

quantities related to the HF structures are the HF splittings Δ𝑊 between the HF

states, which are not enough to investigate the higher-order HF effects purely by

experiments, as discussed in Section 19.2.1. For instance, for the simple spin-1
2

HF

structures with two HF states, the exact ratio of the shifts 𝑊 (𝐹+)/𝑊 (𝐹−) seems

not a measurable quantity, while the size of splitting Δ𝑊 is.

One way to investigate the effect of the higher-order HF effects would be to

compare the measured values of the splittings Δ𝑊 to the theoretically predicted

quantities. However, the test is again bound to the accuracy of atomic structure

calculations described in Part IV, and furthermore, there are nuclear effects that

complicate the sizes of splittings (e.g., the values of 𝐴 coefficients) further as de-

scribed in Section 19.3.

In this situation, the key idea of this section is that a King plot provides an

accurate estimation regarding the HF-free frequencies through the nearby spinless

isotopes. For two transitions 𝜒 and 𝜅, the straight line in the King plot (𝜈𝐴𝐴′

𝜒 , 𝜈
𝐴𝐴′

𝜅 ) =

(𝜈𝐴𝐴′
𝜒 /𝜇𝐴𝐴′

, 𝜈𝐴𝐴′
𝜅 /𝜇𝐴𝐴′

) in Eq. (8.10), determined by spinless isotopes with no HF

structure, sets the ratio of the HF-free frequencies of the two transitions for odd

isotopes.3 Then, if the the centroid frequencies (𝜈𝑐)𝐴𝜒,𝜅 deviate from the true HF-free

frequencies 𝜈𝐴𝜒,𝜅 due to the higher-order HF effects, and furthermore, if the ratio of

such deviations (𝜈𝑐−𝜈)𝐴𝜅 /(𝜈𝑐−𝜈)𝐴𝜒 is different from the slope 𝑓𝜅𝜒 of the King plot, then

the deviations result in the King nonlinearity. It will then provide an experimentally

determined relation of the overall scale and the ratio of the (𝜈𝑐 − 𝜈)𝐴𝜒,𝜅 deviations,

which may be able to be studied theoretically [222, 230].

Furthermore, it might be possible to theoretically and experimentally bound the
3The inverse-mass-normalized King plot is used here, instead of the frequency-normalized one

[Eq. (8.11)], for convenience.
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ratio of the King-plot deviations of the different points:4

𝑟𝐴𝑦 = (𝜈𝑐 − 𝜈)𝐴𝜅𝜒 ≡ (𝜈𝑐 − 𝜈)𝐴𝜅 − 𝑓𝛽𝛼(𝜈𝑐 − 𝜈)𝐴𝜒 (19.20)

involving different isotopes with HF structures (e.g., 171Yb+ and 173Yb+), just as the

ratios of 𝐴 coefficients for different isotopes are given by the ratios of nuclear 𝑔 factors

(see Section 19.3). In that case, if more than one such odd-𝐴-isotope-involved point

can be obtained in a King plot, those points should be able to be brought back to the

King line following the given ratio, and the remaining nonlinearity might be sensitive

to the nuclear effects of interest in this thesis. In other words, the well-bound ratio

of HF-induced King nonlinearity can cancel the HF effects in King plots and let the

points for spinful isotopes contribute to the search for new physics.

Note that, for the completeness of the discussion, the much bigger King non-

linearities observed for the odd-𝐴 isotopes might be in fact originate from possibly

qualitative differences in the nuclear properties, compared to the spinless nuclei, due

to the spin (e.g., possibly much bigger nuclear deformations by having a defined axis,

and resultant ⟨𝑟4⟩𝐴𝐴′ contributions; see Section 11.1.1), rather than the higher-order

HF effects.

19.3 Hyperfine anomaly

The value of an 𝐴 coefficient is determined by the wavefunction of the electrons in

an atom as shown in Eqs. (19.10) and (19.11). Therefore, the difference between the

𝐴 coefficients for different isotopes should be only from the difference in the nuclear

𝑔 factors:5
𝐴𝐴′

𝐴𝐴
=
𝑔𝐴

′
𝐼

𝑔𝐴𝐼
(19.21)

if the electronic wavefunction is the same for the two isotopes. This assumption

becomes not true when the finite sizes of the nuclei are taken into account. In
4Just as how two-transitions electronic factors are defined; see Section 15.2
5The magnetic dipole HF coefficients 𝐴 and the atomic mass number 𝐴 (usually in superscripts)

might be confusing, but the distinction should be clear from the context.
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particular, for the magnetic dipole HF structure for 𝑠 orbitals [Eq. (19.10)], there

are two corrections in the 𝐴 coefficients from their values 𝐴point for point-like nuclei

[238]:

𝐴 = 𝐴point(1 + 𝜖𝐵𝑊 )(1 + 𝜖𝐵𝑅) (19.22)

where the Bohr–Weisskopf (BW) correction 𝜖𝐵𝑊 is due to the finite extent of nuclear

magnetization [239] and the Breit–Rosenthal–Crawford–Schawlow (BR) correction

𝜖𝐵𝑅 originates from the dependence of the wavefunction at the origin on the finite nu-

clear charge distribution [240, 241] (just like the field shifts in ISs; see Section 8.1.1).

Due to the corrections, the 𝐴 coefficients’ ratio is also corrected as follows:

𝐴𝐴′

𝐴𝐴
=
𝑔𝐴

′
𝐼

𝑔𝐴𝐼

1 + 𝜖𝐴
′

𝐵𝑊

1 + 𝜖𝐴𝐵𝑊

1 + 𝜖𝐴
′

𝐵𝑅

1 + 𝜖𝐴𝐵𝑅

≈ 𝑔𝐴
′

𝐼

𝑔𝐴𝐼
(1 + 𝜖𝐴

′

𝐵𝑊 − 𝜖𝐴𝐵𝑊 )(1 + 𝜖𝐴
′

𝐵𝑅 − 𝜖𝐴𝐵𝑅)

≡ 𝑔𝐴
′

𝐼

𝑔𝐴𝐼
(1 + 𝐴′

Δ𝐴
𝐵𝑊 )(1 + 𝐴′

Δ𝐴
𝐵𝑅)

≈ 𝑔𝐴
′

𝐼

𝑔𝐴𝐼
(1 + 𝐴′

Δ𝐴
𝐵𝑊 + 𝐴′

Δ𝐴
𝐵𝑅)

(19.23)

where 𝐴′
Δ𝐴

𝐵𝑊 ≡ 𝜖𝐴
′

𝐵𝑊 − 𝜖𝐴𝐵𝑊 and 𝐴′
Δ𝐴

𝐵𝑅 ≡ 𝜖𝐴
′

𝐵𝑅 − 𝜖𝐴𝐵𝑅 are defined as the differential

HF anomalies of the BW and BR corrections. Then, the differential HF anomaly is

defined as:
𝐴′
Δ𝐴 ≡ 𝐴𝐴′

𝐴𝐴

𝑔𝐴𝐼
𝑔𝐴

′
𝐼

− 1 (19.24)

which would be 𝐴′
Δ𝐴 ≈ 𝐴′

Δ𝐴
𝐵𝑊 + 𝐴′

Δ𝐴
𝐵𝑅 for 𝑠 orbitals. In particular, 𝐴′

Δ𝐴
𝐵𝑅 domi-

nates over 𝐴′
Δ𝐴

𝐵𝑊 when the nuclei are very similar [i.e., 𝑎𝐴𝐴′
/𝐴 = (𝐴− 𝐴′)/𝐴≪ 1]

[238], which would be the case for the 171Yb+ and 173Yb+.

For 171Yb+ and 173Yb+, the nuclear 𝑔-factor ratio is know with relatively high

precision: 𝑔173𝐼 /𝑔171𝐼 = −0.275446(14) [227, 242],6 and the values of the anomalies
173Δ171 have been reported for a couple of excited 3𝑃1 states in neutral Yb atoms

[243] and the 2𝑆1/2 [226, 228] and 2𝑃1/2 states [227] in the Yb+ ion. The future

6 𝜇173
𝐼 /𝜇171

𝐼 = −1.37723(7) [227, 242], 𝜇𝐴
𝐼 = 𝑔𝐴𝐼 𝜇𝑁𝐼𝐴, 𝐼171 = 1

2 , and 𝐼173 = 5
2 .
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HF splitting measurements for the excited states 2𝐷5/2 of 𝛼: 411 nm [153], 2𝐷3/2

of 𝛽: 436 nm, and 2𝐹7/2 states of 𝛾: 467 nm transitions, by driving the microwave

transitions (see Section 19.6.4), will provide accurate measurements of the 173Δ171

for those states (see Table 19.1 for the measured HF splittings for those states for
171Yb+).

Finally, note that the HF anomaly does not contribute to the HF-induced King

nonlinearities observed in Section 19.2.2. While the anomaly shifts the values of 𝐴

coefficients, the ratios of the HF shifts determined by the ratios of angular-momentum

factors 𝐾(𝐽𝐼𝐹 ) [see Eq. (19.4)] remain the same, and so do the centroid frequencies

(𝜈𝑐)
𝐴
𝜒 of transitions (see Section 19.2.1).

19.4 Complementary test for field-shift electronic fac-

tor 𝐹𝜒

As shown in Eq. (15.1), the (linear) field-shift electronic factor 𝐹𝜒 for a transition

𝜒 is determined by the change in radial electron number density 𝜌𝜒(0) at the origin

during the transition, involving all the electrons in the atom. On the other hand,

𝑠-orbital HF splittings depend on the number density of the electrons that forms

nonzero total spin S only (i.e., valence electrons not in closed 𝑠 shells) as Eq. (19.10)

shows.

Then, the values of 𝐹𝜒 for 𝜒 = 𝛼: 411 nm and 𝛽: 436 nm (6𝑠 2𝑆1/2 → 5𝑑 2𝐷5/2,3/2,

respectively) transitions, derived from atomic structure calculations in Part IV (see

Table C.3), can be compared with the experimental values from the HF splittings

of the 6𝑠 2𝑆1/2 ground state which have been accurately measured [226, 228] (see

Table 19.1). As the transition excites a valence electron from 𝑠 to 𝑑 orbital, the

electron density change at the origin was expected to be dominated by the density

of the valence 6𝑠 electron (𝑑 orbital has no radial density at the origin). However,

the electron density of the 6𝑠 electron is given to be 16.02𝑎−3
0 (16.88𝑎−3

0 ) from the

measured HF splitting of the grounds state in 171Yb+ (173Yb+), which would result
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in the change of −16.02𝑎−3
0 (−16.88𝑎−3

0 ) during the transitions. While the signs are

in agreement, the sizes of the densities are significantly different from the calculated

values, ∼ −46𝑎−3
0 , shown in Figs. 14-2 and 14-3. One possible explanation of the

significant difference is that the perturbation in the core electrons in 𝑠 shells due

to the change in the valence electron’s state is in fact as significant as removing

more than one 𝑠 electron, in terms of the density at the origin. If so, this test

demonstrates the significance of valence-core electron correlations, which have been

taken into account in the atomic structure calculations (ASCs) performed in this

work (see Section 14.3.2).

19.5 Hexadecapole hyperfine coefficients in 173Yb

The electric hexadecapole HF couplings require both 𝐽 and 𝐼 ≥ 2 so that 𝑘max ≥ 2

[see Eq. (19.2)]. In particular, the limited 𝐽 prohibits probing of existing nuclear

hexadecapole moment for some species (c.g., 133Cs with 𝐼 = 9
2

[230, 244]). As

a consequence, the hexadecapole HF effects have been experimentally investigated

only for 165
67Ho [245], while the magnetic dipole (𝐴) [246], electronic quadrupole (𝐵)

[246], and magnetic octupole (𝐶) [247]7 HF couplings have been experimentally well-

studied.

Recently, 173Yb+ ions with 𝐼 = 5
2

nuclear spin and 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm)

transition (see Fig. 3-1) was proposed as a suitable isotope and transition to probe

the hexadecapole coupling [230]. While preparing the ions in the 2𝐹7/2 state will

require an initial search for the transitions frequencies (Section 19.6.3), measuring

the HF splittings with high accuracy should be straightforward by driving the mi-

crowave transitions between the HF states (see Section 19.6.4). The only and more

immediate challenge would rather be trapping and cooling the 173Yb+ ions, which

will be discussed in Section 19.6.2.

In principle, the 5𝑑 2𝐷5/2 excited state in 𝛼: 411 nm transition in Yb+ ions (see

7A summary of nuclear magnetic octupole moments Ω and the corresponding 𝐶 coefficients for
nearly 20 different atomic species ranging 𝑍 = 17 (Cl) to 84 (Po) and their isotopes are nicely
presented in Table IV in Ref. [247] (see also Table I in Ref. [230] for Ω).
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Fig. 3-1) would also have the hexadecapole HF coupling. While the 𝛼 transition is ex-

perimentally more preferred (finding and driving 𝛾 transition is demanding due to its

extremely narrow linewidth;8 see Table B.1), one can speculate that the 4𝑓 136𝑠2 2𝐹7/2

state might be more sensitive to the hexadecapole nuclear moments due to the more

complex electron configuration, compared to the 2𝐷5/2 state, just as the 𝛾 transi-

tion is more sensitive to King-plot nonlinearity sources than the 𝛼 and 𝛽: 436 nm

transitions (see Section 3.1.2).

Also, both the 2𝐹7/2 and 2𝐷5/2 states should have magnetic 32-pole HF couplings

(i.e., 𝑘max = 5) in principle, although the second-order HF effects [Eq. (19.8)] might

dominate over such higher-pole HF contributions [222, 230, 247, 249].

Lastly, the octupole-moment puzzle of 173Yb atoms [230], the 4-order-of-magnitude

disagreement in the calculated [250] and experimentally determined [251] nuclear oc-

tupole moments Ω through 3𝑃2 states,9 has been recently questioned by re-measured

values of the HF splittings in the same 3𝑃2 state [247], which showed no significant

evidence of the non-zero 𝐶 coefficient. The future measurements for the HF split-

tings in 2𝐹7/2 or 2𝐷5/2 states will be able to add another experimental confirmation

or resolution of the puzzle.

19.6 Experiments with 171Yb+ and 173Yb+

Future plans and strategies to realize the IS spectroscopy experiments with 171Yb+

and 173Yb+ ions are introduced in this section.

19.6.1 Trapping 171Yb+

Trapping 171Yb+ ions in an ion trap is a well-established technology due to the use

of the ions’ ground states as HF qubits [115, 125, 225, 252, 253, 254, 255, 256]. The
8Note, however, broadening of the linewidth by more than 2 orders of magnitude has been

expected for 173Yb+ isotope [231, 248].
9The value of nuclear octupole moment calculated directly from a nuclear structure calculation

[250] vs the value obtained from measured 𝐶 coefficient [251] divided by the calculated electronic
part ⟨(𝑇𝑒)3⟩𝛾𝐽 of the 𝐶 coefficient [see Eq. (19.4)] via atomic structure calculations, rigorously
speaking.
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experimental setup in this work has also been trapping the 171Yb+ ions recently by

the thesis author.

Figure 19-3 shows a level diagram for 171Yb+ ions with the relevant levels and

transitions. All the transition frequencies and HF splittings that are necessary to

drive 369 nm for cooling, 935 nm and 760 nm for 2𝐷3/2 and 2𝐹7/2-state repumping,

respectively, and 399 nm transition for photoionizing Yb atoms together with the

369 nm beam are listed in Table. 19.1 and 19.2 with sufficient precisions.

The transitions between different HF states of ground and excited states are

addressed using setups described in Section 18 as follows. For the 369 nm cooling

transition, a beam with frequency of 𝜈171369(1� 0) is the main beam for cooling,10 as

the 𝐹 = 0 → 0 transition is highly forbidden. Another 369 nm beam from another

laser, that is offset-phase-stabilized to the main cooling beam with 14.748GHz de-

tuning (the sum of the 2𝑆1/2 ground and 2𝑃1/2 excited states’ HF splittings), drives
2𝑆1/2 (𝐹 = 0) → 2𝑃1/2 (𝐹 = 1) transitions to repump the population that occasion-

ally falls into the 2𝑆1/2 (𝐹 = 0) HF level due to the off-resonantly driven 2𝑆1/2 → 2𝑃1/2

(𝐹 = 1→ 1) transition in every few ms or less.

A 935 nm repumping beam mainly drives 2𝐷3/2 → 3𝐷[3/2]1/2 (𝐹 = 1→ 0) tran-

sition to repump the population that decays to the 2𝐷3/2 (𝐹 = 1) state from the
2𝑃1/2 (𝐹 = 0) state which is populated by the main cooling beam. The occasionally

populated 2𝑃1/2 (𝐹 = 1) state can decay to 2𝐷3/2 (𝐹 = 2) state, which is repumped

through the 𝐹 = 2 → 1 repumping transition driven by a sideband in the 935 nm

beam generated by a broadband EOM with 3.07(2)GHz modulation frequency. In-

terestingly, Yb+ ions have been able to be trapped and cooled without the sideband

in practice, with the optical power as low as ∼1mW and 300µm focal waist.

The transition frequencies for the 399 nm transition in Yb atoms are also known

with high precision, and driving one of the transitions would be enough as the ground-

state HF states will be equally populated in the hot Yb gas from the heated oven

(see Section 4.1.2),11 unless one wants to boost up the ionization rate.
10See Section 19.2.1 for the notation.
11Note that the value of Boltzmann constant is 𝐾B/ℎ = 20.84GHz/K.
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Finally, occasionally populated 2𝐹7/2 (𝐹 = 3, 4) HF states (in every > few hrs

in the setup used here) due to atomic collisions (see Section 4.1.2) are repumped

through 2𝐹7/2 → 1𝐷[3/2]3/2 (𝐹 = 3 → 1) and (𝐹 = 4 → 2) transitions by a 760 nm

beam with a broadband EOM driven at 12.50GHz modulation frequency.
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Figure 19-3: Partial level diagram for 171Yb+ ions with 𝐼 = 1
2

nuclear spins. Solid lines show transitions between the ground
and excited states’ hyperfine levels, to be driven with laser beams, of which frequencies are available in Table 19.2. Dashed lines
are decay channels. See Fig. 3-1 and Table B.1 for details including usages of shown transitions. Details on hyperfine structure
of each state, including exact values and references for hyperfine splittings, can be found in Table 19.1.
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19.6.2 Trapping 173Yb+

Unlike the 171Yb+ ions, trapping 173Yb+ ions in an ion trap has not been realized to

the best of the author’s knowledge, and thus data for the transition frequencies and

HF splittings are largely missing as shown in Tables 19.1 and 19.2.

Figure 19-3 shows a level diagram for 173Yb+ ions with the relevant levels and

transitions. Fortunately, the data for the 369 nm cooling transition are available for

the 173Yb+ isotope. As there is no forbidden transition between the HF states of the

ground and excited states,12 the transition from both the 𝐹 = 2 and 3 HF levels of

the 2𝑆1/2 ground state would have to be actively driven.

The problem is in the 935 nm repumping transition. First, the 3𝐷[3/2]1/2 excited

state is not a concern. It has only two HF states (𝐹 = 2, 3) with the 𝐴 coefficient

which can be accurately estimated from Eq. (19.21), the 𝐴 value for 171Yb+ isotope,

and 𝑔173𝐼 /𝑔171𝐼 = −0.275446(14) [227, 242] (see Section 19.3). Therefore, the HF

splitting can be also estimated from the Landé interval rule [Eq. (19.12)]. However,

the 2𝐷3/2 state has 4 states with the 𝐴, 𝐵, and 𝐶 coefficients. The 𝐴 coefficient can

be estimated as above, and the shifts from the 𝐶 coefficient (i.e., magnetic octupole

HF interaction) are likely small (<1MHz [247]). Therefore, the only remaining piece

of puzzle is the value of 𝐵 coefficient. There are a theoretically estimated value as

shown in Table 19.1, and the HF splittings between the states can be estimated using

the value (together with the accurately estimated 𝐴 coefficient) [Eq. (19.4)]. Finally,

the HF-free ISs involving the 173Yb+ isotope are estimated by inter/extrapolating the

King plots for (578 nm,935 nm) and (399 nm,935 nm) transition pairs, as described

in Section A.1.1 and listed in Table 19.2. Combining all the information obtained

so far, the transition frequencies 𝜈173935(𝐹
(𝑔) � 𝐹 (𝑒)) between the ground and excited

HF states can be estimated, and the transitions can be searched starting from the

estimated frequencies. Note that Ref. [225] presents a result on the spectroscopic

investigation on the 935 nm transition frequencies for 173Yb+ ions, which might be

useful.

The 399 nm transition frequencies are known for all the possible transitions in
12Unlike the 𝐹 = 0→ 0 transition in 171Yb+ ions
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173Yb+ ions. The 760 nm repumper is not necessary just for trapping and cooling,

as the decay to the 2𝐹7/2 state rarely happens. The transitions can be found later

once the 173Yb+ ions are trapped in the setup.

19.6.3 Driving optical clock transitions

The optical clock transitions in 171Yb+ and 173Yb+ ions are ideal for the precision

frequency measurements because the associated states’ 𝐹 values are integers, and

thus the states have magnetic-field-insensitive 𝑚𝐹 = 0 Zeeman sublevels.13

The situation for the available data to drive the clock transitions is very similar to

the transitions for cooling and repumping in Sections 19.6.1 and 19.6.2. For 171Yb+

isotope, all the transition frequencies and the HF splittings are known with sufficient

precisions (see Tables 19.1 and 19.2). For 173Yb+ isotope, the transitions should

be searched starting at the frequencies derived from the accurately measured 2𝑆1/2

ground states’ HF splitting, the accurately estimated 𝐴 coefficients of the excited

states and HF-free ISs, and the theoretically estimated values of the excited states’

𝐵 coefficients. All the values or references that are necessary for the searches can be

found in Tables 19.1 and 19.2.

19.6.4 Driving microwave transition between hyperfine states

The ion trap chip used in this work is equipped with a coplanar microwave waveguide,

placed along the outer sides of DC electrodes, connected to a vacuum-compatible

SMA cable and 8GHz feedthrough [108]. Driving the 12.64GHz microwave transition

between the HF states in the 2𝑆1/2 ground state in an 171Yb+ (see Table 19.1) using

the on-chip waveguide has been recently demonstrated by Diana P. L. Aude Craik,

a research team member, as shown in Fig. 19-5. Driving transitions between the

HF states of the optical clock transitions’ excited states in odd-𝐴 Yb+’s should

be straightforward, then, as the HF splittings are (expected to be) smaller than

12.64GHz (see Table 19.1).
13Therefore, the switching between the symmetrically detuned Zeeman transitions is not necessary

(see Section 5.3.4), which would double the data taking rates.
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Figure 19-5: Measured excitation probability from 𝐹 = 0 to 1 hyperfine states in the
2𝑆1/2 ground state of a trapped 171Yb+ ion, driven by microwave field. (Top) Rabi
oscillation over different microwave pulse time. (Bottom) Rabi fringe scanned over
different detunings of the microwave field from the hyperfine splitting, with a nearly-
𝜋
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microwave pulse. Full credit to Diana P. L. Aude Craik for the measurements and
this figure.
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For 171Yb+ isotope, although all the HF splittings relevant to this work have

been already measured as shown in Table 19.1, some of the values do not have high

precision. Driving the microwave transitions between the HF states is expected to

reduce the uncertainty to possibly a few tens of Hz or lower.
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Chapter 20

Unstable isotopes: more points in

King plot

As discussed in Sections 8.3.4 and 8.4, ISs for more isotopes provide distinguisha-

bility of one nonlinearity source from others for more total numbers of the sources.1

However, the typical choice of the isotopes for ion trapping is the observationally

stable isotopes, or at least the isotopes with very long lifetimes which would not

be a problem during a whole research cycle (e.g., 133Ba+ with 10.5 yr half-life [96]).

This is of a solid limitation on the number of available isotopes, as, e.g., Ca+, Sr+,

Ba+, and Yb+ (which are the typical choices for the ion trapping) have only 5, 4, 5,

and 5 such even-𝐴 stable or long-lived isotopes [and optionally 1, 1, 3, and 2 odd-𝐴

isotopes (see Section 19], respectively [25].

For Yb, there are one metastable even-𝐴 isotope: 166Yb with 56.7 h half-life (see

Table 20.1). The lifetime is much longer than the measurement for one isotope at

a time (≲2 hr; see Section 5.3.4), and the isotope-shift measurement for one isotope

pair takes a day. Therefore, if enough amount of the isotope can be synthesized and

loaded in Yb source in the vacuum chamber, it might add one more point in each

King plot through the same experiments in this thesis.
1An intuition here is that having more isotope pairs increases the dimensions of the King non-

linearity patterns (𝑛− 2 dimension for 𝑛 isotope pairs) and thus provides a unique decomposition
of measured patterns with at most 𝑛− 2 different predicted pattern shapes (i.e., vectors in (𝑛− 2)-
dimensional nonlinearity map 𝜆).
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Table 20.1: Metastable 𝐴Yb isotopes listed in the order of their half-lives > 1 s in
Ref. [25].

𝐴 Half-life
166 56.7(1)

hr164 1.26(3)

178 1.23(5)

162 18.87(19)

min
160 4.8(2)

180 2.4(5)

158 1.49(13)

156 26.1(7)
s

152 3.04(6)

There is also a more promising plan: transporting synthesized unstable isotopes

directly to a vacuum-connected chamber for IS spectroscopy experiments, and mea-

suring ISs before the isotopes decay away. For Yb, for instance, there are isotopes

with the half-lives of hours, minutes, and seconds as listed in Table 20.1. The fun-

damental limit of the IS measurement from the isotopes’ lifetimes would be the

linewidth of the transition spectra (e.g., Ramsey interferometry or transition-rate

spectroscopy; see Section 5.2) from which the resonant frequency of the transitions

are determined; the transition should be driven with probe pulses shorter than the

isotopes’ lifetimes, which Fourier-limit the linewidth of the beam. In practice, the

decay of the nuclei might bring overheads for reloading the ions at different stages of

the experiments, depending on the scale of their lifetimes: after each frequency scan

of the transitions for the few-minute lifetimes (Section 5.3.6) or after each excitation

probability 𝑃𝑒 measurement for the lifetimes of seconds (Section 5.3.7). The isotopes

with lifetimes of hours would not introduce significant overhead in the experiment.

A research collaborator, Dr. Ronald Fernando Garcia Ruiz at Massachusetts

Institute of Technology, and his research group have built a plan for realizing the

idea. They are currently developing a vacuum chamber system to purify, ionize, and

decelerate Yb atoms of unstable isotopes generated at the Facility for Rare Isotope
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Beams (FRIB) in Michigan, USA, and deliver them to an ion trap system for the IS

spectroscopy.

As the limitation on the number of available isotopes might be lifted up in the

future, distinguishing different sources of King nonlinearity will be ultimately limited

by the number of available transitions (see Sections 8.3.4 and 8.4), that are narrow

enough and also sensitive to new physics, and the capability of direct or indirect

laser-cooling, trapping, and performing spectroscopy (e.g., sympathetic cooling and

subsequent quantum logic spectroscopy of trapped ions [219]) for a given atomic

system.
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Chapter 21

Rydberg state: hint on new boson’s

mass range

As discussed in Sections 8.3.4 and 8.4, measuring ISs for more transitions may provide

more numbers of King nonlinearity sources that can be distinguished. There would

be, at least possibly, more available transitions in Yb+ ions or neutral Yb atoms

other than the five transitions that have been already used in this work (the 𝛼 to 𝜖

transitions; see Table A.1, Figs. 10-1, 10-2, and 10-3).1 Among different candidates,

transitions involving Rydberg states, the atomic states with high principal quantum

number 𝑛, may be particularly interesting choices as introduced in this chapter.

As discussed in Section 16.3, the heavy new bosons and nuclear effects are coupled

to the electrons’ wavefunctions near the origin. For the atomic species with one

valence electron such as Yb+ ions, one might expect that the wavefunction near the

origin can be suppressed by exciting the valence electron to an orbital with nonzero

relativistic quantum number 𝑘 [e.g, not 𝑠1/2 or 𝑝1/2; see Eq. (14.4) for the 𝑘 number

and Eq. (21.1) below for the suppression].2 However, the change in wavefunction at

the origin during the transition can still be significant, because the valence electron’s

excitation perturbs core electrons in 𝑠1/2 or 𝑝1/2 orbitals as well through the valence-

core correlations (see Sections 16.3 and 19.4).
1An example is a new proposed clock transition in Yb atoms at 1695 nm, 4𝑓14 6𝑠 6𝑝 3𝑃0 →

4𝑓13 6𝑠2 6𝑝 (𝐽 = 2) [35].
2Corresponding to 𝑙 > 0 in the nonrelativistic case (i.e., non-𝑠 orbitals).
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Such perturbation to the core 𝑠1/2 or 𝑝1/2 orbitals may be minimized for transi-

tions between Rydberg states with a highly excited valence electron, of which over-

lap with the tightly bound core electrons would be insignificant.3 Therefore, it is

expected for the Rydberg transitions to have suppressed sensitivities to the nuclear

effects and heavy-new-boson interaction.

In particular, the radial electron density of the valence electron at close distances

from the origin, but outside the nucleus (i.e., 3MeV/c2 < 𝑚𝜑 < 30MeV/c2), can be

expressed as (see Section 16.1):

𝜌Ψ(𝑟) =
1

4𝜋
𝑟2(𝛾−1)

[︀
𝜁(0) + 𝜁(1)𝑟 + 𝜁(2)𝑟2 + · · ·

]︀
, (21.1)

showing more suppression of the density ∝ 𝑟2(𝛾−1) ≈ 𝑟2(|𝑘|−1) near the origin for

bigger 𝑘 number. The expression gives the new-boson sensitivity 𝐷 of the ISs from

Eq. (15.2) as follows:

𝐷Ψ(𝑚𝜑) =
𝑐

2𝜋
(𝜆𝜑𝑐 )

2𝛾

∞∑︁
𝑛=0

Γ(2𝛾 + 𝑛)𝜁(𝑛)(𝜆𝜑𝑐 )
𝑛

≈ (2|𝑘| − 1)!ℏ2|𝑘|

2𝜋𝑐2|𝑘|−1

1

𝑚
2|𝑘|
𝜑

[︃
𝜁(0) +

(2|𝑘|)𝜁(1)ℏ
𝑚𝜑𝑐

+
(2|𝑘|)(2|𝑘|+ 1)𝜁(2)ℏ2

𝑚2
𝜑𝑐

2
+ · · ·

]︃
(21.2)

which is increasingly insensitive to the heavy boson 𝑚𝜑 for higher angular momentum

|𝑘| of the electron.

Furthermore, while the effect of the heavy new boson is suppressed, the Rydberg

states would be still sensitive to sufficiently light new bosons, with the Compton

wavelength of the atomic scale or longer (𝜆𝜑𝑐 ≳ 𝑎0), through the long-range overlap of

the new Yukawa-like potential to the valence electron’s wavefunction [see Eq. (15.2)].

It implies that the Rydberg transitions are more selectively sensitive to lighter bosons

compared to the transitions with low-lying valence electrons, of which new-boson

sensitivities 𝐷 are dominated by the boson’s couplings to core 𝑠1/2 and 𝑝1/2 electrons

with the suppression for heavy bosons with only |𝑘| = 1 in Eq. (21.2); presumably
3Especially for large |𝑘| (cf. circular Rydberg states [257, 258]).
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as a consequence, the relative sensitivities are largely the same across the different

transitions and atomic species shown in Fig. 1-2. If the above conjectures are true

and if potential new-boson signals are observed with the usual transitions but not

through the Rydberg transitions, for instance, it can be suspected that the boson

has a heavy mass.

Lastly, two transitions between a shared low-lying state and different Rydberg

states can be used as well [e.g., 6𝑝 to 10𝑑 or 11𝑑], as the common state does not

contribute to the King plots’ sensitivity to nonlinearity sources as mentioned in

Section 16.3.

In summary, transitions involving Rydberg states might be useful to suppress the

nuclear effects which are not desired for probing the new boson, and also provide

discrimination against bosons’ masses by being more selectively sensitive to lighter

bosons. This preliminary idea is planned to be investigated through the atomic

structure calculations (introduced in Part IV) for Rydberg states in Yb+ ions or Yb

atoms.
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Chapter 22

Outlook

Through more precise IS spectroscopy for more isotopes and transitions, the nonlin-

earity sources of increasing order will be distinguished experimentally. The physical

origin of each source may be also identified with the aid of atomic and nuclear struc-

ture calculations, through the size and shape of the source’s contribution to observed

nonlinearity patterns. An optimistic future scenario is that a nonlinearity source is

pinpointed, eventually, that cannot be explained by the Standard Model while it

is consistent with the prediction from the new boson’s (or any other new physics’)

effect. Such effect could be, then, crosschecked with other atomic systems, e.g., dif-

ferent species of atoms (see the work on the King plot for Ca+ [87], for instance),

highly charged ions [259], or maybe even molecules, through the same approach. If

the seemingly new-physics effect is confirmed across the atomic systems, it would

provide a strong motivation for other fields of physics to pursue focused searches on

the particular candidate for new physics.
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Appendix A

Isotope-shift spectroscopy: results

The values of isotope shifts (ISs) between stable, even-𝐴 isotopes for the 𝛼: 411 nm,

𝛽: 436 nm, and 𝛾: 467 nm optical clock transitions in Yb+ ions (see Fig. 3-1), mea-

sured in Part II, are listed in Table A.1. The values with reduced uncertainties from

the redundant pairs of isotopes (Section 6.7) can be found in Table A.2. The abso-

lute frequencies of the clock transitions for each isotope, obtained from the measured

IS and the absolute frequencies of reference isotopes (Section 6.5), are presented in

Table A.3. In particular, the estimation of the even isotopes’ absolute frequencies

from a measured absolute transition frequency for 171Yb+ isotopes with the hyper-

fine structure using King-plot linearity is described in Section A.1, as no measured

absolute frequency for an even-𝐴 isotope is available. Lastly, the measured abso-

lute frequencies and ISs for 369 nm, 935 nm, and 760 nm transitions (Section 6.6) for

cooling and repumping ions (see Section 4.1.2) are reported in Table A.4.

A.1 𝛽: 436 nm absolute frequencies

For the 𝛽: 436 nm transition, the absolute transition frequency has not been measured

for any of the stable even-𝐴 isotopes to date, to the best of the author’s knowledge,

while the absolute frequency of a transition between the ground and excited states’

hyperfine (HF) levels 𝜈171𝛽 (0 � 2) in 171Yb+ isotope has been measured precisely

[138, 139] (see Section 19.2.1 for the notation). In this case, the absolute frequency
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𝜈𝐴
′

𝛽 for an even-𝐴′ isotope can be obtained if the difference in the frequency 𝜈171𝛽 (0�2)

and the corresponding transition frequency 𝜈𝐴
′

𝛽 for the even-𝐴′ isotope, 𝜈171𝛽 (0 �

2) − 𝜈𝐴′

𝛽 , can be determined. The absolute frequencies of other even isotopes then

follow through the measured ISs in this work.

On the other hand, one of the useful applications of King-plot linearity is to

estimate the unknown IS 𝜈
𝐴𝑢𝐴′

𝑢
𝜅 of an isotope pair (𝐴𝑢𝐴

′
𝑢) for a transition 𝜅 from

the known IS 𝜈
𝐴𝑢𝐴′

𝑢
𝜒 of the same pair for another transition 𝜒, once the King line

is determined by the known ISs 𝜈𝐴𝐴′
𝜒,𝜅 for other isotope pairs (𝐴,𝐴′). Explicitly, in

the frequency-normalized King plot (𝜈𝜅/𝜈𝜒)
𝐴𝐴′

= 𝑓𝜅𝜒 + 𝐾𝜅𝜒(𝜇/𝜈𝜒)
𝐴𝐴′ [Eq. (8.11)],

the slope 𝐾𝜅𝜒 and 𝑦-intercept 𝑓𝜅𝜒 can be fitted for the known ISs 𝜈𝐴𝐴′
𝜒,𝜅 and the

corresponding inverse-mass differences 𝜇𝐴𝐴′ (see Section 8.1.2). Then, if the ISs 𝜈𝐴𝑢𝐴′
𝑢

𝜒

for transition 𝜒 and 𝜇𝐴𝑢𝐴′
𝑢 are known for the (𝐴𝑢𝐴

′
𝑢) pair, the value of the unknown IS

𝜈
𝐴𝑢𝐴′

𝑢
𝜅 can be inter/extrapolated via the unnormalized King plot relationship 𝜈𝐴𝑢𝐴′

𝑢
𝜅 =

𝑓𝜅𝜒𝜈
𝐴𝑢𝐴′

𝑢
𝜒 +𝐾𝜅𝜒𝜇

𝐴𝑢𝐴′
𝑢 [Eq. (8.9)].

The estimation becomes complicated for isotope pairs that involve isotopes with

HF structures. For such isotopes, what the King plot can do is to relate the HF-free

ISs 𝜈𝐴𝑢𝐴′
𝑢

𝜒,𝜅 for transitions 𝜒 and 𝜅 as above. Then, the deviation of the frequencies

𝜈𝐴𝑢
𝜒,𝜅(𝐹

(𝑔)�𝐹 (𝑒)) from the HF-free frequencies 𝜈𝐴𝑢
𝜒,𝜅 should be further estimated from

measured HF splittings Δ𝑊 of the states in the 𝜒 or 𝜅 transitions, as elaborated

in Section 19.2.1. Therefore, the requirements for estimating 𝜈𝐴𝑢
𝜅 (𝐹 (𝑔) �𝐹 (𝑒)) for a

transition 𝜅 are as the following: 1○ The King line (𝑓𝜅𝜒 and 𝐾𝜅𝜒) with a transition

𝜒 determined by some known ISs 𝜈𝐴𝐴′
𝜒,𝜅 , 2○ known 𝜇𝐴𝑢𝐴′

𝑢 , 3○ a measured frequency

difference 𝜈𝐴𝑢
𝜒 (𝐹 (𝑔)�𝐹 (𝑒))− 𝜈𝐴

′
𝑢

𝜒 (assuming isotope 𝐴′
𝑢 has no HF structure), 4○ all

the HF splittings Δ𝑊 in the ground and excited states of the transition 𝜒 to estimate

the HF-free IS 𝜈
𝐴𝑢𝐴′

𝑢
𝜒 from 3○, and 5○ all the HF splittings Δ𝑊 for the transition

𝜅 to estimate the frequency difference 𝜈𝐴𝑢
𝜅 (𝐹 (𝑔) � 𝐹 (𝑒)) − 𝜈

𝐴′
𝑢

𝜅 from the HF-free IS

𝜈
𝐴𝑢𝐴′

𝑢
𝜅 estimated via the King-plot inter/extrapolation.

For the 𝛽: 436 nm transitions, 1○ the experimental values of 𝑓𝛽𝜒 and 𝐾𝛽𝜒 are

listed in Table C.4 for 𝜒 = 𝛼: 411 nm and 𝛾: 467 nm transitions in Yb+ ions (see

Fig. 3-1) and 𝛿: 578 nm and 399 nm cooling transitions in Yb atoms (see Table B.1).
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For all the 𝜒 transitions, the estimated HF-free ISs 𝜈171,172𝜒 are obtained through

the steps 3○ and 4○, as listed in Table 19.2 (see Section 19.2.2). From the 𝜈171,172𝜒

and 2○ 𝜇171,172 = 34.027 069 78(70) × 10−6 u−1 (see the caption in Fig. 19-2), the

King-plot inter/extrapolation yields 𝜈171,172𝛽 = +1, 338.683, +1,337.721, +1,337.054,

and +1,338.597MHz for 𝜒 = 𝛼, 𝛾, 𝛿, and 399 nm Yb cooling transitions, respec-

tively. Considering the measurement uncertainty, distribution of the values esti-

mated from the different 𝜒 transitions, and the consistent few-MHz deviations of the

odd-𝐴-isotope-involved pairs from King lines (see Section 19.2.2), the HF-free ISs

is determined to be 𝜈171,172𝛽 = +1, 338(10)MHz with 10MHz upper bound on the

uncertainty.

On the other hand, 5○ the HF splittings Δ𝑊 for the 𝛽 transition are also in

Table 19.1, from which 𝜈171𝛽 (0�2)− 𝜈171𝛽 = +9, 804.6(7.5)MHz is estimated.

Finally, by subtracting the shift 𝜈171𝛽 (0�2)−𝜈171𝛽 estimated above and then the es-

timated IS 𝜈171,172𝛽 from the measured absolute frequency 𝜈171𝛽 (0�2) (see Table 19.2):

𝜈172𝛽 = 𝜈171𝛽 (0�2)−
[︀
𝜈171𝛽 (0�2)− 𝜈171𝛽

]︀
− 𝜈171,172𝛽 , (A.1)

the absolute frequency for 172Yb+ isotope is estimated to be 𝜈172𝛽 = 688.347 837(20)THz

with slightly more generous upper bound on the error. The estimated value agrees

well to the values 𝜈172𝛽 = 688.347 90(10)THz derived from WMFrequency = 344.173 89(5)THz

[Eq. (4.7)] that were directly measured by a Fizeau wavemeter (see Section 4.1.5.1).

The absolute transition frequencies for all other even-𝐴 isotopes are then obtained

from the ISs measured in this work (see Table A.2).

A.1.1 Estimating hyperfine-free isotope shift for 173Yb+

As another application of the procedure above, the HF-free ISs for 935 nm and 760 nm

repumping transitions and the 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm clock transitions

(see Fig. 3-1) are estimated for 173Yb+ isotope, for future search for these transitions

(see Sections 19.6.2 and 19.6.3).

The HF-free ISs 𝜈173,𝐴
′

𝜒 involving the 173Yb+ isotope are estimated for 𝜒 =
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𝛿: 578 nm and 399 nm transitions in neutral Yb atoms with high precision, as listed

in Table 19.2 (see Section 19.2.2). All the ISs for the even-𝐴 isotopes to ob-

tain the King lines (𝑓𝜅𝜒 and 𝐾𝜅𝜒) can be found in Table A.2 and A.4 (see also

Table C.4 for the fitted values of 𝑓𝜅𝜒 and 𝐾𝜅𝜒 for some of the transition pairs).

𝜇172,173 = 33.692 856 53(65) u−1 is obtained as described in the caption of Fig. 19-2.

Using the values above, the HF-free ISs 𝜒173,172
𝜅 are estimated to be +1,145MHz

(+1,142MHz) for the 𝜅 = 935 nm, −1,268MHz (+1,267MHz) for the 760 nm,

−701.2MHz (−699.6MHz) for the 𝛼: 411 nm, −713.3MHz (−711.6MHz) for the

𝛽: 436 nm, and +1,364.3MHz (+1,360.7MHz) for the 𝛾: 467 nm transitions, from

the King plots paired with 𝜒 = 𝛿: 578 nm (399 nm) transition. As earlier (estimating

𝜈171𝛽 above), the two values from the different 𝜒 transitions are averaged for each 𝜅

transition, and 10MHz upper bound on the uncertainties are assigned for the esti-

mation, as listed in Table 19.2. The estimated ISs 𝜈173,172935 and 𝜈173,172760 for the 935 nm

and 760 nm transitions have 20MHz uncertainties, however, due to the uncertainties

in the measured ISs for the even-𝐴 isotopes in Table A.4.
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Table A.1: Isotope shifts 𝜈𝐴𝐴′
𝜒 = 𝜈𝐴𝜒 − 𝜈𝐴

′
𝜒 measured for the 𝜒 = 𝛼 : 2𝑆1/2 → 2𝐷5/2, 𝛽 : 2𝑆1/2 → 2𝐷3/2, and 𝛾 : 2𝑆1/2 → 2𝐹7/2 in Yb+

ions (this work [5, 8]) (see Fig. 3-1); and 𝛿 : 1𝑆0 → 3𝑃0 [10] and 𝜖 : 1𝑆0 → 1𝐷2 [9] transitions in neutral Yb atoms for pairs (𝐴,𝐴′) of
stable even-𝐴 isotopes. Numbers in parentheses indicate 1𝜎 statistical uncertainties.

Isotope shift [kHz]
(𝐴,𝐴′) 𝛼: 411 nm 𝛽: 436 nm 𝛾: 467 nm 𝛿: 578 nm 𝜖: 361 nm

(168,170) 2 179 098.93(21) 2 212 391.85(37) -4 438 160.30(50) 1 358 484.4763(23) 1 781 785.36(71)
(170,172) 2 044 854.78(34) 2 076 421.58(39) -4 149.190.38(45) 1 672 021.51(30)
(172,174) 1 583 068.42(36) 1 609 181.47(22) -3 132 321.60(50) 992 714 5867(23) 1 294 454.44(24)
(174,176) 1 509 055.29(28) 1 534 144.06(24) -2 976 391.60(48) 946 921 7751(30) 1 233 942.19(31)
(168,172) -8 587 352.00(47) 3 453 805.27(83)
(170,174) 3 627 922.95(50) 3 685 601.95(33) -7 281 511.88(45)
(172,176) -6 108 712.93(44) 2 528 396.50(34)
(170,174) 2 268 486 5927(20)
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Table A.2: Improved values and uncertainties of isotope shifts 𝜈𝐴𝐴′
= 𝜈𝐴 − 𝜈𝐴

′ between nearest-neighboring even-𝐴 isotope pairs
(𝐴,𝐴′) (diagonal elements; in kHz) from the redundant measurements listed in Table A.1 (see Section 6.7). Correlation coefficients 𝜌𝑥𝑦 =
𝜎𝑥𝑦/(𝜎𝑥𝜎𝑦) between 𝜈𝐴𝐴′ for different isotope pairs are given by off-diagonal elements. Inverse-mass differences 𝜇𝐴𝐴′

= 1/𝑚𝐴 − 1/𝑚𝐴′

calculated from the values for 𝑚𝐴 in Table A.3 are also listed (see Section 9.3). Numbers in parentheses indicate 1𝜎 statistical uncertainties.

Transition (𝐴,𝐴′) (168,170) (170,172) (172,174) (174,176)

𝛼: 411 nm

(168,170) 2 179 098.93(21)
(170,172) 2 044 854.73(30) -0.3286
(172,174) 1 583 068.35(31)
(174,176) 1 509 055.29(28)

𝛽: 436 nm

(168,170) 2 212 391.85(37)
(170,172) 2 076 421.04(28) -0.4235
(172,174) 1 609 181.29(20)
(174,176) 1 534 144.06(24)

𝛾: 467 nm

(168,170) -4 438 160.85(38) -0.4430 0.1879 -0.0906
(170,172) -4 149 190.66(32) -0.4241 0.2045
(172,174) -3 132 321.38(33) -0.4822
(174,176) -2 976 391.58(37)

𝛿: 578 nm

(168,170) 1 358 484.4763(23)
(170,172) 1 275 772.0060(30) -0.7546
(172,174) 992 714.5867(23)
(174,176) 946 921.7751(30)

𝜖: 361 nm

(168,170) 1 781 784.73(55) -0.2210
(170,172) 1 672 021.40(29)
(172,174) 1 294 454.41(21) -0.3885
(174,176) 1 233 942.14(25)

𝜇𝐴𝐴′

[10−6 u−1]

(168,170) 70.113 619 5(36) -0.4430 0.1879 -0.0906
(170,172) 68.506 890 49(63) -0.4241 0.2045
(172,174) 66.958 651 95(64) -0.4822
(174,176) 65.474 078 21(65)
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Table A.3: Absolute frequencies 𝜈𝐴𝜒 of the 𝜒 = 𝛼 : 2𝑆1/2 → 2𝐷5/2, 𝛽 : 2𝑆1/2 → 2𝐷3/2, and 𝛾 : 2𝑆1/2 → 2𝐹7/2 clock transitions in Yb+

ions (see Fig. 3-1) for isotopes 𝐴, extracted from the measured ISs 𝜈𝐴𝐴′
𝜒 in this work (in Table A.2) and reference absolute frequencies

𝜈𝐴0
𝜒 . For 𝛽 transition, the reference frequencies were obtained from the King-plot inter/extrapolation and the wavemeter reading (see

Section A.1). Masses of single 𝐴Yb+ ions from [6, 7, 20, 26] with the Yb ionization energy set to 6.254 160(12) eV [21, 22] are also listed.
Numbers in parentheses indicate the upper bounds on the errors for 𝛽 transition and 1𝜎 statistical uncertainties for all the other values.

Absolute frequency [THz]
𝐴 𝛼: 411 nm 𝛽: 436 nm 𝛾: 467 nm 𝑚𝐴 [u]

168 729.481 090 980 86(36) 688.352 126(20) 688.352 19(10) 642.108 197 799 37(37) 167.933 342 75(10)d

170 729.478 911 881 93(30) 688.349 913(20) 688.349 98(10) 642.112 635 960 21(32) 169.934 218 673(11)e

172 729.476 867 027 206 8(44)a 688.347 837(20)b 688.347 90(10)c 642.116 785 150 879 5(24)a 171.935 838 086(15)e

174 729.475 283 958 85(31) 688.346 228(20) 688.346 29(10) 642.119 917 472 25(33) 173.938 318 975(12)e

176 729.473 774 903 56(42) 688.344 694(20) 688.344 76(10) 642.122 893 863 83(36) 175.942 026 136(16)e

a Ref. [121] b From King-plot inter/extrapolation c From wavemeter reading d Ref. [26] e Ref. [7]
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Table A.4: Measured values of absolute frequencies 𝜈𝐴 (upper table) and isotope shifts 𝜈𝐴𝐴′
= 𝜈𝐴 − 𝜈𝐴′ (lower table) for the

2𝑆1/2 → 2𝑃1/2 (369 nm) cooling transition, and the 2𝐷3/2 → 3𝐷[3/2]1/2 (935 nm) and 2𝐹7/2 → 1𝐷[3/2]3/2 (760 nm) repumping
transitions in Yb+ ions (see Fig. 3-1). 100MHz, 60MHz, and 50MHz uncertainties in measured absolute frequencies of the
369 nm, 760 nm, and 935 nm transitions, respectively, are specified by the manufacturer of the wavemeter (HighFinesse/Ångstrom
WS/7). The differences in the transition frequencies are measured with better precision; 60MHz, 20MHz, and 20MHz are
given as upper bounds of the uncertainties due to the drift of the wavemeter. The frequencies for 2𝐹7/2 → 1𝐷[5/2]5/2 (638 nm)
repumping transitions can be found in Ref. [4].

Transition frequency [THz]
369 nm transition 935 nm transition 760 nm transition

𝐴 This work Reference This work Reference This work Reference
168 811.29611(10) 320.562190(50) 394.432865(60)
170 811.29439(10) 811.29440(13) [234] 320.565910(50) 320.56593(7) [234] 394.429590(60)
172 811.29274(10) 811.29284(13) [234] 320.569390(50) 320.56941(7) [234] 394.426550(60) 394.4266a [126]
174 811.29146(10) 811.29154(13) [234] 320.572010(50) 320.57201(7) [234] 394.424145(60) 394.424a [127]

394.423900a [125]
176 811.29025(10) 811.29031(13) [234] 320.574515(50) 320.57449(7) [234] 394.421885(60)

Isotope shift [MHz]
369 nm

(𝐴,𝐴′) This work Reference 935 nm 760 nm

(168,170) 1 720(60) -3 720(20) 3 275(20)
(170,172) 1 650(60) 1 623.3(8) [227] -3 480(20) 3 040(20)
(172,174) 1 280(60) 1 275.3(7) [227] -2 620(20) 2 405(20)
(174,176) 1 210(60) 1 217.7(12) [227] -2 505(20) 2 260(20)

a Uncertainty not specified.
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Appendix B

Transitions in Yb+: summary

The properties of transitions in Yb+ ions (see Fig. 1-1) and neutral Yb atoms and

beams driving the transitions in the experimental setup are summarized in Table B.1.

It is assumed that all transitions have Lorentzian lineshapes while all laser beams

have Gaussian transverse profiles.

List of variables

𝜆 Transition wavelength

𝑓 Transition frequency

𝜔 Transition angular frequency

𝜏 The lifetime of the excited state

Γ/(2𝜋) Full width at half maximum (FWHF) linewidth of transition

𝑏 Branching ratio

𝐼𝑠 Saturation intensity of transition

𝑃 Beam power

𝑤 Beam waist (1/𝑒2-radius)

𝐼 Beam intensity
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Useful relations
See, e.g., Ref. [141, 145]

𝑓 =
𝜔

2𝜋
=

1

𝜆
(B.1)

Γ =
1

𝜏
(B.2)

𝐼𝑠 =
ℏ𝜔3Γ

12𝜋𝑐2𝑏𝑔
(B.3)

𝐼 =
2𝑃

𝜋𝑤2
(B.4)

where 𝑏𝑔 is the branching ratio of the spontaneous decay back to the transition’s

ground state.1

B.1 Branching ratio and oscillator strength

The branching ratio 𝑏𝑖𝑘 of a spontaneous decay channel from one state in 𝑔𝑖-degenerate

energy level 𝑖 to any of 𝑔𝑘-degenerate states in level 𝑘 is given by the ratio of the spon-

taneous emission rate Γ𝑖𝑘 along the channel to the total emission rate Γ𝑖 =
∑︀

𝑘 Γ𝑖𝑘

for all possible destination levels 𝑘. On the other hand, the absorption oscillator

strength 𝑓𝑘𝑖 is related to the spontaneous emission rate Γ𝑖𝑘 in the following way [see,

e.g., Eq. (17.1) in Ref. [223]]:

𝑔𝑘𝑓𝑘𝑖 = 𝐶𝜆2𝑖𝑘𝑔𝑖Γ𝑖𝑘 (B.5)

where 𝐶 = (32𝜋3𝛼𝑎20𝑐𝑅∞)−1 ≈ 1.5× 10−14 nm−2𝑠 with the fine structure constant 𝛼,

Bohr radius 𝑎0, speed of light 𝑐, and Rydberg constant 𝑅∞. Therefore, the branching

ratio of a decay channel 𝑖→ 𝑙 is given as:

𝑏𝑙𝑖 =
Γ𝑖𝑙

Γ𝑖

=
𝑔𝑙𝑓𝑙𝑖/𝜆

2
𝑖𝑘∑︀

𝑘 𝑔𝑘𝑓𝑘𝑖/𝜆
2
𝑖𝑘

. (B.6)

The relation is useful to obtain branching ratios of interest when the values of
1Corrected for the reduced transition rate by 𝑏𝑔; see Eq. (B.6).
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relevant oscillator strengths are known. For Yb+ ions, a comprehensive list of the

oscillator strengths of transitions below 30,000 cm−1 with 𝑔𝑓 > 0.01 is available [192].

For instance, the decay 3𝐷[3/2]1/2 → 2𝑆1/2 (297.056 nm) and 3𝐷[3/2]1/2 → 2𝐷3/2

(934.929 nm) have 𝑔𝑓 = 0.082 and 0.015, respectively, giving the branching ratios 𝑏 =

0.018 and 0.982, respectively [260], for the 935 nm 2𝐷3/2-state repumping transition

(see Fig. 3-1).

Similarly, for the 760 nm 2𝐹7/2-state repumping transition, 1𝐷[3/2]3/2 → 2𝑆1/2

(289.138 nm), 1𝐷[3/2]3/2 → 2𝐷5/2 (976.039 nm), 1𝐷[3/2]3/2 → 2𝐷3/2 (861.002 nm),

and 1𝐷[3/2]3/2 → 2𝐹7/2 (760.074 nm) have 𝑔𝑓 = 0.166, 0.042, ≤0.01, and ≤0.01 (the

last two transitions are not listed in Ref. [192]), giving branching ratios 𝑏 ≥ 0.096,

𝑏 = 0.022, 𝑏 ≤ 0.0066, and 𝑏 ≤ 0.0085.
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Table B.1: The properties of transitions in Yb+ ions (see Fig. 3-1) and neutral Yb atoms and beams driving the transitions in the
experimental setup. All data is for 172Yb+ isotope unless otherwise noted. If equations are given in a table footnote, all the necessary
values are from this table.

Configuration 1𝑆0 → 1𝑃1
2𝑆1/2 → 2𝑃1/2

2𝐷3/2 → 3𝐷[3/2]1/2
2𝐹7/2 → 1𝐷[3/2]3/2

2𝐹7/2 → 1𝐷[5/2]5/2

𝜆 [nm] 399u 369 935 760 638
𝑓 [THz] 751.527 064 60(34)a 811.292 74(10)e 320.569 390(50)e 394.426 550(60)e 469.441 27b

𝜏 [ns] 5.7d 8.12(2)c k 37.7(5)f i 28.6(4)f i

Γ/(2𝜋) [MHz] 28a i 19.6(5)d 4.22(6)d 5.56(8)d

𝐼𝑠 [uW/mm2] ≈580n b ≈510n b ≈375n o ≈2,000n o

𝑏t [%] 2𝐷3/2: 0.501(15)g k

2𝐹7/2: very smallh
2𝑆1/2: 98.2l 2𝑆1/2: ≥96o

2𝐷5/2: 4.2o

2𝐷3/2: ≤0.66o

2𝐷5/2
m

2𝐷3/2
m

𝑃 [mW] 5 70 µWv, 80 µWw 3 7 2.5
𝑤 [µm] 75v, 30w 300 100 100
𝐼 [mW/mm2] 8v, 55w 21 450 160

Usage Photoionization
Isotope selection

Photoionization
Cooling

Optical pump
State readout

Repumper
(2𝐷3/2 state)

Repumpers
(2𝐹7/2 state)

Configuration 𝛼: 6𝑠 2𝑆1/2 → 5𝑑 2𝐷5/2 𝛽: 6𝑠 2𝑆1/2 → 5𝑑 2𝐷3/2 𝛾: 4𝑓146𝑠 2𝑆1/2 → 4𝑓136𝑠2 2𝐹7/2

411 436 467
729.476 867 027 206 8(44)s 688.347 837(20)s, 688.347 90(10)s 642.116 785 150 879 5(24)s

7.1(3)msm p 52.7(2.4)msp k 10+7
−4 yrq, 1.58(8) yrr j

22.3(8)Hzm p 3.02(14)Hzd 0.50+0.33
−0.21 nHz

q, 3.19(16) nHzr j

≈410 pW/mm2n b ≈48 pW/mm2n b ≈6× 10−16 W/mm2n b

2𝐹7/2: 83(3)
1 0.2 160
60 15 30
180 570 113,000

Optical clock transitions

𝜆 [nm]
𝑓 [THz]
𝜏

Γ/(2𝜋)

𝐼𝑠

𝑏t [%]
𝑃 [mW]
𝑤 [µm]
𝐼 [mW/mm2]

Usage

a Ref. [113] b Ref. [4] c Ref. [261] d Eq. (B.2) e Table A.4 f Ref. [130] g Ref. [115]
h Decaying once every few hours, presumable due to the collision with background gas molecules [114, 115]. i Unspecified isotope
j 171Yb+ k 174Yb+ l Ref. [260] (from calculation [192]) m Ref. [131] (unspecified branching ratios) n Eq. (B.3) o Section B.1
p Ref. [262] q Ref. [263] r Ref. [248] s Table A.3 t Of all known decay channels. u Neutral Yb v For Doppler cooling
w For ground-state zeeman level optical pump
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Appendix C

Atomic structure calculation: results

The results of the atomic structure calculations (ASCs) performed in Part IV are

summarized in this appendix. Table C.1 shows the calculated energy levels of

the electrons’ orbitals in Yb+ ions through the Dirac-Hartree-Fock (DHF) calcu-

lations in Section 14.2 and compares the energies with reference values. Table C.2

shows the values of isotope-shift electronic factors (in Section 15) derived from the

configuration-interaction (CI) calculations for the Yb+ ions (Section 14.3) with dif-

ferent configurations for valence and core electrons’ correlations (see Sections 14.3.1

and 14.3.2), to investigate the convergence of the results. Lastly, the calculated sin-

gle, two, and three-transition electronic factors for 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm), 𝛽:
2𝑆1/2 → 2𝐷3/2 (436 nm), and 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) optical clock transitions in

Yb+ ions and 𝛿: 1𝑆0 → 3𝑃0 (578 nm) and 𝜖: 1𝑆0 → 1𝐷2 (361 nm) optical transitions

in neutral Yb atoms (see Fig. 3-1 and Table A.1) can be found in Tables C.3, C.4,

and C.5 and Figs. C-1, C-2, and C-3.
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Table C.1: The results of DHF calculations for orbitals in Yb+ ions for the core configu-
ration [Xe] 4𝑓14 (column 2), ground state 6𝑠 2𝑆1/2 in Table 11.17 in Ref. [27] (column 3),
and the orbitals up to 8𝑠𝑝𝑑𝑓 used for subsequent CI calculations (columns 4 and 5). See
Section 14.2.2 for the electron configurations in 8𝑠𝑝𝑑𝑓 calculation. The energy eigenvalues
𝐸𝑛𝑘 of each orbital are shown in the unit of Hartree energy 𝐸ℎ = ℏ𝑐𝛼/𝑎0 [see Eq. (14.4)
for the definition of the relativistic quantum number 𝑘]. For 8𝑠𝑝𝑑𝑓 calculation, 𝐸𝑛𝑘 of the
2𝑆1/2 ground state and electron occupation numbers are listed. All values, except from
Ref. [27], are from the final rmcdhf.sum files.

Subshell Core 2𝑆1/2 [27] 8𝑠𝑝𝑑𝑓

𝑛[𝑙]𝑗 𝐸𝑛𝑘 [𝐸ℎ] 𝐸𝑛𝑘 [𝐸ℎ] 𝐸𝑛𝑘 [𝐸ℎ] Occupation
1𝑠1/2 -2268.17964 -2267.65237 -2267.87622 2
2𝑠1/2 -389.41793 -388.89269 -389.12926 2
2𝑝1/2 -370.58133 -370.05522 -370.29479 2
2𝑝3/2 -332.01338 -331.48739 -331.72693 4
3𝑠1/2 -90.23276 -89.70956 -89.94727 2
3𝑝1/2 -81.94623 -81.42221 -81.66111 2
3𝑝3/2 -73.61802 -73.09396 -73.33291 4
3𝑑3/2 -59.71622 -59.19193 -59.43105 4
3𝑑5/2 -57.91495 -57.3906 -57.62973 6
4𝑠1/2 -19.19549 -18.67246 -18.90990 2
4𝑝1/2 -15.79954 -15.2751 -15.51395 2
4𝑝3/2 -13.89841 -13.37358 -13.61237 4
4𝑑3/2 -8.30299 -7.77796 -8.01695 4
4𝑑5/2 -7.94736 -7.42207 -7.66103 6
5𝑠1/2 -2.95995 -2.43951 -2.67321 2
5𝑝1/2 -1.94173 -1.41916 -1.65888 2
5𝑝3/2 -1.70393 -1.18279 -1.42121 4
4𝑓5/2 -1.06455 -0.53899 -0.77767 6
4𝑓7/2 -1.00619 -0.48019 -0.71891 8
5𝑑3/2 -0.30797 1.25E-01
5𝑑5/2 -0.30563 1.88E-01
6𝑠1/2 -0.19652 -0.41607 6.25E-02
6𝑝1/2 -0.30208 6.25E-02
6𝑝3/2 -0.28911 1.25E-01
5𝑓5/2 -0.05563 1.87E-01
5𝑓7/2 -0.05563 2.50E-01
6𝑑3/2 -0.30583 1.04E-10
6𝑑5/2 -0.30033 1.12E-10
7𝑠1/2 -0.31059 7.94E-12
7𝑝1/2 -0.24225 5.55E-12
7𝑝3/2 -0.22967 1.04E-11
8𝑠1/2 -0.15433 8.03E-14
6𝑓5/2 -0.05562 1.10E-06
6𝑓7/2 -0.05602 1.36E-10
7𝑑3/2 -0.30792 1.84E-11
7𝑑5/2 -0.30563 1.46E-11
7𝑓5/2 -0.05567 8.00E-08
7𝑓7/2 -0.04397 6.01E-09
8𝑝1/2 -0.12868 4.89E-15
8𝑝3/2 -0.12402 2.54E-14
8𝑑3/2 -0.08819 1.18E-20
8𝑑5/2 -0.08750 1.82E-21
8𝑓5/2 -0.02864 2.99E-06
8𝑓7/2 -0.02719 2.50E-07
𝐸tot -14067.07238 -14067.67726 -14067.44680
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Table C.2: Electronic factors for 𝛼: 411 nm, 𝛽: 436 nm, and 𝛾: 467 nm optical clock transitions in Yb+ ions (see Fig. 3-1) calculated for 172Yb+ (see
Chapter 15) with different correlation layers and core orbitals allowed to be excited while generating lists of CSFs via active set approach (Section 12.2).
First column (Excited core) shows the core orbitals (e.g., 4sp5sp for 4𝑠, 4𝑝, 5𝑠, and 5𝑝) from which electrons can be excited, and the number of
electrons that can be excited from each core shell (e.g., SD for single or double-electron excitation) (see Section 14.3.2). Second column (Correl.
layer) shows the correlation orbital layers with highest 𝑛 (e.g., 8spdf for all correlation 𝑠, 𝑝, 𝑑, and 𝑓 orbitals for 𝑛 ≤ 8) (see Section 14.3.1). The
third column (# CSFs) shows the total number of CSFs, for all 2𝑆1/2, 2𝐷5/2, 2𝐷3/2, and 2𝐹7/2 states for 𝛼, 𝛽, and 𝛾 transitions, generated with each
configuration of the core excitation and the correlation layer set. The fourth to sixth columns show the calculated transition frequencies 𝐸𝜒/ℎ for each
transition 𝜒. The remaining columns shows the one-transition electronic factors 𝑍𝜒 and two-electron factors 𝑧𝜅𝜒 = 𝑍𝜅/𝑍𝜒 and 𝑍𝜅𝜒 = (𝑧𝜅𝜒 − 𝑓𝜅𝜒)𝑍𝜒

(see Sections 8.1, 8.2, and Chapter 15): field-shift (FS) factors 𝐹 and 𝑓 in the first table columns 7–11 (continued on the next table),

Excited
core

Correl.
layer # CSFs

𝐸𝛼/ℎ 𝐸𝛽/ℎ 𝐸𝛾/ℎ 𝐹𝛼 𝐹𝛽 𝐹𝛾
𝑓𝛽𝛼 𝑓𝛾𝛼

[THz] [GHz/fm2]

None
6spdf 12762 751.48 731.99 1301.55 -12.3344 -12.3328 0.0518 0.99987 -0.00420
7spdf 37425 773.37 746.48 796.84 -12.8743 -12.8615 32.1858 0.99901 -2.50000
8spdf 75117 774.32 747.32 778.42 -12.9056 -12.8919 32.8859 0.99894 -2.54819

5spS
6spdf 34586 780.72 757.80 1328.49 -13.0054 -13.0867 11.7965 1.00625 -0.90705
7spdf 95135 807.51 770.05 622.91 -15.4922 -15.7371 37.8189 1.01581 -2.44116
8spdf 185782 809.29 771.30 573.01 -15.7483 -16.0107 40.1413 1.01666 -2.54893

4sp5spS
6spdf 72472 780.50 757.60 1326.72 -13.0825 -13.1645 11.8527 1.00627 -0.90600
7spdf 195807 806.45 769.00 628.44 -15.5936 -15.8214 39.2725 1.01461 -2.51850
8spdf 379328 808.11 770.13 580.12 -15.8519 -16.0936 41.8925 1.01525 -2.64274

5spSD
6spdf 37985 806.64 782.99 1349.40 -12.9639 -13.0300 12.0689 1.00510 -0.93096
7spdf 104176 825.36 790.46 691.30 -15.0075 -15.2143 35.7643 1.01378 -2.38310
8spdf 203195 826.43 791.15 646.97 -15.2238 -15.4452 38.1119 1.01454 -2.50344

Reference 729.47a 688.35a 642.12a 1.01141b -2.22131b

a Table A.3 b Table C.4
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Table C.2: (Continued) one-electron mass-shift (MS) factors 𝐾𝜒 from only normal MS (NMS; columns 1–3), specific MS (SMS; columns 4–6), and
total MS as the sum of the NMS and SMS (columns 7–9) (see Section 8.1.2), and two-electron factors 𝑘𝜅𝜒 and 𝐾𝜅𝜒 from 𝐾𝜒 for the total MSs in the
second table (continued on the next table),

Excited Correl.
NMS SMS Total

𝐾𝛼 𝐾𝛽 𝐾𝛾 𝐾𝛼 𝐾𝛽 𝐾𝛾 𝐾𝛼 𝐾𝛽 𝐾𝛾
𝑘𝛽𝛼 − 𝑓𝛽𝛼 𝑘𝛾𝛼 − 𝑓𝛾𝛼

𝐾𝛽𝛼 𝐾𝛾𝛼

[GHz · u] [GHz · u] [GHz · u] [GHz · u]

None
6spdf 1837.38 1766.83 -75884.39 -1948.88 -1792.03 66024.46 -111.50 -25.20 -9859.93 -7.74E-1 8.84E+1 86.286 -9860.4
7spdf 1846.90 1293.26 -57807.05 -2055.67 -1477.48 52165.79 -208.77 -184.22 -5641.26 -1.17E-1 2.95E+1 24.342 -6163.2
8spdf 1852.15 1299.19 -56475.92 -2063.26 -1485.61 51151.49 -211.11 -186.42 -5324.43 -1.16E-1 2.78E+1 24.466 -5862.4

5spS
6spdf 927.61 956.42 -82688.78 -1763.71 -1698.96 70949.58 -836.10 -742.54 -11739.20 -1.18E-1 1.49E+1 98.787 -12497.6
7spdf -286.98 -659.16 -43938.53 -1343.01 -931.56 45007.32 -1629.99 -1590.72 1068.79 -3.99E-2 1.79E+0 65.037 -2910.3
8spdf -377.07 -758.20 -40848.61 -1308.39 -894.65 43199.68 -1685.46 -1652.85 2351.07 -3.60E-2 1.15E+0 60.693 -1945.0

4sp5spS
6spdf 903.21 931.79 -82531.87 -1740.83 -1675.83 70852.77 -837.62 -744.04 -11679.10 -1.18E-1 1.48E+1 98.830 -12438.0
7spdf -303.74 -663.71 -42538.79 -1321.20 -916.35 44258.72 -1624.94 -1580.06 1719.93 -4.22E-2 1.46E+0 68.618 -2372.5
8spdf -389.45 -755.31 -39205.86 -1288.80 -883.22 42333.42 -1678.25 -1638.53 3127.56 -3.89E-2 7.79E-1 65.309 -1307.6

5spSD
6spdf 824.69 889.96 -83456.23 -1953.74 -1929.03 71425.37 -1129.05 -1039.07 -12030.86 -8.48E-2 1.16E+1 95.737 -13082.0
7spdf -148.93 -472.13 -46586.52 -1558.73 -1221.68 46627.31 -1707.66 -1693.81 40.79 -2.19E-2 2.36E+0 37.381 -4028.7
8spdf -208.54 -539.30 -43637.36 -1530.96 -1192.58 44914.19 -1739.50 -1731.88 1276.83 -1.89E-2 1.77E+0 32.918 -3077.9

Reference 120.21b 5738b

Table C.2: (Continued) fourth-moment-FS (FFS) 𝐺(4) and 𝑔(4) (columns 1–7) and quadratic-FS (QFS) 𝐺(2) and 𝑔(2) (columns 8–14) factors in the
third table (continued on the next table),

Exc Corr
𝐺

(4)
𝛼 𝐺

(4)
𝛽

𝐺
(4)
𝛾

𝑔
(4)
𝛽𝛼

− 𝑓𝛽𝛼 𝑔
(4)
𝛾𝛼 − 𝑓𝛾𝛼

𝐺
(4)
𝛽𝛼

𝐺
(4)
𝛾𝛼 𝐺

(2)
𝛼 𝐺

(2)
𝛽

𝐺
(2)
𝛾

𝑔
(2)
𝛽𝛼

− 𝑓𝛽𝛼 𝑔
(2)
𝛾𝛼 − 𝑓𝛾𝛼

𝐺
(2)
𝛽𝛼

𝐺
(2)
𝛾𝛼

[MHz/fm4] [kHz/fm4] [MHz/fm4] [kHz/fm4]

None
6spdf 9.2504 9.3261 -14.1022 8.31E-3 -1.52E+0 76.8999 -14063 33.1282 33.1243 -0.1393 5.53E-6 -6.48E-6 0.1831 -0.2146
7spdf 10.2504 10.3261 -13.1022 8.38E-3 1.22E+0 85.8912 12524 34.5770 34.5443 -86.4408 4.68E-5 5.43E-5 1.6166 1.8776
8spdf 11.2504 11.3261 -12.1022 7.79E-3 1.47E+0 87.6429 16566 34.6609 34.6257 -88.3209 4.89E-5 4.88E-5 1.6951 1.6931

5spS
6spdf 12.2504 12.3261 -11.1022 -7.19E-5 7.74E-4 -0.8803 9.4800 34.9284 35.1439 -31.6532 -8.02E-5 8.17E-4 -2.8004 28.5508
7spdf 14.5905 14.8178 -35.5814 -2.29E-4 2.49E-3 -3.3460 36.3083 41.5993 42.2468 -101.4221 -2.37E-4 3.16E-3 -9.8451 131.4761
8spdf 14.8314 15.0751 -37.7638 -2.31E-4 2.72E-3 -3.4225 40.3869 42.2861 42.9804 -107.6417 -2.49E-4 3.47E-3 -10.5236 146.9389

4sp5spS
6spdf 15.8314 16.0751 -36.7638 9.13E-3 -1.42E+0 144.47 -22421 35.1355 35.3529 -31.8024 -8.51E-5 8.64E-4 -2.9906 30.3620
7spdf 14.6861 14.8973 -36.9455 -2.28E-4 2.82E-3 -3.3427 41.4602 41.8721 42.4739 -105.3090 -2.32E-4 3.58E-3 -9.7336 149.8846
8spdf 14.9291 15.1532 -39.4075 -2.36E-4 3.10E-3 -3.5297 46.2766 42.5651 43.2036 -112.3254 -2.46E-4 3.96E-3 -10.4756 168.4334

5spSD
6spdf 15.9291 16.1532 -38.4075 8.97E-3 -1.48E+0 142.88 -23578 34.8172 34.9938 -32.3859 -3.28E-5 8.01E-4 -1.1432 27.8742
7spdf 14.1345 14.3268 -33.6467 -1.75E-4 2.63E-3 -2.4703 37.1580 40.2995 40.8474 -95.9079 -1.82E-4 3.30E-3 -7.3428 133.0539
8spdf 14.3381 14.5441 -35.8532 -1.76E-4 2.89E-3 -2.5192 41.4014 40.8799 41.4666 -102.1964 -1.97E-4 3.63E-3 -8.0653 148.1918
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Table C.2: (Continued) and new-boson factor 𝐷 and 𝑑 for massless bosons (columns 1–7) and for 𝑚𝜑 = 17MeV/c2 (columns 8–14) in consideration
for the X17 boson from Be/He anomaly [28, 29, 30, 31, 32, 33] in the fourth table. The 17MeV/c2 is also practically the maximum mass of a boson
that can be probed with Yb ions, considering the mass ∼30MeV/c2 that corresponds to the reduced Compton wavelength of the size of the Yb nuclei:
∼6 fm [19].

Exc Corr
𝑚𝜑 = 0 (massless) 𝑚𝜑 = 17MeV/c2 (X17 boson [28, 29, 30, 31, 32, 33])

𝐷𝛼 𝐷𝛽 𝐷𝛾
𝑑𝛽𝛼 − 𝑓𝛽𝛼 𝑑𝛾𝛼 − 𝑓𝛾𝛼

𝐷𝛽𝛼 𝐷𝛾𝛼 𝐷𝛼 𝐷𝛽 𝐷𝛾
𝑑𝛽𝛼 − 𝑓𝛽𝛼 𝑑𝛾𝛼 − 𝑓𝛾𝛼

𝐷𝛽𝛼 𝐷𝛾𝛼

[THz] [THz] [THz] [GHz]

None
6spdf 72661 77638 -1003428 6.86E-2 -1.38E+1 4986.53 -1003123 -13.875 -13.873 0.058 3.13E-7 4.85E-6 -0.0043 -0.0674
7spdf 72504 74307 -925602 2.59E-2 -1.03E+1 1874.90 -744342 -14.483 -14.468 36.206 -3.44E-5 3.84E-6 0.4979 -0.0556
8spdf 72306 74185 -913476 2.71E-2 -1.01E+1 1956.58 -729228 -14.518 -14.502 36.994 -3.74E-5 2.11E-6 0.5433 -0.0306

5spS
6spdf 59747 65885 -1182549 9.65E-2 -1.89E+1 5764.31 -1128356 -14.630 -14.722 13.279 5.70E-5 -6.29E-4 -0.8338 9.1962
7spdf 45341 49531 -770842 7.66E-2 -1.46E+1 3473.99 -660158 -17.431 -17.709 42.590 1.66E-4 -2.23E-3 -2.8996 38.8049
8spdf 44201 48401 -739862 7.84E-2 -1.42E+1 3464.12 -627197 -17.719 -18.017 45.208 1.86E-4 -2.45E-3 -3.3008 43.4882

4sp5spS
6spdf 59551 65689 -1181679 9.68E-2 -1.89E+1 5765.52 -1127726 -14.717 -14.810 13.343 6.37E-5 -6.65E-4 -0.9369 9.7899
7spdf 45251 49500 -762759 7.93E-2 -1.43E+1 3588.21 -648795 -17.545 -17.804 44.230 1.67E-4 -2.48E-3 -2.9347 43.5019
8spdf 44145 48419 -730405 8.16E-2 -1.39E+1 3601.49 -613742 -17.836 -18.111 47.184 1.76E-4 -2.74E-3 -3.1435 48.8349

5spSD
6spdf 56813 63434 -1193345 1.11E-1 -2.01E+1 6331.59 -1140454 -14.583 -14.658 13.586 3.00E-5 -6.19E-4 -0.4376 9.0336
7spdf 44700 49059 -803034 8.37E-2 -1.56E+1 3743.43 -696511 -16.885 -17.119 40.277 1.30E-4 -2.35E-3 -2.2006 39.7110
8spdf 44005 48361 -773352 8.45E-2 -1.51E+1 3716.52 -663188 -17.128 -17.380 42.923 1.45E-4 -2.57E-3 -2.4767 43.9984
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Table C.3: Calculated values of single-transition electronic factors 𝑍𝜒 (𝑍 ∈
{𝐹,𝐾,𝐺(4), 𝐺(2), 𝐷}) (see Sections 8.1, 8.2, and 15) for 𝜒 = 𝛼: 2𝑆1/2 → 2𝐷5/2 (411 nm),
𝛽: 2𝑆1/2 → 2𝐷3/2 (436 nm), and 𝛾: 2𝑆1/2 → 2𝐹7/2 (467 nm) transitions in Yb+ ions (see
Fig. 3-1); and 𝛿: 1𝑆0 → 3𝑃0 (578 nm), and 𝜖: 1𝑆0 → 1𝐷2 (361 nm) transitions in neu-
tral Yb atoms. 𝜔𝜒/(2𝜋) are transition frequencies. Calculated values for each transition
are obtained from CI method using GRASP2018 [8, 24] (see Section 13) or ambit [8, 23].
The units of 𝜔𝜒/(2𝜋), 𝐹𝜒, 𝐾𝜒, 𝐺(4)

𝜒 , 𝐺(2)
𝜒 , and 𝐷𝜒 are THz, GHz/fm2, GHz·u, MHz/fm4,

MHz/fm4, and 103 THz, respectively.

GRASP ambit Ref. [9] Exp.
𝜔𝛼/(2𝜋) 808.11 707.00 729.47a b

𝜔𝛽/(2𝜋) 770.13 679.86 688.35a b

𝜔𝛾/(2𝜋) 580.12 1051.44 642.12a b

𝜔𝛿/(2𝜋) 458.36 522.78 518.30a c

𝜔𝜖/(2𝜋) 819.47 829.76a d

𝐹𝛼 -15.852 -14.715 -17.604
𝐹𝛽 -16.094 -14.968 -18.003
𝐹𝛾 41.892 36.218
𝐹𝛿 -9.1508 -9.719
𝐹𝜖 -13.528 -14.437
𝐾𝛼 -1678.2 -752
𝐾𝛽 -1638.5 -661
𝐾𝛾 3127.6 12001
𝐾𝛿

𝐾𝜖

𝐺
(4)
𝛼 14.934 13.08

𝐺
(4)
𝛽 15.159 13.37

𝐺
(4)
𝛾 -39.422

𝐺
(4)
𝛿 8.951

𝐺
(4)
𝜖 10.42

𝐺
(2)
𝛼 42.565 81.908 28.53

𝐺
(2)
𝛽 43.204 83.247 28.53

𝐺
(2)
𝛾 -112.33 -201.12

𝐺
(2)
𝛿 54.277

𝐺
(2)
𝜖 75.322 23.34

𝐷𝛼
e 44.145 43.158 41.235

𝐷𝛽
e 48.419 48.634 48.795

𝐷𝛾
e -730.4 -352.38

𝐷𝛿
e -55.729 -42.855

𝐷𝜖
e 5.6683 4.6238

a The exact value varies by the few-GHz isotope shifts; see Table A.2.
b Table A.3 c Ref. [264] d Ref. [21] e At 𝑚𝜑 = 1 eV. Values over different 𝑚𝜑’s are
shown in Fig. C-1
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Figure C-1: Single-transition factors 𝐷𝜒 vs new-boson mass 𝑚𝜑 for five transitions
𝜒 coded with different colors (see legend) derived from atomic structure calcula-
tions using CI method. Solid, dashed, and dash-dotted lines are for ambit [8, 23],
GRASP2018 [8, 24] (see Section 13), and Ref. [9], respectively.
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Table C.4: Calculated and experimental values of two-transition electronic factors 𝑓𝜅𝜒 and 𝑍𝜅𝜒

(𝑍 ∈ {𝐾,𝐺(4), 𝐺(2), 𝐷}) (see Sections 8.1 and 8.2) for 𝜒, 𝜅 ∈ {𝛼, 𝛽, 𝛾, 𝛿, 𝜖}. The values are calculated

from the single-transition values in Table C.3. 𝑓𝜒𝜅 is dimensionless. The units of 𝐾𝜅𝜒, 𝐺(4)
𝜅𝜒 , 𝐺(2)

𝜅𝜒 ,

and 𝐷𝜅𝜒 are GHz·u, kHz/fm4, kHz/fm4, and 103 THz, respectively. The last two columns (Fit) are

for data from linear fit of corresponding 2D King plots 𝜈𝐴𝐴′
𝜅 = 𝑓𝜅𝜒 +𝐾𝜅𝜒𝜇

𝐴𝐴′ [Eq. (8.15)] with (X

corr.) and without (No X corr.) uncertainties in and correlations between independent variables

(see Sections 9.3 and 11.3). 𝜒2
𝜅𝜒 and 𝑠𝜅𝜒 are �̂�2 and the significance of linear fit, respectively (see

Sections 9.2 and 9.3).

GRASP ambit Ref. [9]
Fit

X corr. No X corr.

𝑓𝛽𝛼 1.0152 1.0172 1.0227 1.01141025(86) 1.01141025(86)

𝑓𝛾𝛼 -2.6427 -2.4613 -2.2213082(14) -2.2213084(13)

𝑓𝛿𝛼 0.57727 0.66048 0.61172988(34) 0.61172995(35)

𝑓𝜖𝛼 0.91933 0.8201 0.81761175(80) 0.81761175(80)

𝑓𝛾𝛽 -2.603 -2.4197 -2.1962536(14) -2.1962537(13)

𝑓𝛿𝛽 0.5686 0.64932 0.60482313(37) 0.60482322(37)

𝑓𝜖𝛽 0.90379 0.80192 0.80838924(76) 0.80838924(76)

𝑓𝛿𝛾 -0.21844 -0.26835 -0.275391225(69) -0.275391430(78)

𝑓𝜖𝛾 -0.37352 -0.36807660(27) -0.36807657(28)

𝑓𝜖𝛿 1.3919 1.33656619(92) 1.33656619(92)

𝐾𝛽𝛼 65.306 103.92 120.208(23) 120.208(23)

𝐾𝛾𝛼 -1307.6 10150 5737.593(39) 5737.595(35)

𝐾𝛿𝛼 363.1350(94) 363.1332(97)

𝐾𝜖𝛼 1.811(21) 1.811(21)

𝐾𝛾𝛽 -1137.6 10402 6001.679(38) 6001.683(35)

𝐾𝛿𝛽 290.5263(97) 290.5242(99)

𝐾𝜖𝛽 -95.402(20) -95.402(20)

𝐾𝛿𝛾 1943.2126(37) 1943.2019(43)

𝐾𝜖𝛾 2113.679(14) 2113.681(14)

𝐾𝜖𝛿 -483.666(15) -483.666(15)

Continued on the next page
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Table C.4 (continued)

GRASP ambit Ref. [9]
Fit

X Corr. No X corr.

𝐺
(4)
𝛽𝛼 -3.5056 -6.4622

𝐺
(4)
𝛾𝛼 45.789

𝐺
(4)
𝛿𝛼 329.81

𝐺
(4)
𝜖𝛼 -306.88

𝐺
(4)
𝛾𝛽 36.664

𝐺
(4)
𝛿𝛽 331.8

𝐺
(4)
𝜖𝛽 -301.7

𝐺
(4)
𝛿𝛾 339.81

𝐺
(4)
𝜖𝛾

𝐺
(4)
𝜖𝛿

𝐺
(2)
𝛽𝛼 -10.442 -68.645 -646.64

𝐺
(2)
𝛾𝛼 162.69 471.33

𝐺
(2)
𝛿𝛼 181.24

𝐺
(2)
𝜖𝛼 22.9 -57.388

𝐺
(2)
𝛾𝛽 135.51 305.24

𝐺
(2)
𝛿𝛽 225.81

𝐺
(2)
𝜖𝛽 84.94 461.17

𝐺
(2)
𝛿𝛾 307.72

𝐺
(2)
𝜖𝛾 198.95

𝐺
(2)
𝜖𝛿 -229.38

𝐷𝛽𝛼
a 3.6016 4.7337 6.6257

𝐷𝛾𝛼
a -613.74 -246.15

𝐷𝛿𝛼
a -81.212 -71.359

𝐷𝜖𝛼
a -34.008 -29.464

𝐷𝛾𝛽
a -604.37 -234.7

𝐷𝛿𝛽
a -83.26 -74.433

𝐷𝜖𝛽
a -38.286 -34.82

𝐷𝛿𝛾
a -215.28 -137.41

𝐷𝜖𝛾
a -125.95

𝐷𝜖𝛿
a 65.321

Continued on the next page
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Table C.4 (continued)

GRASP ambit Ref. [9]
Fit

X Corr. No X corr.

𝜒2
𝛽𝛼 11.792 11.738

𝜒2
𝛾𝛼 1755.2 2057

𝜒2
𝛿𝛼 10504 10010

𝜒2
𝜖𝛼 74.581 74.575

𝜒2
𝛾𝛽 2220.6 2546

𝜒2
𝛿𝛽 16555 15916

𝜒2
𝜖𝛽 137.48 137.91

𝜒2
𝛿𝛾 57854 43986

𝜒2
𝜖𝛾 2040.2 1920.7

𝜒2
𝜖𝛿 4511.9 4512

𝑠𝛽𝛼 2.99𝜎 2.99𝜎

𝑠𝛾𝛼 41.8𝜎 45.3𝜎

𝑠𝛿𝛼 102𝜎 100𝜎

𝑠𝜖𝛼 8.36𝜎 8.36𝜎

𝑠𝛾𝛽 47𝜎 50.4𝜎

𝑠𝛿𝛽 129𝜎 126𝜎

𝑠𝜖𝛽 11.5𝜎 11.5𝜎

𝑠𝛿𝛾 241𝜎 210𝜎

𝑠𝜖𝛾 45.1𝜎 43.7𝜎

𝑠𝜖𝛿 67.1𝜎 67.1𝜎

a At 𝑚𝜑 = 1 eV. Values over different 𝑚𝜑’s are shown in Fig. C-2
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Figure C-2: Two-transition factors 𝐷𝜅𝜒 vs new-boson mass 𝑚𝜑 for variable transition pairs
(𝜒,𝜅) coded with different colors (see legend) calculated using 𝐷𝜒 and 𝐷𝜅 in Fig. C-1. Solid,
dashed, and dash-dotted lines are for ambit [8, 23], GRASP2018 [8, 24] (see Section 13), and
Ref. [9], respectively (some of dashed and dash-dotted lines are missing as the corresponding
𝐷𝜅𝜒 are not available; see Table C.4).
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Table C.5: Calculated and experimental values of three-transition electronic factors 𝑓𝜂𝜅𝜒 and 𝑍𝜂𝜅𝜒

(𝑍 ∈ {𝐾,𝐺(2), 𝐷}) (see Section 8.4) for 𝜒, 𝜅, 𝜂 ∈ {𝛼, 𝛽, 𝛾, 𝛿, 𝜖}. The values are calculated from the

two-transition values in Table C.4. 𝑓𝜂𝜅𝜒 is dimensionless. The units of 𝐾𝜂𝜅𝜒, 𝐺
(2)
𝜂𝜅𝜒, 𝐷𝜂𝜅𝜒, and

𝜐𝑛𝑒𝐷𝜒𝜅 are GHz·u, kHz/fm4, kHz/fm4, 103 THz, and kHz, respectively. The last three columns

(Fit) are for data from fit of corresponding 3D King plots 𝜈
𝐴𝐴′

𝜂 = 𝐾𝜂𝜅𝜒 + 𝑓𝜂𝜅𝜒𝜈
𝐴𝐴′

𝜒 + 𝑓𝜂𝜒𝜅𝜈
𝐴𝐴′

𝜅

(Linear), and 𝐺
(2)
𝜂𝜅𝜒[𝛿⟨𝑟2⟩2]

𝐴𝐴′

(QFS) or 𝜐𝑛𝑒𝐷𝜂𝜅𝜒𝑎
𝐴𝐴′

(New boson) terms in addition to the relation

(see Sections 8.4, 11.1.2, and 11.1.3). 𝜒2
𝜂𝜅𝜒 and 𝑠𝜂𝜅𝜒 are �̂�2 and the significance of fit, respectively

(see Sections 9.2 and 9.3).

GRASP ambit Ref. [9] Fit

Cal. Exp. Cal. Exp. Cal. Exp. Linear QFS New boson

𝑓𝛽𝛾𝛼 0.81292 0.978(26) 0.998(27) 1.052(36)

𝑓𝛽𝛿𝛼 1.0214 1.023(13) 1.018(13) 0.993(16)

𝑓𝛽𝜖𝛼 1.0054 1.14(10) 1.058(99) 0.86(12)

𝑓𝛿𝛾𝛼 19.612 1.867(41) 1.877(41) 1.965(51)

𝑓𝜖𝛾𝛼 1.049(30) 1.046(33) 1.040(45)

𝑓𝜖𝛿𝛼 0.701(13) 0.707(14) 0.717(19)

𝑓𝛿𝛾𝛽 24.126 1.885(35) 1.880(37) 1.868(49)

𝑓𝜖𝛾𝛽 1.090(28) 1.047(31) 0.989(43)

𝑓𝜖𝛿𝛽 0.673(11) 0.695(13) 0.722(19)

𝑓𝜖𝛿𝛾 -0.2082(32) -0.2146(38) -0.2223(54)

𝑓𝛽𝛼𝛾 -0.076559 -0.015(12) -0.006(12) 0.018(16)

𝑓𝛽𝛼𝛿 -0.010629 -0.019(21) -0.010(21) 0.030(26)

𝑓𝛽𝛼𝜖 0.021058 -0.15(12) -0.06(12) 0.18(15)

𝑓𝛿𝛼𝛾 7.2027 0.565(18) 0.570(19) 0.609(23)

𝑓𝜖𝛼𝛾 0.104(14) 0.103(15) 0.100(20)

𝑓𝜖𝛼𝛿 0.191(21) 0.180(23) 0.165(31)

𝑓𝛿𝛽𝛾 9.0498 0.583(16) 0.580(17) 0.575(22)

𝑓𝜖𝛽𝛾 0.128(13) 0.109(14) 0.082(20)

𝑓𝜖𝛽𝛿 0.223(19) 0.187(22) 0.143(32)

𝑓𝜖𝛾𝛿 0.580(12) 0.557(14) 0.529(20)

Continued on the next page
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Table C.5 (continued)

GRASP ambit Ref. [9] Fit

Cal. Exp. Cal. Exp. Cal. Exp. Linear QFS New boson

𝐾𝛽𝛾𝛼 -34.804 89(21) -80(160) 206(66) 154(69) 17(91)

𝐾𝛽𝛿𝛼 126.9(7.7) 124.2(7.8) 111.1(9.0)

𝐾𝛽𝜖𝛼 120.48(23) 120.53(21) 121.79(43)

𝐾𝛿𝛾𝛼 -2880(110) -2900(110) -3130(130)

𝐾𝜖𝛾𝛼 -596(79) -587(85) -570(120)

𝐾𝜖𝛿𝛼 -67.6(7.6) -63.8(8.3) -59(11)

𝐾𝛿𝛾𝛽 -3207(97) -3190(100) -3160(130)

𝐾𝜖𝛾𝛽 -865(77) -749(86) -590(120)

𝐾𝜖𝛿𝛽 -160.3(5.5) -150.1(6.4) -138.8(8.8)

𝐾𝜖𝛿𝛾 986(23) 1031(27) 1083(38)

𝐺
(2)
𝛽𝛾𝛼 2.0139 -13.4(2.6) -77.3(7.5) 57(18)

𝐺
(2)
𝛽𝛿𝛼 -74.1(4.6) 58(18)

𝐺
(2)
𝛽𝜖𝛼 -72.8(3.4) -645.43 -636.1(8.6) 57(18)

𝐺
(2)
𝛿𝛾𝛼 -106(11) 94(24)

𝐺
(2)
𝜖𝛾𝛼 -24.4(9.6) -6(22)

𝐺
(2)
𝜖𝛿𝛼 -6.9(5.6) -23(19)

𝐺
(2)
𝛿𝛾𝛽 50.2(6.8) -13(27)

𝐺
(2)
𝜖𝛾𝛽 59.9(6.0) -65(22)

𝐺
(2)
𝜖𝛿𝛽 52.7(7.2) -63(20)

𝐺
(2)
𝜖𝛿𝛾 36.1(6.1) -58(18)

𝐷𝛽𝛾𝛼
a -43.386 14.8(9.8) 9.2(3.9)

𝐷𝛽𝛿𝛼
a 2.7384 6.0(2.1) 6.9(1.8)

𝐷𝛽𝜖𝛼
a 11.0(5.1) 7.2462 12.0(4.4)

𝐷𝛿𝛾𝛼
a 4339.4 293(14) 78.7(5.6)

𝐷𝜖𝛾𝛼
a -9.3(5.0)

𝐷𝜖𝛿𝛼
a -22.3(2.2)

𝐷𝛿𝛾𝛽
a 5386.1 264(13) 60.6(5.2)

𝐷𝜖𝛾𝛽
a -19.0(4.6)

𝐷𝜖𝛿𝛽
a -27.7(2.4)

𝐷𝜖𝛿𝛾
a -53.2(2.7)

Continued on the next page
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Table C.5 (continued)

GRASP ambit Ref. [9] Fit

Cal. Exp. Cal. Exp. Cal. Exp. Linear QFS New boson

𝜐𝑛𝑒𝐷𝛽𝛾𝛼 54(17)

𝜐𝑛𝑒𝐷𝛽𝛿𝛼 51(15)

𝜐𝑛𝑒𝐷𝛽𝜖𝛼 55(17)

𝜐𝑛𝑒𝐷𝛿𝛾𝛼 88(24)

𝜐𝑛𝑒𝐷𝜖𝛾𝛼 -5(21)

𝜐𝑛𝑒𝐷𝜖𝛿𝛼 -20(17)

𝜐𝑛𝑒𝐷𝛿𝛾𝛽 -12(23)

𝜐𝑛𝑒𝐷𝜖𝛾𝛽 -58(19)

𝜐𝑛𝑒𝐷𝜖𝛿𝛽 -57(18)

𝜐𝑛𝑒𝐷𝜖𝛿𝛾 -52(16)

𝜒2
𝛽𝛾𝛼 10.532

𝜒2
𝛽𝛿𝛼 10.9

𝜒2
𝛽𝜖𝛼 8.724

𝜒2
𝛿𝛾𝛼 15.221

𝜒2
𝜖𝛾𝛼 0.065554

𝜒2
𝜖𝛿𝛼 1.4067

𝜒2
𝛿𝛾𝛽 0.23876

𝜒2
𝜖𝛾𝛽 8.3928

𝜒2
𝜖𝛿𝛽 10.248

𝜒2
𝜖𝛿𝛾 10.481

𝑠𝛽𝛾𝛼 3.2454𝜎

𝑠𝛽𝛿𝛼 3.3015𝜎

𝑠𝛽𝜖𝛼 2.9536𝜎

𝑠𝛿𝛾𝛼 3.9014𝜎

𝑠𝜖𝛾𝛼 0.25604𝜎

𝑠𝜖𝛿𝛼 1.1861𝜎

𝑠𝛿𝛾𝛽 0.48863𝜎

𝑠𝜖𝛾𝛽 2.897𝜎

𝑠𝜖𝛿𝛽 3.2012𝜎

𝑠𝜖𝛿𝛾 3.2375𝜎

a At 𝑚𝜑 = 1 eV. Values over different 𝑚𝜑’s are shown in Fig. C-3

388



(a) (𝛼, 𝛾, 𝛽) transitions
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(b) (𝛼, 𝛿, 𝛽) transitions
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(c) (𝛼, 𝜖, 𝛽) transitions
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(d) (𝛼, 𝛾, 𝛿) transitions
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Figure C-3: Calculated 𝐷𝜂𝜅𝜒 vs new-boson mass 𝑚𝜑 for all different choices of three tran-
sitions (𝜒, 𝜅, 𝜂) out of five available transitions 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖, each corresponding to one
of the subfigures (a – j). Solid lines correspond to the 𝐷𝜂𝜅𝜒 obtained from 𝐷𝜅𝜒 and 𝐷𝜂𝜒 in
Fig. C-2, and 𝑓𝜂𝜒𝜅 = 𝐺

(4)
𝜂𝜒/𝐺

(4)
𝜅𝜒 ratio from the linear fit in 3D King plots (see Table C.5).

(Figures and caption continue on the next page.)
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(e) (𝛼, 𝛾, 𝜖) transitions

102 104 106 108

m  (eV)

-1015

-1010

102 104 106 108

1010

1015

D
 (

H
z)

(f) (𝛼, 𝛿, 𝜖) transitions
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(g) (𝛽, 𝛾, 𝛿) transitions
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(h) (𝛽, 𝛾, 𝜖) transitions
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Figure C-3: (Continued) Shaded regions for 𝐷𝜂𝜅𝜒 indicate 95% confidence intervals that
arise from fitted 𝑓𝜂𝜒𝜅’s uncertainty. Dashed lines show 𝐷𝜂𝜅𝜒 calculated purely from ASCs
(i.e., using calculated 𝑓𝜂𝜒𝜅). Blue, red, and green colors correspond to ASCs performed using
GRASP2018 [8, 24] (see Section 13), ambit [8, 23], and in Ref. [9], respectively. (Figures
continued on the next page.)
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(i) (𝛽, 𝛿, 𝜖) transitions
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(j) (𝛾, 𝛿, 𝜖) transitions
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Figure C-3: (Continued)

391



Appendix D

Selection rules for Yb+ clock

transitions

The polarization and propagation direction of the probe beam that maximize the

Rabi frequency 𝜔𝑅 of each Zeeman transition in the Yb+ ions’ optical clock transi-

tions (see Fig. 3-1) are presented in this appendix.

For 𝛼: 411 nm and 𝛽: 436 nm transitions , the results are summarized in Figs. D-1

and D-2, respectively. Only the Zeeman shifts of the transitions are shown in Fig. D-

3 for 𝛾: 467 nm transitions, however; the selection rules and transition amplitudes

for the 𝛾 transition can be found in Ref. [265].

A note on the theory of electric multipole transitions as well as the full derivation

of the selection rules and relative transition rates of the Zeeman transitions for the 𝛼

transition follow at the end of this appendix, in which some of the errors are corrected

by Eugene Knyazev, a research team member (with possible further errors).
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Figure D-1: The polarization �̂� and propagation direction 𝑘 of the probe beam, with respect
to the quantization axis along magnetic field B, that maximize the Rabi frequency 𝜔𝑅 for each
Zeeman transition, and the relative magnitudes of the maximum squared Rabi frequencies
𝜔2
𝑅 for 𝛼: 411 nm transition in Yb+ ions [see also Fig. 5-2(a)]. Each peak is labeled by the

change in magnetic quantum number Δ𝑚 = 𝑚𝐷 −𝑚𝑆 from the 2𝑆1/2 ground state to 2𝐷5/2

excited state, and the 𝑚𝑆 of the ground Zeeman level that the transitions starts from [e.g.,
(Δ𝑚, sgn(𝑚𝑆)) = (+1,+) or (−2,−)]. The position of each peak in the 𝑥 axis shows the
𝑔 factor of the transition (i.e., Zeeman shift from the zero-field transition frequency in the
unit of 𝜇𝐵𝐵). Some errors were corrected by Eugene Knyazev.
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Figure D-2: The same illustration to Fig. D-1 for 𝛽: 436 nm transition in Yb+ ions [see also
Fig. 5-2(b)] derived by Eugene Knyazev.

Figure D-3: The shifts of Zeeman transitions in 𝛾: 467 nm transition in Yb+ ions in the unit
of 𝜇𝐵𝐵 [see also Fig. 5-2(c)]. The Zeeman transitions shown as blue and red lines start from
𝑚𝑆 = −1

2
and 1

2
ground-state Zeeman levels, respectively.

394



















Appendix E

Reprint of “Evidence for Nonlinear

Isotope Shift in Yb+ Search for New

Boson”

This Appendix contains a reprint of Ref. [5]: I. Counts*, J. Hur*, D. P. L. Aude

Craik, H. Jeon, C. Leung, J. C. Berengut, A. Geddes, A. Kawasaki, W. Jhe, and V.

Vuletić, Evidence for nonlinear isotope shift in Yb+ search for new boson, Phys. Rev.

Lett. 125, 123002 (2020) (*equal contributions). © American Physical Society.
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We measure isotope shifts for five Ybþ isotopes with zero nuclear spin on two narrow optical quadrupole
transitions 2S1=2 → 2D3=2, 2S1=2 → 2D5=2 with an accuracy of ∼300 Hz. The corresponding King plot

shows a 3 × 10−7 deviation from linearity at the 3σ uncertainty level. Such a nonlinearity can indicate
physics beyond the Standard Model (SM) in the form of a new bosonic force carrier, or arise from higher-
order nuclear effects within the SM. We identify the quadratic field shift as a possible nuclear contributor to
the nonlinearity at the observed scale, and show how the nonlinearity pattern can be used in future, more
accurate measurements to separate a new-boson signal from nuclear effects.

DOI: 10.1103/PhysRevLett.125.123002

The Standard Model (SM) of particle physics describes
virtually all measurements of elementary particles exqui-
sitely well, and yet various indirect evidence points to
physics beyond the SM. This evidence includes the pre-
ponderance of dark matter of unknown composition in our
Universe, astronomically observed with several different
methodologies such as the rotation curves of galaxies [1], the
motion of colliding galaxy clusters [2], gravitational lensing
[3], and the power spectrum of the cosmic microwave
background [4]. Physics beyond the SM is also being
probed in various laboratory experiments, such as high-
energy collisions [5], searches for weakly interacting mas-
sive particles [5], axions, and axionlike particles [6],
precision measurements of the electric dipole moments of
elementary particles [7], and other precision tests [8].
Dark-matter candidates can be characterized by their

mass, spin, and interactions. In the intermediate mass range
from ∼100 eV=c2 to ∼100 MeV=c2, a new method has
been proposed to search for a dark-matter boson ϕ that
couples to quarks and leptons [9,10]. The virtual exchange
ofϕ between neutrons and electrons in an atomwould result
in a Yukawa-like potential in addition to the Coulomb
potential of the nucleus (see Fig. 1). The corresponding
shift in energy levels and transition frequencies is too small
to be detected by directly comparing spectroscopic data to
(much less accurate) atomic-structure calculations, but
could potentially be detected through precision isotope-
shift measurements [11–14] that allow one to sidestep
electronic-structure calculations. In particular, the scaled
isotope shifts on two different transitions exhibit a linear
relationship (King plot [15]), and Refs. [9,10] argue that a

deviation from linearity can indicate a new forcemediatorϕ.
Such studies are particularly timely as recent experiments
analyzing nuclear decay in 8Be and 4He have observed a 7σ
deviation from the SM [16–18] that could be potentially
explained by a new boson with a mass of 17 MeV=c2 (X17
boson) [19–22]. According to Ref. [10], measurements of
optical transitions with a resolution of 1 Hz in select atomic
systems could probe this scenario. However, higher-order
effects within the SM can result in nonlinearities that limit
the sensitivity to new physics [23–26].
In this Letter, we report a precision measurement of

the isotope shift for five isotopes of Ybþ ions with zero

FIG. 1. New intra-atomic force between electron (e−) and
neutron (n) mediated by the virtual exchange of a hypothetical
new boson ϕ. The coupling results in a Yukawa-like potential that
modifies the atomic energy levels and can be probed with
isotope-shift spectroscopy. We perform precision measurements
of the long-lived states 2D3=2, 2D5=2 on individual trapped
Ybþ ions.

PHYSICAL REVIEW LETTERS 125, 123002 (2020)
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nuclear spin on two narrow optical quadrupole transitions
(2S1=2 → 2D3=2; 2D5=2) with an accuracy of ∼300 Hz.
Displaying the data in a King plot [15], we observe a
deviation from linearity at the 10−7 level, corresponding to 3
standard deviations σ. With four independent isotope-shift
data points available, we further introduce a novel para-
metrization of the nonlinearity pattern that can be used to
distinguish between nonlinearities of the same magnitude
but different physical origin. At the current level of pre-
cision, the observed nonlinearity pattern is consistent with
both a newboson and the quadratic field shift (QFS) [23] that
we identify as the leading source of nonlinearity within the
SM by means of precision electronic-structure calculations.
In the future, more accurate measurements on the present
and other optical transitions in Yb and Ybþ [27–29] can
discriminate between effects within and outside the SM.
Our measurements are performed with individual jYbþ

ions (j ∈ f168; 170; 172; 174; 176g) trapped in a linear Paul
trap and Doppler cooled on the 6s 2S1=2 → 6p 2P1=2 tran-
sition to typically 500 μK [65].We perform optical precision
spectroscopy on the transitions to two long-lived excited
states (with electron configurations ½Xe�4f146s 2S1=2 →
½Xe�4f145d 2D3=2; 2D5=2) using light at the wavelengths
411 and 436 nm, respectively. The probe light is generated
by a frequency-doubled Ti:Sapphire laser that is frequency
stabilized to anultralow-thermal-expansion cavity, achieving
a short-term stability of ∼200 Hz. Typically, 1 mW of
411-nm light (0.2 mW of 436-nm light) is focused to a
waist ofw0 ¼ 60 μm (w0 ¼ 15 μm) at the location of the ion
(see the Supplemental Material [33] for details).
Coherent optical Ramsey spectroscopy is carried out

with two ðπ=2Þ pulses of 411- or 436-nm light, lasting 5 μs
each, separated by 10 μs. This is followed by readout of the
state, performed using an electron-shelving scheme [66]

(see the Supplemental Material [33]). A small magnetic
field of typically ∼1.1 G is applied to separate the different
Zeeman components of the S → D transition. Frequency
scans are taken over the central Ramsey fringes of the two
symmetric Zeeman components with the lowest magnetic-
field sensitivity to find the center frequency of the transition
(see the Supplemental Material [33]).
The measurement on one isotope is averaged typically

for 30 minutes before we switch to a next-neighboring
isotope by adjusting various loading, cooling, and
repumper laser frequencies. We typically perform three
interleaved measurements of each isotope to determine an
isotope shift, allowing us to reach a precision on the order
of ∼300 Hz (see Table I and Fig. 2), limited mainly by
drifts in the frequency stabilization of the probe laser to the
ultrastable cavity (see the Supplemental Material [33]).
The frequency shift ναji between isotope jYb and iYb on

an optical transition α can be written as a sum of terms that
factorize into a nuclear part (with subscript ji) and an
electronic part (with subscript α) [9,15,24],

ναji ¼ Fαδhr2iji þ Kαμji þ Gα½δhr2i2�ji þ υneDαaji: ð1Þ

Here δhr2iji ≡ hr2ij − hr2ii is the difference in squared
charge radii r between isotope j and i, μji ≡ 1=mj − 1=mi

is the inverse-mass difference, ½δhr2i2�ji ≡ ðδhr2ijlÞ2 −
ðδhr2iilÞ2 for some fixed isotope l (the choice of l is
irrelevant to the nonlinearity) (see the Supplemental
Material [33]), and aji ¼ j − i is the difference in neutron
number. The quantity υne ¼ ð−1Þsþ1ynye=ð4πℏcÞ is the
product of the coupling factors of the new boson to the
neutron yn and electron ye, creating a Yukawa-like potential
given by VneðrÞ ¼ ℏcυne expð−r=ƛcÞ=r for a boson with

TABLE I. Inverse-mass differences μji and measured isotope shifts νji between pairs of neighboring even Ybþ isotopes. μji is
calculated from the mass of Ybþ ions with the ionization energy set to 6.254 eV [30–32]. The nuclear size difference δhr2i is deduced
from νji using the calculated parameters FCI

α ¼ −15.852 GHz=fm2, FCI
β ¼ −16.094 GHz=fm2, FMBPT

α ¼ −16.570 GHz=fm2,
FMBPT
β ¼ −16.771 GHz=fm2, KCI

α ¼ −1678.3 GHz · u, and KCI
β ¼ −1638.5 GHz · u (see the Supplemental Material [33]). The

uncertainties given here and throughout the paper for ναji and νβji indicate 1σ statistical uncertainties; the estimated systematic
uncertainties on these quantities are < 20% of the statistical uncertainties (see the Supplemental Material [33]). The (170,174) pair is
directly measured as a cross-check [the measurements (170,174) and (170,172), (172,174) agree within 2σ] and to improve precision
(see the Supplemental Material [33]). In the calculations of δhr2iji from the measured isotope shifts, the average of the values for α and β
is given (the difference between transitions is less than 0.2%) (see the Supplemental Material [33]), and the values ofKα andKβ from the
CI calculations are used for both CI and MBPT. For the data from Ref. [64] (last column), only the statistical errors are presented in the
parentheses, while the systematic errors from the calculation of the electronic factors are much larger.

ναji (kHz) νβji (kHz)
δhr2iji (fm2)

Isotope pair ðj; iÞ μji ð10−6 u−1Þ α∶2S1=2 → 2D5=2 β∶2S1=2 → 2D3=2 CI MBPT Reference [64]

(168, 170) 70.113 698(46) 2 179 098.93(21) 2 212 391.85(37) −0.156 −0.149 −0.1561ð3Þ
(170, 172) 68.506 890 50(63) 2 044 854.78(34) 2 076 421.58(39) −0.146 −0.140 −0.1479ð1Þ
(172, 174) 66.958 651 95(64) 1 583 068.42(36) 1 609 181.47(22) −0.115 −0.110 −0.1207ð1Þ
(174, 176) 65.474 078 21(65) 1 509 055.29(28) 1 534 144.06(24) −0.110 −0.105 −0.1159ð1Þ
(170, 174) 3 627 922.95(50) 3 685 601.95(33)
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spin s, mass mϕ, and reduced Compton wavelength ƛc ¼
ℏ=ðmϕcÞ [9,24].
For heavy elements like Yb, the first term in Eq. (1)

associated with the change in nuclear size δhr2i [“field
shift” (FS)] dominates, while the second term is due to the
electron’s reduced mass and momentum correlations
between electrons (“mass shift”). According to our elec-
tronic-structure calculations (see below), the third (QFS)
term associated with the square of nuclear size ½δhr2i2�ji
represents the leading-order nonlinearity [23,24] within the
SM for Yb. The last term describes the isotope shift due to

the Yukawa-like potential associated with the new boson ϕ.
The quantities F, K, G, D are determined by the electronic
wave functions of the transition [9,10,24]; see the
Supplemental Material [33]. Note that the effect of the
next-leading order Seltzer moment [24,67] associated with
δhr4i is absorbed into the QFS term; see the Supplemental
Material [33].
The first two terms in Eq. (1) lead to a linear relationship

between the isotope shifts (King plot [15]) when one
considers two different transitions α, β,

¯̄νβji ¼ Kβα þ Fβα ¯̄ναji þ Gβα½δhr2i2�ji þ υneDβα ¯̄aji: ð2Þ

Here we define Fβα ≡ Fβ=Fα, Pβα ≡ Pβ − FβαPα for
P ∈ fK;G;Dg, while ¯̄zji ≡ zji=μji for z ∈ fνα; νβ;;
½δhr2i2�; ag is the inverse-mass-normalized quantity. For
our purposes, where the FS dominates, the influence
of mass and frequency errors is more transparent if
we instead write a modified linear relationship for the
frequency-normalized quantities x̄ji ≡ xji=ναji for x ∈
fνβ; μ; ½δhr2i2�; ag,

ν̄βji ¼ Fβα þ Kβαμ̄ji þ Gβα½δhr2i2�ji þ υneDβαāji: ð3Þ

To analyze the experimental results in this work, the
transitions and isotopes are assigned as follows: α ¼
2S1=2 → 2D5=2 (411 nm), β ¼ 2S1=2 → 2D3=2 (436 nm), j ∈
f168; 170; 172; 174g with i ¼ jþ 2, and l ¼ 172.
The inset in Fig. 2(a) confirms the general linear

relationship for the inverse-mass-normalized isotope shifts
in a standard King plot corresponding to Eq. (2) for the
two transitions α and β. However, when we zoom in by a
factor of 106 [main Fig. 2(a)], we observe a small deviation
from linearity, in the range 0.5–1 kHz in frequency units
for a given data point. The frequency-normalized King
plot associated with Eq. (3), as displayed in Fig. 2(b),
illustrates that due to the smallness of the slope, i.e., the
mass-shift electronic factor Kβα, the mass error along the
horizontal axis μ̄ji has a negligible effect. For all points
taken together, the nonlinearity is nonzero at the level of 3σ
(see the Supplemental Material [33]).
With four independent isotope pairs, we can quantify

not only the magnitude of the nonlinearity, but also an
associated pattern further characterizing the nonlinearity.
To this end, we introduce two dimensionless nonlinearity
measures

ζ� ≡ d168 − d170 � ðd172 − d174Þ; ð4Þ

where dj ≡ ν̄βji − fðμ̄jiÞ are the vertical deviations of the
four data points ν̄βji in Fig. 2(b) from the linear fit f. ζþ
and ζ− characterize the two possible nonlinearities for
four data points, a zigzag shape with deviation pattern
þ − þ −, and a curved nonlinearity with deviation
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FIG. 2. (a) Standard King plot [Eq. (2)] for α ¼ 411 nm,
2S1=2 → 2D5=2, and β ¼ 436 nm, 2S1=2 → 2D3=2 transitions for
pairs of neighboring even Ybþ isotopes. The inset shows the full
King plot. The main figure is zoomed into the data points by a
factor of 106. A deviation from linearity (red line) by 3 standard
deviations σ is observed. The larger diagonal uncertainty for the
(168,170) pair is due to the larger mass uncertainty for the 168Ybþ
isotope [30–32] (see the Supplemental Material [33]). (b) Fre-
quency-normalized King plot [Eq. (3)] and residuals. The error
bars and error ellipses indicate 1σ.
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pattern þ − − þ, respectively. Any given nonlinearity
can be represented by a point in the ζþζ− plane [see
Fig. 3(a)]. A nonlinearity that arises from the coupling of
the ϕ boson to the neutron number corresponds to a fixed
nonlinearity pattern and hence a given line through the
origin (see the Supplemental Material [33]). The same
argument holds for the QFS. Our observed nonlinearity lies
close to both lines representing pure coupling to a new
boson and the QFS, respectively. The experimental uncer-
tainty region in Fig. 3(a) can be decomposed into its
possible QFS and new-boson components, as shown in
Fig. 3(b). It highlights the relative contributions of the two
sources of nonlinearity, ranging from pure new boson to
pure QFS contribution at the current level of uncertainty.
With increased measurement precision, it will be possible
to separate the two contributions.
In order to convert the observed nonlinearity, as repre-

sented by ζ�, into a physical quantity such as the coupling
υne, we need to determine the associated electronic wave
functions. To cross-check our numerical simulations for
systematic errors, we use two different methods, the Dirac-
Hartree-Fock method [68,69] followed by the configuration
interaction (CI) method [70–73], using the software pack-
age GRASP2018 [74], and many-body perturbation theory
(MBPT) [75] implemented in AMBiT [76]. We calculate
FCI
βα ¼ 1.0153 and FMBPT

βα ¼ 1.0121, within 0.2% and
0.07% of our experimental value Fexp

βα ¼1.01141024ð86Þ,
respectively. For the mass shift, that is more difficult to
calculate accurately; we find KCI

βα ¼ 65 GHz · u (see the

Supplemental Material [33]), within a factor of 2 from the
experimental value Kexp

βα ¼ 120.208ð23Þ GHz · u. The cal-
culated wave functions in combination with the measured
frequency shift can also be used to extract the nuclear size
difference δhr2i (see the Supplemental Material [33]), in
good agreement with other results [64]; see Table I. We also
calculateGCI

βα ¼ 232 kHz=fm4 andGMBPT
βα ¼ −36 kHz=fm4

for the QFS, indicating a large systematic uncertainty in
the calculation of this small term. The experimentally
constrained range in Fig. 3(b) (24–94 kHz=fm4) (see the
Supplemental Material [33]) lies between the two calculated
values.
Using the electronic-structure calculations, we can deter-

mine a boundary on the new-boson coupling from our data.
Figure 4 shows the upper bound on the product of couplings
jyeynj. It is obtained by dividing the experimental value of
υneDβα from Fig. 3(b) (determined with the assumption
that the effect of the new boson dominates the nonlinearity;
i.e., Gβα ¼ 0), by ð−1Þsþ1DβαðmϕÞ=ð4πℏcÞ from the
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FIG. 3. (a) Nonlinearity measure ðζþ; ζ−Þ for next-neighbor
isotope pairs. The red shaded region indicates the 95% confidence
interval from our data. The green solid line and the blue dashed
line indicate the required ratio ζ−=ζþ if the nonlinearity is purely
due to a new boson ϕ and the QFS, respectively. (b) Experimental
nonlinearity measure along the axes of a new boson (x-axis) and
the QFS (y-axis).
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Fig. 3 is dominated by the new boson. The solid line is for the CI
calculation, and the dashed line is for the MBPT calculation. If
the nonlinearity has a contribution from the QFS, then jyeynj lies
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from the statistical uncertainty in the measured isotope shift are
shown as shaded areas along the solid line. The systematic
uncertainty due to the wave function calculation is much larger,
especially in the high-mass region. The thick green line indicates
the preferred coupling range for the X17 boson from the Be/He
anomaly [16–21]. The yellow shaded area shows the constraint
from electron ge − 2 measurements [77–81] combined with
neutron scattering measurements [82–85] (from Ref. [10]).
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atomic-structure calculations (see the Supplemental
Material [33] for the calculation of Dβα). The calculations
with the CI and the MBPTmethods agree with each other to
better than a factor of 2 over most of the mass rangemϕ. The
upper bound from our data on jyeynj is ∼200 times larger
than the preferred coupling range for theX17 boson [19,20],
and 2 orders ofmagnitude larger than the bound estimated in
Ref. [10] from the combination of g − 2 measurements on
the electron and neutron scattering data. We note, however,
that the limit on jyej depends on additional assumptions
about the new boson’s spin and the symmetries of the
interaction.
Finally, since the absolute optical frequency of the

2S1=2 → 2D5=2 transition for 172Ybþ has recently been
measured with precision at the Hz level [86], the absolute
frequencies for all the other bosonic isotopes can be
deduced from our isotope shift measurements. The results
are summarized in Table II.
In the future, the measurement precision can be

increased by several orders of magnitude by cotrapping
two isotopes [12,13]. This improvement, also in combina-
tion with measurements on additional transitions, such
as the 2S1=2 → 2F7=2 octupole transition in Ybþ [87] or
clock transitions in neutral Yb [28,29], will allow one to
discriminate between nonlinearities of different origin.
Characterizing the nonlinearities arising from within the
SM can provide new information about the nucleus [88],
especially in combination with improved electronic-
structure calculations. On the other hand, if evidence for
a new boson should emerge from the improved measure-
ments, it can be independently verified by performing
similar measurements on other atomic species [10], such as
Ca=Caþ [13,89], Sr=Srþ [12,14], Ndþ [90], or on highly
charged ions [91–94], as well as on molecules like Sr2 [95].
Unstable isotopes (e.g., 166Yb with a half-life of ∼2.4 days)
can be used to increase the number of points in the King
Plot, providing strong further constraints on the origin of
the nonlinearity. The generalization of nonlinearity mea-
sures ζ� for more isotopes or transitions is discussed in the
Supplemental Material [33].
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Appendix F

Reprint of “Evidence of Two-source

King plot Nonlinearity in

Spectroscopic Search for New Boson”

This Appendix contains a reprint of Ref. [8]: J. Hur*, D. P. L. A. Craik*, I. Counts*,

E. Knyazev, L. Caldwell, C. Leung, S. Pandey, J. C. Berengut, A. Geddes, W.

Nazarewicz, P.-G. Reinhard, A. Kawasaki, H. Jeon, W. Jhe, and V. Vuletić, Evidence

of two-source King plot nonlinearity in spectroscopic search for new boson, Phys. Rev.

Lett. 128, 163201 (2022) (*equal contributions). © American Physical Society.
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Optical precision spectroscopy of isotope shifts can be used to test for new forces beyond the standard
model, and to determine basic properties of atomic nuclei. We measure isotope shifts on the highly
forbidden 2S1=2 → 2F7=2 octupole transition of trapped 168;170;172;174;176Yb ions. When combined with
previous measurements in Ybþ and very recent measurements in Yb, the data reveal a King plot
nonlinearity of up to 240σ. The trends exhibited by experimental data are explained by nuclear density
functional theory calculations with the Fayans functional. We also find, with 4.3σ confidence, that there is a
second distinct source of nonlinearity, and discuss its possible origin.

DOI: 10.1103/PhysRevLett.128.163201

Despite ample evidence for the existence of dark
matter [1–4] and concerted experimental searches for
candidate particles [5–8], its origin and composition remain
unknown. Isotope-shift (IS) spectroscopy has been recently
proposed as a tabletop method to search for dark-matter
candidates in the intermediate mass range ≲100 MeV=c2

[9,10]. In particular, IS spectroscopy can be used to search
for a hypothetical new boson, ϕ, that mediates interactions
between quarks and leptons. An observable consequence is
an additional isotope shift that arises from the effective
interaction between neutrons and electrons. Such a shift
could be detected as a deviation from linearity in a King
plot [11] that compares the normalized isotope shifts for
two different transitions. If at least three isotope shifts in
each transition are measured, a deviation from linearity can
be detected. The nonlinearity can also be caused by higher-
order nuclear effects [12–18].
In our previous work, we reported evidence, at the 3σ

level, for a nonlinearity in a King plot that compared two
optical quadrupole transitions (2S1=2 → 2D3=2, 2D5=2) in a
trapped Ybþ ion [19]. The measurement was performed for
five even isotopes, one more than required, and we also
proposed a new method to assign the nonlinearity to
different possible physical origins based on the observed
nonlinearity pattern. At the reported measurement accuracy
of ∼300 Hz on two relatively similar electronic excited

states, the source of the nonlinearity could not be discrimi-
nated, and was consistent both with a new boson and with
standard-model (SM) nuclear shifts. IS spectroscopy in
Caþ, which has lighter nuclei and therefore lower sensi-
tivity to both new physics and nuclear effects than Ybþ

[10], showed no King nonlinearity at the 20 Hz level [20].
At the time of completion of the present work, large King
nonlinearities were also reported when comparing transi-
tions in neutral Yb [21,22] with the quadrupole transitions
in Ybþ.
In this Letter, we report IS laser spectroscopy for the

highly forbidden octupole transition 2S1=2 → 2F7=2 in Ybþ.
The electron configuration in the F state is very different
from the previously measured D states [19], which
increased the size of the observed King nonlinearity
20-fold (see Fig. 1). At a measurement resolution of
∼500 Hz, we observe a King-plot nonlinearity with 41
standard deviations σ. Including the recent data for
neutral Yb [21,22] into our analysis, the significance of
the nonlinearity rises to 240σ, and analyzing the patterns
[19] we show that the measurements can be consistently
explained by microscopic calculations carried out within
nuclear density functional theory (DFT), which provides
agreement with ground-state properties of complex
deformed Yb isotopes [16,23]. Combining all measured
transitions in Ybþ and Yb, we further find evidence, at the
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4.3σ level, of a second, smaller source of nonlinearity, and
discuss implications for limits on a new boson. Finally, we
also extract nuclear data that can be used to further fine-
tune nuclear energy density functionals.
Our IS measurements are performed on individual cold

trapped AYbþ ions with zero nuclear spin (A ∈ f168; 170;
172; 174; 176g). To make an IS measurement on the
octupole transition 2S1=2 → 2F7=2 near 467 nm that we
label γ, we first load a single ion of one isotope A into the
trap, Doppler cool it to ∼500 μK, and measure the
excitation probability when scanning the frequency of
our probe laser, a frequency-doubled Ti:sapphire laser that
is locked to an ultralow-thermal-expansion (ULE) cavity
with linewidth κc=ð2πÞ ¼ 30 kHz. We measure two tran-
sitions between Zeeman sublevels that are symmetrically
detuned from the zero-field transition νγ , and determine
the center frequency νAγ as the mean (see Supplemental

Material [24]). A second isotope A0 is then loaded into the
trap and its center frequency νA

0
γ is measured. We alternate

several times between the two isotopes, achieving an
accuracy of ∼500 Hz in our measurement of the IS
νAA

0
γ ≡ νAγ − νA

0
γ , limited mainly by the long-term stability

of the ULE cavity. Our measured ISs νAA
0

γ are given in
Table I. Table II lists the absolute transition frequencies
derived from our measured IS in combination with the
absolute transition frequency for 172Ybþ [56].
To a very good approximation, the IS can be factored

into an electronic component, which is transition dependent
(labeled by a greek letter subscript) but does not depend on
the isotope, and a nuclear contribution, which depends on
the isotopes (labeled by AA0) but not on the electronic
transition [9,11,14,19]:

νAA
0

γ ¼ Fγδhr2iAA0 þ Kγμ
AA0 þGð4Þ

γ δhr4iAA0

þ Gð2Þ
γ ½δhr2i2�AA0 þ υneDγaAA

0 þ � � � ð1Þ

Here δhrniAA0 ≡ hrniA − hrniA0
is the difference in the

nth nuclear charge moment between isotopes A and A0,
μAA

0 ≡ 1=mA − 1=mA0
is the inverse-mass difference, and

½δhr2i2�AA0 ≡ ðδhr2iAA00 Þ2 − ðδhr2iA0A00 Þ2, with A00 denoting
a reference isotope (we use A00 ¼ 172). The quantity υne ¼
ð−1Þsþ1ynye=ð4πℏcÞ is the product of the coupling con-
stants of the new boson to the neutron yn and electron ye,
resulting in a Yukawa-like potential given by VneðrÞ ¼
ℏcυne expð−r=ƛcÞ=r for a boson with spin s, mass mϕ, and
reduced Compton wavelength ƛc ¼ ℏ=ðmϕcÞ [9,14,19].
aAA

0 ¼ A − A0 is the neutron-number difference between
the two isotopes. The coefficients F, K, Gð4Þ, Gð2Þ, and D
are transition-dependent quantities that quantify the field
shift, the mass shift, the fourth-moment shift, the quadratic
field shift (QFS), and the sensitivity to the new boson,
respectively.
To eliminate the large field shift F (associated with the

size change of the nucleus δhr2i, of order ∼4 GHz), and
mass shift K (of order ∼0.2 GHz) contributions, one can
use a second set of isotope shifts measured on a different
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FIG. 1. Frequency-normalized King plot (top) and residuals
(bottom, blue) for the γ (2S1=2 → 2F7=2) transition and reference
transition α (2S1=2 → 2D5=2) for even-neighbor pairs (A0 ¼ Aþ 2)
of Ybþ isotopes. A deviation from linearity (red line) by 41
standard deviations σ is observed. For reference, residuals for the
β (2S1=2 → 2D3=2) transition [19], magnified 20-fold, are also
plotted in gray. The error bars indicate 2σ uncertainties; for
correlations between the errors, see Supplemental Material [24].

TABLE I. Isotope shifts νAA
0

γ;α ¼ νAγ;α − νA
0

γ;α measured for the γ∶2S1=2 → 2F7=2 (this work) and α∶2S1=2 → 2D5=2 [19]
transitions for pairs ðA; A0Þ of stable Ybþ even isotopes. Inverse-mass differences μAA

0 ¼ 1=mA − 1=mA0
calculated

from [57–60] with the Yb ionization energy set to 6.254 eV are also listed. Numbers in parentheses indicate 1σ
statistical uncertainties.

ðA; A0Þ νAA
0

γ [MHz] νAA
0

α [MHz] μAA
0 ½10−6 u−1�

(168,170) −4 438.160 30(50) 2 179.098 93(21) 70.113 619 5(36)
(170,172) −4 149.190 38(45) 2 044.854 78(34) 68.506 890 49(63)
(172,174) −3 132.321 60(50) 1 583.068 42(36) 66.958 651 95(64)
(174,176) −2 976.391 60(48) 1 509.055 29(28) 65.474 078 21(65)
(168,172) −8 587.352 00(47)
(170,174) −7 281.511 88(45) 3 627.922 95(50)
(172,176) −6 108.712 93(44)
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reference transition τ to generate a King plot [11]. In its
frequency-normalized version [19], the relationship studied
can be written as

ν̄AA
0

γ ¼ fγτ þ Kγτμ̄
AA0 þGð4Þ

γτ δhr4iAA
0 þGð2Þ

γτ ½δhr2i2�AA
0

þ υneDγτāAA
0
; ð2Þ

where the notation x̄AA
0 ≡ xAA

0
=νAA

0
τ indicates frequency-

normalized terms. We define zγτ ≡ Zγ=Zτ as the ratio
of coefficients for transitions γ and τ, and Zγτ ≡
Zγð1 − fγτ=zγτÞ for Z ∈ fF;K;Gð2Þ; Gð4Þ; Dg. The first
two terms in Eq. (2) represent the linear relation between
ν̄γ and μ̄ in the King plot, while the remaining terms
possibly violate the linearity.
Figure 1 shows a frequency-normalized King plot using

the previously measured transition α∶2S1=2 → 2D5=2 near
411 nm [19] as the reference transition τ. The residuals
from the linear fit reveal a nonlinearity at the 10−5 level,
corresponding to 41σ. The nonlinearity is 20 times larger
than the nonlinearity we observed previously [19] compar-
ing the two quadrupole transitions, α and β∶2S1=2 → 2D3=2,
that have a more similar electronic structure. The recent
measurements in neutral Yb [21,22], when combined with
our α or β transition data, confirm a nonlinearity of a similar
size (see also Fig. 2).
Having unambiguously established a King nonlinearity,

we can gain information about the sources of nonlinearity
by analyzing the deviation patterns [19]. With four isotope-
shift data points, we can rewrite Eq. (2) in terms of four-
dimensional vectors as follows:

ν̄γ ¼ fγτ1þ Kγτμ̄þ ðλþΛþ þ λ−Λ−Þ; ð3Þ

where the vector space inhabited by the vectors z≡
ðz1; z2; z3; z4Þ with zk ≡ zA;Aþ2 (A ¼ 166þ 2k for k ¼ 1,
2, 3, 4, z ∈ fμ̄; ν̄γg) is spanned by the basis ð1; μ̄;Λþ;Λ−Þ.
The first two vectors, 1≡ ð1; 1; 1; 1Þ and μ̄, define a

plane of King linearity (i.e., the component of ν̄γ in this
plane does not give rise to King nonlinearities), while the
unit vectors Λþ and Λ−, defined as Λþ∝ðμ̄3−μ̄2;μ̄1−μ̄4;
μ̄4−μ̄1;μ̄2−μ̄3Þ and Λ−∝ðμ̄4−μ̄2;μ̄1−μ̄3;μ̄2−μ̄4;μ̄3−μ̄1Þ,
span the out-of-plane space of vectors that produce a

King nonlinearity (see Supplemental Material [24]).
Any vector with nonzero residuals from the linear King
plot fit hence has components in the space spanned by
ðΛþ;Λ−Þ, and can be expressed in terms of its scalar
components λþ and λ− along Λþ and Λ−, respectively. (Λþ
and Λ− correspond approximately to the zigzag þ −þ−
and curved þ − −þ patterns of residuals introduced
in Ref. [19].) Both SM and new-boson effects produce
nonlinearities with a defined λþ=λ− ratio, given by the
associated nuclear factors xAA

0
, and are characterized by

lines along definite directions in the λ� plane (see Fig. 2).
Figure 2 displays the measured nonlinearity in the λ�

plane for the γ transition, as well as for the previously
measured α and β transitions in Ybþ [19], and the recently
measured ϵ∶1S0 → 1D2 transition in Yb [22]. For the
reference transition τ in Eq. (2), we choose in Fig. 2 the

TABLE II. Absolute frequencies of the γ∶2S1=2 → 2F7=2 tran-
sition extracted from our IS measurements and the absolute
frequency measurement in Refs. [56].

Isotope Absolute frequency [THz] Ref.

168 642.108 197 799 37(37) [This work]
170 642.112 635 960 22(32) [This work]
172 642.116 785 150 887 6(24) [56]
174 642.119 917 472 26(33) [This work]
176 642.122 893 863 84(36) [This work]
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FIG. 2. Decomposition of the measured nonlinearity (solid
ellipses, 95% confidence interval) onto the (λþ, λ−) basis for the
transitions α∶2S1=2 → 2D5=2 in Ybþ (blue) [19], β∶2S1=2 → 2D3=2

in Ybþ (green) [19], ϵ∶1S0 → 1D2 (dark gray) in Yb [22], and
γ∶2S1=2 → 2F7=2 in Ybþ (red, this work). The corresponding
frequency-normalized King plot is generated with the reference

transition δ∶1S0 → 3P0 in Yb [21] (λðδÞ� ) that has been measured
with the highest frequency accuracy. The red dotted ellipse
indicates a previous preliminary measurement for the γ transition
[61]. The dashed lines indicate the ratio λþ=λ− that would arise
solely from a new boson (light blue dashed line) or the QFS
(pink dash-dotted line). The brown solid line is a single-source fit
to all four transitions α, β, γ, ϵ, yielding evidence for a
second nonlinearity source with 4.3σ significance (χ2 ¼ 25.4).
The largest inset shows the nonlinearity in a King plot with α as

the reference transition (λðαÞ� ). Open symbols indicate the non-
linearity due to δhr4iAA0

from nuclear DFT calculations with
SV-min (square), RD-min (diamond), UNEDF1 (circle), and
Fy(Δr) (star) energy density functionals. Short bold lines indicate
the uncertainty in electronic-structure calculations (see Supple-
mental Material [24]).
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transition δ∶1S0 → 3P0 in Yb that has been very recently
measured with the highest frequency accuracy [21]. All
measured transitions α, β, γ, ϵ, δ are consistent with each
other in that they lie nearly along the same direction in
the λ� plane, indicating that the nonlinearity originates
from a common dominant source for all transitions. This
direction corresponds neither to a new boson aAA

0
nor to the

QFS ½δhr2i2�AA0
.

To interpret the IS measurements, we performed quanti-
fied nuclear calculations of hr2i and hr4i using nuclear
density functional theory (DFT) with realistic energy
density functionals (EDFs). The nuclear charge radial
moments were obtained directly from calculated charge
densities as discussed in Refs. [16,23]. To explore a
possible span of predictions, we consider four different
EDFs: Skyrme functionals SV-min and UNEDF1, extended
Skyrme functional RD-min, and the Fayans functional

Fy(Δr). The calculated δhr4i are multiplied by Gð4Þ
γα from

atomic structure calculations to predict the nonlinearity for

Gð4Þ
γα δhr4i. For details on the calculations, see Refs. [62,63]

and Supplemental Material [24].
The predicted values of hr2i and hr4i are impacted

by several effects [16,23,64,65], including the surface
thickness of nuclear density that shows a pronounced
particle-number dependence due to shell effects; the
relativistic corrections that contain contributions from
the intrinsic nucleon form factors; and nuclear deforma-
tion and pairing effects, which also give rise to the
fragmentation [23] of the single-particle spin-orbit
strength that affects spin-orbit contributions to charge
moments. Our DFT calculations take all these effects into
account. In this respect, a King plot nonlinearity may be
rooted in several nuclear structure effects impacting hr2i
and hr4i, not just one as discussed in Ref. [13]. As shown
in the large inset to Fig. 2, our DFT results agree well
with the observed direction in the λ� plane (see
Supplemental Material [24] for details).
We can also directly compare the calculated changes in

the nuclear size δhr2i to the measured values. In order to be
insensitive to the electronic factor F in Eq. (1), which can
currently only be calculated with a typical uncertainty of
≲30%, we plot in Fig. 3(a) the ratios δhr2iA;Aþ2=δhr2iA−2;A
that can be determined from the experimental data with
much higher accuracy. The nuclear calculations agree with
the IS data to within 20%. The ratios obtained from nuclear
theory show monotonically increasing trends for the three
EDFs SV-min, RD-min, and UNEDF1. Only Fy(Δr)
produces a trend that is consistent with data. This is yet
another demonstration that the Fayans functional is better
adapted to local nonmonotonic trends in charge radius data,
see also Refs. [66–68]. We note that Fy(Δr) also provides a
better description of nuclear quadrupole deformations as
compared to other EDFs, see Supplemental Material [24]
for details. This demonstrates that high-precision data on

nuclear radii deliver important information for discrimina-
tion and further development of nuclear models.
Our data also provide strong tests for electronic-structure

calculations, as shown in Figs. 3(c) and 3(d): The field
(mass) shift coefficient Fτ (Kτ) on one transition τ
determines the coefficients on all other transitions κ via
the experimentally determined value of Fκτ (Kκτ) (see
Supplemental Material [24] for details).
While all transitions α, β, γ, ϵ lie near a line through

the origin in Fig. 2, there is a deviation from that line
for all four transitions (plus the reference transition δ) with
4.3σ significance. (In contrast, the generalized King plot
proposed in previous studies [14,76] provides a test
only for three transitions, giving significance less than
4σ for any choices of three transitions; see Supplemental
Material [24]). This second nonlinearity is too large to be
explained by the QFS, which is expected to be the next
largest source of nonlinearity within the SM (see

(a) (c)

(b) (d)

FIG. 3. (a) Comparison plot of derived values for the ratio of the
mean-square nuclear radius differences between ðA; Aþ 2Þ iso-
tope pairs. Open symbols mark the values derived from nuclear
calculations using SV-min, RD-min, UNEDF1, and Fy(Δr)
energy density functionals (see Fig. 2 for symbol assignments).
The red filled square symbols are values derived from measured
ISs on the 411 nm transition in combination with mass shifts from
configuration interaction (CI) [69–72] calculations. (b) Plot of
derived values for the ratio of the mean square nuclear radius
between sequential isotope pairs as a function of Kα, showing
very weak dependence on Kα. (c),(d) Derived values of Fβ, Fγ ,
Fδ, Fϵ (Kβ, Kγ , Kδ, Kϵ) as a function of Fα (Kα), using the
experimentally determined ratios Fκα (Kκα) for κ ¼ β; γ; δ; ϵ. In
(b), (c), and (d), dashed (dotted) vertical lines and round (square)
markers indicate values from CI calculations using GRASP2018
[73] (AMBiT [74]). Dash-dotted lines and open triangle
markers correspond to CI and many-body perturbation theory
(CIþMBPT) [75] calculations using AMBiT.
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Supplemental Material [24]). In Fig. 4, we show the
strength of the coupling constant yeyn for a new boson
vs boson mass under the assumption that the new boson is
the sole source of the second nonlinearity. Different
combinations of measured transitions give similar values
or bounds for the coupling strength yeyn that is near or
slightly exceeds the best other laboratory bounds given by
the combination of g − 2measurements on the electron and
neutron scattering experiments [10,77–84].
In the future, it should be possible to reduce the

experimental uncertainties by up to 4 orders of magnitude
to sub-Hz levels, as has been demonstrated with simulta-
neously trapped Srþ ions [85]. In combination with
improved electronic and nuclear calculations, it should
then be possible to determine unambiguously if some part
of the observed nonlinearity cannot be explained by
physics within the SM. Besides better measurements on
(more) transitions, it may also become possible to perform

further measurements on unstable isotopes, which would
allow the direct extraction (and elimination) of additional
nuclear effects.
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