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Abstract
The interactions of matter with electromagnetic fields underlie very many physical phe-
nomena. The physics of these interactions is greatly simplified by their weakness, en-
abling us to understand them largely at the lowest order in various parameters (e.g., field
strength, atomic size, fine-structure constant). This understanding is challenged by recent
experiments coupling light to collective electromagnetic excitations in solids (“photonic
quasiparticles”), whose strongly confined electromagnetic fields can interact strongly with
matter.

This thesis describes how the rules of light-matter interactions are altered when bound
and free electrons interact with photonic quasiparticles, and some applications that result.
In the first major part of the thesis, I will develop effects arising from the linear optical
properties of these excitations, in perturbative and non-perturbative regimes of QED, which
give rise to new schemes for generating entangled photons, for X-ray sources, and even
for high-energy particle detectors. The second major part of this thesis develops the new
physics arising from the nonlinear optical properties of these photonic quasiparticles, and
focuses particularly on the development of new non-perturbative nonlinear dissipation and
gain phenomena. As an application, I show how these high-order nonlinearity may enable
for the first time the deterministic, steady-state generation of large optical Fock and sub-
Poissonian states.

Thesis Supervisor: Marin Soljačić
Title: Professor of Physics
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3-3 Extreme spontaneous emission enhancement due to 2D phonon polari-

tons in nanostructured geometries. Plotted is the enhancement of the

spontaneous emission rate for an emitter z = 5 nm above the disk’s center

and oriented normal to its plane (n̂ = ẑ). For a disk with a diameter of

20 nm, and assuming a relaxation rate τ−1 = 0.5 meV, the rate of emission

enhancement can be enhanced 100 million-fold. For an emitter with a free-

space decay rate of 1 × 106 cm−1 at 7 µm, the emitter would experience a

decay rate comparable to the frequency of the disk mode, leading to ultra-

strong coupling of an external emitter with 2D phonon polaritons. For ref-

erence, we compare the spontaneous emission enhancement in a nanodisk

geometry to that of a disk of infinite radius (i.e., a flat sheet), showing clear

enhancement relative to the flat sheet due to concentration of local density

of states around phonon polariton resonances. Note that τ−1 = 0.5 meV is

of the order of the loss rate in bulk hBN. Also shown in the figure are maps

of the electric potential on the surface of the disk for modes corresponding

to selected phonon polariton resonances in the plot. . . . . . . . . . . . . . 120
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3-4 Measurement of 2D phonon polariton dispersion relation by scanning

near-field optical microscopy. (a) Experiment setup. The AFM tip and

hBN sample are illuminated by the IR beam (solid magenta arrow) from

a quantum cascade laser. Propagating surface phonon polariton waves are

launched and detected by the AFM tip (dotted magenta arrow). (b-d) s-

SNOM phase images of surface phonon polaritons in monolayer and bi-

layer hBN at IR frequency ω = 1376.5, 1382 and 1387.5 cm−1. Scale bar:

500 nm. (e,f) Dispersion of surface phonon polaritons in monolayer and

bilayer hBN. e), Frequency (ω) – momentum (k / k0) dispersion of sur-

face phonon polaritons in bilayer hBN. f), Frequency (ω) – momentum (k

/ k0) dispersion of surface phonon polaritons in monolayer hBN. Exper-

imental data (dots for monolayer and triangles for bilayer) are extracted

from s-SNOM images in Figure 1. Theoretical results are indicated with

blue (ωT O = 1367 −1) and green (ωT O = 1370.5 cm−1) dashed curves for

monolayer hBN and red (ωT O = 1367 cm−1) dashed-dotted curve for bi-

layer hBN. Image modified based on Dai, Fang, Rivera, et. al. . . . . . . . 121

4-1 Light emission induced by nanophotonic vacuum fluctuations and spon-

taneous emission of a photon-polariton pair (a) Schematic diagram il-

lustrating a beam of electrons traveling in the near-field of a nanophotonic

structure. The vacuum fields lead to random modulations of the trajectory

with a non-zero variance. These modulations lead in turn to a Doppler

shift of the vacuum fluctuations into a higher frequency in the electron’s

rest frame, resulting in photon output at even higher frequencies. The ra-

tio of the output photon frequency to polariton frequency scales as
(

E
mc2

)2
,

where E is the energy of the electron, resulting in enormous frequency

up-conversion factors for relativistic electrons. (b) The complementary

description in QED: a second-order two-quantum (spontaneous) emission

process involving a mode of the structure (denoted polariton) and a high

energy photon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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4-2 Influence of optical materials on the photon emission spectrum in photon-

polariton pair emission. Radiated photon frequency of Equation (1) for

photons emitted along θ = 0, and polaritons emitted along θq = 0 (both

emitted forward). The photon frequency is shown as a function of po-

lariton frequencies for plasmons in (Drude) gold and silver with different

thicknesses, (Drude) graphene with different doping levels, and phonon

polaritons in silicon carbide. Also shown are contours corresponding to

a constant index of refraction of 1.5, 2, and 4. Despite the very different

frequencies of plasmons in graphene, phonon polaritons in silicon carbide,

and plasmons in silver and gold, all of these materials are capable of being

used for generation of hard X-ray photons. . . . . . . . . . . . . . . . . . . 131

4-3 Correlations between emitted infrared polaritons and emitted X-ray

photons in photon-polariton pair emission. (a, top half) Polar plot of

emitted photon power in photon-polariton pair emission, when the polari-

ton is a plasmon in doped graphene. The power is per unit plasmon fre-

quency, per unit plasmon angle, and per unit photon angle for forward

photon emission θ = 0, plotted as a function of plasmon frequency (ra-

dial direction) and plasmon angle (angular direction). A preference exists

for plasmons emitted perpendicular to the direction of electron motion due

to polarization effects. (a, bottom half) Corresponding frequencies for the

forward-emitted photon as a function of plasmon energy and angle. (b)

Emitted photon power per unit photon frequency and plasmon frequency,

which show a clear correlation between plasmon and photon frequencies.

The photon emission is synchrotron-like, extending from UV to X-ray fre-

quencies, having maximum contribution from plasmon frequencies where

the local density of states is highest. The electron is taken to have a velocity

of 0.99c, and travels a distance x0 = 5 nm away from the surface of the

graphene sheet, which is doped to a Fermi energy of 0.5 eV. . . . . . . . . 133
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4-4 Total emitted power due to nanoplasmonic vacuum fluctuations. (a)

Total photon power as a function of electron energy (in units of the rest

mass energy) and distance to a graphene sheet. Vertical dashed lines cor-

respond synchrotron radiation power for different values of a hypothetical

driving magnetic field. (b) Dependence of the root-mean-square of the

graphene-plasmon contribution to the quantized electric field as a function

of the distance to the surface of a sheet of graphene doped to a Fermi energy

of 0.5 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5-1 A general framework for scintillation in nanophotonics. (A) We con-

sider the case of high-energy particles (HEP) bombarding an arbitrary nanopho-

tonic medium, emitting scintillation photons at frequency ω (free-space

wavelength λ), propagation angle Ω, and polarization i. (B) Subsequent

HEP energy loss results in excitation of radiative sites (darker blue re-

gion in sample) which may diffuse before spontaneously emitting photons

(lighter blue region in sample). (C) The framework also accounts for dif-

ferent types of microscopic emitters. (D) The emitters may emit in arbi-

trary nanophotonic environments. (E-F) Electromagnetic reciprocity maps

far-field radiation calculations from the stochastic many-body ensemble

in a single electromagnetic simulation of plane-wave scattering, by cal-

culating the effective spatially-dependent field enhancement. (G) Summa-

rized framework. Links indicate forward flow of information. The purple

links indicate the possibility of backward flow (inverse-design) in our cur-

rent implementation. q,m,Ekin, θi: particle charge, mass, kinetic energy,

and incidence angle. ϵ(r, ω), Z: material permittivity and effective Z-

number. S(r, ω): spatially-varying intrinsic scintillation spectral function.

dP (i)/dωdΩ: scintillation spectral-angular power density at polarization i.

An expanded and elaborated version of (g) is presented in the SI. . . . . . . 156
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5-2 Experimental demonstration of nanophotonic shaping and enhance-

ment of electron-beam-induced scintillation, demonstrating the valid-

ity of the general nanophotonic part of the general theory of scintil-

lation. (A) A modified scanning electron microscope (SEM) is used to

induce and measure scintillation from electron beams (10-40 keV) bom-

barding scintillating nanophotonic structures. (B) Electron energy loss in

the silicon-on-insulator wafer is calculated via Monte Carlo simulations.

Inset: Zoomed-in electron energy loss in the scintillating (silica) layer. (C)

SEM images of photonic crystal (PhC) sample (etch depth 35 nm). Tilt an-

gle 45◦. Scale bar: 1 µm (top), 200 nm (bottom). (D) Scintillation spectrum

from thin film (TF) and PhC samples with varying etch depths (but same

thickness). (E) The scintillation signal is coupled out of the vacuum cham-

ber with an objective and then imaged on a camera and analyzed with a

spectrometer. (F-G) Comparison between theoretical (left) and experimen-

tal (right) scintillation spectra for green and red scintillation peaks. Inset:

Calculated scintillation spectra (per solid angle) at normal emission direc-

tion, showing the possibility of much larger enhancements over a single

angle of emission. Data collected by Charles-Roques Carmes and Steven

Kooi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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5-3 Probing the microscopics of electron-beam-induced scintillation in sil-

ica, demonstrating the validity of the combined nanophotonic and mi-

croscopic parts of the general theory of scintillation. (a) Energy-dependent

scintillation spectra (PhC sample, etch 25 nm). (b) Top: 3D molecular

model of STH defect in silica. Si: Silicon, O: Oxygen, ρ: spin-polarized

density. Bottom: Calculated STH defect energy levels via density func-

tional theory (DFT). (c) Simplified three-level system modelling the mi-

croscopics of scintillation from STH defect in silica. (d) Bulk scintillation

spectrum calculated with DFT (dipole matrix elements). (e) TF (left) and

PhC (right) scintillation peak ratios as a function of deposited beam powers

through electron pumping. The dashed line corresponds to the mean model

prediction and the shaded area to the prediction from the model parame-

ters ± their standard deviation (TF, PhC: uncertainty on Γ31/Γ32). Inset:

Maximum signal of green and red scintillation peaks versus current in TF

sample. Data collected by Charles-Roques Carmes and Steven Kooi. . . . . 158
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5-4 Nanophotonic enhancement of x-ray scintillation, showing how the reci-

procity theory enables design of high-brightness scintillators. (a, Left)

x-ray scintillation experimental setup: light generated by x-ray bombard-

ment of a cerium-doped yttrium aluminium garnet (YAG:Ce) scintillator

is imaged with a set of free-space optics. A specimen may be positioned

between the source and the scintillator to record an x-ray scan of the spec-

imen. (a, Right) Atomic force microscopy image of patterned YAG:Ce

scintillator (20 µm thickness). Scale bar: 1 µm. (b) Calculated scintillation

spectrum of the PhC, integrated over the experimental angular aperture.

Calculations are performed for measured etching depths ± a standard de-

viation (corresponding to 40, 50, and 60 nm). The shaded area corresponds

to possible scintillation enhancements in between those values. The cal-

culated spectra are convolved with a moving-mean filter of 1.33 nm width

(raw signal shown in the SI). (c) Measured scintillation along a line of the

sample, including regions on (red) and off (blue) the PhC. The scintillation

from the PhC region is on average about ×9.1 higher than the unpatterned

region. All signals were recorded with x-ray source settings: 40 kVp, 3 W.

Data collected by Charles-Roques Carmes. . . . . . . . . . . . . . . . . . . 159

5-5 X-ray scintillation imaging with nanophotonic scintillators, showing

how the reciprocity theory enables design of high-brightness scintilla-

tors. (a, b) Measured x-ray images of a (a) TEM grid on scotch tape and of

a (b) flower bud. The white square delimits the PhC area. (c, d) Flat-field

corrected zoom-in of the x-ray image in the PhC area. Geometric mag-

nification on those images is ∼ 2. Compared to the unpatterned regions,

the images are brighter above the PhC region, and show no evident de-

crease in resolution. The particular nanophotonic scintillator used for this

experiment was patterned over an area of 430 × 430 µm and resulted in a

scintillation enhancement of ×2.3 (measured with respect to unpatterned

scintillator of same thickness). All signals were recorded with x-ray source

settings: 60 kVp, 5 W. Data collected by Charles-Roques Carmes. . . . . . 160
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6-1 Ground-state ansatz applied to matter in a cavity: effectively decou-

pled matter and photons. (Left) Bare description of the coupled light-

matter ground state in terms of many virtual excitations of the emitter state

and the bare cavity photons. (Right) Quasiparticle description of the cou-

pled system as a factorizable state of an effective emitter in its ground state

and the vacuum of an effective photonic degree of freedom. . . . . . . . . . 171

6-2 Variational theory of ground and excited states in non-perturbative

QED. (a) Lowest few energy levels of a two (top), three (middle), and four

(bottom) level system embedded in the middle of a one-dimensional cavity.

The results of the variational method (blue) are compared to perturbation

theory (orange), as well as numerical diagonalization (red) with the Fock

space truncated to fifty cavity modes with no more than four photons. (In-

set) The fourth and fifth energy levels show a weak anti-crossing behavior

which is reproduced by the variational theory. (b) Mechanism of overesti-

mation of couplings and resonances in perturbation theory: modes derived

from the variational theorem are suppressed in the vicinity of the emitter,

self-consistently decreasing light-matter coupling. . . . . . . . . . . . . . 172

6-3 Expectation value of the correlated observable ⟨A · p⟩ as a function

of coupling. Parameters are identical to those of the top panel of Fig.

2a. Despite correlations being treated perturbatively, this observable is in

excellent agreement with exact diagonalization, while in poor agreement

with perturbation theory in the bare photonic modes. . . . . . . . . . . . . 173
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7-1 High-order nonlinearities in deep strong coupling of light and mat-

ter. (a) Schematic of a two-level system coupled to a single resonator

mode, as in circuit or cavity QED. (b) Spectrum of the system from weak

(g = g̃/ω ≪ 1) to deep-strong coupling (g ≫ 1). Here, λ = 0. (c) Suc-

cessive excitation energies for a single spin sector for different coupling

values. For g ≫ 1 the excitation energies are constant, as for a bare pho-

ton. At large photon number, they deviate rapidly and nonlinearly from

harmonicity, akin to a photon with a strongly intensity-dependent nonlin-

earity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7-2 Fock lasing due to equilibrium between high-order nonlinearity and

dissipation. (a) Light emission of DSC photons can be understood in terms

of the coupling of an emitter (e.g., a probe qubit) weakly coupled to the

DSC system, as might be realized by coupling a superconducting qubit to a

flux-qubit-LC-resonator system. The probability to stimulatedly emit DSC

photons scales as n + 1 for small n, and then sharply decreases due to the

sudden anharmonicity for n > nc ∼ g2. “TLS” denotes two-level system.

(b) This behavior leads to a gain medium whose gain coefficient (green

lines) is highly nonlinear. The quantum state of DSC photons will de-

pend on how this nonlinear gain comes into equilibrium with the loss (red

lines). (c) Steady-state intensity and power fluctuations of lasers in differ-

ent coupling regimes as a function of pump intensity. For the “harmonic”

regimes (weak, and deep-strong), a rapid growth in intensity at threshold is

seen. In contrast to the weak coupling regime (as in a “normal” laser; light

blue curve), a laser operating in the deep-strong coupling regime has its

intensity saturate, and its fluctuations vanish at high pump, converging to a

high-number Fock state (dark blue and purple curves), leading to Fock-like

statistics (right). (c, bottom) Statistics for different pump strengths for a

single coupling, showing evolution from thermality to Fock-like statistics. . 186
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7-3 Uniform and tunneling states arising at the harmonic-to-anharmonic

crossover. (a) The function (1+Gn))−1 which propagates the photon prob-

ability distribution from n to n+1, plotted as a function of coupling strength

and photon number (Gn = Fn/Γ). A harmonic-to-anharmonic crossover

occurs for a maximum photon number nmax ∼ g2 for which the propa-

gation function goes to zero. When this happens, the probability of having

photons larger than nmax vanishes. Near threshold (where the effective tem-

perature of the photon goes to infinity), this leads to nearly uniform states

of the electromagnetic field sharply cutoff at the maximum photon number

(right panel). (b) When the decay rate of the gain medium is large, the an-

harmonic region becomes narrower (bottom left), and for sufficient pump

intensity, the photon distribution can “tunnel” through the barrier, evolving

effectively as a coherent state. In this tunneling regime, the distribution

becomes bimodal, taking on the characteristics of the Fock and coherent

states for some pump parameters (bottom right). . . . . . . . . . . . . . . 187
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8-1 Photon noise condensation and Fock state generation in systems with

sharply nonlinear loss. (a) A nonlinear resonance whose loss rate κ(n)

depends on photon number n. (b) For the nonlinear loss as plotted in the

red curve, the resonance will have its photon number fluctuations compress

as it decays, if it falls through a region of sharply rising loss. This is rep-

resented by the temporal evolution of the photon probability distribution

(black) for different times (with t0 < t1 < t2). If the loss has a zero for

some photon number n0, the noise condensation is perfect and the system

approaches a Fock state of n0 photons. (c) This can be understood through

the n-dependent rate of transitions from n to n − 1 photons (arrows de-

note magnitudes, lines denote states on the Fock ladder). The gradient of

the rates (loss “sharpness”) dictates the magnitude of compression, expan-

sion, or trapping of the distribution. (d) The requisite nonlinear loss can be

understood as arising from a “composition” of a frequency-dependent loss

and an intensity-dependent cavity resonance frequency (e.g., due to Kerr

nonlinearity). (e) Example of one of the many systems that could realize a

loss of the form shown in (a): two resonances coupled to a common contin-

uum, in which one is linear (d) and one is nonlinear (a). A zero surrounded

by a region of sharp loss arises due to destructive (Fano) interference be-

tween two leakage pathways for a which can become perfect for a precise

number of photons in a (namely, n0). . . . . . . . . . . . . . . . . . . . . . 204
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8-2 Photon noise condensation in systems with sharply nonlinear loss. (a)

Example system to realize the effect of interest: a nonlinear resonance

(e.g., an exciton polariton) coupled to a mirror with an internal resonance (a

“Fano mirror” [1]) with a single loss channel (temporal loss shown in (b)).

(c) Time-dependent photon probability distributions for n̄(0) = 800 (top)

and n̄(0) = 1200 (bottom), as well as mean and variance. For n̄(0) = 800,

the system tends to the vacuum state, while for n̄(0) = 1200, the system

tends to a Fock state of 1000 photons. In this example: β = 5 × 10−7, κ =

10−5, γ = 5 × 10−4, ωd = (1 + δ), with δ = 10−3, in units of the lower

polariton frequency, 1.47 eV. . . . . . . . . . . . . . . . . . . . . . . . . . 205

8-3 The Fock laser. (a) Components of a general Fock laser, which consists

of a pumped gain medium and a nonlinear cavity, interacting via absorp-

tion and emission of cavity photons by the gain medium. (b) Energy flows

between components of the Fock laser. The cavity leakage is of the sharp

form in Fig. 1b. (c, left) Saturable gain and linear loss (corresponding to a

conventional laser) leads to Poissonian photon statistics well-above thresh-

old. (c, middle) On the other hand, saturable gain, combined with sharply

rising loss, leads to condensation of the photon probability distribution, as

in Fig. 1, except now in the steady-state. (c, right) The same condensation

also holds when the gain sharply decreases and the loss is linear. (d) Gain

and loss curves for a Fock laser for different values of the pump intensity.

(e) Mean value of the intracavity photon number as a function of pump

strength, relative to threshold. (f) Mean and variance, as well as Fano fac-

tor, for the two branches of the input-output curve of (e). Parameters used

in this plot are β = 5 × 10−5, κ = 10−5, γ = 2 × 10−3, ωd = (1 + δ), with

δ = 0.04 (in units of the lower polariton frequency ωLP). Detailed gain and

cavity parameters are provided in the SI, pg. 37. . . . . . . . . . . . . . . . 206
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8-4 Fock lasers in the macroscopic regime and large suppression of photon

noise in a common laser architecture. (a) A macroscopic implementation

of a Fock laser based on a diode-pumped solid-state laser with a sharply-

varying transmissive element and a nonlinear crystal. (b) Gain-loss dia-

grams with black circles showing stable equilibria for different pump inten-

sities. (c) Cavity amplitude-noise spectra as a function of frequency for dif-

ferent pump intensities. For intermediate pump intensities, the overall noise

reduction can be nearly 95% of the shot-noise limit with 1012 photons.

The frequency-dependent noise can be reduced by as much as 100-fold for

low frequencies. Parameters used in this plot are β = 5 × 10−18, κ =

8 × 10−5, γ = 10−2, ωd = (1 + δ), with δ = −10−5 (in units of the lasing

frequency, 1.17 eV). Detailed gain and cavity parameters are provided in

the SI, pg. 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

C-1 Correlations between infrared polaritons and X-ray photons in photon-

polariton pair emission. Same as Figure 3 of the main text, except that the

electron now travels 10 nm away from the surface of the graphene sheet,

and it is doped to a Fermi energy of 0.25 eV. . . . . . . . . . . . . . . . . . 265

C-2 Influence of Drude losses on photon emission. Emitted power (into pho-

tons) per unit frequency of polaritons for the case of an electron of velocity

0.99c traveling 5 nm away from a sheet of Drude graphene doped to a Fermi

level of 0.5 eV for Drude relaxation times of 1600 fs, 160 fs, and 16 fs. The

Drude time has a weak influence on the emitted power. . . . . . . . . . . . 266
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C-3 Influence of interband damping on photon emission. Emitted power

(into photons) per unit frequency of polaritons for the case of an electron

of velocity 0.99c traveling 5 nm away from a sheet of graphene doped to a

Fermi level of 0.5 eV with a Drude relaxation time of 1600 fs. Graphene is

modeled here through both the local and nonlocal RPA. Interband damping

has a stronger influence on the emitted power, which stays in the same

order of magnitude. The power emitted is about 15 fW, compared to 12 fW

in the Drude case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

C-4 Photon-polariton emission for electrons near gold films. Emitted power

(into photons) per unit frequency of polaritons for the case of an electron

of velocity 0.99c traveling 5 nm away from a thin film of Drude gold of

varying thicknesses. The underlying emission power stays similar to the

case of Fig. S3, varying from 9.9 fW per electron for 40 nm gold to 11 fW

per electron for 5 nm gold. . . . . . . . . . . . . . . . . . . . . . . . . . . 267

C-5 Influence of the electron spin on photon-polariton pair emission. Emit-

ted power (into photons) per unit photon angle, plasmon frequency, and

plasmon angle in scalar QED versus fermion QED. The contribution to the

emission in fermion QED from transitions that conserve the electron spin

is shown in blue. Spin-flipping contributions are shown in orange, and the

scalar QED prediction is shown in green. The plasmon is emitted in the

direction of the electron motion with frequency equal to the Fermi energy

of 0.5 eV. The electron is assumed to travel 5 nm away from the surface

of graphene. The electron energies considered are 30 MeV (top left), 300

MeV (top right), 3 GeV (bottom left), and 30 GeV (bottom right). As

these plots show, the scalar QED results are in excellent agreement with

the spin-conserving results of fermion QED for electron kinetic energies

below 3 GeV, and continue to predict similar trends as a function of polar

angle even at larger electron energies. . . . . . . . . . . . . . . . . . . . . 268
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D-1 End-to-end scintillation framework. Arrows represent forward flow of

information from inputs to outputs through our simulation methods (as an

example: geometry information feeds into energy loss calculations, which

provides an energy loss map that feeds into the spectral function). HEP:

high-energy particle. dP (i)/dωdΩ: scintillation spectral-angular power

density at polarization i. ω: scintillation frequency, Ω: scintillation angle

of emission. S(r, ω): non-equilibrium steady-state distribution function.∣∣∣E(i)(r, ω,Ω)
∣∣∣2 / ∣∣∣E(i)

inc(ω,Ω)
∣∣∣2: field enhancement at location r, frequency

ω, angle Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

D-2 Absorbed power (proportional to Veff) at normal incidence as a func-

tion of wavelength for a few different thin film geometries. Thicknesses

for blue curve: ∞ − 500 nm − 1000 nm − 500 nm − ∞. Thicknesses

for orange curve: ∞ − 1000 nm − ∞. Thicknesses for green curve:

∞ − 1000 nm − ∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

D-3 Schematic of the experimental setup and calibration measurement. (A)

Schematic of the experimental setup. Inside SEM chamber: 1: Electron

beam interacting with sample; 2: Faraday cup, connected to external pi-

coammeter, measuring incident current. 3: 6-axis, fully eucentric stage,

controlled by SEM control. 4: XYZ objective stage. 5: x-ray blocking

window. Outside SEM chamber: 6: Mirror. 7: Tube lens. 8: Beam splitter.

9: CCD Camera, imaging sample surface. 10: polarizer (optional). 11:

XYZ cage assembly with two focusing lenses and a fiber-coupling. Inside

spectrometer: 12: Grating turret. 13, 14: (Focusing) Mirrors. 15: Spec-

trometer CCD. Green laser feedthrough alignment arm: 16: Green laser

source. 17: Fiber-coupling feedthrough, vacuum compatible. 18: Fiber

output illuminating sample. (B) Calibration experiment (the rest of the

setup is not shown because it is similar to (A)). 19: AVA Calibration light

source. (C) Measured calibration conversion function. . . . . . . . . . . . . 312
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D-4 Amplified hBN scintillation in hBN flakes. Inset: Phenomenological in-

trinsic scintillation spectrum. Parameters used in this plots were chosen in

accordance with [2]. As a function of increased pumping, the losses are re-

duced (as the system moves towards transparency), leading to the spectrum

manifesting growing and narrowing etalon peaks associated with thin-film

resonances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

D-5 Tunable ultraviolet nanophotonic scintillators. (A) Schematic of the

design: etched hBN on a silica spacer on an aluminium substrate. (B)

Marginal (integrated over y) energy loss probability distribution (log scale).

(C) Total in-plane electric field distribution (|Ex|2 + |Ey|2) at λ = 350 nm).

Our theory predicts the emitted scintillation power at various locations and

etch radii, shown in log (D) and linear (E) scales. . . . . . . . . . . . . . . 313

D-6 Alternative DFT and rate equation models for STH in silica. (A) Top:

3D molecular model of STH defect in silica. Botton: Calculated STH de-

fect energy levels via DFT. (B) Simplified four-level system modelling the

microscopics of electron scintillation in silica. (C) Calculated oscillator

strength spectrum. (D) TF (left) and PhC (right) scintillation peak ratios

as a function of deposited beam powers through electron pumping. The

dashed line corresponds to the mean model prediction and the shaded area

to the prediction from the model parameters ± their standard deviation (TF:

uncertainty on Γ34/Γ24; PhC: uncertainty on Γ12/Γ13. . . . . . . . . . . . . 314

E-1 Number of virtual photons (bare and interacting) in the ground state

calculated variationally, numerically, and through perturbation the-

ory. Parameters are the same as in Fig. 2 (top panel) of the main text. . . . 324

F-1 Matrix elements of a†a, b†b and a, b, showing that b counts excitations of

the DSC system over the full range of eigenstates. However, up to nc, a

and b act similarly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
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Chapter 1

Introduction

This thesis first, and foremost, is concerned with fundamental developments in the physics

of photonic quasiparticles, and their interaction with matter. The philosophy of this the-

sis is that this physics, and potential applications, are developed through a broad range of

examples. We consider photonic quasiparticles in a broad range of optical materials (di-

electrics and metals; bulk and 2D materials; nanophotonic and nanoplasmonic systems),

and their interactions with matter systems (both low energy systems such as atoms and

low-energy electrons, as well as modestly and ultra-relativistic free-electrons). We consider

weak-coupling interactions such as spontaneous emission at different orders in perturbation

theory (especially one- and two-photon emission), as well as “non-perturbative effects”

associated with the so-called ultra-strong and deep-strong coupling regimes of quantum

electrodynamics. It is my view that a diversity of approaches is necessary to begin to ap-

preciate the richness of phenomena and applications of the quantum interactions between

matter and electromagnetic fields. The Appendices to the main chapters here tend to reflect

this same view; in many cases, the key results of the main chapters are derived by two or

even three different theoretical approaches.

The first part of this thesis is focused on providing a high-level, unified, and broad-scope

overview of the way that light-matter interactions are fundamentally changed by the pres-

ence of material polarization. In materials with optical response, the free electromagnetic

field (in vacuum) strongly couples to material polarization to form combined excitations

of joint light-matter character. Such photonic quasiparticles run the gamut, subsuming
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propagating waves in a bulk transparent dielectric, strongly confined polaritons in van der

Waals materials, and fundamentally non-photonic-seeming excitations such as phonons

and magnons. Although these excitations seem quite different from each other, they all

carry propagating electromagnetic fields which can interact with matter, and these inter-

actions can be quantified using the same techniques. In this chapter, we also introduce a

unified theoretical framework, known as macroscopic quantum electrodynamics (MQED),

which is capable of describing these interactions, and thus, a wide range of known and

even currently unexplored physical effects (see Fig. 1 of Chapter 2). We also show how

this framework can be used to describe absorption, emission, and strong-coupling phenom-

ena between these photonic quasiparticles and external emitters such as bound electrons

(in atoms, molecules, and solids) and even free-electrons. We provide a host of recent ex-

amples, primarily experimental, and show how this unified MQED description enables us

to understand and quantify these effects. In the Appendix to this chapter, we develop some

important results in the theory of MQED. We develop the quantization of the EM field

in non-dispersive dielectric media (lossless MQED), and show examples of it in bound

and free-electron systems. Many of the examples we develop are sufficiently general to

be valid even in the case of dissipative linear media, where the full MQED apparatus is

required (which we also develop).

In the second part of the thesis, we provide specific examples of the way in which

photonic quasiparticles provide powerful control over spontaneous emission, overcoming

some of the limitations coming from the small sizes of quantum emitters. For example,

in Chapter 3, we show how the strongly confined and narrow-bandwidth fields associated

with phonon polaritons in polar dielectrics enable an unusual type of emitter which prefers

to emit entangled pairs of electromagnetic excitations, rather than single quanta, as would

naively be expected from perturbation theory based on the typical weakness of light-matter

interactions. These effects are maximized in 2D phonon polaritonic systems, which are ex-

plored in Chapter 4. At the time of the writing of Chapter 4, 2D phonon polaritons had not

been explored or observed, and there had been some remaining questions regarding their

fundamental nature. Thus, in Chapter 4, we present the theory of the optical response of

phonon polaritons in monolayers of polar dielectrics, providing explicit expressions for the
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optical conductivity of phonon polaritons in monolayers, as well as the dispersion of such

polaritons − showing the kinds of extreme confinements of electromagnetic energy that are

unique to these monolayer systems. We also present experimental measurements of the op-

tical response of hBN monolayers (taken through scanning near-field optical microscopy)

which validate the theory presented in this chapter, which were taken in collaboration with

the group of Prof. Dmitri Basov.

Much of the emphasis in enhancing light-matter interactions with photonic quasiparti-

cles has largely been focused on the interaction of these photonic quasiparticles with bound

electrons, e.g., in saystems of atoms, molecules, or artificial atoms. But many exciting phe-

nomena of light-matter interaction can be realized when the emitter is instead a free elec-

tron. Indeed, free-electrons, due to their high kinetic energies and their energy-momentum

dispersion, can in principle emit light at very high frequencies (such as X-rays), for which

there are typically few mechanisms to produce. Moreover, the spontaneous emission of

photonic quasiparticles by free electrons is strongly dependent on the electron velocity,

allowing in principle for highly tunable light sources. In Chapter 5, we explore uniquely

quantum effects (with no classical description) in light emission arising from the interaction

of free electrons with collective excitations in solids. We show a new mechanism of light

emission, which we refer to as photon-polariton pair emission, in which a relativistic elec-

tron simultaneously can emit two entangled quanta: one highly confined infrared excitation

(such as plasmons in graphene, or phonon polaritons in hBN), and one X-ray photon which

propagates into the far-field. The power emitted in this process is substantially stronger

than expected, especially when the electron is within nanometers of the surface support-

ing the photonic quasiparticles. This can be understood as a new type of vacuum-induced

force acting on charged particles in which the electron Doppler shifts vacuum fluctuating

infrared near-fields into X-ray photons. The quantum effect described here also is unique

in its ability to entangle infrared and X-ray electromagnetic excitations. The theory here

can be thought of as a phenomenon unique to free-electron quantum optics, a field which is

now starting to develop, and which we provide some additional theoretical foundation for

(in the Appendix to Chapter 1).

In Chapter 6, we turn to an application of enhancing spontaneous emission with pho-

43



tonic quasiparticles; more efficient detectors of high-energy particles such as energetic elec-

trons and X-rays (ionizing radiation). Ionizing radiation is typically detected by the use of

scintillators which glow (emit photons) upon bombardment by ionizing radiation. By pat-

terning the scintillator on the nanoscale, the dispersion relation of the photonic quasiparticle

can be strongly altered (as the photonic excitations are now Bloch photons): the density of

optical states can be strongly enhanced and the number of paths coupling emitted photons

to the far-field can be strongly increased. In either case, the radiation emission be strongly

enhanced, enabling detection of a much lower flux of incident ionizing radiation. At the

time of the writing of Chapter 6, neither enhancement of the rate of scintillation through

the local density of states, nor large outcoupling enhancements of scintillation, had been

observed. Part of the reason for the lack of progress entails a theoretical gap associated with

the complex, multiphysics nature of scintillation emission − consisting of several complex

parts spanning a wide range of length and energy scales: generation of high-energy carriers

by ionizing radiation, “thermalization” to form a non-equilibrium steady state, and radia-

tion by fluctuating currents in inhomogeneous media. The main contribution of Chapter

6 is to provide a theoretical and computational framework to predict nanophotonic scin-

tillation for the first time, integrating all of these parts. The theory developed here shows

good agreement with measured spectra of scintillation of photonic crystals bombarded by

electrons and X-rays. Many of the complex features as a function of frequency, as well as

electron energy, can only be explained by this complete theory.

In the last part of the thesis, we move beyond perturbative effects and consider cases in

which the coupling energy between light and matter is comparable to the bare energies of

the light and matter subsystems. When the coupling is within an order of magnitude of the

bare transition energies, the coupling is said to be in the regime of ultra-strong coupling. It

has now been experimentally realized in a variety of different systems. This regime differs

substantially from the regime of strong-coupling extensively explored in cavity quantum

electrodynamics: this is because in strong coupling, the ground state is only negligibly al-

tered by the coupling, while in the ultrastrong coupling there is a significant modification

of the ground state from the bare ground state (the product of the matter ground state with

the photonic quasiparticle vacuum). This fact has motivated exploration of potential appli-
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cations in chemistry, materials science and condensed matter, where the ground-state plays

a decisive role in the thermodynamic and transport properties of the system. Nevertheless,

our theoretical understanding of this regime is limited as there are only two theoretical

models for which one can easily (analytically or numerically) diagonalize the Hamiltonian:

(1) the Rabi model, describing the coupling of a two-level system to a single mode of the

EM field and (2) the Hopfield model, describing the coupling of a harmonic oscillator to

a single mode of the EM field. Real systems depart from both of these models. Addi-

tionally, the focus of ultra-strong coupling has primarily been on the modification of the

matter fields: but it is equally interesting (and arguably equally motivated) to consider the

consequences on the electromagnetic fields. In other words, to look at the implications of

ultrastrong coupling for photonics. In Chapter 7, we address these questions by developing

a real-space description of the ground-state of ultra-strongly coupled systems, involving the

coupling of multi-level systems to multi-mode optical systems. In doing so, we show how

the energy of the ground state, and even the excited states, can be well-described through a

factorizable ansatz in which the electromagnetic field modes are strongly modified by the

presence of the light-matter coupling.

Taking the ideas of non-perturbative quantum light-matter coupling to their logical ex-

treme is the notion of deep-strong coupling, in which the coupling is larger than the bare

energies of the light and matter. This exotic regime has been recently realized in super-

conducting flux qubits coupled to microwave resonators, due to the effectively very strong

dipole moment associated with the flux qubit architecture. While theoretical studies of

this regime are just starting to emerge, they have been primarily focused on ground-state

properties, and for good reason. In Chapter 8, we study the properties of excitations in

the deep-strong coupling regime. Such excitations (“photons” of the DSC system) are

important from the standpoint of quantum nonlinear optics, as they dictate light emission

in propagation. We show how the excited-state spectra imply the existence of extremely

high-order electromagnetic nonlinearities not found in natural optical nature, and how this

nonlinearity forms the basis for unique sources of quantum light. In particular, we show

how such nonlinearities can form the basis for a type of “LED” (spontaneous emitter) or

laser (stimulated emitter) that deterministically produces large Fock states of the system.
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The exotic nonlinearity described in Chapter 8 leads, rather directly, to unique possi-

bilities from the standpoint of generating quantum light: one wonders if the theoretical

constructs employed can be translated into conventional nonlinear optics (in particular, at

optical frequencies). In Chapter 9, we show how the unusual nonlinearity revealed in Chap-

ter 8 is a manifestation a more general phenomenon: in particular, we show how similar

phenomena (namely, macroscopic Fock-state generation) can be realized in the presence of

a high-order intensity dependent dissipation. We show how in certain systems, the combi-

nation of frequency-dependent dissipation and nonlinearity can lead to unique phenomena

of nonlinear dissipation that deterministically convert classical light states (such as co-

herent states) into strongly nonclassical light (such as macroscopic Fock states at optical

frequencies of a single mode of light; for which there are no current methods to create even

theoretically). This effect forms the basis for a whole new class of optoelectronic devices:

for example, lasers employing this intensity-dependent dissipation can produce macroscop-

ically highly number-squeezed states of radiation, which could be employed in metrology

applications to get signal-to-noise beyond the quantum limit, as well as applications in

quantum simulation where solutions to physical problems are encoded in the dynamical

evolution of Fock states. More broadly, the nonlinear dissipation physics introduced here

leads to a new route towards deterministically generating quantum light, in a way that can

in principle exist in the presence of dissipation.
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Chapter 2

Light-matter interactions with photonic

quasiparticles

Note: This chapter is heavily based off “Light-matter interactions with photonic quasipar-

ticles” by N. Rivera et al. Nature Reviews Physics (2020).

Interactions between light and matter play an instrumental role in many fields

of science, giving rise to important applications in spectroscopy, sensing, quantum

information processing, and lasers. In most of these applications, light is consid-

ered in terms of electromagnetic plane waves that propagate at the speed of light in

vacuum. As a result, light–matter interactions can usually be treated as very weak,

and captured at the lowest order in quantum electrodynamics (QED). However, re-

cent progress in coupling photons to material quasiparticles (e.g., plasmons, phonons,

and excitons) forces us to generalize the way we picture the photon at the core of

every light–matter interaction. In this new picture, the photon, now of partly matter-

character, can have greatly different polarization and dispersion, and be confined

to the scale of a few nanometers. Such photonic quasiparticles enable a wealth of

light–matter interaction phenomena that could not have been observed before, both

in interactions with bound electrons and with free electrons. This Review focuses

on exciting theoretical and experimental developments in realizing new light–matter

interactions with photonic quasiparticles. As just a few examples, we discuss how

photonic quasiparticles enable room-temperature strong coupling, ultrafast “forbid-
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den” transitions in atoms, and new applications of the Cherenkov effect, as well as

breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray

sources.

Interactions between light and matter play a crucial role in science and technology. The

emission and absorption of light – by bound electrons in atoms, molecules, and solids, as

well as by free electrons – form the direct basis for technologies both mature and nascent.

Examples include modern spectroscopy, lasers, X-ray sources, LEDs, photo-diodes, solar

cells, high-energy particle detectors, and advanced microscopy methods. Light–matter in-

teractions are fundamentally quantum electrodynamical, and in many cases, are described

as quantum transitions by electrons, accompanied by the emission, absorption, or scattering

of quanta of the electromagnetic field in vacuum (photons). The theory describing photons

and their interaction with electrons is nearly as old as quantum mechanics itself, and was

first formulated by Dirac in 1927 [3], with an elegant re-formulation (still used today) by

Fermi in 1932 [4]. Traditionally, it has been sufficient to describe the electromagnetic

quanta as (a) composed of plane waves traveling at the speed of light and (b) having a

wavelength much longer than the typical size scales of electron wavefunctions in atoms,

molecules, and solids.

This traditional understanding is challenged by recent experiments using near-field mi-

croscopes to couple to polaritons in van der Waals materials [5, 6, 7, 8, 9, 10, 11, 12], as

well as recent experiments confining light in nano-gaps between metals [13, 14, 15]. In

particular, it is now feasible to couple light to extremely confined electromagnetic fields.

Such fields – which can be plasmonic, phononic, excitonic, or even magnonic in nature

– can be manipulated in many of the same ways as photons. Their close similarity to

photons motivates their consideration as part of a more general concept, called photonic

quasiparticles (Figs. 1, 2). A photonic quasiparticle, which fundamentally arises as a quan-

tized solution to Maxwell’s equations in a medium, is a broad concept that includes not

only polaritons, but also photons in vacuum and homogeneous media, photons in cavities

and photonic crystals, and even, excitations that seem fundamentally non-photonic, such

as bulk plasmons and bulk phonons. As such, these quasiparticles generally differ from

photons in vacuum in several key respects like polarization, confinement, and dispersion.
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When considering how these excitations are absorbed and emitted by electrons (what we

call “light–matter interactions”), one finds that these differences enable many phenomena

that are difficult or even impossible to realize with photons in free space.

In systems of bound electrons (e.g., in atoms, molecules, or solids), the confinement

of photonic quasiparticles strongly enhances the intrinsic coupling between these electrons

and the quantized electromagnetic field. This is because the energy of the quasiparticle, , is

confined over a very small volume, leading to correspondingly strong quantized electric and

magnetic fields. The enhanced coupling gives rise to greatly enhanced spontaneous emis-

sion by excited electrons. For sufficiently confined photonic quasiparticles, the enhanced

coupling is strong enough to enable coherent and reversible energy exchange between the

electron and the electromagnetic field. The other important effect arising from confinement

is the possibility of breaking conventional selection rules governing the types of electronic

transitions that can occur. In sum, these effects may enable brighter single-photon sources,

highly sensitive sensing and spectroscopy platforms, and potentially even new sources of

entangled quasiparticles.

Meanwhile, in systems of free electrons, the spectral and directional properties of spon-

taneously emitted photonic quasiparticles are sensitive to the dispersion relation of the

photonic quasiparticle. Controlling the dispersion relations by using structured media –

as photonic crystals, optical nanostructures, or highly confined polaritons – allows one to

control “at will” the properties of light emission based on the electron energy. Importantly,

the delocalized quantum wave nature of free electrons gives additional opportunities to

control light–matter interactions by shaping electron wavefunctions. For example, one can

shape the wavefunction to display symmetries which are compatible (or incompatible) with

the symmetry of the photonic quasiparticle field, thus leveraging selection rules to control

the possible interactions [16]. Additional important effects appear when electrons inter-

act with strong fields of photonic quasiparticles, which enable coherent energy exchange

by means of absorption and stimulated emission. In sum, these effects may enable new

and enhanced particle detection schemes, compact light sources from infrared to even X-

ray frequencies, and breakthrough platforms for electron microscopy with nanometer and

femtosecond resolution.
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Although free and bound electron phenomena at first appear unrelated, and are typically

connected to different fields of research, it is possible, and even illuminating, to take a

unified view of these phenomena.

The crux of this unified view is a systematic classification of the types of interactions

that can happen between arbitrary electronic systems and arbitrary photonic quasiparti-

cles. This classification is shown in Figs. 1, 2, where we represent different types of

elementary light–matter interaction processes between electrons and photonic quasiparti-

cles in terms of Feynman diagrams. These diagrammatic representations emerge naturally

from macroscopic quantum electrodynamics (MQED), which describes the interaction of

electrons with electromagnetic fields in materials. An especially useful contribution from

MQED that we will present in this Review is the quantization of the electromagnetic fields

associated with photonic quasiparticles in terms of (classical) solutions of the macroscopic

Maxwell equations in a medium.

As can be seen, changing the type of electron or the type of photonic quasiparticle in

a particular Feynman diagram leads to fundamentally different phenomena, often seen as

disparate physical effects. For example, spontaneous emission by atoms and molecules is

loosely analogous to the Cherenkov radiation by free electrons, both being single-photonic-

quasiparticle spontaneous emission processes; the Cherenkov effect is analogous to phonon

amplification phenomena by electrons in solids solids, being governed by similar energy-

momentum conservation rules; the phenomenon of photon-induced near-field electron mi-

croscopy is analogous to Rabi oscillations in cavity QED; high harmonic generation by

bound electrons is analogous to nonlinear Compton scattering in free electrons. This line

of thinking enables knowledge-transfer between different light–matter effects. Ultimately,

this perspective enables one to predict and study new types of interactions that have yet to

be explored.

Our Review aims to provide details to the picture painted above, by elaborating on the

exciting recent theoretical and experimental developments in the field of light–matter in-

teractions in nanophotonics, unifying the different phenomena when possible. The field of

light–matter interactions in nanophotonics is broad in scope, and involves many important

topics that we touch here only briefly, for which the following representative reviews pro-
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vide further insight: polaritons in van der Waals materials [5, 6, 7], plasmonic nano-gaps

[15], quantum plasmonics [17], enhanced spontaneous emission phenomena [18], strong

coupling physics [19, 20, 21], electron-beam spectroscopy [22], and the theory of macro-

scopic quantum electrodynamics [23].

2.1 Photonic quasiparticles

2.1.1 Types of photonic quasiparticles

A photonic quasiparticle is a quantized excitation of an electromagnetic mode also called

“a photon of a medium” [24, 25]. The mode is formally a time-harmonic solution to

Maxwell’s equations with frequency ω in an arbitrary medium, subject to boundary condi-

tions. The electromagnetic mode corresponding to this quantized excitation is normalized

such that the electromagnetic energy in a single-quasiparticle state is ℏω, and its polariza-

tion and field-distribution are governed solely by the response functions of the medium: the

dielectric permittivity ϵ and magnetic permeability µ. In Fig. 3 (top), we show some of the

types of microscopic phenomena that can contribute to the response functions, such as free-

electrons (in metals), bound electrons (in simple insulators like glass), optical phonons (in

polar dielectrics), magnons (in ferro- and anti-ferromagnets), and excitons (in semiconduc-

tors). These microscopic phenomena define the frequency-dependence of the macroscopic

response functions of the material. While we have discussed these photonic quasiparticles

as contributing to the dielectric function, some, such as excitons, also depend on the di-

electric function. For example, excitonic properties depend on the screening encoded by

the low-frequency dielectric function. Different materials, as well as different geometries

of the materials, lead to qualitatively different kinds of photonic quasiparticles, as shown

in Fig. 3 (bottom). Let us now consider a systematic classification of the different types of

photonic quasiparticles that exist, based on dimensionality, with an eye towards the effects

in light–matter interactions enabled by each type of quasiparticle.
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3D translationally invariant photonic quasiparticles

The simplest examples of photonic quasiparticles are those in a 3D translation-invariant

bulk, which supports propagating plane waves that are characterized by their frequency,

momentum, propagation lifetime, and polarization. The polarization is transverse to the

electric displacement D or magnetic field H, unless ϵ(k, ω) = 0 or µ(k, ω) = 0 respec-

tively. If ϵ(k, ω) = 0 or µ(k, ω) = 0, longitudinal modes of Maxwell’s equations are

allowed, like bulk plasmons and phonons, or bulk magnons in the magnetic case. Even in a

homogeneous medium, there exist several distinct kinds of photonic quasiparticles, which

include photons in vacuum, photons in a transparent medium (e.g., glass), bulk polaritons,

and their quasi-static analogues (e.g., bulk plasmons, bulk phonons, etc.). A key difference

between these photonic quasiparticles and photons in vacuum is that some have phase ve-

locities below the speed of light c, with bulk plasmons and phonons having velocities far

below the speed of light. These reduced phase velocities enable phenomena such as ra-

diation from uniformly moving charges, e.g., the Cherenkov effect in a dielectric medium

[26], bulk plasmon emission processes measured in electron-energy loss spectroscopy [27],

and even phonon emission processes by electrons in solids [28].

2D and 1D translationally-invariant photonic quasiparticles

. 2D translation-invariant systems include thin films, slabs, interfaces between two semi-

infinite materials, multilayer stacks, and 2D materials. Such systems support several kinds

of photonic quasiparticles, including waveguide modes in dielectric slab waveguides and

hyperbolic media (such as hexagonal boron nitride), and confined surface modes that evanes-

cently decay from the surface (e.g., surface plasmon polaritons and surface phonon polari-

tons in conventional media [29, 30]). Because the class of 2D translationally invariant pho-

tonic quasiparticles includes both thick and thin films, some examples of photonic quasi-

particles such as slab waveguide modes and hyperbolic surface phonon polaritons could

be considered as being both surface (due to their evanescent tails) and bulk (due to their

propagation in the medium). 2D translationally invariant modes are characterized by their

frequency, in-plane momentum, propagation lifetime, and polarization. Waveguide modes
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can further have a discrete mode order that determines their out-of-plane field distribution.

From the standpoint of light–matter interactions, the polarization and dispersion of 2D

translationally invariant systems lead to many effects that do not occur with photons in

vacuum. For example, evanescent modes can have circular polarization in the plane per-

pendicular to their magnetic field. The chirality is locked to the direction of propagation

(spin-momentum locking [31]), so that right-moving and left-moving waves have opposite

chirality. Thus, an emitter with a circularly polarized transition dipole moment can only

emit waves in one direction, as waves in the opposite direction have zero overlap with the

dipole [32]. Relatedly, we note that polaritons in some systems, such as exciton-polaritons

[33, 34] and plasmons [35, 36], can take on topological properties inherited from the matter

part of the quasiparticle. Such topological properties allow for robust uni-directional polari-

tonic modes, which in the presence of an emitter could lead to new routes for unidirectional

light-matter coupling.

In another example related to polarization, because the polarization of a surface mode

is partially out-of-plane, a surface mode overlaps well with a vertically oriented transition

dipole associated with a planar emitter such as excitons in a transition metal dichalcogenide

[37]. This lies in contrast to free-space, where the transversality of the electromagnetic

wave implies that vertically oriented dipoles cannot emit at normal incidence (zero over-

lap), rendering them optically dark and difficult to detect in the far-field. This enables one

to perform spectroscopy with dark excitons based on surface plasmons [37].

Another key difference in light–matter interactions comes from the fact that systems

with negative permittivity (polaritonic systems), support surface modes with wavelengths

far smaller than that of a photon of the same frequency [38, 9, 8, 10, 39, 40, 11, 12], cor-

responding to a highly confined out-of-plane field. Such confinement leads to a very high

local density of electromagnetic states, and consequently, quantum emitters in the vicinity

of these modes can interact quite strongly with them, manifesting in enhanced spontaneous

emission, as well as breakdown of selection rules associated with the dipole approxima-

tion. These effects are elaborated in Section 2. Experimentally, such quasiparticles have

been leveraged for high-resolution nano-imaging of electrons in solids [5, 41, 42], sensi-

tive sensors of vibrational transitions in molecules [43, 44], and enhanced interactions with
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quantum emitters [45]. Similar conclusions to those discussed for 2D modes also apply in

1D translation-invariant systems (e.g., fibers and other waveguides) [46, 47, 48].

Importantly, the photonic quasiparticle concept also applies in systems with discrete

translation invariance (periodic systems), in any dimension, where it includes photonic

crystal modes (Bloch photons) [49].

0D translationally-invariant photonic quasiparticles. Systems with 0D translation-invariance

(i.e., that fully break translation-invariance) support localized cavity modes, a distinct type

of photonic quasiparticle characterized by its frequency, lifetime, polarization, and field

distribution (setting its mode volume). In particular, cavities with high quality factors sup-

port photonic quasiparticles such as whispering-gallery modes [50, 51, 52] and photonic

crystal defect modes [53, 54], used for example for enhanced sensors and for low-threshold

laser interactions. Of importance for this review are cavities with ultra-high quality factors

[50, 51, 52, 54] and ultra-small mode volumes (e.g., plasmonic and phonon-polaritonic

cavities). Both can enable enhanced spontaneous emission due to the concomitant en-

hancement of the local-density of states [55, 56, 13, 14]. This feature is similar to highly

confined propagating quasiparticles in 1D and 2D. One major difference in 0D systems is

that boundary conditions force a quasi-discrete spectrum for the modes, leading to sharp

spectral peaks in the local density of states – in contrast to systems with propagating modes,

whose spectrum is continuous. Qualitatively, the interaction of quantum emitters with a

discrete mode is quite different from that with continuum modes. In the former case, the

system resembles two coupled oscillators, allowing new normal modes of the emitter and

cavity mode to form (strong coupling). In the latter case, a discrete emitter undergoes ir-

reversible decay into the continuum (enhanced spontaneous emission), provided that the

coupling is not too strong.

Special types of photonic quasiparticles that do not fit as neatly into the above cat-

egorization can be constructed by superposition of extended modes, which breaks their

translation invariance and effectively localizes them. For example, a cylindrically symmet-

ric superposition of surface plasmons creates plasmon vortices characterized by an integral

orbital angular momentum (OAM) quantum number. Such 2D vortices have been observed

on various metal-insulator surfaces [57, 58, 59] and predicted in graphene and hexagonal
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boron nitride [60]. More advanced superpositions can be used to create arrays of vortices

with topological features [61]. From the standpoint of light–matter interactions, photonic

quasiparticles with OAM are interesting because when an electron absorbs or emits such

a quasiparticle, its angular momentum must change by the OAM of the quasiparticle (pro-

vided the emitter and vortex are concentric) [62, 63, 64]. Controlling dynamics with OAM-

possessing photonic quasiparticles also applies in the case of free-electron absorption and

stimulated emission [65, 66].

In this section, we have largely considered photonic quasiparticles in terms of the modes

of the linear Maxwell equations: however, photonic quasiparticles are subject to nonlinear-

ities. For example, exciton-polaritons have strong nonlinearities owing to Coulomb in-

teractions between the excitons, leading to phenomena like polariton-polariton scattering.

These nonlinearities lead to exciting phenomena such as Bose-Einstein condensation and

superfluidity [67, 68, 69, 70, 71, 72] , as have been demonstrated with exciton polaritons,

as well as with magnons [73]. For example, in the case of exciton-polariton condensates

formed by semiconductors in microcavities, leakage of the photonic part of the polariton

from the cavity walls leads to emission in a coherent state (the coherence is derived from

that of the condensate), analogous to laser action, and termed accordingly as polariton las-

ing. Another interesting aspect of these polaritons is that their strong nonlinear interactions

lead to intriguing effects such as polarization-sensitive switching effects, which have been

proposed for polarization dependent switches and transistors [74, 75, 76, 77].

Example of photonic quasiparticles: Polaritons in van der Waals materials.

An important example of photonic quasiparticles are polaritons in van der Waals and 2D

materials – primarily plasmon and phonon polaritons. They are of great recent interest

because unlike photons in conventional dielectrics, they can be confined to volumes over a

million times smaller than that of a diffraction-limited photon in vacuum, which can enable

many new effects in light–matter interactions, as well as enhanced sensors, and enhanced

optical nonlinearities. The basic physics of polaritons is well-described in recent reviews

(e.g., [78, 5, 6]); our focus is on their unique light–matter interactions, emphasizing the key

similarities and differences to free-space photons.
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In Fig. 4, we summarize recent experiments probing polaritons in thin films and 2D ma-

terials, demonstrating that optics can be performed with polaritons. In planar slabs of po-

laritonic materials, the polariton has an in-plane wavevector much larger than the wavevec-

tor of a photon at the same frequency. Due to the continuous translational symmetry of

the slab, photons incident from the far-field cannot couple directly to the slab (ignoring the

edges of the slab), necessitating the use of a coupling element that provides momentum to

the incident photon, enabling momentum conservation. The most common examples are

sharp tips and gratings. A sharp tip fully breaks in-plane translation symmetry, allowing an

optical far-field to launch polaritonic waves from the tip, as is central to methods like scan-

ning near-field optical microscopy (SNOM). Such methods are used extensively to measure

the complex dispersion relation (wavenumber and propagation length), as well as the spa-

tial distribution of the electric field, in various polaritonic systems: plasmons in graphene

[9, 8, 79, 40, 12], phonon polaritons in hexagonal boron nitride (thin films and monolayers)

[10, 80, 81, 82], exciton polaritons in molybdenum selenide [83, 84], and newer materials

such as hyperbolic phonon polaritons in molybdenum trioxide [85, 86].

Figs. 4a and 4b show direct examples of the highly confined nature of the polaritons. In

Fig. 4a, showing a recent example with plasmons in graphene, the plasmon is measured to

have a wavelength over 100 times smaller than the wavelength of a photon in vacuum. This

is a key difference from photonic quasiparticles in all-dielectric systems. Fig. 4a shows

the exceptionally long lifetime that can be achieved with graphene plasmons (roughly 130

optical cycles), which was facilitated by operating at low temperature to suppress losses

related to acoustic phonon coupling. The combination of high confinement and low loss is

instrumental not only in envisioning optical components based on the propagation of plas-

mons, but more generally in enhancing light–matter interactions with quantum emitters.

Such enhancements depend on the local density of optical states that increase with high

confinement and low loss. In Fig. 4b, we show a recent SNOM of highly-confined phonon-

polaritons in molybdenum trioxide, whose wave-fronts demonstrate the hyperbolic nature

of the polaritons in this material [86], potentially enabling new platforms for hyperbolic

optics in the mid-infrared spectral region.

Various antenna structures can also be used to assist the coupling of light into the pho-
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tonic quasiparticle mode, as in Fig. 4d, where a gold rod is used to launch phonon polari-

tons in gratings of hexagonal boron nitride, which act as a hyperbolic metasurface. Due to

the opposite signs of in- and out-of-plane permittivities, wavefronts launched from the rod

exhibit spatial propagation profile in a clear signature of hyperbolicity [87], enabling one

to study light–matter interactions between emitters and hyperbolic quasiparticles. Similar

methods using antennas have also been used to launch graphene plasmons [88]. Recently,

the reflection and refraction of these hyperbolic polaritons has also been observed [89], at

interfaces between hBN and vanadium oxide (VO2), a phase change material. Such obser-

vations may enable planar demonstrations of phenomena such as lensing based on photonic

quasiparticles.

The interaction with polaritons can also be facilitated with grating structures, as in

Fig. 4c, where a grating-cavity consisting of a gold-grating atop a gold mirror sandwiches

boron-nitride-encapsulated graphene [11] (encapsulation improves the lifetime of the plas-

mon, due to suppression of coupling to phonons [90]). The grating couples far field light

into the cavity-enhanced graphene plasmons that benefits from the very high reflectivity

of gold at the mid-infrared wavelength. While the lifetime is modest, being on the or-

der of ten optical cycles, what is remarkable here is that this cavity achieves out-of-plane

confinement of the graphene plasmon to the scale of 1 nm, representing the smallest mode-

volume graphene plasmon ever measured, with an estimated mode volume on the order of

10−9λ3
0. Such small volumes could enable extremely non-perturbative interactions between

light and matter, with emerging designs demonstrating potentially even tighter confinement

[91].

Example of photonic quasiparticles: plasmons in metallic nanogaps

Another important class of photonic quasiparticles in this Review are plasmons in the “con-

ventional” noble metals such as gold and silver. Confined surface plasmons can be sup-

ported in these systems based on thin films and metal-insulator-metal structures. We focus

particularly on localized plasmonic cavities as they have been the workhorse of recent ex-

periments in strong quantum light–matter interactions. We leave detailed discussion of the

electromagnetic physics of these cavities to dedicated reviews as [15]. Plasmonic nano-
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gaps typically involve the geometry of a metallic nano-particle (such as a nano-sphere or

nano-disk) separated from a planar metal film by a very small gap, which can be on the

order of 1 nm. This geometry is referred to as a nanoparticle-on-mirror (sometimes abbre-

viated as NPoM) geometry or as a plasmonic nanogap cavity.

Recent experiments have demonstrated the existence of these strongly confined cavity

modes based on nanogaps as “large” as 5 nm [55], moving recently to sub-nanometer sizes

[13]. A striking recent example of this geometry at its ultimate limit is that of the pico-

cavity [14], which leads to strong field enhancements in a single atom protrusion from a

nanoparticle, explained in terms of a type of lightning-rod effect. It is instrumental to note

the values of the polarization, lifetime, and mode volume of these types of modes: the po-

larization is primarily perpendicular to the interfaces, the lifetimes tend to be roughly one

to ten optical cycles (with potential improvements coming from hybrid dielectric-metal ge-

ometries [92]), and the mode volumes have been estimated to be below 1 nm3. The extreme

confinement of such cavities makes effects related to spatial nonlocality particularly strong

[93]; such effects are of considerable importance as they are likely to provide fundamental

limitations on applications of nanophotonics and light–matter interactions.

2.1.2 Quantum electrodynamics with photonic quasiparticles

Although the examples above have thus far been understandable from solutions of the clas-

sical Maxwell equations, experiments have also demonstrated the underlying quantum na-

ture of the electromagnetic fields of these photonic quasiparticles through quantum opti-

cal measurements. Many of these experiments have been in the context of plasmonics.

For example, quantum statistics of plasmons were demonstrated [94], along with plas-

monic preservation of photon entanglement [95] and two-plasmon quantum interference in

a Hong-Ou-Mandel experiment [96].

Perhaps more simply, phenomena like spontaneous emission in any material system

already call for a quantized description of the electromagnetic fields associated with each

type of photonic quasiparticle. The key theoretical framework that prescribes the quantiza-

tion of any photonic quasiparticle and the interactions of these quasiparticles with emitters
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is called macroscopic quantum electrodynamics (MQED) [23, 97, 98]. It is “macroscopic”

because it treats the photonic quasiparticles as being governed by the macroscopic Maxwell

equations. i.e., MQED treats the medium in terms of permittivities and permeabilities, tak-

ing the microscopic charges and currents in the medium as continuous. As an important

point of terminology, since MQED handles the quantization of the EM field in any linear

medium, its special cases cover all the effects of “other QEDs” in the literature such as

cavity, circuit, waveguide, photonic-crystal, and plasmonic QED.

Quantization of photonic quasiparticles

Pedagogically, it is useful to explain the quantization of the electromagnetic field in two

steps: in the first, the fields are quantized in ideal, lossless materials, and in the second,

they are quantized in arbitrary absorbing materials. Quantization of electromagnetic fields

in lossless materials is long-known, as exposited in [99, 100]. For most cases of interest,

the lossless case describes very well the essential physics of the emission and absorption

of photonic quasiparticles by emitters, bound or free. With this in mind, we first describe

the quantization in lossless materials in a constructive way that introduces the terminology

to be used more generally later. The absorbing case is presented in Box 1.

In lossless and non-dispersive materials, we may represent an electromagnetic field

operator (such as the vector potential A(r, t) in the Heisenberg picture) in terms of an ex-

pansion over time-harmonic modes Fn(r)e−iωnt. These modes capture all of the details of

the frequency, polarization, and field distributions of the photonic quasiparticles described

in the previous section (e.g., dispersion relations, polarization properties, and field distribu-

tions). In this expansion, each mode, n, is associated with a quantum harmonic oscillator

[100], with associated creation a†
n and annihilation an operators, satisfying the canonical

bosonic commutation relations: [am, an] = [a†
m, a

†
n] = 0 and [am, a

†
n] = δmn. The resulting

vector potential takes the form:

A(r) =
∑

n

√
ℏ

2ϵ0ωn

(
Fn(r)ane

−iωnt + F∗
n(r)a†

ne
iωnt

)
(2.1)

For a non-magnetic medium, the mode satisfies ∇ × ∇ × Fn = ϵk2
nFn, with kn = ωn/c
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[49] and are normalized such that
∫
dr ϵ|Fn|2 = 1. This normalization makes it so that a

one-photon state has an electromagnetic energy of ℏω relative to the vacuum state. This

mode expansion is immediately applicable to QED
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Box 1: Macroscopic quantum electrodynamics (MQED)

In any general material, including lossy ones, we may represent an electromag-

netic field operator in terms of a “mode expansion” that decomposes the electro-

magnetic field in terms of the fields of time-harmonic point dipoles in the medium.

These dipoles are parameterized by their location r, frequency ω, and orientation

k = 1, 2, 3 (or x, y, z). The quantization of the electromagnetic field proceeds

by quantizing these dipoles, associating with each (rωk) a quantum harmonic os-

cillator with associated creation f †
k(r, ω) and annihilation fk(r, ω) operators, sat-

isfying [fk(r, ω), fk′(r′, ω′)], [fk(r, ω), fk′(r′, ω′)]† = 0 and [fk(r, ω), f †
k′(r′, ω′)] =

δkk′δ(r − r′)δ(ω − ω′). Using these operators, the EM field Hamiltonian is given by

Hem =
∫
dr

∞∫
0

dω ℏωf †(r, ω) · f(r, ω). (2.2)

where we have left out the zero-point energy. The resulting vector potential takes the

form (in the Schrodinger picture):

A(r) =
√

ℏ
πϵ0

∫
dω′ω

′

c2

∫
dr′
√

Im ϵ(r′, ω′) (G(r, r′, ω′) · f(r′, ω′) + h.c.) (2.3)

where G(r, r′, ω′) is the Green’s function of the Maxwell equations, which in a non-

magnetic medium satisfies (∇ × ∇ × −ϵ(r, ω)k2)G(r, r′, ω′) = δ(r − r′)I with

k = ω/c. ϵ(r, ω) is the permittivity tensor in a general dispersive, local, anisotropic

medium, and I the 3×3 identity matrix. The MQED vector potential for the nonlocal

case is shown in Table I. This quantized field operator is a central result of MQED

[23], and all the previous expressions for the quantized fields in terms of mode ex-

pansions are special cases of this. Note that all of the cases represented in Table

1 assume non-magnetic media. For magnetically polarizable media, as reviewed in

[23], additional f operators must be introduced that correspond to magnetic dipole

excitations, which are connected to the field operators through a magnetic Green’s

function.
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Then, the field operators are a sum of terms from electric and magnetic dipoles.

We briefly comment on the physical principles encoded in this formalism. The

quantized field is connected to quantized dipoles through the classical Maxwell

equations. We give a brief heuristic sketch of how these dipoles are quantized.

For simplicity, we will do it here in an isotropic, local medium (which can still

be lossy). The idea is to write a current field operator as a sum over bosonic de-

grees of freedom (point dipoles governed by position, frequency, and direction):

j(r) =
∞∫
0
dω(N(r, ω)f(r, ω) + h.c.) with N(r, ω) some unknown normalization

constant. The normalization is prescribed by both the commutation relations be-

tween the fs and the fact that the correlation functions must be in agreement with

the fluctuation-dissipation theorem for a linear medium. In particular, for a linear

medium, it must be the case that

⟨j(r, ω) ⊗ j(r′, ω) = ϵ0ℏω2 coth
(

ℏω
2kT

)
Im ϵ(r, ω)δ(r − r′). (2.4)

Taking the expectation values at zero temperature yields N(r, ω) =√
4πϵ0ℏω2Im ϵ(r, ω). Plugging this in, and convolving the current operator

with the µ0G(r, r′, ω′), as per the classical Maxwell equation for the vector

potential, gives exactly the vector potential operator above.

phenomena in low-loss cavities, waveguides, and photonic crystals. In practice, mode

expansions can also be used in the case of dispersive materials such as the polaritonic

materials presented in Fig. 4 (provided the modes kept in the mode expansion are of low

loss), by changing the normalization condition (as in Fig. 5 and Box 1). The adjusted

normalization condition arises because the energy of the quanta in a dispersive system

is governed by the Brillouin energy density formula for dispersive materials [101, 102].

We mention here that these mode expansions are not valid at all frequencies in dispersive

materials, because regions of high loss generally exist, particularly in polaritonic materials.

The examples shown in Fig. 4 are chosen intentionally to coincide with low enough loss.
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2.1.3 Quantum interactions between emitters and photonic quasipar-

ticles

Once photonic quasiparticles are quantized, we now quantitatively describe how these

quasiparticles interact with bound and free electrons (collectively referred to as emitters).

For this purpose, we consider transitions between electronic states of the emitter that are ac-

companied by the emission, absorption, or scattering of single or multiple photonic quasi-

particles (either real, as in spontaneous emission, or virtual, as in Lamb shifts/Casimir-

Polder forces). Examples of these processes for bound and free electrons were shown in

Figs. 1, 2, with examples of the relevant photonic quasiparticles shown in Fig. 3 and

Section 1.1.

In non-relativistic bound electron systems, these transitions are described by the Pauli-

Schrodinger Hamiltonian, or a suitably approximated version of it (see Box 2). In free-

electron systems (relativistic or non-relativistic), the transitions are governed by the Dirac

Hamiltonian, in cases where electron spin is important, or the Klein-Gordon Hamiltonian,

where it is not (see Box 3). In both cases, the transitions are described by a term propor-

tional to A · v, provided that the electron does not change its energy significantly upon

emission or absorption. This term couples the quantized vector potential to the velocity of

the electron, described in terms of its momentum by v = (p − qA)/m, with q the electric

charge and m the mass of the electron.

The key element in any calculation of light–matter processes with photonic quasiparti-

cles is the rate of transition between some initial quantum state i and some final quantum

state f . See Figs. 1, 2 for examples of initial and final states corresponding to known

light–matter interaction processes. This rate of transitions at arbitrary order in the pertur-

bation can be found by an iterative procedure [103]. The most commonly occurring cases

are the transition rates at first (1) and second (2) order in QED, which are respectively

given as Γ(1) = 2π
ℏ |Vfi|2δ(Ef − Ei), and Γ(1) = 2π

ℏ | lim
η→0

∑
n

VfnVni

Ei−En+iη
|2δ(Ef − Ei). Here,

Vab = ⟨a|V |b⟩, with V = −qA·v being the interaction Hamiltonian of QED, and n denotes

an intermediate (virtual) state to be summed over. The delta functions express the conser-

vation of energy between initial and final states. Energy shifts associated with emission
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and re-absorption of virtual photonic quasiparticles (Lamb shifts, Casimir-Polder forces)

can be described by time-independent perturbation theory, with the shift in energy δEi of

quantum state i given as δEi = lim
η→0

∑
n

|Vni|2
Ei−En+iη

.

So far, the principles of MQED in its lossless and its lossy varieties have been used with

the interaction terms above to describe a plethora of phenomena: atomic spontaneous emis-

sion of one and two photons (see e.g., [104, 100, 23, 105, 106, 107, 108, 109]), emission

from extended emitters in solids like quantum wells (e.g., [110]), strong-coupling effects

in bound emitters (e.g., [23, 111]), cavity / circuit / waveguide / plasmonic / photonic crys-

tal QED phenomena (e.g., [112, 113, 114, 115, 116, 117, 118, 119]), energy shifts due to

virtual photon emission and absorption as the Lamb shifts / Casimir-Polder forces (e.g.,

[120, 121]), Casimir forces (e.g., [122, 23, 123]), and even phenomena associated with

emission of photonic quasiparticles by ultra-relativistic electrons [124, 125], as well as

electrons driven by strong external fields [126]. Generally, it can be used to describe any

of the processes illustrated in Figs. 1, 2.

2.2 Light-matter interactions with photonic quasiparticles

in bound electron systems

The bulk of the Review discusses how the photonic quasiparticles described above are used

to enhance and control the classical and quantum interactions of electromagnetic fields with

electrons in atoms, molecules, solids, and even with free electrons (collectively referred to

as “emitters”). For each type of emitter, it is useful to further divide the interactions by

whether they are “weak-coupling” effects, such as emission, absorption, and scattering,

where the perturbative description of light–matter coupling is valid, or “strong-coupling”

effects, where the perturbative description is not valid. We survey both regimes below. In

all cases, we consider the effects of different types of photonic quasiparticles.
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2.2.1 Controlling bound electron spontaneous emission with photonic

quasiparticles

Spontaneous emission with photonic quasiparticles

A key effect arising from photonic quasiparticles is that the spontaneous emission of ex-

cited emitters (bound or free) can take place by emission of a photonic quasiparticle dif-

ferent from a photon in vacuum. This effect, first investigated theoretically in the context

of nuclear magnetic dipole emission by Edward Purcell in 1946, is today referred to as the

Purcell effect. Quantum mechanically, spontaneous emission corresponds to a transition

between an excited electron (energy ℏωi) with no photonic quasiparticles |i, 0⟩, to a set of

final emitter states (energy ℏωf ) with one photonic quasiparticle at some mode {|f, 1⟩}.

For a fixed final electron state f , the emission rate Γfi can be derived by applying Fermi’s

Golden Rule at first-order in time-dependent perturbation theory, using the quantized elec-

tromagnetic field of an arbitrary medium according to MQED [105]:

Γfi = 2µ0

ℏ

∫
drdr′ j∗

fi(r)Im G(r, r′, ωif )·jfi(r) ≈
2µ0ω

2
fi

ℏ
d∗

fi ·Im G(r, r, ωif )·dfi, (2.5)

where ωif = ωi − ωf , and jfi(r) = qψ∗
f (r)(p/m)ψi(r), with ψi(f) being the initial (final)

emitter wavefunction, q the emitter charge, m the emitter mass, p the momentum opera-

tor, and G(r, r, ω) the Green’s function of the Maxwell equation for the electromagnetic

medium of interest. The final formula can also be expressed in terms of ratio the local

density of optical states (LDOS) of the medium ρ(r, ωif ) = 6ωif

πc2 Im G(r, r, ωif ) as

Γfi = (d̂∗
fi · ρ(r, ωif ) · d̂fi/ρ0(ωif ))Γ0, (2.6)

where d̂fi is the direction of the transition dipole, and Γ0 = |dfi|2ω3
if

3πϵ0ℏc3 the rate of spontaneous

emission into photons in vacuum. That the spontaneous emission is proportional to the

imaginary part of the Green’s function is a manifestation of the fact that spontaneous emis-

sion can be seen as emission driven or “stimulated” by vacuum fluctuations of the quan-

tized electromagnetic field. In particular, the fluctuations of the quantized electric field,

given by ⟨0|Ei(r, ω)Ej(r′, ω)|0⟩ with |0⟩ the vacuum state of the field, are related to the

65



Green’s function via the fluctuation-dissipation relation through ⟨0|Ei(r, ω)Ej(r′, ω)|0⟩ =
µ0
π
ℏω2ImGij(r, r′, ω)δ(ω−ω′). More complex phenomena than single-photon spontaneous

emission, such as multi-photon spontaneous emission and vacuum energy shifts, are also

related to vacuum fluctuations. Consequently, dependences on the imaginary part of the

Green’s function are ubiquitous in light–matter interactions.
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Box 2: Hamiltonians of light–matter interactions in bound-electron systems

We describe the Hamiltonian of light–matter interactions in bound-electron systems.

A system of N non-relativistic charges of masses mi and charges qi, coupled to the

quantized electromagnetic field is described by the Pauli-Schrodinger Hamiltonian

HPS:

HPS =
N∑

i=1

(pi − qiAext(ri) − qiAq(ri))2

2mi

+
∑

i

qiϕext(ri)+
N∑

i>j

V (ri, rj)+Hem (2.7)

where pi is the momentum operator of the ith particle, ri is the corresponding posi-

tion operator. ϕext and Aext are the scalar and vector potential of static external fields

(e.g., Coulomb atomic field and a DC magnetic field). In certain cases, a strong

time-dependent external field, e.g., a high intensity laser, can also be modeled as a

classical field and captured by such potentials, which will become time-dependent.

Aq is the quantized electromagnetic field operator. Hem is the Hamiltonian of the

electromagnetic field. V is the inter-particle (Coulomb) interaction, which depends

on the (DC) permittivity of the medium surrounding the particles (screening), pro-

vided that electrostatic interactions with a medium are treated at a continuum, rather

than atomistic level.

Commonly, the quantized photon fields have spatial variations much longer than the

size of the emitter wavefunction, so that Aq(ri) ≈ Aq(0) (long-wavelength approx-

imation), with the emitter being taken to be localized around r = 0 without loss of

generality. Under the long-wavelength approximation, it is possible to rigorously

transform the interaction Hamiltonian to be specified in terms of the dipole moment

(d =
N∑

i=1
di) and electric field (E). This is the dipole Hamiltonian, given by:

Hdip =
N∑

i=1

(pi − qiAext(ri))2

2mi

+
∑

i

qiϕext(ri)+
N∑

i>j

V (ri, rj)+Hem −d ·E(0)+Hself
dip

(2.8)
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whereHself
dip , the dipole self-energy, is a term whose precise form depends on how the

field is quantized, but in all cases is quadratic in the dipole moment and independent

of the field operators. The dipole Hamiltonian is a work-horse in atomic, molecular,

and optical physics.

A key simplification arises when two levels of a bound electron system resonantly

interacts with a single mode of a low-loss cavity. We may then approximate the

quantized electric field in terms of a single mode, i.e., E(r) = i
√

ℏω
2ϵ0

u(0)(a − a†),

with u(0) the cavity mode function at the emitter. We may also approximate the

matter as a two-level system, i.e., HTLS = 1
2ℏω0σz, with σz the Pauli z-matrix, and

d = dfiσx, with dfi the dipole matrix element of the two-level system. These

approximations lead to the Rabi Hamiltonian, which is the key Hamiltonian of cavity

QED:

HRabi = 1
2ω0σz + ℏωa†a+ gσx(a+ a†) (2.9)

where we have defined g = i
√

ω
2ϵ0ℏu(0) · dfi (taking the dipole matrix element and

field profile real). The Rabi Hamiltonian includes virtual processes in which the two-

level system can be excited while also emitting a photon, as well as those in which

the system can be de-excited while also absorbing a photon. If g ≪ ω, then these

processes can be neglected under the rotating-wave approximation, reducing to the

Jaynes-Cummings Hamiltonian:

HJC = 1
2ω0σz + ℏωa†a+ g(σ+a+ σ−a†) (2.10)

with σ± being the raising (+) and lowering (−) operators of the two-level system.

The quantity jfi(r) is known as the transition current density, and its introduction re-

veals that the emission rate is, up to a factor of 2, Wfi/ℏωif , where Wfi is the classical

work done on this transition current by its own radiated field. The right-hand side of

the equation holds under the dipole approximation (or long-wavelength approximation),

i.e., that jfi is localized over a scale much smaller than that of the optical field, with

68



dfi =
∫
dr ψ∗

f (r)qrψi(r) being the transition dipole moment. This formulation allows nu-

merical simulation of the Purcell effect in complex electromagnetic geometries via classical

electromagnetic simulations based on e.g., finite-element, finite-difference, or boundary-

element methods. The radiated flux to each final state f can be calculated by solving the

classical electromagnetic problem for a dipole source dfi or a more general current source

jfi(r) , where each such source is calculated using the quantum mechanical wavefunctions.

From the above equation, it can be seen that the validity of such an approach is not lim-

ited to dipole emitters but is general to any quantum emitter characterized by its transition

current density.

Although the approach here makes use of MQED in lossy media, it conforms with the

mode expansions of Section 1.2 by recognizing that in the lossless limit, the imaginary

part of the Green’s function is given by a mode expansion of the form Im G(r, r′, ω) =
πc2

2ω

∑
n

Fn(r) ⊗ F∗
n(r′)δ(ω − ωn) [127], leading to a decay rate in terms of modes given by

Γfi = πq2

ϵ0m2ℏωif

∑
n

∣∣∣∣ ∫ dr ψ∗
f (r)F∗

n(r) · pψi(r)
∣∣∣∣2δ(ωif − ωn). In the dipole approximation,

this becomes Γfi = πωif

ϵ0ℏ
∑
n

|dfi · F∗
n|2δ(ωif − ωn).

The case of a dipole emitter: the Purcell effect.

One of the most common and instructive examples of the Purcell effect involves the en-

hancement of spontaneous emission of a dipole emitter in an optical cavity. For a single-

mode cavity, the electric field can be expressed as E(r, t) = u(r, t)e−iωt−Γt/2 with u

a dimensionless function dictating the spatial mode profile, V the mode volume, and Γ

the decay rate of the mode. As there is an arbitrary degree of freedom in defining the

mode volume versus the normalization of u(r), it can be chosen so its maximum value

is 1. The imaginary part of the Green’s function of this single mode can be written as a

Lorentzian [127]: Im G(r, r, ω) = c2

V
Γω

(ω2
if

−ω2)2+(Γω)2 u∗(r)⊗u(r). Defining the quality fac-

tor Q = ω/Γ, the spontaneous emission rate on resonance (ω = ωfi) immediately follows

as:

Γfi = 3
4π2

Q

(V/λ3
0)

|d̂fi · u(r)|2Γ0, (2.11)
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with λ0 = 2πc/ωif the photon wavelength in vacuum. Since Γfi/Γ0 is proportional to the

LDOS, we see immediately that the LDOS goes asQ/V , i.e., it is enhanced by high quality

factors and small modal volumes.

When the transition dipole overlaps perfectly in polarization and is located at the maxi-

mum of the mode (|d̂fi·u(r)|2 = 1), the expression coincides with Purcell’s famous formula

[128]. Experiments involving the Purcell effect often have many emitters that are not lo-

cated at the maximum of the mode and whose polarizations do not perfectly overlap with

the field polarization – leading to less dramatic enhancements than predicted by the ideal

Purcell formula. Another effect that can be appreciated from the Lorentzian dependence

of the Green’s function is that for an emitter far off-resonance from the cavity, Γfi < Γ0,

representing an inhibition of spontaneous emission [112].

Typically, the Purcell factor Fp = Γfi/Γ0 is either optimized by maximizing Q or

by minimizing V . That said, spontaneous emission enhancement need not rely on a cav-

ity, as spontaneous emission can also be enhanced for emitters coupled to waveguides or

polaritonic films that support propagating photonic quasiparticles. In such systems, the

quality factor of the propagating waves does not play the essential role it plays in cavities,

because of the continuous dispersion ω(k) of the waves. However, the confinement factor

η = ck/ω(k) = λ0/λ of the modes plays the role of the mode volume, leading to strong en-

hancement of spontaneous emission into propagating modes that are very sub-wavelength

compared to photons in vacuum. In particular, the emission into thin film modes, up to fac-

tors of order unity, scales as Γfi ∼ η2

(vg/c)Γ0, with vg the group velocity of the mode. Taking

the magnitude of the group and phase velocities to be similar (to order one factors), one

then has Γfi ∼ η3Γ0, stating that the spontaneous emission into surface modes is enhanced

by the “volumetric confinement” of the polariton.

Strong Purcell enhancement can be achieved by means of a small modal volume cavity

as realized in plasmonic nanogap structures [55] (Fig. 6a). In this experiment, the authors

demonstrated directly by time-resolved fluorescence measurements how dye molecules sit-

ting in a few-nm gap between a gold nanocube and gold film (a nanoparticle-on-mirror

geometry) emit into the cavity mode far faster than they emit directly into the far-field.

This particular experiment shows an increase in the spontaneous emission rate in excess of
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1,000, with other experiments in the same geometry showing fluorescence enhancements

of 30,000 [129]. Similar enhancements have been proposed with e.g. polaritons in van

der Waals materials, such as graphene plasmons or phonon polaritons in hBN. The first

to do so was by Koppens et. al., predicting spontaneous emission rate enhancements of

one-million-fold in doped nano-disk cavities [130]. The Q/V ratio needed for this level

of enhancement has been inferred experimentally in a few graphene-plasmonic systems,

and in phonon-polaritonic systems based on hexagonal boron nitride and silicon carbide

[131, 132, 11].

So far, such enormous enhancements have yet to be demonstrated, perhaps due to the

fact that a suitable emitter has yet to be identified that can be integrated with graphene

plasmons, although some recent works along this direction are promising [133]. To that

end, experiments with erbium atoms near doped graphene surfaces showed that that relax-

ation rate of excited erbium atoms was strongly modified in the vicinity of graphene. That

work indirectly showed enhancement factor on the order of 1,000, and dependence of the

relaxation rate on the doping level in graphene, which enabled several different regimes of

decay into electron-hole pairs, plasmons, and photons [45].

Novel spontaneous emission processes enabled by photonic quasiparticles

Transitions associated with emission or absorption are typically associated with emission

of a single photonic quasiparticle (per emitter) and typically obey dipole selection rules.

However, transitions by other channels are possible: (1) multipolar emission, in which an

emitter decays by changing its orbital angular momentum by more than one unit, and (2)

multiphoton spontaneous emission (Fig. 6b), where an emitter decays by the simultane-

ous emission of multiple photonic quasiparticles. The rate of both types of processes is

significantly enhanced by photonic quasiparticles in nano-cavities or polaritonic systems,

because the field distributions of the quasiparticles becomes highly confined, such that the

size of the electromagnetic field more closely matches the size of the wavefunction of the

emitter.

The conditions for strong multipolar emission directly arise from the matrix element

which appears in Fermi’s Golden Rule, Mfi =
∫
dr ψ∗

f (r)F∗
n(r) · pψi(r). Typically, the
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spatial extent of the wavefunction, a, is much smaller than the spatial extent of the mode,

λ. In that case, we can Taylor expand the mode around the center of the emitter (r = 0),

expressing the matrix element as

Mfi =
∫
dr ψ∗

f (r)(F∗
n(0)+(r ·∇)F∗

n(0)+ 1
2(r ·∇)2F∗

n(0)+O((r ·∇)3)) ·pψi(r) (2.12)

Each successive term in the series differs from the last by an additional r · ∇. The first

term contains essentially the electric dipole operator (as p matrix elements are proportional

to r matrix elements), and drives electric dipole (E1) transitions. Note that stopping the

expansion at this term is exactly the ubiquitous dipole approximation, and it directly leads

to Eq. (2.12) above. The second contains terms that drive electric quadrupole (E2) and

magnetic dipole (M1) transitions. The third contains terms that drive electric octupole (E3)

and magnetic quadrupole (M2) transitions, and so on.

The magnitude of each successive term, compared to the previous is roughly |k · rfi| ∼

ka = 2πa/λ, since the typical value of the magnitude of rfi is the wavefunction size a,

and the typical value of the gradient is the inverse of the characteristic length scale, k. Note

that for plane wave modes, as in translationally invariant structures considered earlier, this

characteristic inverse length scale coincides with the wavenumber when considering the

gradient in the direction of invariance. Assuming that different terms in this series do not

interfere (a reasonable assumption for small ka), the rates of transitions governed by the

nth term scale like (ka)2n relative to the dipole term. Thus, these higher-order transitions

can be very strongly enhanced by increasing the wavevector of the mode, e.g., by having a

very strongly confined mode – making photonic quasiparticles such as polaritons uniquely

suited for probing multipolar transitions (which are typically considered “forbidden” due

to their low rates).

Effects associated with multipolar transitions effects have been studied in the past using

(metal) plasmonic nanoparticles both theoretically [134, 135, 136, 137] and experimentally

[138], with some experiments demonstrating deviations from the classic dipole selection

rules in metallic structures [139]. These beyond-dipole corrections were enhanced by the

large electronic wavefunctions of the emitters used, namely carbon nanotubes [139] and
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mesoscopic quantum dots [138]. In theoretical works, the focus was traditionally on elec-

tric quadrupole and magnetic dipole emission, the leading order beyond-dipole transitions,

as higher-order decays were still weak relative to typical dipole transition rates. In compari-

son, effects associated with simultaneous emission of multiple photonic quasiparticles have

only been studied in one experiment, which showed an enhanced two-plasmon emission in

nanogap structures [140].

Recently, it was predicted (in a unified manner via MQED) that polaritons in van der

Waals materials can enable effectively-forbidden transitions due to their high confinement

and local density of states. These transitions include high-order electric multipole tran-

sitions, singlet-triplet transitions, and even multiplasmon spontaneous emission (Fig. 6b)

– all at rates approaching those of dipolar transitions in free space [105]. Similarly, pho-

tonic quasiparticles (specifically graphene plasmons) were predicted to enable significant

beyond-dipole effects in solid-state emitters such as quantum wells (Fig. 6c) – the emitter

can absorb and emit light according to a non-vertical transition, thus changing its momen-

tum significantly [110]. The resulting non-vertical transitions lead to Doppler shifts, and

are a manifestation of an induced spatial nonlocality in the quantum well.

Going beyond the above predictions, recent theoretical works have proposed using

phonon polaritons to make two-phonon-polariton emission dominate the single-phonon-

polariton decay that enables strong quantum nonlinearities [109], using plasmons with or-

bital angular momentum to control optical selection rules [64, 141], reaching strong cou-

pling effects in multipolar decay [142, 143], showing interference effects between differ-

ent multipolar channels [144], using surface magnon polaritons to strongly enhance spin

relaxation [145], realizing strong Purcell enhancements and strong coupling with exci-

ton polaritons [146, 147], and reaching effects of spatial non-locality on multipolar and

multi-plasmon transition enhancement in metals [148, 149]. The last work shows appli-

cations of MQED to non-local media [149]. Meanwhile, recent experimental works have

investigated selection-rule breakdown based on the polarization of plasmons [37], nonlo-

cal (finite-wavevector) effects in absorption of light by van der Waals quantum wells [150]

and by graphene [151], enhancement of quadrupolar transitions with surface plasmons in

atomic gases [152], and enhancement of singlet-triplet decays with hyperbolic metamate-
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rials [153].

2.2.2 Strong coupling effects with tightly confined photonic quasipar-

ticles

Interaction of photonic quasiparticles with a two-level system: the Rabi Hamiltonian

When emission and absorption are sufficiently enhanced, an emitter is capable of coher-

ently emitting and re-absorbing a photonic quasiparticle before it is lost (e.g., to radiative

or dissipative losses) [19, 154, 20, 21]. The emitter and the cavity are then said to be in the

strong coupling regime. A simple description of the strong coupling can be derived from

the fundamental MQED Hamiltonian in the case where the emitter is strongly coupled to

one mode, which is nearly resonant with a transition between two particular levels in the

system (see Box 2). In that case, the MQED description becomes equivalent to the Rabi

HamiltonianHR, i.e., a two-level system coupled to a single harmonic oscillator (the cavity

mode):

HR = 1
2ℏω0σz + ℏωa†a+ ℏgσx(a+ a†) (2.13)

with g =
√

ω
2ϵ0ℏV

dfi ·u(r), where ω0 is the emitter frequency, ω is the cavity frequency, σz,x

are Pauli z- and x-matrices, and a(†) is the annihilation (creation) operator for the cavity

photon. The Rabi frequency g, which measures the strength of the interaction between

matter and photon, can be found through MQED at different levels of approximation (see

Box 2). In the case of a low-loss cavity and a dipole emitter at point r, g can be expressed in

terms of the dipole moment of the transition dfi, the mode volume V , and the mode function

u(r). It measures the interaction energy of the dipole with the vacuum(-fluctuation) field

of the cavity.

One of the key phenomena encoded in this Hamiltonian is Rabi splitting. In particu-

lar, if the emitter and cavity are resonant with each other, and g, then the first two excited

states of the system split in energy by an amount 2g. This Rabi splitting is the hallmark of

strong coupling phenomena, and is a key measurement in many works presenting evidence

for strong coupling. Typically, this measurement proceeds by sending light at the strongly
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coupled system, and recording a scattering (e.g., transmission) spectrum. In the strongly

coupled regime, the scattering spectrum will feature two resonances, split by the Rabi split-

ting (in contrast to a single resonance in the weakly coupled system). The strong coupling

regime is manifested experimentally when the splitting is resolvable compared to the widths

(related to losses). This condition is mathematically expressed as: g >
√
γ2 + κ2, with κ

the photonic quasiparticle loss, and γ the atomic loss. The temporal dynamics associated

with this frequency splitting are damped vacuum Rabi oscillations, in which the emitter

coherently emits and re-absorbs the photonic quasiparticle multiple times before the quasi-

particle decays. Such dynamics have been observed many times in the context of low-loss

dielectric cavities [155, 156, 157, 158], but only recently have been observed in plasmonic

contexts [13, 159].

In general, there are three ways to achieve strong coupling: by having many (N ) emit-

ters couple to the same mode (g becomes enhanced by
√
N ), by having many (n) photons

pre-populate the cavity mode (g becomes enhanced by
√
n), or by having a single emit-

ter couple to an extremely confined mode with a small mode volume (since g ∼ 1/
√
V ).

The last option represents strong quantum electrodynamical interaction at the single photon

level. Any combination of these three methods enhances the coupling further. From the

standpoint of this review, the strong confinement of the photonic quasiparticles considered

here (polaritons, as well as highly-confined gap plasmons) can enable strong coupling with

relatively few emitters and potentially, even a single emitter.

Fig. 6d illustrates this last point, showing a recent experiment demonstrating strong

coupling of molecules to a nanoparticle-on-mirror geometry [13]. The authors rely on a

nanoparticle-on-mirror-geometry, based on a 0.9 nm gap established by a molecular spacer

layer (cucurbit[7]uril) between a gold nanoparticle and a gold film. Beyond the use of

cucurbit[7]uril as a spacer, it also intriguingly acts as a “cage” for the emitter used in the

experiments, methylene blue, which also allows it to bind to the nanoparticles above. This

gap structure supports extremely confined gap modes, which such a small mode volume,

that the authors predict that the associated Purcell factors are of 3 × 106. These extreme

enhancements are sufficient enough for a few emitters (between one and ten) to experience

strong coupling to the cavity mode, as shown through measurements of the Rabi splitting
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as a function of the relative concentration of the emitter and the cucurbit[7]uril host. Since

the density of molecules change the resonance frequencies of the combined system, the

Rabi splitting can act as a measure of their concentration, allowing sensing applications.

Similar Rabi splittings can be observed in scattering spectra even in systems with less

drastic (but still large) confinement by means of coupling more emitters to the mode. The

Rabi splitting in these macroscopic experiments in some sense are quite classical, as the

Rabi splitting can be quantitatively calculated in these many-molecule experiments purely

through classical physics. In particular, the Rabi splitting can be obtained by modeling

the molecular assembly as a Lorentz oscillator of the appropriate geometry, and solving

Maxwell’s equations for resonance frequencies in the system of this Lorentz oscillator cou-

pled to the dielectric or metal materials constituting the cavity. Examples of this are shown

in Fig. 6(e,f), specifically for 2D material systems: a graphene plasmon-based (bio)sensor

[43], and a hexagonal boron nitride phonon-polariton based sensor [44]. In both of these

examples, it is the very strong ( 10 nm scale) field confinement of the polariton, in conjunc-

tion with having many emitters, that enables strong coupling. These collective couplings

have also been observed in systems of molecular vibrations coupled to resonant systems

(e.g., Fabry-Perot cavities) [160, 161, 162, 163]. For high densities of emitters, in order to

model the mode splitting based on a Rabi model, counter-rotating terms need to be taken

into account, indicative of “ultra-strong coupling”. Such systems have been explored with

possible applications in controlling chemical reactions [164]. Beyond collective coupling

of emitters to cavities, it is also possible to achieve strong (and ultra-strong) coupling be-

tween different collective excitations, such as strong coupling of surface phonon polaritons

to surface plasmon polaritons in epsilon-near-zero materials [165, 166].

Toward ultrastrong coupling

As an outlook on this section, we mention one last very interesting theoretical possibility,

related to single-emitter ultrastrong coupling, that can be achieved as the confinement of

the photonic quasiparticle becomes such that it is comparable to the scale of the electronic

wavefunction. Strong coupling, as discussed in the previous paragraphs, is maintained

when the emitter’s decay exceeds the loss rate, which is typically much smaller than the
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mode frequency. However, a new regime of quantum light–matter interactions emerges

when the decay exceeds the mode frequency [21, 20].

In that case, a number of phenomena emerge that do not occur in strong coupling.

Interesting examples include: (1) Rabi oscillation even when an emitter is interacting with

a continuum of modes (as in a waveguide, as opposed to a discrete cavity mode) [167]. (2)

Considerable changes in the energies of the ground state, due to very strong Lamb shift

[168, 167], which could allow changes in macroscopic thermodynamic properties such as

chemical reactivity, specific heat, and even dielectric properties. (3) Virtual photons appear

as part of the ground state of the coupled system (nonzero expectation values of photon

number), which can in principle can be extracted by time-modulating the system, as in

the dynamical Casimir effect [169, 170]. (4) Decoupling of light and matter for extreme

coupling strengths [171, 172, 173]. The origin of many of these striking new phenomena

is the breakdown of the rotating-wave approximation, in which one neglects the effect of

virtual (energy non-conserving) processes, such as an emitter both becoming excited and

emitting a photon, or an emitter becoming de-excited and absorbing a photon.

To this date, single-emitter ultrastrong coupling has only been observed in systems of

superconducting qubits coupled to microwave cavities [174, 175], which works due to the

extremely large effective dipole moment of the qubit (which g is proportional to). Looking

forward, extremely confined graphene plasmons (as in [11]) may enable bringing single-

emitter ultrastrong coupling to the infrared regime, as first suggested in [105] and predicted

theoretically to be possible in a graphene–quantum-well stack [111].

2.3 Light–matter interactions with photonic quasiparti-

cles: free electrons

2.3.1 Controlling free electron spontaneous emission with photonic

quasiparticles

Much of the focus in the field of quantum light–matter interaction is focused on emission

and absorption of photonic quasiparticles based on bound electrons, i.e., emitters which are
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spatially confined by some potential in at least one dimension leading to discrete states or

bands. However, many researchers are now considering the classical and quantum interac-

tions of emitters based on free electrons. Part of the uniqueness of light–matter interactions

of free electrons arises from their energy spectrum being continuous, rather than discrete

as with most bound electron systems. This difference results in free-electrons transitions

and free-electron radiation sources being tunable. Moreover, free electrons reach much

higher (often relativistic) energies, which consequently enables transitions at much higher

frequencies than is available for bound electron systems, even allowing emission of X-rays.

In this section, we will go into detail on light–matter interactions enabled by free-electrons.

Spontaneous emission by a free electron in a homogeneous medium: the Cherenkov

effect

We start by considering the Cherenkov effect, as in some sense, it represents the most basic

light–matter interaction possible in free-electron systems. Indeed, the Cherenkov effect

can be described as spontaneous emission by a free electron [176, 177]. Historically, the

Cherenkov effect (or Cherenkov radiation) has been associated with the radiation emitted

when a charged particle (not limited to free electrons) moves faster than the phase velocity

of light in a homogeneous dielectric medium [178]. Famously, in a non-dispersive medium,

the radiation is emitted into a forward propagating cone centered around the direction of

motion of the particle, with an opening angle θ that satisfies cos θ = 1/βn. Here n is the

index of refraction of the medium and β = v/c is the speed of the particle (v) normalized to

the speed of light (c) [179]. Here, the effect is enabled because the photonic quasiparticle,

i.e. the photon in a medium, has a phase velocity vp slower than c.

The scope of the Cherenkov effect goes far beyond charged particles in homogeneous

media. For example, consider the relation cos θ = 1/βn. This relation is a specific way of

representing a more general phase-matching condition that applies to many free-electron

radiation processes beyond the Cherenkov effect. This condition is given by v · k = ω(k),

where v is the charged particle velocity, k is the wavevector of the photon emitted, and

ω(k) the corresponding frequency of the photon prescribed by the dispersion relation

[26, 180, 27, 181]. This phase-matching condition is a result of energy and momentum
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conservation. Moreover, as can be seen from this general phase-matching, the emitted

photon need not be in a homogeneous medium. The emission can be into a more general

photonic quasiparticle, such as a waveguide mode, or surface polaritons such as plasmon

and phonon polaritons, or a photonic Bloch mode, provided that the system has a well-

defined momentum in some direction (discrete or continuous translation symmetry).
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Box 3: Hamiltonians of light–matter interactions in free-electron systems

In general, the interaction of relativistic, spin-½ electrons with the electromagnetic

field must be described by the Dirac equation. However, in many cases of inter-

est (e.g., free electrons in microscopes and accelerators), spin weakly influences the

dynamics. In such cases, the interaction can be described by the Hamiltonian of

spin-less relativistic particles (Klein-Gordon, or scalar QED Hamiltonian). The cor-

responding Hamiltonian H rel (omitting inter-particle interactions) is given by:

H rel =
N∑

i=1

√
m2c4 + c2 (pi − qiA(ri))2 + qiϕ(ri) +Hem

≈
N∑

i=1
E(pi) + qiϕ(ri) −

N∑
i=1

qiA(ri) · vi +Hem (2.14)

where we have approximated the square root, using the fact that the energy associ-

ated with the matter–field coupling is typically much smaller than mc2. Here, we

have also defined vi = pi/mγi , with γi = (1 − v2
i /c

2)−1/2 being the Lorentz factor

and E(pi) =
√
m2c4 + c2p2

i is the electron kinetic energy.

For relativistic electrons that propagate short enough distances for dispersion to be

negligible, and whose dynamics are predominantly in the direction of motion, a sim-

ple form of the QED Hamiltonian can be derived. This Hamiltonian can describe

phenomena in photon-induced near-field electron microscopy (PINEM) with quan-

tized electromagnetic fields [Kfir2019, DiGiulio2019]. In the absence of dispersion,

the electrons can be described within the paraxial approximation. Provided this, and

that the electromagnetic momentum |eA| ≪ mv, with A the vector potential and

v the magnitude of the electron velocity, the system of a free electron and a quan-

tized radiation field can be described by the following Hamiltonian (up to a constant

energy shift)

Hel
QED = −iℏv∂z +

∑
n

ℏωna
†
nan − qv

∑
n

(Anz(z)an + A∗
nz(z)a†

n), (2.15)
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where Anz =
√

ℏ
2ϵ0ωn

Fnz, defining the z direction as the direction of the velocity.

Writing the interaction Hamiltonian in the interaction picture, it can be shown that

VI(t) = −qv
∑

n

An(z + vt)ane
−iωnt + A∗

n(z + vt)a†
ne

iωnt (2.16)

has the property that [VI(t1), [VI(t2), VI(t3)]] = 0, and thus the state of the system

at a given time is |ψ(t)⟩ = ∏
n
eχneSn|ψ0(t)⟩. The state |ψ0(t)⟩ = e−ivt∂z−

∑
n

iωnta†
nan

describes the time-dependent state of the electron and photon in the absence of

electron-photon interactions. The terms in the exponents are

χn = −iq2

ℏ2

z∫
−∞

dz1

z1∫
−∞

dz2Im
[
Anz(z1)A∗

nz(z2)e−i ωn
v

(z1−z2)
]

(2.17)

Sn = ei ωn
v

zgnan − e−i ωn
v

zg∗
na

†
n (2.18)

with gn = q
ℏωn

z∫
−∞

dz′Enz(z′)e−i ωn
v

z′
and Enz = iωnAnz. The gn derived here,

in the limit of z → ∞. is equivalent to the PINEM coupling constant of Eq.

(2.21). In the case of electron interaction with a coherent state an → αne
−iωnt

and a†
n → α∗

ne
iωnt,and the resulting wavefunction matches that of the conventional

PINEM theory with classical driving fields.

It is also possible for the electron to emit into localized (cavity) modes, analogously to

much of the research investigating bound electron coupling to cavities.

Previous work showed how the dispersion relation of the photon distinguishes between

variants of the Cherenkov effect. For example, negative index materials [182]. This effect

was observed using mathematical analogies simulating the emitting particle by a phased-

array antenna [183]. Mathematical analogies were also used to observe a kind of Cherenkov

effect involving a directional emission of surface plasmon polaritons, using metasurfaces

[184] to simulate the polarization field of a moving electron. Nevertheless, such effects

have yet to be observed with true charged particles. Controlling the angular emission prop-

erties of Cherenkov radiation is important, particularly in applications such as Cherenkov-
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based particle detectors, where it is the emission angles that are used to determine the

properties of incident high-energy particles [185].

These interactions can be measured by detecting the electron energy losses associ-

ated with the emission (via electron-energy loss spectroscopy EELS) [27], which was also

shown to probe the local density of states of the optical structure. That the electrons probe

the local density of states can be seen from the general expression for spontaneous emission

by a quantum system of Eq. (2.5). The total rate dΓi of energy loss by an electron in an

initial energy eigenstate i (e.g., a plane wave with some momentum ℏk), into all possible

final states, per unit energy-loss dω, is given by:

dΓi

dω
= 2µ0

ℏ

∫
drdr′ j∗

fi(r) · Im G(r, r′, ω) · jfi(r′)δ(ω − ωif ) (2.19)

Note that because of the extended nature of a generic free electron, the electron probes a

more general quantity than the local density of states, as the electron probes the Green’s

function at two different locations. However, it is often the case, as in high-resolution

electron microscopes, that the emitter is an electron wavepacket which is well-localized

around a straight-line trajectory r = r0 + vt. It can then be seen by direct application of

Fermi’s Golden Rule that the probability dP of the electron of losing energy ℏω per unit

frequency dω is given by

dP

dω
= µ0q

2

πℏ

∫
dtdt′ eiω(t−t′)v · Im G(r0 + vt, r0 + vt, ω) · v (2.20)

which is the standard EELS formula [27]. Eq. (2.20) thus shows that the electron probes the

local density of states along its trajectory, for an arbitrary optical structure [27, 186, 187].

The underlying nature of the Cherenkov effect

The vast majority of the research done on the Cherenkov effect has been based purely on

classical electrodynamics, which has accounted perfectly for all known observations thus

far. The Cherenkov effect can also be explained through MQED [176, 177] (Fig. 1) simply

as the equivalent of spontaneous emission by a free-electron in a medium. This equiva-
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lence emphasizes the central place of the Cherenkov effect in the light–matter interactions

of free electrons. Moreover, the quantum treatment of Cherenkov radiation leads to cor-

rections originating from the recoil of the emitting particle due to the emission of a single

quanta of photonic quasiparticle. The quantum recoil corrections have been predicted to be

significant in certain conditions for the Cherenkov effect in regular materials [124] and in

graphene [188], and for low energy electrons in the analogous Smith-Purcell effect [189].

Another type of a quantum correction exists in the Cherenkov effect and in other elec-

tron radiation phenomena (Fig. 7): the dependence of radiation emission on the wavefunc-

tion of the emitting particle. Such phenomena have been predicted for the Cherenkov effect

[124], Smith-Purcell effect [190], other spontaneous radiation mechanisms [191], and their

stimulated analogues [192]. The first few experiments on this effect have been performed in

recent years. One experiment showed no wavefunction dependence [190] because the emis-

sion did not depend on characteristics of the photonic quasiparticle, and could be modeled

with free-space photons. In contrast, an indirect measurement through EELS showed the

first evidence of a wavefunction effect in the other extreme case, of emission into localized

surface plasmons [16], where the characteristics of the photonic quasiparticles deviated

significantly from those of a free photon. The key difference in these experiments is the

nature of the photonic quasiparticle. For the precise shape of the wavefunction to influ-

ence the radiation, it must be the case that: two electron states can transition to the same

final electron and photon state, so that the transition amplitudes can interfere. In the case

of Smith-Purcell radiation of a 1D grating, the photonic quasiparticle has a well-defined

momentum (up to a lattice vector), and then strict momentum conservation does not allow

two distinct electron states to interfere. In the case of localized quasiparticles (as in [16])

that break translation invariance, such an interference becomes possible due to the relax-

ation of conservation laws. Therefore, in contrast to previous cases in this Review, where

the dispersion, or confinement, or polarization was the root cause of the effects, here it is

symmetry.
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The Cherenkov effect in condensed matter physics as a test of photonic quasiparticles

Modern incarnations of the Cherenkov effect (Fig. 8) demonstrate the wide applicability

of photonic quasiparticles. Specifically, we show that the Cherenkov effect has now been

studied with plasmons (Fig. 8a) [193, 194, 195, 196, 188] and with phonons in solids

(Fig. 8b) [197, 198], which are the photonic quasiparticles that interact with ultra-slow

electrons in solids (in place of relativistic electrons). The emission follows the same phase-

matching condition, up to quantum recoil corrections discussed in the previous section.

However, in the case of low-energy emitters based on electrons in solids, these quantum

recoil corrections can become quite important, allowing emission even when the electron

is above the phase velocity of the excitations – such as in the emission of plasmons by hot

electrons in graphene [188]. In that sense, the physics of the quantum Cherenkov effect

becomes observable and important in condensed matter systems. In these contexts, it is

also important to mention that these effects are enabled with electrons in solids because

the photonic quasiparticle, the bulk plasmon or phonon, has a phase velocity two-to-four

orders of magnitude slower than c.

Taking phonons specifically, their slow velocities enable electrons and holes in solids

to emit phonons in a Cherenkov effect, as well as absorb them in an inverse Cherenkov

effect. These phenomena can occur in conventional solids [199, 200] and in graphene [197].

Such Cherenkov processes are equivalent to charge carrier relaxation and thermalization

by electron-phonon scattering. Nevertheless, treating the process through a Cherenkov

formalism proved useful in explaining recently observed phenomena of electron-phonon

instabilities and noise amplification in graphene [198]. Beyond these effects with electrons

in solids, relativistic free electrons are also used to probe phonons through measuring the

energy losses of electrons that spontaneously emit phonons. Such techniques are now used

for vibrational spectroscopy [201, 202, 203]. Similar to phonon scattering, even charge

carrier scattering (Landau damping) by surface and by bulk plasmons can be connected to

a Cherenkov-like process as pointed out by Ginzburg [204]. This similarity between all

the excitations helps promote the combined treatment of all photonic quasiparticles with

the same concepts and methods of light–matter interactions, as shown in Figs. 1,2. This
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combined treatment shows that despite the different microscopic origins of electromagnetic

excitations, and despite their varying degree of photon vs. matter composition, they can all

be considered as instances of a more general photonic quasiparticle.

Spontaneous emission by a free electron in a periodic medium: the Smith-Purcell

effect

Being quite similar in essence to the Cherenkov effect, the Smith-Purcell effect has an

electron traveling along a periodic optical system, and emitting light into the far-field [205].

The effect can be understood from the Cherenkov effect, but using a different photonic

quasiparticle, which is the Bloch photon mode. Here, the effect is enabled because the

photonic quasiparticle, the Bloch photon, has higher momentum components associated

with additions of reciprocal lattice vectors. An electron can couple to a Bloch photon if

v · (k + G) = ω(k) (i.e., phase-matching) is satisfied, where k is the Bloch wavevector

inside the first Brillouin zone, and G is a reciprocal lattice vector [26, 27, 181]. Smith-

Purcell radiation arises when this (evanescent) harmonic of wavevector k+G diffracts into

the far-field. The frequency of the emitted photon depends on the angle of emission, and

the periodicity of the crystal by the famous relation ω = v·G
1−β cos θ

, showing that emission

into gratings with small periods enables high-frequency (even ultraviolet radiation [206]),

motivating a push to observe Smith-Purcell effects (and other related free-electron radiation

effects) in the interaction of free-electrons with nanostructures [207, 208, 209, 206]. Smith-

Purcell radiation is possible for any periodic medium, both metallic gratings where Smith-

Purcell was historically studied (and explained in terms of image charges) [205, 210], and

dielectric gratings, e.g., silicon [211]. In all cases, by modeling Smith-Purcell radiation

as the grating scattering (diffraction) of the electron’s near-field into the far-field, one can

derive fundamental bounds on the efficiency of Smith-Purcell radiation, as developed and

probed experimentally in [212].

As an outlook on the possibility of applying the considerations of Figs. 1, 2 to free-

electron processes, we discuss recent theoretical proposals related to free-electron radia-

tion in strong driving fields. Both the strong driving field and the emitted radiation can

be modified by the optical environment and lead to new effects. In particular, the electron
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can absorb or stimulatedly emit photonic quasiparticles from an external driving field and

spontaneously emit another photonic quasiparticle. Typically, due to the relativistic na-

ture of the emitting electron, the spontaneously emitted photon can be at a much different

frequency from the original photon. As an example, Fig. 8d shows a proposal to scatter

free electrons from a strongly pumped external plasmonic standing wave on the surface

of graphene [213]. The free-electron can then undergo a Compton-like process in which

it absorbs (or stimulatedly emits) the plasmon and emits a photon. Due to the relativistic

nature of the electron and the high optical confinement of the plasmon, the emitted photon

can be at hard X-ray frequencies. Compared to other sources of X-rays, this source can

produce X-rays using much less relativistic electrons due to the graphene plasmon con-

finement. That said, the small extent of the evanescent graphene plasmon strongly limits

the achievable flux/intensity, with heterostructures having been proposed as a method to

mitigate this [214, 215].

Spontaneous emission by free electrons in strong fields of photonic quasiparticles

Interestingly, such radiation processes can in fact take place without any driving field. Fig.

8e considers the case in which a free-electron spontaneously emits both the plasmon and

the X-ray photon, which is equivalent to Compton scattering from plasmonic vacuum fluc-

tuations [125]. Strikingly, such a spontaneous process has similar power yields as the

stimulated process due to the very strong vacuum fluctuations on the nanoscale, though

the emission is far less monochromatic, due to the heavily multimode nature of the pro-

cess (i.e., spontaneous emission occurs into any available plasmon mode, leading to X-ray

emission at a wide spectrum).

So far, all the considered processes were first- or second-order in MQED, but there

also exist radiation processes in which many photons are absorbed or stimulatedly emitted

(effectively higher-order MQED), followed by spontaneous emission of a single photonic

quasiparticle. Such nonlinear Compton scattering processes, are typically very weak, but

can become efficient when the emission is into plasmons due to their strong confinement

[126]. This enhancement is a manifestation of the Purcell effect, but for strongly driven

free electrons (Fig. 8f) instead of bound electrons.
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2.3.2 Strong coupling of free electrons and photonic quasiparticles

Stimulated emission and absorption of photonic quasiparticles

Photonic quasiparticles can be used to exert a great deal of control over spontaneous emis-

sion by free electrons, in a similar way as for bound electrons. A natural question, ex-

tending ideas from bound electron physics, is whether or not strong or ultrastrong coupling

(and associated phenomena, such as Rabi oscillations) can also be realized in free-electron

systems. Here, some distinction should be made between vacuum strong coupling effects,

where the electron-light coupling g is strong enough to induce Rabi oscillations, and stim-

ulated strong coupling effects. In the case of stimulated effects, the coupling is effectively

enhanced to
√
n+ 1g in the presence of n photonic quasiparticles (see Section 2.2). This

enhancement is similar to the case in bound electron systems, where Rabi oscillations in

atoms, molecules, and various types of qubits, can be induced by a strong driving field. Vac-

uum strong and ultrastrong coupling has not yet been observed with free electron systems,

though there have been some proposals for strong coupling [216, 217] based on electron-

cavity interactions. Other proposals for vacuum ultrastrong coupling involved Cherenkov

radiation by heavy ions [218] and Cherenkov radiation of graphene plasmons by electrons

in solids [188].

Strong coupling and ultra-strong coupling effects have been observed in non-relativistic

systems of particles which are closely related to free electrons. In particular, strong cou-

pling, and the associated phenomena of Rabi splitting in scattering spectra, have been ob-

served in 2D electron gas systems (2DEGs) associated with high-mobility quantum wells

immersed in magnetic fields. These systems feature many electrons occupying Landau

levels which are collectively coupled to a common resonant cavity mode, typically a ter-

ahertz cavity mode associated with a metallic resonator hosting a highly-confined mode

[219, 220]. Because strong coupling modifies the energy spectra of the composite system,

and because macroscopic properties such as transport and other thermodynamic properties

depend on the underlying energy spectra of the system, strong coupling can change the

intrinsic properties of the system. This was demonstrated very recently in the context of

magnetotransport of electrons in 2DEGs, where the transport properties were strongly mod-
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ified by the presence of a terahertz resonator [221]. Similar Rabi splitting effects have also

been observed in the coupling of cavities to other free-electron-like systems, such as inter-

subband transitions in quantum wells (through their electric dipole moments) [222, 223],

and even collective excitations of cooper-pairs (Josephson plasma resonances) [224].

Photon-induced near-field optical microscopy (PINEM)

While vacuum strong coupling effects were not observed so far with free electrons, stim-

ulated strong coupling effects have emerged in recent years using pulses of free electrons

interacting with pulses of strong laser fields [225]. These results have had immediate ap-

plications in ultrafast electron microscopy [226].

The most influential advances in this direction are the results of the new capability

called photon-induced near-field electron microscopy (PINEM) [225], in which an elec-

tron interacts with a strong field that is coupled to a material. The electron undergoes

absorption and stimulated emission of many photons of the driving field in a way that also

provides new insight on the material. In particular, by measuring the energy spectrum of

electrons undergoing PINEM interactions, it is possible to image the near-field distribution

of an excited electromagnetic field with high spatial resolution [225, 227]. PINEM-based

techniques reached under 10 nm resolution [228], meV-scale energy resolution [229, 230],

and recently also 100fs temporal resolution ([231, 229]), allowing direct measurement of

the lifetimes of optical modes. Because PINEM operates based on energetic free electrons,

it allows one to also image confined modes “buried” inside materials ([232]). Such capa-

bilities are complementary to other state-of-the-art techniques for imaging near-fields, such

as SNOM [8, 9, 29], photo-emission electron microscopy (PEEM) [58, 233, 234, 235] and

cathodoluminescence (CL) microscopy [22, 186, 236].

This absorption and emission can be shown to be equivalent to a multi-level quantum

system with equally spaced energy levels undergoing quantum Rabi oscillations [227]. The

number of photons absorbed and emitted scales with a dimensionless parameter g. This pa-

rameter is also equivalent to a quantity used in linear-field laser-acceleration in accelerator

physics [237, 238, 239, 240] – the integrated work done by the component of the electric

field (Ez) along the trajectory of the particle of charge q, which in our case is normalized
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by the energy of the driving photon ℏω. For an electron moving with velocity v along the

z direction, g equals

g = q

ℏω

∞∫
−∞

dze−iωz/vEz(z). (2.21)

The PINEM interaction has been observed for a wide-range of photonic quasiparticles,

from: localized plasmons [241], surface plasmons [232], free space plane wave scattering

off a mirror [242], photonic crystal modes [229] and whispering gallery modes [231], as

well as propagating photonic modes in a half-infinite homogeneous medium [239]. In all

cases, the presence of matter that modifies the free-space photon is critical, as the equation

for g vanishes for any field E in free-space. This result shows the necessity of a strong

driving laser pumping an electromagnetic field mode that deviate from that of free-space

so that the integral of g does not vanish.

The experimental setups used for such interactions are ultrafast transmission electron

microscopes [226], with related effects also observed in ultrafast electron diffraction setups

[243, 244] and in other electron-beam setups [245], which show the classical corresponding

effects of PINEM. Fig. 9 presents exemplary experimental results in the field, including

the extremely nonlinear interaction of a free electron with multiple photons (i.e, ten-photon

absorption/stimulated emission Fig. 9b [225]) creating free-electron Rabi oscillations Fig.

9a [227]. This nonlinear interaction has been applied in microscopy for imaging plasmons

at buried interfaces [232], presenting meV energy resolution in EELS [230], and imaging

plasmons with angular momentum (Fig. 9c) [66]. The latter uses the quantized nonlinear

interaction of electrons with the angular-momentum carrying plasmons to create electron

vortex beams [246].

2.4 Outlook

In this Review, we have surveyed the broad physics of the interactions between bound/free

electron emitters and photonic quasiparticles (photons in media). We showed that by using

the photonic quasiparticle concept to describe any electromagnetic field in a medium, we

could understand many seemingly disparate phenomena by appealing to either the confine-
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ment, symmetry, or dispersion, of the photonic quasiparticle.

We emphasize here that the photonic quasiparticle is rigorously supported by MQED,

which allows one to quantize electromagnetic fields in any medium, including non-local

ones. One can quantize photons in vacuum, in transparent media, cavity photons, Bloch

photons, polaritons in van der Waals materials, and even bulk phonons and plasmons

(which are described by non-local response functions). MQED thus serves as a key unify-

ing tool in the physics of light–matter interactions.

From the point of view of MQED fundamentals, many opportunities still remain to be

explored in light–matter interactions with photonic quasiparticles. We highlight some of the

most ambitious directions here. Many open questions remain on the nature of ultrastrong

coupling of emitters to systems with a continuum of modes. Can ultrastrong coupling

be used to design new bound states of emitters with photonic quasiparticles? How can

strong multiphoton effects be used to design materials with stronger optical nonlinearities?

Another interesting direction regards the fact that energy levels of emitters can shift due to

virtual absorption and re-emission of photonic quasiparticles, according to the Lamb shift.

Can emitters be re-designed at will using Lamb shifts in the ultrastrong coupling regime?

Such questions also beget questions regarding renormalization in MQED. The photonic

quasiparticle vacuum changes the energy levels of emitters in a way that in principle depend

on all modes, even arbitrarily high frequency ones; inviting questions as to how to find

correct predictions for energy shifts. See [247] for the case of a homogeneous media.

Finally, as an outlook on novel X-ray generation mechanisms, it is of practical interest to

explore how/whether these mechanisms can serve as an effective gain medium at X-ray

frequencies.

We emphasize here that this field is still in a nascent stage. There are still many theoret-

ical directions to explore, and there are many predictions still waiting to be verified. More

than half the experiments in PINEM have been published just in the past few years. Looking

forward, it will be of interest to experimentally demonstrate spontaneous (Cherenkov-type)

and stimulated (PINEM-type) interactions of free electrons with novel polaritons. In partic-

ular, the stimulated PINEM interactions may enable new methods to image the dynamics of

highly-confined polaritons with nanometer and femtosecond resolution. The most recent
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predictions on strong light–matter interactions with highly confined photonic quasiparti-

cles in 2D materials have not yet been demonstrated experimentally. Thus, one of the most

important goals moving forward will to be to test the exciting predictions made regard-

ing enhancing spontaneous emission, realizing forbidden transitions, and achieving strong

and even ultrastrong coupling phenomena in new material platforms at optical frequencies.

Moreover, it has yet to be shown that enormous spontaneous emission enhancements also

extend to two-photon processes. Another exciting experimental direction that we expect to

see in the next few years is probing light–matter interactions of bound and free electrons

with photonic quasiparticles in Moire systems [248, 249]. Such an experiment will eventu-

ally enable to observe strong coupling between twisted bilayer systems and optical cavities,

altering the energy spectra of the Moire system, potentially influencing for example their

transport and other macroscopic properties 1.

1We note here that we cite the following references in Figs. 1, 2 which are not cited in the text [250, 251,
252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269].
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Figure 2-1: Diagrammatic representation of physical processes contained within
macroscopic QED (MQED), as they pertain to different types of matter (bound, free, and
Bloch electrons), as well as different types of photonic quasiparticles (photons, photons in
a homogeneous medium, photonic crystal photons, polaritons (plasmon, phonon, exciton,
magnon), and even pure phonons. Each MQED diagram corresponds to a different, some-
times known phenomenon, while others correspond to phenomena which have thus far not
been explored. Note that while we represent mostly spontaneous emission effects here,
all spontaneous processes also have stimulated processes, as well as absorption (inverse)
processes associated with them. For example, corresponding to the Cherenkov effect is
the inverse Cherenkov effect, where an emitter absorbs a photon in a medium instead of
emitting it. We also note here that in some cases, the emitted quasiparticle has a vacuum
far-field component, leading to other effects. For example, a plasmon emitted by an elec-
tron can couple to the far-field in nanoparticles, as a mechanism of cathodoluminescence.
Or a medium photon associated with an interface can have a vacuum component, leading
to transition radiation.
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Figure 2-2: Diagrammatic representation of physical processes contained within
macroscopic QED (MQED), at higher orders in perturbation theory, revealing a number
of effects which have yet to be explored. Processes with no standard or recent reference
associated them are marked with a [*].
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Figure 2-3: Photonic quasiparticles. The electromagnetic interactions of bound and free
electrons with materials can be unified into a single framework. In this framework, the
microscopic origin of the electromagnetic excitations (top) “collapses” into a spatially and
temporally dispersive dielectric permittivity and magnetic permeability (middle), which is
essentially a black box. The linear electromagnetic response functions can be calculated
from the microscopic properties through linear response theory. The material properties,
combined with material geometry, give rise to different types of photonic quasiparticles
(bottom). Examples of these limits include photons in vacuum and homogeneous media,
photonic crystal photons, cavity photons, surface polaritons, and, even bulk plasmon and
phonon excitations.
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Figure 2-4: Optics with photonic quasiparticles. Photonic manipulations (optical exci-
tation, propagation, coupling to structures, and detection of electromagnetic fields), with
highly confined polaritons. (a) Propagation of plasmons in graphene at low temperatures,
such that the losses are very low. (b) Propagation of phonon polaritons in newly discovered,
in-plane hyperbolic material MoO3. (c) Launching hyperbolic phonon polariton waves by
an antenna structure, in some sense performing a similar role to the metallic tip in scanning
probe microscopy, but allowing strong control over the phase fronts of the polaritonic ra-
diation. (d) Plasmons in a doped graphene situated a nanometer away from a gold grating
structure, allowing for confinement of the electromagnetic field on the scale of a few atoms.

Figure 2-5: Levels of quantization of the electromagnetic field showing the quantized
vector potential operator under different cases of linear media, starting from the well-known
field quantization in vacuum to quantization of the electromagnetic field in a truly arbitrary
medium that can be inhomogeneous, anisotropic, lossy, and even spatially non-local.
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Figure 2-6: Bound-electron interactions with photonic quasiparticles. (a) In the visible
spectral range, a molecular dye emitter in a plasmonic nanogap can have its spontaneous
emission enhanced by nearly four orders of magnitude, reaching picosecond timescales
(probed by time-resolved fluorescence). (b) Proposal to use highly confined plasmons to
strongly enhance dipole-forbidden transitions and multi-photon emission processes. The
strong confinement allows forbidden transitions to compete with conventionally allowed
transitions, as well as allows two-plasmon emission processes to become comparable to
one-plasmon processes. (c) The high momentum of a graphene plasmon allows significant
momentum transfer from the electromagnetic field to electrons in a quantum well. Such a
realization of optical nonlocality strongly changes absorption and emission spectral peaks.
(d) When the light–matter coupling is strong enough, as in extremely small plasmonic
nanogap cavities, even a small number of emitters can reach the strong-coupling regime,
leading to Rabi splitting in the scattering spectrum. Strong coupling can also be realized
by coupling many emitters (e.g., molecules) to a tightly-confined polariton mode, which
can be used for (e) sensing molecules, as demonstrated with graphene plasmons, and (f)
infrared spectroscopy, as demonstrated with boron nitride resonators.
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Figure 2-7: Free-electron spontaneous radiation: quantum wavefunction-dependent
effects. (a) Experiment showing the effect on the coherent size of the electron wavefunc-
tion on Smith-Purcell radiation. Comparing a narrow versus wide electron wavefunction, a
change is seen in the spatial distribution of the radiation (see color-maps) but no influence
is seen on the radiated angular power spectrum. (b) The influence of photonic quasiparti-
cles on electron energy-loss spectroscopy, through symmetry-matching between plasmonic
modes and the electron wavefunction, showing how one can control which plasmon modes
are coupled to by shaping the electron wavefunction to have a matching symmetry.
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Figure 2-8: The similarity of electron-photon, electron-plasmon, and electron-phonon
interactions: all can be understood as interactions with photonic quasiparticles. (a)
Cherenkov radiation of plasmons in graphene by hot electrons can occur with a very high
efficiency compared to Cherenkov radiation in transparent dielectric media. (b) Cherenkov
emission of phonons by electrons in ultraclean graphene. (c) Such Cherenkov emission of
phonons has been used to explain the amplification of magnetic noise by electrons moving
in ultraclean samples of graphene. (d) Proposal of laser-driven photonic quasiparticles, in
the form of surface plasmons, that produce X-rays from free electrons via inverse Compton
scattering. (e) The phenomenon can even occur without an externally excited plasmon,
using strong Casimir-type forces based on vacuum fluctuations of photonic quasiparticles.
(f) Proposal to generate high harmonics of photonic quasiparticles, in the form of surface
plasmons, by electrons interacting with strong fields.
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Figure 2-9: Effects enabled by strong fields of photonic quasiparticles: photon-induced
near-field electron microscopy (PINEM). Stimulated electron-photon interactions when
driving laser fields pump a photonic quasiparticle mode, as demonstrated in PINEM. Each
electron undergoes stimulated absorption and emission of multiple photons as a result of
the PINEM interaction with a strong field, leading to quantized energy gain and loss. (a)
The electron can be seen as undergoing a quantum walk on the energy ladder with spacing
set by the driving frequency. (b) First demonstration of PINEM. (c) When the electron
interacts with a chiral plasmonic field, it imparts orbital angular momentum to the electron,
seen in its diffraction pattern.
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Chapter 3

Phonon polaritonics in two-dimensional

materials

Note: This chapter is heavily based off “Phonon polaritonics in two-dimensional materi-

als” by N. Rivera et al. Nano Letters (2019). It also presents experimental results from

“Phonon Polaritons in Monolayers of Hexagonal Boron Nitride” by S. Dai, W. Fang, and

N. Rivera, et. al. Advanced Materials (2019).

Extreme confinement of electromagnetic energy by phonon polaritons holds the

promise of strong and new forms of control over the dynamics of matter. To bring

such control to the atomic-scale limit, it is important to consider phonon polaritons in

two-dimensional (2D) systems. Recent studies have pointed out that in 2D, splitting

between longitudinal and transverse optical (LO and TO) phonons is absent at the Γ

point, even for polar materials. Does this lack of LO–TO splitting imply the absence of

a phonon polariton in polar monolayers? To answer this, we connect the microscopic

phonon properties with the macroscopic electromagnetic response. Specifically, we

derive a first-principles expression for the conductivity of a polar monolayer specified

by the wavevector-dependent LO and TO phonon dispersions. In the long-wavelength

(local) limit, we find a universal form for the conductivity in terms of the LO phonon

frequency at the Γ point, its lifetime, and the group velocity of the LO phonon. Our

analysis reveals that the phonon polariton of 2D is simply the LO phonon of the 2D

system. For the specific example of hexagonal boron nitride (hBN), we estimate the
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confinement and propagation losses of the LO phonons, finding that high confine-

ment and reasonable propagation quality factors coincide in regions which may be

difficult to detect with current near-field optical microscopy techniques. Finally, we

study the interaction of external emitters with two-dimensional hBN nanostructures,

finding extreme enhancement of spontaneous emission due to coupling with localized

2D phonon polaritons, and the possibility of multi-mode strong and ultra-strong cou-

pling between an external emitter and hBN phonons. This may lead to the design of

new hybrid states of electrons and phonons based on strong coupling.

Phonon polaritons, hybrid quasiparticles of photons and optical phonons supported

in polar materials, hold promise for nanoscale control of electromagnetic fields at mid-

infrared and terahertz frequencies. Qualitatively, phonon polaritons share many features

with plasmon polaritons in conductors. Recently, it has been shown that phonon polaritons

enable confinement of light to volumes ∼ 106 times smaller than that of a diffraction-

limited photon in free-space [131, 270, 39, 10, 271, 81, 80, 272, 273, 78, 85, 274, 275,

6, 276, 87, 86]. Due to this remarkable confinement and their relatively high lifetimes—

around picoseconds—phonon polaritons open new opportunities for vibrational

spectroscopy [44], radiative heat transfer [29], and control of dynamics in quantum emit-

ters [277, 109, 110, 154].

Thus far, extreme confinement of phonon polaritons has been achieved by the use of

thin-films (or nanostructuring), which shrink the in- and out-of-plane wavelength of polari-

tons with decreasing feature size (such as the film thickness) [10, 278]. A monolayer is the

ultimate limit of this effect, making it critical to have a fundamental understanding of the

optical response of 2D polar materials [279]. Concerning the optical response, the tran-

sition from three-dimensional (3D) to two-dimensional (2D) polar materials is nontrivial,

however, since in a polar monolayer, the LO–TO splitting that gives rise to phonon polari-

tons in 3D is absent at the Γ point [280, 281, 282, 283]. This raises a fundamental question

about the nature of electromagnetic modes in polar monolayers.

To resolve this question, a connection between the microscopic phonon properties and

the macroscopic electromagnetic response is required.

To that end, we develop a first-principles framework for phonon polaritons in polar 2D
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materials and illustrate it with quantitative, concrete examples. We derive a universal form

for the conductivity of a polar monolayer, which depends solely on the LO and TO phonon

frequencies—and their dispersion with momentum—in the 2D system. Using parameters

from Ref. [283] for the canonical 2D polar monolayer—hexagonal boron nitride (hBN)—

we present the confinement and propagation losses of the 2D phonon polariton modes,

identifying the frequency region where they should be most easily detected. Finally, we

find that these modes enable extreme light-matter interaction between emitters and polar

materials, showing that for atom-like emitters, their spontaneous decay can be enhanced

by up to eight orders of magnitude through the emitter–LO phonon coupling. For an in-

frared emitter with a sufficiently high free-space radiative decay rate (≳ 106s−1), we find

that the associated linewidth of the emitter is comparable to the spacing between different

phonon polaritonic resonances of an hBN nanostructure. This suggests the possibility of

realizing the multi-mode strong coupling and ultra-strong coupling regimes of quantum

electrodynamics in a 2D hBN platform. Our results for hBN are particularly relevant due

its widespread use in 2D van der Waals heterostructures. In addition to providing function-

ality as a layer which improves the electrical and optical properties of other 2D materials,

e.g.graphene, our results suggest that in these heterostructures, hBN layers could provide

a mid-infrared platform for nanophotonics and quantum optics. While we focus on hBN

in this manuscript, the salient features of our findings apply to other polar monolayers as

well.

3.1 Optical response of optical phonons in two-dimensions

In this section, we develop a theory of electromagnetic response due to optical phonons in

2D systems. The key response function of interest is the conductivity of the monolayer. To

that end, we consider the response of the ions of the monolayer due to an electric potential

ϕ. For that case, the interaction Hamiltonian is

Hint =
∫

d2x ρϕ = −
∫

d2x (∇ · P)ϕ, (3.1)
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with ρ the induced charge density and P the induced polarization density associated with

the ionic motion. Note that boldfaced quantities refer to vectors or tensors as appropriate.

Within linear response theory, the polarization density can be straightforwardly evaluated

from the displacement uκ of every atom κ within the unit cell. Specifically, to first order,

the polarization density is

P − P0 =
∑

κ

(uκ · ∇uκ)P ≡ 1
Ω
∑

κ

Zκuκ, (3.2)

where Zκ ≡ Ω∇uκP is the Born effective charge tensor of ion κ and Ω is the unit cell area.

P0 is the equilibrium polarization in the absence of displacements, which is zero here. With

this relation between polarization and ionic displacements, the interaction Hamiltonian in

Eq. 1 couples the scalar potential and the ionic displacements. We consider the response

of the monolayer to a potential of the form ϕ(r) = ϕ(q, ω)eiq·r−iωt, where q is a 2D

wavevector in the plane of the monolayer. Such a potential corresponds to a longitudinal

electric field E(r) = iqϕ(r).

In what follows, we assume the validity of the random-phase approximation (RPA) in

calculating Coulombic interactions between ions in the polar lattice. Within the RPA, these

Coulombic interactions are accounted for by taking the induced polarization P(q, ω) to be

proportional total electric field, Etot(q, ω), defined to be the sum of the externally applied

electric field and the electric field created by the induced polarization. The polarization

and total field are connected by the polarization-polarization response (tensor) function

Π(q, ω) via

P(q, ω) = ϵ0Π(q, ω)Etot(q, ω), (3.3)

The polarization-polarization response function is related to the conductivity via the rela-

tion σ(q, ω) = −iωϵ0Π(q, ω). From the Kubo formula, it follows that the conductivity

is

σ(q, ω) = −iω
ΩZ

∑
m,n

Pmn(q) ⊗ Pnm(q)
ℏω + Enm + i0+

(
e−βEm − e−βEn

)
, (3.4)

where m,n are eigenstates in the phononic Fock space of the monolayer, Pmn(q) ≡∑
κ Zκ⟨m|uκ(q)|n⟩ are matrix elements of the polarization associated with phonon modes
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(where uκ(q) is the Fourier transform of the phonon displacement operator), Em (En) is

the energy of state m (n), β ≡ 1/kBT is the inverse temperature, and Z is the grand

partition function. We now evaluate the contribution of optical phonons to the polarization-

polarization response in the low-temperature limit T ≪ ℏωph/kB with ωph a characteristic

optical phonon frequency. Considering the long-wavelength (small wavevector) limit, and

taking a material with long-wavelength isotropy, such as hBN, we only have to consider

the qq-component in the response tensor, where qq denotes a pair of directions parallel to

the wavevector. Denoting σqq as simply σ, we find that the conductivity is given by [284]:

σ(q, ω) = −iω
ℏΩ

2ωq,L

ω2
q,L − ω2 − iωτ−1 |q̂ · ⟨1q,L|P(q)|0q,L⟩|2, (3.5)

where L-subscripts denote longitudinal polarization, |0q,L⟩ (|1q,L⟩) denotes a state with no

(one) longitudinal phonon of wavevector q, and q̂ denotes a unit vector in the direction

of q. We have also phenomenologically included the phonon dissipation rate τ−1, con-

sistently with a relaxation-time prescription. The frequency ωq,L in the denominator, as

in the case of bulk phonons, is the frequency of the longitudinal phonon of wavevector q

prior to considering LO–TO splitting [285] (and near the Γ point is approximately equal

to the TO phonon frequency). This is consistent with the fact that LO–TO splitting is a

collective effect arising from Coulomb interactions and the fact that the equation above

represents a single-particle susceptibility. Coulomb interactions are accounted for in the

random phase approximation, and to include them in the single-particle response amounts

to an uncontrolled double-counting.

Next, we express the polarization matrix element in Eq. 5 in terms of the Born effective

charges of the monolayer and the phonon displacement eigenvectors. Considering the lon-

gitudinal phonon contribution to the second-quantized ionic displacement, as in Ref. [286],

we find that the conductivity within the RPA is given by

σ(q, ω) = − iω
Ω

∣∣∣∣q̂ ·∑
κ

Zκηκ

∣∣∣∣2
ω2

q,L − ω2 − iωτ−1 . (3.6)

We have defined scaled eigendisplacements ηκq ≡ êκq,L/
√
Mκ, where êκq,L is the unit-
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normalized polarization vector of atom κ in the unit cell oscillating according to a longitu-

dinal phonon of wavevector q and Mκ is the mass of atom κ.

While the conductivity is the main electromagnetic quantity of interest for electrody-

namics applications, we briefly state the form of the (2D) permittivity, as its zeros immedi-

ately yield the longitudinal modes of the system, which are the LO phonons. The permittiv-

ity within the RPA, denoted ϵRPA is related to the polarization-polarization response func-

tion via [38] ϵRPA = ϵenv+ 1
2qΠ(q, ω) and the conductivity via ϵRPA = ϵenv+iqσ(q, ω)/2ϵ0ω.

Here, ϵenv is the average permittivity of the bulk above and below the monolayer, and is

added to take into account the polarization arising from these bulk materials. Note that

we have neglected any intrinsic high-frequency screening in the monolayer itself, which is

only relevant for wavevectors comparable to the inverse layer spacing between monolay-

ers. When considering non-local corrections to the conductivity at these large wavevectors,

these must be taken into account [287, 279, 283]. Based on Eq. 6, the zeros ωq of the RPA

dielectric function satisfy:

ω2
q − ω2

TO = V (q)
e2

1
Ωq

2
∣∣∣∣q̂ ·

∑
κ

Zκηκ

∣∣∣∣2, (3.7)

where V (q) is the Coulomb interaction in Fourier space, which in two dimensions, is given

by V (q) = e2/2ϵ0ϵenvq. Given that the zeros of the dielectric function are associated

with longitudinal modes, one expects that ωq is in fact the frequency of the LO phonon

mode. This is consistent with the result of Ref. [283], in which it is shown that in 2D polar

materials, the extra restoring forces on LO phonons relative to TO phonons, due to the

Coulomb interaction, lead to a wavevector-dependent LO–TO splitting and zero LO–TO

splitting at the Γ point of the Brillouin zone.

Given these results, we now re-express the conductivity explicitly in terms of the 2D

phonon dispersion, and derive a universal form for the conductivity in the local (q → 0)

limit specified in terms of three parameters: the LO phonon frequency at the Γ point (i.e.,

ωTO), the group velocity of the LO phonon at the Γ point, and the damping rate. From
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Eq. 7, we can immediately write the conductivity as

σ(q, ω) = −2iϵ0ϵenvω

q

ω2
q,LO − ω2

TO

ω2
TO − ω2 − iωτ−1 . (3.8)

In this expression, ωL, the LO phonon frequency prior to LO–TO splitting, has been re-

named as ωTO, the transverse optical phonon frequency, because in the absence of LO–

TO splitting, they are degenerate. The RPA zeros ωq have also been renamed as ωq,LO.

This is done in order to make the form of the final results more closely resemble their 3D

counterparts, in which the dielectric function is expressed in terms of the TO frequency

(see for example Eq. 13).

For small q, the Born charges are (to lowest-order) constant, and so the LO phonon

dispersion takes the form ωq,LO =
√
ω2

TO + 2vgωTOq ≃ ωTO + vgq, where vg, the LO

phonon group velocity, is defined from microscopic parameters through the relation

vg =

∣∣∣∣q̂ ·∑κ Zκηκ

∣∣∣∣2
4ϵ0ϵenvωTOΩ . (3.9)

Thus, in the long wavelength limit, we have the following universal parameterization of the

conductivity of a polar monolayer:

σ(ω) = −4iϵ0ϵenvωωTOvg

ω2
TO − ω2 − iωτ−1 . (3.10)

We note that despite its appearance, σ(ω) does not depend on ϵenv, as vg has an oppo-

site dependence on ϵenv. From this relation, it follows that given the properties of the 2D

phonons (from experiments or from ab initio calculations), one can immediately specify

the conductivity. Alternatively, from optical measurements (including far-field measure-

ments) which allow one to extract the conductivity, it becomes possible to extract the group

velocity of 2D LO phonons and thus the small-wavevector dispersion of those phonons.

Before moving on to analyze the electrodynamics of 2D phonon polaritons, we make

three comments on lack of LO–TO splitting in 2D polar materials. The first is that this

situation is in stark contrast to the situation of polar materials in 3D, which have a finite
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LO–TO splitting at the Γ point. In the absence of such LO–TO splitting in 3D, there would

be no frequency compatible with the existence of a phonon polariton. On the contrary,

we will show that in 2D, despite the absence of LO–TO splitting at the Γ point, there

persists a strongly confined evanescent electromagnetic mode with a high local density of

states which in all respects is similar to a phonon polariton of a thin film, but is in fact the

2D LO phonon of the polar monolayer (thus the phrases ‘phonon polariton’ and ‘2D LO

phonon’ may be used somewhat interchangeably as is the case in plasmonics where the

terms ‘plasmon polariton’ and ‘2D plasmon’ are often used interchangeably).

The second comment is that much of what has been discussed here has a strong analogy

with the theory of optical response in electron gases in 2D, and particularly the relation

between plasmons in 2D and 3D. To elaborate on this analogy, we take Eq. 7 in the case of

a two-atom unit cell (such as hBN), and note that the term in the sum over Born charges can

be written as
∣∣∣q̂ · ∑κ Zκηκ

∣∣∣2 ≡ Q2
∗/M∗, with Q∗ being an effective charge and M∗ being

an effective mass. Then, the LO–TO splitting can be written as ω2
q − ω2

q,TO = Q2
∗

2ϵ0ϵenvM∗
q.

Now we note that the RHS is exactly the squared-frequency ω2
qp for a plasma oscillation

in a 2D gas of charged particles with charge Q∗ and mass M∗. To connect to LO–TO

splitting in phonons, this squared frequency ω2
qp can be thought of as the “LP–TP” splitting

between longitudinal and transverse plasma oscillations. Of course, there are no transverse

plasma oscillations due to the structure-less nature of the electron, and so “ωTP” should

be considered equal to zero. In the three-dimensional plasmon case, “ωTP = 0”, but the

difference between the squared longitudinal and transverse plasma oscillation frequencies

at zero-wavevector is non-zero and given by ω2
p. In other words, the plasma frequency

in electron gases is analogous to the LO–TO splitting in polar materials. The change in

the dispersion of 3D versus 2D plasmons, like 3D versus 2D LO phonons, arises from the

change in dimensionality of the Coulomb interaction from 3D to 2D. This analogy between

phononic and plasmonic behavior as a function of dimension is illustrated schematically in

Figs. 1b,c in order to help unify the understanding of 2D plasmonics and phononics. These

considerations should also extend to the one-dimensional case.

The third comment is that the considerations of this section can be extended to few-

layer systems, such as hBN bilayers, which remain two-dimensional from an electromag-
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netic perspective for polariton wavelengths large compared to the bilayer thickness. Con-

cretely, the LO–TO splitting in such quasi-2D systems is still given by Eq. 7, provided

the appropriate eigendisplacements of the few-layer system are employed, and provided

suitable modifications of the Coulomb interaction are made. For N weakly coupled lay-

ers, the sum of Born effective charges
∣∣∣q̂ · ∑κ Zκηκ

∣∣∣2, which is essentially an oscillator

strength, is approximately NQ2
∗/M∗, i.e.enhanced N -fold relative to the monolayer or,

equivalently, proportional to the thickness t [283]. For few layers, i.e.for qt ≪ 1 where

the Coulomb interaction remains essentially 2D, this simple geometric effect enhances the

LO–TO splitting by a factor N . At larger qt, the Coulomb interaction must eventually ap-

proach its 3D limit; to study this transition from monolayer to bulk explicitly, a quasi-2.5D

Coulomb interaction [279] can be employed in Eq. 7. Specifically, for a film of thick-

ness t, the interaction is approximately VQ2.5D(q) = e2

ϵ0ϵ∞q2t

(
1 − 2

qt
e− qt

2 sinh qt
2

)
, with the

static electronic screening ϵ∞ interpolating between its monolayer value, 1, and its bulk

value, ϵ∞. The qt → 0 and qt → ∞ asymptotics of this interaction are the 2D and 3D

interactions—e2/2ϵ0q and e2/ϵ0ϵ∞q
2t, respectively—which it interpolates between. In the

large-thickness or -momentum limit, qt ≫ 1, the ∝∼ t scaling of the oscillator strength, the

∝∼ t−1q−2 scaling of the Coulomb interaction, and the ∝ q2 factor in Eq. 7 cancel, producing

a thickness- and momentum-independent LO–TO splitting, as expected in the bulk.

Analogously, our considerations can be extended to 1D polar materials, such as BN nan-

otubes, by employing the 1D Coulomb interaction (and, naturally, the 1D-specific eigendis-

placements). For a 1D system of transverse extent R (e.g., the radius of a nanotube), the

1D Coulomb interaction is e2K0(qR)/2πϵ0, whereK0 is the (zeroth order) modified Bessel

function of the second kind. Thus, the q-dependence of the (squared) LO–TO splitting in

1D is q2K0(qR) ≃ −q2 log qR. This parallels the situation in 1D plasmonics, as expected

from the discussion of Fig. 1.

3.2 Electrodynamics of optical phonons in two-dimensions

To relate the conductivity function to the electromagnetic modes supported by a polar

monolayer, we solve Maxwell’s equations for an evanescent electromagnetic mode sup-
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ported by a surface with conductivity σ. We consider the monolayer to be sandwiched

by a superstrate of permittivity ϵ+ and a substrate of permittivity ϵ−. To strip the anal-

ysis to its bare essentials, we consider optical phonon response with in-plane isotropy in

the long-wavelength limit arising from in-plane LO oscillations. A relevant example of

a system where these conditions are satisfied is in a hexagonal boron nitride monolayer

(see Fig. 1a for schematic atomic structure). In a monolayer geometry with translation

invariance and in-plane isotropy, the solutions of Maxwell’s equations can be decomposed

into transverse magnetic (TM) and transverse electric (TE) parts, where the magnetic or

electric field respectively is transverse to the in-plane wavevector of the mode. In practice,

it is the TM mode which is associated with highly confined electromagnetic waves. We

consider without loss of generality a TM mode with wavenumber q along the x-direction

in the monolayer and magnetic field H(z)eiqx−iωt along the y-direction of the monolayer.

The direction transverse to the monolayer is denoted as z. With these definitions in place,

the Maxwell equation satisfied by the magnetic field is

(
− d2

dz2 + q2 − ϵ±
ω2

c2

)
H(z) = 0, (3.11)

where ϵ+ applies for z > 0 and ϵ− applies for z < 0. We consider a solution of the form

H(z) = h±e∓κ±z with κ± =
√
q2 − ϵ±

ω2

c2 with ± corresponding to ±z > 0 respectively.

The boundary condition on the magnetic field is h+ − h− = −Kx = −σEx where K is the

surface current density, and E = − 1
iωϵ

∇ × H is the electric field. This condition enforces

h+ − h− = σ
iωϵ+

κ+h+. Continuity of the electric field in the x direction enforces ϵ−/ϵ+ =

−κ−h−/κ+h+. Combining the two conditions, we obtain the usual dispersion equation

for the TM mode of a polarizable 2D monolayer, namely ϵ+/κ+ + ϵ−/κ− = σ
iω

. Given the

deeply subwavelength nature of 2D phonon polaritons, i.e.since q ≫ ω/c such that κ± ≃ q,

the dispersion equation can be reduced to its quasistatic limit without consequential loss of

accuracy:

q = 2iωϵ0ϵenv

σ
, (3.12)

with ϵenv ≡ (ϵ+ + ϵ−)/2. This condition, as can be seen from the relation between Π and

σ, is equivalent to ϵRPA = 0. Thus, the condition for phonon polaritons coincides pre-
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cisely with the condition for longitudinal optical phonons. One of the main results of our

manuscript is that despite the lack of LO–TO splitting at the Γ point, there nevertheless ex-

ists a strongly confined evanescent mode in many respects similar to the phonon polaritons

of thin films. We now analyze the dispersion relation of phonon polaritons in a specific ma-

terial, hexagonal boron nitride, in more detail, showing the possibility of highly confined

electromagnetic modes with a large local density of states.

In Fig. 2a, we present the conductivity of 2D hBN of Eq. 10, using parameters from

Ref. [283] calculated from density functional theory within the local density approxima-

tion. In this plot ϵenv = 1, ωTO = 1387 cm−1 and vg = 1.2 × 10−4c, with c the speed of

light in vacuum.

From the conductivity, the dispersion relation of phonon polaritons on an infinite sheet

is given by q = 2iωϵ0ϵenv/σ(ω). The dispersion, assuming τ = ∞ and ϵenv = 1, is

shown in Fig. 2c (black line). A key figure of merit for applications involving the prop-

agation of phonon polaritons, is the propagation quality factor, defined by Re q/Im q =

Im σ(ω)/Reσ(ω), which is shown in Fig. 2b.

For monolayer hBN, the wavevector grows very rapidly with frequency, due to the ex-

tremely low group velocity of 2D LO phonons, which is a remarkable four orders of mag-

nitude slower than the speed of light. In particular, at frequencies of 1450 cm−1, the phonon

polariton has a wavelength of about 15 nm, significantly shorter than any phonon polariton

measured so far, and, similarly shorter than any plasmonic wavelength, even in graphene. In

fact, this short a wavelength well-below that of any polariton in current scattering near-field

microscopy (SNOM) measurements. The 2D phonon polariton could in principle be mea-

sured by SNOM closer to the TO frequency, where confinement is smaller; unfortunately,

as shown in Fig. 2b, near the TO frequency, dissipation is far higher (and corresponding

propagation quality factors Re q/ Im q far lower) due to large Reσ (or, equivalently, large

Im ϵRPA).

These considerations imply that access to the lower-loss and higher-confined portions

of the dispersion relation of phonon polaritons, in the absence of a sharper tip, requires a

near-field probe such as a free electron probe, as used in electron energy loss spectroscopy

(EELS), where slow electrons can be used to probe plasmon wavelengths of just a few
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nanometers in monolayer metals, as well as the nonlocal bulk plasmon dispersion in met-

als [288, 27, 289]. EELS has been recently employed to measure phonon polaritons in

ultrathin films of hBN [290]. Another interesting class of near-field probes, with rele-

vance to fundamental physics and quantum optics applications, is a quantum emitter such

as an atom, molecule, or artificial atom such as a quantum dot, quantum well, or vacancy

center. Recently, it was demonstrated using nanostructures of bulk hBN that the interac-

tion of vibrational emitters with phonon polaritons is on the border of the strong coupling

regime [44].

In the rest of this section, we discuss the relation between the dispersion of an hBN

monolayer versus the atomically-thick limit of a thin film of a material with hBN’s bulk

dielectric function. To aid this discussion, in Fig. 2c, we show the dispersion relation of

thin films of bulk hBN with film thicknesses of 1, 2, 4, and 8 times the interlayer spacing

of bulk hBN, which is roughly 0.33 nm. For these plots, we take hBN to be cleaved such

that the optical axis is perpendicular to the plane of the film. The components of the bulk

permittivity perpendicular and parallel to the c-axis (ϵ⊥ and ϵ∥, respectively; indexed by

α ∈ {⊥, ∥} below) are then given by

ϵα(ω) = ϵ∞,α

1 +
ω2

LO,α − ω2
TO,α

ω2
TO,α − ω2

, (3.13)

with ϵ∞,∥ = 2.95, ωTO,∥ = 760 cm−1, and ωLO,∥ = 830 cm−1; and ϵ∞,⊥ = 4.87, ωTO,⊥ =

1360 cm−1, and ωLO,⊥ = 1614 cm−1[39, 10]. Losses are ignored in this discussion alto-

gether. In the range between ωTO,α and ωLO,α, the corresponding component of the per-

mittivity is negative, while the other component is positive. This hyperbolicity leads to a

dispersion for hBN thin films that have multiple branches at a given frequency, as can be

seen in Fig. 2c. This trend persists even when the thickness of the bulk is taken down to a

single layer, albeit pushed to high wavevectors. This is in contrast with the true monolayer,

where there is only one LO phonon mode. Given that the phonon polariton of 2D is the

LO phonon, there can be only one branch of the dispersion. The bulk dielectric function

of Eq. 13 fails to capture this removal of higher-order modes (i.e. hyperbolicity). For a

bilayer, however, there is a higher-order LO mode, associated with out-of-phase oscillation
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between the two layers. Heuristically, as can be anticipated from the blue higher-order

mode in Fig. 2c, this mode would be challenging to observe, given its extremely high con-

finement and small spectral separation from the TO mode (a few cm−1, comparable to the

damping linewidth).

While we have focused on anomalies between the atomically-thin limit of bulk and a

true monolayer, a comparison of the monolayer with the fundamental phonon polariton

mode of the one-atom-thick thin film suggests that we have a reasonable qualitative under-

standing of the monolayer dispersion from the one-atom-thick thin film.

This qualitative similarity is to be somewhat expected, as a 2D layer can be considered

as a very thin film of bulk material, provided that the microscopic properties of the bulk and

monolayer do not deviate substantially. The differences between the t = t2D = 0.33 nm

bulk thin-film and monolayer that nevertheless do exist, reflect such microscopic devia-

tions. Occasionally, e.g.for compatibility with standard numerical tools, it is useful to intro-

duce a fictitious, effective bulk material whose fundamental thin-film mode exactly matches

the monolayer’s. The dielectric function of such a “bulkified” monolayer is thickness-

dependent and anisotropic: for a film in the xy plane, it is ϵQ2D = (x̂x̂ + ŷŷ)ϵQ2D,∥ +

ẑẑϵQ2D,⊥ with ϵQ2D,⊥ = 1 and

ϵQ2D,∥(ω) = 1 + iσ
ε0ωt

= 1 + 1
t

4ϵenvωTOvg

ω2
TO − ω2 − iωτ−1 . (3.14)

3.3 Strong light-matter interactions enabled by 2D optical

phonons

The extreme confinement of electromagnetic fields offered by the 2D phonon polariton

presents an opportunity for quantum optical applications in which one seeks to couple an

external emitter such as an atom, molecule, defect, or artificial atomic system to electro-

magnetic fields. Applications of these couplings are ultra-bright single- or two-photon

sources, realizing the strong-coupling regime and the associated phenomenology of Rabi

oscillations and polaritons, or resolving spectroscopically “forbidden” transitions [130, 44,

105, 109, 110] to achieve near-field spectroscopies with momentum and angular momen-
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tum resolution not accessible in far-field spectroscopies.

In Fig. 3, we consider the coupling of a dipole emitter to localized phonon polaritons

of nanostructured monolayer hBN. For simplicity, we consider hBN nanostructured as a

disk, which leads to the formation of sharp resonances quantized along the azimuthal and

radial directions. The disk is taken to have a radii varying from 10 nm to 40 nm and a loss

rate τ−1 = 0.5 meV, which is of the order of the loss rate in bulk hBN [39, 10]. We also

show (dashed line) the results for a disk of infinite radius, i.e., a flat sheet of monolayer

hBN. We parameterize the coupling between the dipole and phonon polaritons through the

rate of spontaneous emission Γ of phonon polaritons by the dipole, normalized to the rate

of spontaneous emission in free space Γ0. It is related to the dyadic Green function G of

the Maxwell equations for the nanostructure via the expression [127]:

Γ
Γ0

= 6πc
ω

n̂ · Im G(r, r, ω) · n̂, (3.15)

where n̂ is the orientation of the dipole, r its position, and ω its frequency.

The dyadic Green function is computed using a quasistatic boundary element method

(as in Ref. [291]). In Fig. 3, we plot the enhancement of the spontaneous emission rate

Γ/Γ0 for an external emitter polarized perpendicularly to the plane of the disk and placed

5 nm away from the center of the disk. Due to the orientation and position of the dipole,

which maintains the axial symmetry of the disk, the emitter only couples to axially sym-

metric (ℓ = 0) modes with zero orbital angular momentum. We find that the rate of sponta-

neous emission of 2D optical phonons is approximately 8 orders of magnitude larger than

the rate of spontaneous emission of photons in the far field at frequencies corresponding to

resonant modes of the hBN disk. Such enhancement is much larger than the enhancement

presented by an unstructured, infinite sheet at the same frequency, due to the concentration

of electromagnetic local density of states around the resonances. Nevertheless, the aver-

age spontaneous emission enhancement, defined by the integral of the enhancement over

frequencies, is comparable to that of the flat sheet, in keeping with sum rules for spon-

taneous emission enhancement [23]. We note that in this approach, the coupling of the

dipole to phonon polaritons is manifested through the phonon contribution to the conduc-
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tivity of the disk. This should be equivalent to an approach that considers the coupling of a

bound electron in an emitter to LO phonons in the disk through a 2D Fröhlich coupling—

i.e.a coupling of the atomic electron to the electric potential resulting from the polarization

associated with an LO phonon mode [287].

In Fig. 3, we show that for an infrared emitter at a transition wavelength of 7 µm with

a free-space radiative lifetime of 1 µs, 5 nm away from an hBN disk, the coupling rate to

2D optical phonons (about 65 meV) would be on the same scale as the optical phonon

frequency itself (about 180 meV). This rate thus implies coupling between an emitter and

the field in the regime of ultra-strong coupling. Moreover, the coupling rate for the 20 nm

disk (purple), for an emitter with a far field decay rate of ≳ 3 × 1014 s−1 would have a

sufficient coupling strength to the distinct, radially-quantized resonances in purple for its

linewidth to span multiple resonances and thus be in a multi-mode ultra-strong coupling

regime. Thus, the extreme confinement of electromagnetic energy associated with LO

phonons in two dimensions enables the possibility of realizing ultra-strong coupling of an

atom or molecule with optical phonons in a polar material, allowing the potential realization

of new coupled states of quantum emitters and phonons such as atom–phonon polariton

bound states.

The ability to probe low-loss and highly confined electromagnetic modes associated

with optical phonons in 2D polar materials provides a new platform for nanophotonics in

the mid- and far-infrared spectral range. The identification of the phonon polariton of bulk

and thin-film geometries with the 2D LO phonon made in this manuscript would extend

the rich phenomenology of optical phonons to nanophotonic applications. This work also

points the way to useful new approaches to study LO phonons, arising from the fact that

2D LO phonons, unlike their 3D counterparts, have their electromagnetic energy extend a

considerable distance from the material boundary. Due to the strong electromagnetic in-

teractions between emitters and 2D phonon polaritons shown here, it is now possible to

design interesting new hybrid states of matter and phonons based on quantum electrody-

namical strong coupling. The highly confined phonon polaritons in polar monolayers may

also provide interesting new opportunities in near-field radiative heat transfer, in which

it has been long known that thin-film surface phonon polaritons play a critical role. Ad-
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ditional opportunities come from considering the near- and far-field optical properties of

periodically structured layers involving hBN and other materials such as graphene [292].

An important avenue of future study would be the ab initio calculation of lifetimes of 2D

LO phonons associated with three-phonon processes [78, 286] and electron-phonon inter-

actions [195, 287, 293]. In further work, it would be of great interest to study the effects

of isotopic purification and cryogenic temperatures on reducing the decay rate of these 2D

LO phonons [276].

3.4 Experimental observations of 2D phonon polaritons

Scattering near-field optical microscopy. In parallel to the theoretical work reported

here, the group of Dmitri Basov at Columbia had performed scattering near-field optical

microscope measurements of the dispersion relation of phonon polaritons in monolayer

(2D) as well as bilayer (2.5D) hexagonal boron nitride. We worked with them to explain

these results in the context of the theory. In Fig. 4, we present those results. The inferred

dispersion of the phonon polaritons is displayed in Fig. 4 where we plot frequency ω vs.

the confinement factor λ0/λ = k/k0. Fig. 4b shows the results for a bilayer (triangles) and

Fig. 4c for a monolayer (dots). In both cases, the confinement factor k/k0 can approach or

exceed 60. Accordingly, the mode volume λ3/2π of polaritons is reduced compared to the

mode volume λ3
0 of free-space photons by a factor up to 106.

Electron energy loss spectroscopy. Since then, other groups have also measured

phonon polaritons in monolayer hexagonal boron nitride, providing further tests of the the-

oretical framework advanced here. One particularly notable recent example was published

in 2021 [294], where the highly-confined portion of the dispersion relation was measured.

As discussed in the discussion of Fig. 2, the use of scanning near-field optical microscopy

is limited to probing relatively longer wavelengths of polaritons (currently > 50 nm, which

is set by the tip radius, which dictates the magnitude of evanescent coupling to the polari-

ton near-field). As per Fig. 2, the parts of the dispersion probably by SNOM correspond

to points with relatively low propagation quality factors, as consistent with Fig. 4. How-

ever, as mentioned above, a near-field probe such as a free-electron can be sensitive to
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the high-momentum sector of the dispersion. This is precisely what the 2021 paper did:

they measured electron-energy loss of low-energy electrons that pass through suspended

monolayers of BN, losing energy by emission of 2D phonon polaritons. They found that

the monolayer polaritons indeed support extremely confined excitations (with wavelengths

approaching 10 nm): further, the EELS spectra they measure could be well-accounted for

by the conductivity of Eq. 10.
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Figure 3-1: LO phonons as the basic electromagnetic waves of a polar monolayer. (a)
Schematic structure of a polar monolayer such as hexagonal boron nitride. (b) Properties
of LO and TO phonons in 3D and 2D. In 3D, there is a finite LO–TO splitting at zero
wavevector, while in 2D there is none. Despite this, the 2D LO phonon plays the role of
the phonon polariton in 3D and thin films. (c) Analogous physics appears in electron gases
in 3D and 2D, where the 3D plasma frequency is similar to the 3D LO–TO splitting. In
2D, the plasma frequency at zero wavevector is zero, but the electromagnetic physics is
determined by the dispersion of 2D plasmons, which replace the plasmon polariton of bulk
and thin films.
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Figure 3-2: Properties of phonon polaritons in a monolayer of hBN compared to bulk.
(a) Real and imaginary parts of the conductivity of 2D hBN for different values of the
loss-rate. (b) Propagation quality factor, which measures the number of wavelengths of
propagation of the 2D phonon polariton. (c) Dispersion relation of phonon polaritons in
the monolayer (black) and thin films whose thicknesses are taken to be 1, 2, 4, and 8
interlayer spacings in hBN. For the thin-film, the fundamental mode (dashed) and the first
higher-order mode (dash-dotted) are plotted.
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Figure 3-3: Extreme spontaneous emission enhancement due to 2D phonon polaritons
in nanostructured geometries. Plotted is the enhancement of the spontaneous emission
rate for an emitter z = 5 nm above the disk’s center and oriented normal to its plane (n̂ =
ẑ). For a disk with a diameter of 20 nm, and assuming a relaxation rate τ−1 = 0.5 meV,
the rate of emission enhancement can be enhanced 100 million-fold. For an emitter with
a free-space decay rate of 1 × 106 cm−1 at 7 µm, the emitter would experience a decay
rate comparable to the frequency of the disk mode, leading to ultra-strong coupling of an
external emitter with 2D phonon polaritons. For reference, we compare the spontaneous
emission enhancement in a nanodisk geometry to that of a disk of infinite radius (i.e., a
flat sheet), showing clear enhancement relative to the flat sheet due to concentration of
local density of states around phonon polariton resonances. Note that τ−1 = 0.5 meV is
of the order of the loss rate in bulk hBN. Also shown in the figure are maps of the electric
potential on the surface of the disk for modes corresponding to selected phonon polariton
resonances in the plot.
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e f

Figure 3-4: Measurement of 2D phonon polariton dispersion relation by scanning
near-field optical microscopy. (a) Experiment setup. The AFM tip and hBN sample
are illuminated by the IR beam (solid magenta arrow) from a quantum cascade laser. Prop-
agating surface phonon polariton waves are launched and detected by the AFM tip (dotted
magenta arrow). (b-d) s-SNOM phase images of surface phonon polaritons in monolayer
and bilayer hBN at IR frequency ω = 1376.5, 1382 and 1387.5 cm−1. Scale bar: 500 nm.
(e,f) Dispersion of surface phonon polaritons in monolayer and bilayer hBN. e), Frequency
(ω) – momentum (k / k0) dispersion of surface phonon polaritons in bilayer hBN. f), Fre-
quency (ω) – momentum (k / k0) dispersion of surface phonon polaritons in monolayer
hBN. Experimental data (dots for monolayer and triangles for bilayer) are extracted from
s-SNOM images in Figure 1. Theoretical results are indicated with blue (ωT O = 1367 −1)
and green (ωT O = 1370.5 cm−1) dashed curves for monolayer hBN and red (ωT O = 1367
cm−1) dashed-dotted curve for bilayer hBN. Image modified based on Dai, Fang, Rivera,
et. al.
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Chapter 4

Light emission based on nanophotonic

vacuum forces

Note: This chapter is heavily based off “Light emission based on nanophotonic vacuum

forces” by N. Rivera et al. Nature Physics (2019).

The vanishingly small response of matter to light above ultraviolet frequencies

makes the manipulation of light emission at such frequencies challenging. As a result,

state-of-the art sources of high-frequency light are typically active, relying on strong

external electromagnetic fields. Here, we present a fundamental mechanism of light

emission that is fully passive, relying instead on vacuum fluctuations near nanopho-

tonic structures. This mechanism can be used to generate light at any frequency, in-

cluding high-frequency radiation such as X-rays. The proposed mechanism is equiva-

lent to a quantum optical two-photon process, in which a free electron spontaneously

emits a low-energy polariton and a high-energy photon simultaneously. Although

two-photon processes are nominally weak, we find that the resulting X-ray radiation

can be significant. The strength of this process is related to the strong Casimir-Polder

forces that atoms experience in the nanometer vicinity of materials, with the essential

difference that the fluctuating force here acts on a free electron, rather than a neutral,

polarizable atom. The light emission can be shaped by controlling the nanophotonic

geometry or the underlying material electromagnetic response at optical or infrared

frequencies. Our results reveal ways of applying the tools of nanophotonics even at
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frequencies where materials have an insubstantial electromagnetic response. The pro-

cess we study, when scaled up, may also enable new concepts for compact and tunable

X-ray radiation.

Since the early days of quantum mechanics, quantum vacuum fluctuations have been a

constant source of fascination. The non-zero energy density of the vacuum gives rise to a

wide variety of important physical effects that continue to be subjects of intense theoretical

and experimental research. In the case of the quantized electromagnetic field, key examples

of these effects include spontaneous emission [3], Lamb shifts [256], Casimir (-Polder)

and van der Waals forces [295, 296, 297], quantum friction [298], the dynamical Casimir

effect [299, 300], and the Unruh effect [301, 302, 303].

A paradigm that has taken hold in recent years is control over these vacuum effects

by either nano-structuring of the electromagnetic modes of optical materials [49] or using

nano-confined electromagnetic modes in materials with negative permittivity or permeabil-

ity [5, 6]. This paradigm works because the electromagnetic modes control the spatial and

spectral properties of the electromagnetic vacuum. A well-studied example of these con-

cepts is the Purcell effect [128], in which the modification of the local density of states of

the electromagnetic field alters light emission by stationary or moving atoms [112, 113] and

free electrons [180, 27, 186, 212, 126]. Another example would be the control of Casimir

forces and related phenomena, such as near-field radiative heat transfer, which are attributed

to fluctuating electromagnetic fields near optical materials. These effects are very strong

when two optical materials are a few nanometers away from each other, due to the very

large field fluctuations associated with the nanoscale. The large field fluctuations motivate

the strong theoretical [304, 305, 306, 307, 308] and experimental [297, 309, 310, 311] push

to observe these effects using nanoscale gaps between materials.

Controlling the electromagnetic vacuum ceases to be simple at high frequencies, typi-

cally beyond UV [312]. This is a direct consequence of the fact that in almost all known

materials, the permittivity approaches that of vacuum at high frequency. As a result, the

generation of high-frequency radiation (hard UV through gamma-rays) from emitters re-

lies on the presence of static or dynamic external fields, as in inverse Compton scattering,

and light-generation processes used in free-electron lasers, synchrotrons and laser undula-
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tors [313, 314, 315, 213, 214]. Alternatively, the radiation can come from the weak dielec-

tric response of materials at very high frequencies, as in parametric X-ray generation [316].

The very weak material response at very high frequencies seems to preclude using ideas

from nanophotonics and materials physics to influence high-frequency radiation.

Here, we show how vacuum fluctuations at IR-visible frequencies near and inside

nanophotonic materials can be used as a means of controlling light emission at very high

frequencies, such as X-rays. The mechanism that we propose to exert such control are

two-quantum processes involving the spontaneous emission of a photon and a polariton

by an energetic free electron (see Fig. 1). Although two-quantum (spontaneous) emission

processes are second-order processes in quantum electrodynamics (QED) and are thus con-

sidered very weak, the large strength of vacuum forces in the nanoscale vicinity of materials

nevertheless leads to a strong per-electron power emitted into high-frequency radiation. In

fact, we find that the radiated power is comparable with that emitted by an equal-energy

electron moving in an externally applied magnetic field on the order of 1 Tesla. Due to

the high spatial confinement of the emitted polariton, the intensity of the emitted light is

significant at substantially higher frequencies than in many known light sources, even when

modest electron energies are used in our scheme.

For example, in comparison with current X-ray free electron lasers and synchrotrons

which utilize GeV-energy electrons to produce few-keV X-rays, X-ray output of 5 keV can

be achieved with electron kinetic energies of about 5 MeV and gamma-ray output of 50

MeV can be achieved with electron kinetic energies of around 500 MeV. The emission is

broadband, potentially enabling applications in probing physics from UV to hard X-rays

(for few-MeV electrons attainable with a table-top RF gun) and gamma-rays (with further

electron acceleration). In spite of the output being at such high frequencies, the spatial and

temporal properties of the emitted photons can be tailored by controlling the material per-

mittivity at IR frequencies. We illustrate these concepts in tunable nanophotonic materials

of current interest such as graphene, a dynamically tunable plasmonic material known to

support highly confined and low-loss plasmons at infrared frequencies [38, 8, 9, 11, 12].

Our results may be enabling concepts for novel passive and compact sources of tunable

radiation from nanometer to femtometer wavelengths. Our results also suggest a novel
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Vacuum fluctuation induced X-ray emission

Figure 4-1: Light emission induced by nanophotonic vacuum fluctuations and sponta-
neous emission of a photon-polariton pair (a) Schematic diagram illustrating a beam of
electrons traveling in the near-field of a nanophotonic structure. The vacuum fields lead to
random modulations of the trajectory with a non-zero variance. These modulations lead in
turn to a Doppler shift of the vacuum fluctuations into a higher frequency in the electron’s
rest frame, resulting in photon output at even higher frequencies. The ratio of the output
photon frequency to polariton frequency scales as

(
E

mc2

)2
, where E is the energy of the

electron, resulting in enormous frequency up-conversion factors for relativistic electrons.
(b) The complementary description in QED: a second-order two-quantum (spontaneous)
emission process involving a mode of the structure (denoted polariton) and a high energy
photon.

“nonlinearity” mediated by relativistic electrons that couples “low-frequency” (IR or op-

tical) fields to “high frequency” (UV, X-ray or gamma-ray) fields despite the well-known

lack of electromagnetic response at such high frequencies. Our findings may also yield

a new way to study the quantized electromagnetic vacuum: through high frequency light

emitted into the far field by a relativistic probe.

4.1 Spontaneous emission of a photon-polariton pair by a

free electron

Consider a beam of electrons traveling over a photonic structure that permits strong cou-

pling of light and material polarization (Fig. 1a). Examples of such a structure include all-

dielectric nanostructures or materials with resonances associated with plasmon-, phonon-,

exciton- or magnon-polaritons. For brevity, we will refer to any mode arising from non-

trivial optical response as a polariton mode, even those in all-dielectric structures, as the

non-trivial optical response is concomitant with strong coupling between light and mate-

126



rial polarization. The electrons are affected by electromagnetic field fluctuations that arise

from the quantum fluctuations of polarization currents inside the material. Although this

fluctuating field has zero mean, it has a non-zero variance that leads to the possibility of far-

field photon emission by the electron through spontaneous emission. In this spontaneous

emission process, a far-field photon and a photonic mode of the nanostructure (a polariton

mode) are simultaneously emitted. We henceforth refer to this two-quantum emission as a

photon-polariton pair emission. The probability of two-quantum emission processes scale

as the square of the fine-structure constant (α ≈ 1/137), which led to a long delay between

prediction and the first direct observation in the specific case of two-photon emission from

atoms [255, 268]. However, two-quantum emission can be strongly enhanced by nearby

polaritonic media in atomic or low-energy emitters based on bound charges, making these

two-polariton emission processes strong or potentially even dominant [261, 140, 105, 109]

over single-photon decay channels. Very interestingly, two-photon emission by free elec-

trons was suggested by luminaries such as Ilya Frank in his 1958 Nobel Lecture on the

Cerenkov effect [260], and was considered as a second-order Cherenkov effect [317, 318].

Fig. 1 summarizes the discussion above by illustrating the two complementary paradigms

that can be used to explain the phenomena we study here. The first is the fluctuational elec-

trodynamics paradigm (Fig. 1a) where a free electron radiates as a result of interactions

with fluctuations in a nanophotonic vacuum (derived and applied in App. E (referred to

as SI) Sections 3 and 4). The second is the quantum electrodynamics paradigm (Fig. 1b),

which describes the radiation as part of a second-order quantum process in which a rela-

tivistic electron spontaneously emits one photon and one polariton (derived in SI Section

5 via both scalar and Dirac QED, which agree excellently for electron energies below 1

GeV). We show that the quantum electrodynamics approach leads to the same results.

4.2 Methods

In this section, we present a basic overview of the fluctuational electrodynamics formal-

ism used to calculate the spectrum of photon-polariton pair emission. Further details are

provided in Sections 3 and 4 of the SI. We emphasize that this formalism, for parameters
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considered in the main text, gives precisely the same result as a calculation based on the di-

rect calculation of the emission based on second-order time-dependent perturbation theory

(shown in SI Section 5).

From the point of view of fluctuational electrodynamics, it is sufficient here to consider

a classical electron traveling initially in a straight line with velocity v = cβ and position

r(t) = r0 +vt, with r0 being the position taken at an arbitrarily chosen origin of time t = 0,

and c is the speed of light. In the presence of an external modulating electric field, this elec-

tron will experience an acceleration that leads to subsequent radiation, as prescribed by the

Lienard-Wiechert potentials, the essential aspects of which are summarized in the SI. The

radiated energy is quadratic in the modulating field. In the spirit of the discussion of Fig.

1a, we identify the modulating field with that associated with the quantum fluctuations

of the nanophotonic vacuum at thermal equilibrium. The average power radiated by the

electron is governed by the correlation function between different components of the fluc-

tuating electric field at different positions and different times. This correlation function is

⟨Ei(r, t)Ej(r′, t′)⟩, where r and r′ are different points in space, t and t′ are different points

in time, Ei is the ith component of the quantized electric field operator, and ⟨⟩ denotes an

ensemble average assuming thermal equilibrium. From the quantum theory of the macro-

scopic electromagnetic field in an arbitrary dielectric medium, ⟨Ei(r, t)Ej(r′, t′)⟩, at zero

temperature, is given by [319, 320, 25]:

ℏ
πϵ0c2

∞∫
0

dω ω2Im Gij(r(t), r(t′), ω)e−iω(t−t′), (4.1)

with ϵ0 the permittivity of free space, and ℏ the reduced Planck constant. The non-zero

temperature generalization is presented in App. C (referred to as SI). In this equation,

the integration variable ω can be interpreted as the angular frequency of a polariton in

the nanophotonic structure. In practice, the integral in Eq. (3) is well-approximated by

restricting the range of integration to the set of frequencies where the local density of states

of the polaritons are high. Gij is the dyadic Green’s function of the nanophotonic structure

and is dependent on material resonances and material geometry.

To find the energy radiated per unit photon frequency ω′ and photon solid angle Ω into
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the far-field, dU/dω′dΩ, we take the an ensemble average of the radiated power over real-

izations of the modulating field, thus plugging in Equation (3) for the ensemble averaged

modulating field (a detailed derivation is given in SI Section 3). The result of this fluctua-

tional electrodynamics calculation, at zero temperature, is:

dU

dω′dΩ = e4ℏ
16π4ϵ2

0m
2c5γ2(1 − β cos θ)4 ×

∞∫
−∞

dtdt′
∞∫

0

dω ω2Im
[
e−i(ω+ω′)(1−β cos θ)(t−t′)tr

[
TG(r(t), r(t′), ω)TT

]]
, (4.2)

where γ = (1 − β2)−1/2 is the electron Lorentz factor, θ is the angle of the emitted photon

with respect to the direction of electron motion, and t and t′ are times which are integrated

over the electron’s unperturbed linear trajectory. Additionally, we have defined the matrix

T, whose components Tij ≡ (β cos θ− 1)δij − (n̂i − βi)n̂j , with δij a Kronecker delta, n̂ a

unit vector along the direction of photon emission, and Eγ =
(
E⊥,

E||
γ2

)
where ⊥ (||) denote

directions perpendicular (parallel) to v. The only assumptions made in writing Equation

(4) are that the deviations of the electron motion from a straight-line trajectory are fairly

small, and that the fluctuating fields are quasi-electrostatic in nature, meaning that effects

of the magnetic fields are negligible compared to those of the electric fields, which holds

for highly-confined near-fields associated with polaritons in dielectrics and conductors. We

note that the assumption of zero-temperature is well-respected even at room temperature,

as for the infrared polariton frequencies we consider here, kT
ℏω

≪ 1. However, at higher

temperatures, the emission will be enhanced due to contributions from thermal near-field

fluctuations. Equation (4) is the main formal result of this work, and it is applied in the

main text. Before doing so, we briefly comment that in the fluctuational electrodynamics

paradigm, the effect we describe can be phrased as follows: fluctuating polarization cur-

rents in a medium lead to fluctuating acceleration and thus fluctuating dipole moments of

an electron, leading to subsequent high-frequency radiation, due to the relativistic speed

of the electron. In these terms, the physics is like that of the general Casimir-Polder ef-

fect (which has the van der Waals force as its near-field limit), where vacuum fluctuations

lead to a force on a bound electron in an atom or molecule. Unlike other often considered
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Casimir phenomena, this vacuum force acts on a relativistic free electron and oscillates it,

leading to the radiation emission.

4.3 Impact of nano-confinement of polaritons on the emis-

sion spectrum

We find that in photon-polariton pair emission by an electron with speed v = cβ moving

along direction v̂, the photon and polariton are kinematically related (see SI Section 4). In

particular, a photon emitted of frequency ω′ along direction n̂ is kinematically related to a

polariton emitted of frequency ωq in direction q̂ by

ω′ = ωq
βn(ωq) cos θq − 1

1 − β cos θ , (4.3)

where n(ωq) = qc
ωq

is the effective mode index of the polariton (with q the magnitude of the

polariton wavevector), cos θq = q̂ · v̂, and cos θ = n̂ · v̂. Equation (1) reveals two ways by

which the photon frequency can be greatly enhanced. The first way to enhance the pho-

ton frequency is by minimizing the denominator, which is achieved by using high-energy

electrons and collecting photons emitted in the direction of electron motion (θ = 0), as can

be seen by the fact that (1 − β cos θ)−1 ≈ 2γ2 when θ = 0 and β ≈ 1. The second way

to enhance the photon frequency is by making use of an optical medium which supports

polariton modes of simultaneously high wavevector and high effective mode indices.

The numerator in Eq. (1) reveals a fundamental difference between the process studied

here and a potential process in which a photon is emitted and a polariton is absorbed. In

this latter case, the numerator of Eq. (1) would change to vq|| + ω (see SI Section 4),

implying that strong enhancement of radiated frequency can occur even when q|| = 0. For

a photon-polariton pair emission process, emission is kinematically forbidden for q|| <
ω
v

.

This implies that high frequency modes are not necessarily associated with the generation

of high-frequency photons in photon-polariton pair emission. Instead, high mode indices

are necessary.

The importance of high mode indices to generating high-frequency photons is summa-
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Figure 4-2: Influence of optical materials on the photon emission spectrum in photon-
polariton pair emission. Radiated photon frequency of Equation (1) for photons emitted
along θ = 0, and polaritons emitted along θq = 0 (both emitted forward). The photon
frequency is shown as a function of polariton frequencies for plasmons in (Drude) gold
and silver with different thicknesses, (Drude) graphene with different doping levels, and
phonon polaritons in silicon carbide. Also shown are contours corresponding to a constant
index of refraction of 1.5, 2, and 4. Despite the very different frequencies of plasmons in
graphene, phonon polaritons in silicon carbide, and plasmons in silver and gold, all of these
materials are capable of being used for generation of hard X-ray photons.

rized in Fig. 2, where we plot the relationship between the emitted photon frequency and

the emitted polariton frequency for different optical materials, in the scenario where both

the polariton and photon are emitted in the forward direction by an electron moving at a

speed of 0.99c. We consider plasmonic thin films of gold and silver of varying thickness,

2D plasmonic materials such as graphene, with varying levels of doping, and thin films of

phonon polaritonic materials like silicon carbide. As can be seen from Fig. 2, despite the

widely different frequencies of the emitted polaritons in these widely different materials,

the emitted photons can be at hard X-ray frequencies (frequencies in excess of 5 keV). To

summarize this figure: high mode momentum (as long as it comes with a high mode index),

leads to high frequency photons.

To highlight further the interplay of electron velocity and polariton mode index on the

output photon frequency, we present another example. For graphene, with Fermi energy

0.5 eV, the forward emission of a plasmon of 0.5 eV frequency will be concomitant with
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the forward emission of a photon of frequency 110 eV for an electron with velocity 0.7c

(as from a transmission electron microscope), a photon of frequency 6.7 keV for an elec-

tron with velocity 0.995c (as from a radio frequency gun), and a photon of frequency 675

keV for an electron with velocity 0.99995c (from a linear accelerator). Meanwhile, if the

plasmon is replaced by a polariton of frequency 100 eV, but a mode index of 1.01, then for

an electron of velocity 0.7c, it is kinematically forbidden to emit a photon. For an electron

of velocity 0.995c, the outgoing photon has a frequency of 0.099 keV, and for an electron

of velocity 0.99995c, the outgoing photon has a frequency of 20 keV.

4.4 Strong, broadband high-frequency radiation from vac-

uum fluctuations

Having discussed the kinematics of photon-polariton pair emission, we now move to ana-

lyze the angular and frequency correlations of the emitted photon-polariton pairs, as well

as the overall strength of the process. To make the discussion concrete, we consider this

process when the emitted polariton is a plasmon in graphene, a dynamically tunable plas-

monic material known to support plasmons that simultaneously have high mode index, and

low-enough losses to be well-defined excitations. Graphene is a very attractive platform

for realizing the effect we describe in the manuscript. Besides having highly confined plas-

mons which propagate for reasonably long distances, it is also tunable, it has a very high

surface-to-bulk ratio, and can be produced in suspended form, allowing minimization of

background effects. That said, we show (in Figure 4 of SI) that other materials, such as

thin films of gold, can give effects of a similar magnitude, as could be anticipated from the

utility of conventional plasmonic materials in fields such as near-field radiative heat trans-

fer. The low damping also could allow the intriguing possibility that the emitted polariton

could re-interact with the electron beam and lead to feedback and radiation enhancement.

In particular, we consider the photon-polariton pair emission process for a fast electron

moving parallel to a sheet of doped graphene, a distance x0 away from the surface of the

graphene. We consider the graphene to be free-standing, although the conclusions of Figs.
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Figure 4-3: Correlations between emitted infrared polaritons and emitted X-ray pho-
tons in photon-polariton pair emission. (a, top half) Polar plot of emitted photon power
in photon-polariton pair emission, when the polariton is a plasmon in doped graphene.
The power is per unit plasmon frequency, per unit plasmon angle, and per unit photon
angle for forward photon emission θ = 0, plotted as a function of plasmon frequency (ra-
dial direction) and plasmon angle (angular direction). A preference exists for plasmons
emitted perpendicular to the direction of electron motion due to polarization effects. (a,
bottom half) Corresponding frequencies for the forward-emitted photon as a function of
plasmon energy and angle. (b) Emitted photon power per unit photon frequency and plas-
mon frequency, which show a clear correlation between plasmon and photon frequencies.
The photon emission is synchrotron-like, extending from UV to X-ray frequencies, having
maximum contribution from plasmon frequencies where the local density of states is high-
est. The electron is taken to have a velocity of 0.99c, and travels a distance x0 = 5 nm
away from the surface of the graphene sheet, which is doped to a Fermi energy of 0.5 eV.

3 and 4 are not qualitatively changed when a transparent substrate is introduced. Note

that for simple exposition, we model graphene via a Drude model with an infinite Drude

relaxation time. A realistic Drude relaxation time has little effect on the emitted power (see

Supplementary Figure 2). We also consider the influence of interband transitions modeled

through the local and nonlocal RPA conductivity. The output power in those cases remains

similar to the Drude case.

4.4.1 Spectral and angular correlations between the emitted photon

and polariton

In photon-polariton pair emission, the fast electron spontaneously emits a photon and a

plasmon-polariton, whose spatial and spectral distributions are shown in Fig. 3. In Fig.
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3a (upper half-circle), we show the radiated photon energy per unit time (photon power)

per unit plasmon frequency, plasmon angle, and photon angle, with fixed photon angle

(θ = 0). The electron is taken to have a velocity of 0.99c. Integrating over these variables

gives the total emitted power. The (polar) plot shows this differential power as a function

of the plasmon frequency ωq (radial direction) and plasmon angle θq (angular direction).

We represent the spectrum this way to show how the emission intensity depends on the

kinematical properties of the individual photon-plasmon pairs.

Fig. 3a highlights two main features of photon-polariton pair emission. For one, the

plasmons are preferentially emitted into the graphene sheet in a direction perpendicular to

the direction of electron motion. This results from the polarization of a highly confined

plasmon, which is half in the direction of plasmon propagation, and half perpendicular to

the graphene sheet. For a plasmon emitted parallel to the direction of electron motion, half

of the plasmon polarization is in the direction of electron motion, which for relativistic

electrons, has very little impact on the modulation of the electron trajectory. This compo-

nent is thus incapable of modulating the electron trajectory and makes little contribution to

the emitted power. Meanwhile, for a plasmon emitted perpendicular to the electron motion,

every component of the polarization is transverse to the electron’s unperturbed trajectory,

and thus effectively modulates the trajectory. The second feature is that very little photon

emission corresponds to emission of plasmons of frequency less than 0.25 eV or more than

1 eV. The lack of low-frequency plasmons results from the low density of states of the

plasmons at low frequency. The lack of high-frequency plasmons results from the fact that

their evanescent tails become substantially smaller than x0, rendering the electron insen-

sitive to those plasmon modes. The lower half-circle shows the photon frequencies which

correspond to a particular plasmon angle and plasmon frequency. We see clearly that the

emission of plasmons at perpendicular angles corresponds to low photon energies, which

follows from Equation (1). As a result of the continuum of plasmon angles and energies in

the sheet geometry, the photon emission is quite broadband, spanning from the soft UV to

hard X-ray frequencies, similar to synchrotron light.

In Fig. 3b, we elaborate further on the correlated nature of the photon-polariton pair

emission by showing the photon power emitted per unit plasmon frequency and photon
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frequency, which represents the spectral intensity of plasmon-photon correlations. Inte-

grating over these variables gives the total emitted power. From Fig. 3b, we notice first

that the emission of a plasmon with frequencies between 0 and 1 eV is correlated with

photon emission from 0 to nearly 10 keV. Higher frequency photons are correlated with

higher frequency plasmons, as expected from Equation (1). For a photon of any frequency,

it is most correlated with a plasmon which both has a substantial density of states, but is

also not evanescently decoupled from the electron, which in the case of Fig. 3b, occurs for

plasmons of frequency around 0.5 eV.

For any plasmon frequency, photons have a slight preference to be emitted at lower

frequencies (most of the emission is nevertheless in between 1 and 5 keV). This can be

understood from the fact that plasmons are preferentially emitted near θq = π/2, as shown

in Fig. 3a. Fig. S1 of the SI shows the same overall phenomena as in Fig. 3 but for

different Fermi energy in graphene (and different x0), which results in a different plasmon

dispersion and thus a change in the angular and spectral properties of the emission. This

shows that the emitted X-rays can be tuned by changing the modal properties of photons in

the IR, whether it be the dispersion relation or polarization properties.

4.4.2 Total radiated power in photon-polariton pair emission

We now evaluate the total power emitted in photon-polariton pair emission. A key result is

the total emitted power integrated over all photon and plasmon properties, plotted in Fig.

4a as a function of electron energy and distance between the electron and the surface. The

emitted power increases sharply with increasing electron energy (as γ2) and decreasing

distance to the surface (as x−7/2
0 ). This x−7/2

0 dependence arises from the Drude model

in the quasi-electrostatic limit, and breaks down for distances on the order below 1 nm,

when quantum nonlocality becomes significant, and also at distance above about a micron,

where retardation becomes signficant. In particular, the expectation value of the squared

electric field operator associated with Drude plasmons is given by
∫ dq

2π
ℏωqq2

2ϵ0
e−2qx0 ∼ x

−7/2
0

for ωq ∼ √
q. Consider a scenario in which a 500 MeV electron travels within 5 nm from

the surface of graphene doped to Fermi energy 0.5 eV. The power emitted in the photon
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Figure 4-4: Total emitted power due to nanoplasmonic vacuum fluctuations. (a) Total
photon power as a function of electron energy (in units of the rest mass energy) and distance
to a graphene sheet. Vertical dashed lines correspond synchrotron radiation power for
different values of a hypothetical driving magnetic field. (b) Dependence of the root-mean-
square of the graphene-plasmon contribution to the quantized electric field as a function of
the distance to the surface of a sheet of graphene doped to a Fermi energy of 0.5 eV.

component of photon-polariton pair emission is about 1.3 nW. As a point of comparison,

we also consider a scenario in which an 500 MeV electron emits synchrotron radiation

as a result of traveling in a circular orbit in a 1 T magnetic field. The power emitted

via synchrotron radiation is about 15 nW. The closeness of these two powers is a surpris-

ing observation given that in the former scenario, vacuum fluctuations drive the radiation,

whereas in the latter scenario, a strong applied magnetic field drives the radiation. This

finding applies at any electron energy since the emitted powers of photon-polariton pair

emission and synchrotron radiation both scale in the same manner with electron energy (as

γ2). We encourage the reader to see SI Section 2 to see more details about the character-

istic photon emission rates, methods to scale up the output brightness, and comparison to

other miniaturized light sources. Regarding other miniaturized light sources, particularly

based on strongly pumping a near-field of a photonic structure, we found that the photon-

polariton pair emission, although passive, can lead to as much integrated power as in the

situation in which the electron radiates as a result of scattering from an externally pumped

near-field containing thousands of quanta.

We now quantitatively explain why the magnitude of this vacuum-induced emission

process can be comparable to processes that rely on substantial external driving fields, such
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as magnetic fields of 1 T. The starting point for our explanation is an analytical formula for

total emitted power P that we obtain in the limit where photon-polariton pair emission is

dominated by highly-confined polariton modes. In this limit, the power is given by:

P = e4γ2(4 − β2)
24πϵ0m2c3 ⟨0|E2|0⟩, (4.4)

where ⟨0|E2|0⟩ is the expectation value of the quantized electric field associated with plas-

monic zero-point fluctuations. Note that we calculate the fluctuations resulting from the

medium and remove the contribution free space fluctuations to the squared electric field,

as they give zero contribution due to energy-momentum conservation. A detailed deriva-

tion of this expression is shown in SI Section 5. Eq. (2) is simply the Larmor formula

from classical electrodynamics for a charged particle of acceleration a given in this case by

a = eERMS
mγ

, with the root-mean square (RMS) electric field defined by ERMS ≡
√

⟨0|E2|0⟩.

To see how this explains the high radiated power in photon-polariton pair emission, con-

sider Fig. 4b, which shows the RMS plasmonic field as a function of distance from the

graphene surface. The magnitude of the RMS fluctuations 5 nm from the surface is about

50 MV/m, which induces electron acceleration magnitudes that one expects to find for an

electron in magnetic field of 0.2 T in a synchrotron. Similarly, the magnitude of the quan-

tum RMS field 1 nm away from the surface is about 300 MV/m, which induces electron

acceleration magnitudes that one expects to find for an electron in magnetic field of 1 T.

More generally, the power radiated by an electron undergoing synchrotron radiation in a

uniform magnetic field B is P = e4γ2B2

6πϵ0m2c
, revealing that the power radiated from photon-

polariton pair emission (Eq. (4)) is comparable with that from synchrotron radiation when√
⟨E2⟩ and cB in the respective processes are comparable. These examples emphasize the

strong fields that arise from vacuum fluctuations, and explain the high emitted power we

find in Fig. 4a.
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4.5 Discussion

One potential method of experimentally demonstrating photon-polariton pair emission would

be to send a beam of electrons close to a nanostructure, and at grazing incidence, in a setup

capable of detecting very high-frequency radiation (e.g., with energy dispersive (EDS) X-

ray detectors [321]), making sure to account for competing Bremsstrahlung by electrons

that penetrate the material. Yet another meaningful experimental demonstration would use

time-synchronized measurements of coincidences to measure spatiotemporal correlations

between the X-ray photon and the emitted polariton. The relevant setup depends on the

energy scale. For example, electrons could be accelerated to 200 keV kinetic energy in

an electron microscope. MeV electron energies could be achieved by an RF gun or with

potential advances in dielectric laser acceleration [238]. GeV electron energies could be

achieved with a linear accelerator or potentially with plasma wakefield acceleration [322].

An alternative experimental demonstration could involve the detection – via electron

energy loss spectroscopy – of anomalously high energy losses in the electrons that pass a

small distance away from the surface at grazing incidence. This would require one to be

able to differentiate X-ray losses from core loss transitions in the materials near the surface,

which is possible due to the tunability of the photon spectrum (because the EELS peaks

from photon-polariton pair emission shift by varying acceleration voltage or nanophotonic

geometry as per Equation (1)). In SI Section 2, we discuss briefly methods to minimize

background effects that also produce X-rays associated with electrons colliding into the

sample.

The concept developed here applies to, and is enriched by, the consideration of al-

ternative materials and structures. Examples include thin films and quasi-2D systems

(“transdimensional” systems [323]) of plasmonic materials such as gold, silver, and tita-

nium nitride [324], as well as more general polaritonic materials and metasurfaces. One can

consider optimizing various radiation characteristics through optimizing the nanophotonic

structure. For example, a structure that could make the radiation more monochromatic

would enhance the spectral density, quality, and brightness of the X-ray source. Better

monochromaticity could potentially be achieved by structuring a material into a nanograt-
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ing, such that the X-ray frequency is selected by reciprocal lattice vectors of the grating.

The goal of designing radiation sources through our formalism will benefit from the great

computational strides that have been made in calculating fluctuation spectra near compli-

cated arrangements and geometries of optical media [306, 308, 325]. The framework ad-

vanced here can also be extended to other charge distributions using results from classical

electrodynamics to accommodate radiation from more complicated systems of charges such

as moving dipoles or bunched electrons (including periodically bunched electrons which

are typical in free electron laser settings). Beyond the possibilities of applying this concept

to compact and tunable sources of high-frequency light, the ability to control spontaneous

free-electron emission at arbitrarily high frequencies may also ultimately lead to the ability

to create synthetic active “nonlinearities” at X-ray [326, 327, 328] and perhaps gamma-ray

frequencies controlled by now accessible nano-patterning of photonic systems.
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Chapter 5

A framework for scintillation in

nanophotonics

Note: This chapter is heavily based off “A framework for scintillation in nanophotonics”

by C. Roques-Carmes* and N. Rivera* et al. Science (2022).

Bombardment of materials by high-energy particles often leads to light emission

in a process known as scintillation. Scintillation has widespread applications in areas

such as medical imaging, x-ray non-destructive inspection, electron microscopy, and

high-energy particle detectors. Most research focuses on finding new materials with

brighter, faster, and more controlled scintillation. We develop an approach based

on integrating nanophotonic structures into scintillators to enhance their emission.

We develop a unified theory of nanophotonic scintillators that accounts for the key

aspects of scintillation: energy loss by high-energy particles, and light emission by

non-equilibrium electrons in nanostructured optical systems. We then demonstrate

nearly an order-of-magnitude enhancement of scintillation, in both electron-induced,

and x-ray-induced scintillation. Our framework should enable the development of

a new class of brighter, faster, and higher-resolution scintillators with tailored and

optimized performances.

Scintillation, the process by which high-energy particles (HEP, also known as ioniz-

ing radiation) bombarding a material convert their kinetic energy into light, is among the

most commonly occurring phenomena in the interaction of ionizing radiation with matter.
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It enables a number of technologies, including x-ray detectors used in medical imaging

and non-destructive inspection, γ-ray detectors in positron-emission tomography scanners,

phosphor screens in night-vision systems, electron detectors in electron microscopes, and

electromagnetic calorimeters in high-energy physics experiments [329, 330]. Scintillation

appears under many different guises. For example, when the “high-energy“ particle is a

visible or UV photon, the scintillation is better known as photoluminescence. When the

incident particles are energetic electrons, scintillation is also known as incoherent cathodo-

luminescence. When the high-energy particle is an X- or γ-ray, the phenomenon is almost

exclusively referred to as scintillation. [329].

Because of scintillation’s broad applications, there is interest in the development of

“better scintillators” with greater photon yields, as well as greater spatial and energy res-

olution. Such enhanced scintillators could translate into enhanced functionalities. One

such example is in medicine: brighter and higher-resolution scintillators could enable med-

ical imaging (e.g., computed tomography) with higher resolution and substantially lower

radiation dose. Current approaches to improve scintillation are mostly oriented towards

the growth of higher-quality materials (e.g., single-crystalline, controlled creation of de-

fect sites) as well as the identification of new materials (e.g., ceramics and metal halide

perovskites [331]) with faster and brighter intrinsic scintillation.

We develop a different approach to this problem, which we refer to as “nanophotonic

scintillators”. By patterning a scintillator on the scale of the wavelength of light, it is pos-

sible to strongly enhance, as well as control, the scintillation yield, spectrum, directivity,

and polarization response. The motivation for our approach is the observation that the light

emitted in scintillation is effectively spontaneous emission [332]. An enormous amount

of effort in multiple fields has gone into controlling and enhancing spontaneous emission

through the density of optical states [333, 334], with corresponding impact in those fields

[335], including photovoltaics [336], sensing [337, 338], LEDs [339, 340], thermal emis-

sion [341], and free-electron radiation sources [342, 343, 344, 345, 346, 347, 348, 349,

350, 351]. In the context of scintillation, nanophotonic enhancements could in principle

take two forms: (1) through direct enhancement of the rate of spontaneous emission by

shaping the density of optical states [332]; or (2) through improved light extraction from
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bulk scintillators. Early work demonstrated enhanced light extraction provided by a pho-

tonic crystal coating atop a bulk scintillator [352, 353, 354, 355, 356, 357, 358]. Never-

theless, the prospect of enhancing scintillation through the local density of states, as well

as the prospect of large scintillation enhancements, by either mechanism, remains unreal-

ized. Moreover, the type of nanophotonic structures that could even in principle realize

such effects is unknown.

Part of the reason for the lack of progress in this field so far entails a theoretical gap

associated with the complex, multiphysics nature of scintillation emission (Figs. 1a-d).

The process of scintillation is composed of several complex parts spanning a wide range

of length and energy scales [329]: (1) ionization of electrons by HEP followed by pro-

duction and diffusion of secondary electrons (Fig. 1b) [359, 22]; (2) establishment of a

non-equilibrium steady-state (Fig. 1c) [360, 361]; and (3) recombination, leading to light

emission (Fig. 1d). The final step of light emission is particularly complex to model, espe-

cially in nanophotonic settings, as it results from fluctuating, spatially-distributed dipoles

with a non-equilibrium distribution function which strongly depends on the previous steps

of the scintillation process.

5.1 A general theory of nanophotonic scintillation

First, we present a unified theory of nanophotonic scintillators. The theory we develop is ab

initio: it can, from first principles, predict the angle- and frequency-dependent scintillation

from arbitrary scintillators (established and nascent), taking into account the three steps

illustrated in Figs. 1b-d. It takes into account the energy loss dynamics of HEPs through

arbitrary materials, the non-equilibrium steady state and electronic structure of the scintil-

lating electrons, and the nanostructured optical environment (i.e., the electrodynamics of

the light emission by this non-equilibrium electron distribution).

Consider the situation depicted in Fig. 1a in which a HEP beam deposits energy into

a nanophotonic structure (Fig. 1b). The structure may be in proximity of a scintillating

material, or integrated with it (as in both cases that we present experiments for). The

interaction of the beam with the scintillating material will generally lead to a process of
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electron excitation in the scintillator, followed by relaxation into an excited state (Fig. 1c).

Importantly, the occupations of electrons and holes following this relaxation are typi-

cally in an approximate equilibrium [361] (referred to as a non-equilibrium steady state).

This equilibrium is well-defined since it occurs on picosecond timescales, which are ef-

fectively instantaneous compared to the excited state depletion timescales (nanoseconds)

[359]. Under these assumptions, the radiative recombination may be described in terms of

emission from fluctuating currents in the material, not unlike thermal radiation (in which

the electrons are in a true equilibrium). The key difference from thermal radiation is that

the occupation functions which determine the current-current correlations (that determine

the emission) are no longer governed by the Bose-Einstein distribution, but are instead

material and HEP pump-dependent (and therefore spatially dependent).

Despite the non-universality of the current-current correlations, the otherwise strong

similarity to thermal radiation inspires a key simplification which also gives rise to simple

and powerful numerical methods for modeling and optimizing scintillation. This key sim-

plification is electromagnetic reciprocity, which relates the following two quantities: (1)

the emitted scintillation from the structure (at a given frequency ω, direction Ω, and po-

larization i) and (2) the intensity of the field induced in the scintillator by sending a plane

wave at it (of frequency ω, propagating along direction Ω into the structure, and polariza-

tion i). The intensity of the field induced in the structure at a given point is proportional

to the local absorption, and hence we say that the “emission” (1) is related to “absorption”

of a plane wave (2). As a result of this relation, it is possible to calculate the scintillation

at some angle and frequency by calculating absorption of light incident from the far-field

at that frequency, angle, and polarization. We note that this relation only makes use of the

Lorentz reciprocity of Maxwell’s equations for the nanophotonic structure, and thus makes

no assumption on the electronic transitions responsible for scintillation (we assume that

the non-equilibrium electrons only weakly change the material optical properties). Lorentz

reciprocity can be broken in several classes of systems, e.g., magnetic, nonlinear, and time-

modulated materials [?]. Such non-reciprocal photonic structures, which are of great recent

interest, require extension of the framework but may allow many new phenomena to be re-

alized, analogously to the case of non-reciprocal effects in thermal radiation (see e.g. Ref.
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[?]). Direct modeling of light emission by means of calculating the emission from an en-

semble of fluctuating dipoles, as considered in the past (e.g., for thermal emission [362]), is

extremely resource-intensive from a computational perspective 1. The effect of the spatial

distribution of the scintillating centers is captured by integrating this spatial distribution

against the spatially-dependent absorption in the scintillating structure. In this way, the

spatial information can be obtained “all-at-once” from a single absorption “map”.

We use this simplification to quantify scintillation, which we represent in terms of the

scintillation power per unit frequency dω and solid angle dΩ along the ith polarization (e.g.,

i = s, p): dP (i)

dωdΩ (and dP
dωdΩ = ∑

i
dP (i)

dωdΩ is the total scintillation power density). In most cases,

the current-current correlations in the scintillator are isotropic (a condition that we relax in

App. D (referred to as SI)), and we get

dP (i)

dωdΩ = ω2

8π2ϵ0c3

∫
dr

∣∣∣E(i)(r, ω,Ω)
∣∣∣2∣∣∣E(i)

inc(ω,Ω)
∣∣∣2 S(r, ω), (5.1)

where the quantity E(i)
inc(ω,Ω) denotes the electric field of an incident plane wave of fre-

quency ω, incident from a direction Ω, with polarization i. The quantity E(i)(r, ω,Ω) de-

notes the total electric field at position r resulting from the incident field and their ratio is

thus the field enhancement. The function S(r, ω) in Equation 1 is the spectral function en-

coding the frequency and position dependence of the current-current correlations, given by

S(r, ω) = 1
3
∑

α,β tr[Jαβ(r)Jβα(r)]fα(r)(1−fβ(r))δ(ω−ωαβ). In this spectral function, fα

is the occupation factor of microscopic state α with energy Eα, Jαβ represents the matrix

element of the current density operator (J ≡ e
m
ψ†(−iℏ∇)ψ), ωαβ = [Eα − Eβ]/ℏ, and tr

denotes matrix trace. Importantly, besides the position dependence of the current density

matrix element, the occupation functions can also depend on position, as they depend on

the HEP energy loss density (specifically, how much energy is deposited in the vicinity

of r). Interestingly, Equation 1 would be proportional to the strength of thermal emission

upon substitution of S(r, ω) by the imaginary part of the material permittivity, multiplied

1This issue is compounded by the sensitivity of the results to assumptions about the spatial and spectral
distributions of the dipoles, which are related to the microscopic details of the defect electronic structure, as
well as mechanism of high-energy particle energy transfer into the material.
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by the Planck function. However here, the primary difference is that S(r, ω) describes a

non-equilibrium state, rather than the thermal equilibrium state of the material.

To better understand the core components of nanophotonic scintillation enhancement,

let us simplify it further, by considering the case where the density of excited states is

uniform over some scintillating volume VS (in which case we may drop the spatial depen-

dence of S such that S(r, ω) → S(ω)). This volume can be thought of as the characteristic

volume over which excited electrons are created (like in Figure 1(b)). Then we may write

dP (i)

dωdΩ = π

ϵ0ω
× S(ω) ×

[
V

(i)
eff (ω,Ω)/λ3

]
, (5.2)

where V (i)
eff (ω,Ω) =

∫
VS
dr |E(i)(r, ω,Ω)|2/|E(i)

inc(ω,Ω)|2. Having dimensions of volume,

and being proportional to the absorbed power over VS (in the limit of weak absorption, so

as not to perturb the field solutions), we often refer to V (i)
eff (ω,Ω) (shortened as Veff) as the

effective volume of field-enhancement or the effective volume of absorption. Equation 2

states that the scintillation spectrum, under this approximation, is a simple product of a

microscopic factor, set by the non-equilibrium steady-state distribution function S(ω), and

an effective absorption volume Veff, which is set only by the (structured) optical medium

surrounding the scintillating medium.

Our framework to calculate scintillation according to Equation 1 consists of three com-

ponents, as illustrated in Figs. 1b-d, g: energy loss of a beam of HEPs, creation of excited

electrons, and subsequent light emission (which is computed by calculating field enhance-

ment from incident plane waves, via electromagnetic reciprocity). As a technical matter,

we note that we compute the HEP energy loss density by Monte Carlo simulations of en-

ergy loss (as is standard, see Refs. [363]), the electron energy levels and spectral function

through density functional theory (DFT), and the nanophotonic field enhancement through

finite-difference time-domain and rigorous coupled-wave analysis methods. In principle,

these components are coupled together, as described in the SI.

More details on each component of the complete workflow, depicted in Fig. 1g can

be found in the Methods and in the SI. The description of scintillation provided here −

using calculations of electronic structure, energy-loss, and electromagnetic response − is
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to the best of our knowledge, the first to provide an ab initio and end-to-end account of

scintillation in nanophotonic structures.

5.2 Enhanced electron-beam-induced scintillation

Let us now move to show the theory in action. We first present data from experiments (con-

ducted by Charles Roques-Carmes) probing scintillation from silicon-on-insulator nanopho-

tonic structures due to bombardment by electrons (here, with energies in the range of 10-40

keV). Electrons with a few tens of keV energies are a convenient platform to demonstrate

nanophotonic scintillation, as they readily lose almost all of the energy to the nanopho-

tonic structure. Such lower energy particles penetrate materials less deeply, leading to a

strong overlap between the spatial region of HEP energy loss density and the region of

high field-enhancement (the latter of which is within a few hundred nm of the surface).

The experimental setup that was employed to measure scintillation is based on a modi-

fied SEM (an earlier version of which was reported in Refs. [345, 343, 347, 344]), shown

in Figs. 2a,e: a focused electron beam of tunable energy (10-40 keV) excites the sample

at a shallow (∼ 1◦) angle and the resulting radiation is collected and analyzed with a set

of free space optics. The light is collected by an objective lens which accepts radiation

emitted in a cone of half-angle 17.5◦. Under the shallow-angle-conditions of electron in-

cidence in our experiments, the effective penetration depth of the electrons is on the scale

of a few hundred nanometers (Fig. 2b), far below the nominal mean free paths of 40 keV

electrons in silica or silicon, which are on the order of 20 µm. This leads to strong overlap

of the energy loss with regions of field enhancement. Control over the incidence angle also

enables tuning this overlap between the HEP energy loss density and Veff.

The first structure we consider is a thin film of 500 nm Si atop 1 µm SiO2 atop a Si

substrate. The second structure differs from the first in that the top Si layer is patterned

to form a square lattice (design period ∼430 nm; see Fig. 2c) of air holes (diameter ∼260

nm) of various etch depths (∼25, 35, and 45 nm). We refer to them as “thin film” (TF)

and “photonic crystal“ (PhC) samples of same thicknesses, respectively. Scintillation in

these structures occurs in the buried silica layer, and in particular, by a class of commonly
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occurring defects called self-trapped holes (STH) [364]. Such defects have been studied

extensively due to their consequences for silica fibers. They display distinct emission at

red and green wavelengths, which, in addition to our other observations, enable us to at-

tribute our observations to STH defect scintillation (and thus, rule out other mechanisms of

electron-beam-induced emission (such as coherent cathodoluminescence; see SI)).

We now show how nanophotonic structures shape and enhance scintillation in silica.

The scintillation spectrum of the sample in the visible range, for both TF and PhC samples,

is shown in Fig. 2d. The TF scintillation measurements shown in black in Fig. 2f,g display

two main sets of features at green (∼ 500 nm) and red (∼ 625 − 675 nm) wavelengths.

At red wavelengths, there is a clear double-peak structure, while at green wavelengths, the

scintillation spectrum displays multiple peaks. These multiply-peaked spectra differ con-

siderably from prior observations of STH scintillation [364]: while they occur roughly at

the same wavelength, prior observations show only one peak at the red and green wave-

lengths 2. The multiple peaks of the spectrum (and even its shoulders) are well accounted

for at both red and green wavelengths even by the simplified Equation 2, and specifically

by multiplying the shape of the STH spectrum in bulk by the Veff calculated for the TF.

The bulk spectrum is inferred from previous observations [364] and confirmed by our DFT

calculations (see Fig. 3d). The multiply peaked structure of Veff thus arises from thin-film

resonances, which enhance the absorption of light in the buried silica layer. The agreement

between theory and experiment in Fig. 2f,g unambiguously indicates a strong degree of

spectral control over scintillation even in the simplest possible ”nanostructure“ (namely, a

thin film).

In contrast to the TF scintillation, the scintillation from the PhC samples displays very

strong and spectrally-selective enhancement. We report an enhancement of the red scintil-

lation peak in the PhC sample, compared to the TF, by a factor of ∼ 6 (peak at 674 nm)

2In principle, one would want to compare Veff in the TF to a “truly intrinsic” or “bulk” silica case. In that
case, one would compare to silica of the same thickness (1000 nm). However, because this reference case is
a thin film as well, nanophotonic shaping effects in the spectrum will inevitably be present. Comparing the
Veff in the thin film case of Fig. 2 to thin films without (a) the top Si layer, and (b) without both Si layers
[see SI Figure 1], one finds that the TF of Fig. 2 presents slightly smaller absorption enhancement at the red
peak, possibly due to the high reflectivity of the top Si layer (suppressing the amount of field which can be
absorbed by the material). However, the PhC sample still shows strong shaping and enhancement relative to
all TF cases.
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and of ∼ 3 integrated over the main red peak (665 ± 30 nm) as shown in Fig. 2d. This

feature is reproduced by our theoretical framework via enhancement of Veff around the red

scintillation peak, using the same fitting parameters as those taken from the TF results of

Figs. 2f,g. Comparatively, the green peak remains at a value similar to those in the TF

spectra. Little enhancement is expected for the green wavelength, due to the high losses at

those shorter wavelengths.

The observed enhancement can readily be attributed theoretically to the presence of

high-Q resonances at the red wavelength, which lead to enhanced absorption of light in

the far-field. Importantly, the positions of the many subpeaks in the scintillation spectra

are accounted for by the peaks of Veff. Somewhat larger uncertainties are introduced in

the patterned structure because of the strong degree of angular shaping of the radiation

associated with certain wavevectors in the PhC bandstructure (see inset of Fig. 2g, showing

the predicted scintillation spectrum at normal emission). As a result, the spectrum depends

on the exact angular acceptance function of the objective. There is also a more sensitive

dependence on the exact distribution of electron energy loss compared to the thin-film case,

due to the well-localized nature of the resonances leading to scintillation in the patterned

structure.

Having shown scintillation control and enhancement based on nanophotonic structures,

we move to show another core element of our general framework for scintillation: the mi-

croscopic transition dynamics associated with the scintillation process, their effect on the

non-equilibrium occupation functions, and the corresponding effect on observable proper-

ties of the scintillation spectrum. In the specific case of silica defects, we can utilize spectral

observables such as dependence of the scintillation on the electron energy, as well as the

ratio of green to red scintillation peak powers (defined as η) as a function of deposited HEP

energy, to test assumptions about the microscopic properties of the scintillation mechanism.

We can even infer the energy level structure of the scintillating defects by combining these

measurements with ab initio electronic-structure calculations and models of the excited

electron kinetics (e.g., rate equations).

Fig. 3a shows the evolution of the scintillation spectrum for various energies. At high-

energy pumping (∼40 keV), red scintillation in the PhC sample dominates, while we ob-
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serve that decreasing the pumping energy results in a gradual increase of the green peak

scintillation (and of η). We took similar measurements for high and low-current pumping

(at a constant pumping energy of 40 keV) of PhC and TF samples and compiled our results

in Figs. 3e. There, one can observe that for the TF sample, the green peak scintillation

always dominates (η > 1), while, for the PhC sample, there is a cross-over for a certain

value of the deposited beam power (represented by η crossing unity).

To account for these observations, we consider a description of the defect levels in

terms of a three-level Fermi system, featuring two lowest occupied levels (denoted 1 and 2

in Fig. 3c) coupled to an upper “pump” level (denoted 3) through the high-energy electron

beam, which acts as a pump. These three levels correspond to energy levels from our

electronic structure calculations of the STH defects in silica (based on DFT, see SI). The

relative rates of the transitions 3 → 1 (Γ31) and 3 → 2 (Γ32) – which depend on the pump

strength and the emission rates (which depend on Veff) – dictate the strength of the green

and red emission, respectively. We arrive at the results of Fig. 3e by solving for the steady-

state values of these transition rates using rate equations (see Methods) and extracting the

corresponding η, as a function of the incident beam power.

The agreement between theory and experiment enables us to understand the crossover

as resulting from a combination of (1) the relative enhancement of red transitions from

the PhC, and (2) the nonlinear transition dynamics of excited electrons in the defect. In

particular, data from both samples indicate that the pump rate for the “green transition”,

Γ13, is faster than its red counterpart, Γ23 (with consistent ratio values of ∼ 3.2 for the TF

and ∼ 3.35 for the PhC). The existence of a cross-over deposited beam power between

domains where η > 1 and η < 1 translates into an enhancement of the ratio of decay

rates Γ32/Γ31 in the PhC sample. Comparing model parameters fitting the TF experimental

data to models fitting the PhC data, we estimate that the decay rate ratio is enhanced by

a factor of ∼ 2.3 ± 1.0. This value is in agreement with the Veff-enhancement predicted

by our theory and by our observation of enhanced scintillation from the red defects in the

experimental data.

By patterning nanophotonic scintillators, one can thus tailor microscopic properties and

selectively enhance scintillation from microscopic defects. This also suggests that scintil-
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lation rates can be selectively enhanced using nanophotonic structures, a feature that is

particularly sought after in some medical imaging modalities [365]. Moreover, our results

indicate that the measured scintillation may be used to sort out competing models of the

electronic structure, especially in complex defects such as this one, which are hard to model

due to self-interaction effects.

5.2.1 Observation of strongly enhanced scintillation induced by x-rays

We now move on to another example of a nanophotonic scintillator designed using our

theoretical framework, showing its application to enhancing scintillation induced by high-

energy photons such as x-rays. Such HEPs lose their energy much differently from massive

charged particles (such as electrons).

In our experimental configuration (Fig. 4a) x-rays traverse a specimen, leading to spatially-

dependent absorption of the incident x-ray flux. This absorption pattern is geometrically

magnified until it encounters the YAG:Ce scintillator. This absorption pattern is then trans-

lated into scintillation photons which are imaged with an objective and a CCD camera. The

nanopatterned scintillator is constructed by etching a two-dimensional PhC into YAG (via

Focused Ion Beam (FIB) lithography; see Methods), at the surface of the scintillator facing

the objective. The PhC period is 430 nm and the total patterned area is 215 µm × 215 µm

(in Fig. 4) or 430 µm × 430 µm (in Fig. 5).

In the case of YAG:Ce, the intrinsic scintillation properties have been long characterized

and our experiments reveal only weak dependence of the scintillation on incident x-ray

energy. Thus, the full theoretical apparatus we demonstrate for electron scintillation is not

needed to adequately describe our results. Primarily, the electromagnetic response (using

reciprocity) is needed to account for the experimental results, and is the part of our general

framework that leads us to order-of-magnitude enhancement of x-ray scintillation.

According to the scintillation framework developed in the previous sections, nanopho-

tonic scintillation enhancement is to be expected when the absorption of light is enhanced.

In Fig. 4b we show the calculated wavelength-dependent scintillation in YAG:Ce (averaged

over the angular acceptance of the objective, as in Fig. 2) for an unpatterned self-standing
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thick (20 µm) film, as well as for the PhC sample. Here, the calculated enhancement is

by a factor of ∼ 9.3 ± 0.8 over the measured scintillation spectrum. In our calculations,

we attribute the main error bar to the uncertainty on the hole depth (±10 nm as can be

extracted from our AFM measurements, shown fully in Fig. 4a (right) and in cross-sections

in the SI). However, we should note that there are several other sources of uncertainty in

the fabricated samples: the hole diameter and periodicity, and the optical absorption of

YAG:Ce (taken in our calculations to be the value provided by the wafer supplier). We also

measured and compared to our theory scintillation enhancements from multiple nanopho-

tonic scintillators with various thicknesses, hole shapes, depths and patterned areas (see

additional experimental data and Table I in the SI).

Here, the x-ray scintillation enhancement originates in light out-coupling enhancement

(or by reciprocity, in-coupling enhancement). In particular, the PhC allows more channels

(i.e. a plane-wave coupling to a resonance) into the scintillator crystal, compared to a

flat interface. The multiple channels translate into sharp resonant peaks in the calculated

absorption spectrum. This is to be contrasted with the origin of electron-beam-induced

scintillation enhancement in silica, where the enhancement can be tied to the presence of a

single, or small number of high-Q resonances. This effect is of the type often leveraged to

design more efficient LEDs and solar cells that approach the “Yablonovitch limit” in both

ray-optical [366, 367], and nanophotonic [368, 369] settings. There, it is well known that

the device efficiency is optimized by designing a structure that leads to strong absorption

over the spectral range of the emission [366, 370].

In Fig. 4c, we show the experimentally measured scintillation scanned along a line of

the sample. The regions “off” indicate unpatterned regions of the YAG:Ce, while “on”

indicates the PhC region. Here, the signal is enhanced on average by a factor of ∼ 9.1 over

the unpatterned region, consistent with the predictions of Fig. 4b.

To demonstrate the potential of our approach to x-ray imaging, we fabricated a larger-

scale pattern on a 50 µm wafer which exhibits a scintillation enhancement of 2.3. We

recorded single-shot x-ray scans of biological and inorganic specimens through the PhC,

showing no evident decrease in resolution, while increasing the image brightness by the

same factor. Equivalently, the required x-ray dose or exposure time to get a given number
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of counts on the detector is reduced.

Our framework allows us to further gain understanding of the scintillation mechanism

at play, directly leveraging known techniques in absorption enhancement. One could expect

even greater scintillation enhancements on the order of ∼ 4n2 in the ray-optics approxima-

tion [366] or ∼ 4πn2 for periodic structures on the wavelength scale [368, 369] (where n

is the index of refraction). For example, for a high-index material such as doped GaAs,

which also scintillates at room temperature [371], enhancements on the order of ∼ 50 and

∼ 150 could be respectively achieved in the two regimes (over a 2π collection solid angle).

5.3 Discussion

We have presented a general framework to model, tailor, and enhance scintillation by means

of nanophotonic structures integrated into scintillating materials (nanophotonic scintilla-

tors). While we mainly focused on the demonstration of spectral shaping and enhancement

of scintillation, our results could be extended to show angular and polarization control as

well. We have demonstrated nanophotonic scintillators enhancing electron-beam-induced

and x-ray-induced scintillation. The theoretical framework we used to describe our exper-

imental results combines Monte Carlo simulations of the energy loss density [363] with

DFT calculations of the microscopic structure and full-wave calculations of the electro-

magnetic response of the nanophotonic structures probed in this work.

We note that this type of “full” analysis has to the best of our knowledge not been per-

formed to explain scintillation (nor incoherent cathodoluminescence) experiments, likely

due to the prohibitively expensive computations associated with simulating ensembles of

dipoles radiating in 3D structures. The reciprocity framework we use (also commonly used

in areas of thermal radiation, LEDs, and photoluminescence [361, 372, 373, 374, 375, 376])

strongly simplifies the analysis, and makes a full modeling of the scintillation problem

tractable. We conclude by outlining a few promising avenues of future work that are en-

abled by the results provided here. Further elaboration and initial results, for each of these

avenues, is detailed in the SI.

The first area, inspired by our simplified calculations based on reciprocity, is numer-
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ical optimization of nanophotonic scintillators. Our framework, which relies on the cal-

culation of Veff (which is relatively amenable, even in 3D), enables the inverse-design of

nanophotonic scintillators. The experimentally reported enhancements can be further im-

proved upon by inverse-designing the nanophotonic structure via topology optimization of

Veff [377]. In the SI, we show the kind of results that could be expected from topology-

optimized nanophotonic scintillators: we find that 10-fold, and even nearly 100-fold se-

lective enhancements of scintillation in topology-optimized photonic structures are pos-

sible. By considering different emission linewidths and frequencies, one can selectively

design optimized nanophotonic structures which enhance one of the scintillating peaks, at

a single-frequency or over the entire scintillation bandwidth. Beyond our reciprocity-based

approach, low-rank methods can be utilized for the inverse-design of nanophotonic scin-

tillators with very large angular ranges [378]. Beyond scintillation, our techniques may

find applicability in other imaging modalities involving random incoherent emitters, such

as surface-enhanced Raman scattering [379].

Another promising area of research enabled by our findings is nanophotonically-enhanced

and -controlled UV light sources. In the SI, we show how UV scintillation in materials such

as hBN enables strongly enhanced scintillation with a spectrum that can be controlled sim-

ply by the position of the electron beam relative to the patterned features in the hBN arising

from changes in the overlap between the HEP loss density and Veff. The prospect of realiz-

ing optimized and compact nanophotonic UV scintillation sources is particularly exciting

for applications in water purification and sanitization [380].

Nanophotonic scintillators provide a versatile approach for controlling and enhancing

the performance of scintillating materials for a wide range of applications. The framework

developed here applies to arbitrary scintillating materials, nanophotonic structures, and

HEPs, solving for the process end-to-end using first-principles methods. The electron-beam

and x-ray scintillation experiments provide the proof-of-concept tests of the promising

prospects of this field. Our work may open a panoply of exciting applications, from high-

resolution, low-dose x-ray imaging to efficient ultraviolet electron-beam-pumped light sources.

We conclude this chapter by acknowledging the contributions of other authors to this

multi-disciplinary work. This chapter represents the combined efforts of many authors,
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whose contributions are noted here (taken from Ref. 37 of publication list): C. R.-C.,

N. Ri., N. Ro., I. K., and M. S. conceived the original idea. N. Ri. developed the theory

with inputs from C. R.-C. and A. G. C. R.-C. and S. E. K. performed the electron-beam and

X-ray experiments. C. R.-C. and N. Ri. analyzed the experimental data and fitted it to the

theory. C. R.-C. and S. E. K. built the electron-beam experimental setup with contributions

from J. B., A. M., J. S., Y. Ya., I. K., and M. S. N. Ri. performed energy loss calculations.

C. R.-C. performed absorption map calculations. A. G. performed DFT calculations. C. R.-

C. wrote code for optimizing nanophotonic scintillators with inputs from N. Ri., Z. L. and

S. G. J. Y. Yu and C. R.-C. fabricated the X-ray scintillation sample. J. D. J., I. K., S. G. J.,

and M. S. supervised the project. The manuscript was written by C. R.-C. and N. Ri. with

inputs from all authors.
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Figure 5-1: A general framework for scintillation in nanophotonics. (A) We consider
the case of high-energy particles (HEP) bombarding an arbitrary nanophotonic medium,
emitting scintillation photons at frequency ω (free-space wavelength λ), propagation an-
gle Ω, and polarization i. (B) Subsequent HEP energy loss results in excitation of radia-
tive sites (darker blue region in sample) which may diffuse before spontaneously emitting
photons (lighter blue region in sample). (C) The framework also accounts for different
types of microscopic emitters. (D) The emitters may emit in arbitrary nanophotonic en-
vironments. (E-F) Electromagnetic reciprocity maps far-field radiation calculations from
the stochastic many-body ensemble in a single electromagnetic simulation of plane-wave
scattering, by calculating the effective spatially-dependent field enhancement. (G) Summa-
rized framework. Links indicate forward flow of information. The purple links indicate the
possibility of backward flow (inverse-design) in our current implementation. q,m,Ekin, θi:
particle charge, mass, kinetic energy, and incidence angle. ϵ(r, ω), Z: material permittivity
and effective Z-number. S(r, ω): spatially-varying intrinsic scintillation spectral function.
dP (i)/dωdΩ: scintillation spectral-angular power density at polarization i. An expanded
and elaborated version of (g) is presented in the SI.
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Figure 5-2: Experimental demonstration of nanophotonic shaping and enhancement
of electron-beam-induced scintillation, demonstrating the validity of the general
nanophotonic part of the general theory of scintillation. (A) A modified scanning elec-
tron microscope (SEM) is used to induce and measure scintillation from electron beams
(10-40 keV) bombarding scintillating nanophotonic structures. (B) Electron energy loss in
the silicon-on-insulator wafer is calculated via Monte Carlo simulations. Inset: Zoomed-in
electron energy loss in the scintillating (silica) layer. (C) SEM images of photonic crystal
(PhC) sample (etch depth 35 nm). Tilt angle 45◦. Scale bar: 1 µm (top), 200 nm (bottom).
(D) Scintillation spectrum from thin film (TF) and PhC samples with varying etch depths
(but same thickness). (E) The scintillation signal is coupled out of the vacuum chamber
with an objective and then imaged on a camera and analyzed with a spectrometer. (F-
G) Comparison between theoretical (left) and experimental (right) scintillation spectra for
green and red scintillation peaks. Inset: Calculated scintillation spectra (per solid angle)
at normal emission direction, showing the possibility of much larger enhancements over a
single angle of emission. Data collected by Charles-Roques Carmes and Steven Kooi.
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Figure 5-3: Probing the microscopics of electron-beam-induced scintillation in silica,
demonstrating the validity of the combined nanophotonic and microscopic parts of
the general theory of scintillation. (a) Energy-dependent scintillation spectra (PhC sam-
ple, etch 25 nm). (b) Top: 3D molecular model of STH defect in silica. Si: Silicon, O:
Oxygen, ρ: spin-polarized density. Bottom: Calculated STH defect energy levels via den-
sity functional theory (DFT). (c) Simplified three-level system modelling the microscopics
of scintillation from STH defect in silica. (d) Bulk scintillation spectrum calculated with
DFT (dipole matrix elements). (e) TF (left) and PhC (right) scintillation peak ratios as
a function of deposited beam powers through electron pumping. The dashed line corre-
sponds to the mean model prediction and the shaded area to the prediction from the model
parameters ± their standard deviation (TF, PhC: uncertainty on Γ31/Γ32). Inset: Maximum
signal of green and red scintillation peaks versus current in TF sample. Data collected by
Charles-Roques Carmes and Steven Kooi.
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Figure 5-4: Nanophotonic enhancement of x-ray scintillation, showing how the reci-
procity theory enables design of high-brightness scintillators. (a, Left) x-ray scintilla-
tion experimental setup: light generated by x-ray bombardment of a cerium-doped yttrium
aluminium garnet (YAG:Ce) scintillator is imaged with a set of free-space optics. A spec-
imen may be positioned between the source and the scintillator to record an x-ray scan of
the specimen. (a, Right) Atomic force microscopy image of patterned YAG:Ce scintillator
(20 µm thickness). Scale bar: 1 µm. (b) Calculated scintillation spectrum of the PhC,
integrated over the experimental angular aperture. Calculations are performed for mea-
sured etching depths ± a standard deviation (corresponding to 40, 50, and 60 nm). The
shaded area corresponds to possible scintillation enhancements in between those values.
The calculated spectra are convolved with a moving-mean filter of 1.33 nm width (raw
signal shown in the SI). (c) Measured scintillation along a line of the sample, including
regions on (red) and off (blue) the PhC. The scintillation from the PhC region is on average
about ×9.1 higher than the unpatterned region. All signals were recorded with x-ray source
settings: 40 kVp, 3 W. Data collected by Charles-Roques Carmes.
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Figure 5-5: X-ray scintillation imaging with nanophotonic scintillators, showing how
the reciprocity theory enables design of high-brightness scintillators. (a, b) Measured
x-ray images of a (a) TEM grid on scotch tape and of a (b) flower bud. The white square
delimits the PhC area. (c, d) Flat-field corrected zoom-in of the x-ray image in the PhC area.
Geometric magnification on those images is ∼ 2. Compared to the unpatterned regions, the
images are brighter above the PhC region, and show no evident decrease in resolution. The
particular nanophotonic scintillator used for this experiment was patterned over an area of
430 × 430 µm and resulted in a scintillation enhancement of ×2.3 (measured with respect
to unpatterned scintillator of same thickness). All signals were recorded with x-ray source
settings: 60 kVp, 5 W. Data collected by Charles-Roques Carmes.
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Chapter 6

Variational theory of nonrelativistic

quantum electrodynamics

Note: This chapter is heavily based off “Variational theory of nonrelativistic quantum

electrodynamics”, by N. Rivera et al. Physical Review Letters (2019).

The ability to achieve ultra-strong coupling between light and matter promises to

bring about new means to control material properties, new concepts for manipulat-

ing light at the atomic scale, and new insights into quantum electrodynamics (QED).

Thus, there is a need to develop quantitative theories of QED phenomena in complex

electronic and photonic systems. In this Letter, we develop a variational theory of

general non-relativistic QED systems of coupled light and matter. Essential to our

ansatz is the notion of an effective photonic vacuum whose modes are different than

the modes in the absence of light-matter coupling. This variational formulation leads

to a set of general equations that can describe the ground state of multi-electron sys-

tems coupled to many photonic modes in real space. As a first step towards a new ab

initio approach to ground and excited state energies in QED, we apply our ansatz to

describe a multi-level emitter coupled to many optical modes, a system with no ana-

lytical solution. We find a compact semi-analytical formula which describes ground

and excited state energies very well in all regimes of coupling parameters allowed by

sum rules. Our formulation provides a non-perturbative theory of Lamb shifts and

Casimir-Polder forces, as well as suggesting new physical concepts such as the Casimir

161



energy of a single atom in a cavity. Our method thus give rise to highly accurate non-

perturbative descriptions of many other phenomena in general QED systems.

Recent years have brought an explosion of progress in the study of light-matter inter-

actions in the non-perturbative regime of quantum electrodynamics (QED) [381, 382, 383,

384]. Ultra-strong, and even deep-strong coupling has been observed in systems involving

superconducting qubits [385, 386, 175, 174, 168, 167], large ensembles of molecules [387,

388, 389, 160, 390, 391, 392, 393], Landau level systems [219, 394], quantum wells cou-

pled to cavities [223, 395], oscillators [396], and even in few-molecule systems [397, 13].

Proposals for new platforms of ultra-strong coupling include emitters coupling to highly

confined polaritons in metals and polar insulators [105], heavy ions coupled to optical

media via the Cerenkov effect [398], and many more. Proposed applications of ultra- and

deep-strong coupling of light and matter are similarly broad, including simulation of many-

body systems [383], altering chemical reactivity [387, 390, 393, 399, 400, 401, 402] and

electronic transport properties [403] and realizing analogues of nonlinear optical processes

with vacuum fluctuations [404]. Concomitantly with these developments are also theo-

retical developments in the study of QED systems ab initio. Through ‘reduced quantity

theories’ such as quantum electrodynamical density functional theory (QEDFT) [405, 406,

407, 408, 409, 410], one is now able to calculate observables in large molecules coupled to

realistic optical cavities [411, 410, 409].

In this Letter, we establish a variational framework to analyze complex light-matter

systems from first principles. Although ab initio methods such as QEDFT are exact in

principle and provide access to all observables, a number of practical difficulties arise re-

lated to: the lack of simple exchange-correlation functionals to describe the ground state

energy, as well as other more involved observables, the difficulty of obtaining real-space

information about the photons as they are affected by light-matter coupling, the difficulty

of handling excited state energies, and the common use of the long-wavelength (dipole)

approximation. A variational framework, as we show, flexibly allows a real-space descrip-

tion of the electrons and photons as they are modified by the coupling and also beyond

the dipole approximation. Beyond these advantages, a variational framework also allows

conceptual insights, into a simple non-perturbative theory of Lamb shifts, into a quasipar-
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ticle description of QED systems, and into the notion of Casimir forces in the limit of one

atom. A variational framework also allows compact semi-analytical formulae to describe

complex systems which may assist the development of functionals for use in QEDFT.

Motivated by all of these potential advantages, we now develop an ansatz in which

the ground state can be considered as a factorizable state of effective matter and effective

photon quasiparticles, both in their respective vacuum states. This ansatz − reminiscent to,

but qualitatively distinct from, the Hartree-Fock ansatz [412] of electronic structure theory

− leads to coupled eigen-equations describing ground and excited states of the light-matter

system. We apply our ansatz to describe ground and excited states in a multi-level emitter

coupled to many photonic modes. We find that for light-matter couplings that respect sum

rules, our method yields ground and excited state energies to a remarkable accuracy of up

to 99%, even in deeply non-perturbative coupling regimes. In regimes where our results

are accurate, we have found the effective quasiparticle description of the ground state of

QED. Our findings also furnish a non-perturbative theory of the position-dependent energy

(Lamb) shifts of ground and excited states that give rise to Casimir-Polder forces. The

variational method developed in this manuscript is particularly suited for analyzing QED

systems in the ultrastrong coupling regime, in which the rotating-wave approximation no

longer holds, and subsequently methods based on the Jaynes-Cummings model such as

dressed state approaches [413] are no longer accurate.

In general, the QED Hamiltonian is given by H = Hmat + Hem + Hint where Hmat

describes the matter in the absence of the quantized electromagnetic field, Hem describes

the photons in the absence of the matter, and Hint describes the coupling between light and

matter. The matter Hamiltonian takes the form:

Hel =
∫
d3x ψ†(x)

(
−ℏ2∇2

2m + vext(x)
)
ψ(x)

+ 1
2

∫
d3xd3x′ ψ†(x)ψ†(x′)V (x − x′)ψ(x′)ψ(x), (6.1)

where vext is the one-body external potential, V (x − x′) is the two-body interaction kernel,

and ψ is the second-quantized electron field.

Parameterizing the electromagnetic field purely in terms of a vector potential: E =
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−∂tA and B = ∇ × A renders the free electromagnetic Hamiltonian as

Hem = ϵ0

2

∫
d3x ϵ(∂tA(x))2 + A(x) · (∇ × µ−1∇ × A(x)), (6.2)

where ϵ and µ represent a non-dispersive and positive dielectric and magnetic background

that the matter and photon occupy. For cases we consider in this work, these will be taken

to be unity.

The interaction Hamiltonian takes the form:

Hint = −iℏe
2m

∫
d3x ψ†(x)(A(x) · ∇ + ∇ · A(x))ψ(x)

+ e2

2m

∫
d3x ψ†(x)ψ(x)A2(x). (6.3)

The full Hamiltonian H , which depends on the fields ψ and A is parameterized in

terms of an orthonormal set of electron single-particle wavefunctions (orbitals) {ψn}, and

in terms of a set of photonic mode functions (orbitals) {Fi}. The electron field opera-

tor takes the form ψ(x) = ∑
n ψn(x)cn. The cn is an annihilation operator for an elec-

tron corresponding to state n. The electromagnetic field operator takes the form A(x) =∑
i

√
ℏ

2ϵ0ωi

(
Fi(x)ai + F∗

i (x)a†
i

)
, where the a(†)

i annihilate (create) a photon in mode i.The

electromagnetic field operator is parameterized by both mode functions and frequencies.

The normalization chosen for the electron wavefunctions is
∫
d3x ψ∗

mψn = δmn while for

the photon mode functions, it is
∫
d3x ϵF∗

i · Fj = δij [49]. Assumptions behind the form of

the Hamiltonian are stated in Supplementary Materials, page 2.

Given an ansatz |Ω⟩ for the ground state of H , the variational theorem ensures that

⟨Ω|H|Ω⟩ is an upper bound for the ground state energy. We choose as our ansatz

|Ω⟩ =
(∏

n

c†
n|0n⟩

)
⊗
(⊗

i

|0i⟩
)
. (6.4)

where,
∏
n
c†

n|0n⟩ represents a ‘filled Fermi sea’ for effectively non-interacting electrons,

and (⊗i |0i⟩) represents a ‘photonic vacuum’ for effectively non-interacting photons (see

Fig. 1). Implicitly, this ansatz, once we take the expectation value ⟨Ω|H|Ω⟩, denotes a
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family of ansatzes labeled by all possibilities for the electron wavefunctions, photon mode

functions, and photon mode frequencies. Thus, we minimize the expectation value with

respect to ψn, ψ
∗
n,Fi,F∗

i , and ωi. We enforce that the matter and photon remain normalized

by constructing the Lagrange function:

L[{ψn, ψ
∗
n}, {Fi,F∗

i , ωi}] = ⟨Ω|H|Ω⟩ (6.5)

−
∑

n

En

(∫
d3x ψ∗

nψn − 1
)

−
∑

i

ℏλi

2

(∫
d3x ϵF∗

i · Fi − 1
)
,

with the En and ℏλi

2 being the Lagrange multipliers that enforce the normalization condi-

tions. Evaluating the expectation value of the Hamiltonian, and minimizing the Lagrange

function immediately yields:

(
p2

2m + vext(x)
)
ψi(x) + F [{ψ}] + ℏe2

4mϵ0

(∑
n

1
ωn

|Fn|2
)
ψi(x) = Eiψi(x), (6.6)

for the electron orbitals and energies, where F [{ψ}] represent Hartree-Fock terms (see

App. E, referred to as SI). Here the effect of the QED coupling is to add a one-body

ponderomotive potential.

For the photon orbitals and energies, the minimization yields:

(
∇ × ∇ × −ω2

i

c2

(
1 −

ω2
p(x)
ω2

i

))
Fi = 0, (6.7)

where ω2
p(x) = e2

mϵ0

N∑
n=1

|ψn(x)|2 is a position-dependent squared-plasma frequency which

will push the photon orbitals out of the region where the emitter is located. Equations (6)

and (7) are main results and can be used to describe ultra-strongly coupled systems in three

dimensions, in an arbitrary photonic system, and with multi-electron matter. Excited states

in this framework can be identified with matter and photon quasiparticle excitations. Taking

the divergence of Eq. (7), we see that ∇ · (1 − ω2
p(x)
ω2 )F(x) = 0, which is a generalized

Coulomb gauge condition on the modes [100]. For more discussion, see Supplementary

Information, page 2.

Note that term in the interaction Hamiltonian linear in the vector potential (the ”A · p
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term“) makes no contribution to the expectation value of the ground state of the energy

in this ansatz. Physically, this term will mix the factorizable ground state of Eq. (4) with

states that have virtual excitations of the matter and the electromagnetic field. The resulting

state is non-factorizable and thus, the A · p term leads to correlations in the system, and

contributes wholly at lowest order to the correlation energy of QED ground and excited

states 1.

We capture the effect of correlations perturbatively. For the ground state, we consider

the second-order correction δE to the ground state energy arising from the A · p term. That

correction is given by

δE = e2ℏ2

8m2ϵ0

∞∑
i=1

∞∑
n=Nσ+1

Nσ∑
m=1

∣∣∣∣ ∫ d3x F∗
i · jnm

∣∣∣∣2
ωi(ωmn − ωi)

, (6.8)

where jnm = ψ∗
n∇ψm − (∇ψ∗

n)ψm, ωmn = ωm −ωn, and Nσ is the number of occupied or-

bitals, equal to the number of electrons. In a method without self-consistency, the electron

and photon orbitals and eigenvalues are those obtained from Eqs. (6) and (7), and then the

electron energies and orbitals as well as the photon frequencies and orbitals, are plugged

into Eq. (8). By considering an ansatz for an excited state, correlation corrections to excited

states can also be found. In the SI, we derive a set of equations for the matter orbitals and

photonic mode functions which self-consistently takes into account the correlation energy

associated with Eq. (8). These equations take into account the spatially varying wavefunc-

tions to the spatially varying mode functions, just like Eqs. (6) and (7), and therefore do

not assume the dipole approximation.

In what follows, we provide a proof-of-concept demonstration of the accuracy and con-

tent of the variational theory derived here. We consider the QED Hamiltonian correspond-

ing to a single emitter placed at position z = d in a one-dimensional cavity whose axis

is along the z-direction. As the cavity is considered for simplicity to be one-dimensional,

the electric field is oriented along a single direction, denoted x, while the magnetic field is

1The behavior of the A · p and A2-term is similar to the r · D and r2 term in the length-gauge reported
in recent work on the optimized effective potential [414, 411] method for QEDFT including one-photon
processes.
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oriented along a direction transverse to both the electric field and the cavity length, denoted

y. Working under the long-wavelength (dipole) approximation, the Hamiltonian can then

be written as:

H = Hmatter + ϵ0S

2

∫
dz (E2 + c2B2) + q

m
A(d)p+ q2

2mA2(d), (6.9)

with the emitter charge now expressed as q, E,B, and A being the electric field, magnetic

field, and vector potential, and S being a normalization area of the cavity in the xy plane.

The fields can be expressed as a mode expansion, where for a cavity of length L, the

modes are given by Fn(z) =
√

2
L

sin
(

nπz
L

)
and the corresponding mode frequencies are

ωn = nπc
L

. The matter Hamiltonian we take to be a multilevel system with Na levels. The

matter system we describe can thus be mapped to anNa site system, which be considered as

a simplified model of a molecule within a tight-binding description. Thus we parameterize

the general family of matter Hamiltonians asHmatter =
Na−1∑
i=1

Vi|i⟩⟨i|+t(|i⟩⟨i+1|+|i+1⟩⟨i|).

The momentum operator, we write as p = −iℏ
R

Na−1∑
i=1

(|i⟩⟨i+ 1| − |i+ 1⟩⟨i|), where R is a

constant with units of length representing roughly the difference in positions between sites.

This physical interpretation however is rough: it is also a function of the hopping elements

t, because we choose R in this work such that the Thomas-Reiche-Kuhn (TRK) sum rule is

enforced: 2
m

Na∑
i=2

|pig |2
Ei−Ea

= 1, where pig = ⟨i|p|g⟩ are momentum matrix elements between

different matter states [413]. Although the sum rule is based on a full electronic real-space

description, a discrete system which has 2
m

Na∑
i=2

|pig |2
Ei−Ea

> 1 cannot exist physically. The TRK

sum rule places a bound on how strong the effect of the A · p term can be. The net effect is

that the value of R we choose is on the order of
√

ℏ
2mt

.

Derivations of the energies of states via the formalism introduced here are shown in the

SI. Here, we present the main results. Using a one-dimensional version of Eqs. (6) and (7),

we calculate the electron orbitals, photon orbitals, and photon frequencies in the absence

of correlations. In the absence of correlations, we found that the energy of any matter state

a with no photonic quasiparticles is given by:

Ea = E0
a + 1

2

∞∑
n=1

(ℏωn − ℏω0
n), (6.10)
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where E0
a is the energy of the matter state in the absence of coupling, ωn are found in our

framework, ω0
n = nπc

L
. The modes found in our framework have their frequencies given by

cot
(
ωn

c
d
)

+ cot
(
ωn

c
(L− d)

)
= − q2

mϵ0ωnc
. (6.11)

The corresponding ‘interacting’ field mode profiles, shown in Fig. 2b, are given by compact

expressions shown in the SI.

The result of Eq. (10) says that in the absence of correlations, the energy of the system

is the Casimir energy of the system. In particular, it has long been known that when two

conducting plates are placed near each other, there is a Casimir energy associated with the

fact that the zero-point energy of the nearby plates is different than the zero-point energy

of plates infinitely apart. This Casimir energy is simply the difference between the inter-

acting and non-interacting zero-point energies [415, 295]. This logic can be applied to any

arrangement of macroscopic polarizable objects. What is notable about the result of Eq.

(10) is it implies that the same logic about zero-point energy differences can be applied to

find the interaction energy of a single atom placed near a cavity.

In the presence of correlations we must add to the energy a contribution of the form

of Eq. (8), specialized to the case of an emitter in a one-dimensional cavity. We apply

the correlation correction to excited states as well, calculating excited-state energy shifts

within second-order perturbation theory. In Fig. 2a, we show the result of this procedure

when applied to calculate ground- and excited- state energies for few-level systems coupled

to a one-dimensional cavity. The relevant parameters for Fig. 2(a) are listed in the SI. For

the largest couplings considered here, the magnitude of the energy shift associated with the

A · p term predicted from perturbation theory is larger than the energy separation between

bare emitter levels, signaling the ultrastrong coupling regime.

In all cases, the agreement between our variational approach and numerical diagonal-

ization is excellent, suggesting that our variational method is sufficiently flexible to capture

ground states and excited states. The accuracy as a function of number of levels suggests

that the breakdown of gauge invariance associated with few-level systems is not crucial to

the good agreement between variational and numerical results [416]. Perturbation theory
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in the bare matter and photon states can both strongly over- and underestimate the ener-

gies. Strong disagreement arises in the case of the two-level system (top panel). For the

two-level system considered here, the variational result agrees very well with numerical di-

agonalization, while perturbation theory predicts an energy which evolves with coupling in

the wrong direction and is off from the true energy by over 100% for the largest coupling.

Perturbation theory fails for first excited state because the first bare cavity mode is

nearly resonant with the transition between ground and excited emitter states, leading to

a very large negative contribution from the A · p term of nearly 2 eV, which is far larger

than the spacing of the bare emitter levels. In contrast, no such near-resonance is found in

the variational framework because the plasma term in Eq. (7) blue-shifts all of the photon

frequencies. For the largest coupling considered in Figure 2, we find that the lowest photon

frequency is shifted to 0.99 eV (from 0.62 eV), far off-resonance from the bare emitter

transition. The plasma term also strongly reduces the coupling between light and matter

by a mechanism in which the field modes obtained from Equation (7) are screened out

of the emitter, thus self-consistently reducing the strength of the coupling between matter

and field (see Fig. 2b). This is a light-matter decoupling effect, which was proposed in

Ref. [417], where, on the basis of photodetection probabilities for exactly-obtained excited

polaritonic eigenstates in a Hopfield model, ”effective field mode profiles“ are obtained

with a strong dip in the location of the emitter, in qualitative agreement with what we

report here.

This light-matter decoupling is also reflected in Fig. 3, where we calculate a correlated

ground state observable such as ⟨A · p⟩, which is a measure of entanglement between the

ground state and excitations of the photon and matter (details shown in SI). As shown in

Fig. 3, numerical and variational methods capture a saturation and then decrease of this

expectation value. The results of Figs. 2 and 3 demonstrate not only the accuracy of our

ansatz, but provides insight into the mechanisms by which light-matter coupling saturates

in the nonperturbative QED regime. The results of Figs. 2 and 3 also show that despite

correlations being treated perturbatively, it remains possible for correlated observables (and

energies) to be predicted with high accuracy.

Our results also demonstrate a non-perturbative theory of the Lamb shift and conse-
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quently Casimir-Polder forces. In particular, it is long known that energy levels of emitters

can shift as a result of virtual photon emission and re-absorption. These energy shifts,

called Lamb shifts, depend on the particular position of the emitter in the photonic struc-

ture it is embedded in. These shifts not only lead to changes in the transition frequencies

of the emitter, but the position dependence of these energy shifts also implies forces on the

emitter, often called Casimir-Polder forces. Such forces are calculated by applying second-

order perturbation theory in the form of Eq. (8) using bare atomic and photonic properties

[320]. Our calculation of the Lamb shifts via Eq. (8) says that the shifts result from virtual

emission and re-absorption of the photonic quasiparticles (the interacting modes), which

are dependent on properties of the matter. As these interacting photon modes differ greatly

from the bare modes and frequencies in the non-perturbative regime, Eq. (8) using interact-

ing modes provides a compact, and conceptually simple extension of the theory of Lamb

shifts and Casimir-Polder forces to the non-perturbative regime.

The theory posed here could form the basis of an understanding of Lamb shift, Casimir

forces, and potentially many other phenomena in the ultrastrong coupling regime for com-

plex QED systems beyond current analytical and numerical methods.
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of effective atom and cavity photons

⇡
Modes ":  = 1… Np Levels: !#= 1… Na
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Figure 6-1: Ground-state ansatz applied to matter in a cavity: effectively decoupled
matter and photons. (Left) Bare description of the coupled light-matter ground state in
terms of many virtual excitations of the emitter state and the bare cavity photons. (Right)
Quasiparticle description of the coupled system as a factorizable state of an effective emitter
in its ground state and the vacuum of an effective photonic degree of freedom.
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Figure 6-2: Variational theory of ground and excited states in non-perturbative QED.
(a) Lowest few energy levels of a two (top), three (middle), and four (bottom) level system
embedded in the middle of a one-dimensional cavity. The results of the variational method
(blue) are compared to perturbation theory (orange), as well as numerical diagonalization
(red) with the Fock space truncated to fifty cavity modes with no more than four photons.
(Inset) The fourth and fifth energy levels show a weak anti-crossing behavior which is re-
produced by the variational theory. (b) Mechanism of overestimation of couplings and
resonances in perturbation theory: modes derived from the variational theorem are sup-
pressed in the vicinity of the emitter, self-consistently decreasing light-matter coupling.
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Figure 6-3: Expectation value of the correlated observable ⟨A · p⟩ as a function of cou-
pling. Parameters are identical to those of the top panel of Fig. 2a. Despite correlations
being treated perturbatively, this observable is in excellent agreement with exact diagonal-
ization, while in poor agreement with perturbation theory in the bare photonic modes.
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Chapter 7

Nonperturbative quantum nonlinearities

and Fock-state lasers based on

deep-strong coupling of light and matter

Note: This chapter is heavily based off “Nonperturbative quantum nonlinearities and

Fock-state lasers based on deep-strong coupling of light and matter”, by N. Rivera et.

al. arXiv:2111.07010

Light and matter can now interact in a regime where their coupling is stronger

than their bare energies. This deep-strong coupling (DSC) regime of quantum elec-

trodynamics promises to challenge many conventional assumptions about the physics

of light and matter. Here, we show how light and matter interactions in this regime

give rise to electromagnetic nonlinearities dramatically different from those of natu-

rally existing materials. Excitations in the DSC regime act as photons with a linear

energy spectrum up to a critical excitation number, after which, the system suddenly

becomes strongly anharmonic, thus acting as an effective intensity-dependent nonlin-

earity of an extremely high order. We show that this behavior allows for N-photon

blockade (with N ≫ 1), enabling qualitatively new kinds of quantum light sources.

For example, this nonlinearity forms the basis for a new type of gain medium, which

when integrated into a laser or maser, produces large Fock states (rather than co-

herent states). Such Fock states could in principle have photon numbers orders of
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magnitude larger than any realized previously, and would be protected from dissipa-

tion by a new type of equilibrium between nonlinear gain and linear loss. We discuss

paths to experimental realization of the effects described here.

Recent successes in the coupling of matter and light now make it possible to realize

regimes of light-matter interactions in which the coupling between light and matter can

be much stronger than in established optical technologies. Because of the central role the

physics of light and matter plays in many fields, these new coupling regimes are being in-

tensely explored. One such example is the ultra-strong coupling regime, where the coupling

energy is within an order of magnitude of the bare energies of the light and matter [21].

Such regimes promise to give rise to new chemical processes [418, 154, 419, 164], strong

modifications of transport and thermodynamic properties of materials [420, 221], new

phases of matter, quantum simulators, and quantum technologies more broadly [21, 20].

Taking these ideas to their logical extreme is the so-called deep-strong coupling regime

(DSC), where the strength of the coupling is greater than the bare energies of the light and

matter. In the past few years, the first experiments in this regime have emerged [168, 167].

Much of the interest in ultra-strong and deep-strong coupling is focused on the properties

of the ground state of either one or many emitters coupled to a cavity mode, leading to

many interesting new phenomena such as light-matter decoupling [171, 173], population

collapses and revivals [421], large Lamb shifts leading to inversion of qubit energy levels

[168, 422], and renormalization of qubit energy levels by a photonic continuum [167].

Likely, many of the potential applications of this regime have yet to be identified.

Here, we consider the opportunities afforded to us by the excited states of a DSC sys-

tem, which are important from the perspective of quantum and nonlinear optics. For ex-

ample, the emission of light in such systems probes the excited states. First, we show that

deep-strong coupling of a two-level system to a resonant cavity leads to the formation of

excitations (“photonic quasiparticles” [423], which we refer to as “DSC photons”) with

nonlinear properties much different than those in any known system. Then, we analyze the

coupling of an emitter to this nonlinear photonic quasiparticle. We find that the coupling of

an excited two-level system to this nonlinear system enables a phenomenon of N -photon

blockade in which N excitations can be populated, but N + 1 cannot. We show that a laser
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or maser based on stimulated emission of DSC photons behaves fundamentally differently

from a conventional maser or laser. Specifically, this maser produces close approxima-

tions to Fock states in its steady-state, rather than coherent states, as in conventional lasers.

They could have a few hundred photons, thus being orders of magnitude larger than any

Fock states realized thus far. Moreover, Fock states produced by this mechanism are stable

against dissipation as they arise from a new type of equilibrium between nonlinear gain

and linear loss. Our results may thus help to address the long-standing problem in quantum

science of generating Fock states. Finally, we discuss how the concept developed here can

be implemented in superconducting qubit platforms.

7.1 Nonlinear photonic quasiparticles based on deep strong

light-matter coupling

Fundamental to our results is the spectrum of a two-level system (qubit) interacting with a

single-mode cavity (schematically illustrated in Fig. 1a), which we review here [424]. The

Hamiltonian, referred to as the (generalized) Rabi Hamiltonian, is given by

HRabi/ℏ = 1
2 (ω0σz + λσx) + ωa†a+ g̃σx(a+ a†). (7.1)

Here, ω0 is the transition frequency of the two-level system, σx,z are the x and z Pauli

matrices, ω is the cavity frequency, a(†) is the cavity annhilation (creation) operator, and g̃

is the Rabi frequency. It will be convenient to non-dimensionalize the coupling as g = g̃/ω.

We have also generalized the standard Rabi Hamiltonian by including a term λσx which is

relevant in contexts of superconducting qubits with applied bias fluxes [168]. For simplicity

of presentation, we consider the case of λ = 0, which leads to approximately degenerate

spin states (and in which case the qubit frequency is ω0). In the Appendix (App. F, referred

to as SI), and in various numerical results, we do consider the effect of a finite λ term,

which yields the same qualitative conclusions.

While the Rabi Hamiltonian cannot be analytically diagonalized in general, an approxi-

mate spectrum can be found for the regime g ≫ 1, which forms the basis for our analytical
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theory. In the SI, it is shown that the approximate eigenstates are labeled by an oscillator

quantum number n = 0, 1, 2, . . . and a spin quantum number σ = ±1. These eigenstates

|nσ⟩ and corresponding energies Enσ, for g ≫ 1, are given by

|nσ⟩ = 1√
2
(
D†(g)|n, x+⟩ + σD†(−g)|n, x−⟩

)
Enσ/ℏ = ω(n+ σ

2 e
−2g2

Ln(4g2)), (7.2)

where D(z) ≡ exp
[
z(a† − a)

]
is the displacement operator, and Ln is the Laguerre poly-

nomial of order n. The state |n⟩ on the right-hand side refers to the Fock basis of the

cavity, while the states |x±⟩ refer to the x-polarized spin states of the qubit. The spectrum

is plotted in Fig. 1b (adding an g-dependent offset ℏωg2 for convenience). As seen in

Eq. (2), the spectrum in the DSC regime is organized into two oscillator-like ladders (one

for each spin). Moreover, for large g, the spectrum appears almost completely harmonic,

indicating the existence of an effective photon (or photonic quasiparticle, which we will

sometimes call a DSC photon). To understand this, we note that for g ≫ 1, the σz acts as a

perturbation to the remaining Hamiltonian, HDSC/ℏ ≡ ωa†a+ gσx(a+ a†) = ω(b†b− g2),

where b = D†(gσx)aD(gσx) = a+gσx. This approximate Hamiltonian admits a harmonic

spectrum, in which the new oscillator variables b obey canonical commutation relations

[b, b†] = 1, and excitations are constructed by applying further b† operators. In other words,

the eigenstates of HDSC are Fock states of b, or equivalently, displaced Fock states of a.

The σz term breaks the even spacing of the ladder, leading to an anharmonicity (equiv-

alently, nonlinearity) which we now quantify. Without loss of generality, we will focus on

the lower-energy σ = −1 ladder, enabling us to omit the spin index in our notation. We as-

sess the “harmonicity” of the spectrum by plotting successive excitation energiesEn+1−En

as a function of n, as in Fig. 1c (in units of ℏω). We will refer to n as the “photon number.”

For strong and ultrastrong coupling, the spectrum is anharmonic at the level of a single

photon, leading to the familiar phenomenon of photon blockade. For deep-strong coupling,

the behavior is quite different: the spectrum is harmonic up to some critical excitation num-

ber (nc ∼ g2), and then rapidly becomes anharmonic. This may be seen directly from the

properties of Ln(x).
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To understand the relation of this strong anharmonicity to existing nonlinear optical

systems, recall that a single-mode cavity with an embedded Kerr nonlinear medium can be

described by a Hamiltonian of the form HKerr = ℏω
(
a†a+ βa†2a2

)
[425, 426], with β a

(typically small) dimensionless coefficient. In such a system, the energy to add an excita-

tion is En+1 − En = ℏω(1 + 2βn), meaning that the deviation from harmonic behavior is

linear in the intensity (proportional to photon number). Thus, the plots of 1(c), for a photon

in a Kerr medium, would be straight lines with slope 2β. This linear dependence arises

from a low-order expansion of the nonlinear medium polarization in the cavity electric

field: in this case third order, leading to a refractive index dependent on intensity. Here, in

the case of DSC, the difference is that the excitation energies are not linear in intensity, but

instead are high-order near the critical photon number (more or less growing exponentially

before oscillating, as in Fig. 1c), as if the effective polarization had a non-perturbative, or

infinite-order, dependence on intensity (as if the system were described in terms of χ(n)s

where n ≫ 1).

7.2 Light emission in the deep-strong coupling regime

The nonlinearity perspective presented here, although not previously noted in the litera-

ture, is largely based on the known spectrum of DSC systems. We now use this perspective

to develop the main new results of this paper. Specifically, we study how light emission

is modified by these photonic quasiparticles. Unlike most studies of light emission with

photonic quasiparticles (reviewed for example in [423]), here we look at the unique modi-

fications coming from the nonlinear properties. Consider an external qubit (denoted ‘em’,

for emitter) coupled to this DSC photon. The exact form of the coupling depends on the cir-

cuit implementation. To keep the discussion concrete, we will consider a simple coupling

Hamiltonian of the type

H = HRabi + ωem
0
2 σem

z + V

V/ℏ = ϵσem
x (b+ b†) ≈ ϵ(σem

+ b+ b†σem
− ), (7.3)
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which couples the emitter directly to the DSC photon. Regarding the assumed form of the

Hamiltonian, we note that our conclusions are not particularly sensitive to the exact form

of the interaction 1. What we do assume however is that ϵ is small, so that the coupling of

the external emitter to the DSC system is weak (ϵ ≪ ω). Thus, the system in mind is a

single resonator coupled to two qubits, one with weak coupling and one with deep strong

coupling, as illustrated in Fig. 2a.

To understand emission and absorption of DSC photons, consider the case in which

the qubit is in its excited state |e⟩ and there are n DSC photons present of spin −1 (e.g.,

occupying the state |n,−1⟩ of Eq. (2)). If the qubit is at frequency ω (same as in Eq. (2)),

then the qubit transition will be nearly resonant with the transition n → n + 1 of the DSC

photon, provided n ≲ nc. The dynamics can be restricted to the subspace {|e, n⟩, |g, n +

1⟩}, and the probability of (stimulated) emission P (n+ 1) is simply given by

P (n+ 1) = (n+ 1)ϵ2

∆2
n+1 + (n+ 1)ϵ2 sin2

(√
∆2

n+1 + (n+ 1)ϵ2t
)

∆n+1 = ω

2

(
δ − 1

2e
−2g2(Ln(4g2) − Ln+1(4g2))

)
. (7.4)

Here, δ is the dimensionless detuning of the emitter and ω, such that ωem
0 −ω ≡ ωδ. Eq. (4)

is the direct consequence of the Jaynes-Cummings dynamics of a two-level system (emit-

ter) with a boson (DSC photon) with some detuning. The detuning depends on excitation

number due to the nonlinearity of the DSC photon, and the detuning sharply rises near nc

(Fig. 1c). In Fig. 2a, we plot the stimulated emission probability as a function of n after a

small evolution time t ≪ ϵ−1 and for δ = 0. For n < nc, ∆n+1 ≈ 0, that probability is sim-

ply (n + 1)(ϵt)2, corresponding to stimulated emission proportional to n + 1, as expected

for conventional photons. For n ≳ nc, the emission probability drops rapidly, because of

1The term σem
x (b + b†) contains an interaction between the dipole moment of the emitter and that of

the qubit. Such interactions are to be generically expected, as especially emphasized in recent works on
superradiant phase transitions, as well as gauge invariance in ultrastrong coupling cavity and circuit quantum
electrodynamics [427, 428, 429, 430, 431]. We could write the term in question as ασem

x σx. Here, α = 2ϵg.
Because this dipole-dipole term leads only to changes in spin quantum number, and not changes in excitation
number (see SI), and because the spins are not separated by ω, these terms have little effect on the dynamics
of the photon number probabilities that we consider. For example, we find that ignoring this term altogether
leads to the same conclusions. Hence, for the purposes of the manuscript, we have taken a simple coupling
that illustrates the physics best (emission of a “b” particle by an emitter).
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the corresponding rapid increase in ∆n. This can be understood as a type of N -photon

blockade, in which a system can readily accept N excitations, but not N + 1. For N = 1,

this corresponds to the conventional photon blockade observed and discussed extensively

in strong coupling cavity QED.

7.2.1 A new type of laser

Eq. (4) displays one of the main results: that the high-order nonlinearities arising from

non-perturbative quantum electrodynamical coupling lead to a type of gain (stimulated

emission) that is correspondingly non-perturbative in intensity. One may imagine that this

type of nonlinear stimulated emission would have implications for lasers – or in this case,

masers, given that the most imminent implementations, based on circuit QED, would be

at microwave frequencies. We will stick to the term “laser” since it has largely subsumed

masers. In this section, we show that the DSC-based gain discussed before creates lasing

into high-order Fock states (rather than coherent states).

We now show how the nonlinear gain provided by the coupling of an excited two-

level system to DSC photons can result in a laser with new steady state photon statistics.

To capture the resulting lasing dynamics in a quantum mechanical way, we shall find an

equation of motion for the reduced density matrix ρ of the DSC photon (tracing out the gain

medium). This equation takes into account both the stimulated emission dynamics and the

loss dynamics associated with, for example, leakage from the cavity (which we take here

for simplicity as the primary loss mechanism for the DSC photon). In the SI, we derive the

equation using several methods, all in agreement with each other. Here, we focus on the

equation for the DSC photon occupation probabilities, ρnn. Assuming that excited states of

the gain medium are pumped at rate r, the equation of motion for the DSC photon density

matrix is found to be:

ρ̇nn = Rnnρn−1,n−1 − (Rn+1(n+ 1)ρnn + κnnρnn)

+ κn+1(n+ 1)ρn+1,n+1 (7.5)

Here, Rn = 2rϵ2

Γ2+Fn
is the stimulated emission coefficient, with the quantity Fn ≡ 4nϵ2
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+1
4ω

2e−4g2(Ln(4g2) − Ln−1(4g2))2. The Rn are plotted (green curves) in Fig. 2b for

different coupling strengths. For weak coupling, it is simply saturable gain R(n) ∼ 1/(1 +

n/ns) with ns the saturation photon number. For DSC, we see that the gain coefficient is

given by the standard saturable form for n < nc and then rapidly decays for n ≳ nc (with

occasional oscillations arising from the oscillatory behavior of the Laguerre polynomials).

Here, κn = κ|⟨n − 1|a + a†|n⟩|2, with κ the decay rate of the cavity in the absence of

DSC (see App. F for derivation). We note that for simplicity, the gain medium has been

taken to have population and coherence decay rates arising from the same source (so that

Γ = 1/T1 = 2/T2). This simplifies the calculations but does not qualitatively change our

conclusions.

The steady state photon probability distribution is entirely different from that of a tra-

ditional laser, which produces a dephased coherent state. To quantify this, we solve a re-

cursion relation to obtain the steady-state probability distribution ρn,n = Z−1
n∏

m=1
Rm/κm,

with Z a normalization coefficient enforcing
∑

n ρn,n = 1. In Fig. 2c, we show the intra-

cavity photon number and photon fluctuations for DSC in comparison with weak coupling.

We also present the corresponding photon statistics. In the weak coupling regime, the

photon number as a function of pump follows the canonical “S-curve” relating the input

pump and output intensity of a laser. The output intensity grows sharply for pump beyond

the threshold pump level, rth = κΓ2/2ϵ2. The fluctuations below threshold are essentially

those of a thermal state, and far above threshold, grow according to shot-noise (as
√
n,

as for a Poissonian distribution corresponding to a randomly-phased coherent state): this is

the textbook result of the laser theory of Lamb and Scully [432, 433]. In contrast, the “Fock

laser” (g = 5, 10, 18), saturates (at nc ∼ g2), and the photon number fluctuations go to zero,

leading to the quantum statistics of a Fock state (Fig. 2c, right) as the pump increases. Fig.

2c (bottom) further shows how the photon statistics evolve with pump and coupling (taken

for g = 10; additional results shown in SI). Beyond threshold, the distribution of photons

(for DSC) approaches that of a thermal state of negative temperature. Such states, as the

pump is increased (and T → 0−), approach states where only the highest-most level is

filled, with minimal spread, which closely approximates a Fock state of nc DSC photons.

To understand this Fock lasing effect, it is helpful to refer to the gain and loss curves of
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Fig. 2b, as well as the steady-state distribution ρn,n = Z−1
n∏

m=1
Rm/κm. The steady-state

distribution has the property that the probabilities are maximized where gain equals loss,

and probabilities are suppressed if one of gain or loss far exceeds the other. In particular,

the larger the angle between the gain and loss curves (at the crossing point), the tighter the

concentration of probabilities about the mean. Increasing the pump rate r further will scale

the gain curve up, leading to a steeper slope and further suppression of photon number

fluctuations, leading asymptotically to a Fock state.

Beyond these close approximations to high-photon-number Fock states, other unusual

states can arise from the equilibrium between gain and loss, due to this sudden anhar-

monicity for n ≳ nc. For example, near threshold, where the number fluctuations increase

dramatically, the resulting distribution is nearly step-like, going to zero rapidly for nc. This

anharmonicity provides a “wall” for the photon probability distribution that is too hard to

pass through, even as the fluctuations get very large near threshold. These effects also

depend on the decay rate of the gain medium: if the decay rate is high, then it provides

gain over a large bandwidth, and so changes in the DSC photon frequency have a reduced

effect on the stimulated emission rate Rn. As a result, for increasing pump, the distribution

can “tunnel” through the wall, leading to states that interpolate between Fock and coherent

states, as well as pure coherent states for large enough pump.

7.3 Discussion and outlook

Recent work on realizing deep-strong coupling of superconducting qubits to a microwave

(LC) resonator, as in [168, 422], provides a path to observing the effect predicted here. It is

already possible to have control over g from weak coupling to a value of nearly 2. With a g

of 2, one can see from Fig. 1 that a Fock state of three or four excitations could be pumped.

For smaller g, in the ultra-strong coupling regime where 0.1 < g < 1, only one excitation

can be created, as a manifestation of the conventional photon blockade effect [434, 435].

Thus, the behavior of our model from weak to (modest) deep strong coupling can already

be realized.

Regarding the gain medium, it is important to point out that while a typically gain
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medium consisting of many emitters, the physics can also be realized by a gain medium

consisting of a single qubit. The qubit should be weakly coupled to the same cavity as the

strongly coupled qubit, and will lase, provided that the gain from this one qubit is above

threshold [433]. Single-qubit gain is responsible for much of the exciting experiments on

“one-atom lasers” (in real [436, 437] and artificial atoms [438, 439, 440]), in which a single

atom or artificial atom provides enough gain to lase.

Thus, a conceptually simpler − and perhaps more attractive − approach to realize our

predictions is to consider a gain medium consisting of a continuously pumped supercon-

ducting qubit which is weakly coupled to the same resonance as the strongly coupled qubit

(which for example happens if ϵ ≪ κ). In Fig. 2, we took ϵ = 10−5ω, and Γ = 10−3ω.

Thus, for a single gain qubit, threshold is reached provided the quality factor of the res-

onator is above 5 × 106. There are two advances that would support reaching larger g val-

ues: the rapidly increasing coupling constants that have been realized with superconducting

qubits (see Fig. 1 of [20]), and early estimates in this field suggesting the possibility of g

values of roughly 20 [441]. Another important point is that while we have focused in this

paper on incoherent pumping (based on emission from two-level systems), the nonlinear

emission physics described in this manuscript could also be extended to coherent pumping

of the DSC photon by an external microwave signal. In that case, we expect that by com-

bining the high-order nonlinearity of the DSC photon with a frequency-dependent leakage

loss (e.g., loss coming from a reflection filter), one could engineer a highly nonlinear loss

which would be “dual” to the highly nonlinear gain introduced in Fig. 2.

Summarizing, we have shown a physical principle – using non-perturbative photonic

nonlinearity – which could enable lasers that produce deterministic, macroscopic quantum

states of light, such as Fock states. Part of the new physics uncovered here, related to las-

ing in systems with sharply nonlinear gain, could in principle also be extended into the

optical regime. In fact, in [442] − inspired by the developments in this manuscript − we

discuss how trying to mimic the new “Fock lasers” predicted here, but at optical frequen-

cies. This is done essentially by combining a highly frequency-dependent loss with Kerr

nonlinearities to get an effectively non-perturbatively nonlinear loss. Thus, the principles

established here, independently of deep-strong coupling, should also give rise to new ideas
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Figure 7-1: High-order nonlinearities in deep strong coupling of light and matter. (a)
Schematic of a two-level system coupled to a single resonator mode, as in circuit or cavity
QED. (b) Spectrum of the system from weak (g = g̃/ω ≪ 1) to deep-strong coupling
(g ≫ 1). Here, λ = 0. (c) Successive excitation energies for a single spin sector for
different coupling values. For g ≫ 1 the excitation energies are constant, as for a bare
photon. At large photon number, they deviate rapidly and nonlinearly from harmonicity,
akin to a photon with a strongly intensity-dependent nonlinearity.

and experiments in the optical domain.
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Figure 7-2: Fock lasing due to equilibrium between high-order nonlinearity and dissi-
pation. (a) Light emission of DSC photons can be understood in terms of the coupling of
an emitter (e.g., a probe qubit) weakly coupled to the DSC system, as might be realized by
coupling a superconducting qubit to a flux-qubit-LC-resonator system. The probability to
stimulatedly emit DSC photons scales as n+ 1 for small n, and then sharply decreases due
to the sudden anharmonicity for n > nc ∼ g2. “TLS” denotes two-level system. (b) This
behavior leads to a gain medium whose gain coefficient (green lines) is highly nonlinear.
The quantum state of DSC photons will depend on how this nonlinear gain comes into equi-
librium with the loss (red lines). (c) Steady-state intensity and power fluctuations of lasers
in different coupling regimes as a function of pump intensity. For the “harmonic” regimes
(weak, and deep-strong), a rapid growth in intensity at threshold is seen. In contrast to the
weak coupling regime (as in a “normal” laser; light blue curve), a laser operating in the
deep-strong coupling regime has its intensity saturate, and its fluctuations vanish at high
pump, converging to a high-number Fock state (dark blue and purple curves), leading to
Fock-like statistics (right). (c, bottom) Statistics for different pump strengths for a single
coupling, showing evolution from thermality to Fock-like statistics.
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barrier, evolving effectively as a coherent state. In this tunneling regime, the distribution
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Chapter 8

Complete condensation of photon noise

in nonlinear dissipative systems

Note: This chapter is heavily based off “Complete condensation of photon noise in nonlin-

ear dissipative systems”, by N. Rivera et. al. arXiv:2111.03099

Macroscopic non-Gaussian states of light are among the most highly-coveted ”holy

grails“ in quantum science and technology. An important example is that of macro-

scopic number (Fock) states of light, which, being the most fundamental states of

radiation, are considered an important resource for many quantum tasks including

metrology, communication, simulation, and information processing. However, the de-

terministic creation and stabilization of even approximate large-number Fock states

remains an open problem. This is especially so at optical frequencies, where it is diffi-

cult to produce Fock states with more than a single photon, let alone at macroscopic

scales. Here, we introduce a mechanism to deterministically generate macroscopic

Fock states and close approximations − at optical frequencies. The mechanism is

based on a new type of intensity-dependent (nonlinear) dissipation in which: a non-

linear resonance is dissipationless when it has a particular number of photons inside

it, and is lossy otherwise. We show that an initially noisy quantum state of photons,

undergoing this dissipation, can experience complete condensation of intensity noise,

such that over time, the noisy state evolves into a large Fock state. We further show

that even in the presence of external destablizing effects (like linear loss), extremely
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low-noise states can be stabilized in time. This is done by building a laser (called the

“Fock laser”) which stabilizes the macroscopic quantum state in an equilibrium be-

tween gain and the introduced nonlinear dissipation. Throughout the text, we present

examples showing the types of systems that could realize these effects. In one, we

show how strongly-coupled systems, with their strong nonlinearities, could be used

to create optical Fock states of n = 1000. In another, we show how standard laser

architectures could be leveraged to generate macroscopic light (> 1012 photons) with

extreme levels of broadband photon-number squeezing (nearly 95% less noise than

the standard quantum limit). When realized, our results could enable many of the

previously envisaged applications of optical number states for quantum algorithms,

simulation, metrology, and spectroscopy. Moreover, because the effects we introduce

here are general to nonlinear bosonic systems beyond optics, we expect the physics

introduced here to enjoy wide application in many other fields.

Much of the current focus in quantum optics is on the generation and application of

quantum states of light, such as single-photons, entangled photon pairs, cluster states, and

quadrature-squeezed light [443, 444, 445, 446, 447, 448]. Such states enable the extension

of important applications − such as information processing, simulation, precision measure-

ment, and communication − beyond the limits imposed by classical physics.

While these states are already useful, a complete transformation of the quantum land-

scape is expected if macroscopic non-Gaussian states of light, which offer the most unique

degree of quantum advantage, could be deterministically realized. As one concrete ex-

ample, consider what would happen if one could realize an extremely nonclassical state,

such as a large Fock state of light. Such states have long been eyed in quantum metrology

because they have a perfectly defined intensity that would enable measurements without

shot noise [449, 450, 451]. They are also considered valuable in simulation and informa-

tion processing tasks. Perhaps one of the highest-profile applications of large Fock states

would be for a quantum algorithm such as boson sampling (or gaussian boson sampling)

[452, 453, 454, 455, 456, 457]: a “modest” (multimode) Fock state of even 100 photons

enables computations of matrix permanents at least fifteen orders of magnitude larger than

could be handled by even the largest supercomputers today [458], and could resoundingly
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bring the promise of quantum computation to reality.

Despite the potential rewards, deterministic generation of macroscopic Fock states of

light, in any setting, remains an open problem, limiting the attainable benefit in applica-

tions. Part of the reason is that the well-established interactions between light and matter

do not naturally select for large-n Fock states. This is in contrast to, say, states like co-

herent states and quadrature-squeezed states, which can be macroscopically produced by

means of lasers or nonlinear media [433]. The other key issue is that Fock states are fragile

and destabilize in the presence of dissipation [459]. Due to these challenges, the approach

that has led to record Fock states (about 15 microwave photons) is based on transient ac-

cumulation of photons in a cavity at precise times using cavity quantum electrodynamical

interactions with superconducting qubits, as demonstrated in [459, 460]. Fock states gen-

erated this way could then be used as a resource state to simulate vibronic excited-state

spectra of molecules [461]. It is important in these techniques that the photons are built

up before losses set in, setting the maximal Fock state that is generated. Other exciting

schemes applied at microwave frequencies include the “micromaser” [433, 462, 463] and

quantum feedback protocols [464]. Such techniques cannot at present be extended to op-

tics: thus, generating Fock states of more than one photon is difficult (one-photon states

are generated by quantum emitters and also by heralding photon pairs produced by para-

metric down-conversion [157]). Fock states can also be non-deterministically generated by

collapsing the wavefunction in the number basis [465, 466] or via quantum non-demolition

measurement [467].

Here, we introduce a fundamentally new physical effect that enables the generation

of macroscopic optical Fock states and close approximations thereof. We will show how

existing systems can potentially be leveraged to produce Fock states of light with photon

numbers orders of magnitude above what has been realized, or even predicted. Even when

exact Fock states are not produced, the resulting states can have very low photon noise

(extreme squeezing) that often exceeds that available in all known schemes for reducing

photon noise. Central to the developments in this paper is a new type of dissipative nonlin-

earity that we identify (and show how to construct), which naturally produces Fock states.

We start by describing the new effects and the intuition behind them. Consider a non-
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linear resonance with dissipation (e.g., a leaky mode of a nonlinear cavity), as illustrated in

Fig. 1a. Suppose that the loss rate, κ(n) of the mode depends on the number of photons in

the cavity, n, in the way shown in Fig. 1b. Namely, the nonlinear loss should have regions

where the loss increases rapidly with intensity. Ideally, the loss also has a zero for some

special photon number n0. In such a system, Fock and highly photon-number-squeezed (or

“sub-Poissonian”) quantum states of light can be created. To see how, consider the time

evolution of the probability p(n) that the resonance has n photons. If the distribution is

concentrated above the minimum of the loss at time t0 (pictured in Fig. 1b), it will even-

tually fall through the region of sharply increasing loss. This will cause the probability

distribution to condense, because the tail of the distribution on the high-number side moves

towards lower photon numbers faster than the tail on the low-number side (see Fig. 1c).

On the other hand, if the distribution falls through a region of decreasing loss, the distribu-

tion will expand (by similar reasoning). If the loss has an exact zero at photon number n0,

then Fock states of photon number n0 are created because the probability distribution will

get stuck: it cannot move towards lower photon numbers, while the high-number tail gets

pushed towards the zero. The special nonlinear loss required to realize the effect can arise

by a combination of (1) frequency-dependent loss (for example, if an element of the cavity

has frequency-dependent transmission out of the cavity) and (2) Kerr nonlinearity, which

leads to a photon-number-dependent resonance frequency (because the index of refraction,

and thus the resonance frequency of the cavity depends on the intensity or equivalently the

cavity photon number). As we will show rigorously, the frequency-dependent “loss” and

the photon-number-dependent “frequency” compose (in the sense of function composition)

to create just the right number-dependent loss (as illustrated schematically in Fig. 1d). For

example, for a certain number of photons n0 in the cavity, the resonance frequency ω(n)

will be exactly ω0, corresponding to the zero of the transmission in Fig. 1d, and thus at

n0 photons, the cavity becomes lossless. As we shall discuss later (in Figs. 3 and 4), this

nonlinear loss can be then used in place of conventional linear loss in any device that es-

tablishes equilibrium between pumping and damping (e.g., a pumped cavity, or a laser).

For example, when the nonlinear loss of Fig. 1b is used in place of linear loss in a laser,

the equilibrium state of the cavity photons that is established has very low intensity noise
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(approaching a Fock state).

In what follows, we provide details to the picture painted above. We start by identifying

a broad class of physical systems, of the form schematically illustrated in Fig. 1e, that can

implement the proposed nonlinear loss and noise condensation effects. We explicitly show,

on the basis of a quantum optical theory of nonlinear dissipation, how the described effects

arise in this class of systems. Although the effect illustrated in Figs. 1a-c can appear in

many more systems than the one shown in Fig. 1e, focusing on the particular type of

system shown in Fig. 1e has the benefit of allowing us to rigorously prove the existence of

the effect in a way that makes the assumptions and approximations clear. In the main text,

we summarize those key results of the theory that underlie the analysis of the examples

that we discuss. The Supplementary Information (Appendix G of this thesis; referred to

as SI) systematically develops the theory in detail, showing how the effects can be derived

from several approaches, all of which are in agreement: master equation methods, quantum

Langevin methods, and exact numerical solutions.

8.1 A quantum nonlinear loss which naturally produces

macroscopic Fock states

A broad class of physical systems which displays these effects is schematically illustrated

in Fig. 1e: one nonlinear oscillator (with annihilation operator a), and one linear oscilla-

tor (annihilation operator d and frequency ωd), coupled to a common continuum of bath

oscillators (annihilation operators bk and frequencies ωk; k indexing the continuum). The

couplings of a and d to the continuum are respectively gk and vk. The Hamiltonian of this

general class of systems is:

H/ℏ = Ω(a†a) + ωdd
†d+

(
λad† + λ∗a†d

)
+
∑

k

ωkb
†
kbk +

∑
k

(
Xkb

†
k +X†

kbk

)
, (8.1)

where we have considered the case of an intensity-dependent nonlinear resonance in which

the energy of n excitations (photons) is given by Ω(n). For a Kerr nonlinear system,
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Ω(a†a) = ωa((1 − β)a†a + β(a†a)2), with βωa the nonlinear strength of a single pho-

ton. The operator Xk = gka + vkd appearing in the Hamiltonian reflects the coupling of

a, d to the common continuum. We consider the standard case in which the bath has negli-

gible memory and may be taken to be in the vacuum state. Let us further consider systems

for which the response time of the linear resonance (γ = 2πρ0v
2, with ρ0 the density of

bath states) is much shorter than that of the nonlinear resonance (κ = 2πρ0g
2): then, d can

be adiabatically eliminated, admitting a simple equation for the dynamics of a alone.

A key result is the equation of motion for the reduced density matrix of a (denoted ρ)

(see SI for derivation):

ρ̇ = −
∞∑

n=0
n(µnTn,nρ+ µ∗

nρTn,n)

+
∞∑

m,n=0

√
m(n+ 1)(µm + µ∗

n+1)Tm−1,mρTn+1,n, (8.2)

where Tm,n ≡ |m⟩⟨n|, µn = 1
2κ− G+G−

i(ωd−ωn,n−1)+γ/2 , G− ≡ iλ+ 1
2
√
κγ, G+ ≡ iλ∗ + 1

2
√
κγ,

and ωn,n−1 = Ω(n) − Ω(n− 1). While Eq. (2) governs the entire evolution of a, we focus

here on the the probability p(n) ≡ ⟨n|ρ|n⟩ that the nonlinear resonance has n photons.

Such probabilities, when more tightly concentrated than the Poisson distribution (so that the

variance (∆n)2 < n̄, with n̄ the mean number of photons), correspond to sub-Poissonian

(number-squeezed) states of light that have no classical analog [468, 450, 426] (∆n = 0

corresponds to a Fock state). The probabilities evolve as:

ṗ(n) = −L(n)p(n) + L(n+ 1)p(n+ 1), (8.3)

where L(n) ≡ 2nRe µn, the rate of transitions from the cavity state with n photons to that

with n− 1 photons, is given by

L(n) = n

(
κδ2

n + γ|λ|2 + 2√
κγδnRe λ

δ2
n + γ2/4

)
≡ nκ(n), (8.4)

where δn = ωn,n−1 − ωd. Eqs. (3) and (4) describe a process of nonlinear dissipation in

which excitations decay at a rate κ(n) which depends on the number of excitations.
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The resulting intensity-dependent loss curve κ(n) is exactly of the form shown in Fig.

1b. The loss displays a zero for some photon number n0. As one moves away from n0, the

loss sharply increases. Much of the behavior of Eq. (4) can be understood from the linear

equation for the mean values of a and d, denoted ā and d̄, which reads (see SI pages 14-15):

 ˙̄a
˙̄d

 =

−iωd −

 iδ + 1
2κ iλ∗ + 1

2
√
κγ

iλ+ 1
2
√
κγ 1

2γ



ā
d̄

 . (8.5)

The dissipation rates of the two coupled modes, for κ ≪ γ, are of order κ and γ, as ex-

pected. The coupled mode with decay rate O(γ) decays very rapidly, and can be ignored.

The other mode (which is a, to order
√
κ/γ), has a decay rate which is simply the κ(n)

of Eq. (4), taking δ → δn. The problem of two linear resonances coupled to a common

continuum, as formulated in Eq. (5), is known to yield vanishing losses for one of the

eigenvalues, resulting from interference of two leakage paths for a: one in which a passes

directly to the continuum, and one in which a transits through d before going to the con-

tinuum. This is connected to effects of appreciable recent interest in photonics, such as the

Fano effect [1, 469, 470] and bound states in the continuum [471, 472]. Further support

for this connection is provided in SI, pages 13-16. The role of nonlinearity is to bind the

leakage amplitudes to the excitation number in a, such that: for some “magic” number

of excitations n0 in a, the interference is perfect and a is lossless (vaguely reminiscent of

electromagnetically-induced transparency [473]). Stated quantitatively, in the limit κ ≪ γ,

the Fano transmission profile and the nonlinear Kerr shift “compose” (as illustrated in Fig.

1d), converting a linear loss − which introduces intensity fluctuations − into a nonlinear

loss, which is known to allow for the possibility of number squeezing [474, 475, 476, 477].

What will distinguish the nonlinear loss of Fig. 1b from previously explored nonlinear

losses (e.g., based on multi-photon absorbers [478, 479, 480, 481]), as well as other non-

linear effects such as squeezing in parametric oscillators [482, 443, 483], is that the number

squeezing can in principle be complete, yielding a Fock state of n0 photons.

There are many physical systems that can realize the type of loss derived here, yielding

many opportunities. For example, the loss of Eq. (4) could be realized in a Kerr-nonlinear

cavity formed by one perfectly reflecting mirror and one mirror with a frequency-dependent
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transmission (as for example in a photonic crystal mirror or an etalon): see SI for further

discussion. The source of the loss does not need to be transmission: it can also arise

due to internal absorption. Absorbers with more complex frequency-dependent absorption

lineshapes (such as from electromagnetically induced transparency) may also display the

type of zeros which would be amenable to the effects described here [473]. Our theory is

also readily extendable to the case of more general filters with more complex transmission

profiles (e.g., a Bragg mirror): in that case, the nonlinear loss is dictated by the frequency-

dependent transmission of that system, evaluated at the nonlinear resonator frequency.

8.2 Complete condensation of optical noise

The unique form of this nonlinear dissipation leads directly to the new quantum statistical

effects reported here. One such effect is transient noise condensation. Consider the evolu-

tion of the photon probability distribution pn(t) due to free nonlinear dissipation. We con-

sider initial conditions which are purely diagonal, corresponding to de-phased light, so that

the density matrix is specified at all times by the probabilities. For concreteness, consider

an initially Poissonian distribution of light (as from e.g., an ideal laser pumped well-above

threshold). As per the discussion surrounding Figs. 1a,b, we expect that an initially Poisso-

nian distribution with mean photon number above n0 should rapidly squeeze and approach

a Fock state − in stark contrast to the textbook case of linear loss (κ(n) = κ) 1. Meanwhile

an initial distribution below n0 should expand and eventually become Poissonian.

These intuitions are confirmed by direct solution of Eq. (3) for the photon probabilities.

In Fig. 2, we show the time-evolution of the photon probability distribution, as well as

the mean and variance, for an example system. The parameters taken are characteristic of

systems of exciton-polaritons (arising from strong coupling of a quantum well to a cavity),

which have been shown to realize dissipative Kerr Hamiltonians similar to Eq. (1) (with-

out “d”) [484, 485]. The strong nonlinearities characteristic of such systems derive from

1In the case of linear loss, an initially Poissonian photon probability distribution will stay Poissonian,
while a Fock state will have its relative fluctuations (measured by its Fano factor, F = (∆n)2/n̄) increase
over time. In particular, a Fock state will evolve into a binomial distribution (with success probability e−κt,
such that F = 1 − e−κt goes to 1 (the Poisson value) as t → ∞).
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Coulomb interactions between excitons. By coupling the polaritons (representing “a”) to

a frequency-dependent loss, the system of Eq. (1) may be realized. This may be done

e.g., by coupling the system to a resonator-waveguide system, introducing an absorber, or

having one of the cavity mirrors be frequency-dependent (all possible manifestations of

“d”). The evolution is shown for two distinct (Poissonian) initial conditions: one in which

the mean photon number is below n0 = 1000, and one in which it is above. The case

where n̄(0) < n0 does not lead to any noise reduction: after becoming slightly super-

Poissonian, the statistics become Poissonian as the amplitude decays to zero. In contrast,

when n̄(0) > n0, the variance decays much faster than the mean, ultimately approaching a

Fock state of n0 = 1000 photons (Fig. 2c, inset).

It is important to understand that, due to the “one-way” nature of loss, residual linear

loss, as well as any external effects that cause coupling to lower-photon number states,

will destabilize the trapped state and limit the noise condensation. However, even when

there is no longer a zero of the loss, heavily sub-Poissonian states can result – provided

that the distribution falls through a region where the loss is sharply increasing (see SI Fig.

S5). Such states can still fall far below the classical noise limit (beyond number-squeezing

experimentally realized thus far), and are still useful for some of the applications described

earlier. To explain this, we refer to the equation of motion for the mean and the variance.

In the approximation where ∆n ≪ n̄:

˙̄n = −L(n̄)
˙(∆n)2 = L(n̄) − 2L′(n̄)(∆n)2, (8.6)

where L′ ≡ dL/dn. When L′(n̄) > κ(n̄), the variance will decay faster than the mean, and

Poissonian light can become sub-Poissonian. This inequality can be achieved by means of

a sharply increasing loss (left-hand side of Eq. (6)) and/or a loss coefficient which goes to

zero (right-hand side).
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8.3 Fock lasers

It is of great interest to stabilize large Fock or sub-Poissonian states in time. This can

be achieved by establishing an equilibrium between a pump of energy (e.g., gain) and

the nonlinear dissipation. This line of thinking motivates us to introduce and analyze the

“Fock laser,” shown in Fig. 3a, b: it consists of a pumped gain medium with feedback

from an optical resonator. Unlike a conventional laser, the Fock laser uses a resonator with

the dissipation of Eq. (4). This loss introduces a new saturation mechanism for the laser

which fundamentally differs from that provided by saturable gain. In particular, we will

show conditions under which the new saturation leads to steady states with far lower noise

(even approaching Fock states) than would be expected (e.g., from an ideal conventional

laser, with Poissonian fluctuations of cavity photon number). The number-squeezing can

be quite extreme, with examples in the main text displaying nearly 15 dB squeezing over

all frequencies and over 20 dB squeezing at low frequencies. In the SI (Fig. S4), we show

how a laser with this nonlinear loss could present over 30 dB all-frequency squeezing. The

theory of lasers with nonlinear loss of the type introduced here is developed in the SI.

The operating principle of the Fock laser is illustrated in Fig. 3c, where we plot the

gain and loss coefficients as a function of cavity photon number for a conventional laser

(with linear dissipation) versus a Fock laser (with nonlinear dissipation). We consider

the ideal case of a single-mode laser in which technical noise due to pump, mechanical,

and thermal fluctuations is negligible (due to e.g., active stabilization [486]). The mean

photon number n̄ in the cavity corresponds to where gain balances loss. Thus, the photon

probability distribution will be centered around n̄. The fluctuations will differ in the two

cases, even when the magnitude of the gain and loss (at n̄) are identical. The fluctuations are

related to the angle of intersection between the gain and loss curves. If the curves intersect

steeply, then a small change in photon number leads to a large differential between gain

and loss (in absolute value). It is expected that the laser will not occupy such states with

high probability, preferring states in equilibrium between gain and loss. Thus, a sharply

increasing loss (and/or sharply decreasing gain; illustrated in Fig. 3c but not explored

further) leads to suppression of fluctuations beyond those of the conventional laser. This
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pictorial intuition becomes quantitative in the case of a gain medium where the inversion

decay time is fast compared to cavity losses. Then, the equilibrium photon probability

distribution is approximately p(n) ≈ e
− (n−n̄)2

2(∆n)2 /
√

2π(∆n)2, where (see SI):

∆n = 1√
− d

dn
G(n)
κ(n)

∣∣∣∣
n̄

≈ 1√
κ′(n̄)/κ(n̄)

. (8.7)

Here, G(n) is the temporal gain coefficient, and the approximation holds when the loss

varies much more sharply than the gain. This equation confirms that: if κ sharply increases

relative to its equilibrium value, the photon noise will be suppressed, and thus, the loss

introduced in Fig. 1b facilitates the generation of low-loss equilibrium states. It is interest-

ing to point out that the condition for non-classicality F = (∆n)2/n̄ < 1, corresponds to

κ(n̄)/(n̄κ′(n̄)) ≈ κ(n̄)/L′(n̄) < 1 =⇒ L′(n̄) > κ(n̄), which was precisely the condition

for transient noise condensation (see Eq. (6)). An important corollary of Eq. (7) is that in

order to have ∆n ∼ 1, one requires the loss coefficient to change by an amount comparable

to itself, over a variation of one photon.

An example of the output characteristics of a Fock laser is shown in Figs. 3(d-f), for a

nonlinear resonator similar to that of Fig. 2, integrated with a gain medium (for concrete-

ness, parameters describing the gain are those characteristic of molecular dyes). Much can

be understood from the gain-loss curves, plotted in Fig. 3d, where the gain coefficient is

shown for different pump intensities. Crudely speaking, stable equilibria exist at values

n̄ where G(n̄) = κ(n̄) and G(n̄+) < κ(n̄+). Characteristic of these non-monotonic loss

profiles are (1) multiple stable equilibria (here, at most two) and (2) stable lasing equilibria

with finite photon number even when the pump is below threshold (in other words, when

G(0) < κ(0), so that the system, started from vacuum, cannot have its photon number in-

crease). These multiple equilibria lead to distinct input-output relations between the pump

and the steady-state photon number. Above a threshold pump strength Pth, the mean photon

number increases linearly with pump strength, and the noise is substantially higher than the

Poisson level, as expected for a laser weakly above threshold. At a certain intensity (here,

about 1.55Pth), the system discontinuously jumps to a new steady state with much larger
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photon number, as well as very low noise (about 95% lower than the standard quantum

limit expected from an ideal laser). If we start from this “low noise branch” and then lower

the pump intensity, the system will follow the purple curve in Fig. 3e, and, as the pump

goes down to zero, the stable equilibrium approaches the zero-loss point (see inset of Fig.

3d). This point, in a similar manner to Fig. 2, is accompanied by a low noise equilibrium

state, which tends to a Fock state as the zero of the loss is approached. For example, for

a pump strength of 0.01Pth, the noise is 20 dB below the shot noise level, and the photon

number uncertainty is roughly 3.

The Fock laser principle can also be fruitfully extended to truly macroscopic regimes,

e.g., “conventional laser architectures” employing bulk nonlinearities to generate highly

intense sub-Poissonian light. In this case, because the single-photon nonlinear shifts are

quite small, one would not be able to generate a state with ∆n = O(1). However, it is

in principle still possible to reduce the noise by a large fraction compared to the standard

quantum limit, which, if observed, would yield record squeezing both at a single noise fre-

quency (> 20 dB) and integrated over all frequencies (> 10 dB). An example is presented

in Fig. 4 (here, parameters are characteristic of a rare-earth gain medium such as Nd:YAG).

Evaluating noise spectra for the cavity photon number for two different intensities, we see

that the photon noise (integrated over all frequencies) can drop nearly 95% below the shot

noise limit, but at photon numbers of 1012, which are clearly macroscopic. Such effects

follow directly from Eq. (7), being assisted by a loss which is both sharp and small in

magnitude (it is comparable to that offered by state-of-the-art supermirrors [487].)

8.4 Discussion

We have shown that a suitably designed nonlinear dissipation leads to the deterministic gen-

eration of macroscopic quantum states of light, such as Fock and heavily photon-number-

squeezed (sub-Poissonian) states. The key to deterministically generating such states is a

loss which sharply increases away from a minimum (of ideally zero loss). This type of

nonlinear dissipation is effectively non-perturbative in intensity, in the sense that it cannot

be represented as a low-order Taylor expansion about zero intensity (in the way that the loss
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associated with two- or few-photon absorption can be). Although such a non-perturbative

dissipation is not naturally realized in absorbing materials, we have shown rigorously in

a specific class of systems (with the Hamiltonian of Eq. (1)) that the desired nonlinear

loss can be constructed by combining frequency-dependent losses with Kerr nonlinearities.

This effectively converts a linear loss, which spoils photon-number squeezing, into a non-

linear loss, which can induce it (through the mechanism illustrated in Figs. 1a-d). This

composition of frequency-dependent loss and nonlinearity, illustrated in Fig. 1d, suggests

a recipe for mitigating the effect of loss in existing experiments: the prescription is to take

the dominant loss, and “make it nonlinear”. The physics described by Eq. (1), namely:

dissipative coupling between a linear and a nonlinear resonance, can be realized in a large

class of systems both in optics and beyond − implying a great variety of systems to which

the physics introduced here can apply.

In this work, we have focused on the creation of single-mode Fock states, as appro-

priate to a mode of a resonant cavity. Such cavity fields can be directly employed for

quantum spectroscopy and metrological applications (by coupling the sample to the intra-

cavity fields, as is done in various spectroscopies) [488, 489, 490]. The intracavity states

can also be directly used to realize new light-matter interactions: the strong intracavity

fields could be used to strongly couple to atoms as well as pump nonlinear processes with

quantum light [491, 492]. For many applications, it will be useful to couple the Fock states

into the far field. The intracavity states can be emitted into the far-field by means of a fast

loss modulation (cavity dumping in the gain-less case of Fig. 2, and Q-switching in the

gain-ful cases of Fig. 3, 4). In either case, the cavity transmission is suddenly increased

(e.g., by electro-optic modulation) relative to the (relatively long) loss rate of a (µs to ns).

In that case, the field is converted into a far-field pulse of n photons.

In optics, the realization of the nonlinear loss of Fig. 1 is perhaps especially addressable

now, given recent advances in nanophotonics focusing on the engineering of radiative loss

(including dissipative coupling of resonances [493]). For example, recent work on Fano

states and bound states in the continuum (summarized e.g., in [472, 470]), when combined

with Kerr nonlinearities, may enable realization of the Hamiltonian of Eq. (1) and the loss

of Fig. 1b. Nanophotonic systems more broadly (exploiting coupled cavities based on high-
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Q ring resonators and microspheres [52], or photonic crystal cavities [53]) should enable

the construction of almost arbitrary nonlinear losses. Our proposal is also timely in light of

a considerable volume of work on “non-Hermitian” optical systems with highly-engineered

gain and loss [494, 495], even including nonlinearity [496].

Compared to other nonlinear loss effects that have been explored for noise suppres-

sion (e.g., multi-photon absorbers [478, 479, 480, 481, 497], amplitude-phase coupling

[474, 475], optical bistability [425], soliton squeezing [498, 499]) − and even compared

to squeezing from second-order nonlinearities (+ coherent displacement) [483, 482] − the

nonlinear loss here is the only one we are aware of that can create Fock states. Even

in cases where Fock states are not generated, the squeezing often exceeds the theoretical

maximum for all of these cases. Another related approach is that used in so-called lasers

with “quiet pumping” [500, 501, 502, 503], where a low-noise pump current is used to

reduce the low-frequency noise of a laser. Such approaches lead to at most 50% noise re-

duction in the cavity [426]. As compared to other schemes for optical Fock state generation

(such as schemes using photon blockade [157], “unconventional” photon blockade [504],

or engineered driving terms [505]), our proposal addresses macroscopic Fock states.

That said, the ideas presented here may also be employed to create one- and few-photon

Fock states, by combining single-photon-scale nonlinearities (e.g., using strong coupling

[19] or Rydberg atoms [506]) with Fano interference in a way such that such that n0 (of

Fig. 1) is of order one. Such results would represent an exciting milestone in quantum

nonlinear optics. All of the present work on creating single-photon scale nonlinearities

is also more generally useful in realizing large Fock and sub-Poissonian states, as strong

changes in loss over the scale of one photon are needed to get to the ultimate Fock-state

limit (as per Eq. (7)). Our scheme can also be applied in the microwave regime, especially

in superconducting qubit systems, where reservoirs can be engineered with greater facility

and nonlinearities are quite strong [507, 21, 20].

Let us also summarize the experimental state of the art: in optics, only one-photon

Fock states can be deterministically created thus far [508] (using e.g., heralded parametric

down conversion, photon blockade, or quantum emitters). Fock states can also be non-

deterministically generated by collapsing the wavefunction in the number basis [465, 466].
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At microwave frequencies, more is possible, and approximate Fock states of around 15 pho-

tons have been generated. This is done using cavity quantum electrodynamical interactions

with superconducting qubits (essentially adding photons to a cavity “one at a time” until

linear loss sets in [459, 460]). Other schemes applied at microwave frequencies include the

“micromaser” [433, 462, 463] and quantum feedback protocols [464].

Regarding experimental realization of the effects in optics on macroscopic scales, the

systems we discussed (especially Fock lasers) entail a huge design space (see the table on SI

pg. 37 to get a sense). It is almost certain that there are better platforms than ones discussed

here to realize the physics proposed in this work. The systems we chose were mainly taken

for the sake of illustration: to show what would be needed. For the gain medium, an

obvious choice to consider is semiconductor gain media which need not be laser pumped,

and can provide rather high gain over a very broad frequency range, enabling compatibility

with many different nonlinear materials. Another important advantage of semiconductor

gain media is that they could be integrated into nanophotonic platforms which present high

nonlinearities (β at least 10 orders of magnitude higher than the bulk realizations presented,

due to the reduced mode volumes [509]).

Given the generality of the effects introduced here, we expect that the theoretical and

experimental development of physical platforms to realize them will provide a great deal

of exciting new areas for discovery.

203



Photon number, n

p(n,t0)p(n,t1)
p(n,t2)

sharply rising loss:
noise condenses

sharply falling:
noise expands

n0

Te
m

po
ra

l l
os

s,
 κ

(n
)

vk

λ

gk

a
d

ωa

ωd

bk, ωk

(b) (c)

χ(3)

ω
(n

)

Photon number, n n

      Nonlinear lossNonlinearityDispersive loss

Frequency, ω 

κ(
n)

T(
ω

)

(d) (e)

ω0 

(n0,ω0)

n0

zero zero

a

ω(n) - ½iκ(n) 

Nonlinear
lossy mode

NL

κ(n)

...
...

n

C
om

pr
es

si
on

E
xp

an
si

on

n0
Trap
state 

(a)

Figure 8-1: Photon noise condensation and Fock state generation in systems with
sharply nonlinear loss. (a) A nonlinear resonance whose loss rate κ(n) depends on photon
number n. (b) For the nonlinear loss as plotted in the red curve, the resonance will have
its photon number fluctuations compress as it decays, if it falls through a region of sharply
rising loss. This is represented by the temporal evolution of the photon probability distri-
bution (black) for different times (with t0 < t1 < t2). If the loss has a zero for some photon
number n0, the noise condensation is perfect and the system approaches a Fock state of
n0 photons. (c) This can be understood through the n-dependent rate of transitions from n
to n − 1 photons (arrows denote magnitudes, lines denote states on the Fock ladder). The
gradient of the rates (loss “sharpness”) dictates the magnitude of compression, expansion,
or trapping of the distribution. (d) The requisite nonlinear loss can be understood as arising
from a “composition” of a frequency-dependent loss and an intensity-dependent cavity res-
onance frequency (e.g., due to Kerr nonlinearity). (e) Example of one of the many systems
that could realize a loss of the form shown in (a): two resonances coupled to a common
continuum, in which one is linear (d) and one is nonlinear (a). A zero surrounded by
a region of sharp loss arises due to destructive (Fano) interference between two leakage
pathways for a which can become perfect for a precise number of photons in a (namely,
n0).
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Figure 8-2: Photon noise condensation in systems with sharply nonlinear loss. (a)
Example system to realize the effect of interest: a nonlinear resonance (e.g., an exciton
polariton) coupled to a mirror with an internal resonance (a “Fano mirror” [1]) with a
single loss channel (temporal loss shown in (b)). (c) Time-dependent photon probability
distributions for n̄(0) = 800 (top) and n̄(0) = 1200 (bottom), as well as mean and variance.
For n̄(0) = 800, the system tends to the vacuum state, while for n̄(0) = 1200, the system
tends to a Fock state of 1000 photons. In this example: β = 5 × 10−7, κ = 10−5, γ =
5 × 10−4, ωd = (1 + δ), with δ = 10−3, in units of the lower polariton frequency, 1.47 eV.
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Figure 8-3: The Fock laser. (a) Components of a general Fock laser, which consists of
a pumped gain medium and a nonlinear cavity, interacting via absorption and emission of
cavity photons by the gain medium. (b) Energy flows between components of the Fock
laser. The cavity leakage is of the sharp form in Fig. 1b. (c, left) Saturable gain and
linear loss (corresponding to a conventional laser) leads to Poissonian photon statistics
well-above threshold. (c, middle) On the other hand, saturable gain, combined with sharply
rising loss, leads to condensation of the photon probability distribution, as in Fig. 1, except
now in the steady-state. (c, right) The same condensation also holds when the gain sharply
decreases and the loss is linear. (d) Gain and loss curves for a Fock laser for different values
of the pump intensity. (e) Mean value of the intracavity photon number as a function
of pump strength, relative to threshold. (f) Mean and variance, as well as Fano factor,
for the two branches of the input-output curve of (e). Parameters used in this plot are
β = 5 × 10−5, κ = 10−5, γ = 2 × 10−3, ωd = (1 + δ), with δ = 0.04 (in units of the lower
polariton frequency ωLP). Detailed gain and cavity parameters are provided in the SI, pg.
37.
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Figure 8-4: Fock lasers in the macroscopic regime and large suppression of photon
noise in a common laser architecture. (a) A macroscopic implementation of a Fock laser
based on a diode-pumped solid-state laser with a sharply-varying transmissive element and
a nonlinear crystal. (b) Gain-loss diagrams with black circles showing stable equilibria for
different pump intensities. (c) Cavity amplitude-noise spectra as a function of frequency for
different pump intensities. For intermediate pump intensities, the overall noise reduction
can be nearly 95% of the shot-noise limit with 1012 photons. The frequency-dependent
noise can be reduced by as much as 100-fold for low frequencies. Parameters used in this
plot are β = 5 × 10−18, κ = 8 × 10−5, γ = 10−2, ωd = (1 + δ), with δ = −10−5 (in units
of the lasing frequency, 1.17 eV). Detailed gain and cavity parameters are provided in the
SI, pg. 37.
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Chapter 9

Summary and outlook

In this thesis, we have studied the types of new phenomena that can arise when light in-

teracts with collective excitations in materials. Simply put, we explored the interactions of

various “matter” systems (e.g., two- and multi-level atoms, superconducting qubits, rela-

tivistic free electrons, optical phonons) with photonic quasiparticles of all types (e.g., free

photons, plasmons, polaritons, and cavity photons).

We have found that these interactions can form the basis for extremely confined low-

loss electromagnetic fields in the mid-IR (based on 2D optical phonons; Chapter 3), new

types of vacuum forces acting on charged particles and new forms of entanglement be-

tween high-frequency (X-ray) and low-frequency (IR) excitations (Chapter 4), and even

to new and highly sensitive high-energy particle detectors (Chapter 5). Such phenom-

ena result from essentially weak coupling of light and matter. When their coupling gets

strong, or even very strong, we showed how the energy-level structure of such systems

(both ground and excited states) could be very well-accounted for by the formation of new

photonic quasiparticles with spatially re-structured vacuum electromagnetic fields (Chap-

ter 6). These strong interactions, in the regimes of the strongest couplings, e.g., deep

strong coupling lead to very interested effects in excited-state spectra, and unique quan-

tum nonlinearities that operate at the level of many photons, rather than single photons.

Such quantum nonlinearities form the basis for new optoelectronic devices, such as lasers

that produce macroscopic non-classical light states, such as large Fock states, which are

currently infeasible to produce (especially deterministically) (Chapter 7). The N -photon
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quantum nonlinearities discovered here were found to be part of a larger class of dissipa-

tive nonlinearities that could produce such macroscopic quantum states. In particular, we

showed how engineering dissipation (e.g., radiative losses) in the presence of nonlinearity

could lead to highly correlated dissipation phenomena that could also in principle produce

large Fock states of light, but at optical frequencies (Chapter 8).

A great number of questions remain, and we believe there are many exciting directions

that could ultimately be probed, using the developments presented here as a starting point.

We will largely go through them in a chronological, chapter-by-chapter basis. In Chapter

3, we examined the theory of the interaction of light with optical phonons in materials to

study the properties of phonon polaritons in 2D materials. Some important phononic effects

we had not taken into account were (1) phonon nonlocality; essentially the dependence of

the Born effective charges and phonon lifetimes on wavevector. Such effects are crucial

when taking the phonon confinement down to the atomic limit, and are important from

the standpoint of maximizing light-matter interactions. We also did not take into account

(2) phonon nonlinearities (anharmonicity), which can in principle be substantial, unlike

photons in bulk nonlinear media.

In Chapter 4, where we studied X-ray production by electrons traversing a nanophotonic

vacuum, we claimed from energy-momentum conservation that the infrared plasmon and

X-ray photon produced would feature entanglement. It would be of interest to pursue

this entanglement and correlation in greater detail: what would be the properties of the

second-order correlations g(2)(r, r′, t, t′) associated with this highly broadband infrared/X-

ray photon wavepacket? Moreover, could the effect here provide the basis for a new type

of two-photon gain? By having one of the two photons (e.g., the infrared) be in a high-

quality-factor cavity, could this lead to a type of self-induced X-ray emission (by building

up an infrared field which further stimulates X-ray production)?

In Chapter 5, we studied nanophotonic scintillators. There are natural questions about

maximizing the effects predicted and demonstrated there: what structures provide maximal

scintillation enhancement, either by density of states enhancement, or increasing the light

outcoupling? Another interesting future perspective relates to the non-equilibrium nature

of scintillation: could the use of strongly interacting electrons, or electrons in topologi-
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cal bands, or 2D materials impart new properties on the scintillation photons? Moreover,

it would be of interest to use our general formulation for scintillation in reverse: given

the output scintillation, could we infer the non-equilibrium spectral function, giving infor-

mation both on the non-equilibrium occupation factors and various oscillator strengths in

material systems?

In Chapter 6, we presented a variational theory of strongly interacting light-matter sys-

tems. For reasons of concreteness, we developed this theory in the velocity gauge, writing

the Hamiltonian in terms of the vector potential: the key item of interest would be general-

izing these considerations to the length gauge Hamiltonian, which is more commonly used

in practice due to its reduced sensitivity to Hilbert space truncation, and simpler interpreta-

tion of many observables.

In Chapter 7, where we presented quantum nonlinearities arising from deep-strong

light-matter coupling, we considered the canonical Rabi model in the deep-strong cou-

pling regime. Such a model describes the deep-strong coupling of a two-level system to a

resonant cavity. Nevertheless, it would be of interest to describe the coupling of multi-level

systems to resonant cavities, as well as cavities with multiple modes. Moreover, it is well-

known that coupling can be strongly enhanced by coupling many two-level systems to a

common mode - such considerations enable ultrastrong coupling in the infrared and optical

domain. A natural question regards the nonlinear properties of many emitters collectively

coupled a single resonance mode in this coupling regime. Moreover, while we considered

incoherent pumping (associated with stimulated emission), it would be of interest to study

the quantum states that could be produced without gain, e.g., by coherently driving the

cavity with an external signal (e.g., by connecting it to a transmission line with an injected

signal).

In Chapter 8, we developed the theory of nonlinear dissipation in systems where strong

frequency-dependent loss is coupled to nonlinearity. Such effects were shown, by a wide

range of theoretical approaches, to lead to sub-Poissonian and even large Fock state gen-

eration. A natural question, as in Chapter 7, concerns the pumping of these nonlinear

dissipative cavities with external signals. Could this coherent pumping also lead to large

sub-Poissonian state generation? From an experimental perspective, such systems could
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prove much simpler and more versatile. A more detailed list of next theoretical steps that

follow from this work is presented in the Appendix of Chapter 8, as well as at the end of

Chapter 8 itself.
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and M. Soljačić. “Ultra-light Å-scale Optimal Optical Reflectors.“ ACS Photonics

(2017)

5. C. H. Chang, N. Rivera, J. D. Joannopoulos, M. Soljačić, and I. Kaminer. “Designer
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Appendix B

Appendix for: Light-matter interactions

with photonic quasiparticles

In this Appendix, we provide a technical overview of the main theoretical tools used

throughout this thesis to describe light-matter interactions with photonic quasiparticles.

It is organized as follows:

1. First, we rigorously, starting from a Lagrangian framework, develop the theory of

electromagnetic field quantization in inhomogeneous, lossless dielectrics. We also

rigorously develop the description of the interaction of these quantized fields with

external charges (e.g., atoms, molecules, electrons, etc.).

2. From this general description of light-matter interactions, we establish a number of

key Hamiltonians used for simplified reduced descriptions of light-matter interac-

tions: the Rabi and Jaynes-Cummings models, the Hopfield model, and a quantum

model of the interaction of a moving free charge (such as an electron) with light (the

so-called QPINEM Hamiltonian). We use this as an opportunity to also introduce

concepts such as polaritons, quantum nonlinearity, strong coupling, and relativistic

light-matter Hamiltonians.

3. We then discuss the role of dissipation, presenting complementary treatments of the

effect of dissipation in terms of a reservoir approach (which informs many modern

works in quantum state engineering) and fluctuating (Langevin) forces, the latter of
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which is a very powerful framework. This discussion enables us to then move to the

topic of field quantization in absorbing linear and inhomogeneous dielectrics. This

establishes the framework of macroscopic quantum electrodynamics in full general-

ity.

We should note that while much of this treatment is meant to be introductory and to

provide an “overview” of effects in light-matter interaction (much in the style of a seminar

on light-matter interactions), we do go into rigorous technical details in a few places. One

is a derivation of the Hamiltonian description of light-matter interaction, with key results

being Eqs. (63) and (74). The Hamiltonians of light-matter interactions in the velocity

gauge (Eq. (63)) and in the length gauge (Eq. (74)) form the rigorous basis for most

studies on light-matter interaction, and accordingly have appeared in some form (typically

with approximations) in most of our work (see various publications in App. A). Thus, we

have elected to derive these Hamiltonians quite rigorously, showing the role that gauge

choice plays. Compared to other treatments, we have not seen a general derivation of mode

quantization in arbitrary lossless media that includes the modifications of the Coulomb

interaction coming from the inhomogeneous dielectric, and we have not seen a general

proof of the cancellation of the dipole-self energy. This full derivation also clarifies the

role played by generalized Coulomb gauge. We should note that many of these results

and interpretations have however been worked out in specific cases (e.g., near a perfectly

conducting mirror [120]) and also in QED in vacuum [413]. The primary utility of this

section is to generalize these results to an arbitrary medium in an end-to-end manner and

have it all presented in one treatment.

B.1 Lagrangian and Hamiltonian formulation of classical

electromagnetism in dielectrics

In this section, we develop the theory of quantum electrodynamics for non-relativistic

charges coupled to electromagnetic fields in materials. We are especially interested in

situations in which the charges are coupled to fields in inhomogeneous dielectric (such as

220



photonic cavities, photonic crystals, waveguides, bulk dielectrics, and so on). To quantize

the system means essentially to turn all observable quantities describing the system into op-

erators. Thus, the positions and velocities of the matter (charges) become operators, as do

the electric and magnetic fields. Additionally, we will need to find a Hamiltonian operator

which generates the time-evolution of the light-matter system.

We already know how to quantize the charges, as this is just conventional quantum

mechanics – thus the essential new element is the quantization of the electromagnetic field.

In general, the strategy is as follows:

1. Start from a Lagrangian whose equations of motion (Euler-Lagrange equations) are

classical equations that we already know (the Maxwell equations for the fields in a

dielectric, the Newton equations for the charges)

2. Turn the Lagrangian into a Hamiltonian through the standard Legendre transform

3. For matter described by positions and velocities, we quantize as usual, converting the

position into the position operator, and the momentum into the momentum operator

p = −iℏ∇. For fields, which possess an infinite number of degrees of freedom (to

describe the field at all points in space), we will find that degrees of freedom of the

EM field can be conveniently cast in terms of the amplitudes of the normal modes

of the field. We will find that, as is typical in quantum field theory, the independent

field modes act as independent harmonic oscillators, which lead then to a simple and

straightforward quantization.

Let us start by finding the Lagrangian of the system of matter and fields. We will do this

in three steps: we will first introduce the Lagrangian of a system of matter in an external

electromagnetic field. Then, we will introduce the Lagrangian of the electromagnetic field

in the absence of charges. Finally, we will derive the Lagrangian describing the interaction

between the charges and the fields.
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B.1.1 Lagrangian of matter in an external field

We start by considering the Lagrangian describing a single particle in an external field,

described by the scalar potential ϕ(r, t) and the vector potential A(r, t). We are looking

to find a Lagrangian L(r(t), ṙ(t), t) (dots here denote time-derivative) such that when the

associated action functional

S[r(t), ṙ(t); ti, tf ] ≡
tf∫

ti

dt L(r(t), ṙ(t), t) (B.1)

is stationary, it reproduces the Newtonian equation of motion for the particle in an external

electromagnetic field. By stationary, we mean with respect to a change of the functions

r(t), ṙ(t). To minimize the action, let us consider a small variation of the trajectory r(t) →

r(t) + δr(t), where |δr| ≪ |r|. We can expand the action in this small variation as

S[r(t) + δr(t), ṙ(t) + δṙ(t); ti, tf ] =
tf∫

ti

dt L(r(t) + δr(t), ṙ(t) + δ̇r(t), t)

≈
tf∫

ti

dt (L(r(t), ṙ(t), t) + δr · ∇rL+ δṙ · ∇ṙL) .

(B.2)

The corresponding change in the action is then

δS =
tf∫

ti

dt (δr · ∇rL+ δṙ · ∇ṙL) . (B.3)

To simplify this further, expressing everything in terms of the change in r, we may use the

fact that δ̇r = δṙ, and perform integration by parts to get

δS = δr · ∇ṙL

∣∣∣∣tf

ti

+
tf∫

ti

dt δr ·
(

∇rL− d

dt
∇ṙL

)
. (B.4)

The boundary terms vanish, as the trajectory that makes the action stationary must respect

the boundary conditions of the problem: that we know the position and velocity at the initial
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and final times. Therefore, if the stationary trajectory respects these boundary conditions,

the variation in the trajectory must be zero so that any variation also respects the boundary

conditions. Stated mathematically: δr(ti) = δr(tf ) = 0. For the action to be stationary, we

therefore must have:

0 =
tf∫

ti

dt δr ·
(

∇rL− d

dt
∇ṙL

)
. (B.5)

This equation must hold for any variation δr. The only way this is possible is if the inte-

grand is zero throughout the integration domain. To see this, consider δr = (1, 0, 0)δ(t −

t0), with ti < t0 < tf . Then we get 0 = ∂xL(t0) − d
dt
∂ẋL(t0). This holds for any time, and

also for a y or z-directed unit vector weighting the delta function. Therefore,

∇rL = d

dt
∇ṙL, (B.6)

which is the Euler-Lagrange equation.

To find the Lagrangian of a given system is essentially trial-and-error: guess a La-

grangian and show that the Euler-Lagrange equations result in the equations of motion for

the system. For example, for a single particle of charge q and massm in an electromagnetic

field, the Lagrangian is given as:

L = 1
2mṙ2 − qϕ(r(t)) + qA(r(t), t) · ṙ. (B.7)

To show this is the correct Lagrangian, let us evaluate the corresponding Euler-Lagrange

equation, showing that it reduces to the Newtonian equation of motion for a charged particle

subject to the Lorentz force law. The left-hand side of the Euler-Lagrange equation is

simply

∇rL = −q∇ϕ+ q(∇rA) · ṙ, (B.8)

where it is understood that the dot-product refers to the indices of A and r. The right-hand

side of the Euler-Lagrange equation is given by

d

dt
∇ṙL = mr̈ + d

dt
A(r(t), t) · ∇ṙṙ (B.9)
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which, by application of the chain-rule, gives

d

dt
∇ṙL = mr̈ + q∂tA + q(ṙ · ∇)A, (B.10)

where we have omitted the functional dependence of A, as we will not need to think about

it anymore. We can very clearly see how the electric field arises in this equation, given that

E = −∇ϕ − ∂tA. We need to however expose the dependence on the magnetic field. Let

us look at the term q(∇rA) · ṙ in more detail. Writing the i-component of this in repeated

index notation, we have that

q(∇rA) · ṙ = q(∂iAj − ∂jAi)ṙj + q(∂jAi)ṙj. (B.11)

To proceed, it is useful to cast the term we want (ṙ × (∇ × A))i in a form that resembles

what we have just derived. We may write

(ṙ × (∇ × A))i = ϵijkṙjϵklm∂lAm

= ϵkijϵklmṙj∂lAm

= (δilδjm − δimδjl)ṙj∂lAm

= ṙj(∂iAj − ∂jAi), (B.12)

exactly equal to a term we got from the Euler-Lagrange equation. Therefore q(∇rA) · ṙ =

qṙ×B+q(ṙ ·∇r)A. Equating the left and right hand sides of the Euler-Lagrange equations

then yields

mr̈ = q(E + ṙ × B), (B.13)

as desired.

In many cases, we have not just one particle, but many (N ), in external electromagnetic

fields. The arguments of this section can easily be generalized to show that the Euler-

Lagrange equations still apply for each particle independently, and that the Lagrangian is
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the sum of the Lagrangians of each individual particle. In other words

L =
N∑

i=1

1
2miṙ2

i − qiϕ(ri, t) + qiA(ri, t) · ṙi (B.14)

B.1.2 Lagrangian of the fields without sources

We now move to derive the Lagrangian of the free electromagnetic field. Let us consider for

simplicity the electromagnetic field in the absence of sources. Unlike matter, which have

well-defined locations, fields are extended over some space (usually infinite). As a result,

the Lagrangian of some field, ϕ, is typically expressed in terms of a Lagrangian density, L

via

L[ϕ] =
∫
d3r L[ϕ(r, t), ∂µϕ(r, t)], (B.15)

where we have taken the field to be in three spatial dimensions, as is the most common

scenario. We have assumed the Lagrangian to be a function of both the field itself and its

derivatives, labeling a generic derivative (time or space), as ∂µϕ. The corresponding action

is expressed as

S[ϕ] =
∫
d4x L[ϕ(r, t), ∂µϕ(r, t)], (B.16)

with d4x ≡ d3rdt. Fields, like matter, are also subject to a principle of stationary action.

Thus, the field is that which leads to δS = 0. Let us consider an arbitrary variation of the

field ϕ → ϕ+ δϕ. The action can then be expanded in this variation to first order as

S[ϕ+ δϕ] =
∫
d4x L[ϕ(r, t) + δϕ, ∂µϕ(r, t) + δ(∂µϕ)]

≈ S[ϕ] +
∫
d4x

(
δϕ
∂L
∂ϕ

+ δ(∂tϕ) ∂L
∂(∂tϕ) + δ(∇rϕ) · ∂L

∂(∇rϕ) .
)
, (B.17)

where
∂L

∂(∇rϕ) ≡
(

∂L
∂(∂xϕ) ,

∂L
∂(∂yϕ) ,

∂L
∂(∂zϕ)

)
(B.18)

in Cartesian coordinates. To proceed, we need to consider boundary conditions for the

fields. Regarding spatial boundary conditions, let us assume that the fields either vanish

at infinity, or that the fields are enclosed in a large box with periodic boundary conditions.
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Similarly, we will apply the same temporal boundary conditions. Whether the fields vanish

or are periodic, one can show that the boundary terms in the integration by parts vanish.

Therefore, it immediately follows that the variation in the action is

δS =
∫
d4x δϕ

(
∂L
∂ϕ

− ∂t
∂L

∂(∂tϕ) − ∇r · ∂L
∂(∇rϕ) .

)
(B.19)

By an argument similar to the one used to derive the Euler-Lagrange equations for matter,

it follows that for the action to be stationary for any δϕ, it must be that

∂L
∂ϕ

− ∇r · ∂L
∂(∇rϕ) = ∂t

∂L
∂(∂tϕ) , (B.20)

which is the Euler-Lagrange equation for fields.

Let us now apply this to the case of electromagnetism in (non-magnetic, non-dispersive)

material media. The Lagrangian of the electromagnetic field, described by a scalar and

vector potential, turns out to be

L[ϕ,A, ∂µA] = ϵ0

2

∫
d3r ϵE2 − c2B2 =

∫
d3r ϵ(∇ϕ+ ∂tA)2 − c2(∇ × A)2. (B.21)

This Lagrangian looks considerably more complicated than the one we derived above for

a single-component field due to the dependence on multiple fields (ϕ,A), as well as due to

the vectorial nature of the vector potential. However, from the standpoint of the derivation

of the Euler-Lagrange equation, all that has happened is that the number of degrees of

freedom is larger. We can think of the Lagrangian as

L[ϕ, ∂µϕ,Ax, ∂µAx, Ay, ∂µAy, Az, ∂µAz]. (B.22)

And the Euler-Lagrange equations will apply separately to ϕ,Ax, Ay, Az.

First, let’s find the equation for the scalar potential. Noticing that the Lagrangian does

not depend on ϕ or ∂tϕ, but does depend on its spatial gradient, we see that the Euler-
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Lagrange equation generated from the potential is

∇ · ϵ∇ϕ+ ∂t∇ · (ϵA) = 0, (B.23)

which coincides with the expected classical equation for the scalar potential in the absence

of free charges or currents 1.

Now, we need to obtain the equations from differentiation with respect to the vector

potential and its derivatives. There is no dependence on the vector potential itself, only its

derivatives. Differentiating with respect to the time-derivative of As, the s-component of

A, gives
∂L

∂(∂tAs)
= ϵ0ϵ(∂tAs + ∂sϕ) = −ϵ0ϵEs = −Ds, (B.26)

with D the displacement field.

Now, we must differentiate the Lagrangian with respect to the spatial derivatives, which

is complicated by the presence of curls. The term to evaluate for the equation for As is

∂r
∂L

∂(∂rAs)
. (B.27)

In repeated-index notation, the term in the Lagrangian density associated with the magnetic

field (modulo ϵ0c
2) is

−1
2ϵijkϵilm(∂jAk)(∂lAm). (B.28)

Noting that the ∂iAj are independent degrees of freedom, it follows that ∂(∂iAj)
∂(∂rAs) = δirδjs.

1Maxwell’s equations in an inhomogeneous, non-dispersive medium are typically stated for the fields
rather the potentials. Yet, from the standpoint of field quantization, the potentials take precedence. Thus, we
briefly derive the equations for the potentials. Recall. that E = −∇ϕ−∂tA and B = ∇ × A. Then, Gauss’s
law, ϵ0∇ · ϵE = ρf , with ρf the free charge density, becomes:

∇ · ϵ∇ϕ+ ∇ · ϵ∂tA = −ρf/ϵ0. (B.24)

Meanwhile, the Ampere’s law, ∇ × B = µ0Jf + ϵ
c2 ∂tE can be expressed as

∇ × ∇ × A + ϵ

c2 ∂
2
t A + ϵ

c2 ∂t∇ϕ = µ0Jf . (B.25)
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It follows that the derivative (Eq. 5.1.25) of Eq. (5.1.26) is simply

ϵsriϵilm∂r∂lAm = (∇ × ∇ × A)s. (B.29)

Therefore, the equation for the vector potential is

∇ × ∇ × A + ϵ

c2

(
∂2

t A + ∇∂tϕ
)

= 0, (B.30)

which also coincides with the expected classical equation for the vector potential in the

absence of free charges or currents. We have thus proven that the Lagrangian of Eq. (21)

is in fact the correct Lagrangian of the field.

B.1.3 Interaction Lagrangian

Now let’s consider the influence of interactions between matter and light. In Section 1.2. we

derived the Lagrangian describing matter in electromagnetic fields, thus implicitly taking

into account the interactions between matter and fields. The only real change is one of

perspective: the fields are now degrees of freedom, rather than fixed, external entities, and

therefore are subject to time-evolution. The Lagrangian of a system of N matter in an

electromagnetic field is thus

L =
N∑

i=1

1
2miṙ2

i − qiϕ(ri, t) + qiA(ri, t) · ṙi +
∫
d3r ϵ(∇ϕ+ ∂tA)2 − c2(∇ × A)2 .

(B.31)

This Lagrangian does not change the equations of motion for the matter, as the field

Lagrangian does not depend on the particle degrees of freedom. However, the term repre-

senting the interaction between matter and fields: −qiϕ(ri, t) + qiA(ri, t) · ṙi do change

the equation for the fields. To find the change to the field equations however, we need to

find the Lagrangian density associated with the interaction terms, and cast these terms as
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integrals. This is done by introducing integrals, so that the interaction terms become

∫
d3r − qiϕ(ri, t)δ(r − ri(t)) + qiA(ri, t) · ṙiδ(r − ri(t))

=
∫
d3r − ρ(r, t)ϕ(r, t) + j(r, t) · A(r, t), (B.32)

where we have introduced the charge and current densities.

Differentiating the Euler-Lagrange equations for the fields gives

∇ · ϵ∇ϕ+ ∂t∇ · (ϵA) = −ρ/ϵ0 (B.33)

for the scalar potential equation and

∇ × ∇ × A + ϵ

c2

(
∂2

t A + ∇∂tϕ
)

= µ0j (B.34)

for the vector potential equation. These are exactly the same as the Maxwell equations

with sources that we derived earlier. With this, we have the full Maxwell-Newton-Lorentz

system of equations that classically describes light and matter

mr̈ = q(E + ṙ × B)

∇ · ϵ∇ϕ+ ∂t∇ · (ϵA) = −ρ/ϵ0

∇ × ∇ × A + ϵ

c2

(
∂2

t A + ∇∂tϕ
)

= µ0j. (B.35)

B.1.4 Hamiltonian of the matter and the fields

As our ultimate goal is a quantum theory of matter and electromagnetic fields, as because

the Hamiltonian is the central quantity of that theory, we must derive the Hamiltonian cor-

responding to this Lagrangian. The Hamiltonian H(p, q) corresponding to a Lagrangian

L(q, q̇), for a system with a single canonical position, is obtained by the Legendre trans-

form:

H = pq̇ − L, (B.36)
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where p, the canonical momentum, is defined as

p = ∂L

∂q̇
. (B.37)

For the matter, the canonical momentum can easily be seen to be

p = mv + qA. (B.38)

Meanwhile, for the fields, the canonical momentum is

Π(r) = ∂L

∂Ȧ
= −D. (B.39)

The Hamiltonian then follows immediately as

H =
N∑

i=1

(pi − qiAi(ri))2

2mi

+ qiϕ(ri, t) + ϵ0

2

∫
d3r

Π2

ϵ
+ c2(∇ × A)2. (B.40)

While this answer looks quite clean, it has a serious complication associated with it. It

has to do with the fact that matter and field degrees of freedom are mixed together. For

example, the vector and scalar potentials in Eq. (34) are mixed together. Additionally, the

Hamiltonian of the field mixes the scalar and vector potentials through Π (which, being the

electric displacement, mixes the electric field and the matter polarization). This complicates

analysis greatly, and thus we shall now make a choice of gauge that eliminates this mixing.

From now on, we will work in the so-called generalized Coulomb gauge, so that

∇ · ϵA = 0 . (B.41)

This choice of gauge leads to two major simplifications. The first is that the scalar potential

is completely determined by the matter (as there are no homogeneous solutions to ∇ ·

ϵ∇ϕ = −ρ/ϵ0 that carry an electric field). Therefore, the scalar potential is actually a

particle degree of freedom. This is exactly like the case of field-quantization in vacuum,

where ∇ · A = 0. The scalar potential is given in terms of the Green’s function of the
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Laplace equation as

ϕ(r) = −
N∑

i=1
qiGϕ(r, ri). (B.42)

In vacuum, the Green’s function of the Laplace equation, defined such that ∇·ϵ∇Gϕ(r, ri) =

−δ(r− ri), would simply be −1/|r− ri|, saying that the potential is given by the (instanta-

neous) Coulomb’s law − as expected. The second thing is that we can define the canonical

field momentum without the scalar potential. This is because the canonical field momentum

came from deriving a term like

∫
d3r ϵ((∂tA)2 + 2A · ∇ϕ+ (∇ϕ)2). (B.43)

But, if ϵ∇·ϵA = 0, then
∫
d3r A ·∇ϕ = 0 because it is an integral of a dot product between

a curl-less and divergence-less function. Meanwhile, we can write the third term as

∫
d3r ϵ∇ϕ · ∇ϕ =

∫
d3r − ϕ∇ · ϵ∇ϕ =

∫
d3r ρϕ. (B.44)

Therefore, re-defining the canonical momentum for the field as Π = ϵ0ϵ(∂tA), we can

write the Hamiltonian as:

H =
N∑

i=1

(pi − qiAi(ri))2

2mi

+ 1
2

N∑
i,j=1

qiqjGϕ(ri, rj) + ϵ0

2

∫
d3r

Π2

ϵ
+ c2(∇ × A)2. (B.45)

This is the final form of the Hamiltonian of light and matter. As a note, while the Hamil-

tonian “should” be written in terms of position and momenta, as we have above, it is very

common to see the Hamiltonian with the field momentum expressed in terms of the vector

potential, in order to keep a small number of variables in the Hamiltonian. Thus, the form

we will state in practice is

H =
N∑

i=1

(pi − qiAi(ri))2

2mi

− 1
2

N∑
i,j=1

qiqjGϕ(ri, rj) + ϵ0

2

∫
d3r ϵ(∂tA)2 + c2(∇ × A)2 .

(B.46)
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Generality, caveats, and potential pitfalls

It is worthwhile to note that this simple Hamiltonian is quite general, and forms the basis for

the description of most of the light-matter interaction phenomena we treat in this thesis. It

is worth mentioning that this Hamiltonian is deceptively simple, and seemingly innocuous

manipulations can lead to errors. We state some of them here, along with some common

pitfalls and misconceptions. The purpose of this list is not to be exhaustive, but simply

to review some of the subtleties of quantum electrodynamics that have been uncovered

through decades of rigorous investigations. Many of these listed below are common points

of confusion for newcomers. We should also note that some subtleties are only starting to

get elucidated with new work that is enabled in the regime where the light-matter coupling

terms are especially strong.

1. This form of the Hamiltonian has been specifically derived in the generalized Coulomb

gauge. It is only in that gauge that the scalar potential becomes manifestly a matter

degree of freedom (and the vector potential a purely radiation degree of freedom). In

other gauges, both potentials take a mixed character and are much harder to interpret.

2. This Hamiltonian is invariant under unitary transformations (frame transformations),

in the sense that performing a frame transformation will not change any predicted

observables. But, simple truncation of the Hilbert space (e.g., by restricting the mat-

ter Hilbert space to two levels, as in cavity quantum electrodynamics) will generally

break gauge invariance − and lead to different predictions in different frames. Some

frames “do better” than others in this case, such as the “dipole frame” (also called the

“length gauge”) to be introduced in the next section. We note also as a point of ter-

minology that this representation of the Hamiltonian in terms of the vector potential

is called the “velocity gauge”.

3. This Hamiltonian is also invariant under gauge transformations. The potentials can

be re-defined such that for some gauge function χ, ϕ → ϕ+ ∂tχ and A → A − ∇χ.

But in quantum mechanics, this means that the wavefunctions of the matter must

also transform. For calculations of transition amplitudes between stable asymptotic
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states of the non-interacting Hamiltonian, one may prove that the amplitudes are

independent of this wavefunction transformation [413].

4. Often, a gauge called the Weyl gauge is invoked. The Weyl gauge is the one in which

the scalar potential is eliminated (thus, the vector potential is no longer transverse

(transverse in real-space, meaning ∇ · ϵA = 0), it has some electrostatic (or really,

longitudinal) components). It is commonly used in order to “ignore” consideration of

the scalar potential. This is not valid, but this only becomes apparent when looking

at higher-order corrections (e.g., energy shifts) or in non-perturbative regimes. It

should also be noted that often, the way this Hamiltonian in the “Weyl gauge” is

actually used is often closer to the generalized Coulomb gauge.

5. The term involving the Green’s function of the Laplace equation is a pure matter

term in the generalized Coulomb gauge. It can thus be diagonalized with the other

matter terms (e.g., the kinetic energy) in order to define the matter Hamiltonian. For

example, Coulomb interactions lead to an atomic potential that leads to the formation

of bound states. However, it is important to realize that in this frame, the “Coulomb

potential” also depends on the medium. As a trivial example, for electron in a bulk

medium with dielectric constant ϵ, the Coulomb interaction is significantly screened,

leading to in principle a large change in the unperturbed energies.

B.1.5 Electromagnetic modes as degrees of freedom of the radiation

The Hamiltonian form of classical electrodynamics exposes that the non-redundant degrees

of freedom are the system are the positions and momenta of the matter, the vector poten-

tial, and its time-derivative. The vector potential carries an infinite number of degrees of

freedom, as a result of the fact that the fields are defined at every point in space. This is

cumbersome, and it would be ideal to have a simpler (but still infinite) set of degrees of

freedom by which to describe the electromagnetic field. The normal modes of the free

electromagnetic field in a medium enable just that.

Recall that for a time-dependent potential satisfying the generalized Coulomb gauge

condition, we may expand the potential in terms of the modes of the source-free Maxwell
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equations as (see the Box on the next page for details on the mode expansion):

A(r, t) =
∑

n

An(t)Fn(r). (B.47)

Here, we will take An(t) to be purely real coefficients, and Fn(r) to be real-valued modes.

This can be done without loss of generality in lossless non-magnetic systems2 Later, we

will show that this assumption was unnecessary, and that everything we will derive will

hold for complex modes as well. But this makes the derivations easy.

Let us see how the Lagrangian and Hamiltonian of the electromagnetic field without

sources looks like under this mode expansion. Plugging this into the Lagrangian, and using

orthonormality, we immediately find that:

L = ϵ0

2
∑

n

(
Ȧ2

n − ω2
nA

2
n

)
. (B.48)

The second term arose from moving one of the curls to the other side and making use of

the Maxwell eigenproblem. The Lagrangian has now been recast as a function of An and

Ȧn,, suggesting that the mode coefficients, An, are the canonical coordinates of the elec-

tromagnetic field. For each n, then we have as the corresponding Euler-Lagrange equation:

Än + ω2
nAn = 0, (B.49)

The corresponding Hamiltonian is:

H = ϵ0

2
∑

n

(
Ȧ2

n + ω2
nA

2
n

)
. (B.50)

Expressing H in terms of the canonical position An and momentum ϵ0Ȧn, we have that

H =
∑

n

(
p2

n

2ϵ0
+ 1

2ϵ0ω
2
nq

2
n

)
. (B.51)

2It is a consequence of ϵ being real that all of the modes can be chosen real. It can be immediately seen
that if F is a mode of Maxwell’s equations with frequency ω, it is also the case that F∗ is also a mode with
the same frequency, meaning that F ± F∗ are both modes, which are purely real. This also means that for
a non-degenerate mode, it is real. While for a complex mode, it must have a degenerate partner which is its
conjugate. This situation also happens in the Schrodinger equation.
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This is clearly the Hamiltonian of a set of harmonic oscillators associated with each mode.

The frequencies of the oscillators are the modal frequencies ωn and a “mass” ϵ0.

Normal mode expansion of the vector potential

Consider Maxwell’s equations (in frequency-domain) in the absence of sources: J =

0 and ρ = 0. The scalar potential equation is solved by ϕ = c with c a constant. As

we can always perform a gauge transformation that removes this constant, we may

simply say ϕ = 0. Thus, the only equation of interest is that for the vector potential,

which simplifies to (for an isotropic linear medium)

∇ × ∇ × A(r, ω) = ϵ(r, ω)ω
2

c2 A(r, ω). (B.52)

The equation for the vector potential on the other hand does have non-zero solutions

for ω ̸= 0. For example, if ϵ = 1, then a plane transverse wave of wavevector mag-

nitude k satisfies this equation when ω = ck. In what follows, we will consider a

non-dispersive, but inhomogeneous dielectric medium, so that ϵ(r, ω) = ϵ(r). We

will also only consider lossless media for the present, such that ϵ is real-valued.

A number of powerful general results emerge simply in this case. The resulting

equation is a generalized eigenproblem, in which an operator (∇ × ∇×), acting on

a (vector) function (A), gives that same function, up to an eigenvalue (ω2

c2 ), and a

function (ϵ). In the absence of this additional function, this would be a standard

eigenproblem. Nevertheless, many results from standard eigenproblems carry over

with minimal modification. Here, we enumerate the basic properties of this general-

ized eigenproblem, and its consequences. These consequences will be critical in the

quantization of the electromagnetic field. Some of these properties are developed

in more detail and used extensively in treatments of nanophotonics, see for example

[49]. To derive basic properties of the Maxwell eigenproblem, we will need to define

an inner product between vector functions. In particular, we define

⟨X,Y⟩ ≡
∫
d3r X∗ · Y. (B.53)
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Given this inner product, we may state the following properties of the Maxwell equa-

tions, its eigenfunctions (or eigenmodes) Fn(r) ≡ A(r, ωn), and its corresponding

eigenfrequencies ωn:

1. The eigenproblem is Hermitian. In particular ⟨X,∇ × ∇ × Y⟩ = ⟨∇ × ∇ ×

X,Y⟩.

2. The eigenvalues are real if ϵ is positive.

3. The eigenfunctions can be made orthonormal according to a modified in-

ner product. Eigenfunctions of different eigenvalues are manifestly orthog-

onal (and then normalized to be orthonormal) with respect to a new inner

product (X,Y) ≡
∫
d3r ϵX∗ · Y. Degenerate eigenfunctions can be made

orthonormal by the Gram-Schmidt procedure, just as in quantum mechanics.

4. The eigenfunctions span the space of divergenceless functions. Consider a

divergenceless (transverse) function X, such that ∇ · X = 0. Then it may be

expanded in terms of the eigenfunctions via:

X =
∑

n

cnϵFn, (B.54)

with cn the expansion coefficients, given by cm =
∫
d3r ϵF∗

m · Fn. You can

see that the divergence of each individual term is zero (from the generalized

Coulomb gauge condition), so that the divergence of the overall function is

zero.

It then follows that we may write an any time-dependent vector potential in the

generalized Coulomb gauge by using a mode expansion, as

A(r, t) = 1
2
∑

n

αnFn(r)e−iωnt + α∗
nF∗

n(r)eiωnt, (B.55)

where αn are arbitrary coefficients.
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The result we arrived at, although very simple, is extremely important. It says: the

time-dependent amplitudes of the modes behave in exactly the same way as a harmonic os-

cillator. In the quantum theory, the mode amplitudes act as independent quantum harmonic

oscillators. This point holds not just for electromagnetism, but other wave equations, such

as acoustic wave equations, hydrodynamic wave equations, and relativistic wave equations

for fundamental particles.

B.2 Quantization of the electromagnetic field in the ab-

sence of charges

We have shown at least classically that the free electromagnetic field is dynamically equiv-

alent to a set of harmonic oscillators. Therefore, we quantize it in the same way we quan-

tize a particle on a spring. The canonical position and momenta of the different modes

are promoted to Hermitian operators satisfying a canonical commutation relation where

[pm, qn] = iℏδmn. In quantum field theory, it is not common to make too much reference

to this commutator. Instead, it is more useful to recast this commutator as one in terms

of creation and annihilation operators. Then the canonical commutation relation will be

formulated as the usual [am, a
†
n] = δmn. Let us define creation and annihilation operators

an =
√

ϵ0

2ℏωn

(
ωnqn + i

ϵ0
pn

)
, a†

n =
√

ϵ0

2ℏωn

(
ωnqn − i

ϵ0
pn

)
. (B.56)

It follows immediately that

qn =
√

ℏ
2ϵ0ωn

(
an + a†

n

)
, pn = −i

√
ℏωnϵ0

2
(
an − a†

n

)
. (B.57)

Expressing the canonical degrees of freedom in terms of the creation and annihilation op-

erators, we have that

H =
∑

n

ℏωn

2
(
a†

nan + ana
†
n

)
=
∑

n

ℏωn

(
a†

nan + 1
2

)
. (B.58)
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To complete the quantization of the field, the last thing we need to do is write the

operator form of the vector potential. That follows from the mode expansion and the fact

that qn = An. Expressing the qn in terms of the creation and annihilation operators, we

automatically have

A =
∑

n

√
ℏ

2ϵ0ωn

(an + a†
n)Fn. (B.59)

In the quantization of the fields, we assumed that the modes were real. This is not nec-

essary. If we express the vector potential in terms of complex modes, then the Hamiltonian

is the same as before (just keeping in mind that the creation and annihilation operators are

associated with different modes from before). The vector potential on the other hand, takes

the form:

A(r) =
∑

n

√
ℏ

2ϵ0ωn

(
Fn(r)an + F∗

n(r)a†
n

)
. (B.60)

To see that this form can be arrived at from an expansion in real modes, consider a case in

which the vector potential has two degenerate real modes of frequency ω. As we argued

before, since any complex mode has a degenerate partner which is the conjugate, we can

always construct two real degenerate modes as the real and imaginary parts of one of the

complex modes. Let us call these modes F1 and F2, their associated annihilation operators

a1 and a2 and then consider the contribution of those two modes to the vector potential. Let

us now do a change of variables. Let us define two new annihilation operators b1 ≡ a1−ia2√
2

and b2 ≡ a1+ia2√
2i

. Let us also define two new modes G1 = F1+iF2√
2 and G2 = iF1+F2√

2 . With

these definitions, one can show that

ω(a†
1a1 + a†

2a2) = ω(b†
1b1 + b†

2b2) (B.61)

and

(a1 + a†
1)F1 + (a2 + a†

2)F2 = G1(r)b1 + G∗
1(r)b†

1 + G2(r)b2 + G∗
2(r)b†

2. (B.62)

It is always possible to go from a purely real form of the mode expansion of the vector

potential operator to a complex form.
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B.2.1 Hamiltonian of quantum electrodynamics for

non-relativistic matter

We have now quantized the electromagnetic field in the absence of currents and charges.

However, most problems that we will be interested in involve the interaction of bound and

free electrons with electromagnetic fields. These bound and free electrons represent free

charges and currents (which we call matter), and therefore the electromagnetic field is no

longer free. We are therefore interested in the Hamiltonian that describes the interaction of

light and matter. To construct it, all we need to do is take the Hamiltonian of Eq. (46) and

replace the free electromagnetic field part by the expansion in Harmonic oscillators. The

final Hamiltonian is

H =
N∑

i=1

(pi − qiA(ri))2

2mi

− 1
2ϵ0

N∑
i,j=1

qiqjGϕ(ri, rj) +
∑

n

ℏωn

(
a†

nan + 1
2

)
. (B.63)

B.2.2 Dipole approximation and dipole Hamiltonian

In many situations in quantum electrodynamics, the wavelength of the photons which the

matter interacts with is much larger than the spatial extent of the system of charges. It

follows then that the modes of the vector potential vary negligibly over the extent of the

electronic wavefunctions. In that case, we may simply replace the ri in the vector potential

by r0, which can be thought of as the center of the distribution of charges. This approx-

imation is called the long-wavelength approximation, and also the dipole approximation,

as the result of the approximation is that the interaction between matter and light is well

described as an interaction of the quantized electric field with the dipole moment of the

system of charges. In this section, we will do a unitary transformation of the Hamiltonian

to a much simpler form that is exactly equivalent in the dipole approximation.

Consider the following unitary transformation of the Hamiltonian prescribed by the

operator U = e
i
ℏd·A(r0), where d =

N∑
i=1

qiri is the total dipole moment associated with the

charges. We would like to calculate U †HU . To do this, we will make heavy use of the
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Baker-Campbell-Hausdorff (BCH) formula:

eABe−A = A+ [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + . . . . (B.64)

Let’s start by evaluating the unitary rotation of pi, A(ri), and an. No unitary rotation

needs to be done on the scalar potential terms, as they are functions of the position opera-

tors, which commute with the position operators in the argument of the exponential of U .

According to BCH, for the kth component of the momentum pi:

U †pikU = pik − i

ℏ
∑

j

qj[rjk′Ak′(r0), pik] + · · · = pik − i

ℏ
∑

j

qjAk′(r0)(iℏδijδkk′) + . . . ,

(B.65)

where . . . denotes the remaining terms of the expansion. We are using repeated index

notation. The remaining terms are zero, as the second term is a multiple of the identity in

the particle space, which will commute with pik. Therefore, we have

U †pikU = pik + qiAk(r0). (B.66)

Now let’s look at the unitary rotation of the vector potential.

U †Ak(r0)U = Ak(r0) − i

ℏ
∑

j

qj[rjk′Ak′(r0), Ak(r0)] + · · · = Ak(r0). (B.67)

This is obvious, as the terms of vector potential are analogous to the position operator of the

harmonic oscillator. And we know that the components of the position operator commute

with themselves. Thus, the vector potential is unchanged by the rotation. But if that’s the

case, then we have that

U †
N∑

i=1

(pi − qiA(r0))2

2mi

U =
N∑

i=1

p2
i

2mi

. (B.68)

To conclude the transformation, we need to transform the creation and annihilation opera-
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tors. Let’s examine the unitary rotation of the creation operator

U †a†
nU = a†

n − i

ℏ
∑

j

qj[rjkAk(r0), a†
n] + · · · = a†

n − i

ℏ
∑

j

qjrj

√
ℏ

2ϵ0ωn

F∗
n(r0)

= a†
n − i

ℏ

√
ℏ

2ϵ0ωn

d · F∗
n(r0). (B.69)

Again, the second term is a multiple of the identity (this time on the photon space), and so

the other terms in the series are zero. It follows by Hermitian conjugation that

U †anU = an + i

ℏ

√
ℏ

2ϵ0ωn

d · Fn(r0). (B.70)

The number operator then transforms as

U †a†
nanU =

(
a†

n − i

ℏ

√
ℏ

2ϵ0ωn

d · F∗
n(r0)

)(
an + i

ℏ

√
ℏ

2ϵ0ωn

d · Fn(r0)
)
. (B.71)

Combining this with the ℏωn and the summation, we have that the free-field Hamiltonian

transforms into

ℏωn

(
a†

nan + 1
2

)
− d ·

(
i
∑

n

√
ℏωn

2ϵ0

(
Fnan − Fna

†
n

))
+ 1

2ϵ0

∑
n

∣∣∣∣d · Fn(r0)
∣∣∣∣2. (B.72)

Noting that the modal sum in parentheses in the second term is simply the electric field

operator E(r0), we may write the QED Hamiltonian as

H =
N∑

i=1

p2
i

2m − 1
2ϵ0

N∑
i,j=1

qiqjGϕ(ri, rj) +
∑

n

ℏωn

(
a†

nan + 1
2

)

− d · E(r0) + 1
2ϵ0

∑
n

∣∣∣∣d · Fn(r0)
∣∣∣∣2 (B.73)

There are several main advantages of the dipolar Hamiltonian with respect to the Hamil-

tonian written in terms of the momentum. For one, the quadratic term in the vector potential

has gone, leading to only a single interaction term between light and matter, in terms of the

physical electric field. Another major advantage of this Hamiltonian relates to the mean-

ings of the various operators. In particular, in the old frame (called the velocity frame from
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now on), the velocity is given by v = (p − qA)/m, meaning that the physical velocity of

the particle is tied to the quantized field, making it difficult to interpret. Moreover, the mo-

mentum operator does not have a direct physical significance in this gauge. In the dipolar

gauge, the velocity transforms to U †vU = p/m, making the physical velocity independent

of the quantized field – and allowing much simpler and more intuitive interpretation of

what the particles do versus what the photons do. There is a third reason, which has to do

with the last term in the Hamiltonian, which is called the dipole self-energy, which we will

elaborate on below.

As a rule then, when the long-wavelength approximation is valid, we will use the dipolar

Hamiltonian.

Cancellation of the dipole self-energy with parts of the Coulomb Hamiltonian

In this section, we elaborate on the form of the dipolar self-energy, showing that it is com-

pletely cancelled by part of the Coulomb term (the second term) of Eq. (46). As a result,

the final Hamiltonian describing the system of charges in the dipole gauge is

H =
N∑

i=1

p2
i

2m +
N∑

i,j=1

qiqj

8πϵ0|ri − rj|
+
∑

n

ℏωn

(
a†

nan + 1
2

)
− d · E(r0) . (B.74)

In the remainder of this section, we prove this remarkable simplification. But a reader

interested primarily in applying this Hamiltonian to solve problems may skip this section

without loss of continuity. This cancellation implies that there is a connection between

the radiation modes F and the solutions of the Poisson equation (which are connected to

Gϕ). They are connected by completeness: any radiation field can be expanded in the F

functions, while any electrostatic field can be expanded in eigenfunctions ϕ of the Laplace

equation. Together then, any electric field whatsoever can be expanded in terms of the Fs

and the ϕs. Let’s now make this connection more precise.
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To this end, let us define two tensorial projection functions, Pϵ,⊥(r, r′),Pϵ,||(r, r′) as

Pϵ,⊥(r, r′) =
∑

n

ϵ(r′)F∗
n(r′)Fn(r)

Pϵ,||(r, r′) = −
∑

n

ϵ(r′)∇′ϕ∗
n(r′)∇ϕn(r)/λn, (B.75)

where the functions ϕn are eigenfunctions of the Laplace equation in a medium, with eigen-

value λn, defined by

∇ · ϵ∇ϕn = λnϕn (B.76)

We have defined the second projection function with a minus sign as a matter of con-

venience. It is easy to show that the Laplace eigenfunctions, for a real permittivity, are

orthonormal.

We have referred to these two functions as projection functions. Let us now show

that they are. The claim is that Pϵ,⊥(r, r′) projects a function onto the space spanned by

the radiation modes, while Pϵ,||(r, r′) projects a function onto the space spanned by the

Laplace eigenfunctions. Let us start by projecting Pϵ,⊥(r, r′) onto functions like Fm(r)

and ∇ϕm(r), as follows:

∫
d3r′ Pϵ,⊥(r, r′) · F(r′) = Fm(r)∫
d3r′ Pϵ,⊥(r, r′) · ∇ϕm(r′) = 0. (B.77)

In the first, we have used the orthonormality of the radiation mode eigenfunctions. In

the second, we have used the fact that the dot product of a divergenceless function and a

curl-less function integrates to zero.

Meanwhile, projecting Pϵ,||(r, r′) onto functions like Fm(r) and ∇ϕm(r), as follows:

∫
d3r′ Pϵ,||(r, r′) · F(r′) = 0∫
d3r′ Pϵ,||(r, r′) · ∇ϕm(r′) = ∇ϕn(r). (B.78)

In the first line, we have used the fact that the dot product of a divergenceless function and
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a curl-less function integrates to zero. In the second, we have used integration by parts

and the orthonormality of the Laplace eigenfunctions. Notice that the minus sign, as well

as the division by the eigenvalue were necessary to get the projection to come out to just

the gradient of the Laplace eigenfunction. Suppose we decompose the electric field into

radiation and electrostatic parts, as:

E(r) = Eϵ,⊥(r) + Eϵ,||(r), (B.79)

with

Eϵ,⊥(r) =
∑

n

AnFn(r)

Eϵ,||(r) = −
∑

n

Bn∇ϕn(r). (B.80)

Then it immediately follows from the projection operators above that

∫
d3r′ Pϵ,⊥(r, r′) · Eϵ,⊥(r′) = Eϵ,⊥(r)∫
d3r′ Pϵ,⊥(r, r′) · Eϵ,||(r′) = 0. (B.81)

and

∫
d3r′ Pϵ,||(r, r′) · Eϵ,⊥(r′) = 0∫
d3r′ Pϵ,||(r, r′) · Eϵ,||(r′) = Eϵ,||(r). (B.82)

Of course, from which it follows that

∫
d3r′ (Pϵ,⊥(r, r′) + Pϵ,||(r, r′)) · E(r′) = E(r), (B.83)

meaning that in the space of electric field functions,

Pϵ,⊥(r, r′) + Pϵ,||(r, r′) = δ(r − r′)I, (B.84)
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with I the 3 × 3 identity matrix.

To proceed, we need to understand the electrostatic projection function, Pϵ,||(r, r′),

better. It can be immediately shown that

Pϵ,||(r, r′) = −ϵ(r′)∇∇′Gϕ(r, r′). (B.85)

To see this, let us consider the defining equation for the Green’s function

∇ · ϵ∇Gϕ(r, r′) = δ(r − r′). (B.86)

Let us expand the delta function in terms of the Laplace eigenfunctions, similarly to what

we did when finding the mode-expansion of the Green’s function of the Maxwell equations

in Chapter 3. Suppose we define

Gϕ(r, r′) =
∑

n

Gnϕn(r)

δ(r − r′) =
∑

n

δnϕn(r). (B.87)

By taking inner products, it can immediately be seen that δn = ϕ∗
n(r′). Plugging these

expansions into Eq. (86) yields

Gϕ(r, r′) =
∑

n

ϕ∗
n(r′)ϕn(r)/λn, (B.88)

immediately proving the claim of Eq. (85).

Let us now consider the implications of Eq. (85) for Eq. (84). Eq. (84) then states

∑
n

ϵ(r′)F∗
n(r′)Fn(r) = δ(r − r′)I + ϵ(r′)∇∇′Gϕ(r, r′). (B.89)

As we see here, the radiation modes are in fact connected to the electrostatic interactions

encoded in Gϕ.

With Eq. (89) in place, we can now consider the dipole self-energy term. Let us con-

sider it in the context of a neutral system of charges (i.e., no ions) in a region where ϵ = 1,
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for simplicity. If they are not, then additional complications related to local field effects

arise. In accord with the long-wavelength approximation, the charges are also assumed to

localized around position R with positions R+ri. Defining the dipole moment d = ∑
i
qiri,

we have that the dipole self-energy term is

1
2ϵ0

∑
i,j

qiqjri · (
∑

n

F∗
n(R)Fn(R)) · rj. (B.90)

From Eq. (5.34), we see that this term is

1
2ϵ0

∑
i,j

qiqjri · (Iδ(0) + ∇∇′Gϕ(R,R)) · rj. (B.91)

The first term is clearly infinite, but also has no dependence on the medium whatsoever.

This term thus also appears in the free-space QED Hamiltonian. In the context of the

free-space Hamitonian, that this first term is an infinite (non-identity) operator presents a

problem, as it shifts the energy levels of the system by different infinite amounts (leading to

infinite energy differences between states). This is clearly unacceptable, as is. It is however

solvable by the program of renormalization. The resolution is that this term, in addition to

other infinite contributions, lead to a slight change or renormalization of the energy levels

of the matter in the absence of the electromagnetic field. Thus, functionally, this term

is ignored, and we consider it as slightly changing the energy levels of the unperturbed

system.

The second term however, looks quite a lot like another term in the Hamiltonian: the

Coulomb interaction, given by

Vcoul = − 1
2ϵ0

N∑
i,j=1

qiqjGϕ(ri, rj). (B.92)

In fact, it is tempting to Taylor expand the Green’s function, so that

Vcoul ≈ − 1
2ϵ0

N∑
i,j=1

qiqj(Gϕ(R,R) + ri · ∇∇′Gϕ(R,R) · rj). (B.93)

The second term would exactly cancel the second term in the dipole self-energy. However,
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the Green’s function has a rapidly varying part like 1/|ri − rj| associated with the free-

space Coulomb interaction, making it un-justified to Taylor expand the Green’s function

this way. To solve this however, we can split the Green’s function in two parts, as:

G(r, r′) = − 1
4π|r − r′|

+Gind(r, r′). (B.94)

We claim that this second term varies slowly over the scale of the system of charges, pro-

vided that the system is far from the interface with a medium (compared to the extent of

the emitter). This can be understood from the principle of superposition in electrostatics.

When we place a charge near a medium, the total electrostatic potential is the sum of the

potential of the charge, and the potential of the bound charges in the medium induced by

the charge. In other words, the field created by a charge of magnitude q at position r′ is

ϕ = q

4πϵ0|r − r′|
+
∫
ds

ρind(s)
4πϵ0|r − s|

. (B.95)

The first term corresponds to the free-space part of the Green’s function, while the second

corresponds toGind(r, r′). Suppose distance of the system of charges to the medium (where

induced charges are) is d and the extent of the system of charges is a. Then, it is clear

from the previous equation that the potential of the induced charges varies slowly over

a provided a ≪ d, and can thus be Taylor expanded around the center of the system of

charges. Therefore, we may write the Coulomb interaction as:

Vcoul =
N∑

i,j=1

qiqj

8πϵ0|ri − rj|
− 1

2ϵ0

N∑
i,j=1

qiqj(Gind(R,R) + ri · ∇∇′Gind(R,R) · rj). (B.96)

For a neutral system of charges,
∑
i
qi = 0, simplifying the Coulomb interaction to

Vcoul =
N∑

i,j=1

qiqj

8πϵ0|ri − rj|
− 1

2ϵ0

N∑
i,j=1

qiqjri · ∇∇′Gind(R,R) · rj. (B.97)

247



Meanwhile from Eq. (91), we get (ignoring the δ(0) term)

1
2ϵ0

∑
i,j

qiqjri ·
(

−∇∇′ 1
4π|r − r′|

∣∣∣∣
r=r′=R

+ ∇∇′Gind(R,R)
)

· rj. (B.98)

The first term is an infinite self-energy which doesn’t depend on the medium, and can

also functionally be ignored. The second term however, which is medium-dependent is

cancelled by a term of opposite sign in Vcoul. Therefore, neglecting infinite self-energy

terms which don’t affect subsequent calculations, the Hamiltonian reduces to:

H =
N∑

i=1

p2
i

2m +
N∑

i,j=1

qiqj

8πϵ0|ri − rj|
+
∑

n

ℏωn

(
a†

nan + 1
2

)
− d · E(r0), (B.99)

completing the proof of this remarkable cancellation.

B.3 Common Hamiltonians of light-matter systems and

key effects in light-matter interaction

The vast majority of the literature − past and current − on light-matter interactions is based

on the Hamiltonians of Eq. (63) (in the velocity gauge) and Eq. (74) (in the length gauge).

These Hamiltonians are sufficiently general to describe general matter systems (e.g., many-

electron systems in real space) interacting with electromagnetic fields in arbitrary dielectric

structures (for which many photon modes can in principle interact with the matter). In

many cases, the full Hamiltonians are not amenable to direct solution of the time-dependent

Schrodinger equation. There are however key simplifications that arise in many case of

light-matter interaction that lead to much simpler model Hamiltonians that may either be

(a) directly diagonalized or (b) readily numerically solved. Here, we review some of those

Hamiltonians, and the key phenomena that arise from them.

A bound electron system in an optical cavity and the Rabi Hamiltonian. One of the

most common situations considered in light-matter interactions is that of a bound system

of charges (with matter Hamiltonian Hmat) coupled to a cavity with a low-loss resonant

optical mode of frequency ω. If ω is similar to a transition energy of the matter system (and
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the transition is dipole-allowed), then the dynamics can be very well-understood by treating

the matter system as a two-level system. The corresponding Hamiltonian, describing the

coupling of a two-level system of frequency ω0 to a cavity mode of frequency ω, is referred

to as the Rabi Hamiltonian and is given as

HR/ℏ = 1
2ω0σz + ωa†a+ gσx(a+ a†), (B.100)

where σx,z are the usual Pauli matrices, and g is the coupling energy and is given by (in

the dipole approximation)
√

ω
2ϵ0ℏd · F(0), where F(0) is the mode function for the cavity

mode at the location of the two-level system (we’ve taken the mode function real without

loss of generality). Intriguingly, this Hamiltonian, while simple, is not analytically diag-

onalizable. However, in a great many cases, the coupling is very weak compared to the

cavity frequency, g ≪ ω. In this case, processes involving simultaneous (de-)excitation of

the two-level system and (de-)excitation of the cavity would be expected to have very low

amplitude (due to energy conservation). In this rotating wave approximation, one may ap-

proximate σx(a+ a†) ≈ σ+a+ σ−a†, with σ± are the usual two-level raising and lowering

operators. The resulting Hamiltonian, HJC given by

HJC/ℏ = 1
2ω0σz + ωa†a+ g(σ+a+ σ−a†), (B.101)

is known as the Jaynes-Cummings Hamiltonian and is amenable to direct solution. Let us

solve it to get a sense of the type of phenomena to be expected in light-matter interaction.

Upon writing the Hamiltonian matrix, one sees a block-diagonal structure involving blocks

in the subspace span{|e, n⟩, |g, n+1⟩} with HamiltonianH = 1
2(ω0 +ω)I+ 1

2(ω0 −ω)σz +

g
√
n+ 1σx ≡ 1

2 ω̄I + V · σ, with ω̄ = 1
2(ω0 + ω) and the vector V = (g

√
n+ 1, 0, 1

2∆)

with ∆ = ω0 − ω. This is merely the Hamiltonian of a two-level system, thus we may

immediately read off the dynamics. For example, an initial σz eigenstate such as |e, n⟩ will

precess around the Bloch sphere (around the vector V ). If ∆ = 0 (resonance), then a point

on a pole of the Bloch sphere will reach the other pole after time π/g
√
n+ 1 and eventally

return - a phenomenon known as Rabi oscillation. The number of photons will oscillate

between n and n + 1 over time and the atom will similarly oscillate between excited and

249



de-excited.

Photon blockade and quantum nonlinearity Much can also be understood from the

spectrum of the Jaynes-Cummings Hamiltonian. The energies are divided into two-state

manifolds labeled by n

En± = nω + 1
2 ω̄ ±

√
1
4∆2 + (n+ 1)g2. (B.102)

for n = 0, 1, 2, ... (note that the state |g, 0⟩ is the only one not in a doublet, it’s energy is

simply E0 = −ω0/2). For g = 0, there are two ladders of states which are equally spaced

by ω. When g ̸= 0, the ladders are no longer evenly spaced. This anharmonicity leads to

an interesting phenomenon of photon-blockade. To see it, consider what happens when the

atom-cavity system is pumped by photons of frequency Ω resonant with a transition of the

combined atom-cavity system. Suppose for example that Ω = E1+ − E0. Then the system

will efficiently be pumped into the state |1+⟩. Were the states |1+⟩ and |2+⟩ equidistant,

the system could move into the next state. But it cannot, this transitions is off-resonance

with Ω and therefore the incident photon will be reflected from the cavity. There will never

be more than one excitation in the cavity. This phenomenon is known as photon blockade.

This photon blockade arises directly from the anharmonicity of the spectrum. This

anharmonicity can be understood as a type of unusual optical nonlinearity which is opera-

ble at the level of a single-photon. To understand the connection to optical nonlinearities,

consider the electromagnetic field in a third-order nonlinear medium, with third-order sus-

ceptibility χ(3). In a material with such an optical nonlinearity, the material polarization in

response to an applied electric field has a cubic contribution, leading to a term in the Hamil-

tonian which is quartic in the electric field. For example, with a cavity with a medium with

a nonlinear index inside of it, the resulting cavity Hamiltonian can be written in the form

HKerr = ℏωa†a+ 1
6βℏω : (a−a†)4 :, where β is a nonlinear coupling constant, and :: denotes

normal ordering. In the rotating-wave approximation (i.e., ignoring terms with unbalanced

numbers of creation and annihilation operators), the Kerr nonlinearity takes the more com-

monly stated form HKerr = ℏω
(
(1 + β)a†a+ β(a†a)2

)
[425, 426]. The cavity eigenstates

are Fock states of n photons with with energy En ≡ ℏωn = ℏω [(1 + β)n+ βn2]. Thus,

250



the energy to add a photon depends on the number of photons present and so the energy

ladder becomes evenly spaced. Therefore, a single-frequency pump can become progres-

sively more or less efficient at pumping the cavity as photons build up, leading to known

phenomena such as optical bistability, and even some new phenomena, such as Fock las-

ing, introduced in Chapter 8. The nonlinearity coming from the Jaynes-Cummings model is

particularly extreme because of its strength. If the nonlinearity is sufficiently strong (com-

pared to dissipation), then the anharmonicity becomes effective at the level of one photon.

In nonlinear optical materials, the nonlinear shift per photon (measured by β) is typically

exceptionally weak.

We conclude this section by noting that all of this analysis is predicated on g ≪ ω.

When this is no longer true, the system enters the ultrastrong and deep strong coupling

regimes in which the light-matter wavefunctions substantially change, the ground-state en-

ergy is modified (and thus many thermodynamic and chemical properties), and new types

of nonlinearities can emerge. In Chapter 6, we explore the development of accurate de-

scriptions of ground- and excited-state energies in ultrastrong coupling based on photonic

quasiparticle ansatzes, while in Chapter 7, we explore an unusual form of nonlinearity

arising from the spectrum of the Rabi model. It behaves almost perfectly linearly for ex-

citations below a critical excitation number N , and then anharmonically beyond this point

(almost like an N−level system). Such a system facilitates the creation of N -excitation

Fock states.

One or more harmonic oscillators coupled to the radiation field. Although we do

not analyze this example in great detail in this thesis, it is a key model in the physics of

light-matter interaction (with many appearances in current work), and it does effectively

appear in Chapter 3 where we discuss the linear response of 2D phononic materials − in

which we consider the coupling of light to a continuum of optical phonons in a 2D material,

which represent a continuum of harmonic oscillators. For a harmonic oscillator coupled to

a radiation field described by the dipole Hamiltonian, the simplified Hamiltonian, called

the Hopfield Hamiltonian will read something like

HHopfield = ω0b
†b+ ωa†a+ ig(b+ b†)(a− a†). (B.103)
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A moving free charge coupled to the radiation field. The Hamiltonian of free-

electrons and light is generally given as

H = Hel +Hem +Hint, (B.104)

with Hel the Hamiltonian of the electrons, Hem the Hamiltonian of the electromagnetic

field, and Hint the interaction between them.

For a system of N relativistic (spin-less) electrons, their Hamiltonian is given as the

Klein-Gordon one,

Hel = c
√
m2c2 + p2. (B.105)

In the presence of an electromagnetic field described by its vector potential A(ri), the

Hamiltonian, under a minimal coupling transformation, contains both the pure electron

part of the Hamiltonian and the interaction. In particular:

Hel +Hint = c
√
m2c2 + (p + eA(r))2. (B.106)

Making the very-well-respected approximation that |eA| ≪
√
m2c2 + p2, we can perform

a Taylor expansion of the square root to arrive at:

c
√
m2c2 + p2 + ec√

m2c2 + p2 A(r) · p, (B.107)

where we have ignored the so-called diamagnetic term proportional to A2, and the non-

commutability of p and A3. The Hamiltonian can also be simplified further in the case

when we treat the electron under the paraxial approximation, which results from linearizing

the dispersion relation of the electron around its central momentum. For fast-moving elec-

trons in transmission electron microscopes where these effects are typically observed, this

approximation is well-respected as the speed of the energetic electron is hardly changed by

its interaction. Put more rigorously, we will restrict the electron Hamiltonian to the space

3This is justifiable when the electron propagates always in regions of constant permittivity. This is because
the vector potential and Hamiltonian above are derived under the generalized Coulomb gauge for which
∇ · ϵA = 0 and so if epsilon is constant, then the vector potential is divergenceless.
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of functions of the form ψ = eik0·rf , where f is slowly varying (|∇f | << |kf |). In that

case, the action of the electron Hamiltonian (taken for a single electron WLOG) on the

state is

Helψ = c
√
m2c2 − ℏ2∇2eik0·rf ≈ eik0·rc

√
m2c2 + ℏ2k2

0 − 2iℏ2k0 · ∇f (B.108)

Taylor expanding, and noting that in relativity p/E = v/c2, we have

eik0·r(c
√
m2c2 + ℏ2k2

0 + ℏck0 · (−iℏ∇)√
m2c2 + ℏ2k2

0

)f = eik0·r(E0 − iℏv · ∇))f, (B.109)

with E0 =
√
m2c4 + ℏ2c2k2

0. We may thus approximate Hel as −iℏv · ∇ 4 Therefore, our

final electron Hamiltonian is Hel ≈ −iℏv · ∇. Taking the electron velocity to dominantly

be in the z-direction WLOG, we have that the Hamiltonian of free-electron quantum optics

(also called the quantum PINEM Hamiltonian (PINEM stands for photon-induced near-

field electron microscopy, see Chapter 2) is given by:

H = −iℏv∂z +
∑

n

ℏωna
†
nan +

∑
n

Wn(z)an +W ∗
n(z)a†

n ≡ H0 + V, (B.110)

with H0 = −iℏv∂z + ∑
n
ℏωna

†
nan, and we have defined Wn = ev

√
ℏ

2ϵ0ωn
Fnz(z). This

Hamiltonian describes the interaction of a relativistic electron with the electromagnetic

field in the paraxial approximation. Intriguingly, it is exactly solvable. Using the Magnus

expansion (see [423]), one can show that an initial wavefunction of the electron and light

evolves as:

|ψ(t)⟩ = e

∑
n

χn

e

∑
n

Sn

U0|ψ(0)⟩, (B.111)

with

χn = − i

ℏ2v2

z∫
−∞

dz1

z1∫
−∞

dz2 Im
[
Wn(z1)W ∗

n(z2)e−i ωn
v

(z1−z2)
]
, (B.112)

Sn = e−i ωn
v

zg∗
na

†
n − ei ωn

v
zgnan, (B.113)

4This is because they are the same on this space of states up to the identity. In particular Helψ − (−iℏv ·
∇)ψ = eik0·r(E0 −ℏk0 ·v)f = (E0 −ℏk0 ·v)ψ clearly differing only by a constant multiple of the identity,
since v and k are constants for every state.
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gn = i

ℏv

z∫
−∞

dz′ Wn(z′)e−i ωn
v

z′
, (B.114)

and

U0 = e− iH0t

ℏ = e
−vt∂z−it

∑
n

a†
nan

. (B.115)

A few comments are in order. Ignoring the χ, we see that the evolution of the electron-

light wavefunction has two main contributions: one is the unperturbed evolution U0, cor-

responding to a translation of the electron wavefunction (by vt) and free-evolution of the

field oscillators. The other is associated with the term exp[e−i ωn
v

zg∗
na

†
n − ei ωn

v
zgnan]. The

operator e±i ωn
v

z raises (lowers) the momentum by ℏωn/v and the energy (and energy,

given linear dispersion, by ℏωn). Thus, the plane wave factors are electron raising and

lowering operators. We may thus write the term Sn as a beam-splitter-type interaction

exp[g∗
nbna

†
n − gnb

†
nan], evocative of the Hopfield model. Interestingly, the electron raising

and lowering operators are not like oscillator operators at all, despite moving the system up

and down and evenly spaced ladder of states. This is because [bn, b
†
m] = 0 (and of course

[bn, bm] and [b†
n, b

†
m] = 0), as the ladder operators are functions of the position operator

only. Thus, the model of a swift electron of constant velocity, coupled to a field, is that of

an effectively classical oscillator coupled to the field.

Let us briefly highlight some results of this Hamiltonian related to the quantum states

of light that can be generated, following our treatment in Ref. 29 of App. A. For mono-

energetic electrons |E0⟩ coupled to a single field mode with |ℓ0⟩ photons initially, the sys-

tem evolves into an entangled state of fixed excitation number |ψ⟩ → ∑
ℓ cℓ|E0 − ℓℏω, ℓ⟩.

Another interesting case is one in which the electron is in an eigenstate of z, thus having

a perfectly defined position. In this case, bn → βn ≡ e−iωnz/v and Sn corresponds ex-

actly to a displacement transformation on the field. In this case, the electron acts as a true

“classical current” and displaces the any field state, in principle allowing for the creation

of displaced squeezed states, displaced Fock states, and true coherent states (acting like an

optical frequency antenna).

To close this section, we should also note that this Hamiltonian is purely one-dimensional,

and neglects effects from spin, as well as quantum recoil (changes in the velocity of the
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electron) (as well as a large class of multi-photon emission effects involving simultaneous

emission of two photons (as opposed to sequential emission)). In Chapter 5, we consider a

more general interaction Hamiltonian between a relativistic spinor electron and quantized

fields in materials (e.g., 2D materials supporting plasmons). In those cases, the relevant

Hamiltonian is the Dirac Hamiltonian (see Appendix corresponding to Chapter 5). The

scalar QED Hamiltonian (for a relativistic, spinless charge) also describes many of the ef-

fects we consider when the emitted photons have energies much smaller than that of the

electron.

B.3.1 The effect of dissipation

The Hamiltonians described in the previous paragraphs all describe closed systems − of

a matter system with some number of optical modes. In reality, these Hamiltonians often

neglect the fact that the matter and/or the radiation (say, in the cavity) are in general cou-

pled to more than each other. For example, if one of the mirrors of the cavity has partial

transmission, then a photon in the cavity can escape into the outside of the cavity. This

outside world, being infinite (or large enough) in extent, supports a continuum of propa-

gating modes. Therefore light in the cavity (generally) will irreversibly leak out, and the

outside continuum acts as a reservoir in the thermodynamic sense: although the continuum

becomes populated with cavity excitations, the state of the continuum can effectively be

thought to be unchanged by this small number of excitations. Although all of these in-

teractions are entirely conservative (the net energy of the cavity+reservoir is unchanged),

when we look at the cavity only, as is very often the case, the state of the cavity appears

to undergo damping. We should note that similar phenomena arise for matter as well. An

excited electron in an atom immersed into a cavity may spontaneously emit into many other

photon modes (or other excitations, like phonons) besides those from the cavity, causing

irreversible transfer population from an atomic excited state to an atomic ground state. This

will appear as atomic damping if we only consider the atom and cavity. Intriguingly, one

can also have damping without population transfer, as in pure dephasing, where for ex-

ample, a system can emit low-frequency excitations (like phonons), changing perhaps its
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vibrational state but not its electronic state. If we consider only the electronic state, this

dephasing will result in decay of electronic superpositions (like coherence between the ex-

cited and ground states, which leads to a dipole moment). These effects manifest as decay

of the off-diagonal components of the atomic density matrix.

Because it is fundamentally impractical to follow the continuum of far-field modes

along with the cavity, we now outline the description of damping in light-matter interac-

tions. We outline the effect of damping on the density matrix, as well as on Heisenberg

operators of the system. We then use the results from the Heisenberg treatment to develop

a description of field quantization in dissipative media. This treatment is meant to be expos-

itory and somewhat more heuristic in places. The more rigorous framework for the density

matrix treatment of damping is very well-covered in introductory texts such as [433], and

is also used in Chapters 7 and 8 of the thesis. In the thesis we also extend the density ma-

trix treatment to more complex cases with nonlinearities and multiple resonances, as well

as more general systems (such as photonic quasiparticles arising from deep-strong light-

matter coupling). We will consider damping here only for a harmonic oscillator (such as a

cavity mode) for the purposes of demonstration.

Dissipation as a reservoir on a single-mode

Let us develop a heuristic treatment of damping (we will get the right answer, but not in

a particularly rigorous way). Suppose we have a cavity mode with annihilation operator a

coupled to an single oscillator with harmonic oscillator b at the same frequency (taken to

be in the vacuum state). And suppose we want an equation of motion for the density matrix

of a alone. To proceed, let us calculate the density matrix of the joint system after a short

time dt. In the interaction picture, the density matrix evolves according to ρ(t + dt) =

e−iV (dt)ρ(t)eiV (dt), where V = g(ab† + a†b), with g the Rabi frequency. We shall expand

the exponentials, retaining terms up to second order in V , which will be the leading-order

change to the density matrix of a (the first-order term will vanish). Doing so yields

ρ(t+ dt) = ρ(t) − i[V, ρ(t)](dt) − 1
2(V 2ρ(t) + ρ(t)V 2 − 2V ρ(t)V )(dt)2. (B.116)
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Now, we take the partial trace with respect to b to get the reduced density matrix of a.

In what follows, I will make use of the fact that when b is in the vacuum state, we have

trb(b) = trb(b†) = trb(b2) = trb(b†2) = trb(b†b) = 0, and trb(bb†) = 1. Using this, we

immediately arrive at, defining ρa = trb(ρ):

ρa(t+ dt) = ρa(t) − 1
2(gdt)2(a†aρa(t) + ρa(t)a†a− 2aρa(t)a†). (B.117)

Since gdt is simply the probability of de-excitation of a one-photon state in the cavity, we

shall make the following extrapolation of the theory here. In the case where the cavity is

instead coupled to a continuum of b modes, we expect decay at some rate κ, such that the

probability of de-excitation of a one-photon state becomes κdt. Making this substitution

((gdt)2 → κdt), we may now write

ρ̇a = −κ

2 (a†aρa + ρaa
†a− 2aρaa

†). (B.118)

This equation holds at all times because the state of the reservoir can be approximated as

vacuum at all times. It is as if we threw away the far-field photon after an infinitesimal

time, which to some extent is true in a leaky cavity.

Dissipation in the Heisenberg picture and quantum Langevin forces

Now, we will show that there is an equivalent perspective to the problem of damping,

formulated not for the density matrix, but for the Heisenberg operators of the system. In

this picture, damping will be understood as concomitant with the action of a random force

(called a (quantum) Langevin force) on the cavity. Here, we shall opt to be less heuristic

than the previous section, because we would like to use it in the next section as the basis for

field quantization in dissipative media. Let us consider the coupling of our cavity mode to

an continuum of reservoir modes bk, with k indexing over the continuum. The Hamiltonian

is now

H/ℏ = ωa†a+
∑

k

ωkb
†
kbk +

∑
k

gk(ab†
k + a†bk). (B.119)
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Let us develop a Heisenberg picture description of the evolution of a. The Heisenberg

equations for a and bk are

ȧ = −iωa− i
∑

k

gkbk

ḃk = −iωkbk − igka. (B.120)

To proceed, let us formally eliminate bk as bk(t) = bk(0)e−iωkt − igk

∫ t dt′e−iωk(t−t′)a(t′).

Inserting this into a, we have

ȧ = −iωa− i
∑

k

gkbk(0)e−iωkt − i
∑

k

g2
k

∫ t

dt′e−iωk(t−t′)a(t′). (B.121)

Taking the coupling constants to vary slowly over the typical decay constant of the field

(κ = 2πρg2 with ρ the density of continuum states and g the coupling constant at the cavity

frequency), we make make a so-called white-noise approximation, gk ≈ g − referred to as

such because all continuum modes (fluctuations) get the same weight. In this white noise

approximation, and taking the sum into an integral
∑

k →
∫
dωkρ, we have

ȧ = −iωa− 1
2κa+ F, (B.122)

where

F = −i
∑

k

gkbk(0)e−iωkt, (B.123)

is the so-called quantum Langevin force. We see that as expected, the equation of motion

for the cacvity operator decays at the expected (amplitude) decay rate of κ/2. However,

there is this additional fluctuating force. It’s role is to add fluctuations in a way to preserve

[a, a†] = 1 at all times. Without the Langevin force, the commutator would decay in

time as [a, a†] → e−2κt, which is unphysical. If the commutator decays, then there could

be violations of the Heisenberg uncertainty principle, which is fundamental (recall that

the uncertainty product of conjugate operators is bounded by the expectation value of a

commutator, so if [a, a†] → 0, then [x, p] → 0, which is evidently unphysical). This force

can be understood as a “random” force, as the operators b(0) essentially represent vacuum
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fluctuations which are present at all times, including at asymptotic −∞.

Thus, in the Heisenberg picture, the description of damping is that in which the oper-

ators decay at the classically expected rate, up to a fluctuating force term which preserves

the commutation relations. Calculations can be performed by treating the force as a source

term, and the calculation of expectation values of correlation functions of a goes through

the correlators of the force. For example, we may at once say that in a damped cavity, the

Heisenberg operator for the cavity is

a = a(0)e−iωt−κt/2 +
∫ t

dt′e−(iω+κ/2)(t−t′)F (t′). (B.124)

Notice that if the initial time goes to −∞, then only the force term remains. To evaluate

expectation values, one can use results like ⟨F ⟩ = 0, ⟨F †(t)F (t′)⟩ = 0 (for a vacuum

reservoir) and ⟨F (t)F †(t′)⟩ = κδ(t− t′) (see [426] for more information).

This Langevin framework is developed and extended in extensive detail for applications

in quantum nonlinear optics in Chapter 8. There, we extend the Langevin framework to

nonlinear cavities, in which the dissipation depends on the number of photons in the cavity

(so it is a highly correlated nonlinear dissipation process). Using this framework we show

how highly non-classical macroscopic states (such as Fock states) can be created using

lasers.

B.4 Quantization of the EM field in absorbing media

We now use these developments to show how the electric field can be quantized in a linear

absorbing medium (with ϵ complex instead of real). In previous sections, we considered

field quantization in non-dissipative media, where one could write the vector potential as

an expansion over orthonormal modes with some expansion coefficients. These expansion

coefficients were essentially identified as the creation and annihilation operators. This

procedure cannot be extended in dissipative media, as although there are still eigenvectors

of the Maxwell eigenequation, they are not necessarily complete, and so an arbitrary vector

potential may not be expressed in terms of them. We now show that it is possible to write
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a quantized operator for the field purely in terms of the Langevin force operators of the

reservoirs that lead to this damping.

Consider a medium with damping coupled to the transverse electromagnetic field in

vacuum. The Hamiltonian of the system, in the Coulomb gauge, is

H = Hmat + ϵ0

2

∫
d3r E2 + c2B2 −

∫
d3r j · A = H0 −

∫
d3r j · A = H0 + V, (B.125)

where Hmat is the Hamiltonian of the underlying matter (for example, of N atoms with

Z protons and electrons arranged according to some crystal lattice interacting Coulombi-

cally). The Heisenberg equation of motion for A can be shown to just be the Maxwell

equation (in operator form; as this is expected, we do not derive it here). In particular, we

have that in frequency-domain (Fourier transform the Heisenberg equation)

(
∇ × ∇ × −ω2

c2

)
A(r, ω) = µ0j(r, ω). (B.126)

To proceed to find the equation of motion for j, we will consider the lowest-order effect

of A on j. This may be done by writing the Heisenberg picture j (I subscript denotes

interaction picture)

j(r, t) = U †j(r)U =
(

Te− i
ℏ

∫ t
d4x′jI(x′)·AI(x′)

)
eiH0t/ℏj(r)e−iH0t/ℏ

(
Te

i
ℏ

∫ t
d4x′jI(x′)·AI(x′)

)
,

(B.127)

with
∫ t d4x =

∫ t dt′
∫
d3r′ and x = (r′, t′). Expanding in the interaction as:

j(r, t) =
(

1 − i

ℏ

∫ t

d4x′jI(x′) · AI(x′)
)

jI(r, t)
(

1 + i

ℏ

∫ t

d4x′jI(x′) · AI(x′)
)
,

(B.128)

we may write (to first order in the interaction)

ji(r, t) = jiI(r, t) − i

ℏ

∫
d3r′dt′ θ(t− t′)[jIj(r′, t′), jIi(r, t)]AjI(r), (B.129)

where we have extended the upper limit of the time integration by adding a heaviside func-

tion. Thus, in frequency domain, we have (for a time-translation-invariant system, where
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the commutator must be a function of t− t′)

ji(r, ω) = j
(0)
i (r, ω) +

∫
d3r′χij(r, r′, ω)Aj(r′, ω), (B.130)

where we have dropped the I subscript upon Fourier transformation, and identified j(0)
i (r, ω)

as the Fourier transform of the the interaction-picture current in the absence of interactions.

In addition, we have also defined the current-current susceptibility or response function:

χij(r, r′, ω) =
∫
d(t− t′)eiω(t−t′)

(
i

ℏ
θ(t− t′)[jIi(r, t), jIj(r′, t′)]

)
, (B.131)

which is just the susceptibility that is expected from the Kubo formula from linear response

theory (similar formulae are manipulated in Chapter 4 to calculate the electromagnetic

response of optical phonons in 2D materials). This susceptibility is proportional to the

optical conductivity of the material, from standard linear response considerations (see for

example [510]). In particular, χij(r, r′, ω) = iωσ(r, r′, ω). It is important to understand

that the A which appears in the equation for j is in the absence of interactions, and not

the full Heisenberg operator. In fact, we expect the current to respond to not the non-

interacting field, but the total field, which can be very different from the “applied” field in

a dense medium. As a trivial example, a dense medium can have an index of refraction

that strongly changes the quantized field operator! However, we shall invoke the so-called

random-phase approximation (RPA) used in classical linear response theory and say that j

really interacts with the Heisenberg A. In this so-called quantum electrodynamical RPA,

we simply take A in the equation for j as the same Heisenberg operator which appears in

the Maxwell equation for A. Plugging this expression for the current back into the Maxwell

equation, we have

(
∇ × ∇ × −ω2

c2

)
A(r, ω) = µ0j(0)(r, ω) − iωµ0

∫
d3r′σ(r, r′, ω) · A(r′, ω). (B.132)

To make things more recognizable, we consider the most standard case of a local conduc-

tivity: σ(r, r′) → σ(r)δ(r − r′) (the following derivations can be easily generalized). Thus
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we have instead

(
∇ × ∇ × −ω2

c2

)
A(r, ω) = µ0j(0)(r, ω) − iωµ0σ(r, ω) · A(r′, ω). (B.133)

Recalling that the conductivity and permittivity are related as −iωϵ0(ϵ − 1) = σ, we may

write the Maxwell equation instead as:

(
∇ × ∇ × −ω2

c2 ϵ(r, ω)
)

A(r, ω) = µ0j(0)(r, ω). (B.134)

The left-hand side is merely the Maxwell equation in an inhomogeneous dielectric medium

(the matter). The right-hand side indicates the existence of a source current which exists

in the absence of the vector potential and is in fact related to the time-evolution of the

non-interacting current. This term is exactly the same in spirit as the quantum Langevin

equation for a damped cavity. There, we had a source term related to the time-evolution of

the non-interacting reservoir modes. Here, our reservoir represents the matter spread out

over a continuum of positions and frequencies.

We are now in position to derive a quantized vector potential operator. To do so, we

merely solve the inhomogeneous Maxwell equation as

A(r, ω) = A(0)(r, ω) + µ0

∫
d3r′ G(r, r′, ω) · j(0)(r, ω), (B.135)

with G(r, r′, ω) the dyadic Green’s function of the Maxwell equations (used for various

applications in this text from one- and two-photonic quasiparticle emission rates, scintilla-

tion theory, and so on). The first term is the Fourier transform of the non-interacting field

(in a dissipative medium). It is the homogeneous solution to the problem and is solved by

the complex eigenfrequencies. Because this operator is a vacuum field operator, it plays

no role in the evaluation of normally-ordered correlation functions (related for example to

probabilities of generating one or more photonic quasiparticles). We thus ignore it. The
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resulting time-domain field operator is

A(r, t) = µ0

∞∫
−∞

dω

2π e
−iωt

∫
d3r′ G(r, r′, ω) · j(0)(r, ω). (B.136)

To calculate observables related to the field, we need to know the correlation functions

of j(0). As before, let us keep our discussion restricted to zero temperature (it is readily

generalized to finite temperatures (see e.g. [23]), but here we merely want to show the core

physics). In the ground state, we have ⟨j⟩ = ⟨j†⟩ = 0 (for positive ω). To see this, note

that the Fourier transform of the interaction picture operator may be written as

j(0)(r, ω) = 2π
∑
α,β

= jαβ(r)δ(ω − ωα,β)|α⟩⟨β|, (B.137)

where jαβ = ⟨α|j(0)|β⟩ and ωα,β = (Eα − Eβ)/ℏ, and α, β label energy eigenstates of the

matter Hamiltonian. Let us define positive- and negative-frequency operators as

j(+)(r, ω) = 2π
∑
α<β

= jαβ(r)δ(ω + ωα,β)|α⟩⟨β|, (B.138)

and

j(−)(r, ω) = 2π
∑
α>β

= jαβ(r)δ(ω + ωα,β)|α⟩⟨β|, (B.139)

with j(+) = j(−)†. Thus j = j(+) + j(−) (terms with α = β are ignored as we are interested

in the AC response). The positive-frequency current lowers microscopic states and is a

lowering operator, while the negative does the reverse. From these definitions, it is clear

that ⟨j(−)j(+)⟩ = 0. The only non-vanishing correlator is

⟨j(+)
i (r, ω)j(−)

j (r′, ω′)⟩ = (2π)2∑
n

(j0n
i (r))∗(jn0

j (r′))δ(ω − ωn0)δ(ω′ − ωn0)

= (2π)2δ(ω − ω′)
∑

n

(j0n
i (r))∗(jn0

j (r′))δ(ω − ωn0) = (2π)2 ϵ0ℏω2

π
δ(ω − ω′)Im ϵij(r, r′, ω).

(B.140)

where we have used the fact that the matter is in state 0 (its ground state; the finite-
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temperature generalization amounts to weighting excited state contributions by thermal

factors). The last equality is a standard result of linear response theory [127]. Let us stick

to the local and isotropic case to make the following math simpler. In that case, the cor-

relator is ϵ0ℏω2

π
Im ϵ(r, ω)δ(ω − ω′)δ(r − r′)δij . These correlators are exactly identical to

those for a set of independent bosonic oscillators fi(r, ω) for each orientation, position, and

frequency. In that case, one would expect the only nonvanishing correlation function to be

⟨fi(r, ω)f †
j (r, ω′) = δijδ(r − r′)δ(ω − ω′). Thus, defining

j(r, ω) = 2π
√
ϵ0ℏω2

π
Im ϵ(r, ω), (B.141)

we finally may write the final expression of macroscopic quantum electrodynamics for the

field in a dissipative linear media. We have:

A(r, t) =
√

ℏ
πϵ0

∞∫
−∞

dωe−iωt ω

c2

∫
d3r′

√
Im ϵ(r′, ω) (G(r, r′, ω) · f(r, ω) + h.c) .

(B.142)

Thus, the quantized field in a linear and dissipative medium can be thought of as a type of

mode expansion: not over modes of the Maxwell equations, but instead over time-harmonic

point dipoles that span the possible current excitations in a material medium. These dipoles

correspond essentially to Langevin currents / forces. To make the transition to calculations

of decay rates at first and second order perturbation theory (for example as discussed in

Ch. 1 and Ch. 5 of the thesis, as well as many of the references in the publication list): one

simply uses this form of the vector potential and takes it to interact with the momentum

(of say an excited electron in a potential, or even a free electron). This procedure, in the

lossless limit, reproduces all known effects arrived at from modal quantization, and predicts

effects with losses in agreeement with classical limits where such are known.
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Appendix C

Appendices for: Light emission based on

nanophotonic vacuum forces

Note: This chapter is heavily based off “Light emission based on nanophotonic vacuum

forces” by N. Rivera et al. Nature Physics (2019).

C.1 Supplementary Figures
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Figure C-1: Correlations between infrared polaritons and X-ray photons in photon-
polariton pair emission. Same as Figure 3 of the main text, except that the electron now
travels 10 nm away from the surface of the graphene sheet, and it is doped to a Fermi energy
of 0.25 eV.
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Figure C-2: Influence of Drude losses on photon emission. Emitted power (into photons)
per unit frequency of polaritons for the case of an electron of velocity 0.99c traveling 5 nm
away from a sheet of Drude graphene doped to a Fermi level of 0.5 eV for Drude relaxation
times of 1600 fs, 160 fs, and 16 fs. The Drude time has a weak influence on the emitted
power.
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Figure C-3: Influence of interband damping on photon emission. Emitted power (into
photons) per unit frequency of polaritons for the case of an electron of velocity 0.99c trav-
eling 5 nm away from a sheet of graphene doped to a Fermi level of 0.5 eV with a Drude
relaxation time of 1600 fs. Graphene is modeled here through both the local and nonlocal
RPA. Interband damping has a stronger influence on the emitted power, which stays in the
same order of magnitude. The power emitted is about 15 fW, compared to 12 fW in the
Drude case.
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Figure C-4: Photon-polariton emission for electrons near gold films. Emitted power
(into photons) per unit frequency of polaritons for the case of an electron of velocity 0.99c
traveling 5 nm away from a thin film of Drude gold of varying thicknesses. The underlying
emission power stays similar to the case of Fig. S3, varying from 9.9 fW per electron for
40 nm gold to 11 fW per electron for 5 nm gold.
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Figure C-5: Influence of the electron spin on photon-polariton pair emission. Emit-
ted power (into photons) per unit photon angle, plasmon frequency, and plasmon angle in
scalar QED versus fermion QED. The contribution to the emission in fermion QED from
transitions that conserve the electron spin is shown in blue. Spin-flipping contributions are
shown in orange, and the scalar QED prediction is shown in green. The plasmon is emitted
in the direction of the electron motion with frequency equal to the Fermi energy of 0.5 eV.
The electron is assumed to travel 5 nm away from the surface of graphene. The electron
energies considered are 30 MeV (top left), 300 MeV (top right), 3 GeV (bottom left), and
30 GeV (bottom right). As these plots show, the scalar QED results are in excellent agree-
ment with the spin-conserving results of fermion QED for electron kinetic energies below
3 GeV, and continue to predict similar trends as a function of polar angle even at larger
electron energies.
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C.2 Experimental considerations for realizing

photon-polariton pair emission

In this section, we briefly discuss a few considerations important to experimentally realiz-

ing the photon-polariton pair emission effect discussed in this work. We discuss (a) the rate

of photon emission associated with photon-polariton pair emission for a realistic electron

beam, as achievable by a transmission electron microscope, (b) comparison to other high-

energy light sources that are driven by electromagnetic fields, and (c) mitigation of X-ray

producing background effects associated with the electron beam impinging the sample.

C.2.1 Photon emission rates

The characteristic photon emission rates per electron are on the order of 102-104 photons

per second per electron, for electrons traveling 1-10 nm above the graphene sheet, and a

graphene Fermi level between 0.1-1 eV. The corresponding emission length is on the or-

der of 10-1000 km. These numbers are similar to other compact lab-scale photon sources

based on high-energy electrons, as can be verified directly from the Larmor formula for a

typical example of 5 MeV electrons interacting with 100 MV/m electric fields to produce

keV frequency photons. The fact that both the emitted power and the average photon en-

ergy scale as γ2 allows us to infer that the photon emission rate (given by emitted power

divided by photon energy) is somewhat insensitive to electron energy. For electron beam

currents of 100 nA to 100 µA and an interaction length of 100 µm, the expected rate of

photon emission for electrons 5 nm from the surface is about 103 − 106 photons per sec-

ond, the higher values in this range being comparable to X-ray yields from high-harmonic

generation [511]. Our scheme also has an advantage that with increasing electron en-

ergy, the brightness can be improved, and harder X-rays or even gamma ray energies could

eventually be reached. With multilayer structures [512], and pre-bunching via emittance

exchange techniques [513, 514], laser-plasma interactions [515], or electromagnetic inten-

sity gratings [516], the photon yields, and spectral brightness can be scaled up by several

orders of magnitude.

269



C.2.2 Comparison to x-ray sources based on strongly excited plas-

mons

We mention one other point of comparison with regards to the emitted power. Con-

sider an electron interacting with an externally pumped graphene plasmon, with a surface

field strength of 1 GV/m as was proposed in Ref. [213]; the excitation is approximately

monochromatic and can be described by a single plasmon mode. Let us assume that the

plasmon frequency is 0.8 eV and that its confinement factor is 100 so that plasmon wave-

length is 15 nm. The time-averaged radiation power as a result of an electron scattering

off this plasmon mode, calculated through the Larmor formula, is 1.3 nW - about the same

value as the spontaneously generated power in a photon-polariton pair emission. This is

surprising given that a 1 GV/m field in the stimulated emission case corresponds to a large

number of plasmons, whereas the spontaneous pair-emission we present here does not in-

volve any driving plasmons. For instance, a 50 nm × 50 nm excitation area already requires

1000 plasmons to support a 1 GV/m field. This unexpected result – that spontaneous pair-

emission can produce as much radiated power as a stimulated emission scenario that uses

a large number of plasmons – is explained by the fact that the electron in the spontaneous

pair-emission case is “driven“ by a highly multi-mode field and experiences the field of

effectively half of a polariton for each mode (as a result of the zero-point polariton energy

being half the energy of a polariton). The outgoing radiation is consequently also much

more spectrally broad compared to the single-mode case.

C.2.3 Mitigation of background effects

Regarding background effects (particularly, background effects that produce X-rays) from

the electron crossing the sample, the experimental capabilities needed to minimize such

effects are present. For example, it is not uncommon in transmission electron microscopes

to have an electron beam of size below one nanometer. It is also possible to keep the

beam divergence small, such that after about 10-100 microns of propagation (characteristic

sample size), the divergence is on the order of a few nanometers. At that level of diver-

gence, most of the electron beam will not penetrate the sample. Background effects can
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be even further minimized by using porous substrates or by using suspended 2D materials,

such as graphene, or hexagonal boron nitride, which can be produced. In this case, there

is as high a vacuum-to-solid ratio as possible, and the electrons spend most of their time

interacting with vacuum fluctuations. Yet another interesting approach being actively de-

veloped, which could be used to both minimize background effects, as well as maximize

the X-ray signal from this process, is to use “flat” electron beams with a very high aspect

ratio [517, 518, 519]. Low-emittance electron beams of aspect ratios of 100 have been

realized experimentally [518]. Such an approach would not only allow the electrons to

exist in the nanometer vicinity of the sample surface with minimal spread, but the number

of electrons interacting with the sample could be further enhanced. Another consideration

for experimental verification, particularly in graphene, is that graphene is not perfectly flat,

which will average the spectrum over the distribution of distances between the electron and

the graphene surface. Although graphene is known to be not perfectly flat, these “defects”

can occur at sufficiently low densities, such that the average height of the electron above the

graphene surface is only changed by an amount on the order of a percent [520, 521], leading

to photon-polariton pair emission with similar intensity (different by a few percent). With

rapid advancement in graphene fabrication techniques, new methods to smoothen wrin-

kles in graphene continue to emerge, based on the use of boron nitride substrates [522],

or paraffin-based transfer [523], both of which can lead to highly smooth graphene. Addi-

tionally, given the high resolution of transmission electron microscopes, a preferred area of

interaction could be chosen so that such effects can be further mitigated.

C.3 Fluctuational theory of high energy emission by elec-

trons near photonic structures

In the remainder of this Supplement, we derive in detail the theory of two-photon emission

by a free electron moving through an arbitrary photonic structure. First (Sections 3 and

4), we develop a “fluctuational theory”, in which we treat the two-photon emission pro-

cess as effectively a one-photon process, in which the vacuum fluctuations of a photonic

271



structure act as an external field which scatters the electron, leading to far-field photon

emission. Then (Section 5), we then develop a more direct theory of the two-photon pro-

cess by calculating simultaneous emission of a low-energy photon in the photonic structure

and a high-energy photon, within the framework of relativistic quantum field theory. We

from now on refer to the low-energy photon in the photonic structure as a “polariton”, as

the nontrivial spatial and spectral properties of photons in complex structures arise from

the complex interplay of electromagnetic fields with polarization charges and currents (i.e.,

matter). We conclude by showing that these two theories make the same predictions and

exemplify it with the specific case of the polariton being a plasmon polariton of a two-

dimensional electron gas. We explain why the fluctuational theory and the direct theory

should be equivalent for any structure.

We consider an electron moving near a nanophotonic structure. Due to electromagnetic

fluctuations of the photonic structure, the electron on average feels a mean-square driving

field and may radiate either back into the structure or into the far field. Here, we focus

specifically on the case in which the electron radiates into the far-field, as we are inter-

ested in the spectrum of hard-UV, X-ray, and gamma ray photons emitted by a relativistic

electron. At these frequencies, the material response is negligible.

To develop this theory, we first review a general expression from electrodynamics re-

lating far-field radiation to the acceleration of moving charges. Then from relativistic me-

chanics, we parameterize the acceleration of the charge in terms of a driving field. Last

we find the driving field associated with electromagnetic vacuum fluctuations in the ma-

terial. This way, we relate the far-field radiation to the vacuum fluctuations that oscillate

the electron. These steps lead to a general expression allowing one to determine the far-

field radiation at any frequency, by charged particles of any velocity, induced by quantum

vacuum fluctuations in any photonic structure.

C.3.1 Radiation by a moving charge

The time-averaged power P per unit solid angle Ω, dP
dΩ , emitted by a system of charges

at a position R, far from the origin of coordinates, is related to the time-averaged Poynt-
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ing vector S by dP
dΩ = R2n̂ · S, where n̂ is the unit vector in the direction of observation.

Expressing the time-dependent fields in Fourier domain using the convention E(r, t) =
∞∫

−∞
dω′ e−iω′tE(r, ω′), the single-sided (positive-frequency) time-averaged energy U radi-

ated per unit frequency ω′ per unit solid angle can be written as

dU

dω′dΩ = 4πR2

µ0
n̂ · Re [E(r, ω′) × B∗(r, ω′)], (C.1)

where µ0 is the permeability of free space. From Maxwell’s equations in the far-field, we

have that the frequency-domain magnetic field is related to the frequency-domain electric

field by B(r, ω′) = n̂
c

× E(r, ω′), meaning that we may write Equation (1) purely in terms

of E(r, ω′) as

dU

dω′dΩ = 4πR2

µ0c

(∣∣∣∣E(r, ω′)
∣∣∣∣2 −

∣∣∣∣n̂ · E(r, ω′)
∣∣∣∣2
)

= 4πR2

µ0c

∣∣∣∣E(r, ω′)
∣∣∣∣2, (C.2)

where the last equality applies when only the radiative component is considered.

We now consider the specific case of the fields of a moving electron of charge −e with

a general trajectory corresponding to position r(t) and velocity ṙ(t) = v(t) = cβ(t), with

c the speed of light. From the Lienard-Wiechert potentials [312], the frequency-domain

electric field of the moving electron is given by

E(r, ω′) =
∫ dt′

2π e
iω′t′ −e

4πϵ0Rc(1 − n̂ · β(t′))3

(
n̂×

(
(n̂− β(t′)) × β̇(t′)

))
, (C.3)

where ϵ0 is the permittivity of free space. We note that in this expression, a primed time

variable denotes the retarded time of the electron for the observer at distance R and is

given by t′ = t − R(t)
c

. Time-derivatives are calculated with respect to t′. We can change

the integration variable in (3) to the non-retarded time t by making a change of variables

t′ = t(1 − n̂ · β). Plugging Equation (3) into Equation (2) yields a general expression

connecting the acceleration of the electron to the far-field radiation spectrum.

In physical situations involving radiation by accelerated electrons [524], it is common

for the modulation of the electron trajectory by a driving field to be very weak, meaning

that deviations of the electron from an initial straight line motion in the absence of a driving
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field are small. This is also the case in all cases considered in this manuscript, in which the

driving fields are quantum fluctuations of a nanophotonic vacuum. Thus, we approximate

(3) to lowest order in the electron modulation by taking (1 − n̂ · β(t′)) ≈ (1 − n̂ · β) and

n̂−β(t′) ≈ n̂−β, where β without explicit time-dependence represents the initial velocity

of the electron, normalized to c. Applying this approximation, the angular and frequency

spectrum of radiation is given by

dU

dω′dΩ = e2

16π3ϵ0c(1 − β cos θ)4

∣∣∣∣ ∫ dt e−iω′(1−β cos θ)tn̂×
(
(n̂− β) × β̇(t)

) ∣∣∣∣2, (C.4)

where θ = cos−1
(
n̂ · β̂

)
is the angle of radiation emission relative to the initial direction of

electron motion β̂ = β
β

(with β the magnitude of β). Small deviations of the trajectoryR(t)

from the unperturbed linear trajectory are neglected in the exponential, as such corrections

yield corrections at second-order in the trajectory modulation. We have also replaced the

quantity inside the modulus-squared by its complex conjugate, without loss of generality,

for reasons that will be apparent later. We now proceed to relate the normalized acceleration

β̇(t) to external fields that the electron experiences.

C.3.2 Modulation of the trajectory of a charged particle by an elec-

tromagnetic field

Consider external (driving) electric and magnetic fields E and B. The acceleration of the

electron of mass m is governed by the Newton-Lorentz equation of motion:

mc ˙(γ(t)β(t)) = −e[E(t) + cβ(t) × B(t)], (C.5)

where the Lorentz factor γ(t) = (1 − β2(t))−1/2 accounts for the electron’s relativistic

motion. As in the previous section, we apply the approximation that the trajectory of the

electron is weakly perturbed from its initial trajectory r(t) = r0 + vt. In this case, we may

assume that γ(t) is determined only by the velocity component parallel to v. Taking this

velocity component without loss of generality to be along the z-direction of a Cartesian

system of coordinates, we approximate γ(t) ≈ (1 − β2
z (t))−1/2. In expressions where we
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do not take its time derivative, it can be approximated as constant: γ ≈ (1−β2)−1/2, where

functions without explicit time-dependence represent initial values. In that case, Newton’s

equations of motion for the z-directed velocity can be shown to reduce to:

β̇z(t) = − e

γ3mc
Ez(t). (C.6)

For components of the acceleration perpendicular to the initial velocity, the equation of

motion reduces to

β̇⊥(t) = − e

γmc
(E⊥(t) + (v × B(t))⊥) . (C.7)

In what follows, we make our final approximation with regards to the electron motion,

which is that the driving fields we consider are quasi-electrostatic and approximately satisfy

the Laplace equation. As such, the magnetic part of the quasi-static field is neglected.

This approximation is justified when the electromagnetic driving field is highly spatially

confined, meaning that the length scale of the spatial variations of the field λ, are much

smaller than the free-space wavelength of light, λ = 2πc
ω

, at the same frequency ω (i.e.,

λ ≪ 2πc
ω

). This approximation is accurate in the systems we consider, because such highly

confined fields are also advantageous for generating X-rays and gamma rays with relatively

low energy electrons [213]. In that case, the acceleration is completely specified in terms of

the electric field as β̇(t) = − e
γmc

(
E⊥(t), Ez(t)

γ2

)
≡ − e

γmc
Eγ(t). Plugging this expression

for the acceleration into Equation (4) yields

dU

dω′dΩ = e4TijTik

16π3ϵ0m2γ2c3(1 − β cos θ)4

∫
dtdt′ e−iω′(1−β cos θ)(t−t′)Eγ,j(r(t))Eγ,k(r(t′)),

(C.8)

where for brevity, we have defined the tensor Tij as the ij-component of linear operation

n̂× ((n̂− β)×), and we are using Einstein repeated-index notation.

Having parameterized the far-field radiation in terms of the driving field, we now con-

sider a situation in which this driving field is a fluctuating field of a nanophotonic structure

in thermal equilibrium, so that the fluctuations are Bose-Einstein distributed in frequency.

These fluctuations have both a quantum component and a thermal component. Only the

quantum component persists at zero temperature. To find the average power radiated by
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electrons in this fluctuating field, we take the (quantum) ensemble average of Equation (8)

over all realizations of the field. The resulting “master formula” connecting fluctuating

electric fields to far-field radiation is then:

d⟨U⟩
dω′dΩ = e4TijTik

16π3ϵ0m2γ2c3(1 − β cos θ)4

∫
dtdt′ e−iω′(1−β cos θ)(t−t′)⟨Eγ,j(r(t))Eγ,k(r(t′))⟩,

(C.9)

where ⟨(· · · )⟩ is the ensemble average of (· · · ). To complete the fluctuational theory

of photon-polariton pair emission, we require the ensemble average of a product of two

electric fields in the vacuum state of an arbitrary photonic structure. From the quantum

theory of the macroscopic electromagnetic field, one finds that such an ensemble average

is given by:

⟨Ei(r, t)Ej(r′, t′)⟩ = ℏ
πϵ0c2

∞∫
0

dω ω2Im Gij(r, r′, ω)
(
nωe

iω(t−t′) + (nω + 1)e−iω(t−t′)
)
,

(C.10)

where ℏ is the reduced Planck constant, Gij is the Dyadic Green’s function of the medium,

and nω = (e ℏω
kT − 1)−1 is a Bose-Einstein occupation factor evaluated at temperature T .

Given the result of Equation (10), Equation (9) can be expressed as:

dU

dω′dΩ = e4ℏ
16π4ϵ2

0m
2c5γ2(1 − β cos θ)4TijTik

∫
dtdt′×

∞∫
0

dω ω2e−iω′(1−β cos θ)(t−t′)Im Gγ,jk(r(t), r(t′), ω)
(
nωe

iω(t−t′) + (nω + 1)e−iω(t−t′)
)
,

(C.11)

where Gγ,jk differs from Gjk by a factor of γ−2 if one component is along z, and by a

factor of γ−4 if both components are along z. In other words: Gγ,jk = cjckGjk, where

cj = γ−2 if j refers to the z-component, and cj = 1 otherwise. We have reintroduced here

the convention that repeated indices are summed. Equation (11) can be written in a more

compact form for material systems which are reciprocal. In particular, Equation (11) can
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be re-expressed as

dU

dω′dΩ = e4ℏ
16π4ϵ2

0m
2c5γ2(1 − β cos θ)4

∫
dtdt′dω ω2Θ(ω)

Im
[
e−iω′(1−β cos θ)(t−t′)

(
nωe

iω(t−t′) + (nω + 1)e−iω(t−t′)
)

tr
[
TG(r(t), r(t′), ω)TT

]]
,

(C.12)

where bolded versions of quantities that originally had indices denote matrices. Addition-

ally, we have included a Heaviside step function (Θ(ω) = 1 if ω > 0 and Θ(ω) = 0

otherwise) to extend the domain of the frequency integration from −∞ to ∞.

Before proceeding to evaluate these expressions for specific material systems, we com-

ment that the replacement of deterministic fields by their quantum averages is a key step in

any calculation in the framework of fluctuational electrodynamics (see for example Refs.

[319, 525, 305, 308, 127] and references therein). This framework has thus far been used to

predictively calculate phenomena such as near- and far-field heat transfer, Casimir forces,

Casimir-Polder and van der Waals forces. In what follows, we briefly describe how the

concept that led us to Equation (9) has been used to develop successful theories of Casimir

forces and near-field radiative heat transfer.

Within fluctuational electrodynamics, the step that led to Equation (9) (constructing a

classical model, and then taking quantum averages), is ubiquitous. For example, this step

is used in Casimir force between two polarizable bodies. In the calculation, one calculates

the classical Lorentz force felt by a polarizable structure due to a field [23, 127]. The

expression for the Lorentz force becomes an expression in terms of the permittivity and

permeability of the structure, as well as the (vacuum) fields felt by the structure. Then, to

account for the fluctuating nature of the fields that generate Casimir forces, one replaces the

fields by their ensemble average in the electromagnetic vacuum. In another example of such

a replacement of fields by their ensemble averages, when one is interested in radiative heat

transfer between two bodies, one calculates the Poynting flux over the surface of a body

due to fluctuating currents in the bodies, and then replaces the fields by their ensemble

average taking into account the finite temperatures of the bodies [305].

We also briefly comment about the physical significance of the nω and nω + 1 factors.
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The term which has nω represents physically a situation in which a polariton (i.e., low fre-

quency photon of the photonic structure) at frequency ω is absorbed, while the term with

nω +1 represents emission of a polariton. When nω = 0, as is the case at zero-temperature,

only the “1” contribution remains, which by the general principles of quantum mechanics,

corresponds to the spontaneous emission of a polariton. The photon emission at frequency

ω′ is already spontaneous, as it is considered in the absence of additional photons at fre-

quency ω′. It therefore follows that at zero temperature, the emission due to vacuum fluc-

tuations derived here corresponds to a two-quanta spontaneous emission process in which

a photon and a polariton are emitted. When nω ≫ 1, both terms contribute approximately

equally, resulting in a combined effect of stimulated emission and absorption. Together,

they reproduce the classical effect of polariton-driven (inverse) Compton radiation as was

derived classically in [213]. This match further corroborates our findings in these formulas.

Furthermore, in the final section of the SI we derive results equivalent to those of Equation

(12) at zero temperature from a direct application of Fermi’s golden rule, without using any

classical or fluctuational electrodynamics arguments. To summarize this section, Formula

(25) produces both the two-photon emission and inverse-Compton scattering, both at zero

temperature and at a finite temperature. Formula (12) may be seen as the master formula

for any future calculation which seeks to understand fluctuation-induced far-field emission

from free electrons.

C.4 Application to a planar interface

We now consider the case when the electromagnetic quantum fluctuations that interact

with a relativistic electron are those of a structure with translational invariance in two di-

mensions. For simplicity, we also consider the case in which the electron flies parallel to

the plane of translational invariance, defined as the yz-plane. For the example of a thin

film of thickness d with permittity ϵ(ω) surrounded by infinite dielectric of permittivities ϵ1

(x > d/2) and ϵ2 (x < −d/2), the Green’s function above the slab (in the ϵ1 region) can be
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written as as a sum of contributions from p- and s-polarized plane waves as [127]:

Gij(r, r′, ω) = i

2

∫ d2q

(2π)2

(
Cp

ij(q, ω) + Cs
ij(q, ω)

)
eiq·(y−y′,z−z′)e−κq(x+x′), (C.13)

where κq =
√
q2 − ϵ1

ω2

c2 , and Cp,s
ij (q, ω) are tensors that take into account the differences

in polarizations and reflectivities of p- and s- polarized waves [127]. The strength of contri-

butions from p- and s- polarized waves differs substantially in the near-field zone (i.e., high

wavenumbers q) where cq
ω

≫ 1. In particular, p- polarized contributions dominate by a fac-

tor of
(

cq
ω

)2
, as shown in [130, 105, 526]. As we are interested in high-frequency radiation,

which we will show (in Equation (21)) comes from high-wavevector polariton modes, we

may approximate the Green’s function by its p-polarized part in the electrostatic limit, with

Cp
ij(q, ω) given by

Cp
ij(q, ω) = −2ic

2q

ω2 rp(q, ω)ϵ̂i(q)ϵ̂∗
j(q), (C.14)

with ϵ̂(q) ≡ q̂+ix̂√
2 and rp(q, ω) being the reflectivity of a p- polarized wave of wavevector

q and frequency ω. Thus, for a general planar interface, treated in the electrostatic limit,

the radiated photon spectrum is given by (substituting Equations (13) and (14) into (12))

1
T0

d⟨U⟩
dω′dΩ = e4ℏ

8π3ϵ2
0m

2c3γ2(1 − β cos θ)4

∫ d2q

(2π)2dω θ(ω)q|Tϵ̂γ(q)|2Im rp(q, ω)e−2qx0×

(nωδ(ω′(1 − β cos θ) − qzv − ω) + (nω + 1)δ(ω′(1 − β cos θ) − qzv + ω))

(C.15)

where ϵ̂γ(q) = 1√
2(i, sinχq,

cos χq
γ2 ), T0 is the interaction time, β is the magnitude of the

velocity, χq is the angle made by q to the z-axis, and x0 is the position of the electron in the

x-direction, transverse to the sheet. Henceforth, although we assume a finite temperature,

and so nω ̸= 0, no explicit reference to variables involving temperature will be made.

The dependence on temperature of the expressions was explained in the previous section.

Additionally, since d⟨U⟩
T0

has the dimensions of power, we will now refer to it as dP (with

no angle brackets, for brevity).

We note that the assumptions in writing the Green’s function can straightforwardly be

generalized beyond the electrostatic limit, which means including s-polarized contributions
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as well as including retardation effects (i.e., effects from q ∼ ω
c
) in the the p- polarized

contributions. When doing this, one must remember that the electrostatic limit was also

employed in deriving Equation (9), where magnetic forces have been neglected when con-

sidering the Lorentz force. Therefore, one must restore magnetic contributions to the field

fluctuations in order to employ a fully-retarded Green’s function.

C.4.1 Energy-momentum conservation

We briefly note that the arguments of the delta functions reflect energy-momentum con-

servation. In particular, the first delta function condition: ω′(1 − β cos θ) − qzv − ω = 0,

must be satisfied in order for energy-momentum conservation to be satisfied in a process in

which a polariton is absorbed and a photon is emitted. The second delta function condition

ω′(1−β cos θ)−qzv+ω = 0 must be satisfied in order for energy-momentum conservation

to be satisfied in a process in which both the polariton and the photon are emitted.

To impose energy-momentum conservation in a compact way, we collect the energy and

momentum of the incident and final particles into four-vectors, in which the first component

is the energy and the other three components are the 3-momenta. The relevant momenta

are:

pµ
i =

(
Ei

c
,pi

)
pµ

f =
(
Ef

c
,pf

)
kµ = ℏ

(
ω′

c
,k
)

qµ = ℏ
(
ω

c
,q
)
, (C.16)

where pi(f) denotes the four-momentum of the initial (final) electron, k denotes that of

the emitted photon, and q denotes that of the polariton. Here and henceforth, a Greek

sub- or superscript denotes a four-vector. It is important to note that due to the evanescent

nature of the polariton in the direction perpendicular to the polaritonic film, the momentum

component in that direction is not a good quantum number of the polariton mode. Instead,

it should be thought as variable, and sampled from a momentum probability distribution
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that roughly-speaking, is a squared Lorentzian. This squared Lorentzian form results from

the fact that the momentum probability distribution for an evanescent wave would be the

square of the Fourier transform of e−q|z|, which is Lorentzian. When the incident electron

moves in a direction with components along this direction, the variable momentum of the

polariton in this direction broadens the phase space of emission. In the main text, we

consider electrons moving parallel to a 2D plasmonic film. As a result, we will see that the

effect of the momentum in transverse directions is essentially negligible.

The equation for conservation momentum in a process where a photon is emitted and a

polariton is absorbed (+) or emitted (−) are:

pµ
i ± qµ = pµ

f + kµ (C.17)

Squaring both sides of this equation, in the Minkowski sense, so that aµbµ = a0b0 − a · b,

we have that

±2pi,µq
µ + qµq

µ = 2pf,µk
µ = 2(pi,µ ± qµ − kµ)kµ = 2pi,µk

µ ± 2qµk
µ (C.18)

where we have used that the square of any electron momentum is m2c2 and that the square

of the momentum of a photon is zero. Further noting that for all situations considered in

this text, ℏω′ ≪ Ei, ℏω ≪ Ei, ℏ|k| ≪ |pi| and ℏ|q| ≪ |pi|, it follows that to leading

order:

±pi,µq
µ = pi,µk

µ. (C.19)

Expanding the Minkowski dot products yields:

±(ω − q · v) = (ω′ − k · v), (C.20)

with v the electron velocity. Taking this velocity to be in the arbitrarily chosen z-direction,

and defining the angle of far-field photon emission θ to be relative to the z-direction, one

immediately has that

ω′(1 − β cos θ) ± qzv ∓ ω = 0. (C.21)
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The (−) branch of the equation ω′(1 − β cos θ) − qzv + ω = 0, which describes emission,

corresponds to the argument of delta function multiplying the nω +1 term, which is consis-

tent with that term in Equation (15) describing emission. The (+) branch of the equation

ω′(1 − β cos θ) + qzv − ω = 0, describes absorption of a polariton which is moving in

the same direction as the electron. If the sign of qz is flipped, it describes absorption of a

polariton colliding head-on with the electron. Thus, in the argument of the delta function

multiplying the nω term of Equation (28), positive qz corresponds to absorption of a polari-

ton whose z-velocity is opposite that of the electron. Negative qz, which is also included

in the integration, corresponds to absorption of a plasmon whose z-velocity is in the same

direction as that of the electron.

C.4.2 Emission spectrum for different materials and different mate-

rial geometries

In the main text, we show the result of Equation (15) for the frequency spectrum associated

with far-field emission of high energy photons. The only material-specific data needed to

calculate the emission from different materials is the p-polarized reflectivity. We consider

three basic geometries: a semi-infinite slab geometry, a thin-film geometry, and a two-

dimensional material geometry (such as graphene, which is considered in the main text

(Figures 2 and 3)). In all cases, we consider the quasi-electrostatic limit of the expressions

for the reflectivity, in keeping with the approximations that led to Equation (9).

For an isotropic semi-infinite slab of permittivity ϵ(ω) surrounded by vacuum, the p-

polarized reflectivity is given by the simple expression:

rp(ω) = ϵ(ω) − 1
ϵ(ω) + 1 . (C.22)

For a thin film of of permittivity ϵ(ω) and thickness d surrounded by vacuum on the top

side and a substrate of permittivity ϵs, the p-polarized reflectivity is given by:

rp(q, ω) =
 ϵ(ω)−1

ϵ(ω)+1 − ϵ(ω)−ϵs

ϵ(ω)+ϵs
e−2qd

1 − ϵ(ω)−1
ϵ(ω)+1

ϵ(ω)−ϵs

ϵ(ω)+ϵs
e−2qd

 . (C.23)
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For a two-dimensional material of surface conductivity σ(ω) surrounded by vacuum on

the top side and a substrate of permittivity ϵs, provided that the mode wavelength is much

longer than the thickness of the atomic layer, one has:

rp(q, ω) =
(ϵs − 1)i− qσ(ω)

ωϵ0

(ϵs + 1)i− qσ(ω)
ωϵ0

. (C.24)

As an example of a usage of the reflectivity of a monolayer, we use this in the results of the

main text when considering plasmons in a sheet of graphene in the local limit modeled by

a 2D Drude conductivity (with no dissipation).

In what follows, we discuss a few applications of Equations (15) which both reaffirm

and enrich the discussion and conclusions of the main text. We consider the influence of a

finite Drude relaxation time, as well as the influence of interband damping [38, 130]. We

also discuss the power spectrum from alternative materials.

C.4.3 Influence of Drude relaxation and interband damping in graphene

In Supplementary Figure 2, we calculate the emitted photon power per unit frequency

of electromagnetic fluctuations in the surface. Integrating over frequency of fluctuations

yields the total power emitted into high-frequency radiation, the kind of quantity we con-

sider in Figure 4 of the main text. Unlike the discussion in the main text, we include a finite

Drude relaxation time, which varies from 16 to 1600 fs, the longest value corresponding to

observations reported in Ref. [12]. As one can see from Supplementary Figure 2, despite

the fact that the relaxation time varies by three orders of magnitude, the intensity of emitted

photons remains essentially the same.

In Supplementary Figure 3, we calculate the emitted photon power per unit frequency

of electromagnetic fluctuations in the surface, but now for graphene modeled in the local

and nonlocal RPA. For graphene modeled through either the local RPA or the non-local

RPA (both giving similar results), there are additional contributions to the spectrum of

fluctuations coming from interband transitions. Qualitatively, the main effect one sees in

Supplementary Figure 3 is that below the Fermi frequency, the power spectrum is largely

the same, with some red-shift of the peak (due to the plasmon red-shift in interband mod-
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els), and some slight reduction of the peak in the nonlocal RPA case. Between the Fermi

frequency and twice the Fermi frequency, the spectrum is reduced, with the local RPA

overestimating the extent of the dip. These behaviors are similar to those seen in previous

work on Purcell enhancement of quantum emitters near graphene [130]. Above twice the

Fermi frequency, there is a new contribution to the power which does not appear in the

Drude model, which arises from electromagnetic fluctuations concomitant with interband

damping (from the fluctuation-dissipation theorem). Unlike the Drude case, the emitted

“polariton” above twice the Fermi frequency does not propagate, and thus the polaritonic

character of the radiation is quite different at these frequencies.

C.4.4 Influence of different materials

In Supplementary Figure 4, we consider the intensity of emitted photons induced by vac-

uum fluctuations in a different material. In particular, we consider the case of thin films

of gold of varying thicknesses, whose permittivity we take to be of a Drude form, with

parameters from [527]. We find that the emitted power is similar to that of graphene doped

to a Fermi energy of 0.5 eV.

C.5 Simultaneous emission of a polariton and a high-energy

photon in a fully quantum electrodynamical treatment

Note: In this section, we adopt (SI) natural units in which ℏ = c = ϵ0 = 1. These constants

are restored in the final formulae (Equations (45) and (47)).

In this section, we present additional support for a duality between scattering from fluc-

tuations and two-photon spontaneous emission. To do so, we consider a special case of the

general phenomena above: an electron simultaneously emitting two quanta where one is a

far-field photon and the other is a plasmon in a two-dimensional electron gas. For simplic-

ity, we assume that the electron is not so relativistic that it emits most of its energy into a

single photon. This is a good approximation for electron energies above a fraction of a keV

(covering possible experiments in electron microscopes), and stays relevant even for highly
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relativistic electrons with energies up to a few GeV (as in accelerator facilities, where the

emitted photons carry much higher energies, yet still negligible relative to the electron en-

ergy). Having the emitted photon carrying a negligible part of the electron energy (also

called the weak-recoil approximation) implies that we can model the interaction Hamilto-

nian via scalar QED. We now perform the calculations. We note first that the equivalence

between the derivation in this section and the derivations of the previous section are not

manifest until Equation (44).

The scalar QED Hamiltonian is:

Hint =
∫
d3x ieAµ(ψ†∂µψ − (∂µψ

†)ψ) − e2AµAµ|ψ|2. (C.25)

Extremely relativistic electrons (> 5 GeV), may lose a significant part of their energy to

the emission of a single photon through this process, thereby invalidating the use of scalar

QED. In such scenarios, the interaction can be fully accounted for by considering the Dirac

interaction Hamiltonian. The corresponding S-matrix, Sfi which describes transitions be-

tween initial states |i⟩ and |f⟩ is given by

Sfi = ⟨f |T exp
[∫

d4x eAµ(ψ†∂µψ − (∂µψ
†)ψ) + ie2AµAµ|ψ|2

]
|i⟩, (C.26)

with T being the time-ordering operator [267], and the metric is taken as (1,−1,−1,−1).

Aµ is the quantized vector potential of the plasmons, and ψ is the field operator for the

spinless electron of scalar QED. It is written as an expansion over plane waves with four-

momentum p in terms of the annihilation operator (cp) for the electron and the creation

operator for its anti-particle (b†
p) as ψ =

∫ d3p
(2π)3

1√
2Ep

(
e−ipxcp + eipxb†

p

)
. Given the strong

spatial confinement of the plasmons considered, we approximate its four-potential as a pure

scalar potential Φ:

Aµ = (Φ, 0, 0, 0),Φ =
∑

q

√
ωq

4qA
(
eiq·(y,z)−q|x|aq + h.c.

)
, (C.27)

with q being the plasmon wavevector, q being its magnitude, ωq being the wavevector-

dependent plasmon frequency, and A being a normalization area.
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Taking all terms in the expansion of the time-ordered exponential which are second-

order in the electron charge, and plugging in the mode-expanded vector potential describing

2D Drude plasmons, we find that the emission rate Γ of a photon-polariton pair per unit

photon solid angle Ω, per photon polarization, per unit plasmon frequency ωq and per unit

plasmon propagation angle χq is given by

dΓ
dΩdωqdχq

= α2

16π3ϵ̄rvgq(qL)(mγ)2 ×

∞∫
−∞

dQ

(1 +Q2)2

ω′2
Q

∣∣∣∣ϵ̂µ
k ϵ̂

ν
q

[
(2pµ−2qµ)(2pν−qν)

(p−q)2−m2 + (2pµ)(2pν−qν−2kν)
(p−k)2−m2

] ∣∣∣∣2
βnq cosχq − 1 + ωq

2mγ
(1 − n2

q(1 +Q2)) , (C.28)

where ω′
Q is defined as:

ω′
Q = ωq

βnq cosχq − 1 + ωq
2mγ

(1 − n2
q(1 +Q2))

1 − β cos θ + ωq
mγ

(nq cosχq cos θ + nq sinχq sin θ sinϕ+ nqQ sin θ cosϕ− 1) .

(C.29)

In these equations α = e2

4π
is the fine-structure constant with e the electron charge, m is

the electron mass, β is the electron’s initial speed, γ is the corresponding Lorentz factor,

ω′ is the frequency of the emitted photon, ϵ̄r is the average permittivity surrounding the 2D

electron gas (which in terms of the substrate permittivity ϵs is 1+ϵs

2 ), vgq is the group ve-

locity of the plasmon, ϵ̂µ
k is the polarization of the emitted photon, ϵ̂µ

q is the polarization of

the plasmon four-potential, given by (1, 0, 0, 0) as we describe the plasmon by a scalar po-

tential. This corresponds to an electric-field polarization of q̂+ix̂√
2 (hats denote unit vectors).

Meanwhile, nq = qc
ωq

is the confinement factor of effective mode-index of the plasmon, pµ

is the four-momentum of the electron, qµ is the four-momentum of the plasmon, and kµ

is the four-momentum of the radiated photon. The four-momentum of the plasmon is pa-

rameterized as qµ = ωq(1, nqQ, nq sinχq, nq cosχq), with Q a dimensionless integration

variable proportional to the momentum of the plasmon transverse to the 2D sheet1. From

this parameterization, χq is the angle of plasmon emission with respect to the projection of

the electron’s initial velocity vector in the plane of the 2D sheet.

1Note that the integration goes only over Q that yield a positive output photon frequency. Denote this
maximum possible Q as Qm. However, the squared Lorentzian in practice gives all of its contributions to the
integration at a maximum Q ≪ Qm, meaning that we can extend the limits of integration to ∞.
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Making a weak recoil approximation by expanding the denominators to lowest non-

trivial order in ωq
m

, we find that the Q-integration gives (after summing over photon polar-

izations)
2πn2

qω
2
q

(1 − β cos θ)2(βnq cosχq − 1)F (θ, ϕ, χq), (C.30)

where

F (θ, ϕ, χq) = sin2 ϕ+ sin2 χq cos2 ϕ

+
(sinχq sinϕ(cos θ − β) − 1

γ2 sin θ cosχq)2 + cos2 ϕ(cos θ − β)2

(1 − β cos θ)2 .

(C.31)

Multiplying by the emitted photon energy ω to get the power emitted, we have that

dP

dΩk

=
∫ d2q

(2π)2
α2qωq

2ϵ̄rm2γ2(1 − β cos θ)3
1

(qL)F (θ, ϕ, χq), (C.32)

We note that the factor (qL)−1 is essentially the average over the electron length L of the

exponential tail of the plasmon in the limit of qL ≫ 1. In particular, 1
L

L/2∫
−L/2

dx e−2q|x| = 1
qL

.

As a result, if electron is treated as a point electron centered at transverse distance x0 away

from the plasmonic sheet, the factor (qL)−1 is replaced by e−2qx0 . In the case of a Gaussian

wavepacket that resembles a point charge one would get a similar result. We now consider

this case in order to make close contact with the previous sections of the paper.

C.5.1 Effects of fermionic electrodynamics

In this section, we consider the effect of the fermionic nature of the electron on the radia-

tion spectrum associated with photon-polariton pair emission. The interaction Hamiltonian

between a Dirac fermion and the electromagnetic field is given by:

Hint = e
∫
d3x ψ̄(x)γµA

µ(x)ψ(x). (C.33)
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The fermion field operator ψ is given by [267]:

ψ(x) =
∫ d3p

(2π)3

∑
spins,s

1√
2Ep

(
e−ipµxµ

up,scp,s + eipµxµ

vp,sb
†
p,s

)
, (C.34)

where, pµ is a four-momentum, Ep is the energy of a fermion with four-momentum p,

cp,s(bp,s) is an annihilation operator for the electron (positron), and up,s(vp,s) is the cor-

responding spinor for the electron (positron). The field operator ψ̄ is related to ψ by

ψ̄ = ψ†γ0 with γ0 being the time-component of the vector of gamma matrices γµ with

γ0 = diag(1, 1,−1,−1) in the particular represention we choose (Dirac representation).

The spinors in the representation we choose are given by [528]

us
p =


√
Ep +m ηs

p·σ√
Ep+m

ηs

 (C.35)

with ηs = (1, 0) for spin-up and (0, 1) for spin-down.

To calculate the analogous radiation emission dΓ
dΩdωqdχq

of Equation (28), it is sufficient

simply to replace the absolute square in the numerator of the integrand of Equation (28) by

∣∣∣∣ūr,s′ ϵ̂µ
k ϵ̂

ν
q

[
γµ(/p− /q +m)γν

(p− q)2 −m2 +
γν(/p− /k +m)γµ

(p− k)2 −m2

]
up,s

∣∣∣∣2, (C.36)

where we are making use of the Feynman slash notation: /A = γµA
µ.

For low electron energies, such that the radiated photon carries only a small fraction of

the electron’s energy, the scalar treatment of the electron accurately captures the radiation

spectrum. This is shown in Supplementary Figure 5, where we compare the spectrum

predicted by fermionic quantum electrodynamics and scalar quantum electrodynamics. In

particular, we show S(θ, ϕ, ω, χ) = dP
dΩdωdχ

for spontaneous emission of a photon and a

plasmon. The plasmon is taken to have an energy of 0.5 eV, the Fermi level is also taken

to be 0.5 eV, and the plasmon is taken to be emitted in the forward direction. We plot the

spectrum as a function of the photon polar angle (the azimuthal angle is taken to be zero).

The electron is taken to be 5 nm away from the graphene surface. As can be seen from

the figure, even for electron energies as high as 300 MeV, corrections due to the fermionic
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nature of the electron are weak. The contribution to the radiation spectrum from transitions

that conserve the spin of the electron is nearly identical to the radiation spectrum predicted

within scalar QED. Moreover, the contribution to the radiation spectrum from transitions

that change the electron spin are about 0.1% of the total radiation for electrons of 300 MeV

energy. For electrons of 3 GeV energy, as in panel (c), spin-changing contributions become

comparable to spin-conserving contributions, but are still significantly weaker. The spin

conserving contribution to the spectrum also differs somewhat from the spectrum predicted

by scalar QED.

C.5.2 Equivalence to the fluctuational theory

In this section, we demonstrate the equivalence of the fluctuational theory of Sections 3

and 4, and the relativistic quantum field theory of this section.

Consider Equation (15) for the case of a 2D electron gas described by a Drude model. In

that case, the imaginary part of the p-polarized reflectivity can be shown [105] to be given

by Im rp(q, ω) = π
ϵ̄r
qvgqδ(ω − ωq), where ωq ∼ √

q is the dispersion relation. Plugging

this form in, and integrating over the photon frequency ω, one finds that

dP

dΩ = α2ℏ3

ϵ̄rm2γ2c(1 − β cos θ)5

∫ d2q

(2π)2 qωq|Tϵ̂γ(χq)|2e−2qx0 . (C.37)

Using the equivalence 1
2(1 − β cos θ)2F (θ, ϕ, χ) = |Tϵ̂γ(χq)|2, it follows immediately

that Equations (32) and (37) are equal (note (32) is in natural units), for the case of a

point electron, verifying for the specific case of a 2D Drude sheet the equivalence of the

fluctuational and quantum field-theoretic derivations of spontaneous emission of a photon-

polariton pair. A similar equivalence is going to be found for other structures as well.

C.5.3 Total power emitted

We now integrate over the angular spectrum to retrieve the total power emitted into high-

energy photons in this photon-polariton pair emission process. Taking Equation (32) as

appropriate for a point electron, and keeping in mind that the integration limits for χq are
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±π
2 in the limit of highly confined plasmons, the net power obtained is

P = e4γ2(4 − β)2

24πm2

(∫ dq

2π
ωqq

2

2ϵ̄r

e−2qx0

)
(C.38)

Noting that the remaining integral in parentheses is ⟨0|E2|0⟩, the expectation value in the

vacuum state of the electric field operator describing the plasmon, one arrives at (now in SI

units)

P = e4γ2(4 − β2)
24πϵ0m2c3 ⟨0|E2|0⟩. (C.39)

In the relativistic limit, the field which modulates the electron is not precisely ⟨0|E2|0⟩ but

instead it is ⟨0|E2
γ|0⟩, which is less than ⟨0|E2|0⟩ by a factor of 3/4 in the relativistic limit.

Expressing Equation (39) in the relativistic limit, noting also that 4 − β2 ≈ 3, we have that

(in SI units)

P ≈ e4γ2

6πϵ0m2c3 ⟨0|E2
γ|0⟩. (C.40)

See further discussion about this equivalence and its consequences in the main text.
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Appendix D

Appendices for: A framework for

scintillation in nanophotonics

D.1 Materials and Methods

D.1.1 Experimental

The electron-beam experiments were performed in a modified CamScan CS3200 custom

Scanning Electron Microscope (SEM) from Applied Beams (Oregon). The electron emitter

is a LaB6 emitter cathode operated with settings producing the highest currents (typically

> 20 µA). Measurements are performed at the highest magnification (equivalent to spot

mode). The sample is mounted on a 6-axis, fully eucentric stage, at a working distance of

about 70 mm.

A Nikon TU Plan Fluor ×10 objective with a numerical aperture (NA) of 0.30 was

used to collect light from the area of interest. The spectrometer used was an Acton SP-

2360–2300i with a low-noise, deep-cooled PIXIS camera. Monochrome images of the

radiation were collected with a Hamamatsu CCD, in order to align the optical setup and

spatially resolve the observed radiation.

The objective is mounted on a 5-axis (XYZ, two tilt angles) homemade positioning

stage. The focal spot of the objective is aligned with the electron beam focus (and sample

surface). Two piezoelectric motors allow the objective to move in a plane parallel to the
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sample surface. A compact motorized actuator controls the distance of the objective to the

sample surface. Two additional manual adjustment knobs allow control the alignment of

the objective focal plane with the sample surface. The current is measured through a Fara-

day cup in the SEM stage, connected to a Keathley 6485 picoammeter. The picoammeter is

triggered to acquire current signals during a time interval corresponding to the optical ac-

quistion time (10 averaged acquisitions of 1 second duration, unless otherwise specified).

A calibration measurement is performed with a calibrated light source of known power

spectral density to convert the measured spectra to absolute power spectral densities and

efficiencies. More information on the experimental setup can be found in the Supplemen-

tary Text, Section B. All spectra recorded with the spectrometers were averaged over 10

acquisitions of 1 second each.

The x-ray experiments were carried out inside the enclosure of a ZEISS Xradia 520

Versa micro-CT machine. The same objective (Nikon TU Plan Fluor ×10) was mounted

on the detector stage, and positioned to record an image of the surface of the scintillator.

The scintillator and specimen were mounted on the same sample stage. Visible filters were

taped directly at the back of the objective. In the images shown in Fig. 4 and 5 of the main

text, no x-ray filters (”Air“ setting) and a narrow bandpass visible filter (AVR Optics FF01-

549-15-25) were used. Additional data showing the influence of visible and x-ray filters is

given in the Supplementary Text, Section H.

The sample wafer for electron-beam-induced scintillation was purchased from MEMS

Material and Engineering, Inc. (Sunnyvale, CA). The wafer was fabricated by a fusion

bonding - grinding - polishing process. The wafer is made of a device layer (p-doped pol-

ished silicon, ⟨100⟩ orientation, resistivity 1-30 Ω.cm, thickness 0.5 ± 0.025 µm), on top

of an oxide layer (amorphous silica, thickness 1.0 µm ± 5%), on top of a handle wafer

(p-doped silicon, ⟨100⟩ orientation, resistivity 1-30 Ω.cm, thickness 625 ± 10 µm). The

patterning was produced by Dr. Timothy Savas with optical interference lithography. The

YAG:Ce crystal used in the x-ray experiment was purchased from Crytur and patterned

with a VELION FIB-SEM. Fabrication parameters are given in the Supplementary Text,

Section H. One reason we employed the VELION FIB-SEM is that nanofabrication tech-

niques to pattern YAG:Ce are limited. Another reason is that the VELION’s FIB field has
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astigmatism and distortion corrections, enabling more accurate large-area FIB patterning.

Finally, we selected the Au+ FIB because it conveniently matched the Au later that would

subsequently be removed with Au selective etchant.

D.1.2 Fitting to experiments

The experimentally obtained spectra in Fig. 2D of the main text were accounted for based

on Eq. 1 of the main text. The red and green peaks of STH were separately fitted (hence, no

assumption is made about the relative oscillator strengths of the two peaks). The spectral

dependence of S(r, ω) was taken as a sum of two Gaussians at the red and green peaks,

on account of inhomogeneous broadening of the defect levels. Fits were obtained taking

the red and green peak energies to be 1.95 and 2.6 eV respectively, with respective FWHM

of 0.25 eV and 1.2 eV. Both the peak energies and widths are consistent with previous

experimental measurements of STH spectra (40), as well as with our DFT calculations.

The function Veff, as defined in Fig. 1 of the main text is calculated using rigorous coupled-

wave analysis.

The function V (i)
eff (ω,Ω) is calculated through the volume-integrated field enhancement

of a plane wave incident from the far-field at angles Ω = (θ, ϕ) with polarization i ∈ {s, p}

and frequency ω. The integration volume (particularly, the effective depth inside silica) is

fitted to provide a good agreement with experiment, and accordingly the integrand of Veff

is integrated to a depth of 500 nm inside the silica layer, which is within a factor of 2 of the

effective depth predicted from CASINO and is within the uncertainty of the incident angle

of the electron beam. The theoretically predicted signals are averaged over the numerical

aperture of the objective (17.5◦) and summed over polarizations. The data is best explained

assuming that the samples have a small (∼ 8◦) misalignment of their normal to the axis of

the objective, with the 25 nm sample oppositely oriented from the other samples. The data

used for the fit was not normalized by the incident current. Given the moderate variations

in currents from sample to sample, similarly good fits can be obtained with the current-

normalized data.

For the x-ray experiments: absorption maps are calculated with rigorous coupled-wave
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analysis, with geometrical parameters extracted from SEM/AFM measurements. The re-

ported value of the loss in the unpatterned YAG:Ce film is of Im(ϵ) ∼ ×10−6 (information

provided by Crytur). Geometrical parameters are extracted via an atomic force microscopy

measurement fitted to as sin2 profile. Error bars on the predicted enhancements are calcu-

lated by varying the geometrical parameters according to the measured error bars from the

characterization.

D.1.3 Monte Carlo HEP Energy Loss Simulations

HEP energy loss was calculated for energetic free-electrons impinging on the (unpatterned)

silicon-on-insulator wafer using the open source CASINO Monte Carlo software. Calcu-

lations of the position-dependent energy loss density, dE
dV

(x, y, z) were done for electrons

incident at shallow angles of incidence (∼ 1◦ measured with respect to the substrate plane)

by averaging over results from 250,000 incident electrons. The data was used to calculate

the marginal electron energy loss distribution per depth dE
dz

=
∫
dxdy dE

dV
shown in Fig. 2B

of the main text. We note that these calculations were also used to model scintillation in

patterned samples, thus effectively neglecting the influence of the shallow pattern on the

electron energy loss map.

Calculations were also performed to find the energy loss density as a function of the

incident electron energy, which was used as input in the fits of Fig. 3E of the main text.

Similar calculations were also done for predictions of enhanced luminescence of boron

nitride in the Supplementary Text, Section F.

D.1.4 Density Functional Theory (DFT) Calculations

DFT calculations [529, 530] were performed on one bulk and three cluster models of STH.

Cluster calculations used the Boese-Martin exchange correlation functional with 42% exact

exchange [531] to take into account self-interaction effects. Dangling bonds were passi-

vated with hydrogen atoms to mitigate their effect on the electronic structure. A 20 Hartree

plane wave cutoff was used and Coulomb truncation [532] was implemented to mitigate

the effects of cluster-cluster interactions. The defect transitions observed were attributed to
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localized states at the oxygen atoms – verified by calculations of the spin density.

Bulk models, shown in Fig. 3 of the main text, with constrained 1 Bohr/unit cell magne-

tization yielded trapped hole defects without the need for hybrid functionals. These models

yielded the same transition energies as above but used the PBE exchange correlation func-

tional [533]. Additional details on the various DFT models and calculation results are

shown in the Supplementary Text, Section G.

D.1.5 Three-level rate equation model

Based on DFT calculations, a simplified three-level system is designed to model electron

pumping and subsequent radiative emission from defect states in silica. The model is pic-

tured in Fig. 3C of the main text, corresponding to calculated energy levels from the DFT

model in Fig. 3A. The following rate equations are used to model the system:



dp1
dt

= −Γ13 p1(1 − p3) + Γ31 p3(1 − p1)
dp2
dt

= −Γ23 p2(1 − p3) + Γ32 p3(1 − p2)
dp3
dt

= Γ13 p1(1 − p3) − Γ31 p3(1 − p1)

+Γ23 p2(1 − p3) − Γ32 p3(1 − p2)

(D.1)

such that the total occupation number is conserved over time d
∑

i
pi

dt
= 0 with the initial

condition p1 = p2 = 1 and p3 = 0. This set of equations describe a three-level system,

where 1 (resp. 2) is the ground state corresponding to green (resp. red) emission, 3 is a

shared excited state to which electrons are sent via free-electron pumping. Band electrons

can relax from the excited state 3 to one of two ground states 1 and 2, corresponding to the

green and red peak emission, respectively.

We can solve the steady-state of Eq. D.1 to estimate the ratio of green to red emission

at the steady-state:

η = Γ31 (1 − p1)
Γ32 (1 − p2)

. (D.2)

Calculations were performed using the DifferentialEquations.jl package in Julia [534] and

fitted using the LsqFit.jl package.
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We use this model to gain further microscopic understanding of the observed experi-

mental data, in conjunction with the general nanophotonic scintillator theory described in

the main text. We chose η as an experimental observable, since it can be calculated from

Eq. D.1 and – assuming green and red peak defects are localized in the same region – the

observable is independent of a few experimental unknowns (beam size, number of excited

emitters). Electrons in state 3 can then radiatively decay into state 1 or 2.

We assume that Γ is proportional to the electron beam energy deposited in the lumines-

cent material: Γ ∝ I × E × ηene(E) where I is the incident electron current, E its kinetic

energy (in keV), and ηene(E) the fraction of energy (normalized to the incident energy E)

deposited by an electron in the silica layer, calculated via Monte-Carlo Simulations of elec-

tron scattering in the TF sample (see corresponding Methods section above ”Monte Carlo

HEP Energy Loss Simulations“).

In a first numerical experiment shown in Fig. 3E of the main text, we utilized scintilla-

tion data measured on the TF sample at various incident voltages and currents. This data

was used to estimate the ratio of pumping rates Γ13/Γ23 = 3.2 ± 0.09. This value indicates

an intrinsic preference of the system to excite the green defect through electron pumping.

In a second numerical experiment shown in Fig. 3E of the main text, we utilized scin-

tillation data measured on the PhC sample at various incident voltages and currents. This

data was used to estimate the ratio of decay rates enhancements Γ32/Γ31 and to confirm

the value of Γ13/Γ23. When letting both parameters be optimized, we obtain a value of

Γ13/Γ23 = 3.35 ± 0.13, similar to the original value. We can also estimate the value of(
Γ32
Γ31

)
PhC

(
Γ32
Γ31

)−1

TF
∼ 2.3 which corresponds to the scintillation rate enhancement of the red

defects. This value is in agreement with our calculations and experimental demonstration

of Veff scintillation enhancement of the red defects. The relative error of this estimate is of

±0.4 (uncertainty coming from the first numerical experiment) and of ±0.9 (uncertainty

coming from the second numerical experiment). Therefore, results from the three-level

model are a strong indication of the microscopic nature of the observed scintillation spec-

trum.

We verified the robustness of our fits by trying different differential equation solvers

and fitting methods, and did not observe any significant change in the values obtained for
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the parameters of interest, which indicates the consistency of our approach. For instance,

another local optima of the optimization, which we did not detail for the sake of brevity, had

the following parameters: Γ13/Γ23 = 4.43 ± 0.94 (TF data only), Γ13/Γ23 = 4.42 ± 0.17

(PhC data only), and
(

Γ32
Γ31

)
PhC

(
Γ32
Γ31

)−1

TF
∼ 4.06, with relative error of this estimate of ±1.42

(uncertainty coming from the second numerical experiment) and of ±7.15 (uncertainty

coming from the first numerical experiment). Though the error bar in Fig. 3 of the main

text only shows the relative model uncertainty with respect to the value of Γ32
Γ31

(which is

the main decay rate variable relating to our experimental observables), we observe that the

relative error of other parameters is comparable or lower.
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D.2 Supplementary Text

D.2.1 End-to-end framework summarized

In this section, we provide additional details about our end-to-end framework to model

scintillation in nanophotonics, shown in Fig. D-1, and summarized in Fig. 1G of the main

text.

Our framework is fed inputs, which specify the scintillating material, the high energy

particle, and the electromagnetic properties of the nanophotonic environment. For example,

the scintillating material might be specified by its atomic number and relevant defect/dopant

concentrations (if the scintillation is from defects/dopants, as in both cases we consider in

the main text). The high-energy particle (HEP) would be specified by the type of particle,

as well as its angle of incidence and energy. And the nanophotonic structure is specified by

the spatially varying permittivity of the system.

These inputs are transformed into outputs by the following simulation components:

1. Monte Carlo HEP energy loss calculations are performed to calculate the three-

dimensional energy loss per unit volume (energy loss density) of the HEPs through

the structure. Radiative sites may diffuse before emitting, as is typically the case for

electron-hole pairs in semiconductors, in which case carrier diffusion may be taken

into account at this stage. This energy loss is proportional to the density of excited

electrons that ultimately scintillate. This energy loss information can be further com-

bined (as we do in Fig. 3 of the main text) with rate equations to calculate occupation

factors of various scintillating levels.

2. Density Functional Theory (DFT) is used to calculate the scintillation emitter en-

ergy levels and oscillator strengths, which feed into the calculation of the spectral

function.

3. Full-wave nanophotonics simulations are performed to calculate the position-dependent

field enhancement in the nanophotonic structure, where the incident field is taken as

a plane wave incident at some given angles, frequency, and polarizations. The field
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enhancement is integrated over space, weighted by the position-dependent spectral

function (which depends on the spatially-dependent occupation factors).

In principle, these steps are coupled together: the field enhancement is set by the den-

sity of excited electrons created by HEPs, and, if their density is high enough, it would

change the field solutions relative to the case of no excited electrons. This is because this

density of excited electrons can be seen as a change to the permittivity of the scintillator.

Thus, the truly ab initio method would be to (1) evaluate the position-dependent energy

loss density by HEPs, (2) translate this into a density of excited electrons, and (3) calculate

the electromagnetic field enhancement of incident plane-waves sent into a material with

a permittivity taking these excited electrons into account. In cases we consider, it is ade-

quate to approximate the excited electrons as only weakly changing the permittivity of the

scintillator, thus allowing us to decouple the energy-loss and nanophotonic calculations.

Coupled together, results from these three methods allow us to calculate the effective

absorption volume (via electromagnetic reciprocity) and the non-equilibrium occupation

function. Plugging these two into our theory enables us to calculate the scintillation sig-

nal and its polarization, spectral, and angular dependence (as in Eq. 1 from the main text).

Alternatively, our framework allows us to calculate the scintillation power density by inte-

grating the spatially-varying effective field enhancement and non-equilibrium occupation

over the scintillating volume.

Beyond using this framework to predict the scintillation spectrum, we can also use it

to optimize or inverse design the scintillation (e.g., for maximum photon yield, directivity,

etc.). This step requires differentiability of the inputs, which for now is only the case for

the full-wave nanophotonics, in which case we treat the energy loss as fixed. More details

about the inverse design of nanophotonic scintillators, enabled by our framework, can be

found in Section E.

D.2.2 General nanophotonic theory of scintillation

In this section, we develop a general quantitative framework for describing scintillation in

nanophotonics, providing additional details on the derivation of Equations (1) and (2) of
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the main text. Let us consider, as in Fig. 1 of the main text, a material with scintillating

centers. Such scintillating centers can be associated with defects or dopants in materials

(as in the case of what we consider in the experiments of the main text), electron-hole

recombination in semiconductors, excitons, or other mechanisms. Such centers can be

generated optically, as in photoluminescence, or via a beam of HEPs, such as electrons

(incoherent cathodoluminescence), x-rays, γ-Rays, radioactive particles, and cosmic rays.

In all cases, the spontaneous emission associated with these emitters can be considered

as a type of non-equilibrium radiation from fluctuating currents of current density J(r, ω)

in the material. The correlation functions of the current, of the form ⟨Jj(r, ω)Jk(r′, ω)⟩

(with j, k labeling vector components) are determined by the microscopic structure of the

scintillating center (the energy levels and current matrix elements), as well as the non-

equilibrium occupation of the various energy levels. These occupation functions depend

on the pump strength, and are inferred via a combination of Monte Carlo simulations and

a kinetic model of the transition dynamics of the electron between energy levels. As a

point of notation, we index the energy levels by the label α, with corresponding energy

Eα ≡ ℏωα and occupation factor fα.

In what follows, we will take advantage of the fact that in many cases of interest in

scintillation, there is a separation of time scales between: (1) the processes that create the

excited scintillation centers, and (2) the recombination that leads to radiation. In particular,

the process of impact ionization of an electron, followed by relaxation (e.g., by phonons

and electron-electron scattering) to the lowest unoccupied states of the system, occurs on

timescales much shorter than the spontaneous emission. The spontaneous emission, in

many systems, occurs on timescales between microseconds and nanoseconds. As a result

of this, we can approximate the scintillating system as being in a non-equilibrium steady

state, and so the occupation functions − which govern the correlation functions of the

fluctuating current − remain well-defined. In that case, the normally-ordered correlation

function between different components of the current is given simply as

⟨J−
j (r1, ω)J+

k (r2, ω)⟩ = 2πT
∑
α,β

Jαβ
j (r1)Jβα

k (r2)fα(1−fβ)δ(ω−ωαβ) ≡ 2πTSjk(r1, r2, ω).

(D.3)
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where T a normalization time and Jαβ
k (r) is the matrix element of the k-component of the

current density operator between quantum states α and β. Further note that we have taken

the correlation function between the negative (−) and positive (+) frequency parts of the

current operator, as the far-field flux depends on this combination of current operators. The

radiated intensity spectrum in the far-field, along the ith polarization, dI(i)(r)
dω

which is given

in terms of the normally-ordered correlation functions of the electric fields, is (in repeated

index notation for j, k)

dI(i)(r)
dω

= 2µ0ω
2

c

∫
dr1dr2 G

∗
ij(r, r1, ω)Gik(r, r2, ω)Sjk(r1, r2, ω). (D.4)

Here, the Green’s function Gij(r, r1, ω) is the ith component of the electric field at the

position r created by a dipole at location r1 and oriented along direction j. What we will

now show is that the scintillation spectrum is directly related to the field enhancement in the

scintillation volume, which is also proportional to the absorption in the scintillation volume

(provided that the absorption is sufficiently weak as to not change the field solutions). Let

us focus on the widely applicable case in which the current fluctuations are local, so that

Sjk(r1, r2, ω) = Sjk(r1, ω)δ(r1 − r2). We note that in a bulk medium, S would need to

be translationally invariant, and this can be taken to be the case either for homogeneously

distributed defects or a bulk solid. However, we also note that in cases we consider, due

to the spatial non-uniformity of the pump, the occupation factors can depend on position

(over a length scale typically much larger than the electronic length-scale), so that fα,β →

fα,β(r).

In the case described above, we have

dI(i)(r)
dω

= 2µ0ω
2

c

∫
dr1 G

∗
ij(r, r1, ω)Gik(r, r1, ω)Sjk(r1, ω). (D.5)

In reciprocal electromagnetic systems,Gij(r, r1, ω) = Gji(r1, r, ω), thus relating the power

to the field emitted by a dipole at position r, which is taken to be in the far-field. Let us

define Gji(r1, r, ω) = αE
(i)
j (r1, r, ω), with α a proportionality factor, and E(i)

j (r1, r, ω) the

electric field along component j at position r1 created by a dipole located at position r and

polarized along direction i (and at frequency ω). Then, Eq. D.5 can thus be translated into
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the i-polarized power spectrum per unit solid angle dP (i)

dωdΩ as:

dP (i)

dωdΩ = ω2

8π2ϵ0c3

∫
dr′ E

∗(i)
j (r′, r, ω)∣∣∣E(i)
inc(r′, r, ω)

∣∣∣ E
(i)
k (r′, r, ω)∣∣∣E(i)
inc(r′, r, ω)

∣∣∣Sjk(r′, ω), (D.6)

where we have defined |E(i)
inc(r′, r, ω)| as the magnitude of the field of a dipole with polariza-

tion i at frequency ω, emitting from the far-field, which is |α|/4π|r − r′|. The unpolarized

spectrum is simply obtained by summing over i. Since the scintillating material is far from

the detector, this field is equivalent to a plane wave incident from the far field at an angle

set by r. Thus, we may rewrite the various fields more simply as E(r′, r, ω) → E(r′, ω,Ω),

with Ω denoting a direction about which an infinitesimal solid angle dΩ is centered. While

this result is general, to make clear the physics contained within Eq. D.6, we consider the

case where the scintillating material is isotropic, so that Sjk(r′, ω) = δjkS(r′, ω). In that

case, also using the simplified notation of this paragraph, we have

dP (i)

dωdΩ = ω2

8π2ϵ0c3

∫
d3r

∣∣∣E(i)(r, ω,Ω)
∣∣∣2∣∣∣E(i)

inc(ω,Ω)
∣∣∣2 S(r, ω). (D.7)

Here, we have also taken r′ → r in the integration. We have also used the fact that, since the

incident field looks like a plane wave in the far-field limit, its norm is position-independent.

This equation coincides with Equation (1) of the main text.

From Eq. D.7, one can immediately see that the emitted power is proportional to the

field enhancement by a plane wave at frequency ω, direction Ω, and polarization i inside

the volume governed by the scintillating material. This is also proportional to the absorbed

power of the plane wave. In particular, if instead of S, one had Im ϵ, then Eq. D.7 would

be directly proportional to the absorbed power. In fact, the spectral function computed

here is proportional to (up to a frequency-dependent factor) the dielectric function corre-

sponding to the material being in a non-equilibrium steady-state with the same occupation

functions. As a reminder, the spectral function S(r, ω) is set by microscopic properties of

the material (energy levels, current/dipole matrix elements), and the properties of the pump

beam (current, energy), the latter of which sets the spatial distribution of S through the
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occupation functions. Therefore, for a fixed pump, maximizing scintillation corresponds

directly to maximization of the absorbed power / field enhancement in the volume set by

the distribution of scintillating material.

We note that similar considerations based on electromagnetic reciprocity have been

utilized to make predictions in other areas of non-equilibrium radiation,such as thermal

radiation, LEDs, and generalizations of the Purcell effect to non-equilibrium bodies (34,

49–51).

It is worthwhile to take a few additional simplifying assumptions that lead to an ex-

tremely simple formula for scintillation. Consider the case where S is effectively indepen-

dent of position in the scintillation volume VS (and its spatial dependence may be dropped

so that S(r, ω) → S(ω)). In that case, we may write

dP (i)

dωdΩ = π

ϵ0ω
× S(ω) × (V (i)

eff (ω,Ω)/λ3), (D.8)

where V (i)
eff (ω) is the effective volume of absorption or field enhancement (note that it has

dimensions of volume) − defined by V (i)
eff (ω,Ω) =

∫
VS
dr |E(i)(r, ω,Ω)|2/|E(i)

inc(ω,Ω)|2 −

and λ = 2πc/ω. Such an expression states that the scintillation spectrum is a simple prod-

uct of a microscopic factor, set by the non-equilibrium steady-state distribution function,

and an effective absorption volume, which is set only by the (structured) optical medium

surrounding the scintillating medium. This expression also allows inference of the mi-

croscopic spectral function S(ω), given the knowledge of Veff, and a measurement of the

scintillation spectrum.

As a simple example of Veff which can be calculated even analytically, let us consider

Veff for thin film geometries related to the thin film sample of Fig. 2 of the main text.

Results are shown in Fig. D-2, assuming that the entire thin film makes up the scintillation

volume. The blue curve in Fig. D-2 corresponds to the sample considered in the main text

(air - 500 nm Si - 1 µm SiO2 - Si substrate), while the others differ by removal of the top

Si layer (orange) and both Si layers (green). For simplicity, we show just the absorption

of light coming at normal incidence (angles of incidence below 15◦ lead to very small

changes in the absorption). Here, Veff may be directly calculated by solving for the E and
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H fields induced by solving the Fresnel problem of a plane wave coming from the far field

(as expected from reciprocity). The blue curve features somewhat well-defined and sharp

resonant peaks corresponding to thin-film resonances associated with the guiding structure

formed by silica surrounded by high-index silicon. Even in the case of silica surrounded

by air, which in principle is the closest case to an intrinsic system, and provides minimal

light-guiding, there is clear nanophotonic shaping that will arise from the etalon fringes:

associated with the fact that the silica is a wavelength-scale thin-film. Thus, the observed

scintillation spectrum would depart considerably from the singly-peaked Gaussian spectral

function of the self-trapped hole (STH) defects in silica (which would represent the bulk

spectrum).

D.2.3 Experimental setup

In this section, we describe our general experimental setup. It is based on a modified

Scanning Electron Microscope (SEM) is shown in Fig. D-3A. Let us outline a few other

elements of the experimental setup. First, the purpose of Element 6 (flat mirror) is to

send the optical signal to the visible – near-infrared imaging and spectroscopy system,

shown in the right side of Fig. D-3A (Elements 7-15). Second, the polarization-insensitive

beamsplitter (Element 8) sends part of the signal to a visible CCD Camera (Hamamatsu).

The combination of Elements 4 (objective), 7 (tube lens), and 9 (camera) creates an image

of the sample’s surface, so the location of the electron beam interaction with the sample can

be visualized. This facilitates the alignment of the experimental setup. Third, Elements 16-

18 are used to scatter light off from the surface of the sample. Typically, an alignment mark

(silver paste dot deposited on a unused sample location) is drawn on the sample surface, to

align the imaging and spectroscopy functionalities of the setup. Fourth, a set of two lenses

is used (Element 11) to focus the optical signal into the fiber input feeding the spectrometer

(Elements 12-15). The spectrometer is comprised of a fiber coupling into a slit, a grating

turret (Element 12), and a mirror focusing the signal on a visible CCD (Element 15).
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SEM Control

The SEM beam current, voltage, working distance, and stage positioning are controlled in

part with the Caesium Software provided by Applied Beams LLC (Oregon). Adjustment

knobs outside the SEM chamber allow alignment of the emitter, focusing lenses, stage

rotation and tilts.

Objective positioning

The XYZ positioning and tilt angle alignment of the objective (Element 4) is realized with a

homemade motorized stage. The three motors are controlled through a computer interface

outside the SEM chamber. Each motor is connected to an outside controller through a

vacuum-preserving electronic connector.

Calibration measurement

The spectra measurements were converted to power spectral densities after performing a

calibration measurement, whose setup is shown in Fig. D-3B. The calibrated source (AVA

Light - Element 19) of known power is positioned at the location of the objective / electron

beam focus. The conversion relation is a linear mapping from the spectrometer signal to

power spectral density:

S(λ) = P (λ)L(λ), (D.9)

where S(λ) is the spectrometer signal, measured in counts per second, P (λ) is the signal

spectral density measured in W/nm, and L(λ) is a spectral loss function accounting for

dispersive attenuation through the optical setup. L(λ) is measured in (counts/s)/(W/nm).

The reconstructed optical dispersive attenuation function L(λ) is shown in Fig. D-3C.

Additionally, we performed spectral calibration by measuring emission lines of a lamp

with characteristic emission wavelengths (mercury lamp) and used three of those lines to

calibrate the spectrometer. There may still be wavelength miscalibration between the lines

used for calibration. We accounted for this possible mismatch in our fit with theory.
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D.2.4 UV Scintillation shaping in hexagonal boron nitride

In this section, we extend the scope of the general nanophotonic theory of scintillation de-

veloped in Section B. In particular, we show how our framework can be used to design

highly efficient scintillation sources in the UV. Additionally, we show that our framework

can describe how the scintillation spectrum is altered by the presence of gain, enabling for

the first time a framework to describe amplification effects in scintillation, potentially en-

abling description of interesting experimental results such as scintillation-lasing in Watan-

abe et al. [2]. The perspective of tunable ultraviolet sources is especially exciting given the

growing interest in ultraviolet sources for water purification and sanitization. In particular,

several wavelengths in the UV-C window have been of interest [535], with some gaining

renewed interest in the far-UVC to eliminate airborne human coronaviruses [536].

In this section, we focus primarily on UV scintillation from hBN (hexagonal boron

nitride), where Watanabe et al. demonstrated efficient UV emission from high-quality

hBN substrates pumped by electron beams.

First, let us consider scintillation from a simple thin-film of hBN. For concreteness,

we consider an isolated film of BN of thickness 1 µm surrounded by air (mimicking the

isolated BN flakes in Watanabe et al. [2]. Then we consider the emission per unit area

(which is independent of lateral position along the film) for a beam normally incident on

it. To calculate the spectrum, we must multiply the intrinsic luminescent spectrum of BN

with Veff, which can be readily calculated (by solving for the fields inside the BN result-

ing from an a plane wave impinging on the air-BN-air system). For the purposes of this

section, we are mostly interested in the relative magnitude of the signal between different

sample conditions, and not as interested here in the absolute magnitude of the luminescence

spectrum, which requires a detailed microscopic understanding of the excitons contributing

to the BN signal. Thus, the intrinsic scintillation spectrum for the planar system is taken

phenomenologically as the function shown in Fig. D-4(inset), with peak intensity at 216

nm and a width of roughly 5 nm. This function is taken to be in qualitative agreement

with the spectrum measured in Ref. [2]. To showcase the kinds of predictions that can be

made the formalism of Sec. B, we show the predicted luminescence of hBN as the intrinsic
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losses of the BN permittivity are reduced. This is to simulate the effect of gain induced

by electron beam pumping. As the loss is reduced, the luminescence spectrum starts to

manifest growing and narrowing etalon peaks. This feature is in accord with observations

in Ref. [2], which show spectral narrowing and strongly increased intensity as a function

of electron-beam pumping of hBN flakes.

Next, we demonstrate control and enhancement of hBN ultraviolet scintillation with

nanopatterned structures, shown in Fig. D-5. The structures that are used are shown in

Fig. D-5A: a two-dimensional square periodic array of holes etched in hBN (thickness

100 nm) on top of a silica spacer (thickness 200 nm) on top of an aluminium substrate.

The period of the structure equates to 180 nm. We compare emission power spectra at

various radii (unpatterned structure, r = 30 and r = 50 nm) and beam locations (shown

schematically in Fig. D-5(a,c)).

We assumed that the hBN layer consists of deformed monocrystalline samples similar

to the ones in Ref [2, 537]. Such samples, not unlike polycrystalline hBN, exhibit a greater

number and variety of scintillating defects. We used for our theory an empirical fit of the

spectrum shown in Fig. 6 (blue line) of [537].

The resulting spectra are shown in Fig. D-5(d,e). The peak emission wavelength can

be tuned by adjusting the radius and the relative and absolute power of the observed peaks

can be controlled by exciting the structures at different locations (which can be realized

by operating state-of-the-art SEMs with < 5 nm spatial resolution and beam size in spot

mode).

D.2.5 Alternative DFT and rate equation models

Alternative DFT and rate equation models

It is possible to get reasonable agreement with the observed data with an alternative model.

Here, we present calculations of energy levels and spectra of a cluster model without hybrid

functionals (calculations carried out by Ali Ghorashi). DFT calculations were performed

using norm-conserving (SG-15) pseudopotentials, a 30 Hartree plane wave cutoff, and the

gga-PBE exchange correlation functional in a 21 atoms cluster to model the STH defect.
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The Si-O-Si bonding angle is changed to create a distribution of possible manifestations of

the defect, and the excitation spectra and oscillator strengths are obtained through momen-

tum matrix elements. Based on this DFT model, a simplified four-level system is designed

to model electron pumping and subsequent radiative emission from defect states in silica.

The model is pictured in Fig. D-6B, corresponding to calculated energy levels from the

DFT model in Fig. D-6(a, bottom). The following rate equations are used to model the

system: 

dp1
dt

= −Γ41 p1(1 − p4) + Γ12 p2(1 − p1) + Γ13 p3(1 − p1)
dp2
dt

= Γ24 p4(1 − p2) − Γ12 p2(1 − p1)
dp3
dt

= Γ34 p4(1 − p3) − Γ13 p3(1 − p1)
dp4
dt

= Γ41 p1(1 − p4) − Γ24 p4(1 − p2) − Γ34 p4(1 − p3)

(D.10)

such that the total occupation probability is conserved over time d
∑

i
pi

dt
= 0 with the initial

condition p1 = 1 and pi ̸=1 = 0. This set of equations describes a four-level system, where

1 is the ground state, 4 is a high-energy state to which electrons are sent via free-electron

pumping (since the free-electron energy is much larger than any other energy scale in the

bandstructure). Band electrons can relax from the higher-energy state 4 to one of two

intermediate states 2 and 3, corresponding to the red and green defect states, respectively.

Since excitation and relaxation mechanisms happen on a much shorter timescale than

emission for most scintillating systems, we can assume that Γ34,Γ24 ≫ Γ13,Γ12. We can

solve the steady-state of Eq. D.10 to estimate the ratio of green to red emission at the

steady-state:

η = Γ13 p3

Γ12 p2
. (D.11)

We use this model to gain further microscopic understanding of the observed experi-

mental data, in conjunction with the general nanophotonic scintillator theory described in

the main text. We chose η as an experimental observable, since it can be calculated from

Eq. D.10 and – assuming green and red peak defects are localized in the same region – the

observable is independent of a few experimental unknowns (beam size, number of excited

emitters). Electrons in states 2 and 3 can then radiatively decay into state 1.
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In a first numerical experiment shown in Fig. D-6(d, left), we utilized scintillation data

measured on the TF sample at various incident voltages and currents. This data was used to

estimate the ratio of decay rates Γ34/Γ24 = 2.45 ± 0.7. We assume that Γ41 is proportional

to the electron beam energy deposited in the luminescent material: Γ41 ∝ I ×E × ηene(E)

where I is the incident electron current, E its kinetic energy (in keV), and ηene(E) the frac-

tion of energy (normalized to the incident energy E) deposited by an electron in the silica

layer, calculated via Monte Carlo simulations of electron energy loss in the TF sample.

In a second numerical experiment shown in Fig. D-6(d, right), we utilized scintilla-

tion data measured on the PhC sample at various incident voltages and currents. This

data was used to estimate the ratio of decay rates enhancements Γ13/Γ12 and to confirm

the value of Γ34/Γ24. When letting both parameters be optimized, we obtain a value of

Γ34/Γ24 = 2.37 ± 1.4, close to the original value. We can also estimate the value of(
Γ12
Γ13

)
PhC

(
Γ12
Γ13

)−1

thin
∼ 3.56 which corresponds to the Veff scintillation enhancement. There-

fore, results from the four-level model are a strong indication of the microscopic nature of

the observe scintillation spectrum.

We verified the robustness of our fits by trying different values of the ratio Γ12/Γ24, dif-

ferent differential equation solvers, and did not observe any significant change in the values

obtained for the parameters of interest, which indicates the consistency of our approach.
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D.3 Supplementary Figures

Figure D-1: End-to-end scintillation framework. Arrows represent forward flow of in-
formation from inputs to outputs through our simulation methods (as an example: geom-
etry information feeds into energy loss calculations, which provides an energy loss map
that feeds into the spectral function). HEP: high-energy particle. dP (i)/dωdΩ: scintilla-
tion spectral-angular power density at polarization i. ω: scintillation frequency, Ω: scin-
tillation angle of emission. S(r, ω): non-equilibrium steady-state distribution function.∣∣∣E(i)(r, ω,Ω)

∣∣∣2 / ∣∣∣E(i)
inc(ω,Ω)

∣∣∣2: field enhancement at location r, frequency ω, angle Ω.
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air-Si-SiO2-Si

air-SiO2-Si

air-SiO2-air

Figure D-2: Absorbed power (proportional to Veff) at normal incidence as a function
of wavelength for a few different thin film geometries. Thicknesses for blue curve:
∞−500 nm−1000 nm−500 nm−∞. Thicknesses for orange curve: ∞−1000 nm−∞.
Thicknesses for green curve: ∞ − 1000 nm − ∞.
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Figure D-3: Schematic of the experimental setup and calibration measurement. (A)
Schematic of the experimental setup. Inside SEM chamber: 1: Electron beam interacting
with sample; 2: Faraday cup, connected to external picoammeter, measuring incident cur-
rent. 3: 6-axis, fully eucentric stage, controlled by SEM control. 4: XYZ objective stage.
5: x-ray blocking window. Outside SEM chamber: 6: Mirror. 7: Tube lens. 8: Beam
splitter. 9: CCD Camera, imaging sample surface. 10: polarizer (optional). 11: XYZ cage
assembly with two focusing lenses and a fiber-coupling. Inside spectrometer: 12: Grating
turret. 13, 14: (Focusing) Mirrors. 15: Spectrometer CCD. Green laser feedthrough align-
ment arm: 16: Green laser source. 17: Fiber-coupling feedthrough, vacuum compatible.
18: Fiber output illuminating sample. (B) Calibration experiment (the rest of the setup is
not shown because it is similar to (A)). 19: AVA Calibration light source. (C) Measured
calibration conversion function.
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Figure D-4: Amplified hBN scintillation in hBN flakes. Inset: Phenomenological intrin-
sic scintillation spectrum. Parameters used in this plots were chosen in accordance with [2].
As a function of increased pumping, the losses are reduced (as the system moves towards
transparency), leading to the spectrum manifesting growing and narrowing etalon peaks
associated with thin-film resonances.

Figure D-5: Tunable ultraviolet nanophotonic scintillators. (A) Schematic of the design:
etched hBN on a silica spacer on an aluminium substrate. (B) Marginal (integrated over y)
energy loss probability distribution (log scale). (C) Total in-plane electric field distribution
(|Ex|2 + |Ey|2) at λ = 350 nm). Our theory predicts the emitted scintillation power at
various locations and etch radii, shown in log (D) and linear (E) scales.
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Figure D-6: Alternative DFT and rate equation models for STH in silica. (A) Top: 3D
molecular model of STH defect in silica. Botton: Calculated STH defect energy levels via
DFT. (B) Simplified four-level system modelling the microscopics of electron scintillation
in silica. (C) Calculated oscillator strength spectrum. (D) TF (left) and PhC (right) scintil-
lation peak ratios as a function of deposited beam powers through electron pumping. The
dashed line corresponds to the mean model prediction and the shaded area to the prediction
from the model parameters ± their standard deviation (TF: uncertainty on Γ34/Γ24; PhC:
uncertainty on Γ12/Γ13.
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Appendix E

Appendices for: Variational theory of

nonrelativistic quantum electrodynamics

In this Supplement, we derive a self-consistent extension of the equations describing the

ground state of a general quantum electrodynamical system with the effect of correlations

included. We derive the equations in the case of a multi-electron system in three spa-

tial dimensions interacting quantum electrodynamically with an arbitrary number of pho-

tonic modes. The resulting equations are similar in spirit to the equations of quantum

electrodynamical density-functional theory [405, 406] in an optimized-effective potential

scheme [414, 411], except that the orbitals used in that scheme are Kohn-Sham orbitals,

while ours essentially are mean-field orbitals. We then derive the one-dimensional model

used in the main text, as well as describe the parameters used in generating the data of

Fig. 2 of the main text. Before doing this, we briefly describe the assumptions made in

our framework, regarding our assumptions on gauge, as well as high-frequency free-space

modes.

E.0.1 Assumptions behind the Hamiltonian of Equations (1-3)

In writing the Hamiltonian of the main text in the form of Equations (1-3), with the particu-

lar form of the field operators, we make a few assumptions. For one, that the interaction of

matter with the quantized electromagnetic field is mediated solely by the vector potential.

315



Moreover, we are assuming that the effect of free-space modes, which an emitter weakly

interacts with, is taken into account by renormalization of the electron mass and charge

[538]. We focus only on the interaction of the emitter with low-energy cavity modes where

strong interaction is possible. For these cavity modes, a natural cutoff emerges based on

the transparency of the cavity.

E.0.2 Generalized Coulomb gauge condition of Equation (7) of the

main text

In the main text, we arrive at the generalized Coulomb gauge for the modes. The gen-

eralized Coulomb gauge, ∇ · ϵ(x)A(x) = 0 for some dielectric permittivity ϵ(x), is the

most common gauge for analyzing phenomena in the discipline of macroscopic QED, in

which one seeks to analyze the interaction of charges with fields in dielectric media [100].

The reason a particular gauge was chosen was that in the Hamiltonian, we have already as-

sumed that all interaction with the quantized modes is manifested only through the vector

potential, and that there is no scalar potential contribution to the interaction: relaxing this

assumption allows more general gauge freedom. We also remark that if we performed a

frame transformation, for example to the length gauge, the energy would be the same as

that of our ansatz in the velocity gauge, although the state would be markedly different, and

would be a highly correlated state.

E.1 Self-consistent lamb shift correction to the equations

for the quantum electrodynamical ground state

In the derivation of Equations (6) and (7) of the main text, it is notable that the term linear in

the vector potential makes no contribution to the expectation value of the Hamiltonian in the

ground state. In many quantum electrodynamical problems, this linear term is important.

To first order, it leads to spontaneous emission of a single photon. To second order, it leads

to Casimir-Polder forces on emitters, which arise from virtual emission and re-absorption

of photons. At the same order, the term linear in the vector potential also leads to effective
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interactions betweeen distinct emitters. Thus, we must capture the effect of this term.

Physically, this term mixes the factorizable ground state of Equation (4) of the main text

with states that have virtual excitations of the matter, as well as virtual excitations of the

electromagnetic field. The resulting state is now non-factorizable and we thus conclude

that the term in the Hamiltonian linear in the vector potential leads to correlations in the

system, and contributes wholly at lowest order to the correlation energy of the quantum

electrodynamical ground state.

We capture the effect of correlations perturbatively. In other words, we consider the

second-order correction δE to the ground state energy arising from the term in the Hamil-

tonian linear in the vector potential. That correction is given by

δE = e2ℏ2

8m2ϵ0

∞∑
q=1

∞∑
n=Nσ+1

Nσ∑
m=1

∣∣∣∣ ∫ d3x F∗
q(x) · jnm(x)

∣∣∣∣2
ωq(ωmn − λq)

, (E.1)

where jnm = ψ∗
n∇ψm − (∇ψ∗

n)ψm are transition current densities, ωmn = ωm − ωn are

transition frequencies, Nσ is the number of occupied orbitals, the Fq are the photon mode

functions, the ωq are the photon mode frequencies, and the λq are Lagrange multipliers

expressing the normalization of each photon mode. We note that the sum over photon

modes q is in principle over all modes but can be restricted to either a finite or countably

infinite set of photon modes deemed relevant to the system at hand. In a method without

self-consistency, the electron and photon orbitals and eigenvalues are those obtained from

Equations (6) and (7) of the main text. This non-self-consistent procedure was applied in

Fig. 2 of the main text. In what follows, we add this energy correction δE to the expectation

value of the energy in the ground state self-consistently, with the orbitals and eigenvalues as

variational parameters. As a result, the orbitals and eigenvalues obtained will be different

from Equations (6) and (7) of the main text, this difference being small in the case of weak

correlations. Strictly speaking, this approach is only justified for weak correlations, but

can be applied to systems with strong-correlations as is often done with self-consistent

methods.
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E.1.1 Physics contained in these equations

As the equations which result from self-consistence are complicated, it is useful to discuss

what physics should contained by introducing δE to the Lagrange function to be mini-

mized. From the standpoint of the electrons, the equation for the electron orbitals should

differ from Equation (6) of the main text by a potential energy term which corresponds to

the spatially dependent Lamb shift that the electrons feel. This Lamb shift is due to virtual

emission and re-absorption of photons. We note in passing that the gradient of the Lamb

shift with respect to position gives rise to a force called the Casimir-Polder force. It is

known that this potential depends on all occupied and unoccupied electron orbitals and the

photon orbitals, as well as their respective eigenvalues.

For the photon, the equation will differ from Equation (7) of the main text by the intro-

duction of a term which has the appearance of a source term proportional to a sum over the

transition current densities of the electronic system, jnm. These transition currents connect

occupied and unoccupied electronic orbitals. The weight of these transition current den-

sities will be proportional to the coupling between the current densities and the photonic

modes. In other words, this new term expresses a coupling of the electromagnetic field to

fluctuating currents associated with the matter part of the ground state of the QED system.

E.1.2 Equations for the ground state of quantum electrodynamics

Here, we derive the equations implied by the correction to the energy of Equation (1) and

confirm the physical understanding presented in the previous two paragraphs.

The derivative of δE with respect to an occupied electron orbital k is given by

∂δE

∂ψ∗
k

= e2ℏ2

8m2ϵ0

∞∑
n=Nσ+1

∞∑
q=1

∫
d3y F∗

q(y) · jnk(y)
ωq(ωkn − λq)

∫
d3x (Fq(x) · ∇ψn(x) + ∇ · (Fq(x)ψn(x)))

(E.2)

A similar equation arises for the derivative with respect to an unoccupied electron orbital,

except that the summation should now be over unoccupied electron orbitals.
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The derivative of δE with respect to a photonic orbital q is given by

∂δE

∂F∗
q

= e2ℏ2

8m2ϵ0

∞∑
n=Nσ+1

Nσ∑
m=1

∫
d3y Fq(y) · jmn(y)
ωq(ωmn − λq)

jnm(x). (E.3)

The derivative of δE with respect to a photonic frequency ωq is given by

∂δE

∂ωq

= − e2ℏ2

8m2ϵ0

∞∑
n=Nσ+1

Nσ∑
m=1

∣∣∣∣ ∫ d3x Fq(x) · jmn(x)
∣∣∣∣2

ω2
q (ωmn − λq)

(E.4)

Using these derivatives, Equation (6) of the main text is generalized to:

(
p2

2m + vext(x)
)
ψi(x) +

N∑
j=1

∫
d3x′ V (x − x′)

(
ψ∗

j (x′)ψj(x′)ψi(x) − ψ∗
j (x′)ψj(x)ψi(x′)

)

+ ℏe2

4mϵ0

∑
n

1
ωn

|Fn(x)|2ψi(x)+

e2ℏ2

8m2ϵ0

∞∑
n=Nσ+1

∞∑
q=1

∫
d3y F∗

q(y) · jni(y)
ωq(ωin − λq)

(Fq(x) · ∇ψn(x) + ∇ · (Fq(x)ψn(x))) = Eiψi(x).

(E.5)

Setting the derivative with respect to photonic modes zero gives the equation:

ℏ
4

(
ωqFq(x) + c2

ωq

∇ × ∇ × Fq(x)
)

+
ℏ

Nσ∑
m=1

|ψm(x)|2

4mϵ0ωq

+ e2ℏ2

8m2ϵ0

∞∑
n=Nσ+1

Nσ∑
m=1

∫
d3y Fq(y) · jmn(y)
ωq(ωmn − λq)

jnm(x) = ℏλq

2 Fq(x) (E.6)

And setting the derivative with respect to the photonic frequencies to zero gives the

equation:

ℏ
4

(∫
d3x |Fq(x)|2 − c2

ω2
q

F∗
q(x) · ∇ × ∇ × Fq(x)

)
− e2ℏ

4mϵ0ω2
q

∫
d3x

Nσ∑
m=1

|ψm(x)|2

− e2ℏ2

8m2ϵ0

∞∑
n=Nσ+1

Nσ∑
m=1

∣∣∣∣ ∫ d3x Fq(x) · jmn(x)
∣∣∣∣2

ω2
q (ωmn − λq)

= 0 (E.7)

Performing the operation 1
ωq

∫
d3xF∗

q(x)· on Equation (6), and adding the result to Equa-
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tion (7), gives the result λq = ωq, just as before δE was introduced. Using this key

simplification, along with the definition of the spatially-dependent plasma frequency as

ω2
p(x) = e2

mϵ0

Nσ∑
m=1

|ψm(x)|2, we have that Equation (7) of the main text is generalized to:

(
∇ × ∇ × −

(
1 −

ω2
p(x)
ω2

q

))
Fq(x) = − e2ℏ

2m2ϵ0c2

∞∑
n=Nσ+1

Nσ∑
m=1

∫
d3y Fq(y) · jmn(y)

ωmn − ωq

jnm(x).

(E.8)

Equations (5) and (8) represent main results of this work and provide a general starting

point for first-principles analysis of ground states of QED systems in the non-perturbative

regime.

E.2 Derivation of results for one-dimensional cavity model

in the main text

In this section, we provide some additional details on the one-dimensional cavity QED

model considered in the main text. Given the Hamiltonian of Equation (9) in the main text

describing the coupling of an emitter to a one-dimensional cavity, with the matter being

described by the site model of Equations (10) and (11) of the main text, the expectation

value of the Hamiltonian according to the ansatz of Equation (4) in the main text is given

by

⟨Ψ|H|Ψ⟩ = ⟨g̃|Hmatter|g̃⟩ + ℏ
4

∫
dz

∞∑
n=1

(
ωn|Fn|2 − c2

ωn

F ∗
n∂

2
zFn

)

+ ℏq2

4mϵ0ωn

∞∑
n=1

∫
dz δ(z − d)|Fn|2 (E.9)

In this equation, |g̃⟩ is the ground state of the effective matter part of the Hamiltonian, and

Hmatter is the Hamiltonian of Equation (10) of the main text. We impose constraints of

matter normalization and photon mode normalization by defining a Lagrange function

L(|g̃⟩, ⟨g̃|, ϵ, {Fn, F
∗
n , ωn, λn}) ≡ ⟨Ψ|H|Ψ⟩ − ϵ(⟨g̃|g̃⟩ − 1) −

∞∑
n=1

ℏλn

2

(∫
dz |Fn|2 − 1

)
.

(E.10)
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To find the ground state, we minimize the Lagrange function with respect to the matter

orbital |g̃⟩ and with respect to the mode functions Fn. The minimization with respect to

the matter leads to the trivial equation Hmatter|g̃⟩ = ϵ|g̃⟩ which leaves the effective matter

ground state as simply the ground state ofHmatter. On the other hand, the minimization with

respect to the photon mode functions leads to the equation

(
∂2

z − ω2
n

c2 + 2ωnλn

c2 − q2

mϵ0c2 δ(z − d)
)
Fn = 0. (E.11)

We may constrain the λn by differentiating the Lagrange function with respect to the ωn.

The equation which follows is:

∫
dz

(
|Fn|2 + c2

ω2
n

F ∗
n∂

2
zFn

)
− q2

mϵ0ω2
n

∫
dz δ(z − d)|Fn|2 = 0 (E.12)

Performing ω2
n

c2

∫
dz F ∗

n on both sides of Equation (11), and adding this equation to Equation

(12), one immediately finds that λn = ωn and that

(
∂2

z + ω2
n

c2 − q2

mϵ0c2 δ(z − d)
)
Fn = 0. (E.13)

This is an ordinary second-order differential equation with the conditions that Fn is

continuous at d and that its derivative is discontinuous according to

∂zFn

∣∣∣∣
z=d+

− ∂zFn

∣∣∣∣
z=d−

= q2

mϵ0c2Fn(d), (E.14)

in addition to the usual condition of the modes vanishing at the cavity walls z = 0 and z =

L. It can be shown that the solution to Equation (13) satisfying such boundary conditions
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is:

θ(z − d)
sin

(
ωnL

c

)
sin

(
ωnd

c

)
cos

(
ωnz

c

)
sin

(
ωn(L−d)

c

) −


−θ(z − d)

cos
(

ωnL
c

)
sin

(
ωnd

c

)
sin

(
ωnz

c

)
sin

(
ωn(L−d)

c

)


+θ(d− z) sin
(
ωnz

c

)
(E.15)

provided that the auxiliary condition

cot
(
ωn

c
d
)

+ cot
(
ωn

c
(L− d)

)
= − q2

mϵ0ωnc
(E.16)

is met. To ensure that the modes are normalized according to the constraint, we have that

the solutions of Equation (15) must be multiplied by a normalization factor Nn given by

Nn = 2
√√√√√ 1

c
ωn

(
ωnL

c
− sin

(
ωnL

c

)) (
1 + sin2(ωnd

c )
sin2(ωn(L−d)

c )

) . (E.17)

The condition of Equation E.16 determines the resonance frequencies of the photon quasi-

particle modes.

Perturbation theory for the one-dimensional cavity model

As discussed in the main text, the variational energies, as well as the energies from nu-

merical diagonalization, are compared against the energies calculated from perturbation

theory. We provide additional details on the perturbative calculations here. What we cal-

culate is the energy shift of a state |a, 0⟩, where a is any matter state, and 0 denotes the

photonic vacuum, according to the perturbation Hamiltonian q
m
Ap + q2

2m
A2, where p is

the momentum operator for the matter defined in the main text, and A is the vector po-

tential operator of the one-dimensional cavity in the absence of the matter. In particular,

A(z) = ∑
n

√
ℏ

ϵ0ωnL
sin

(
nπz
L

) (
an + a†

n

)
, with L the length of the cavity and ωn = nπc

L
.

Upon inspection, it is clear that the A2 term leads to an energy shift at first-order in pertur-

bation theory, while the A · p term leads to an energy shift at second-order in perturbation
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theory. A straightforward application of perturbation theory leads to the following first-

order energy shift from the A2 term:

δEa = q2

2m

Np∑
n=1

ℏ
ϵ0ωnL

sin2
(
nπz

L

)
, (E.18)

where z is the location of the matter in the cavity, and Np is the maximum photon number

retained. Note that this value is dependent on the maximum photon number (although

somewhat weakly) retained due to the logarithmically diverging nature of the sum, and

so to compare variational, numerical, and perturbative calculations, the same number of

modes are retained in each. A similarly straightforward application of perturbation theory

leads to the energy shift coming from the A · p term being given by:

δEa = q2

m2

∑
b ̸=a

Np∑
n=1

ℏ
ϵ0ωnL

|pba|2 sin2
(

nπz
L

)
ℏ(ωa − ωb − ωn) , (E.19)

where b denotes a matter state different from a, and pba = ⟨b|p|a⟩.

In the main text, we also considered expectation values such as ⟨A · p⟩ in the ground

state within perturbation theory. Calculating the shift of the ground-state wavefunction at

first-order in perturbation theory, we immediately find that

⟨Ap⟩ = 2q
m

Re
∑
b ̸=a

Np∑
n=1

1
2ϵ0L

|pba|2 sin2
(

nπz
L

)
ωn(ωa − ωb − ωn) . (E.20)

It is also of interest to consider ”field-only“ observables such as the number of (virtual)

photons in the ground state. Calculating the wavefunction of the ground state at first-order

in perturbation theory, and calculating the probability of a photon being in the ground state,

one finds that

⟨N⟩ =
Np∑

n=1
⟨a†

n,barean,bare⟩ = q2

m2

∑
b̸=a

Np∑
n=1

1
2ℏϵ0L

|pba|2 sin2
(

nπz
L

)
ωn(ωa − ωb − ωn)2 , (E.21)

where the ”b“ or ”bare“ subscript in the creation and annihilation operators denotes that

these are creation and annihilation operators for photon modes in the cavity in the absence
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Figure E-1: Number of virtual photons (bare and interacting) in the ground state
calculated variationally, numerically, and through perturbation theory. Parameters
are the same as in Fig. 2 (top panel) of the main text.

of interactions (e.g., the sine modes for the 1D cavity considered here). In Fig. S1, we

compare the expectation value of the number of ”bare“ photons calculated perturbatively,

and with exact diagonalization with the variationally calculated number of ”interacting“

photons,
Np∑

n=1
⟨a†

n,intan,int⟩ (e.g., the modes shown in Fig. 2b of the main text). The number of

photons in the bare basis differs substantially from the number of photons in the interacting

basis.

This behavior does not reflect any inconsistency with the variational method, but is

instead a feature which is to be expected. In particular, the physics of the ansatz of Eq.

4 of the main text is that a complicated ground state which has many virtual photons (see

numerical diagonalization result) in it should be physically equivalent to a ground state with

nearly no virtual photons (see variational result), but with different modes and frequencies.

In other words, the reason the number of virtual photons differs is simply because they are

being counted in the basis of ”interacting modes“ shown in Fig. 2b of the main text. That

said, our variational theory does not give a prescription to translate the interacting mode

operators to the bare mode operators.

We note that in all cases, when calculating these quantities in the variational theory,

these expressions are still relevant, with the replacement of the bare photon frequencies
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and mode functions replaced by the ones that result from Eq. 7 of the main text.

E.2.1 Model parameters for Figure 2 and details of numerical diago-

nalization

Here, we note the parameters used in Fig. 2, as well as some details regarding the numerical

diagonalization used to assess the validity of the variational approach advanced in the main

text.

1. The hopping matrix elements t were taken to be 0.25 eV for the two-, three-, and

four-level systems. Meanwhile, the on-site energies were taken to be equal on all

sites in the two-, three-, and four-level systems.

2. The cavity length was taken to be 1 micron.

3. The area of the cavity in the transverse direction was taken to be 100 nm2.

4. The maximum number of cavity modes retained in the calculations was 100. Our

results were converged with respect to the number of cavity modes.

5. In the numerical diagonalization results (red lines of Fig. 2 of the main text), the

Fock space was truncated such that the number of photons retained was no more

than four. For the largest couplings plotted in Fig. 2, this was sufficient. But for

higher couplings, more photons in the numerical diagonalization are needed. For

four photons and 100 cavity modes coupled to a four-level system, the dimension of

the Hilbert space is 4 × (1 + 100 + 5050 + 171, 700 + 4, 421, 275) = 18, 392, 504.

The four terms in the parentheses correspond to the dimension of the properly sym-

metrized zero-, one-, two-, three-, and four-photon Hilbert spaces respectively. Also

see Ref. [399] for more details on the exact numerical diagonalization methods for

light-matter coupled problems.

6. The largest couplings plotted in Fig. 2 correspond to either a single emitter with

a charge of 200e, or an ensemble of emitters (as is the case in many ultra-strong

coupling experiments) in which there are 40,000 emitters in the cavity. The largest
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couplings correspond to rather extreme coupling parameters and are shown mostly

to demonstrate that our ansatz is quite accurate even in regimes of extremely high

coupling.

Regarding the numerical diagonalization, we numerically implement the Hamiltonian

of Eq. (9) of the main text by building the matter operators (H0 and p as defined in the

main text) in the basis of states corresponding to the tensor product of any matter state,

and any photon state having four photons or less . Details regarding the ordering con-

vention for the properly symmetrized multi-photon states are provided in Ref. [399] for

example. Photon operators (a, a†) are constructed in this basis, and used to construct field

operators such as A in the basis of bare cavity modes (the usual sine modes). In particular,

A(z) = ∑
n

√
ℏ

ϵ0ωnL
sin

(
nπz
L

) (
an + a†

n

)
, with L the length of the cavity and ωn = nπc

L
.

Diagonalization is performed using standard sparse eigendecomposition routines (such as

those implemented in MATLAB).
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Appendix F

Appendices for: Nonperturbative

quantum nonlinearities and Fock-state

lasers based on deep-strong coupling of

light and matter

In this Supplement, we derive and extend the results of the main text. Consider a system

involving matter coupled to a cavity mode very strongly, so that the system is in the ultra-

or deep-strong coupling regime. This system is described by the Rabi Hamiltonian of Eq.

(1) of the main text (Hamiltonian and variables re-defined here for self-containedness):

HRabi/ℏ = 1
2 (ω0σz + λσx) + ωa†a+ g̃σx(a+ a†), (F.1)

Here, ω0 is the transition frequency of the two-level system, σx,z are the x and z Pauli

matrices, ω is the cavity frequency, a(†) is the cavity annhilation (creation) operator, and g̃

is the Rabi frequency. We also non-dimensionalize the coupling as g = g̃/ω.

Let us now transfer energy into this system by means of external emitters, treated as

two-level systems of energy ω0. Let us assume the emitter is primarily interacting with the

cavity (as it is too far for direct interactions with the dipole of the matter). Let us then take
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the full Hamiltonian describing the coupling of one emitter to the light-matter system as

H/ℏ = ωem
0
2 σem

z +HRabi + ϵσx,em(b+ b†), (F.2)

which couples the emitter directly to the DSC photon. We can also consider interactions

solely between the emitter and the resonator field, replacing b → a. We consider this case

as well, to show that the exact nature of the emitter-qubit dipole-dipole coupling does not

qualitatively change our conclusions.

If the emitter is in the excited eigenstate |e⟩, and it is resonant with a transition of

the Rabi Hamiltonian, the emitter can transfer energy to the light-matter system. Upon

interaction with a second emitter, if the next transition of the Rabi model has nearly the

same frequency, the system can get further excited. A key observation is that in the deep-

strong coupling regime g ≫ ω, the eigenstates are approximately equally spaced, and the

excitations are oscillator-like, quite similarly to the zero-coupling case. This should allow

the possibility of reaching a very high excitation number in the presence of many emitters,

based on stimulated emission of these oscillator modes (we will call them DSC photons).

When the coupling is not infinite, as in a realistic case, the levels are no-longer fully equally

spaced. This detuning is photon-number dependent, thus acting as a nonlinearity which

may qualitatively change the steady-state of this type of laser.

To begin, we need to derive simple forms for the eigenstates of the Rabi Hamiltonian in

the deep-strong coupling limit. Then, we will consider their coupling to external emitters,

and write a coarse-gained equation of motion for the density matrix of the DSC bosons,

and then solve it.

F.0.1 Eigenstates of the Rabi Hamiltonian

In what follows, we will take ω0 = ω (resonant) and λ = 0. In later subsections, we will

analytically and numerically consider the case of a finite λ, which is found to preserve our

main findings.

In the deep-strong coupling regime, we can treat the matter term in the Rabi Hamilto-

nian as a perturbation to the remainder of the Hamiltonian. The remainder of the Hamilto-
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nian (divided by ℏ), which we call HDSC is

HDSC = ωa†a+ g̃σx(a+ a†) = ω(a† + gσx)(a+ gσx) − ωg2, (F.3)

where g ≡ g̃/ω is a dimensionless measure of the coupling strength. Introducing the

displacement operator D(gσx) = exp
[
gσx(a† − a)

]
, where we’ve taken g real without

loss of generality, we have

HDSC = ωD†(gσx)a†aD(gσx), (F.4)

where we’ve omitted the overall constant −ωg2. From here, we can easily see that the

eigenstates of this Hamiltonian are of the form D†(±g) |±x, n⟩, where |x⟩ denotes the x-

spin basis, and n is a Fock state. In other words, the eigenstates involve the spin being

x-polarized (rather than z-polarization), and the photon being in a displaced Fock state

(rather than just a Fock state). Clearly,

HDSCD
†(±g) |±x, n⟩ = ωD†(±g)a†aD(±g)D†(±g) |±x, n⟩ = nωD†(±g) |±x, n⟩ .

(F.5)

Clearly then, in this limit, the eigenstates are evenly spaced, and doubly degenerate. In fact,

it can be seen as a system of two non-interacting bosons (“DSC photons”). Introducing

bσ = a+ gσx we can write the Hamiltonian as

HDSC = ωb†b. (F.6)

It can also be easily seen that [b, b†] = 1.

The degeneracy of the DSC Hamiltonian is split by the matter Hamiltonian. We can

find the resulting eigenstates and eigenenergies using degenerate first-order perturbation

theory. The “good” eigenbasis of the problem is

|n, σ⟩ = 1√
2
(
D† |+x, n⟩ + σD |−x, n⟩

)
, (F.7)
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where σ = ±1, and a displacement operator without an argument implies that the argument

is g. The energies of the resulting states are

Enσ = ω

2 ⟨n, σ|σz |n, σ⟩

= ω

4
(
⟨+x, n|D + σ ⟨−x, n|D†

)
σz

(
D† |+x, n⟩ + σD |−x, n⟩

)
= σ

ω

4
(
⟨n|D2 |n⟩ + ⟨n|D†2 |n⟩

)
= σ

ω

2 ⟨n|D2 |n⟩ ≡ σ
ω

2Dn, (F.8)

whereDn = ⟨n|D2(g) |n⟩ = ⟨n|D(2g) |n⟩. These eigenstates and energies are sufficiently

accurate, even for g = 2 or g = 3.

Evaluation of Dn.

Let us evaluate the Dn. To do so, we write:

Dn(2z) = ⟨n|DD |n⟩ = 1
n! ⟨0| anDDa†n |0⟩ = 1

n! ⟨0|D(D†anD)(Da†nD†)D |0⟩

= 1
n! ⟨−z| (a+ z)n(a† − z∗)n |z⟩ . (F.9)

To proceed, insert a “complete” set of states using the over-completeness of the coherent

states. That leaves us with

Dn(2z) = 1
πn!

∫
d2α ⟨−z| (a+ z)n |α⟩ ⟨α| (a† − z∗)n |z⟩

= 1
πn!

∫
d2α(α + z)n(α∗ − z∗)n⟨α|z⟩⟨−z|α⟩. (F.10)

Using the rule for the overlap of two coherent states, we have

Dn(2z) = 1
πn!

∫
dαdα∗(α + z)n(α∗ − z∗)ne−αα∗−zz∗+α∗z−z∗α, (F.11)
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where we have written things this way to emphasize that α and α∗ are independent vari-

ables. We can now write this as

Dn(2z) = ezz∗

πn!

∫
dαdα∗(α + z)n(α∗ − z∗)ne−αα∗+z(α∗−z∗)−z∗(α+z). (F.12)

Then, we transform variables as α → α− z and α∗ → α∗ + z∗ to get

Dn(2z) = ezz∗

πn!

∫
dαdα∗ αnα∗ne−(α−z)(α∗+z∗)+zα∗−z∗α = e2zz∗

πn!

∫
dαdα∗ αnα∗ne−αα∗+2zα∗−2z∗α.

(F.13)

This can be generated from simpler integrals by differentiation, as:

Dn(2z) = (−1)n e
2zz∗

πn!
∂2n

∂n(2z)∂n(2z∗)

∫
dαdα∗ e−αα∗+2zα∗−2z∗α. (F.14)

Completing the square in the remaining integral gives

Dn(2z) = (−1)n e
2zz∗

πn!
∂2n

∂n(2z)∂n(2z∗)e
−4zz∗

∫
dαdα∗ e−αα∗+2zα∗−2z∗α+4zz∗

= (−1)n e
2zz∗

πn!
∂2n

∂n(2z)∂n(2z∗)e
−4zz∗

∫
dαdα∗ e−(α−2z)(α∗+2z∗). (F.15)

Shifting variables as α → α + 2z and α → α − 2z∗, and performing the final Gaussian

integral, we have

Dn = (−1)n e
2zz∗

n!
∂2n

∂(2z)n∂(2z∗)n
e−4zz∗

. (F.16)

These are related to Laguerre polynomials. To see this, take the derivative with respect to

z∗. We will also use the notation z → x/2 and z∗ → y/2 for clarity.

Dn(2z) = (−1)n e
xy/2

n!
∂2n

∂xn∂yn
e−xy = exy/2

n!
∂n

∂(xy)n
(xy)ne−(xy)

= e−xy/2
(
exy

n!
∂n

∂(xy)n
(xy)ne−(xy)

)
. (F.17)

From the Rodrigues formula for the Laguerre polynomials, we then have

Dn(2z) = e−2|z|2Ln(4|z|2). (F.18)
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Given that the z = g, we have then that the the level splitting is given by

Enσ = nω + σ
ω

2 e
−2|g|2Ln(4|g|2) (F.19)

F.0.2 Time-evolution of the coupled system

With the approximate eigenstates of the Rabi Hamiltonian, we now want to understand the

full dynamics of H . We will take advantage of the fact that for a laser, ϵ is small, and in

particular, ϵ ≪ ω, so that the rotating-wave approximation is valid. In this system, the

rotating wave approximation consists of only considering the dynamics within degenerate

subspaces of the unperturbed Hamiltonian

H0 = ω0

2 σz,em +HRabi. (F.20)

The eigenstates of the problem are |k⟩ |nσ⟩, where now k = 0, 1 denotes emitter states

(ground is zero, excited is one). The energies of such states are (up to a shift)

Eknσ = (n+ k(1 + δ))ω + σ
ω

2Dn. (F.21)

where we have taken ω0 = (1 + δ)ω. From here on out, let us assume δ ≪ ω. In that case,

it is easy to see that the following four states form our nearly degenerate subspace:

{|1, n− 1,+⟩ , |0, n,+⟩ , |1, n− 1,−⟩ , |0, n,−⟩}. (F.22)

We now need to understand the action of the interaction Hamiltonian V ≡ ϵσx,em(b + b†)

on this subspace. First of all,

⟨k′n′σ′|V |knσ⟩ = 0 if k = k′. (F.23)

For k = −k′, we have

⟨−kn′σ′|V |knσ⟩ = ϵ
1 + σσ′

2 (
√
nδn′,n−1 +

√
n+ 1δn′,n+1). (F.24)
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From these matrix elements, we see that: if the pseudo-spin (σ) is conserved, then a

non-zero matrix element occurs only when the boson number changes by 1. Noting that

b = a + gσx, we can also readily describe interactions using a as ⟨n′σ′|a + a†|nσ⟩ =
√
nδn′,n−1 +

√
n+ 1δn′,n+1 − 2g 1−σσ′

2 δnn′ , such that: when the pseudo-spin changes, non-

zero matrix elements occur only when the boson number is conserved. When the spin is

conserved, the matrix elements are the same as for b + b†. Since only states with different

photon number differ appreciably in frequency (and in particular, will be resonant with the

emitter we introduce), the interactions are effectively the same whether we describe a or b.

This is also to say that any modification in the coefficient of the dipole-dipole interaction

between emitter and qubit will lead to the same result insofar as DSC photon dynamics are

concerned. In Fig. 1, we show the matrix elements of a and b between adjacent states of

the same spin, as well as a†a and b†b. For n < nc ∼ g2, they behave as one might expect

for an oscillator.

We should note that beyond nc, these states and matrix elements that we calculate based

on degenerate perturbation theory are expected to change significantly. However, the ap-

proximate result turns out to describe the system well because the probabilities to find pho-

ton numbers beyond nc are strongly suppressed in the Fock laser, rendering the description

relatively insensitive to these details.

X

(a) (b) (c)
X = a†,b†σ = -1, +1

Figure F-1: Matrix elements of a†a, b†b and a, b, showing that b counts excitations of the
DSC system over the full range of eigenstates. However, up to nc, a and b act similarly.

Based on these considerations, we see that the Hamiltonian in the degenerate subspace
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may be written as:

H = (δω + ω

2Dn−1) |1, n− 1,+⟩ ⟨1, n− 1,+| + (ω2Dn) |0, n,+⟩ ⟨1, n,+|

+ ϵ
√
n |1, n− 1,+⟩ ⟨0, n,+| + h.c

+ (δω − ω

2Dn−1) |1, n− 1,−⟩ ⟨1, n− 1,−| + (−ω

2Dn) |0, n,−⟩ ⟨0, n,−|

+ ϵ
√
n |1, n− 1,−⟩ ⟨0, n,−| + h.c. (F.25)

As we can see here, there are two independent blocks of the Hamiltonian (for each pseudo-

spin) and we can thus study them separately. Let us assume that we’re at zero temperature,

and so the ground state has the − pseudo-spin, which we assume to be conserved for all

times. In that case, we can work with the simple 2x2 Hamiltonian

Heff = ω(δ−1
2Dn−1) |1, n− 1⟩ ⟨1, n− 1|−1

2ωDn |0, n⟩ ⟨0, n|+ϵ
√
n |1, n− 1⟩ ⟨0, n|+ h.c,

(F.26)

where the pseudo-spin label has been dropped. This can be written in terms of Pauli matri-

ces as

Hn = ω

2 (δ − 1
2(Dn−1 +Dn))I + ω

2 (δ − 1
2(Dn−1 −Dn))σz + ϵ

√
nσx. (F.27)

Introducing En = ω
2 (δ − 1

2(Dn−1 + Dn)), ∆n = ω
2 (δ − 1

2(Dn−1 − Dn)), we have very

simply

Hn = EnI + ∆nσz + ϵ
√
nσx. (F.28)

As we will see in the next section, we need to know how states of the form |1, n− 1⟩ evolve

over time. Thus we need

e−it(∆nσz+ϵ
√

nσx) ≡ e−i|Un|t(Ûn·σ), (F.29)

with Ûn = (∆n,0,ϵ
√

n)√
∆2

n+nϵ2
and |Un| =

√
∆2

n + nϵ2. Since Û · σ = 1, we have

e−i|Un|t(Ûn·σ) = cos(|Un|t) − i(Ûn · σ) sin(|Un|t). (F.30)
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Therefore

e−iHt/ℏ |1, n− 1⟩ = (cos(|Un|t) − iÛnz sin(|Un|t)) |1, n− 1⟩ − iÛnx sin(|Un|t) |0, n⟩ ,

(F.31)

So, the probability of remaining in the same state is

P (1, n− 1) = cos2(|Un|t) + ∆2
n

∆2
n + nϵ2 sin2(|Un|t) = 1 − nϵ2

∆2
n + nϵ2 sin2(|Un|t), (F.32)

while the probability of transitioning is

P (0, n) = nϵ2

∆2
n + nϵ2 sin2(|Un|t). (F.33)

F.1 Equation of motion for DSC photons

Now we consider the description of laser action. To do so, we formulate an equation

for how the density matrix of the DSC photon changes due to stimulated emission by the

emitter. The method of analysis presented closely follows the coarse-grained density matrix

technique used to describe conventional lasers. It is described in many books, such as

[433, 426]. Suppose we have our emitter coupled to the light-matter (DSC) system. The

emitter unit starts in the state |i⟩ and the DSC system is taken to have a density matrix ρDSC,

so that the initial density matrix of the total system ρtot is given by ρtot(t) = |i⟩⟨i|ρDSC(t).

Let us look for an equation describing only the evolution of the DSC system. Assuming

the interaction over a time T corresponds to the evolution operator U , we have that

ρtot(t+ T ) = U(T )|i⟩⟨i|ρDSC(t)U †(T ). (F.34)

Let us express all operators in terms of their matrix elements, writing the above equation as

ρtot(t+ T ) =
∑

ff ′,mm′,nn′
ρDSC,nn′(t)⟨fm|U(T )|in⟩⟨in′|U †(T )|fm′⟩|fm⟩⟨f ′m′|, (F.35)
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where ρDSC,nn′ denotes the matrix elements of the DSC system, for a fixed pseudo-spin.

More compactly,

ρtot(t+ T ) =
∑

ff ′,mm′,nn′
ρDSC,nn′(t)Ufm,in(T )U∗

f ′m′,in′(T )|fm⟩⟨f ′m′|, (F.36)

The DSC photon density matrix, ρDSC = tremρtot, can then be expressed as

ρDSC(t+ T ) =
∑

k

⟨k|ρDSC(t+ T )|k⟩ =
∑

k,mm′,nn′
ρDSC,nn′(t)Ukm,in(T )U∗

km′,in′(T )|m⟩⟨m′|.

(F.37)

From here, a number of approaches can be followed. If there is no loss in the system,

then the density matrix of the total system upon the next iteration is simply ρDSC(t+ T ) =

|i⟩⟨i|ρDSC(t+T ) and this procedure can be iterated in a discrete fashion. The evolution can

also be seen as continuous if, over time T , the change in the density matrix is small. This

doesn’t describe the early stages of the evolution, but it can describe later stages once there

are many bosons in the system. If there is a steady state, then the continuous evolution must

describe the run-up to the steady state, as changes get smaller over time. In such a case, we

have

ρ̇mm′ = r

∑
k,nn′

Ukm,in(T )U∗
km′,in′(T ) − δn,mδn′,m′

 ρnn′ , (F.38)

where r = N/T is the number of excited emitters introduced into the system in time T .

We have also dropped the “DSC” subscript for the DSC photon for brevity. These terms in

the evolution of the density matrix describe the gain in the system. In addition, since there

are losses associated with the cavity, the emitter, and the matter coupled to the cavity, we

need to describe those. For simplicity, we will assume the emitter has loss, and so does the

DSC photon, but not the matter (qualitatively similar results arise if the matter has loss).

F.1.1 Lindblad terms

Here we describe the effect of dissipation of the DSC photon on the equation of motion

for its density matrix. Let’s assume for simplicity that the cavity loss the primary source

of dissipation in the problem. For weak coupling, the standard prescription is to add a
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Lindblad term to the Liouvillian which prescribes the evolution of the density matrix. The

Lindblad term would be (at zero temperature) D[a]ρ ≡ −κ
2 (a†aρ + ρa†a − 2aρa†). As is

well known from studies of dissipation in ultra-strong coupling of light and matter, the use

of the standard Lindblad term leads to unphysical excitations (in the energy eigenbasis),

even at zero temperature, and zero pumping [539]. Part of the issue is that in the USC

regime, the a operator can create excitations in the eigenbasis, clearly not representing

dissipation. Framed in terms of the standard derivation, the issue could be said that the

interaction picture a operator has negative frequencies, and the use of white noise (with

frequencies −∞ to ∞) introduces contributions from these negative frequencies [434, 21].

The issue can be rectified by keeping in mind the positive-frequency nature of the reservoir.

We now use this procedure to describe dissipation in the deep-strong coupling regime.

Although the technique has been worked out for ultra-strong coupling, there is a commonly

used assumption in the final result that all transitions have different frequencies, which does

not necessarily hold in DSC, when the energy ladder is quasi-harmonic. Interestingly, as

we will show from a physical dissipator, the issues described above create much less error

in the DSC regime, and the use of an operator like a or b produces a similar result to a

proper positive-frequency jump operator, as their negative frequency parts get exponentially

suppressed.

Let us consider the Lindblad term arising from a system-bath coupling of the form

V = J
∑

k

(Vkbk + V ∗
k b

†
k), (F.39)

where J is a DSC system operator (e.g., a + a† or b + b†), and the bk are the bath oper-

ators, satisfying [bk, b
†
k′ ] = δkk′ . The couplings Vk between system and bath are weak.

To isolate the positive-frequency parts of J , we express it in its energy eigenbasis as

J = ∑
n>m

JmnTmn + ∑
m>n

JmnTmn +∑
n
JnnTnn ≡ J (+) + J (−) + J0 , with Jmn = ⟨m|J |n⟩

and Tmn = |m⟩⟨n|.

In what follows, we will consider the bath to be concentrated around ω, but broadband

enough that the white-noise approximation may be made for any transitions we consider.

For example, a bath with a half-bandwidth of 10% of ω would be sufficient for the values of
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g, Vk we consider. It would include all active transitions of the form n → n+ 1, but would

not include higher transitions (though the matrix elements for them are small anyway), and

in the presence of a λ term, it would also not include transitions that only change spin (for

λ = 0, the two spins are very nearly degenerate and so the argument should be treated

with more care). Therefore, we may describe the interaction of Eq. (39) within the rotating

wave approximation, instead considering

V ≈
∑

k

(VkbkJ
(+) + V ∗

k b
†
kJ

(−)). (F.40)

We note that it is not necessary to take the RWA at this stage, but it makes the subsequent

manipulations simpler.

Thus, we may approximate the evolution of the reduced density matrix of the DSC

system (in the interaction picture) to second-order in time-dependent perturbation theory,

as:

ρ̇DSC,I = −itrb ([VI(t), ρ(0)]) −
t∫

0

dt′ trb ([VI(t), [VI(t′), ρI(t′)]]) , (F.41)

where ρI is the system-bath density matrix, ρDSC,I is the system density matrix, VI is the

system-bath coupling in the interaction picture, and trb denotes the partial trace with respect

to the bath. For simplicity, we will consider the bath at zero temperature. Upon taking the

trace with respect to the bath, the term which is linear in VI will vanish, and the equation

of motion becomes

ρ̇DSC,I = −
t∫

0

dt′ trb(VI(t)VI(t′)ρI(t′) + ρI(t′)VI(t′)VI(t)

− VI(t)ρI(t′)VI(t′) − VI(t′)ρI(t′)VI(t)). (F.42)

The first term may be simplified, taking the trace with respect to the bath variables, as

−
t∫

0

dt′
∞∫

0

dω D(ω)|V (ω)|2eiω(t′−t)J
(−)
I (t)J (+)

I (t′)ρDSC(t′), (F.43)

whereD(ω) is the density of bath states, and we have replaced the sum over k by an integral
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over bath frequencies. Since an operator of the form J (+) is a pure de-excitation operator,

no spurious excitations are introduced, and the integration limits may be extended to −∞.

Doing so, and making the white noise approximation, one immediately finds that the term

evaluates to −κ
2J

(−)
I (t)J (+)

I (t)ρDSC(t), where κ = 2πρ|V |2. A similar manipulation for

the remaining terms yields that the free dissipation dynamics of the DSC Hamiltonian are

governed by

ρ̇DSC,I = −κ

2
(
J

(−)
I J

(+)
I ρDSC + J

(−)
I J

(+)
I ρDSC − 2J (+)

I ρDSCJ
(−)
I

)
. (F.44)

Let us use this to find the contribution of dissipation to the equation of motion for the

populations, ρnn. From here on out, we will suppress the “DSC” subscript. We will ignore

the spin degree of freedom (and restrict the dynamics to a single spin ladder). Although this

is not rigorous, one expects this to capture well the dynamics of the DSC photon number

as, for λ = 0, one will just expect the nearly degenerate spins to be mixed, with little

change of the oscillator quantum numbers. We validate this numerically. For finite λ the

spin ladders can be split appreciably, and so they will decouple. Consider a J of the form

b + b†. As discussed in the main text, b is a pure de-excitation operator, and b† is a pure

creation operator. Therefore, J (+) = b. Using the fact that ⟨n′σ|b|nσ⟩ =
√
nδn′,n−1 and

b†b|nσ⟩ = n|nσ⟩, one immediately arrives at

ρ̇nn = −κnρnn + κ(n+ 1)ρn+1,n+1, (F.45)

which is similar to the form one would expect for damping of a conventional photon. This

is perhaps unsurprising in light of the fact that the DSC photon is essentially harmonic up to

nc ∼ g2. It is worth noting that the matrix elements derived for a, b in Eq. (24) are based on

first-order degenerate perturbation theory. Beyond nc, these approximations do not hold up

and the states and matrix elements change significantly. However, the approximate result

turns out to describe the system well because the probabilities to find photon numbers

beyond nc are strongly suppressed. It is also worth noting that if we chose a instead of b as

the jump operator, when we neglect spin, the matrix elements are the same. Numerically,

we find that whether we choose a or b as the jump operator, negligible levels of excitations
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are created in the ground state, and the steady-state of the Fock laser we describe is not

qualitatively changed. These numerics are shown in the last section.

Rate equations

We will now obtain a closed set of equations for the diagonals of the DSC density matrix, to

get the probability of different Fock state occupations of the DSC photons. Settingm = m′,

we have

ρ̇mm = r

∑
k,nn′

Ukm,in(T )U∗
km,in′(T ) − δn,mδn′,m

 ρnn′ . (F.46)

The set of equations for the coarse grained density matrix is only closed when

Ukm,in(T )U∗
km,in′(T ) is zero unless n = n′. In that case, we have

ρ̇mm = r

∑
k,n

|Ukm,in(T )|2 − δn,mδn′,m

 ρnn′ = r

∑
k,n

|Ukm,in(T )|2ρnn − ρmm

 .
(F.47)

We can now note the conditions under which the equations for the populations become

closed. We require Ukm,in(T )U∗
km,in′(T ) is zero unless n = n′. This is equivalent to

saying that a transition in → km and in′ → km are not simultaneously possible. Sup-

posing i is also an eigenstate of the light-matter system, and that we are in the RWA, this

statement appears to amount to energy conservation, as transitions are assumed to be only

efficient if they are resonant, so that Ei + En = Ek + Em. Therefore the condition that

Ukm,in(T )U∗
km,in′(T ) ̸= 0 for n ̸= n′ requires En = En′ , which, for a single oscillator,

requires n = n′.

In the weak coupling regime then, we have (adding in the photon losses)

ρ̇mm = r
∑
k,n

|Ukm,in(T )|2ρnn − rρmm + κ(m+ 1)ρm+1,m+1 − κmρmm. (F.48)

Let’s now consider the case of the emitter coupled to our light-matter system. Since

we inject emitters in the excited state, we have i = 1. The state 1n couples only to 1n

and 0(n + 1). So, the sum over probabilities leaves only the scattering matrix coefficients
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U1m,1m and U0m,1(m−1). Therefore, the coarse-grained equation simplifies to:

ρ̇mm = r(|U0m,1(m−1)(T )|2ρm−1,m−1+|U1m,1m(T )|2ρmm)−rρmm+κ(m+1)ρm+1,m+1−κmρmm.

(F.49)

We found these probability coefficients when studying the dynamics of the Hamiltonian in

the degenerate subspace of fixed pseudo-spin. Plugging in the results there, we have 1

ρ̇nn = rnϵ2

∆2
n + nϵ2 sin2(|Un|T )ρn−1,n−1 −

(
r(n+ 1)ϵ2

∆2
n+1 + (n+ 1)ϵ2 sin2(|Un+1|T ) + κn

)
ρnn

+ κ(n+ 1)ρn+1,n+1. (F.50)

To proceed, we must the emitter loss (T1 and T2 decay) into account. Assuming that

the emitter loss manifests as exponential decay with rate Γ, the effect is to average the

probability coefficients over T with probability distribution P (T ) = Γe−ΓT . Noting that

Γ
∫
dT e−ΓT sin2(αT ) = 2α2

Γ2 + 4α2 , (F.51)

we have

ρ̇nn = r
nϵ2

∆2
n + nϵ2

2U2
n

Γ2 + 4U2
n

ρn−1,n−1

−
(
r

(n+ 1)ϵ2

∆2
n+1 + (n+ 1)ϵ2

2U2
n+1

Γ2 + 4U2
n+1

+ κn

)
ρnn

+ κ(n+ 1)ρn+1,n+1. (F.52)

1To check a limiting case, we set the detunings are zero. In that case, |Un| =
√
nϵ, and we have

ρ̇nn = r sin2(ϵT
√
n)ρn−1,n−1 −

(
r sin2(ϵT

√
n+ 1) + κn

)
ρnn + κ(n+ 1)ρn+1,n+1

This coincides exactly with the equation of motion of the so-called micromaser, which describes the inter-
action of injected two-level atoms interacting with a cavity (in the perturbative coupling regime g ≪ ω).
This is quite interesting as the micromaser equations assume g ≪ 1, while here, we are starting from the
limit g ≫ 1. Moreover, by averaging over decay times as we do in the next subsection, we will find exactly
the standard Scully-Lamb master equation for a conventional laser. What’s happening here is that in the
weak-coupling regime, assuming the emitter is resonant, the detunings also approximately vanish between
the nearly degenerate levels. And so we get a similar equation, except that it the conventional case, it is in the
photon basis, and here it is in the DSC photon basis.
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Noting that U2
n = ∆2

n + nϵ2, we have

ρ̇nn = r
2nϵ2

Γ2 + 4(∆2
n + nϵ2)ρn−1,n−1

−
(
r

2(n+ 1)ϵ2

Γ2 + 4(∆2
n+1 + (n+ 1)ϵ2) + κn

)
ρnn

+ κ(n+ 1)ρn+1,n+1. (F.53)

Assuming resonance between the emitter and the light-matter system, we have finally

ρ̇nn = 2rnϵ2

Γ2 + F (n)ρn−1,n−1 −
(

2r(n+ 1)ϵ2

Γ2 + F (n+ 1) + κn

)
ρnn + κ(n+ 1)ρn+1,n+1, (F.54)

with the nonlinearity, F (n) defined as

F (n) = 4nϵ2 + 1
4ω

2e−4g2(Ln(4g2) − Ln−1(4g2))2. (F.55)

Here, we have used ∆n = ω
2 (δ − e−2g2

2 (Ln−1(4g2) − Ln(4g2))) with δ = 0.

F.1.2 Steady-state dynamics

Perhaps one of the most important results is the steady-state dynamics of the system. Thus

we want to solve ρ̇n = 0 with the constraint
∑
n
ρn = 1 (introducing the shorthand ρn =

ρnn). Writing the steady-state equation as 0 = Anρn−1 + Bnρn + Cnρn+1, we have the

recursion relation: ρn+1 = −Bnρn+Anρn−1
Cn

, with ρ0 = 1 and ρ−1 = 0. Since any scale

multiple of ρ also solves this equation, we can normalize the solution at the end to satisfy

the normalization constraint.

This equation can be simplified by noting that Bn = −(An+1 + Cn−1). We thus have

Anρn−1 − An+1ρn − Cn−1ρn + Cnρn+1 = 0 or alternatively

Anρn−1 − Cn−1ρn = An+1ρn − Cnρn+1. (F.56)

Defining the difference Sn = Anρn−1 − Cn−1ρn, we see that Sn = Sn+1. Since S0 =
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A0ρ−1 −C−1ρ0 = 0, we have that Sn = 0 for all n, and thus the simpler recursion relation:

ρn+1 = An+1

Cn

ρn =⇒ ρn =
(

n∏
m=1

Am

Cm−1

)
ρ0. (F.57)

The initial ρ0 is taken as 1 understanding that we must normalize the probability distribution

at the end of the calculation. Plugging in the forms of the A and C coefficients, we have

ρn = 1
Z

n∏
m=1

2rϵ2/κ

Γ2 + F (m) ≡ 1
Z

n∏
m=1

α

1 +G(m) = αn

Z

n∏
m=1

1
1 +G(m) , (F.58)

where we have introduced α = 2rϵ2

κΓ2 , G(m) = F (m)/Γ2, and Z = 1 +
∞∑

n=1

(
n∏

m=1
Am

Cm−1

)
,

the normalization constant. We note that the factor α(1+G(n))−1 essentially “propagates”

the probability distribution from n to n+ 1. These results underlie the results of Fig. 2 and

Fig. 3 of the main text.

In Fig. 2, we expand upon Fig. 2 of the main text by showing the statistics as a function

of pump for different coupling parameters, to give the reader of a clearer sense of the

transition from thermal to coherent to Fock statistics.
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Figure F-2: Evolution of photon statistics with pumping: thermal, coherent, anti-thermal,
and Fock states. Photon probability distributions as a function for different pump strengths
and different coupling strengths. For weak coupling, the statistics evolve from thermal
to coherent with increasing pump. For the largest couplings considered, the state evolves
from thermal (for low pump) to coherent (for intermediate pump) to a thermal state of
negative temperature for higher pump. As the pump increases, the negative temperature
state converges effectively to a Fock state. Note that the bottom left panel overlaps with
Fig. 2 of the main text.
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F.1.3 Summary of changes with λ ̸= 0

In most of the discussion, we have assumed that λ = 0. However, in many superconducting

qubit systems, a nonzero σx term is present due to an applied bias field which can tune the

system. Our main results of nonperbative nonlinearity, as well as the Fock lasing action

in these systems, are robust to the addition of this term. We summarize the main changes

here.

We assume that the generalized Rabi Hamiltonian now takes the full form

H = 1
2(ωσz + λσx) + ωa†a+ g̃σx(a+ a†). (F.59)

The spectrum is now approximately given by:

En,σ = nω + σ

2
√

(ωDn)2 + λ2, (F.60)

which corresponds to the eigenstates

|n,+⟩ = cos(θ/2)D†(g) |+x, n⟩ + sin(θ/2)D(g) |−x, n⟩ (F.61)

|n,−⟩ = sin(θ/2)D†(g) |+x, n⟩ − cos(θ/2)D(g) |−x, n⟩ , (F.62)

where the mixing angle θ is defined by tan(θ) = ωDn/λ.

In principles, the modifications to the analysis of the laser action should follow through

new additions to the matrix elements which couple these eigenstates. Specifically, we have

⟨n′,+|(a+ a†)|n,+⟩ = (
√
nδn′,n−1 +

√
n+ 1δn′,n+1) − 2g cos θδnn′ (F.63)

⟨n′,−|(a+ a†)|n,−⟩ = (
√
nδn′,n−1 +

√
n+ 1δn′,n+1) + 2g cos θδnn′ (F.64)

⟨n′,−|(a+ a†)|n,+⟩ = −2g sin θδnn′ . (F.65)

However, we see that the only new terms are only nonzero when the photon number stays

the same. Thus, the only modifications to the equations of motion come from the eigen-

energies. This means that the equations of motion derived previously still hold valid, but
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with a new nonlinearity:

F (n) = 4nϵ2 + ω2

4

(√
D2

n + λ2 −
√
D2

n−1 + λ2
)2
. (F.66)

F.1.4 Direct method for evolving the density matrix

In the previous section, we treated the emitter-field interaction as if excited two-level sys-

tems were being injected into the system at rate r. We also treated the interaction with

the emitters as sequential: as if one emitter interacts with the field at any given time, with

probability coefficients averaged over the emitter’s exponential decay probability. In this

section, we provide an alternative treatment of the problem in which we consider the direct

evolution of the density matrix in the presence of coherent emitter-field interaction, emitter

pumping, emitter decay, and field leakage. This approach, besides being in principle more

rigorous, and besides providing further corroboration of our results above, also allows us

to consider multi-level emitter systems, such as three- and four-level systems, which are

more practical from the standpoint of lasers. This method has been applied to describe

conventional lasers (see [433]), but due to its generality, can be used to describe the Fock

laser discussed in this paper.

The equation of motion for the density matrix is

ρ̇ = −i[H/ℏ, ρ] +
∑

i

γi

2
(
2JiρJ

†
i − J†

i Jiρ− ρJ†
i Ji

)
≡ −i[H, ρ] +

∑
i

Li[ρ], (F.67)

where

H = HRabi +
N∑

i=1
Hem,i + ℏϵi(|ai⟩ ⟨bi| + |bi⟩ ⟨ai|)(b+ b†), (F.68)

is the Hamiltonian describing N multi-level emitters (with Hamiltonian Hem,i) coupled to

the electromagnetic field associated with matter strongly coupled to a single electromag-

netic field mode with coupling constant ϵi. The levels a and b of the ith emitter are coupled

to the field and comprise respectively the excited and ground levels of the lasing transition.

We have changed e, g → a, b as in what follows, we will introduce more levels to incor-

porate realistic decay channels. The terms on the right of the density matrix equation of
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motion are Lindblad terms with decay rates γi and jump operators Ji. The index i enumer-

ates over the possible decay mechanisms, as well as all of the emitters. In what follows,

we review several (standard) simplifications of this equation that render a readily solvable

problem.

For simplicity, we will consider the case (as before) where all emitters have the same

energy levels (and thus the same Hem,i) and coupling constant ϵi = ϵ (which is the average

coupling dictated by the emitter distribution and cavity mode profile). Similarly, the decay

constants of all atomic levels are taken as the same. These simplifications do not negate

the effects reported here. Beyond these simplifications, a key simplification arises because

the emitter-field coupling couples all of the emitters to a single quantum oscillator. In this

case, we can consider the problem as effectively a one-emitter problem where

H = HRabi + ℏϵ(|e⟩ ⟨g| + |g⟩ ⟨e|)(a+ a†) ≡ H0 + V, (F.69)

and the i in the Lindblad terms enumerates only over decay channels. We have defined for

simplicity H0 = HRabi +Hem and V/ℏ = ϵ(|e⟩ ⟨g| + |g⟩ ⟨e|)(a+ a†).

To start, we will consider decay channels for the emitter only, and not the field, and

include the field decay channels at the end of the calculation. In what follows, we consider

an emitter system consisting of lasing levels a, b, ground level g, and “bath levels” c, d for

which a and b respectively decay to. The pumping from g → a occurs with rate r, while

the a → c decay occurs with rate γa, the b → d decay occurs with rate γb, the c → g decay

occurs with rate γc, and the d → g decay occurs with rate γd. Thus, the density matrix

equation of motion may be written as

ρ̇ = −i[H0/ℏ, ρ] − i[V/ℏ, ρ] +
∑

i=g,a,b,c,d

Li[ρ], (F.70)

where the jump operators for g, a, b, c, d are respectively |a⟩ ⟨g| , |c⟩ ⟨a| , |d⟩ ⟨b| , |g⟩ ⟨c|, and

|g⟩ ⟨d| with corresponding rates r, γa, γb, γc, γd.

Let us now write an equation of motion for the matrix elements of the density matrix,

ρβn′,αn, where α, β enumerate over emitter states g, a − d and the n, n′ enumerate over
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the eigenstates of the Rabi Hamiltonian (e.g., the Fock states of DSC photons). We are

considering the Hamiltonian only in one spin projection, as in the previous treatment, since

the spins decouple, both in the conventional Rabi model, and the generalized one (with

λ ̸= 0). To proceed, we will need the following matrix elements

⟨β, n′| [H0/ℏ, ρ] |α, n⟩ = (ωβn′ − ωαn)ρβn′,αn

⟨b, n′|V ρ |α, n⟩ = Vbn′,an′−1ρan′−1,αn

⟨a, n′|V ρ |α, n⟩ = Van′,bn′+1ρbn′+1,αn

⟨β, n′| ρV |b, n⟩ = ρβn′,an−1Van−1,bn

⟨β, n′| ρV |a, n⟩ = ρβn′,bn+1Vbn+1,an. (F.71)

For matrix elements of V ρ and ρV , we have used the structure of the matrix elements in

the section “Time-evolution of the coupled system”, where we showed that the effect of the

coupling is to change the emitter state, and to change the number of field quanta by one.

We also need the matrix elements of the Lindblad terms. Let us consider a generic

Lindblad term of the form

⟨β, n′| Li[ρ] |α, n⟩ = γi

2 ⟨β, n′| 2TjiρT
†
ji − T †

jiTjiρ− ρT †
jiTji |α, n⟩ , (F.72)

where Tji = |j⟩ ⟨i|. Tij is simply Ji with the final-state index j included for clarity. The

matrix element follows as

⟨β, n′| Li[ρ] |α, n⟩ = γi

2 (2δjβδjαρin′,in − δiαρβn′,in − δiβρin′,αn). (F.73)

With these matrix elements tabulated, we may write the following set of equations for
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the matrix elements of the density matrix:

ρ̇an′,an = −iωn′nρan′,an − γaρan′,an + rρgn′,gn

− i(Van′,bn′+1ρbn′+1,an − ρan′,bn+1Vbn+1,an)

ρ̇bn′+1,an =
[
−i(ωbn′+1 − ωan) − γa + γb

2

]
ρbn′+1,an

− i(Vbn′+1,an′ρan′,an − ρbn′+1,bn+1Vbn+1,an)

ρ̇an′,bn+1 =
[
−i(ωan′ − ωbn+1) − γa + γb

2

]
ρan′,bn+1

− i(Van′,bn′+1ρbn′+1,bn+1 − ρan′,anVan,bn+1)

ρ̇bn′+1,bn+1 = −iωn′+1,n+1ρbn′+1,bn+1 − γbρbn′+1,bn+1

− i(Vbn′+1,an′ρan′,bn+1 − ρbn′+1,anVan,bn+1)

ρ̇cn′,cn = (−iωn′n − γc)ρcn′,cn + γaρan′,an

ρ̇dn′,dn = (−iωn′n − γd)ρdn′,dn + γbρbn′,bn

ρ̇gn′,gn = (−iωn′n − r)ρgn′,gn + γcρcn′,cn + γdρdn′,dn. (F.74)

While these equations can be generally solved, we focus as in the previous treatment on

the steady state dynamics. As expected from conventional lasers, the steady state den-

sity matrix is diagonal due to decoherence. Numerically, for this laser system, based on

deep strong light-matter coupling, we also found that the steady-state (found by the null

eigenvector of the Liouvillian (S such that ρ̇ = Sρ)) is diagonal. Let us thus focus on the

steady-state equations for the “photon diagonals“ (n = n′), which are simply
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0 = rρgn,gn − γaρbn,an − i(V ∗ρbn+1,an − ρan,bn+1V )

0 =
[
i∆n+1 − γa + γb

2

]
ρbn+1,an − i(V ρan,an − ρbn+1,bn+1V )

0 =
[
−i∆n+1 − γa + γb

2

]
ρan,bn+1 − i(V ∗ρbn+1,bn+1 − ρan,anV

∗)

0 = −γbρbn+1,bn+1 − i(V ρan,bn+1 − ρbn+1,anV
∗)

0 = −γcρcn,cn + γaρan,an

0 = −γdρdn,dn + γbρbn,bn

0 = −rρgn,gn + γcρcn,cn + γdρdn,dn, (F.75)

where we have defined ∆n+1 = ωan − ωbn+1.

Immediately, we have γaρan,an = γcρcn,cn and γbρbn,bn = γdρdn,dn. The equation for

ρgn,gn then can be written as

rρgn = γaρan,an + γbρbn,bn. (F.76)

For simplicity, let us take γa = γb = Γ, so that

rρgn = Γ(ρan,an + ρbn,bn) = Γ(ρnn − ρcn,cn − ρdn,dn − ρgn,gn), (F.77)

where we have defined the photon populations ρnn = (tremρ)nn in order to express every-

thing in terms of these populations and arrive at a coarse-grained density matrix for the

field. Let us now consider the case where γc ≫ γa and γd ≫ γb. In this case, we im-

mediately see that ρcn,cn ≈ 0 and ρdn,dn ≈ 0. This is to say that these levels are depleted

immediately after they are populated by the lasing levels. In this case, ρgn,gn = Γ
(r+Γ)ρnn.
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The steady-state equations then reduce to the simple inhomogeneous equation:



Γ −iV iV ∗ 0

−iV ∗ Γ + i∆n+1 0 iV ∗

iV 0 Γ − i∆n+1 −iV

0 iV −iV ∗ Γ





ρan,an

ρan,bn+1

ρbn+1,an

ρbn+1,bn+1


= rΓρnn

r + Γ



1

0

0

0


≡ raρnn



1

0

0

0


,

(F.78)

whose solution yields ρan,an, ρan,bn+1, ρbn+1,an, ρbn+1,bn+1 in terms of ρnn. To proceed most

efficiently, we now connect these density matrix elements to the equation of motion for the

reduced density matrix of the field. This equation of motion is

ρ̇nn = −i(ρan−1,bnVbn,an−1 + Van,bn+1ρbn+1,an − ρbn,an−1Van−1,bn − Vbn+1,anρan,bn+1).

(F.79)

The coherences can be found from the matrix equation above, which for brevity, we de-

note as MnPn = raρnne1 so that Pn = raρnn(M−1
n e1). We may write this equation in a

form similar to that of the equation for the coarse-grained density matrix of the previous

treatment, i.e., as

0 = Anρn−1,n−1 − An+1ρn,n, (F.80)

where An = −ira((eT
2M

−1
n−1e1)Vbn,an−1 − (eT

3M
−1
n−1e1)Van−1,bn), and we have looked at the

steady-state limit. At this stage, we now add the Lindblad terms corresponding to the cavity

leakage. As per the discussion in the section “Lindblad terms”, the resulting equation of

motion for the field density matrix is

ρ̇nn = Anρn−1,n−1−(An+1+κ|⟨n−1|a+a†|n⟩|2)ρn,n+κ|⟨n|a+a†|n+1⟩|2ρn+1,n+1. (F.81)

Defining Bn = −(An+1 + κ|⟨n− 1|a + a†|n⟩|2) and Cn = κ|⟨n|a + a†|n + 1⟩|2, we have

as before An+1 +Bn + Cn−1 = 0, enabling us to immediately write

ρn+1 = An+1

Cn

ρn =⇒ ρn =
(

n∏
m=1

Am

Cm−1

)
ρ0. (F.82)

with the initial ρ0 is taken as one with the understanding that we must normalize the prob-
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ability distribution at the end of the calculation. Upon inversion of the matrix Mn, we

immediately find

An = 2ra|Vbn,an−1|2

Γ2 + 4|Vbn,an−1|2 + ∆2
n

. (F.83)

Noting that |Vbn,an−1|2 = ϵ2|⟨n− 1|a+ a†|n⟩|2, we may write the overall equation as

ρn = 1
Z

(
n∏

m=1

2raϵ
2/κΓ2

1 + (4ϵ2|⟨m− 1|a+ a†|m⟩|2 + ∆2
m)/Γ2

)
≡ αn

Z

(
n∏

m=1

1
1 +G(m)

)
,

(F.84)

where α = 2raϵ
2/κγ2 and Z = 1 +

∞∑
n=1

(
n∏

m=1
Am

Cm−1

)
. Immediately, we see that if we take

|⟨n − 1|a + a†|n⟩|2 = n and ∆2
n = 1

4ω
2e−4g2(Ln(4g2) − Ln−1(4g2))2 (assuming ω0 = ω)

that we recover the results of the previous treatment. And it may also be easily seen that

this agreement persists if we take the matrix elements and splitting to be governed by the

generalized Rabi model (with λ ̸= 0).

F.2 Numerical calculation of the Fock laser steady state

In this section, we numerically validate the analytical developments of the previous sec-

tions. Since the analytical calculations make use of many approximations and assump-

tions, it is important to validate them in terms of a method which is independent of these

assumptions. In what follows, we will use a method inspired by the observation that the

equation of motion for the laser density matrix effectively describes the interaction of a

single gain atom with a cavity, even when the gain medium is composed of many atoms.

This is because the atoms only couple to each other through the cavity field, as noted in

[433]. Thus, it follows that laser steady states can be understood through the steady state of

the Liouvillian operator describing a damped oscillator coupled to a gain atom. By taking

the partial trace of the null eigenvector of the Liouvillian, one finds the steady state proba-

bility distribution of DSC photons. Applied to conventional lasers, one correctly finds the

transition from thermal to coherent state statistics above the laser threshold.

The Hamiltonian part of the Liouvillian is simply the Hamiltonian of Eq. (2). Here, we

also consider two different possible interaction terms: a+a† or b+b†. The steady-states are

also insensitive to this. In these calculations, we include a reservoir to describe pumping
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of the gain medium, as well as its T1- and T2-relaxation (here, T2 = 2T1). We also include

a reservoir to describe the decay of the DSC photon. We take as the jump operator J (+),

where J = a + a† or b + b† and the + superscript means “positive-frequency”, meaning

that we project out all negative frequency components. The steady-state is insensitive to

whether we use a or b (it changes only slightly), indicating the relative unimportance of

the dipole-dipole interaction from the standpoint of the photon probabilities. The overall

Liouvillian is then the sum of the Hamiltonian (commutator) part and three dissipators:

D[σ(−)
em ],D[σ(+)

em ] and D[J (+)] with respective rates r, Γ, and κ, to describe gain pumping,

gain decoherence, and DSC photon decay. Note that D[O]ρ ≡ O†Oρ+ ρO†O − 2OρO†.

In Fig. 3, we show the probability distribution of DSC photons resulting from one of

these steady-state calculations. Because we have largely neglected spin in our analytical

discussions, we plot the “unpolarized” photon probability distribution, defined such that

P (n) = P (n,−1) + P (n, 1). As can be seen, above threshold, the state has very low

number fluctuations, in this case, δn = 1, yielding a state very close to a Fock state. Below

threshold, a thermal state is found. Around threshold, the quasi-uniform state of Fig. 3 of

the main text is found.

These results are insensitive to the presence of a λ-term, as shown in Fig. 4. The

presence of a λ term, all else equal, slightly increases the photon noise. This is because

the presence of a λ softens the anharmonicity (which can be understood from the term√
λ2 + ω2e−4g2L2

n(4g2) in Eq. (60)).

The results are also insensitive to the exact form of interaction and dissipator (provided

that the dissipator doesn’t create spurious excitations). In Fig. 5, we show the steady-state,

computed using interaction terms based on a or b, as well as dissipators based on a or b.
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∆n = 1

Figure F-3: Steady-state of the Fock laser, calculated numerically, by finding the steady-
state of the Liouvillian operator. Plot shows the unpolarized probability distribution for
λ = 0. For ϵ = 10−5ω, κ = 10−8ω, and r = 10Γ (such that the population inversion of
the gain is about 90%, the resulting state is nearly a Fock state of 100 DSC photons, with
a residual uncertainty of 1. This state has noise 99% below the shot noise level. Moreover,
this calculation shows that the Hamiltonian of Eq. (3), coupled to damping, supports Fock
states as its steady state, from first principles.

λ = 0.1ωλ = 0
∆n = 0.83 ∆n = 0.93

Figure F-4: Steady-state of the Liouvillian of the Fock laser with and without the λ-term
of Eq. (1) of the main text. Here, λ = 0.1ω is sufficient to keep the two spin ladders from
interchanging, and is not found to alter the steady-state appreciably. ϵ,Γ, κ are the same as
in the above figure.
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Figure F-5: Steady-state of the Liouvillian of the Fock laser with different choices for the
interaction term and dissipator, showing robustness to the exact magnitude of the dipole-
dipole interaction between the emitter and the qubit.
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Appendix G

Appendices for: Complete condensation

of photon noise in nonlinear dissipative

systems

In this Supplementary Information (SI), we develop the theory of nonlinear dissipation and

amplification in systems with sharp loss (as well as gain). In contrast to the main text,

which summarizes the key theoretical results and focuses primarily on applications of the

theory, the SI is meant to provide a detailed account of the theory, providing underlying

assumptions, as well as derivations.

In the section “Quantum theory of a nonlinear resonator with frequency-dependent

loss”, we will introduce a nonlinear open system model (and its Hamiltonian, Eq. (1)

of the main text) that realizes the sharp loss described in the main text. Then, we develop

a master equation (Eq. (2) of main text) to describe dissipation in such systems, showing

that it coincides with the type of nonlinear dissipation quoted in the main text (Eqs. (3-5)

of main text). From there, we move to derive results related to the statistical dynamics (Eq.

(6) of main text)). To close Section I, we develop a quantum Langevin theory of nonlin-

ear dissipation in these systems. The quantum Langevin theory is in correspondence with

the density matrix theory, and makes the same predictions as far as the results of the main

text are concerned. However, the quantum Langevin approach provides the most conve-

nient starting point for describing fluctuations of lasers. In the Appendix, we develop an
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independent derivation of the nonlinear loss developed in this work through the Heisenberg

equations for the projection operators of a nonlinear resonator.

In the section “Lasers based on sharply nonlinear loss”, we develop the quantum theory

of lasers with nonlinear loss. We derive a set of “quantum rate equations” − operator-

valued rate equations with fluctuating driving terms (Langevin forces) − to describe in-

version and photon number fluctuations of lasers. We then derive amplitude noise spectra

describing the photon number fluctuations of the laser cavity to lowest nontrivial order in

the mean-field approximation. The treatment provided allows one to account for quantum

fluctuations in systems with a wide variety of gain media, including gases, molecular dyes,

rare-earth dopants (as in solid-state lasers), and semiconductors.

In the section “Numerical evidence for the effects predicted in the manuscript”, we

provide numerical validation of the analytical theory developed here. In the first part, we

show that the Fock- and sub-Poissonian state-generation effects follow from explicit time-

evolution of the master equation corresponding to the Hamiltonian of Eq. (1) of the main

text (under a white-noise approximation for the reservoir). In the second part, we provide

numerical evidence for the Fock lasing effect. In particular, we show that by modifying

the Hamiltonian to include a pumped two-level atom (representing a gain medium), we can

create a system that supports steady states (of the Liouvillian) corresponding to low-noise

states of light.

In the section “Summary of main results”, we summarize the main new theoretical re-

sults developed in this work, for ease of quotation. In the section “Potential extensions of

the theory”, we provide a non-exhaustive list of potential extensions of the work presented

here which we believe to be exciting directions of future work. We expect the results de-

rived in the SI to have wider applicability than the Fock- and sub-Poissonian proposals

considered in the main text. We believe in particular that the theoretical results concerning

the master equations for these dissipative nonlinear systems, as well as the Langevin equa-

tions we derive, should provide a useful basis for application to the theory of many more

complex optoelectronic device configurations. Finally, in the section “Supplementary fig-

ures”, we provide additional data, as well as detailed lists of parameters for Figs. 3, 4 of

the main text.
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G.1 Quantum theory of a nonlinear resonator with frequency-

dependent loss

G.1.1 Model and Hamiltonian of a system with nonlinear loss

The starting point in our analysis of loss in a nonlinear resonator with frequency-dependent

loss is the specification of the Hamiltonian, which describes the nonlinear cavity, the

frequency-dependent end-mirror, and all reservoirs responsible for dissipation of the pho-

ton. Let us describe each term in the total Hamiltonian in steps.

Nonlinear cavity. We start by describing the cavity. We will assume in all cases that we

are under conditions of single-mode lasing, and can thus consider the electromagnetic field

of the cavity as described by a single high-Q resonant mode. In the absence of photon non-

linearity, the Hamiltonian of the cavity would be simply ℏωa†a, with ℏ the reduced Planck

constant, ω the frequency of the resonant mode, and a (a†) the annihilation (creation) op-

erator of the cavity mode. Let us consider now what happens when a nonlinear element is

introduced into the cavity.

Consider for example the case of a nonlinear crystal embedded in the cavity, leading

to Kerr nonlinear shifts of the cavity frequency. The resulting cavity Hamiltonian can

be written in the form HKerr = ℏωa†a + 1
6βℏω : (a − a†)4 : [425], where β is a nonlinear

coupling constant, and :: denotes normal ordering. In the rotating-wave approximation (i.e.,

ignoring terms with unbalanced numbers of creation and annihilation operators), the Kerr

nonlinearity takes the more commonly stated form HKerr = ℏω
(
(1 − β)a†a+ β(a†a)2

)
[425, 426]. The cavity eigenstates are Fock states of n photons with energy En ≡ ℏωn =

ℏω [(1 + β)n+ βn2]. The Hamiltonian, in the number basis, may alternatively be written

as

HKerr =
∞∑

n=0
EnTn,n, (G.1)

with T a projection operator (projector), which is generally defined as: Ti,j ≡ |i⟩⟨j|. We

have re-written the Hamiltonian in terms of projectors, as they will play an essential role

in our theory of nonlinear lasers. Before moving on to the theory of nonlinear lasers, we

point out that in this Kerr resonator, the excitation energy from a state with n− 1 photons,
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to a state with n photons, is ωn,n−1 = ω(1 + 2βn). This is equivalent to the statement in

classical nonlinear optics that the frequency of a nonlinear cavity shifts by an amount pro-

portional to the intensity [540]. The interaction constant β is governed by the overlap inte-

gral between the (normalized) cavity mode u(r) and the third-order nonlinear susceptibility

χ(3)(r) (taken as a scalar here for simplicity). In particular β =
(

3ℏω
8ϵ0

) ∫
d3r χ(3)(r)|u(r)|4.

Its characteristic magnitude, for a crystal which fills the cavity, is 3ℏω
8ϵ0V

χ(3)(r), with V the

mode volume. Before moving on to discuss the other terms in the Hamiltonian, we note

that a general intensity-sensitive nonlinear cavity will have a Hamiltonian of the form of Eq.

(1) with the appropriate photon-number-dependent energies, and so our treatment applies

more generally than to the case of Kerr nonlinearities.

Cavity losses. Now we move to a discussion of the terms in the Hamiltonian responsible

for the losses of the cavity. For the photon, the reservoirs depend on the exact configuration.

In the simplest (and most standard case) the photon is coupled to a single reservoir of

far-field modes which convert the cavity photon into the emitted beam. To get the Fock

and sub-Poissonian state-generation effect, we must go beyond this single cavity-reservoir

coupling. The simplest modification that “does the job” is to introduce two resonances

(a, d, as in Fig. 1 of the main text) that are coupled to the same reservoir. This mutual

coupling to the same reservoir allows for the Fano-type interferences well-known from

classical optics. This approach was recently used to describe the quantum optics of Fano

mirrors in [541] (without nonlinearity). Compared to prior work, we consider the case

where one of the resonances is nonlinear. In such cases, Fock-state generation is supported

under appropriate conditions.

We now set up the Hamiltonian of the “nonlinear Fano resonance.” Let us consider

a situation in which one mode (labeled by its annihilation operator a, with anharmonic

HamiltonianHa) is coupled to a second mode (e.g., a Fabry-Perot type mode, or a photonic

crystal resonance), of frequency ωd (labeled by annihilation operator d). In many cases,

this second resonance d can be thought of as the resonance of an end-mirror of the cavity,

and we will occasionally refer to d as the mirror. We take the d-resonance to be linear, with

Hamiltonian Hd = ℏωdd
†d. The two modes in general are coupled by a (beam-splitter)

interaction ℏ(λad† + λ∗a†d). Both a and d are also coupled to the continuum of far-field

358



modes bk outside of the cavity, where k enumerates the continuum of outside modes. For

simplicity, we will consider a one-sided cavity, with one wall perfectly reflecting, and one

partially reflecting, such that there is only a single input and output “port.” Taking gk and vk

to respectively be the coupling of bk to a and d , the system-reservoir coupling Hamiltonian

may be written as: Hres = ∑
k
ℏgk(ab†

k + a†bk) +∑
k
ℏvk(db†

k + d†bk). The total Hamiltonian

of the system and reservoir may thus be expressed as:

H/ℏ = Ha+ωdd
†d+(λad†+λ∗a†d)+

∑
k

ωkb
†
kbk+

∑
k

(gkab
†
k+g∗

ka
†bk)+

∑
k

(vkdb
†
k+v∗

kd
†bk),

(G.2)

which coincides with Eq. (1) of the main text (defining Ha = ℏΩ(a†a) and Xk = gka +

vkd). The simpler case of a Fabry-Perot mirror (with a symmetric transmission spectrum)

is obtained in the limit where the “direct” coupling of the cavity mode to the far-field can

be neglected (gk = 0), so that the cavity must couple through the mirror if it is to escape

into the far-field. The other important standard case is that in which the partially reflecting

mirror has a frequency independent reflectivity, which corresponds to the case in which

the d cavity has a very fast decay. We note that while the parameters λ, gk, vk could be

in principle be calculated, it is typically impractical to do so, and they may in practice be

found by comparing the transmission of the cavity to what is expected from a classical

treatment of the cavity transmission (e.g., from temporal coupled mode theory).

G.1.2 Master equation of the nonlinear Fano resonance

In this section, we derive a master equation to describe the damping of a nonlinear resonator

(a) due to radiative leakage from a frequency-dependent mirror. The overall Hamiltonian

of the system+reservoir (a + d + reservoir) is given by Eq. (2). To simplify notation, we

will define

Had ≡ Ha + ωdd
†d+

(
λad† + λ∗a†d

)
. (G.3)

Let us now derive an equation of motion for the reduced density matrix of a and d (e.g.,

tracing out the reservoir). To do so, we define the interaction picture operators ρI =

eiH0tρe−iH0t and VI = eiH0tV e−iH0t, withH0 = Had+∑
k
ωkb

†
kbk and V = ∑

k

(
Xkb

†
k +X†

kbk

)
.
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Then, the equation of motion for the density matrix becomes ρ̇I = − i
ℏ [VI , ρI ], admitting

the iterative solution:

ρ̇I = − i

ℏ
[VI(t), ρ(0)] − 1

ℏ2

t∫
0

dt′ [VI(t), [VI(t′), ρI(t′)]] , (G.4)

with ρ(0) = ρI(0) being the initial state of the system and reservoir. As we will primarily

be interested in the application of this framework at optical frequencies, we will consider

the reservoir to be in its vacuum state (i.e., negligible thermal population). The dynamics

of the resonator and end-mirror are obtained by taking the partial trace with respect to the

bath (ρ̇ad ≡ trbρ), such that

ρ̇ad,I = − i

ℏ
trb ([VI(t), ρ(0)]) − 1

ℏ2

t∫
0

dt′ trb ([VI(t), [VI(t′), ρI(t′)]]) . (G.5)

Upon taking the trace with respect to the bath, the term which is linear in VI will vanish,

and the equation of motion becomes

ρ̇ad,I = − 1
ℏ2

t∫
0

dt′ trb(VI(t)VI(t′)ρI(t′) + ρI(t′)VI(t′)VI(t)

− VI(t)ρI(t′)VI(t′) − VI(t′)ρI(t′)VI(t)). (G.6)

To proceed, we need further approximations. As the coupling of system and reservoir is

weak, and the continuum of radiation modes loses memory over a very short timescale

(due to its infinite bandwidth), we make the standard Markov approximation. Namely,

that ρ factorizes as ρI(t′) = ρad,I(t′)ρb(0), with ρb being the density matrix of the multi-

mode vacuum reservoir. Moreover, due to the weak coupling of a and d to the reservoir,

the system-reservoir couplings can be approximated as frequency-independent (such that

gk ≈ g and vk ≈ v). It follows that the first term, under these approximations, evalu-

ates to XI(t)X†
I (t′)ρad(t′)∑k e

iωk(t−t′) = XI(t)X†
I (t′)ρad(t′)(2πρ0δ(t − t′)), with ρ0 the

density of states of the far-field continuum (which under these approximations is frequency-

independent). Performing the time-integration yields XI(t)X†
I (t)ρad(t). The other terms
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are evaluated in a similar fashion, yielding

ρ̇ad,I = −2πρ0
(
X†

I (t)XI(t)ρad,I(t) + ρad,I(t)X†(t)XI(t) − 2XI(t)ρad,I(t)X†
I (t)

)
.

(G.7)

Going back to the Schrodinger picture, one has the equation of motion for the system (a +

d):

ρ̇ = −i[Had, ρ] − 2πρ0
(
X†Xρ+ ρX†X − 2XρX†

)
, (G.8)

where we have taken ρad → ρ for simplicity of notation (the bath will no longer enter the

equations).

Eq. (8) can be taken as the first-principles master equation for the nonlinear Fano

resonance, upon which we will make further approximations to analytically isolate the

nonlinear loss presented in the main text (e.g., Eqs. (2-4) of the main text). Note that,

as compared to standard master-equation descriptions of lossy systems, Eq. (8) is of a

similar Lindblad form, except that the jump operator X couples the two modes. In Section

III, where we present “exact” numerical evidence for the Fock- and sub-Poissonian state

generation effects, we do so by directly solving Eq. (8) in time. Now, we move to simplify

Eq. (8) further.

We are mainly interested in the limit in which the d resonance responds instantaneously

to changes in the frequency of the cavity mode. In other words, in the limit of γ ≡ 2πρ0v
2

being the fastest timescale of the problem (so for example, γ ≫ κ ≡ 2πρ0g
2). Physi-

cally, thinking of d as the end-mirror, it refers to a situation where the mirror responds to

the instantaneous frequency of a (to which the mirror can immediately respond due to its

large bandwidth). Under this condition, we may adiabatically eliminate d from the master

equation of Eq. (8), getting an equation of motion for a alone.

The adiabatic elimination proceeds along similar lines to the derivation of Eq. (8): we

must look at the evolution of the cavity density matrix to second-order in the coupling be-

tween a and d. The procedure to arrive at the equation for a is thus similar in spirit to the

procedure leading to Eq. (5). A major difference in execution arises from the fact that the

free dynamics of d include damping (which is “fast”), and so the interaction-picture trans-

formation must include the effect of damping. Therefore, the Liouvillian to be exponen-
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tiated contains a Lindblad term. While interaction picture transformations of Liouvillians

with Lindblad terms are a “basic” part of density-matrix theory, they are not as common-

place in the literature ([542] provides a good account). Thus, we shall provide more of the

intermediate manipulations than in other sections of the SI.

The equation of motion for the density matrix (in the Schrodinger picture) may be

written as

ρ̇ = (L0 + L1)ρ, (G.9)

where

L0 ≡ −i[Ha/ℏ + ωdd
†d, ·] − γ(d†d · + · d†d− 2d† · d), (G.10)

and

L1 ≡ − i[λad† + λ∗a†d, ·] − κ(a†a · + · a†a− 2a† · a)

−√
κγ
(
(ad† + a†d) · + · (ad† + a†d) − 2

(
a · d† + d · a†

))
. (G.11)

Here, we have introduced the · notation, which indicates how the Liouvillian acts on an

operator. For example, for arbitrary operators X, ρ, we have: (X·)ρ ≡ Xρ and (·X)ρ =

ρX . Terms of the form (X · Y )ρ, for arbitrary X, Y should be understood as (X·)(·Y )ρ =

XρY . The terms Eq. (11) may also be regrouped to read as:

L1 = − κ(a†a · + · a†a− 2a† · a)

−
(
G−(ad†·) +G∗

−(·a†d)
)

−
(
G+(a†d) +G+(·ad†)

)
+ 2√

κγ
(
a · d† + d · a†

)
,

(G.12)

with G− ≡ iλ + √
κγ and G+ ≡ iλ∗ + √

κγ. This expression proves more convenient for

the manipulations that follow.

We now define the interaction picture density matrix ρI as

ρ = eL0tρI , (G.13)
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so that

ρ̇I = e−L0tL1e
L0tρI ≡ LI(t)ρI . (G.14)

This equation admits an iterative solution of the form

ρ̇a,I = trd [LI(t)ρI(0)] +
t∫
dt′ trd [LI(t)LI(t′)ρI(t′)] . (G.15)

This equation is considerably simplified in the limit where γ is large: in this case, d acts

as a broad continuum for a (in other words, as a reservoir). Moreover, d cannot sustain

any build-up of excitations, as they damp immediately (on any timescale related to a). It

follows that from the perspective of a, d acts as a vacuum reservoir |0⟩⟨0|, and that the state

of the joint system may be written in factorizable form: ρI(t) ≈ ρa,I(t)|0⟩⟨0|. This allows

us to write Eq. (15) in the Born-Markov approximation as

ρ̇a,I = trd [LI(t)ρa(t)|0⟩⟨0|] +
t∫
dt′ trd [LI(t)LI(t′)ρa(t)|0⟩⟨0|] . (G.16)

Here, we have also made an adiabatic approximation, replacing ρa(t′) with ρa(t), since

significant contributions to the integrand only arise when t′ is within γ−1 of t. Over this

range of times, the density matrix of d does not vary. To proceed, we must now evaluate

the interaction picture Liouvillian operators to second-order, and then evaluate the integrals

that arise. The following interaction-picture transformations for d are used heavily in what

follows (see [542]):

(d·)I(t) = e−iωdt−γt(d·)

(·d†)I(t) = [(d·)I(t)]† = eiωdt−γt(·d†)

(d†·)I(t) = eiωdt
(
eγt(d†·) + (e−γt − eγt)(·d†)

)
(·d)I(t) = [(d†·)I(t)]† = e−iωdt

(
eγt(·d) + (e−γt − eγt)(d·)

)
. (G.17)
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Similarly, the interaction picture transformations for a are given as

(a·)I(t) = [(·a†)I(t)]† =
∞∑

n=0

√
ne−iωn,n−1t(Tn−1,n·)

(a†·)I(t) = [(·a)I(t)]† =
∞∑

n=0

√
n+ 1eiωn+1,nt(Tn+1,n·), (G.18)

where we have defined the projector Tij = |i⟩⟨j|. Note that due to the polychromatic nature

of a (being anharmonic), this is the most convenient way to express the interaction picture

operator. With these identities established, we now evaluate the first- and second-order

terms of Eq. (12).

As d is in the vacuum state, no terms in L1 involving d or d† contribute to the first-order

term. Therefore, the first order term is simply −κ(a†
IaI · + · a†

IaI − 2a†
I · aI), and in the

Schrodinger picture, gives the expected term −κ(a†a·+·a†a−2a† ·a). Now we evaluate the

second-order term. To proceed, we note that since γ ≫ κ, we may neglect contributions

of order greater than κ. Hence, we may completely ignore the first line of Eq. (12) for

the purposes of evaluating the second-order term. After some algebra, one finds that the

second order integrand, under the assumption that d is in the vacuum state, is given by:

−|G−|2trd

[
aI(t)d†

I(t)ρa(t)|0⟩⟨0|a†
I(t′)dI(t′)

]
−G+G−trd

[
a†

I(t)dI(t)aI(t′)d†
I(t′)ρa(t)|0⟩⟨0|

]
−|G−|2trd

[
aI(t′)d†

I(t′)ρa(t)|0⟩⟨0|a†
I(t)dI(t)

]
− (G+G−)∗trd

[
ρa(t)|0⟩⟨0|a†

I(t′)dI(t′)aI(t)d†
I(t)

]
+2√

κγtrd

[
aI(t)ρa(t)|0⟩⟨0|a†

I(t′)dI(t′)d†
I(t)

]
+ 2√

κγtrd

[
dI(t)aI(t′)d†

I(t′)ρa(t)|0⟩⟨0|a†
I(t)

]
.

(G.19)

Plugging in the interaction picture operators of Eqs. (17) and (18), and evaluating the

t′-integral, one arrives at the following final result (in the Schrodinger picture):

ρ̇ = −κ(a†aρ+ ρa†a− 2aρa†)

+
∞∑

n=0

nG+G−

i(ωd − ωn,n−1) + γ
Tn,nρ+

∞∑
n=0

n(G+G−)∗

−i(ωd − ωn,n−1) + γ
ρTn,n

−
∞∑

m,n=0

√
m(n+ 1)(G+G−)∗

−i(ωd − ωn+1,n) + γ
Tm−1,mρTn+1,n −

∞∑
m,n=0

√
m(n+ 1)(G+G−)

i(ωd − ωm,m−1) + γ
Tm−1,mρTn+1,n.

(G.20)
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Here, we have taken ρa → ρ, as no further reference will be made to the density operator

of d. Eq. (20) could be considered the main theoretical result of this work: it prescribes the

dissipation dynamics of an anharmonic oscillator subject to dispersive loss. The equation

governs the evolution of the entire density matrix of the anharmonic oscillator: not only

the evolution of the populations (which are important for Fock state generation), but also

the quantum coherences between different photonic states, which are important for mon-

itoring the build-up and decay of phase and intensity correlations. Eq. (20) also serves

as a foundation for the quantum Langevin description of nonlinear loss in systems with

the Hamiltonian of Eq. (2). This Langevin description enables us to study the quantum

fluctuations of devices that use this nonlinear loss, such as lasers. For all of these reasons,

the density matrix equation, Eq. (20) provides the rigorous theoretical foundation for this

work.

To make contact with the notations established in the main text (as well as more stan-

dard forms of the master equation), we will make the changes of definition κ → κ/2 and

γ → γ/2. Additionally, we define the complex quantity µn = 1
2κ − G+G−

i(ωd−ωn,n−1)+γ/2 . Eq.

(20) is then expressed as:

ρ̇ = −
∞∑

n=0
n(µnTn,nρ+µ∗

nρTn,n)+
∞∑

m,n=0

√
m(n+ 1)(µm +µ∗

n+1)Tm−1,mρTn+1,n, (G.21)

coinciding with Eq. (2) of the main text.

Equation of motion for photon probabilities

The diagonal components of the density matrix ρn,n correspond to the probability pn of

there being n photons in a. As the main text is primarily focused on realizing Fock and

macroscopic sub-Poissonian states of light (with probability distributions more tightly con-

centrated than Poisson), the equation of motion for the photon probabilities plays a central

role. Taking the n, n matrix element of Eq. (21), one immediately finds

ρ̇n,n = −2nRe µnρn,n + 2(n+ 1)Re µn+1ρn+1,n+1, (G.22)
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which is clearly of the form

ṗn = −Lnpn + Ln+1pn+1, (G.23)

with Ln = 2nRe µn found as:

Ln = n

(
κδ2

n + γ|λ|2 + 2√
κγδn|λ| cosϕ

δ2
n + γ2/4

)
(G.24)

establishing Eqs. (3-4) of the main text (noting that p(n) ≡ ρn,n).

The solution of Eq. (23) provides the time-dependent probability distribution of a, giv-

ing access to all moments of the photon number operator. In many cases, we are primarily

only interested in the dynamics mean and the variance. Thus, it is useful to derive an equa-

tion of motion for the mean and variance of the probability distribution. We shall do so in

the approximation that the uncertainty ∆n is small compared to the mean n̄, a statement

which is almost always valid for states we consider, including Poissonian states (where

∆n =
√
n̄ ≪ n̄ provided n̄ ≫ 1). As a result of Eq. (23), a general moment of the

distribution ⟨nk⟩ evolves according to

˙⟨nk⟩ = −
∞∑

n=0
nkLnpn +

∑
n=0

nkLn+1pn+1. (G.25)

Shifting the index of the second term from n + 1 → n and making use of the fact that

L0 = 0, we find
˙⟨nk⟩ = ⟨

(
(n− 1)k − nk

)
L(n)⟩, (G.26)

Thus, the mean evolves according to:

˙̄n = −⟨L(n)⟩, (G.27)

where we have denoted the mean as n̄ to make contact with notations from the main text

(other average quantities in this section will not get a bar). The second moment evolves

according to:
˙⟨n2⟩ = −⟨(2n− 1)L(n)⟩. (G.28)
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The variance satisfies the equation of motion ˙(∆n)2 = ˙⟨n2⟩ − 2n̄ ˙̄n. To proceed, we will

consider distributions for which the distribution is sharply peaked about mean n̄ (and is

singly-peaked), such that ∆n ≪ n̄. In this case, we make a continuous approximation for

the probability distribution: pn → p(n), with averages given by ⟨f(n)⟩ =
∞∫
0
dn f(n)p(n).

Since the distribution is sharply peaked compared to the scale of variation of L(n), we may

Taylor expand the loss about the mean: L(n) ≈ L(n̄) + (n − n̄)L′(n̄) + 1
2L

′′(n̄)(n − n̄)2.

To lowest order, the mean simply evolves according to

˙̄n = −L(n̄). (G.29)

Meanwhile, the variance is found as:

˙(∆n)2 = −
∞∫

0

dn p(n)(2(n− n̄) − 1)L(n)

= −
∞∫

0

dn p(n)(2(n− n̄) − 1)
(
L(n̄) + (n− n̄)L′(n̄) + 1

2L
′′(n̄)(n− n̄)2

)

= L(n̄) −
(

2L′(n̄) − 1
2L

′′(n̄)
)

(∆n)2 +O((∆n)3)

≈ L(n̄) − 2L′(n̄)(∆n)2. (G.30)

Here, we have used the simplification that ⟨n− n̄⟩ = 0. We have also ignored higher order

variations in the distribution, and made a somewhat crude approximation that 4L′ ≫ L′′,

which occurs when the distribution varies over a scale large compared to 1 (and hence is

not perfectly accurate in the Fock-state regime). Still, the approximate equations capture

the dynamics of the first two cumulants fairly well. The approximate equations for the

cumulants, Eqs. (29) and (30) correspond to Eq. (6) of the main text.

Equation of motion for field coherences

Although we do not use this result in the main text, we expect that the equation of motion

for the off-diagonal terms will play an important role in a theory of phase and higher-order

coherence in the presence of nonlinear loss. Hence, we provide an explicit equation of

motion for the kth coherence, corresponding to the off-diagonal components of the density
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matrix ρn−k,n. The equation of motion follows from Eq. (21) as

ρ̇n−k,n = −((n−k)µn−k +nµ∗
n)ρn−k,n +

√
(n− k + 1)(n+ 1)(µn−k+1 +µ∗

n+1)ρn−k+1,n+1.

(G.31)

G.1.3 Physical interpretation of the loss terms

Let us now discuss the physical interpretation of the loss found in Eq. (24). We shall

take two approaches. In the first, we derive the Heisenberg equations of motion for this

system, neglecting nonlinearity, and examine the mean-field limit. We will show that the

resulting model coincides with the so-called Friedrich-Wintgen model of two spatially co-

located resonances with a common port. This model is known to support bound states in the

continuum: modes that, although embedded in a reservoir of continuum states, have zero

[472]. This will be due to destructive interference (of the Fano type, between two different

leakage pathways). In the second, we show that the loss is what would be expected from a

mirror with a frequency dependent Fano reflectivity profile (by comparing to the standard

classical model of Fano resonances).

Connection to Fano interference and to bound states in the continuum

We derive a Heisenberg equation of motion for a and d in the absence of nonlinearity. In

the Appendix, we derive Heisenberg equations taking into account nonlinearity, and show

that in the adiabatic approximation, identical conclusions are drawn (as compared to the

density matrix treatment of the previous sections). From the Hamiltonian of Eq. (2), the

Heisenberg equations of motion for a, d, bk are given as:

ȧ = −iωaa− iλ∗d− i
∑

k

g∗
kbk

ḋ = −iωdd− iλa− i
∑

k

v∗
kbk

ḃk = −iωkbk − i(gka+ vkd). (G.32)
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To proceed, we will eliminate the reservoir. The formal solution to the reservoir equation

of motion is given as

bk(t) = bk(t0)e−iωk(t−t0) − i

t∫
t0

dt′ e−iωk(t−t′)(gka(t′) + vkd(t′)), (G.33)

with t0 being the initial time (e.g., t0 = 0 or t0 = −∞). Plugging this into the equation of

motion for a and d, and considering a white-noise reservoir gk = g, vk = v (with both g, v

real), we have

ȧ
ḋ

 =

−iωd −

 iδ + 1
2κ iλ∗ + 1

2
√
κγ

iλ+ 1
2
√
κγ 1

2γ



a
d

+

Fa

Fd

 . (G.34)

Here, we have defined κ = 2πρ0g
2 and γ = 2πρ0v

2, with ρ0 the density of continuum

states. The terms Fa and Fd are operator-valued Langevin forces (Langevin forces will be

elaborated on in the section “Quantum Langevin theory of the nonlinear Fano resonance”).

They have the property that for a vacuum reservoir, ⟨Fa,d⟩ = 0. The non-zero second-order

correlators, for a vacuum reservoir, are given as ⟨Fa(t)F †
a (t′)⟩ = κδ(t−t′), ⟨Fd(t)F †

d (t′)⟩ =

γδ(t− t′), and ⟨Fa(t)F †
d (t′)⟩ = ⟨Fd(t)F †

a (t′)⟩ = √
κγδ(t− t′).

As discussed in the main text, much intuition can be built by examining the equation of

motion for the mean values of a, d, which we denote as A,D. The equation of motion:

Ȧ
Ḋ

 =

−iωd −

 iδ + 1
2κ iλ∗ + 1

2
√
κγ

iλ+ 1
2
√
κγ 1

2γ



A
D

 . (G.35)

is simply Eq. (5) of the main text. Let us now diagonalize this matrix to isolate the coupled

modes of the system. The two eigenvalues are found to differ considerably in overall scale

(assuming κ ≪ γ), one isO(γ), while the other isO(κ) (and the corresponding eigenvector

is approximately a). The lower loss mode (which is O(κ)) has eigenvalue

z = 1
4

(
−γ − 2iδ − κ+

√
(γ + 2iδ + κ)2 − 4(2iγδ − 4i√κγRe λ+ 4|λ|2)

)
. (G.36)
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In the limit of κ, λ ≪ γ, we find that the real part of the eigenvalue is simply

Re z = −1
2
κδ2 + γ|λ|2 + 2√

κγδRe λ
δ2 + γ2/4 . (G.37)

The associated temporal loss coefficient of the mode is simply κ = −2Re z, which coin-

cides with the loss Ln = nκ(n) Eq. (24), except that the detuning is not n-dependent in

Eq. (37) (as we have not included nonlinearity). This comparison however makes it clear

that the effect of nonlinearity is simply to control the value of δ: stated operationally, the

role of nonlinearity is to take δ → δn.

Now, let us connect this result to the physics of Fano interference and the related phe-

nomenon of bound states in the continuum. For certain values of the parameters (κ, γ, λ)

in Eq. (37), the loss can disappear. This is due to destructive interference of (1) a direct

pathway for a to leak out and (2) a pathway in which a couples into d before leaking out.

To see more explicitly how the loss can vanish, consider the case of no direct coupling

(λ = 0). Such an interference is known as Fano interference, as it can lead to an asym-

metric lineshape in the presence of a non-zero λ. In this case, the numerator of Eq. (37) is

simply κδ2, which vanishes for δ = 0 (corresponding to the usual Fano transmission dip to

be elaborated on in the next subsection). This mode, which has exactly zero loss, is known

as a bound state in the continuum (BIC), which is of much recent interest in photonics (see

e.g., [472] for a review of the field). It is referred to as such because the cavity mode is

localized (it does not leak), despite the existence of a reservoir of far-field modes for which

this cavity mode can couple.

These BICs can be shown to follow from exactly the classical model of Eq. (35) (see

Eq. 4 of [472]), which is referred to as the Friedrich-Wintgen model [543], which is known

to provide a simple model of BIC formation. Our quantum mechanical treatment of this

system (in the linear case, as in Eq. (34)) and in the nonlinear case is thus tantamount

to a quantum theory of nonlinear bound states in the continuum, which appear to lead to

Fock- and sub-Poissonian state generation. To our knowledge, such a quantum mechanical

model, and these conclusions have not been previously reported.
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Interpretation of d-mode as a frequency-dependent mirror

To get a further understanding of Eq. (24), let us consider a related problem: the transmis-

sion and reflection of classical light scattering from a Fano mirror (a system with a Fano

resonance). This problem has been studied by many authors, and is commonly considered

in the field of nanophotonics. Consider a wave incident on a Fano mirror surrounded by air

(e.g., a photonic crystal mirror). The wave has frequency ω, the Fano mirror has frequency

ω0, and radiative losses governed by the amplitude decay time 2/γ with γ the energy decay

rate. It can be shown [1, 469] that the energy transmission coefficient is then given by

T = |td|2δ2 + |rd|2γ2/4 ± |rdtd|γδ
δ2 + γ2/4 , (G.38)

with δ = ω − ω0 and rd, td representing reflection and transmission coefficients associated

with the direct reflection and transmission of the incident light (i.e., without coupling into

the internal mode of the mirror). These direct channels interfere with the indirect channel.

Here, the ± denotes the case of an even/odd mode. Comparing this with Eq. (24), we

see that the losses are quite similar in form. In fact, we see that by taking Eq. (24) and

applying: ω → ωn,n−1, γ → γ, |td| →
√

2Lκ
c
, |rd| →

√
8L
cγ

|λ|, with L the length of the

cavity supporting mode a, we have:

Tn ≡ T (ωn,n−1) = 2L
c

κδ2
n + γ|λ|2 ± 2√

κγδn|λ|
δ2

n + γ2/4 , (G.39)

which, stated differently, can be written as

Ln = n×
(
cTn

2L

)
, (G.40)

for the case of ϕ = 0 or π. This is Eq. (4) of the main text. Our model also considers more

general coupling phases between the direct and indirect channels.

Thus, the physical interpretation is evidently that the loss per photon (Ln/n) is simply

the round-trip rate of light propagation in the cavity, multiplied by the cavity transmission.

The mode d acts as the resonance associated with a frequency-dependent end-mirror (this

viewpoint is also described from a quantum mechanical density matrix model in [541]).
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This is largely what one intuitively expects, and is borne out from the density-matrix ap-

proach in the adiabatic approximation. This identification however, suggests a generaliza-

tion to more complicated Fano mirrors, supporting perhaps multiple internal modes: the

loss can be specified in terms of the experimental transmission as a function of frequency.

G.1.4 Quantum Langevin theory of the nonlinear Fano resonance

In this section, we develop a complementary perspective on the description of dissipation

in a nonlinear resonator with sharply varying loss. In quantum optics, it is well-established

that there are two often equivalent ways to describe dissipation. The first is by deriving

a master equation for the density-matrix, as we have in the section titled “Master equa-

tion of the nonlinear Fano resonance.” The second is by deriving quantum Langevin (or

Heisenberg-Langevin (HL)) equations for the Heisenberg-picture operators for the system.

The quantum Langevin equations resemble classical equations that describe damping, ex-

cept with operator-valued forces added to the equations to ensure preservation of operator

commutation relations at all times. The two methods are complementary to each other,

and each presents definite advantages over the other. In the density matrix approach, the

equations for the density matrix elements are linear, and it is possible to find the evolution

of the density matrix elements in a conceptually straightforward way. The density matrix

method is the one which is mostly used in modern quantum engineering, and we have thus

made the density-matrix approach the primary method.

On the other hand, the Heisenberg-Langevin equations are generally nonlinear operator

equations with quantum stochastic force terms that have no definite numerically imple-

mentable representation (though they may be mapped to classical stochastic differential

equations which can then be solved). However, the main analytical advantages of the HL

approach emerge in situations where quantum fluctuations are small compared to the mean

values (as is the case in every system we analyze in the main text). In that case, oper-

ator expectation values, even for macroscopic states of light (that cannot be numerically

stored as a density matrix, due to sheer dimensionality), can be readily found through a

small number of coupled linear differential equations. From a fundamental standpoint, the
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Heisenberg-Langevin approach also has the advantage of bearing close similarity to classi-

cal equations of motion and thus providing a great deal of intuition. Very often, one may

simply take classical equations, add stochastic force terms, and find the correlation func-

tions of the forces through the so-called “Einstein relation” (as described in textbooks such

as [544, 545]). The Langevin approach has proven itself to be very useful in the context of

laser physics for this reason. From the standpoint of lasers, it is also important because: for

many important gain media, such as solid-state and semiconductor gain media, one can-

not eliminate the gain from the density matrix, and thus cannot express the dynamics of

the photon in terms of a time-local differential equation. Motivated by these advantages,

we now develop the Heisenberg-Langevin equations for the photon number operator in a

system with the nonlinear loss of Eq. (24).

We follow the general method for deriving Langevin equations for quantum systems

presented in Ref. [546] (there, the method is applied to derive Langevin equations for a

two-level system). The method allows us to derive a Langevin equation in correspondence

with the density matrix equation, Eq. (21). Let us derive a Langevin equation to describe

the evolution of the photon number operator, which is related to the photon probabilities,

and thus the diagonal components of the density matrix. In the method of Ref. [546], one

“Langevinizes” the density matrix equation, e.g., Eq. (23), by assuming an equation of the

form

Ṫn,n = −LnTn,n + Ln+1Tn+1,n+1 + Fn,n, (G.41)

where Tn,n = |n⟩⟨n| is a projector whose expectation value is simply pn. The Fn,n are oper-

ator valued Langevin forces associated with the quantum fluctuations which are concomi-

tant with nonlinear dissipation. The force is stipulated to have zero mean but finite second-

order correlations that are delta-correlated (schematically ⟨F (t)F (t′)⟩ = 2Dδ(t − t′) for

some operator-valued “diffusion coefficient” D). Note that Eq. (41) should be thought of

as the operator equation in correspondence with Eq. (23): taking the expectation value

tr[ρṪn,n] = ṗn yields −Lnρn,n + Ln+1ρn+1,n+1 (using the fact that ⟨Fn,n⟩ = 0).

For a general Langevin equation of the form Ȧµ = Dµ + Fµ, where Aµ and Dµ are

system operators, and Fµ is a Markovian Langevin force of zero mean − quantum me-
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chanical consistency (e.g., preservation of commutators) imposes a constraint on the cor-

relation functions between different forces (Fµ, Fν). In particular, the correlators must

satisfy the so-called Einstein relation for the diffusion coefficient Dµν , defined such that

⟨Fµ(t)Fν(t′)⟩ ≡ 2⟨Dµν⟩δ(t− t′). The Einstein relation reads [545]:

2⟨Dµν⟩ = d

dt
⟨AµAν⟩ − ⟨AµDν⟩ − ⟨DµAν⟩, (G.42)

As applied to Eq. (41), the corresponding Dµ is −LnTn,n + Ln+1Tn+1,n+1 and the corre-

sponding Fµ is Fn,n.

First, we find the diffusion coefficient ⟨Djj,kk⟩, defined such that:

⟨Fj,j(t)Fk,k(t′)⟩ = 2⟨Djj,kk⟩δ(t− t′). (G.43)

It evaluates as:

2⟨Djj,kk⟩ = δj,k⟨Ṫj,j⟩ − ⟨Tj,jDk,k⟩ − ⟨Dj,jTk,k⟩

= δj,k⟨−LjTj,j + Lj+1Tj+1,j+1⟩ + ⟨(LkδjkTj,j − Lk+1δj,k+1Tj,j)⟩

+ ⟨(Ljδj,kTj,j − Lj+1δj+1,kTj+1,j+1)⟩

= δjk(Lj⟨Tj,j⟩ + Lj+1⟨Tj+1,j+1⟩) − δj,k+1Lj⟨Tj,j⟩ − δj+1,k⟨Tj+1,j+1⟩. (G.44)

As a sanity check on this result, consider the diffusion coefficient 2⟨Djj,jj⟩. It evaluates as

2⟨Djj,jj⟩ = Lj⟨Tj,j⟩ + Lj+1⟨Tj+1,j+1⟩ = Ljpj + Lj+1pj+1. (G.45)

In other words, the diffusion coefficient is the sum of the rate of transitions into and away

from the state of j photons. This property is a well-known result in the quantum theory

of shot-noise [547], and indicates that the nonlinear loss dynamics can be thought of as

associated with a type of nonlinear shot noise whose added fluctuations depend on the

number of photons present.

The Einstein relation also enables us to specify a Langevin equation for the photon

number operator itself (which is more readily measurable than the photon probabilities).
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The number operator is expressed in terms of projectors as n =
∞∑

j=0
jTj,j . Therefore, we

have

ṅ =
∞∑

j=0
−jLjTj,j + jLj+1Tj+1,j+1 +

∞∑
j=0

jFj,j

=
∞∑

j=0
−jLjTj,j + (j − 1)LjTj,j + Fn

=
∞∑

j=0
−LjTj,j + Fn

= −κ(n)n+ Fn, (G.46)

where L(n) = nκ(n) is understood to be a function of the n operator. In this derivation,

we have identified Fn =
∞∑

j=0
jFj,j and performed index manipulations similar to those used

to derive Eq. (26). Eq. (46) is what one would write classically for a system with nonlinear

loss, up to the Langevin force term Fn
1.

The corresponding diffusion coefficient for Fn may immediately be found from Eq.

(45). In particular:

2⟨Dn,n⟩ =
∞∑

j,k=0
2jk⟨Djj,kk⟩

=
∞∑

j,k=0
2jk(δjk(Lj⟨Tj,j⟩ + Lj+1⟨Tj+1,j+1⟩) − δj,k+1Lj⟨Tj,j⟩ − δj+1,k⟨Tj+1,j+1⟩)

=
∞∑

j=0
j(Lj⟨Tj,j⟩ − Lj+1⟨Tj+1,j+1⟩)

=
∞∑

j=0
Lj⟨Tj,j⟩ = ⟨nκ(n)⟩. (G.47)

Eqs. (46) and (47) represent the main result of the Langevin theory of decay of an

anharmonic oscillator with intensity-dependent loss of the type resulting from nonlinear

dispersive loss introduced in Sec. II. Although we have derived the Langevin equation

from the density matrix equation specific to the Hamiltonian of Eq. (2) − the content of

Eqs. (46-S47) is more general and are expected to describe photon number fluctuations in

1As a somewhat well-known example, such an equation would be used to describe the dynamics of the
energy in a resonator with a saturable absorber (with or without Langevin forces [540, 497])
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generic systems for which the loss coefficient depends on photon number.

Before moving on to the analysis of lasers employing this sharp loss, we comment on

the “Langevinization” procedure. As stated, Eq. (41) appears as an unjustified assump-

tion (regardless of how well it works). We note that such an equation may also be more

rigorously derived by considering an explicit reservoir, writing the Heisenberg equations

of motion for a and d, and integrating out the reservoirs in the Markov and adiabatic ap-

proximations. This is demonstrated in the Appendix, and in some cases provides a cleaner

derivation of the nonlinear loss of Eq. (24).

In the next section, we will use this Langevin equation, in conjunction with the stan-

dard Langevin equations describing a pumped gain medium, to derive the quantum statis-

tical theory of lasers with sharp intensity-dependent loss. We then show how Fock and

macroscopic sub-Poissonian states result.

G.2 Lasers based on sharply nonlinear loss

In this section, we develop the quantum theory of lasers which employ the nonlinear loss

leading to Fock- and sub-Poissonian state generation. We shall approach the problem in

steps: first, discuss the system purely classically, in terms of rate equations for the pop-

ulation inversion and the cavity photon number. Then we convert these equations into

Langevin equations, which will give information about fluctuations in the inversion and

the cavity photon number. We derive the amplitude noise spectrum for the cavity, which

tells us about frequency-resolved fluctuations in the photon number, as well as the overall

photon number uncertainty.

From there, we will discuss a particularly simple limit of the equations in which the

inversion relaxation time is fast compared to the cavity decay. In that limit, the gain can

be adiabatically eliminated, and a simple equation of motion may be derived for the cavity

photon density matrix. Using this, we can derive a simple rule for the photon number

fluctuations in terms of the value of the loss and its derivative at the steady-state, justifying

Eq. (7) of the main text.

376



G.2.1 Quantum Langevin theory of photon number fluctuations in a

system with sharp loss

As described in the beginning of the section, we start by reminding the reader of the clas-

sical analysis of the laser shown in Fig. 3b of the main text. We consider a single-mode

cavity with nonlinear loss coefficient κ(n) which interacts with a gain medium through

emission and absorption. We consider a generic model of a gain medium: e.g., a four-level

system in which the upper pumping level and the lower lasing level decay rapidly (through

non-radiative processes). Thus, the only relevant populations in the equations are that of

the lower pump level (the ground state) and the upper lasing level. Such conditions are

well respected in many efficient gain media (as one example: solid-state gain media such

as Nd:YAG). We also consider the limit in which the gain is approximately non-depleted,

such that most of the population is in the lower pump level (the ground state). Under these

conditions, it is very well known that the dynamical evolution (and steady-state) of the

photon number and the gain are captured by the canonical rate equations (see any laser

textbook, e.g., [548]). Denoting the inversion as N and the photon number as n, we have:

ṅ = (RspN − κ(n))n

Ṅ = Λ −
(
γ|| +Rspn

)
N. (G.48)

Here, we have defined Rsp as the rate of spontaneous emission of the gain medium into the

cavity mode (which, up to a prefactor, satisfies Rsp = fσstv/V with f the filling fraction

of the gain, σst the stimulated cross section of the gain, v = c/neff the speed of light in the

cavity, and V the cavity mode volume). We have also defined the pumping rate of the gain

medium Λ (sometimes expressed as γ||N0 with γ|| the rate of population decay and N0 the

unsaturated inversion). We have neglected terms related to spontaneous emission in both

equations in (48), as they will be negligible (even from a quantum noise perspective).
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Steady-state operating condition

To start, it will be useful to find the steady-state operating point of the laser, obtained by

setting the left-hand side of Eq. (48) to zero. In that case, we have for the inversion:

N = Λ
γ|| +Rspn

, (G.49)

and for the photon number:

RspΛ
γ|| +Rspn

= RspN0

1 + n/ns

= κ(n), (G.50)

where we have defined the saturation photon number ns = γ||/Rsp.

For a generic loss function κ(n), the equilibrium condition cannot be solved analyti-

cally. However, it is easy to understand graphically, by plotting the saturable gain and the

loss and looking for the intersection points, as we have in Figs. 3d and 4b of the main text.

From such graphical solutions, it is easy to appreciate that if κ(n0) = 0 for some n0 ̸= 0, it

implies the existence of a solution of the equations for the mean for any non-zero value of

Λ. In particular, even if RspN0 < κ(0), which means the gain is less than the loss (and thus

the system will not lase), a solution will still exist (typically for n not very different from

n0). If the laser instead starts from a state with n > n0 photons, it will move to this steady

state.

Eq. (48) can be thought of the lowest-order description of the system in the mean-

field approximation (e.g., replacing operators for the inversion and photon number by c-

numbers). We now go beyond the mean-field approximation to find the fluctuations.

Quantum fluctuations

Let us now find the quantum statistics of a nonlinear laser with sharp loss. The simplest

treatment of quantum fluctuations in lasers proceeds by adding quantum Langevin forces
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to Eq. (48) [547]. In particular, we write:

ṅ = (RspN − κ(n))n+ Fn

Ṅ = Λ −
(
γ|| +Rspn

)
N + FN . (G.51)

The diffusion coefficients for the forces are given by:

2Dnn = ⟨(RspN + κ(n))n⟩

2DnN = 2DNn = −⟨RspNn⟩

2DNN = Λ + ⟨
(
γ|| +Rspn

)
N⟩. (G.52)

Compared to previous Langevin treatments of fluctuations in lasers (see as examples [547,

503, 544, 549]), the only difference is the presence of the nonlinear loss κ(n). The re-

markable statement is that when κ(n) takes the form implied by Eq. (24), extremely sub-

Poissonian states, approaching Fock states can result (with far lower noise than allowable

by the types of low-order nonlinearities studied previously [478, 479, 480, 481]).

We now solve for the photon statistics. We are primarily interested in the cavity photon

statistics at the steady-state operating point of the laser (thus we will not consider their

evolution in time starting from vacuum). We will quantify the photon statistics primarily by

the mean and variance of the cavity photon number (with a variance of zero corresponding

to a cavity Fock state). In all cases we consider in this paper (even the noisiest ones), the

quantum fluctuations of the photon number and inversion are small compared to the mean

values. Thus, we may linearize the Langevin equations (which are nonlinear in n and N )

around their mean values as: n = n̄ + δn and N = N̄ + δN . The quantities n̄ and N̄ are

c-number (mean) values (given by Eqs. (49) and (50)) while δn and δN are operator-valued

fluctuations. It follows immediately from the definitions above, and the zero mean-values

of the forces, that ⟨n⟩ = n̄ and (∆n)2 = ⟨(δn)2⟩. These fluctuations are of the same order

as the Langevin forces Fn and FN .

The fluctuations of the photon number and inversion satisfy the pair of coupled equa-
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tions  ˙δn
˙δN

 =

−κ′(n̄)n̄ Rspn̄

−RspN̄ −
(
γ|| +Rspn̄

)

 δn
δN

+

Fn

FN

 . (G.53)

Here, we have introduced κ′(n) = dκ/dn, which quantifies the sharpness of the loss. To

solve this equation, it is convenient to Fourier transform (defining e.g., δn(t) =
∞∫

−∞

dω
2π
e−iωtδn(ω)).

The uncertainty in the photon number then follows as (∆n)2 =
∞∫

−∞

dω
2π

Snn(ω), with

Snn(ω) = ⟨δn†(ω)δn(ω)⟩ being the cavity photon amplitude noise spectrum. The Fourier

transformed equations read:

iω − κ′(n̄)n̄ Rspn̄

−RspN̄ iω −
(
γ|| +Rspn̄

)

 δn(ω)

δN(ω)

 = −

Fn(ω)

FN(ω)

 . (G.54)

This admits the solution:

 δn(ω)

δN(ω)

 = − 1
(Ω2 − ω2) − iωη

iω − Γ −Rspn̄

RspN̄ iω − κ′(n̄)n̄


Fn(ω)

FN(ω)

 , (G.55)

where we have defined Γ = γ|| +Rspn̄, as well as the “relaxation oscillation frequency”

Ω2 = (Γκ′(n̄) +Rspκ(n̄)) n̄, (G.56)

and the “relaxation oscillation damping rate”

η = Γ + κ′(n̄)n̄. (G.57)

With these definitions, the photon number spectrum evaluates as:

Snn(ω) = 2κ(n̄)n̄× ω2 + Γ2

(ω2 − Ω2)2 + ω2η2 . (G.58)

Noise spectra of this form are plotted in Fig. 4 of the main text.
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G.2.2 Quantum statistics of lasers with sharp loss for fast inversion

lasers

While the Langevin framework gives access to the fluctuations of the photon number in

the steady-state, it is much less simple to acquire dynamical information regarding the

probability distribution of the photon number (as well as higher-order moments of the dis-

tribution). It becomes possible to find explicitly a simple, temporally local equation of

motion for the density matrix of the cavity photon as a function of time in the limit where

the population decay of the gain medium γ|| is fast compared to the cavity lifetime.

This so-called “class A regime” of laser operation often holds in gain media such as

gases and molecular dyes. However, the inequality depends on the cavity lifetime, which

can be made large using a long cavity or highly reflective mirrors. Thus in principle, semi-

conductor gain media can also behave as “class A” systems (for example, in external cavity

configurations) – and even rare earth gain media in principle could (using cavities formed

via crystalline supermirrors).

In this limit, the gain medium can be fully adiabatically eliminated. The resulting laser

theory is called the Lamb-Scully theory of the laser [432, 433]. Let us now write down

an equation of motion for the cavity photon density matrix for a system with gain and

nonlinear loss. The contribution of the gain medium to the density matrix equation of

motion is well-known from the Lamb-Scully theory, and so we merely quote the answer

below. The loss terms of Eq. (23) can simply be added to the contributions from the

gain, as the photon state (which changes on the cavity time-scale) hardly changes over the

time-scale γ||, γ⊥.

The combined effect of the gain-medium and the cavity loss on the equation of motion

for the photon probabilities is

pn = Anpn−1 − (An+1 + Ln)pn + Ln+1pn+1, (G.59)

where

An = An

1 + n/ns

, (G.60)
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with A the linear gain coefficient and ns the saturation photon number. Here, we have

assumed that the gain medium is resonant with the cavity. Few qualitative changes are in-

troduced by including a finite detuning. Note that the value ofA which ensures consistency

with Eq. (49) is A = RspN0.

The steady-state photon statistics are found by setting ṗn = 0 with the normalization

constraint
∑
n
pn = 1. In steady-state, ṗn = 0 implies

Anpn−1 − Lnpn = An+1pn − Ln+1pn+1. (G.61)

Defining the difference Sn = Anpn−1 − Lnpn, we see that Sn = Sn+1. Since S0 =

A0p−1 − L0p0 = 0, we have that Sn = 0 for all n, and thus the simpler recursion relation:

pn+1 = An+1

Ln+1
pn =⇒ pn = 1

Z

(
n∏

m=1

Am

Lm

)
≡ 1
Z

(
n∏

m=1

Gm

κm

)
, (G.62)

with Z a normalization constant enforcing
∑
n
pn = 1. We have also expressed the distribu-

tion in terms of the temporal gain coefficient Gn and temporal loss coefficient κn. Using

this form for the probability distribution, we find an analytical approximation for the pho-

ton number uncertainty. We consider distributions which are singly-peaked and vary on a

scale large compared to one (making the approximation crude in the Fock state limit, but

the resulting approximation is qualitatively predictive, even in that regime). Under these

assumptions, we may make a continuum approximation for the probability distribution as

follows. Express the probability distribution as

pn = 1
Z

exp
[

n∑
m=1

ln rm

]
, (G.63)

where rm = Gm/κm. The peak of the distribution occurs for n̄ such that Gn̄ = κn̄.

Physically, this is clear because it is the point at which gain balances loss. Mathematically,

this is clear because for m < n̄, G > κ (r > 1) and the distribution is increasing (see

Fig. 3 of main text for graphical “proof” of this statement). While for m > n̄, G < κ

(r < 1) and the distribution is decreasing. Linearizing r about the equilibrium point as

r(n) = 1 + r′(n̄)(n − n̄), such that ln r(n) ≈ r′(n̄)(n − n̄), and making the continuum
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approximation for the distribution, Eq. (63) may be approximated as

pn ≈ 1
Z

exp
 n∫

n̄

dm r′(n̄)(m− n̄)
 = 1

Z
exp

[
−1

2 |r′(n̄)|(n− n̄)2
]
, (G.64)

where in the last equality, we have used that r′ < 0 (otherwise the equilibrium is not stable).

From this expression, it immediately follows that the variance in the photon number is given

as

(∆n)2 = 1

− d
dn

G(n)
κ(n)

∣∣∣∣
n̄

. (G.65)

This establishes Eq. (7) of the main text. Note that for cases where the loss is sharp

compared to the gain, we may ignore the derivative of G and evaluate:

(∆n)2 ≈ 1
G(n̄)κ′(n̄)

κ2(n̄)

= 1
κ′(n̄)/κ(n̄) . (G.66)

This equation shows that the fluctuations in the photon number are reduced when the loss

is sharp compared to its equilibrium value (the latter of which is small near the zero of the

loss of Eq. (24)).

G.3 Numerical evidence for the effects predicted in the

manuscript

In this section, we provide numerical results based on exact numerical time-dependent so-

lutions, as well as exact numerical steady-states of the Liouvillian, to support the analytical

results developed in this SI. The purpose of these numerical demonstrations is to provide a

type of “proof” that the simple nonlinear Hamiltonian of Eq. (2) indeed supports Fock-state

(or approximate Fock-state generation), and to prove that laser action can indeed generate

such unusually low noise states − without resorting to the approximations (e.g., adiabatic

elimination) that lead to our analytical theory (which more or less reaches the same con-

clusions).
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G.3.1 Numerical validation of transient noise condensation

To numerically demonstrate that the nonlinear coupled cavity Hamiltonian (Eq. (2)) sup-

ports transient noise condensation similar to our analytical theory, we will numerically

solve the master equation for the nonlinear Fano resonance (Eq. (8)). Compared to the an-

alytical theory, we do not assume the adiabatic approximation in the numerical solutions.

Because we are numerically time-evolving an open system according to a Liouvillian, −

which has N4 elements in its matrix representation (N being the Hilbert space dimension)

− it is time-consuming to do simulations for large Fock states. Thus we demonstrate a

“toy” example in which a 30-photon optical Fock state results (already such simulations

take nearly two hours). The evaluation of the Liouvillian and the solution of the time-

dependent equation of motion are performed in a standard numerical quantum optics pack-

age: in this case, QuantumOptics in the Julia programming language. Example code is

provided 2.

The results are shown in Fig. S1: there is a strong resemblance between Fig. S1(b)

and Fig. 2 of the main text. An initially Poisson distribution condenses its noise by orders

of magnitude, approaching a near 30-photon Fock state (corresponding with the zero of

the loss of Eq. (24)) with near unity probability. At the final time of the simulation, the

probability of ending up with an optical 30-photon Fock state is 96%.

There is a somewhat apparent discrepancy when comparing the cumulants (Fig. S1(c))

to Fig. 2 of the main text. The probability distribution at the final time is more sharply

peaked around n = 30 than at earlier times. But the Fano factor is higher (and in fact,

appears to be quite high (about 0.5), indicating a somewhat modest noise reduction). This

happens because it appears that a small part of the probability distribution, for lack of a

better word, “tunnels” through the zero of the loss. One can see that the probability of

being in the vacuum state increases over time (to a small value). In other words, the system

displays some signature of bistability: the vast majority of the state is in the 30-photon Fock

state while a very small part is in the vacuum state. This bimodality makes the uncertainty a

poor indicator of the behavior of the distribution: it is sufficiently clear that the probability

2A github repository containing codes used to numerically validate the transient noise condensation and
Fock lasing effects is here: https://github.com/nrivera494/photon-noise-condensation.
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of generating a large Fock state in this system is quite high.

This bistability is somewhat unsurprising since the loss has zeros in two places (0 and

n0), indicating two valid steady states. We speculate that small (e.g., second-order) cor-

rections away from adiabatic elimination could cause this (but we do not yet conclusively

know what terms cause this). Nevertheless, the state already demonstrated through these

simulations were mostly intended for “proof purposes,” would represent both the highest

optical Fock state realized (by over an order of magnitude), and with a very high fidelity. It

is likely that changes in parameters can improve this (since we made no attempt to optimize

this).

(a) (b)

(c) (d)

∆n < 1

Figure G-1: Numerical demonstration of transient noise condensation from Eq. (8).
(a) Temporal loss coefficient as a function of photon number. (b) Evolution of the photon
statistics in a for different times, assuming an initial Poisson distribution with 70 pho-
tons (blue curve). The dynamics largely mirror those presented by the analytical theory
in Fig. 2 of the main text. (c) Mean and variance as a function of time, indicating the
region where the photon distribution has an uncertainty less than 1. (d) Zoom-in of the
small-photon number part of the distribution, showing that part of the distribution moves
to smaller photon numbers, somewhat “artificially” diluting the Fano factor. The overall
fidelity of generating a 30-photon Fock state in this example is 96%. The parameters for
the nonlinear system are β = 5 × 10−4, κ = 10−7, γ = 10−2, λ = 0, and ωd = (1 + δ)ωa

with δ = −3γ.
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G.3.2 Numerical validation of Fock lasing

In this subsection, we demonstrate numerically (from steady-state solutions of the density

matrix equation of motion) that a gain medium, coupled to the nonlinear coupled-resonator

system, lases into a heavily sub-Poissonian state, approaching a Fock state. While it is

essentially impossible to model from quantum mechanical first principles the interaction

of N pumped atoms with a cavity (because the Hilbert space dimension of N ≫ 1 atoms

is simply too large), it is possible to consider a related problem whose solution is repre-

sentative of a many-body gain medium. In particular, we look at the coupling of a single

pumped emitter interacting with the cavity, and look at the photon probability distribution

in the steady state. As in the previous subsection, the numerical calculations are performed

in Julia’s QuantumOptics package. Example code is provided.

Such a system, a single emitter coupled to a cavity (with a suitably rescaled coupling),

is capable of correctly modeling the quantum dynamics of a laser, because in a laser, there

are negligible inter-atom correlations (although there are implicit correlations in so far as

all the atoms couple to the common cavity field that they interact with). As a result, as

shown in Ref. [433], the resulting density matrix equations of motion for the system of

cavity and gain medium are identical to that arising from the coupling of a single gain atom

to the cavity (although of course, a single gain atom provides a much smaller amount of

gain).

The type of model considered here, of a single gain atom coupled to a cavity, beyond

being useful for modeling purposes, also has a physical “life of its own.” In particular,

experiments exist demonstrating “one-atom lasing / masing” in which a single pumped

atom is sufficient to exceed the threshold of the system (due to the very low losses of the

system) [436, 437, 438]. Such one atom lasers have been developed at both optical (with

atoms coupled to high-finesse cavities) and microwave frequencies (with superconducting

qubits).

The Hamiltonian of a four-level atom (states 1, 2, 3, 4 with a lasing transition 2 − 3)
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coupled to the nonlinear cavity is given by

Hlaser = Had +
4∑

α=1
Eα|α⟩⟨α| + ℏg(σ+a+ a†σ−), (G.67)

with Had the Hamiltonian of Eq. (3), σ+ = σ32 ≡ |3⟩⟨2|, and σ− = σ23 = |2⟩⟨3|. The

atomic states are labeled in increasing energy order (1 is the ground state, 2 is the lower

lasing level, 3 is the upper lasing level, and 4 is the upper pump level). Here, we have not

written the reservoir terms corresponding to cavity damping, atomic damping, and atomic

pumping. We will consider them as contributing Lindblad terms to the equation of motion

for the density matrix.

The Lindblad term for the cavity, according to Eq. (8) is D[X], with X =
√
κa+ √

γd

D[J ] ≡ −1
2(J†Jρ + ρJ†J − 2JρJ†) being the standard dissipator for jump operator J .

Defining σij = |i⟩⟨j|, the atomic damping terms are as follows:

1. The atom is pumped from 1 to 4 at rate Λ, with jump operator σ41.

2. The upper pump level 4 decays to the lower lasing level 3 at rate γ34, with jump

operator σ34.

3. The upper lasing level decays to the lower lasing level with relaxation time γ||, with

jump operator σ23 = σ−.

4. The lasing transition is subject to dephasing at rate γ⊥ with jump operator σz =

σ33 − σ22.

5. The lower lasing level decays to the ground level at rate γ12 with jump operator σ12.

The Liouvillian operator L such that ρ̇ = Lρ is then given as

Lρ = − i

ℏ
[Hlaser, ρ] + (D[X] + ΛD[σ41] + γ34D[σ34] + γ⊥D[σ−] + γ||D[σz] + γ12D[σ12])ρ.

(G.68)

The steady state density matrix ρss is then found as the null eigenvector of the Liou-

villian Lρss = 0. Thus, for a given set of parameters describing the laser system, we
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numerically implement the Liouvillian and find its zero eigenvalue. The steady-state den-

sity matrix is then used to calculated the photon probability distribution of a from which the

mean photon number, variance, and Fano factor are calculated. This is done as a function

of the pump strength, and the results are presented in Fig. S2.

In Fig. S2a, we plot a gain/loss curve similar to the ones employed in the main text

(Figs. 3, 4). This will line-up well with the different regimes of operation (sub-threshold,

bistable, near-Fock). Note that the agreement with the analytical theory of the SI is im-

perfect because at these low photon numbers, spontaneous emission affects the threshold.

Nevertheless, the effects shown in the manuscript are all clearly present below (especially

the very low-noise steady-states). Namely, we see that: after a threshold, the photon num-

ber starts to become significant and the system passes through a series of high-noise states

into a low-noise state. The lowest relative noise on the input-output curve of panels (b,c) is

just after the threshold, as is the case in Fig. 3 of the main text. In this case, it corresponds

to a noise 90% below the coherent-state limit (and much below what standard nonlinear

absorbers and low-order nonlinearities provide). The photon uncertainty is about 1.9. The

photon number is 35, which is near the approximate zero of the loss at 30 shown in panel

(a) (it is higher for reasons that are evident from the gain-loss curves).

Although we do not plot them here, we point out that the atomic populations are what

one would expect from a canonical four-level gain: the lowest level is negligibly depleted,

the lower lasing and upper pump levels have negligible population, and the small pop-

ulation in the upper lasing level is enough for inversion. Moreover, as in the previous

subsection, the d mode has very few photons in it, as expected from γ ≫ κ − validating

the assumptions underlying the adiabatic elimination of d in the analytical theory.

G.4 Summary of main results

For ease of quotation, we compile in this section the main new equations derived in this

work. Master equation for a nonlinear resonance and a linear resonance coupled to

a common continuum. In the adiabatic approximation, where the damping rate of the

nonlinear resonance is much smaller than that of the linear resonance, the equation of
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(a) (b) (c)

x10-6 x10-6

n

P(n)

90% noise
reduction

Figure G-2: Numerical demonstration of Fock lasing from steady state of the Liou-
villian. (a) Loss (red) and gain (green) curves for different values of the pump strength.
(b) Mean number of photons in the cavity (blue), as well as variance (orange), as a func-
tion of pumping rate from the ground state to the upper pumping level. After a thresh-
old, the photon number increases linearly, before going through a nearly discontinuous
jump to a low noise state, with noise here 90% below the coherent state level. (c)
Fano factor corresponding to the mean and variance in (b), with inset showing the pho-
ton probability distribution at the lowest-relative-noise point. Parameters for the nonlin-
ear cavity are the same as Fig. S1 here. Parameters for the gain are: g = 3 × 10−4,
γ⊥ = 10−2, γ|| = 10−4, γ12 = 10−3, γ34 = 1 (exact value of γ34 has little influence insofar
as it is much faster than Λ (all units are in units of the frequency of a (e.g., 1.5 eV).

motion ρ for the density matrix of the nonlinear resonance is given by:

ρ̇ = −
∞∑

n=0
n(µnTn,nρ+µ∗

nρTn,n)+
∞∑

m,n=0

√
m(n+ 1)(µm +µ∗

n+1)Tm−1,mρTn+1,n, (G.69)

with µn = 1
2κ − G+G−

i(ωd−ωn,n−1)+γ/2 and Tm,n = |m⟩⟨n|. In this equation n indexes over

photon number in the nonlinear resonance with annihilation operator a with frequency ωa,

decay constant κ, and Kerr nonlinearity of strength β. The linear mode with annihilation

operator d has frequency ωd and decay constant γ ≫ κ. The term G+ = iλ∗ + 1
2
√
κγ

while G− = iλ+ 1
2
√
κγ. The frequency ωn,n−1 = ωa(1 + 2βn) is the intensity-dependent

resonance frequency of the cavity.

Equation of motion for the probabilities. The probability pn of n photons being in the

nonlinear resonance, a, evolve according to:

ṗn = −Lnpn + Ln+1pn+1, (G.70)
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with Ln found as:

Ln = n

(
κδ2

n + γ|λ|2 + 2√
κγδn|λ| cosϕ

δ2
n + γ2/4

)
, (G.71)

with κ, γ, λ being defined above. The term δn = ωn,n−1 − ωd. We also define the temporal

loss coefficient as κ(n) = Ln/n.

Equation of motion for k-th coherences of the field. The off-diagonal components of the

density matrix ρ̇n−k,n, with k an integer, evolve according to:

ρ̇n−k,n = −((n−k)µn−k +nµ∗
n)ρn−k,n +

√
(n− k + 1)(n+ 1)(µn−k+1 +µ∗

n+1)ρn−k+1,n+1.

(G.72)

Langevin equation for a nonlinear resonance. The photon number operator n in a non-

linear cavity with the loss of Eq. (24) evolves according to the Langevin equation

ṅ = −κ(n)n+ Fn, (G.73)

where κ(n) is the temporal loss coefficient defined earlier in this section, and Fn(t) is a

quantum Langevin force. The Langevin force has zero mean (⟨Fn⟩ = 0), and the diffusion

coefficient of Fn (defined so that ⟨Fn(t)Fn(t′)⟩ = 2⟨Dn,n⟩δ(t− t′)) is given by

2⟨Dn,n⟩ = ⟨nκ(n)⟩. (G.74)

Noise spectrum of a Fock laser. The spectrum of fluctuations for the cavity photon num-

ber, Snn(ω) is defined such that the photon number variance (∆n)2 =
∞∫

−∞

dω
2π
Snn(ω). The

spectrum of fluctuations for a Fock laser − for a four-level gain medium with fast decays

of the upper pump and lower lasing level − is given by:

Snn(ω) = 2κ(n̄)n̄× ω2 + Γ2

(ω2 − Ω2)2 + ω2η2 . (G.75)

Here, n̄ is the mean photon number in the laser cavity at steady-state, and Γ = γ|| + Rspn̄

with γ|| the relaxation rate of the upper pump level and Rsp the rate of spontaneous emis-
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sion into the cavity mode. We have also for simplicity defined the “relaxation oscillation

frequency”

Ω2 = (Γκ′(n̄) +Rspκ(n̄)) n̄, (G.76)

and the “relaxation oscillation damping rate”

η = Γ + κ′(n̄)n̄. (G.77)

The term κ′(n̄) is defined as dκ
dn

∣∣∣∣
n̄
.

Photon probability distribution of a Fock laser. The probability of n photons being in

the laser cavity, in the class A limit (where γ⊥, γ|| ≫ κ) is given as:

pn = 1
Z

(
n∏

m=1

RspN0

(1 +m/ns)κ(m)

)
, (G.78)

with Z a normalization constant and N0 = Λ/γ|| the unsaturated inversion, with Λ the

pumping rate of the upper lasing level. We have also defined the saturation photon number

ns = γ||/Rsp.

Effect of gain and loss sharpness on photon uncertainty in the Fock laser. The uncer-

tainty of the photon number in the cavity, in the class A regime, is given by:

(∆n)2 = 1

− d
dn

G(n)
κ(n)

∣∣∣∣
n̄

, (G.79)

with G(n) the intensity-dependent temporal gain coefficient. For cases where the loss

varies much more sharply compared to the gain, (∆n)2 may be approximated as:

(∆n)2 ≈ 1
G(n̄)κ′(n̄)

κ2(n̄)

= 1
κ′(n̄)/κ(n̄) . (G.80)

G.5 Potential extensions of the theory

Here, we list some potential theoretical areas of exploration that should be enabled by the

results here (experimental directions are discussed in the main text).
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1. The equation of motion for the density matrix, Eq. (21), provides a starting point

for many investigations of systems with nonlinear frequency-dependent loss. For

example, one may use this equation to study statistics under coherent driving.

2. The master equation of Eq. (21), applied to describe coherence, also enables the

study of the dynamical evolution of field- (g(1)(t, t′)), intensity- (g(2)(t, t′)) and higher-

order field correlations (g(k)(t, t′)). The k-th order correlation functions are con-

nected to the equation of motion for ρn−k,n by the quantum regression theorem [433].

3. The system introduced in this work, with Hamiltonian given by Eq. (2) is closely

related to the physics of optically bistable systems. In particular, removing the d-

resonance, one has the canonical model of an optically bistable resonance ([540]).

4. More broadly, the Hamiltonian of Eq. (2) is quite generic, and should apply to open

nonlinear systems beyond those considered here. For example, in superconducting

qubit systems, nonlinearities can be remarkably high, and there are a great many

experimental possibilities for reservoir engineering. Such systems may yield com-

pelling platforms to realize the Fock- and sub-Poissonian state-generation effects

discussed here.

5. All results have been provided in the limit κ ≪ γ, enabling adiabatic elimination.

Generalization of our results beyond this regime is of clear fundamental interest. It

is also highly relevant in cases for which the frequency sharpness of the end-mirror

becomes sharper than the response time of the cavity mode.

6. As we showed, extremely strong noise reduction can also be obtained in systems

with sharply nonlinear gain. The development of practical proposals of systems to

realize a sharp nonlinear gain is then of interest as a “competing” platform to realize

the Fock- and sub-Poissonian state-generation effects here.

7. We have focused almost exclusively on the quantum statistics of the cavity mode.

The statistics of the output beam are also of obvious interest, and are simpler to

probe than the cavity statistics. A detailed theoretical exposition of the output field

statistics is therefore motivated.
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8. The entirety of the manuscript assumes that only a single-mode of the electromag-

netic field is relevant. Treatments of Fock-state generation (with or without gain) in

the multimode regime are of obvious interest.
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G.6 Supplementary figures

Here, we provide additional figures and results, as well as a table of detailed parameters

used in Figs. 3, 4 of the main text.
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Figure G-3: Systems which could be explored for Fock lasing. Many options exist for
nonlinearity: circuit and cavity QED systems, atomic gases, excitonic strong coupling, and
bulk optical materials. Gain media span solid-state, semiconductors, gases, dyes, artificial
atoms, and even single atoms (in one-atom lasers). Sources of sharp loss include absorbers,
as well as many systems explored in (nano)photonics: photonic crystals, Fano resonances,
bound states in the continuum, bistable systems, and coupled cavities.

In Table S1, we provide detailed parameters for the gain for the examples of Figs. 3, 4

of the main text. The various parameters to be specified are: the gain medium frequency

(ωgain), relaxation and decoherence rates γ||, γ⊥, the cross sections for stimulated emission

and absorption (σst, σabs), the density of gain atoms ngain, and the fill fraction f of the

gain. The cavity is specified by the cavity length Lcav, the cavity waist wcav, the resonance

frequency ωcav, and the nonlinear strength per photon β. The lasing mode is taken as a

TEM00 mode. The Fano mirror is parameterized by its width γ, its direct transmission

coefficient td (see Eq. (38)), and its frequency ωd = (1 + δ)ωa.
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Parameter Value (Fig. 3) Value (Fig. 4)

ωgain 1.47 eV 1.17 eV
γ|| 3 × 108 s−1 4.34 × 103 s−1

γ⊥ 3.1 × 1013 s−1 1 × 1012 s−1

σst 3 × 10−16 cm2 2.8 × 10−19 cm2

σabs 3 × 10−16 cm2 7.7 × 10−20 cm2

ngain 1.7 × 1021 cm−3 1.3 × 1020 cm−3

f 0.5 0.5
Lcav 2 µm 1 mm
wcav 1 µm 40 µm
ωcav ωgain ωgain

β −10−5ωcav 5 × 10−18ωcav

γ 2 × 10−3ωcav 10−2ωcav

td 0.05 1
δ 20γ −10−3γ

Table G.1: Table of gain, cavity, and linear resonance parameters used in Figs. 3, 4 of the
main text.
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Figure G-4: Fock lasing in systems with strong optical nonlinearities. (a) The system of
Fig. 3 of the main text is now converted into a “Fock laser” by inclusion of a gain medium.
Different transmission profiles for the Fano mirror lead to different losses, and thus differ-
ent emission-absorption diagrams. Note that td is the direct transmission coefficient that
controls the Fano lineshape. (b) Evolution of an initial coherent state with different photon
numbers (black circles) in the Fock laser. A state to the left of the approximate zero of the
loss decays into a thermal state with a very low number of photons, while a state to the
right of the zero decays into a steady-state with very low noise, approaching a high-number
optical Fock state. (c) Photon number and fluctuations as a function of pump. “S-curves”
similar to conventional lasers are observed in the photon number, except they saturate much
more strongly, with the photon number hardly changing for increasing pump. Moreover,
the photon number fluctuations, rather than increasing according to shot noise, decrease to
nearly zero beyond threshold, indicating convergence to a near-Fock state. Different curves
indicate different values of the mirror sharpness γ. In this figure, the polaritons have Kerr
nonlinear strength 10−7ωLP. The detuning of the mirror from the lower polariton energy
(with zero polaritons) is 10−3ω0 and the mirror has a sharpness of 10−4ω0.
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Figure G-5: Effect of linear loss on transient noise condensation. Evolution of Fano
factor F = (∆n)2/n for the system of Fig. 2 of the main text for different levels of
background linear loss. The case of zero linear loss corresponds to the case in which all the
loss is nonlinear. For finite linear losses, the noise condensation becomes imperfect, but
for realistic values of linear loss (e.g., Q = 106), the noise condensation can be quite high,
corresponding to 10 dB of squeezing.

G.7 Appendix: Deriving the effect of nonlinear loss on

probabilities and coherences directly from the Heisen-

berg picture

In Section II (“Quantum theory of a nonlinear resonator with frequency-dependent loss”),

we derived the equation of motion for the photon probabilities from a reservoir theory

in which we considered the joint coupling of the cavity and end-mirror to the resonator.

We derived a master equation for the density matrix of the cavity and mirror and we then

adiabatically eliminated the end mirror. We now provide a potentially simpler and more

direct derivation of the result from the Heisenberg equations of motion. This derivation

fully agrees with our findings from the density matrix.
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G.7.1 General framework

Our goal will be to derive a set of Heisenberg equations of motion to describe the photon

in the nonlinear cavity. In a conventional laser theory based on Langevin equations, one

writes an equation of motion for a. For the nonlinear laser considered here, this approach

is complicated by the polychromatic nature of a nonlinear oscillator. In particular, the

operator a can be expressed as a = ∑
n

√
n|n − 1⟩⟨n| ≡ ∑

n

√
nTn−1,n. In the absence

of interactions with gain or reservoirs, the time-evolution of a would simply be a(t) =∑
n

√
nTn−1,n(0)e−iωn,n−1t with ωn,n−1 = ωn − ωn−1. For a linear photon, ωn,n−1 = nω −

(n−1)ω = ω, independently of n, recovering the familiar monochromatic evolution a(t) =

a(0)e−iωt.

While the polychromatic nature of a evades solution by conventional methods, the time

evolution of the operators Tn−1,n, and more generally, Tn−k,n, is quite simple. For example,

in the absence of gain or loss, the time-evolution of the operator Tn−k,n is given as:

Ṫn−k,n = i

ℏ

[∑
m

ℏωmTm,m, Tn−k,n

]
= −iωn,n−kTn−k,n, (G.81)

so that Tn−k,n(t) = Tn−k,n(0)e−iωn,n−kt. Thus, the operators Tn−k,n have a simple monochro-

matic evolution in the absence of interactions. The simplicity of the equation of motion for

the projectors then motivates us to formulate our quantum theory of nonlinear loss through

the equations of motion for the Tn−k,n, for each k. Each k corresponds to a quantity with

clear physical significance. The case of k = 0, which is of primary interest in this work,

corresponds to probabilities/populations. In particular, ⟨Tn,n⟩ = tr[ρTn,n] corresponds

to the probability of having n photons. The case of k finite correspond to coherences,

with ⟨Tn−1,n⟩ corresponding to first-order (phase) coherence (and the laser linewidth) and

⟨Tn−2,n⟩ corresponding to second-order (intensity) coherence.

In deriving Eq. (81), we have made use of the fundamental identity of projectors

TijTkl = δjkTil. We will make heavy use of this identity throughout this section. Beyond
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this, the following two identities are also used frequently:

[a, Tn−k,n] =
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1, (G.82)[

a†, Tn−k,n

]
=

√
n− k + 1Tn−k+1,n −

√
nTn−k,n−1. (G.83)

We have already found the contribution of free evolution to the equation of motion for

Tn−k,n. Now we move to find the contribution from the sharp loss provided by the end

mirror.

G.7.2 Loss terms

Now, we derive the contribution of cavity losses to the equation of motion for the kth

coherences: defined as Ṫ (loss)
n−k,n. We have

Ṫ
(loss)
n−k,n = i

[
(λad† + λ∗a†d) +

∑
k

gk(ab†
k + a†bk), Tn−k,n

]

= i
∑

k

gkb
†
k(

√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1)

+ i
∑

k

gk(
√
n− k + 1Tn−k+1,n −

√
nTn−k,n−1)bk

+ iλd†(
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1)

+ iλ∗(
√
n− k + 1Tn−k+1,n −

√
nTn−k,n−1)d

≡ (L1A) + (L1B) + (L2A) + (L2B). (G.84)

Here, we have normally ordered the reservoir operators, as we will exclusively consider

initial conditions involving no excitations in the far-field or the internal mode of the Fano

mirror. Therefore, upon taking expectation values, terms involving the initial values of

these operators (Langevin forces) will vanish.

Now, we eliminate the reservoirs from the equations. This is done through the Heisen-

berg equations of motion for the far-field reservoir and the internal mode of the Fano mirror.
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The equation for bk reads:

ḃk = −iωkbk − igka− ivkd, (G.85)

admitting the formal solution

bk(t) = bk(0)e−iωkt − i

t∫
dt′ (gka(t′) + vkd(t′)) e−iωk(t−t′). (G.86)

To proceed, let us eliminate b from the equation of motion for d. The equation of motion

for d is:

ḋ = −iωdd− iλa− i
∑

k

vkbk. (G.87)

Plugging in the formal solution for bk results in:

ḋ = −iωdd−iλa−i
∑

k

vk

bk(0)e−iωkt − i

t∫
dt′ (gka(t′) + vkd(t′)) e−iωk(t−t′)

 . (G.88)

Now, we make use of the fact that in laser theory, the coupling between cavity modes

and the far-field is well-approximated as a white noise coupling which is independent of

frequency, so that gk = g and vk = v (Markov approximation). In that case, the sum over k

can be carried out. In the continuum limit,
∑

k →
∫
dωk ρ0, with ρ0 the (constant) density

of (far-field) states, such that the sum yields:

ḋ = −isdd−G−a+ Fd. (G.89)

Here, we have used
∫
dt′δ(t − t′)f(t′) = 1

2f(t) and defined γ = 2πρv2, κ = 2πρg2,

sd = ωd − iγ
2 , and G− = iλ + 1

2
√
κγ. We have also defined the Langevin force on d via

Fd = −i∑
k
vkbk(0)e−iωkt. We may now write the formal solution for d as

d(t) = d(0)e−isdt +
t∫
dt′ (−G−a(t′) + Fd(t′)) e−isd(t−t′). (G.90)

With the formal solutions for b and d, we may now plug them back into the terms L1A, L1B,
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L2A, and L2B. Let us start with L1A and L1B. L1A , under the Markov approximation, is

given as:

(L1A) =
(
i
∑

k

gkb
†
k(0)eiωkt − 1

2
(
κa† + √

κγd†
))

(
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1).

(G.91)

To proceed, we carry out the following steps (these will be repeated for the terms L1B,

L2A, and L2B):

(L1A) =
(
i
∑

k

gkb
†
k(0)eiωkt

)
(
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1)

− 1
2κ((n− k)Tn−k,n −

√
(n+ 1)(n− k + 1)Tn−k+1,n+1)

+ 1
2

√
κγ

t∫
dt′G∗

−a
†(t′)eis∗

d(t−t′)(
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1)

− 1
2

√
κγ

d†(0)eis∗
dt +

t∫
dt′F †

d (t′)eis∗
d(t−t′)

 (
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1).

(G.92)

In what follows, we consider the limiting case in which the decay of d, set by γ is much

faster than the gain dynamics. This is the same adiabatic approximation that was used in

the density matrix treatment of the nonlinear Fano resonance. Under those conditions, the

third term becomes:

1
2

√
κγG∗

−

 n− k

i(ωn−k,n−k−1 − s∗
d)Tn−k,n −

√
(n+ 1)(n− k + 1)
i(ωn−k+1,n−k − s∗

d) Tn−k+1,n+1

 . (G.93)

401



This allows us to write L1A as

(L1A) = − 1
2κ((n− k)Tn−k,n −

√
(n+ 1)(n− k + 1)Tn−k+1,n+1)

+ 1
2

√
κγG∗

−

 n− k

i(ωn−k,n−k−1 − s∗
d)Tn−k,n −

√
(n+ 1)(n− k + 1)
i(ωn−k+1,n−k − s∗

d) Tn−k+1,n+1

 .
+
(
i
∑

k

gkb
†
k(0)eiωkt

)
(
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1)

− 1
2

√
κγ

d†(0)eis∗
dt +

t∫
dt′F †

d (t′)eis∗
d(t−t′)

 (
√
n− kTn−k−1,n −

√
n+ 1Tn−k,n+1).

(G.94)

As can be seen, the first two lines, upon taking expectation values, give terms of a similar

form to those derived for the density matrix. The remaining lines give zero expectation

value when starting in the vacuum of the internal mode and the reservoir, and thus vanish

when considering equations of motion for coherences.

Now, let us consider the remaining terms. L1B is quite similar to L1A, and we write

(L1B) = (
√
n− k + 1Tn−k+1,n −

√
nTn−k,n−1)

(
i
∑

k

gkbk(0)e−iωkt + 1
2 (κa+ √

κγd)
)
,

(G.95)

which may be further simplified as

(L1B) = 1
2κ(

√
(n− k + 1)(n+ 1)Tn−k+1,n+1 − nTn−k,n)

− 1
2

√
κγG−
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√

(n− k + 1)(n+ 1)
i(sd − ωn+1,n) Tn−k+1,n+1 − n

i(sd − ωn,n−1)
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+ (

√
n− k + 1Tn−k+1,n −

√
nTn−k,n−1)

(
i
∑

k

gkbk(0)e−iωkt

)

+ 1
2

√
κγ(

√
n− k + 1Tn−k+1,n −

√
nTn−k,n−1)

d(0)e−isdt +
t∫
dt′Fd(t′)e−isd(t−t′)

 ,
(G.96)

where we have taken all the same steps as those leading to Eq. (94).
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The term L2A is given as:

(L2A) = iλ

d†(0)eis∗
dt +

t∫
dt′
(
−G∗

−a
†(t′) + F †

d (t′)
)
e+is∗

d(t−t′)

 (
√
n− kTn−k−1,n−

√
n+ 1Tn−k,n+1).

(G.97)

Under the adiabatic approximation, we may then write:

(L2A) = −iλG∗
−

 (n− k)
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The term L2B:

(L2B) = iλ∗(
√
n− k + 1Tn−k+1,n−

√
nTn−k,n−1)

d(0)e−isdt +
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 ,
(G.99)

similarly follows as:

(L2B) = −iλ∗G−


√

(n− k + 1)(n+ 1)
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 .
(G.100)

Plugging L1A, L1B, L2A, and L2B into the equation for Ṫ (loss)
n−k,n, we have

Ṫ
(loss)
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−1
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√
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2
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Tn−k+1,n+1

+ F
(loss)
n−k,n, (G.101)
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The Langevin force F (loss)
n−k,n is given by

F
(loss)
n−k,n =

(
i
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(G.102)

and has the important property that ⟨F (loss)
n−k,n⟩ = 0 when the initial state is the vacuum of the

reservoirs and the internal mode. Hence, for the systems we will consider here, such terms

can be functionally ignored.

G.7.3 Equation of motion for the k-th coherences

Here, we summarize the previous two sections, writing down the total equations of motion

for the photon. The equation of motion for the kth coherences are

Ṫn−k,n = −iωn,n−kTn−k,n

+
(

−1
2κ(2n− k) + (n− k)(G+G−)∗
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d) + nG+G−
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)
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+
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(n− k + 1)(n+ 1)
(
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i(ωn−k+1,n−k − s∗
d) + G+G−

i(sd − ωn+1,n)

)
Tn−k+1,n+1

+ F
(loss)
n−k,n, (G.103)

404



where

F
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(G.104)

One immediately sees that for k = 0, these equations are identical to those from the density

matrix description − modulo the explicit form of the Langevin terms here, which resulted

from our explicit account of the reservoir in the Heisenberg equations.
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Mainguy, and Yong Chen. Coherent emission of light by thermal sources. Nature,
416(6876):61–64, 2002.

[31] Konstantin Y Bliokh, Daria Smirnova, and Franco Nori. Quantum spin hall effect of
light. Science, 348(6242):1448–1451, 2015.

[32] Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Arno Rauschenbeutel, Philipp
Schneeweiss, Jürgen Volz, Hannes Pichler, and Peter Zoller. Chiral quantum optics.
Nature, 541(7638):473–480, 2017.

[33] Torsten Karzig, Charles-Edouard Bardyn, Netanel H Lindner, and Gil Refael. Topo-
logical polaritons. Physical Review X, 5(3):031001, 2015.

[34] S Klembt, TH Harder, OA Egorov, K Winkler, R Ge, MA Bandres, M Emmerling,
L Worschech, TCH Liew, M Segev, et al. Exciton-polariton topological insulator.
Nature, 562(7728):552–556, 2018.

[35] Justin CW Song and Mark S Rudner. Chiral plasmons without magnetic field. Pro-
ceedings of the National Academy of Sciences, 113(17):4658–4663, 2016.

[36] Dafei Jin, Ling Lu, Zhong Wang, Chen Fang, John D Joannopoulos, Marin Soljačić,
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and Ido Kaminer. Nonperturbative quantum electrodynamics in the cherenkov effect.
Physical Review X, 8(4):041013, 2018.

424
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and Jérôme Faist. Ultrastrong coupling regime and plasmon polaritons in parabolic
semiconductor quantum wells. Phys. Rev. Lett., 108:106402, Mar 2012.
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