PERFORMANCE EVALUATION OF DECISIONMAKING ORGANIZATIONS
USING TIMED PETRI NETS ’

by
HERVE P. HILLION

Ingenieur de 1'Ecole Polytechnique
(1983)

SUBMITTED TO THE
DEPARTMENT OF MECHANICAL ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
. IN
TECHNOLOGY POLICY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

© Massachusetts Institute of Technology

—-

Signature of Author | Y 14—
"~ 7 D¢partment of Mechanical Engineering
' August 15, 1986

Certified by — —

Alexander H. Levis, Thesis Supervisor

Accepted by

Richard de Neufville
Chairman, Technology and Policy Program

Accepted by

Ain A. Sonin, Chairman
Departmental Committee on Graduate Studies
Department of Mechanical Engineering

PERFORMANCE EVALUATION OF DECISIONMAKING ORGANIZATIONS
' USING TIMED PETRI NETS

by

HERVE P. HILLION

submitted to the Department of Mechanical Engineering
on August 15, 1986
in partial fulfillment of the requireménts for the degree of

Master of Science in Technology and Policy

ABSTRACT

Decisionmaking organizations are modeled as asynchronous concurrent
systems, using Timed Petri Nets. The modeling allows for evaluating the
time-related performances, with respect to the following measures: The
maximum throughput rate, defined as the maximum processing rate achievable
by the system, and the execution schedule, which determines the earliest
instants at which the different operations can occur in the process. These
measures of performance are analyzed and expressed as a function of the
resource and time constraints that are specific to the organization. The
characterization obtained makes it possible to compare different
organizational forms and to modify existing designs so as to improve
performance.

Thesis Supervisor: Alexander H. Levis

Title: Senior Research Scientist

ACKNOWLEDGEMENT

I would like to thank Dr. Alexander H. Levis for his guidance and
support throughout the work on this thesis. Working with him was a very

valuable experience.

I would like also to thank Lisa Babine for her excellent typing and

her endless patience at completing the final document.

The suggestions of Dr. John Brode at the early stages of this thesis

were very helpful in setting the direction of the work.

Finally, I thank the very good friends I have known at MIT and whose

moral support has always been helpful to me.

The Petri Nets shown in the Figures were obtained with a customized
beta version of "Design” provided by its developer, Mr. Robert Shapiro of
Meta Software, Inc., Cambridge, MA.

This research was carried out at the MIT Laboratory for Information
and Decision Systems, with support provided primarily by the Joint
Directors of Laboratories under Contract No. N00014-85-K-0782 and also by
the Office of Naval Research under Contract No. N00014-84-K-0519 and the

National Sciencé Foundation under Grant No. 84-19885SES.

TABLE OF CONTENTS

Page

AbStPaCt €0 0600 00 C0 000 ESREUNCERER NS ETEP ST CERENIECEO00ISINEEIRISIEOSOEIECEEOIRGCEEDRTDONES 2

Acknowledgement ® 0 9 0 8 0 0Q8 000 EN00SC00000EPERESNENNSENEINSOORBIERNIETOEPISISOECEDRRTISTDS 3
LiSt Of Figures IR RTINS Y B AT BN Y S NE B B B R BN BB NI R RN R B IR B B B) 8

LiSt Of TableS @ 0 0 6 00 00 E0C L0 L0RCP00ECSO0SRINNNECERERNERSSEIOEOSOESETRNERROIENEDNINSTOETS 10

CHAPTER I: INTRODUCTION teveccccsscscosssosssssssssccosacssssccssssses 11
1.1 BacKkground ..eeeeecescecscsossnscsscssascnassssaasssseasssssses 11
1.2 G08LlS seseeeevesosssccccossssnannassssscccssssssscocsasesssee 12
1.3 ApPProach ceeceeceseccaccscseassssscsncsssssosesssasacccssnnseasas 13

1-4 The TheSiS in Outline €9 e 0 000 0CRRRLQOOLEORTREONOEOROOGBOSEOOROSEOEOEOEPRIRECEEOEPRNEOTTODE 15

CHAPTER II: REVIEW OF PETRI NET THEORY ..cccececcceccscsacncassassenes 17
2.1 Basic Definitions .eieeecesscccccecccsascsccccassaccccosannes 17
2.1.1 Structure of a Petri Net .cicveeesececcanccscscccaeses 17
2.1,2 Incidence MatriX ..eceeeeceesescessccecscconssascsscees 18
2.1.3 Marked Petri Net ..cccececscescossascscansosccacsceceees 19
2.1.4 Rules of Operation c.ccecececcesescsosssccccsssacscccss 20
2.1.5 Forward Marking ClaSS .ceeccececccsescssscssccnscsencss 22
2.1.6 Liveness and Boundedness ...cccecececcsesccccscccccnsses 22
2.1,7 Application of the Petri Net Model ...ccieeeesecacceeee 23

2.2 S and T-Invariants ..ceeecescsccccscccscccecosccsccccnssscnse 24
2.2.1 DefinitioNS seeeceseccescescacescccssscosssscssascsaacee 25
2.2.2 Example of S—InvariantS .ceeeesescscescscscccsscsscnas 25
2.2.3 Properties of S—-Invariants ..ccesccccessecccscsascacss 27

2.2'4 T_Invariants S0 e reses0secrs st e R reeTROEOOOIOEERSIOOIRETRTODO 29

2.2 Petri Net Theory and Graph TheOr'y ..cceccecsccccccccscoccnnse

2.3.,1 Definitions from Graph ThE€OrY .cececcccccaccscescossss

2.3.2 Event—-Graph: Definitions and Properties ..ccececacses

2.3.3 S-Invariants of Event—-Graphs .ceccecccscecccncccccsnas

2.4 Timed Petri NetS 8 9 0800000000 QCEPLL00ECEERRECEESSRCONCEONIOINECROIEOSINTBTTODN

2.4.1 Definitions © 9 E 0 TS CEI PRI IR OO RGN NRESRQOCEOEAREBROEOESTCEECREOERROTDRESE

2.4.2 Timed Event—-Graph .cccceececescsecsacccccncsssssccsscnse

CHAPTER III: PETRI NET DESIGN OF DECISIONMAKING ORGANIZATIONS

3.1 Aggregated Model of the Interacting Decisionmaker ...ccccesee

3.2 Model of the Interacting Decisionmaker with Limited

ReSOUPCeS 6 0 0 0 8 00 P TV ECEE0 0SS OPOPAEPEEN LIS ISIOSRICEESIETERESESOEETSETSOE

3.3 Aggresated MOdel Of the DMO 8 0 E 0PN G CELOPOEESENENSOCOIOEONSTOTRITTTS

3.3.1 Model of the DMO Interacting with the Environment

3 .3 .2 Model of the DMO with Limited Resour‘ces €8 000 0000000

3.4 Modeling Time COHStPaintS 0 00 00T RO PRSI EERCOENEOOERNROOEONEOEDRIPOEEEODS

3.5 Model of the DMO as a Strongly Connected Timed Event—Graph ..

CHAPTER IV: MAXIMUM THROUGHPUT RATE OF THE DMO cccceevavsanceeasannanne

4.1 Properties of the Petri Net Model .cicececcccccracccasasannss

4.2 Computation of

4.2.1

4.2.2

4.2.3

4.2.4

Average
Average
Maximum
Maximum
4.2.4.1

4.2.4.2

the Maximum Throughput Rate ..cececeeccccccces
Cycle Time of Transitions c.cceeccececccscccens
Circuit Processing Timeccccccecscocscescns
Average Circuit Processing Tim€ ..ccccececceee
Throughput Rateé .ccesvececesoccccscccsscacaces
Deterministic System cceecceccnccscssscscsass

Non-Deterministic Sysftelm ccceceescccccccccascs

29
30
31
34
38
38

41

45

45

47
48
48
55

57

63
63
64
65
71
76
83
84

86

4.3 Application to the Two Member Organization ..c.evececeseccccas
4.3.1 Analysis of the Processing Rate Constraints ...ce.ces.
4.3.2 Evaluation of the Maximum Throughput Rate ..ecesececae

4.3.2.1 Example 1 .cecececcasccvsctcscscsassasnnsssanca
4.3.2.2 Example 2 ..ccecccccsccsscncocscsscsnsassones
4.3.2.3 Example 3 .eecvecccecoscsscssssccsscsnsscscscs

4.4 Conlusion 6 00 900 00 EEOCNEN PSP EOPLINPEESILENEPOREOICEEISOIOTOIECROOSTSEGACETSE

CHAPTER V: ANALYSIS OF EXECUTION SCHEDULES ...cccecccccccssscnccoacass
5.1 Analysis of Sequential and Concurrent Operations «eeceececsecs
5.1.1 Representation of the Process as an Occurence Net
5.1.2 Characterization of Lines and SlicC€5 .cciescccsccccccss

5.2 Execution Schedule of the DMO .ccceescccccsocscocasscsoccsnse
5.2.1 Assumptions of the Modelcccescscasenscsccnsesnns
5.2.2 Feasible Firing Schedule .cccsccecccccsssccsccssssccca
5.2.3 Determination of the Execution Schedule ...ceocevecese
5.2.4 Properties of the Execution Schedule ..icceecccccsccss

5.3 Measures of Performance from the Execution Schedule ...¢ccc..
5.3.1 Execution Schedule of the Input Transition ...ecececes
5.3.2 Execution Schedule of the Output Transition .cecceecse

504 CODClllSion ® 0 92 00 006000000000 ERC0sINTE0ERS00R0OFOCCECERIOIOIECEORIROIOCETDRTOCE

CHAPTER VI: APPLICATION ® 0 & 05 0 0 00 S PP LT N0 EOE LSOO SO P EORE OSSN OSSNSO
6.1 Presentation of the Model ® € @ 00 0 0808 OO0 SN OI S PSSR ReEEERY
6.2 Performance Evaluation of the Five DM Organization ...cceses.

6.2.1 Structural Characteristics of the Model ..ccccceencesns

89

89

95

95

97

98

99

101

101

102

103

106

106

107

108

113

116

117

119

124

125

125

129

129

6.2.2 Measures of Performance c.cccecsccsscscsccsscccssasacscs
6.2.3 Numerical ResUltS .cc.tcescceescoscesncssssscresccnsssne
6.2.3.1 First CaS@ .ceccececccsccesssscscsaccasasacea
6.2.3.2 Second CaS€ ..c.eccecssccccccnacsssncsnnscnne
6.2.3.3 Third CaS€ ..ccesceccccccscccscscsssssasccnsss
6.2.3.4 Fourth CaSe ..ccecececcccscascsssscnossascnsee
6.2.4 Summary Analysis of the Results .cececesscsccccesscons
6.2.4.1 Comparison of the Performance Measures

6.2.4.2 Execution Schedule of the Concurrent Tasks ..

CHAPTER VII: CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH .¢ececsen

7.1 Con01USionS 9 0 60 00000 EEELPEERPENPOIPOPOEEDREEERRREECOECOCEEOODOOEONTOTOS

7.2 Directions for Further ResearcChcsccecaccccccsccssssscnss

REFERENCES €0 2 0 09 G0 0000 ENT S EEE0PSEEREEDEEETOIRTESSORREOSRPERROOIESIOPEIEOIITTDONTECE

APPENDIX A: ALGORITHM TO OBTAIN ALL THE CIRCUITS OF AN EVENT-GRAPH ...

A.l

AIZ

A.3

A.4

APPENDIX B:

APPENDIX

c.1

c.2

C:

Summary €0 0@ 0 8 800 0000000 PENCIEENIRNOEREESSCOECEREREIRNOESPRIOTEOINOEETETOITOTTS

Algorithm to Obtain All the Minimal Support S—Invariants
ofaGeneral Petri Net ® 0 0 0 0 0 00 0 8 8 08 008 B O PO SO SO NN O eeEE S eN S

Determination of the Directed Circuits for an Event-Graph ...

Example © 000 PSP OPD 00 GLEEQESEEEEVEEEOTENESEeNENRR0CNEROINOCEEIEORIOCTTeTS

DEMONSTRATION OF THEOREM 5.1 Ses0 s8R ECEERERSEOLEORNCEOEOROIERTTOITOTS

ALGORITHM TO COMPUTE THE FIRING SCHEDULE «evocecccsnccccocnse
Summary Analysis of the Firing Schedule ..ccsceccscccssccnces

DeSCPiption Of the Algorithm S e 00 ¢ sEEPPOOEPRPEOECEROESIOECEOIEONOERIRCOTEOTOETNETYE

133
136
136
137
142
145
147
147

149

151
151

153
155

157

157

157
159

160
163

167
167

171

LIST OF FIGURES

Page
2.1 Example of a Petri Net .eeieecceccscsoscccssccccscssscccscssacossnss 18
2.2 Example of a Marked Petri Net ...iceeececcsccccocccsccscccsssseccss 19
2.3 Example of a Live Petri Net iveeeeeseosesoncsocncancccscccncconces 23
2.4 Example of a Strongly Connected Net ..cceecessccsseesecsacsscencees 30
2.5 Example of an Event—Graph secescececcsccsccccscacsssacssssssascssss 32
2.6 Example of a Live Event—Graph .cieeesscscsessscsesescssrsscasncacsecnecas 32
2.7 An Example of an S—ComMPONENt .eceescccsssssacesssssssacccsasscaccee 34
2.8 Timed Petri Net EQUIiVAleNCe .seeeecesscsesscesscsscssasccscsccnscse 40
2.9 Representation of a S€L1f=LOOD ceecsecscccccnsccsscsacasanscacessss 42

2.10 Model of Transition FiPing ..ccececcsscccsscsscasscssssanssasassass 43

3.1 Model of the Interacting Decisionmaker ..ccecscscesssssasssssscascs 46
3.2 Model of Interacting Decisionmaker with Limited Resourcesc... 49
3.3 Model of the Partitioning Operation .ceceeeecssseceserscccssscssasecs 353
3.4 Model of the DMO Interacting with the Environmenteceseeeececes 354
3.5 Model of the DMO with Limited ReSourcescecceesccccsccccscceces 356
3.6 Petri Net Model of an n—Decision Switchvcveeeecsccccccccass 57
3.7 Two Member Organization (Structure (a)) ceeeesescccecrcssacacncses 61

3.8 Two Member Organization (Structure (b)) ...iccececscecssccsassesas 61

4.1 Directed Circuit Containing ti and tj Y -1
4‘2 Directed Circuit ® ® 0 @ 8 9 2 E 0 OO0 0 00T OO0 OO OO E N0 G TSNS eSS Oee o 72
4.3 Interconnected CircuitfsS .eceecececcesscscescsssscassassnasasanacnssa 17

4.4 Non—DetePMiniStic Example @0 000 VI TSRO BQIOOIERNOEROERNOISEOCEOIEROOPERANRSIOSEOCESEOSETROE 87

5.1
5.2
5.3

5.4

6.2
6.3
6.4
6.5

6.6

c.1

Cc.2

Model of the Two Member Organization as an Occurence Net cceececee
Input Places and Transitions of tj Cesesssccsecsssssesrencsacnnana
K-Periodic Sequence with Period 7 .c.eeeececcccccsccsacascsccsancns

Z—Per‘iOdiO Firillg SChedUle © 000 00000000000 PEEECOIENNLIOEIOREREEOEODORNOTTOES

Petri Net Model of the Five DM Organization ..cccccecceccesccccens
Petri Net Representation of the SA Stage with Preprocessor (DM2) .
Model of the Five DM Organization With Limited Resources ...eceeee
Directed Circuit (CasS€ 1) teiceeecccceccacccsceasscssassssanssasas
Directed Circuit (Case 2) .ieceeescecssccencccosssonscesnccnsscansa

Directed Cil"cuj.t (CaSe 3) 60 e R et essCEtecRstOeeRe0RPORERRGOREROEROTOEL

Example Of an Event—GPaph 6 0 0P EOEP PO COGT NN ORLCENENRIIOETEERRIROESOSEOSEITOEN

Input Places and Transitions of tj ceesesscesecsceesssscacasssrsee

Flow—Chart of the Algorithm that Computes the Firing Schedule

102

110

114

118

126

127

128

139

142

144

160

168

172

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

LIST OF TABLES

Page
Incidence MatriX cececescecscccssocosccoasssssssosnsscnnsaascscasss 130
List of the Directed Circuits ..ceeeesesccccccecccscncesscsncoccaee 131
LiSt Of SliCeS tueeeeeesoccsssassssencsscsssosescccascsoanaessccssss 133
Computation of the Execution Schedule: Case€ 1 (..ecceeeecvcasasss 138
Computation of the Execution Schedule: Case€ 2 ..cceecsccsccccceasss 140
Computation of the Execution Schedule: Case 3 ..ccceececcccccceses 143
Computation of the Execution Schedule: CaS€ 4 .ceeeeerssscccsesss 146

Summary of the ReSultS ..cveececsccvsccssccescascancscsccsasssssass 148

10

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

In most decisionmaking organizations (DMO), and especially in military
organizations supported by c? (command; cdntrol, and communications)
systems, timeliness is of critical importance. The ability of an
organization to perform the tasks and transmit information in a timely
manner is indeed a determinant factor of effectiveness. There are two
types of contraints which affect the time performance of a DMO. The first
type is related to the internal organizational structure that determines
how the various operations do occur in the process: some tasks are indeed
processed one after the other, characteristic of sequential activities, and
others are processed independently, which characterizes concurrent
activities. The sequential and concurrent events are precisely determined
by the communication and execution procotols among the individual
organization members, as defined in [1]. The second type of constraints
consists of time and resource constraints. More precisely, the time
constraints derive from the task execution times, i.e., the amount of time
necessary to perform each task. In addition, the organization controls
specified resources, which are generally limited. Depending on which of
the resources are free at a given instant, certain activities can take
place and others must be delayed: Hence, the resource limitations also

constrain the processing of inputs.

This set of constraints makes the decisionmaking process occur

asynchronously and concurrently in real—time. Indeed, the coordination

among the concurrent tasks occurs asynchronously and not at set times. At
this point, the Petri Net formalism, introduced in [2] for modeling the
DMO, provides a convenient tool for analyzing the behavior of systems that

exhibit asynchronous and concurrent properties. The Petri Net framework

11

will therefore be used in this thesis to evaluate the performance of an

organization, with respect to time-related measures.
1.2 GOALS

In earlier work [3]1, the evaluation of a particular measure of

performance (MOP), the lﬁeéponse time of the DMO, has been carried out,

using the Petri Net representation. This MOP characterizes the time
interval between the momemnt one external input or task is received by the
organization and the moment a response can be made. The response time so
computed is a static measure, in so far as the processing is supposed to

take place for a single input arriving at any instant of time.

In the analysis developed here, we want to investigate the dynamic
behavior of the DMO, for successively'arriving inputs. More precisely, the
objective of this research task is to evaluate the performance of a DMO,

with respect to the following time—related measures:

(a) Maximum Throughput Rate of the system., Clearly enough, if we

assume that external inputs are arriving continuously at a rate
which is low enough, the DMO will be able to handle all inputs as
soon as they arrive. Thén, the rate at which inputs are being

processed, which characterizes the throughput rate of the

organization, will precisely correspond to the arrival rate of
inputs. However, beyond a certain arrival rate of inputs, the
DMO will be overloaded: inputs will queue at the entry of the
System and this queue will grow to infinity over time, meaning

that the DMO will never catch up to all the inputs. This bound
precisely determines the maximum throughput rate of the system,
i.e., the maximum rate at which inputs can be processed. This
MOP characterizes therefore the best performance that can be
achieved by the organization, with respect to the processing

rate.

12

(b) The Execution Schedule of the organization. Let us assume that

the processing starts at ©=0 and that it occurs repetitively at
its maximum throughput rate. We want to determine the earliest
instants of time at which the various tasks can occur in the
repetitive process. In our analysis, the DMO will be allowed to
process simultaneously more than one input: we will therefore
obtain dynamic measures of performance. In particular, if we
assume that several inputs arrive simultaneously, it will be
possible to determine the response time, which, in that case,
corresponds to the time interval between the moment inputs were
received and the moment a response to each of the inputs was

made.

These MOPs, as described above, are important in the performance
evaluation of an organization. Suppose, for instance, that the goal of a
c? system is to detect, track, and identify threats and allocate weapons to
them. If several threats arrive simultaneously (or within a short period
of time) it will be possible, from the execution schedule, to evaluate the
ability'of the system to respond to all these threats in a timely manner.
Likewise, if a large number of threats arrive successively with a rate
that is above the maximum throughput rate of the system, we know that the

system will be overloaded.
1.3 APPROACH

The performance evaluation is based on the Petri Net modeling of
decisionmaking organizations, as introduced in [2]. However, some
extensions are introduced, in order to account for the time and resource
constraints. The resource constraints actually occur for both individual
decisionmakers (DMs) and the organization as a whole. In our approach, the
resource limitation existing for individual DMs allows for modeling the
limited capacity of information-processing that characterizes a human DM,
as described in the information theoretic framework by the bounded

rationality constraint [4]. More precisely, according to the analysis

13

carried out in [5], the resource constraint is derived from the limited
ability of the human short-term memory to handle a certain amount of
information at the same time. Therefore, the limitation of resources is
expressed heré as a bound on the total number of inputs that a DM is able
to process simultaneously. Likewise, the amount of information being
transmitted between the DMs is necessarily limited by the storage capacity
of the organization. We should recall that the process occurs
asynchronously, which implies, generally, that the information exchanged
between the DMs has to be stored temporarily. Exactly as for individual
DMs, this capacity constraint is modeled as a bound on the total number of

inputs that the overall organization can handle at the same time.

As already stated, the time constraints correspond to the task
execution times, i.e., the amount of time it takes to process each task.
Consequently, arbitrary processing times are assigned to each

organizationél task, according to the Timed Petri Net model developed by

Ramchandani [61]. The performance evaluation of the DMO is therefore

carried out using the properties of Timed Petri Nets.

In this work, the maximum throughput rate is expressed directly as a
function of both the task processing times and the resources available,
given the structure of the organization. In addition, an algorithm is
developed, that determines the execution schedule of the organization, when
the processing of inputs occurs at its maximum throughput rate. These MOPs
characterize in fact the best dynamic performance achievable by the
organization, as determined by the maximum rate at which inputs can be
processed and the earliest instants of time at which the various tasks can
be executed. These measures provide, therefore, a useful tool to evaluate
and compare different organizational forms. In particular, the precise
characterization of the resource and time constraints makes it possible to
investigate which of the constraints should be modified in the actual

design, so as to improve the time performance of the organization.

14

1.4 THE THESIS IN OUTLINE

The thesis is organized as follows. Chapter 2 is a review of Petri
Net theory and presents the extended Timed Petri Nets that are used in the
analysis. In Chapter 3, the model of the DMO using Timed Petri Nets is
discussed. Included in the modeling are the resource and time constraints,
as described previously. In Chapter 4, the maximum throughput rate is
determined as a function of the time and resource constraints. The
analysis of the execution schedule is carried out in Chapter 5 and a method
is developed to obtain the precise instants at which the various operations
take place in the process. In Chapter 6, an application is developed for a _
five member organization and the corresponding measures of performance are
computed. Finally, conclusions, as well as suggestions for further

research are presented in Chapter 7.

15

16

CHAPTER II

REVIEW OF PETRI NET THEORY

Petri Net theory forms the framework for the model of the
deeisionmaking organization analyzed in this thesis, Aecordingly, the
basic definitions are first reviewed in this chapter, as they are developed
in [7]. The important concepts of S and T-invariants [8] are also
presented and will be used later to develop algorithms., 1Inp addition, the
model of Timed Petri Nets [6] is described, since it is the approach taken
in this thesis to carry out the performance evaluation of the DMO.

2.1 BASIC DEFINITIONS

2.1.1, Structure of a Petri Net
A Petri Net (denoted by PN) is a Quadruple
PN=(P, T, 1, 0)
where:

P = {pl,...,pn] is a finite set of places

)
]

{tl.....tm} is a finite set of transitions
—-2nasitions

0 is a mapping: T x P —) {0,1} corresponding to the set of directed

edges from transitions to pPlaces.

Figure 2.1 shoys a simple example of PN.

17

it p2 p3

Figure 2.1 Example of a Petri Net

We denote by:

t=1{peP/ O(t,p) 1} the set of all output places of transition t.

‘t {p e P/ I(p,t) 1} the set of all input places of transition t.
p*and 'p are defined for each place p in a similar way.

In the example above: 't, = {p,,p,}, t; = {p,,p,}.

2.1.2 Incidence Matrix

The Incidence Matrix (also called Flow Matrix), denoted by C,
characterizes the structure of a PN in the following way: The columns of
the matrix correspond to the transitions of the net and the rows, to the

places. C is therefore, a n X m matrix, such that:

-1 if P; is an input place of t.

J
Cij = +1 if pj is an output place of tj
0 if there is no arc between Py and tj
We can easily verify that:
C,.=0(t,, p.) - I(p,,t.) (2.1)
ij J i i’7j

18

The Petri Net of Figure 2.1 has, for example, the following incidence

matrix:

-1 -1
1 -1
=1 o 1
0 1

2.1.3 Marked Petri Net

We call marking of a PN, denoted by M, a mapping: P —> {0,1,2,...,}
(set of integers) which assigns a non—negative integer number of so called

tokens to each piace of the net.

Figure 2.2 shows an example of marking for the PN considered in
Section 2.1.1. Dots represent tokens. The marking is usually denoted as a
n—-dimensional integer vector, with each element corresponding to one of the

places. For the example of Figure 2.2:

M=1(2,0,1, 0)F

t1 p2 p3

1 t2
op p4

. 45*:>

Figure 2.2 Example of a Marked Petri Net

2.1.4 Rules of Operation

(1) A transition t is enabled by a marking M° if every input place

19

of this transition contains at least one token, i.e.,
for all p ¢°t, M°(p) 2 1

(ii) Every transition enabled by a marking M’ can fire. When a
transition fires, a token is removed from each of its input
places and is added in each of its output places. Therefore,
the new marking Mi, obtained by the firing of transition ¢t,

verifies, for each place p:

M(p) - 1 if p e't
M'(p) = S M°(p) +1 ifpe t (2.2)

M°(p) otherwise

For example, in the PN shown in Figure 2.2, t, is enabled, but not ¢t,.

After t, has fired once, the new marking is:
M= (1, 1,1,)T
We denote by:

0 t 1

M > M

the new marking reached from M° by the firing of transition t.

Let us assume now that transition tj (j ¢ {1,2,...,m}) fires. We can

easily verify that relation (2.2) can be written, for transition tj

and all places p; (ie {1,2,....n}); in the form:
1 _ g0 _
M7 (p;) = M (pi) + O(tj.pi) I(pi,tj)

or, using relation (2.1):

20

M‘(pi) = M“(pi) + Cyy for j and all i=1,2,...,n

or, in a more compact form:
M'=M + C X; (2.3)

where Xj is a m—dimensional vector with all components equal to zero except

the j—-th one, which equals 1:

xj = [0,0).00;1‘0...0]1‘

We can now consider a sequence of transition firings, denoted by:

O'S = tjl,tjz’-.o,tjs

which means that transition t fires first, then transition t., and so on

J2 J2
until transition tjs' We denote by

the marking reached from the initial marking M° by firing the sequence G-

Let us construct the m—dimensional integer vector:

_ T
Ns— [nl, nzf....nm]

J J
the sequence o

where n; (j=1,2,...,m) denotes the number of occurences of transition t; in

s+ Then relation (2.3) is generalized in the form [9]:

M =M +¢C N, (2.4)

21

The algebraic equation (2.4) allows for computing directly the new marking
reached by any sequence of transition firings. Let us remark however, that

some information is lost when using the vector N since the order of the

sl
firing sequence is not specified.

2.1.5 Forward Marking Class

Given an initial marking M° of the net, we call forward marking class,

—_
denoted by M°, the set of all possible reachable markings. In other words,
—

a marking M belongs to M’ if there exists a firing sequence o, such that:

M —<

> M

In the example shown in Figure 2.2, the forward marking class consists of

the following markings:

M= (2,0, 1, 0T (initial marking)

M=, 1,1, 0T (after firing of t,)

M* = (0, 0, 2, DT (after firing of t,)

M® = (0, 2, 1, 0T (after two successive firings of t,)

2.1.6 Liveness and Boundeness

Liveness: A marking M° is live if, for any transition t, and for

_.
every reachable marking M (i.e., M ¢ M’), there exists a firing sequence
from M which fires t. In other words, this property guarantees the firing

process to be deadlock free,
The example of Figure 2.2 is trivially not live: from Mz, it is not

possible to fire any more transitions. Figure 2.3 shows a simple example

of a live Petri Net.

22

p1 t p2

Figure 2.3 Example of a Live Petri Net

Boundedness: A marking M® is bounded, if there exists a positive
integer N such that, for every reachable marking M, the number of tokens in
each plaée is bounded by N. If N equals one, the marking is said to be

safe.

The example of Figure 2.2 is trivially bounded (by 2). However, the
example above (Figuré 2.3) is not bounded. Each time that ty fires, one
token is added in p,. Since t, can fire an infinite number of times, the

marking of p, is not bounded.

Remark: There exists an extension to the definition of liveness (resp.
boundedness), which is called structural 1liveness (resp. structural
boundedness)'[10]. In that case the properties are characteristics of the

PN, independently of the initial marking. Here are the definitions:

(1) A PN is (structurally) live if there exists at least one initial

marking which is live;
(2) A PN is (structurally) bounded if any initial marking is bounded.

2.1.7 Application of the Petri Net Model

Petri Nets are useful for modeling the flow of information and control

23

in systems, especially those which exhibit asynchronous and concurrent
properties, as it is the case for the decision making process studied in
this thesis. To model the dynamic behavior of a system, the execution of a
process (or task) is represented by the firing of the corresponding
transition. The flow of tokens represents the flow of information in the
process and the marking of the net at any instant corresponds to a
particular state of the system. The forward marking class determines the
set of all possible states, given an initial state of the system. The two
properties defined above, namely liveness and boundedness, characterize a
well defined system. Indeed, they guarantee that first, the process is
deadlock free (liveness) and second, that information does not accumulate
at some steps of the process (boundedness). It becomes possible,

therefore, to analyze the steady-state of the process.

In the next sections of this Chapter, we are going to present some
extensions to the basic Petri Net model, that will be used later in our

development.
2,2 S AND T-INVARIANTS

S and T-invariants are important concepts in Petri Net theory [8] and
will be used later to describe algorithms. This is the reason why they are
presented in this Chapter. S and T-invariants are dual in the following
sense: Let us consider a Petri Net in which we replace all the places by
transitions and conversely. The Petri Net obtained is called the dual [11]
of the original Petri Net and it is easily proved that the incidence matrix
of the new PN is the tranpose of the incidence matrix of the original PN.
We will show later that the S—invariants of a PN are the T-invariants of
the dual and conversely. This is the reason why we will focus in this
section on S-invariants only. The properties of T-invariants will be

obtained directly from the analysis of S—invariants.

24

2.2,1 Definitions
We recall that C represents the incidence matrix of a PN, as defined
in Section 2.1.2. C is a n x m matrix, where n is the number of places and

m the number of transitions.

Definition: An n-dimensional positive integer vector X is called an S—

invariant if and only if xT ¢ = 0.

Definition: The set of places whose corresponding components in X are

strictly positive is called the support of X and is denoted by |IXIl.

Definition: The support l1XIl of an S-invariant, X, is said to be minimal
if and only if it does not contain the support of any other invariant, but

itself and the empty set.

2.2.2 Example of S—-Invariants

Let us consider again the example of Figure 2.1. We recall that the

Incidence Matrix is:

An S-invariant: X = [x,, Xx,, X;, x4]T (where x,, x,, X, and X, are positive

or null integer) satifies:

which yields the following system of equations:

25

X, tx, = 0
X, - X, +Xx +x = 0
Therefore, the general form of an S—invariant is:
X=1Ix, %, v, z]T
such that:
y+z=2x

In particular, it turns out that:

x, = 11201"
x, = 111117
X. =110 Z]T

are all S-invariants, whose supports are respectively:

[ix, 1}
%, 11

”X3” = {pln Pz: p4]

{p1’ Py ps}

{p,» p,» P,» P}

Now, the support of any non-null S-invariant, X = [x, x, y, z]l, contains
necessarily p, and p,. Otherwise we would have x=0 and therefore y =z =0
(since y and z are positive integers verifying: y + z = 2 x). 1In addition,
y and z cannot be both null simultaneously, which implies that the support

of any non-null S-invariant also contains at least p, or p,. Accordingly,

26

|[1X,]| and ||X,|| are minimal support of S-invariants. By construction,
both are in fact the only minimal supports, since we have just proved that
the support of any non-null S-invariant necessarily contains {p,» p;» P,}
(i.ee, |[X]]) or (o, P,s pe} Gieews |[X, D).

2.2.3 Properties of S—invariants

The fundamental property of an S-invariant, which justifies "a

posteriori” its name, is the following one:

Theorem 2.1: X is an S-invariant ;ff for any initial marking M° and for

-
any reachable marking M (i.e., M ¢ M),

XI"M=X"M (2.5)

The proof is straightforward from Equation (2.4) and from the definition of

én S-invariant, i.e., XT cC =0,

Relation (2.5) is very similar to an equation of convervation: it
implies indeed the conservation of tokens for the places belonging to the

support |IX|| and weighted by certain coefficients.

For instance, in the example of Section 2.2.2, the three S-—invariants

yield the following equations of conservation:

3

M(p,) + M(p,) + 2M(p,) = M (p) + M (p,) + 24 (p,)

(for X, = [112 0]0)
M(p,) + M(p,) + 2 M(p,) = Mo(pl) + Mo(pz) + 2 Mo(p4)

(for X, [110 Z]T

4 4
and 2 M(pi) = 2 Mo(pi) (for X,

i=1 i=1

11111h

27

This last equation is especially easy to interpret: there is neither

creation nor loss of tokens in the net.

The next theorem is the basis of algorithmic procedures to determine

all the S—invariants of a Petri Net:

Theorem 2.2: (Memmi-Sifakis) [8]: Let I, be the support of an invariant

and I,,...,I, be the minimal supports contained in I,, then:

— for every invariant X such that HxIl = I,, there exists positive

rational coefficients A; (i=1,k) such that:

where Xi is an invariant whose support is Ii.

Corollary 2.2: Let I,,...,I5 be all the mininal supports of S-invariants

of a PN (they are necessarily finite, since the number of places is
finite). Let X, be an invariant whose support is I;, i.e., Hx = 1, (we
can choose actually the minimal one, as determined by the partial ordering
2 between integer vectors). Then the set {X,,...,X } forms a minimal set

of generators of all invariants, i.e.,

-for every invariant X, there exists positive rational coefficients
xi, such that

28

—if one element is removed from the set — let us say Xk for example -

the set {X,,...X;} - {X,} is not generator.

In the example of Section 2.2.2, I, = {p,, P,» P;} and I, = {p,, P,,» DP,}
are the minimal supports. X, = [1 1 2 01T and X, =[110 21T form the

minimal set of generators and we can check for example that:

_ T 1 1
X,=[11111"= 2 X + 7 X

2 1 3

2.2.4 T-Invariants

As stated earlier, T-invariants can be considered as duals of S-
invariants., A T-invariant is therefore a mdimensional positive integer

vector Y such that
cY=20 (2.6)

The set of transitions whose corresponding components in Y are strictly
positive is called the support of Y and is denoted by ||Y||. The
definition of the minimal support is the same as for S-invariants, but it
refers now to a set of transitions. Likewise, Theorem 2.2 holds also for

T-invariants.

From equation (2.6), a T-invariant can be interpreted as a positive or
null integer assignment to each transition of the net such that, at every
place, the sum of integers assigned to its input transitions, equals the
sum of integers assigned to its output transitions.

2.3 PETRI NET THEORY AND GRAPH THEORY

Formally, a Petri Net can be defined as a bipartite directed graph,

29

whose nodes are places (also called circle nodes) and transitions (also
called bar nodes) and whose arcs correspond to the directed edges between
places and transitions. We give first some definitions that come directly

from Graph Theory.

2.3.1 Definition from Graph Theory

Connectivity: A Petri Net is said to be connected if and only if there

exists a path (not necessarily directed) from any node (place or

transition) to any other node.

Strong Connectivity: A Petri Net is said to be strongly connected if and

only if there exists a directed path from any node to any other node.

Simple connectivity implies only that a PN cannot be split in two or
more Petri Nets that are independent. All the examples of PNs presented
previously ar'e simply connected. Strong connectivity is however a much
more stringent characteristic. The example of Figure 2.1 is obviously not
strongly connected: there is, for example, no directed path between p, and

p,. Figure 2.4 shows an example of a strongly connected net.

t1 p2

Figure 2.4 Example of a Strongly Connected Net

Directed Elementary Circuit: A directed elementary circuit is a directed

path from one node back to itself such that none of the nodes are repeated.

30

Naturally, the condition that none of the nodes should be repeated
refers to the fact that the circuit is elementary. A directed path from a
node back to itself is, generally speaking, a directed circuit (not
necessarily elementary). However, we will always consider, in the sequel,
only the elementary circuits of a PN. For simplification, what will be

called later directed circuits, shall always refer to elementary circuits.

In the example of Fig. 2.4, the sequence p, = (p, t, p, t, p, t,)
constitutes a directed elementary circuit. However, the sequence
p = (p, t, P, t, P, t; P, t, P, t;) is a directed circuit, which is not

elementary.

2.3.2 Event—-Graph: Definition and Properties

Event-Graphs constitute a special class of Petri Nets, whose
properties are especially appropriate for analyzing the dynamic behavior of
a system. In this section, we present the relevant definitions and

properties that will be used later in this thesis.

Definition: An Event—Graph [9] (also known as Marked Graph [12]) is a
connected Petri Net, in which each place has exactly one input and one

output transition.

This means that tokens are always generated, at a given place, by a
predefined transition (its only input transition) and consumed by a
predefined transition (its only output transition). Neither the example of
Figure 2.1, nor the example of Figure 2.4 are Evént—Graphs. Indeed, place
p, has, in both cases, two output transitions. Figure 2.5 is an example of
an Event—-Graph. We should point out that, in this particular example, the
input transition (i.e., transition t,) has no input places. This is
allowable in Petri Net theory and simply means that the corresponding
transition is always enabled. Otherwise stated, transition t, can fire any

number of times at any instant.

31

Figure 2.5 Example of an Event-Graph

The following two theorems, due to Commoner and Holt [12], describe

useful properties of Event-Graphs:

Theorem 2.3: In an Event-Graph, the number of tokens in any directed
elementary circuit (called the token content) remains invariant by

transition firings.

Theorem 2.4: A marking of an Event—Graph is live if and only if the token

content of every directed elementary circuit is strictly positive.

For instance, the marking of the event—-graph shown in Figure 2.6 is

live: The token content of the unique circuit (t, p, t, p, t, p,) is one.

Figure 2.6 Example of a Live Event—-Graph

The other interesting result relates the boundedness property to the

condition of strong connectivity in the following way:

32

Theorem 2.5: An Event—Graph is bounded if and only if it is strongly

connected.

In order to prove this theorem, we use a result obtained by Sifakis
[10], stating that a Petri net, which is (structurally) live and bounded,

is nécessarily strongly connected. Let us now prove Théorem 2.5.

(i) Let us assume that the Event—Graph is bounded. From Theorem 2.4,
» we know that an Event—-Graph is always (structurally) live:
Indeed, it is sufficient to choose an initial marking, sﬁch that

the token content of every directed elementary circuit is
strictly positive. Given the result stated above, the Event-
Graph is therefore strongly connected, since it is live and

bounded.

(ii) Let us assume now that the Event-Graph is strongly connected and

let Pi (resp. tj) be any place (resp. any transition). There
i’ and
a directed path from tj to Pi, that we denote °ji‘ Now, the

sequence of nodes belonging to the union of the two paths,

exists a directed'path from p; to tj, that we denote by'ci

“ij+°ji‘ determines a circuit in the net. The token content is
invariant in the circuit (Theorem 2.3) and the marking of Pi is
therefore bounded by this token conteht. Hence the Event—Graph

is bounded. Q.E.D.

We can check, for instance, that the PN of Figure 2.6 is not bounded:
t, can fire any number of times; as said previouély, so that the marking of

p, is never bounded. Indeed, the PN is not strongly connected.

It turns out that Theorem 2.4 and 2.5 provide a very easy way to check
the two important properties - liveness and boundedness - that are
characteristics of a well-defined system, if the system is modeled as an

Event-Graph.

33

2.3.3 S-Invariants of Event—Graphs

Before characterizing the S-invariants of an Event—-Graph, we need a

further definition: S—components [10].

Definition: Let X be any S-invariant of a PN and |lXl| its support. We
recall that |IXll is a set of places. We call S-component the unique
subnet whose set of places is precisely |IX|| and whose set of transitions
consists of all the transitions connected to the places of [IX||l. 1In other
words, the corresponding S—component is the subnet PNs = (Ps’ T I OS)
such that:

s’ s’

Py = Hixll

T, = U (p'up)
paPs

(i.e., TS contains all the input and output transitions of the places

of Ps). I (res. Os) is the restriction of I (resp. 0) to Py U Tg.

Let us take for example the PN shown in Figure 2.1. The corresponding
S-component of the S-invariant X, = [1 1 2 01T is the subnet shown in

Figure 2.7.

Given the definition of a minimal support, an S—component is said to

be minimal if it corresponds to an S-invariant whose support is minimal,

which means also that it does not contain any other S—component but itself

and the empty set.

t1 p2

p1 2 p3

Figure 2.7 An Example of an S—component

34

The following new result, shows the relationship between the directed

circuits and the S—-invariants of an Event Graph.

Theorem 2.6: The minimal S-components of an Event-Graph are exactly the

directed circuits.

Proof of Theorem 2.6

(1)

Let us prove first that a directed circuit is a minimal S-component.
Assume then that p is any directed circuit and let us call Pp the set
of places of the circuit, Tp the set of transitions of the circuit.

We have trivially:

T = U (p'Up) (2.7
p pst

because each place has exactly one input and one output transition.
From Theorem 2.3, we know that, for any initial marking M° of the net

and for any reachable marking M:

) M) =) M’ (p) | (2.8)

eP eP
p p p P

Let Xp be the n—-dimensional vector whose components corresponding to

the places of P_ are equal to 1 and to other places equal to 0.

P
Equation (2.8) can be written:

X* M=X M (2.9)

From Theorem 2.1, this means that Xp is an S-invariant. Because of
relation (2.7), the corresponding S-component is the same as the

directed circuit p. Let us prove now that the support of Xp, i.e.,

35

Pp, is necessarily minimal. If we consider the circuit p as a subnet
(which is allowable since it is an S-component), we can construct
its Incidence Matrix Cp. which, after an appropriate ordering
of places and transitions, has the form (the columns correspond
to the transition, tpl, tpz,...,tpk, and the rows to the places,

ppl, ppz,...ppk):

-1 0 o....0 +1
+1 -1 0....0 0
0 +1 -10 0
o = 0 0 +1....0 0
] 0] +1 -1 |
where p corresponds to the circuit:
=(t e o e o t)
P pP1 P, pPz pPk Pk

Let Xk = [a1 e e ak]T be any positive integer vector. Now Xk is an

S-invariant of the subnet iff':

Otherwise stated, all the S-invariants of the subnet have the same

support, which is actually the set of places of the circuit, i.e, Pp.
Hence Pp is a minimal support of the Event-Graph: If it were not, it

would strictly contain another minimal support, which would also be a

support of invariant for the corresponding subnet. However, we have

36

(ii)

showed that Pp cannot strictly contain another support of invariant.
Q.E.D.

Let us prove now that a minimal S-component is a directed circuit.
Assume then that PNs is a minimal S—component corresponding to the S-
invariant Xg and call Py (resp. Tg) its set of places (resp. its set
of transitions). By construction, PNs is an Event-Graph. For any
initial marking M® and for any reachable marking M, we deduce
immediately from Theorem 2.1 that, for all the places Py belonging to
Ps:

X M

W 3

M (p,) <

M

i

where Xy denotes the i—-th component of vector Xs. Hence, PNs is a
bounded net. From Theorem 2.5, we deduce that PNs is a strongly
connected Event-Graph. We can find therefore at least one directed
circuit, p, in PNS: we choose any two nodes and consider the directed
path that goes from the first node to the second one and vice-versa.
However, we know from (i) that p is in that case a minimal S—component
of PNS and consequently of the original Event-Graph PN. Since PNs is
by definition a minimal S—-component, and since p is included in PNS,
PNS is necessarily identical to p: Hence, PNs is a directed circuit.

Q.E.D.

Theorem 2.6 will be used to determine all the circuits of an Event-

Graph, from an algorithm that determines all the minimal support S-

invariants of a net [13].

The last section of this chapter concerns the Timed Petri Net model,

as it will be used to represent Decision Making Organizations. Indeed,

Timed Petri Nets provide an appropriate model for describing the dynamic

behavior of systems, especially those which exhibit asynchronous and

concurrent properties.

37

2.4 TIMED PETRI NETS

The strength of the Petri Net formalism, as described in the previous
sectibns, lies in the rather simple representation it provides for modeling
complex systems, in which processes are both concurrent and sequential.
However, the major weakness of ordinary Petri Net models comes from the
lack of tools to analyze the real-time process. Indeed, no assumptions are
made regarding the length of time it takes to complete the different
processing operations. Tokens move in the system according to the

transition firings, which are assumed instantaneous.

To handle this shortcoming, several types of Timed Petri Nets - in
which the notion of time is explicitly introduced - have been deVeloped in
the literature. The main differences between the models come actually from
the type of processing times considered: deterministic or random.
Ramchandani [6] was the first to introduce a model of Timed Petri Net in

which the proéessing times were assumed deterministic and assigned to the

transition of the net. Sifakis [14] also considered deterministic
processing times, but assigned to the places. He has proved, however, that
both models are equivalent. Stochastic Timed Petri Nets, corresponding to
the case where times are assumed random have been extensively analyzed by
Wiley [15]. 1In this thesis, the type of TPN (Timed Petri Net) introduced
by Ramchandani, will be used for modeling the DMO. In this Section, the

related definitions are presented.
2.4.1 Definitions

A Timed Petri Net (TPN) is a pair (PN, p), where PN is a Petri Net and

B is a firing time function that assigns a positive rational number to each

transition of the net: p : T —> Rt (R* denotes the set of positive
rational numbers). In a Timed Petri Net, each transition t takes the time
u(t) to fire. The reason why we require the firing times to be rational
(and not merely real) is that we can discretize the processing times in

units of time and pbecisely describe the state of the process at each

38

instant of time.

The rules of operation of a TPN remains the same as an ordinary PN,
except that the firing of a transition consists of the three following

phases:

(1) The firing initiation, that can occur whenever the transition is
enabled. When the firing of a transition is initiated, one token from

each of its input places is removed.
(2) The firing execution which occurs during the processing time p(t).

(3) The firing termination, which occurs at the end of the execution. At
this moment one token is added in each of the output places of the

transition.

The three phases of a transition firing can be visualized by imagining
every transition as consisting of two transitions and an intermediate
place, as shown in Figure 2.,8. The firing time of the transition t can now
be asociated with the place Pt in the following manner: When transition t
initiates, tb fires instantaneously, a token is removed from each input
place of tb and a token is deposited on place P¢- This token stays in Pt
for the interval up(t), the firing time of t. At the end of this interval,
transition te fires,'corresponding to the termination of the transition t.
The substitution described in Figure 2.8 is actually the transformation
used by Sifakis [14] to prove the equivalence of both types of TPN (i.e.,

when processing times are either associated to transitions or places).

Remark: With this definition of a TPN, as given above, it should be clear
that, at time v, the state of the Petri Net is not completely described by
its marking M(t): some transitions are being processed at that time, which
implies that some tokens are not taken into account in M(x). If we
substitute for each transition the subnet model described in Figure 2.8,

the tokens being in the execution phase would be in the corresponding

39

—
t b Pl te

Figure 2.8 Timed Petri Net Equivalence

place Pg- This remains however a pure matter of convention, which does not
affect the conservation of tokens in the net., 1In fact, in modeling the
dynamic behavior of the system and, more precisely, analyzing how the
sequence of transition firings occurs in real time, only the "free” tokens
deserve attention; these tokens determine which transitions are enabled

and, therefore, which transitions can fire at a given instant of time <.

In order to have a complete description of the state of the system at
any instant, Ramchandani has introduced the following two functions, which

will be often referred to, in this thesis:

- Ij(t). which denotes the number of initiations of transition tj in

the interval of time [0,t].

- Tj(t). which denotes the number of terminations of transition tj in

the interval [0,tl.

It becomes easy to determine the marking of the net at any instant,

using these two functions. Let us write the incidence matrix:

40

where C+ characterizes the directed arcs that go from transitions to
places, i.e.,
+

Cij = O(tj, Pi)

and C characterizes the directed arcs that go from places to transitions,
i.e.:

Let Mi(t) denote the marking of place p; (i=1,...,n) at the instant of time

T. Thenﬁ

m
+ -
Cyy T;00) - } Cyy () (2.10)
J=1 J=1

N B

M. (t) = M +
1) 1

This equation describes the marking of the net at any instant, given the
functions Tj(t) and Ij(t) (j=1,...,m) and we will make use of it in later

sections.

In the next section, we are going to apply the model of TPN to the
special class of Petri Nets, namely, Event—Graphs. The resulting Timed
Event Graph will actually be the model used to carry out the performance
evaluation of the DMO.

2.4.2 Timed Event—-Graph

A Timed Event—Graph (TEG) is simply a model of TPN, as presented in
the last section, i.e., a pair (PN,p) where PN is in this case an Event—
Graph. The model of TEG used in this thesis corresponds, however, to the
one defined by Chretienne and Carlier [16], which includes an additional

condition in the firing process of a transition. In the definition of a

41

TPN, aifiring can be initiated as soon as the corresponding transition is
enabled. This implies, in particular, that firings can be initiated even
if the transition is already executing. In other words, no assumptions are
made regarding the capacity of place p, (Figure 2.8), which therefore can
contain more than one token at a time. This is not allowable in the
modeling of the decisionmaking process developed in this thesis. To the
extent that tokens represent information messages and transitions model the
different processing stages, no more than one information message can be
processed in a certain stage at a time. In other words, inputs are
processed one by one at any stage. This constraint implies, in fact, that

a transition is not allowed to initiate, if it is already executing.

This contraint can actually be modeled in the Petri Net representation

by adding a self-loop to each transition of the net, as shown in Fig. 2.9.

Ps

Figure 2.9 Representation of a Self-loop

The fact that there is only one token in the extra place Py accounts
for this constraint. The same kind of transformation, as used previously,
describes clearly what happens in the firing process (Fig. 2.10). Once tb
has fired, one token is in Pt and place Pg is empty. Therefore.'transition
tb cannot fire again (since it is not enabled) until te has fired,
which occurs at the end of the interval u(t) (i.e., the firing time of

transition t).

Although self-loops allow for a clear representation of the firing

constraint in the Petri Net model, they are not really convenient for two

42

ps

Figure 2.10 Model of Transition Firing

reasons: First, they do not change the structure of the system, but
increase its complexity, since the number of places is considerably
greater. Second, they cannot be included in the incidence matrix, because
the structure of the incidence matrix only permits to represent the
presence (or absence) of one directed arc between any two nodes. For these
reasons, self-loops ﬁill not be represented in our Petri Net model‘of DMOs.
They will be, however, implicit and it will be important to keep them in
mind, when analyzing the real-time process. Indeed, we will see that the
circuits of the net play a crucial role in the time-related performance
measures of the system. At this point, each transition should also be
considered as a circuit containing one token, precisely because of the

implicit self-loop.

43

44

CHAPTER III

PETRI NET DESIGN OF DECISIONMAKING ORGANIZATIONS

In this chapter, we develop some extensions to the Petri Net
representation of the DMQ, as previously introduced in [2]. Included in
our modeling are the resource and time constraints of the DMO. The
resource constraints concern both individual DMs and the organization as a
whole. This type of constraint is modeled as a limitation on the number of
inputs that can be handled at the same time. Time constraints occur from
the various task processing times. Firing times are therefore assigned to
the transitions, so that the representation corresponds to a Timed Petri
Net model.

3.1 AGGREGATED MODEL OF THE INTERACTING DECISIONMAKER

The modeling of decisionmaking organizations using Petri Nets has been
introduced in [2]. Figure 3.1 shows the aggregated Petri Net model of the
single interacting decisionmaker. The decision process occurs in four
stages: Situation Assessment (SA), Information Fusion (IF), Command
Interpretation (CI) and Response Selection (RS). Incoming inputs — either
from the environment or from other DMs - are processed at the first stage
to produce the situation assessment. This information is then fused at the
IF stage with situation assessments communicated by other DMs. The
resulting information is combined with commands received by the DM in the
CI stage, so as to select a response in the RS stage. Each of the four
stages, which corresponds to a particular task performed by the DM, is
modeled by a transition. The firing of a transition represents the
execution of the corresponding stage in the process. According to the
rules of operation of a Petri Net, a transition can fire when it is
enabled, i.e., when there is at least one token in each of its input
places.‘ When a transition fires, one token is removed from each of its

input places and one token is added in each of its output places.

45

DM

& dn I

Figure 3.1 Model of the Interacting Decisionmaker

Assuming that tokens represent information messages, the flow of tokens
models the flow of information in the process. Places receive and transmit

the information that is exchanged between the different processing stages.

If the role of transitions is clearly defined, since they represent
the various processing tasks, the role of places needs to be, however,
further specified. From Figure 3.1, we can notice that places carry in

fact two types of information:

- places like p,, Ps, Pg» P, and p, carry the information being
exchanged between the DM and the environment or other

organizational members.

- places 1like p,, p, and p, carry the information that is

internally processed by the DM.

The first type of places allows for modelling the interactions between
the DM and the environment or other DMs: they are either inputs to the DM
(like p,, p,» P,) or outputs of the DM (like p,, pg), but in no case can
they be both at the same time. If we consider these places for all the DMs
involved in the organization, they determine in fact the organizational
structure, i.e., the internal interactions between the DMs and the
interactions between the DMs and the environment. This is the reason why

we will call them structural places, in contrast to the other places.

46

The second type of places, together with the four tasks defined above,
model the internal structure of the interacting DM. These places carry thé
information that is produced at one stage of thé decisionmaker process and
used at the next stage. In contrast to the structural places, these are
both input and output places of the same DM. At this point, we should note
that the processing of a specific input takes place in an asynchronous
manner, i.e., delays generally occur between the different processing
stages; precisely because of the interactions with the other DMs or the
environment. For example, once the situation assessment stage is
completed, one token is in p,, but the information fusion cannot take place
before one token is also in p,, which is the information transmitted from
the SA stage of another DM. Such delays imply that information has to be
stored temporarily in piaces P,» P, or p, until the processing of the
corresponding stage can occur. This is the reason why we call these places
memory places: they model the internal (short—-term) memory of the DM,
where the information being processed has to be stored temporarily until

the different processing stages are completed.
3.2 MODEL OF THE INTERACTING DECISIONMAKER WITH LIMITED RESOURCES

The model of the Interacting Decisionmaker does not take into account
the limited capacity for information processing, that characterizes the
human DM. Indeed, as long as information messages are present, i.e.,
tokens are available in place p,, the processing can start, i.e., the
transition corresponding to the SA stage can fire. However, the
information processing of human DMs is subject to the bounded rationality
constraint, as defined in [4]. In the information-theoretic approach, the
amount of information processed is measured by the total activity, G, of
the DM, which also characterizes the DM's workload. It is assumed that
theré exists an upper bound Gr' above which the DM becomes overloaded and

his performance degrades:

¢ fa (3.1)

47

When the analysis is carried out for the steady-state process, the above

constraint takes the form:

cS{Frt=2aG (3.2)

where F is the processing rate constraint that characterizes the human DM,

and 1/t (resp. t) is the average arrival rate of inputs (resp. average

interérri#al time). This constraint implies that the DM must process

inputs at a rate at least equal to the rate at which they arrive.

In our work, we deal with time-related performance measures and do not
address the accur'acy of the response, which is based on the comparison
between the actual organization’'s response and the ideal or desired
response [1]. In particular, the way a DM reacts to information overload
(which occurs when G > F <) and the extent to which it affects his
performance are not a matter of concern here. This remains however
allowable, in so far as we also include in our modelling the actual
processing constraint, that can be expressed by writing inequality (3.2) in

another form:
1/ S% (3.3)

Using relation (3.3), the bounded rationality limitation turns out to be,
in that case, a conétraint on the allowable rate of incoming inputs, i.e.,
on the maximum rate of inputs that can be handled by the DM, without being
overloaded. In other words, rather then assuming that inputs are processed
at a rate at least equal to the rate with which they arrive, and derive a
bound on the total activity allowable, G, (givem F), we assume that no
information overload does occur in the pro¢ess and débive the corresponding

constraint on the allowable rate of incoming inputs.

Let us see now how it is possible to model this constraint using the

Petri Net framework. In fact, the limited processing capabilities of a

48

human DM come from the limited (cognitive) resources available to perform
the various processing tasks. In particular, the bounded rationality
constraint is very much related to the limited capacity of the human short-—
term memory, defined as the memory in which the information is held
temporarily (in contrast to the long-term memory, in which the information
is stored permanently). Indeed, this bound means that a DM cannot handle
properly too much information at the same time. Interestingly enough, the
analysis of the human short-term memory carried out in [5] has shown that a
maximum of six or seven units of information can only be held in this
memory (typically for a few seconds), without any loss of information.
This is of much importance here, because the DM has precisely to handle
different information messages during the time necessary to complete the
various processing tasks. This is the reason why we have identified, in
the previous section, the role of places p,, p, and p, (Figure 3.1) as
short—term memory: these places contain the information messages
(represented by tokens), that are being processed internally by the DM.
Quite naturally, the 1limited capacity of the short-term memory can
therefore be modeled, using the Petri Net formalism, as a capacity
constraint on the corresponding places p,, p, and p,. Accordingly, we

extend the model of Interacting Decisionmaker as shown in Figure 3.2.

Figure 3.2 Model of Interacting Decisionmaker with Limited Resources

49

Now the added Place R,, whose input transition corresponds to the RS
stage and output transition to the SA Stage, allows for modeling the
information-processing constraint. We shall call it the resource Place,
because the number of tokens put initially in this pPlace represents the
resources available for processing. Indeed, the directed path:

p=1(R, t; p, t, p, t, P, t,)
determines a circuit in the net, in which the token content remains

invariant by transition firings (Chapter 2, Theorem 2.3), i.e., for any

reachable marking M:

4 4
MR +) M) = () +) Mk = MR (3.4)
i=2 =2

It is assumed here that Places p,, p, and P, contain initially no
tokens, which means that, initially, there are no information messages
being processed. Now, the constraint on the memory capacity is trivially
satisfied. Assuming that there are n résources available (i.e., M°(R,) = n)
which may represent the amount of memory space available (in other words,
the cognitive resources), we deduce indeed from the marking equation (3.4),

that, at any reachable state of the process:
<
M(p,) + M(p,) + M(p4) 2 n

which precisely models the short-term meémory limitation, as described

earlier.

At this point, it is possible to extend further our analysis of the
model, especially with respect to the processing rate constraint.
Let wus specify now how the processing of inputs does occur, holding

the same assumptions about the initial marking of each place, i.e.

50

M (R) =n and M'(p,) =M (p,)) =M (p,) =0

The processing of any new input starts by the firing of transition t,,
(corresponding to the SA stage), which consumes therefore one token (i.e.,
6ne resource) from place R,. Likewise, when the processing is completed,
transition t, (corresponding to the RS stage) fires, which produces one
token back in R,. In other words, one resource is engaged at the beginning
of the process and is released at the end of the process. Clearly enough,
the DM can only process at most n different inputs at the same time. If n
inputs are currently being processed, the resource place R, is empty (which
follows directly from the balance equation (3.4)) and transition t, is
consequently not enabled. Otherwise stated, the resource constraint turns

out to bound the number of inputs that the DM can process simultaneously.

To analyze deeper how it affects the processing rate, it is necessary
to introduce the processing times of the four stages SA, IF, CI, and RS,
that will be denoted respectively by u,, u,, p, and p,. Let us point out
that a complete description of the model, with firing times associated to
the transitions, will be presented later in this chapter. Our intention
here is only to make clear how the resource limitation actually bounds the
processing rate. Now, if the decision process were fully synchronous,
which means that no delays would occur between the different processing

stages, it would take the amount of time
l1°=l-l1+|1z+|13+l-l4

to complete the processing of any input. Since the DM can handle at most n

inputs at the same time, the processing rate is necessarily bounded by:

51

n n

f =
Fo p1+u3+u3+"4

There is, however, an additional constraint to include: the execution of
ény procéssing stage can only take place for only one input at a time as
discussed in Chapter 2, Section 2.4.2. Therefore, the actual bound is

determined by:

¢=min(f,1—,1—.l—,1_) (3.5)
W, Tw, Ty R,

We will show in the next chapter that ¢ determines precisely the maximum
rate of information processing that characterizes the DM. This rate
constraint is derived from the limited capabilities of a human DM, which
include both the resource limitations (as specified by n) and the
processing time—constraints (as specified by the amount of time required to
perform the various tasks). ¢ is in fact similar to the processing rate

constraint F, introduced ih the information theoretic framework.

Remark: We have extended the Petri Net model of the Interacting
Decisionmaker, so as to include the (cognitive) resource constraints,
derived from the limited capacity of the human shoft—term memory. However;
the model is also suitable for any kind of resource limitations that
constrain the processing of inputs. Suppose, for example, that the same
specific resource is needed to complete the processing of any input.
Putting initially only one token in the resource place R, allows for

modeling the corresponding constraint.

Moreover, as explained earlier, the resource limitation turns out to
be a constraint on the number of inputs that can be handled at the same
time. Therefore, the resources available to the DM may have in reality
various forms, but it is only necessary to take into account, in the

modeling, the most stringent resource limitation. If, for instance, the DM

52

has the capacity to handle several inputs simultaneously, but needs a
unique specified resource, the corresponding processing constraint will be

modeled by putting only one token in R,, as explained above.

3.3 AGGREGATED MODEL OF THE DMO

After having analyzed the model of the simple Interacting Decision-
maker, we present in this section the aggregated Petri Net model for the
overall organization. At first, we deal with the interactions between the

organization and the environment.

3.3.1 Model of the DMO Interacting with the Environment

The interactions between a DMO and the external environment has been
described in [1]. The first processing stage of the DMO consists of the
partitioning of the external signals or messages into a set of inputs that
are assigned to different organization members. This particular type of
allocation has been addressed in [17]. Assuming, for example, that DM1, 2,
and 3 are the DMs that interact directly with the environment, the

corresponding Petri Net representation is shown on Figure 3.3.

DM1

DM2

DM3

FN R E]

Figure 3.3 Model of the Partitioning Operation

53

The place Pg represents the source of signals or messages, and the
transition t, models the partitioning operation. Since it is the first
processing stage, t, will be called the input transition of the process.
Each time that t, fires, one token is sent in the places p,, p,, and p;,
which are the input places of DM1, 2 and 3. It should be clear that this

model implies an overall synchronization between the individual inputs

received by each of the DMs. In the following stages, however, the

processing of the inputs by each DM becomes asynchronous and concurrent, as

emphasized in the introduction.

Likewise, the Petri Net representation of the DMO has an output
transition, which characterizes the last processing stage. The output
place of this transition contains the organizational responses. For the
moment, we will denote this transition by tm' where m is the total number
of transitions in the net. Pp will denote this output place. Finally, the
aggregated representation of the DMO interacting with the environment is

shown in Figure 3.4.

INPUT | OUTPUT
| Set of
®s) > | interacting D
DMs m
m—~

Figure 3.4 Model of DMO Interacting with the Environment
Interestingly enough, we can imagine the overall process as taking
place through a sequence of three major stages. Each of the stages would

correspond to a particular action, as defined in [3], as follows:

— the input action, corresponding to the partitioning operation of

54

the external messagess

— the processing of the information, carried out by the different

DMs involved in the organization;

- the output action, corresponding to the production of the overall

response that characterizes the organizational response.

3.3.2 Model of the DMO with Limited Resources

The analysis of the resource constraint, carried out in Section 3.2
for the Interacting Decisionmaker, can be applied in fact to the
organization as a whole. Indeed, the resources used by the overall
organization may have various forms, but there exists always at least a
processing constraint that comes from the limited capacity of the
structural places. This constraint is very similar to the one existing for

the memory places of the individual DMs.

As described in Section 3.1, the structural places receive and
transmit the information between the DMs and between the DMs and the
environment; Now, since the process is asynchronous, information is to be
stored temporafily in these places, exactly as what occurs for the internal
decision process of a DM. These places carry in fact the role of buffer
storage within the organization, where some information is stored
temporarily. It is therefore important to make sure that at no instant
does the amount of information stored exceed the buffer capacity of the

system, i.e., the capacity of the structural places.

Let us assume, for instance, that the arrival rate of external inputs
exceeds the maximum processing rate of any one of the DMs (defined as ¢ in
Section 3.2). With the present Petri net model of the DMO,'it follows that
t; will fire at the same rate with which inputs arrive: Tokens will
therefore necessarily accumulate in the system and, in particular, the

token content of some structural places of the net will eventually grow to

55

infinity over time: in such case, we will say that the DMO is overloaded.

To handle this contraint, we modify the Petri net model of the DMO by
adding an extra place, exactly as we did for the single Interaoting
Decisionmaker. The resulting model is shown on Figure 3.5. R, is the
resource of the overall organization: the number of tokens put initially
in this place bounds the number of inputs that the DMO can process at the
same time. Indeed, each time that a new input is processed (i.e., whenever
t, fires), a token is removed from R, and comes back again in Rd once the
processihg is completed (i.e, when tm fires). Assuming that R, contains
initially n tokens and that n inputs are currently being processed, then R,

is empty and no more inputs can be processed, since t, is not enabled.

Set of

interacting

DMs

RO

—Ox

Figure 3.5 Model of the DMO with Limited Resources

Let us point out that the same remark, made in Section 3.2, applies
here: it is only worth taking into account the type of resource limitation
which is the most stringent. If, for instance, the same specific resource
is needed to complete the processing of any organizational input, putting

one token in R, will account for this processing constraint.
In the last two sections, we have dealt with a specific type of

processing constraints derived from the limitation of resources. In the

next section, we will address time constraints, as determined by the

56

various task processing times.

3.4 MODELING TIME CONSTRAINTS

Apart from the resource constraints, which were treated in Section 3.2
and 3.3, the other type of processing constraints is time constraints,
which arise from the task execution times. As already introduced in
Section 3.2, the task processing times are included in the model by
assighing to each transition a corresponding firing time. At this point,
however, the model of Timed Petri Net described in Chapter 2, Section 2.4

where the firing times are assumed deterministic, cannot be applied

directly to the aggregated model of the DMO developed so far. The problem
arises from switches, whose function is more complex than ordinary

transitions.

In the aggregated model of the Interacting Decisionmaker described in
Section 3.1, all four processing stages SA, IF, CI and RS were represented
by transitions. In reality, the representation of both the SA and RS
stages includes a decision node or switch as defined in [1], which is a
more complex form of transition. An n-decision switch is in fact a subnet

that contains n (simple) transitions, as shown on Figure 3.6.

Figure 3.6 Petri Net Model of an n—-Decision Switch

Each transition of a switch (tsvt’sv""tsn? represents an alter-—

57

native process or algorithm., The selection of one algorithm, i.e., the
firing of one of these transitions, occurs for every input (i.e., token)
processed. It turns out that each algorithm may have a different
processing time, which implies that the processing time of the SA (or RS)
stage is not necessarily unique, but depends on the algorithm selected. 1In
fact, if in our model we represented explicitly all the transitions of a
switch, it would be possible to assign to each transition of the net a
deterministic firing time, according to the Timed Petri Net model presented

in Chapter 2.

However, as it will be clear later, the performance analysis carried
out in this thesis depends crucially on the fact that the DMO can be
modeled as an Event—-Graph, i.e., each place has exactly one input and one
output transition; this condition would be violated, if the representation
shown in Figure 3.6 is used. This is why the aggregated model is very
convienent for ourbpurpose. Now, to handle the problem of switches, we
will introduce the following extension to the Timed Petri Net model: The

firing time of a switch will be considered as a discrete random variable,

having a finite number of possible values (corresponding to the processing
times of the different algorithms), according to a certain probability
distribution. Naturally, the probability distribution will depend on the
decision—rule that determines the selection among the different algorithms.
Because tokens are indistinguishable in a Petri Net, the probability
distribution will be assumed independent from one token to the next (i.e.,

independent from one input to the next).

In the next section, we summarize the key points that have been
developed so far. In particular, we show that the model of the DMO, which
includes resource and time constraints, corresponds to a strongly connected
Timed Event—Graph (following the definitions given in Chapter 2). We will

illustrate the development with a two decisionmaker organization.

58

3.5 MODEL OF THE DMO AS A STRONGLY CONNECTED TIMED EVENT-GRAPH

Let us recall that an Event—Graph is a Petri Net such that each place
has exactly one input and one output transition. The strong connectivity
means that there exists a directed path between any two nodes (places or
transitions). Now, our aggregated model of the DMO is clearly an Event-
Graph since, as seen in Section 3.2 and 3.3, each place of the net —
whether it is a structural, memory or resource place — has indeed one
input and one output transition. For the memory and resource places, this
is due directly to the internal structure of the Interacting Decisionmaker
(Figure 3.2). It is also clear for the structural places, because the
information messages (i.e., tokens) are transmitted from a certain
processing stage to another stage (both modeled by transitions), as

determined by the execution protocol of the organization.

Naturally, we are interested in analyzing the performances of the
admissible organizational forms, as formulated in [18]. Two constraints

should in particular be satisfied:

(1) the information structure should have no loops
(2) a directed path should exist from the input node to every node
and a directed path should exist from any node to the output

node.

At this point, it is quite important to clarify what the first
contraint implies in our model. This constraint means that the information
structure should be acyclical, i.e., there should be no information loops.
Of course, in our Petri Net model of the DMO, there are 1loops (or
circuits), because of the resource places. But the loops that exist
because of the resource places, i.e., the loops that include a least one of
the resource places, do not actually violate the constraint. As far as our
model is concerned, the precise formulation of this constraint is the

following:

59

(1) Only circuits which contain one or more of the resource places
are allowed. In other words, if we delete from.the Petri Net
all the resource places, the resulting net should have no
circuits (the net so obtained models the information structure,

as developed in [1]).

Now, the second constraint makes sure that our Petri Net model is
strongly connected, precisely because of the resource place of the overall
organization, R,. As we have seen, this resource place connects the output
transition to the input transition of the net (Figure 3.5). Let us now
considef any two nodes of the net. There exists a directed path from the
first node to the output transition and therefore to the input transition
(via the resource place). There exists also a directed path from the input
transition to the second node. By appending these two paths, we have

constructed a directed path between the two nodes.

Finally, given the processing times assigned to the transitions, as
described in Section 3.4, the Petri net model of the DMO turns out to be a

strongly conﬁected Timed Event—-Graph. We illustraté the model for two

different structures of a two member organization, as shown in Figures 3.7
and 3.8. The example is derived from the analysis carried out in [18].
Transitions t,, t,, t,, and t, (resp. t,, t,, tg, and t,) correspond
bespectively to the SA, IF, CI, and RS stages of DMl (resp. DM2). In both
cases, DM2 transmits the result of his SA stage to DM1, which constitutes
information sharing among them. However, in structure (a), information is
transmitted from the RS stage of DMl to the IF stage‘of DM2 and this

interaction is of the result sharing type, as defined in [18]. In

structure (b) the same information is transmitted to the CI stage of DM2,
which corresbonds in that case to a command. This implies that there is,
in that case, a hierarchical relationship between the two DMs. Naturally,
we have added to the Petri Net model all the resource places., i.e., R, for
the organization and R, (resp. R,) for DMl (resp. DM2), in accordance with
the analysis carried out in this chapter. Both models will be used to
illustrate the performance analysis that will be developed in the next

chapter.

60

pi

p5

DM2

pi1 t10

—(Ox

RO

Figure 3.7 Two Member Organization (Structure (a))

pi

p5

t7

p7 18
R2

p8

t9

DM2

p11 t10

O

RO

Figure 3.8 Two Member Organization (Structure (b))

61

62

CHAPTER IV

MAXIMUM THROUGHPUT RATE OF THE DMO

Using the model of the DMO developed in the previous chapter, we
present in this chaper a method for computing the maximum throughput rate
of the DMO. This MOP characterizes the maximum rate of processing of the
overall organization. This measure is especially important because it
bounds the allowable rate of external inputs that can be handled by the
DMO. Given the internal structure of the system, the maximum throughput
rate is characterized as a function of both the time constraints (i.e., the
various task processing times) and the resource contraints. It will
therefore be possible to investigate which constraints should be relaxed in
order to improve this performance. Additionaly, different organizational
structures can be compared with respect to their maximum throughput rate.
These types of performance analysis will be illustrated in this chapter
using the example of the two decisionmaker organization presented in
Chapter 3.

4.1 PROPERTIES OF THE PETRI NET MODEL

Before computing the throughput rate, it is first necessary to verify
that the Petri Net model of the DMO satisfies the properties of a well-
defined system, namely liveness and boundedness. As stated in Chapter 2,
Section 2.1.6, these properties guarantee the system to be deadlock free
(liveness) and that information does not accumulate in the system
(boundedness), in other words that the flow of outputs equals the flow of

inputs.

Let us recall that an Event—-Graph is 1live, iff the token content of
every directed circuit is strictly positive (Theorem 2.4) and it is
bounded, iff the net is strongly connected (Theorem 2.5). Now, we have

assumed in thge previous chapter, that the model of the DMO is admissible,

63

which implies, that there should not exist any directed circuit which does
not contain any of the resource places (otherwise the information structure
would not be acyclical). Therefore, every directed circuit contains at
least one resource place and, consequently, its token content is strictly
positive. Since the model is also strongly connected, as seen in Chapter

3, Section 3.5, the system is indeed live and bounded.

The 1liveness and boundedness properties are very important for
analyzing the steady—-state process, because these characteristics imply
also that the system is consistent. Actually, an Event—-Graph is said to be
conisistent, if there exists a cyclic firing sequence, 1i.e., a sequence
which fires each transition once and brings the marking back to its initial
state. Thus, if a system is consistent, it goes back to its initial state
after each cycle and then repeats itself. If the system is inconsistent,
it can be shown that either it produces an infinite number of tokens (i.e.,
needs infinite resources) or consumes tokens and eventually comes to a
stop. Consistency is, therefore, a critical property of systems which
should function continuously, with a finite amount of resources, as it is
the case for the model of the DMO studied here. As proved in [6], a live
and bounded Event-Graph is eonSistent. Having assured that our'Pétri Net
model of the DMO is consistent, we can now analyze the throughput rate of

the corresponding system.
4.2 COMPUTATION OF THE MAXIMUM THROUGHPUT RATE

Once we are sure that the model of the DMO under consideration
corresponds to a live and consistent system, and therefore each transition
can fire repeatedly, we would like to determine the maximum rate the
transitions can actually fire. Indeed, this will yield the maximum
throughput rate. Of course, this supposes that we take explicitly into
account the transition firing times. At this point, our analysis will be
based on the model of Timed Petri Nets and more precisely on Timed Event—
Graph described in Chapter 2, Section 2.4. Some of the results obtained

here have been originally studied by Ramchandani [6], but in a more

o4

restrictive case. In his work, it was assumed that the steady-state

process was deterministic (i.e., all the transition firing times were

deterministic) and strongly periodic, which means that every transition

fires at regular intervals of time, with the same period. No such
assumptions are made in our analysis. We can handle both cases: firing
times that are deterministic or discrete random variables (with a finite
set of possible values), according to the operating rules of switches, as
defined in Chapter 3, Section 3.4. In addition, we will deal in our
analysis with average firing rates, rather than fixed rates. Indeed, as it
will be shown in the next chapter, the steady-state process is generally
not strongly periodic even for the deterministic case: the periodicity is
of a more complex type, that will be described later as the K-periodicity
introduced by Chretienne [16]. Finally, the only assumption made in our
analysis is that inputs are Supposed to queue at the entry of the system so

that the process occurs repetitively over time.

4.2.1. Average Cycle Time of Transitions

In this section, we present the fiprst important and rather intuitive
result that the average firing rate is the same for all the transitions.
The average rate considered here is very precisely defined. We assume that
the processing starts at v = 0 and then occurs repetitively, as said
earlier. We then denote by Sg the instant of time at which the transition
ti initiates its n-th firing, corresponding to the n-th occurence of this
particular processing task. Naturally, (si - S?’l) represents the time
that has elapsed between the (n-1)-th occurence and the n—-th occurence of
transitioh ti. This can also be interpreted as a cycle time, since the
system is assumed to function cyclically, each cyle corresponding in fact
to the complete processing of one input. The definition of the average

cycle time is therefore as follows:

Definition: The average cycle time, denoted by Oi, of transition ti is

defined as:

65

n
} sk - sk
1 1
9. = 1lim —< (4.1)
T ono+e n :

This is naturally an average measure, since the time interval between two
successive occurences of transition ti is averaged over the total number of
occurences (from the initial instant). Relation (4.1) can actually be

written in a more simple form:

sg - s; sg s;
0, = lim n = lim e lim Yy
n—y +e n—>+e n—+e
and S; being a constant value:
(1]
Si
lim —n =0
n—> +eo
so that:
5
ei = 1lim 5 (4.2)
n =+ ’

This will be the expression used later in the developments. Naturally,

®

=1
i°9,
1

represents the average firing rate of transition ti.

We are now going to prove the following result:

Theorem 4.1: All the transitions have the same average cycle time and

consequently the same average firing rate.

As it will be shown, this result holds because it is possible to find,
for any two transitions, a directed circuit that includes them. The result
is therefore crucially dependent on the fact that the Petri net model of
the DMO corresponds to a strongly connected Event—-Graph, as stated in
Chapter 3, Section 3.5. ’

Proof: Let ti and tj be any two transitions. There exists at least one

directed circuit that contains both transitions, because the net is
strongly connected: Indeed, we can find a directed path from ti to tj and
from t. to ti. Let us point out that the directed circuit is not

J
necessarily elementary (as defined in Chapter 2, Section 2.3.1), but this
would not change the nature of the proof given here: In that caée we could
split the circuit into a set of elementary circuits. Without 1loss in

generality, we can therefore denote by

p=1(t, p, t, «e.t. P. «e.P .)
1 1 L i iy i
the corresponding circuit, where:
ti = ti and ti =t
1 k Y

The circuit is shown on Figure 4.1. Because the net is an Event-Graph,
each place of the circuit‘has exactly one input and one output tranéition
and the token content of the circuit is invariant by transition firings
(Theorem 2.3, Chapter 2, Section 2.3.2). Let M; denote the initial marking

of place p, and M;j (fesp. M%.) the number of tokens in the places

o
ji
belonging to the path from ti and tj (resp. from tj to ti), i.e.,

67

k-1 r
My, =) M; and Ml =) M
ij i ji i
p=1 P pk T
Let us recall from Chapter 2, Section 2.4.1, that we denote by:

Ii(t) (resp. Ij(t)). the number of initiations of transition t; (resp.
tj) in the interval of time [0,<]. ' '

T; (v) (resp. Tj(t)). the number of terminations of tramsition t;
(resp. tj) in the interval [0,t].

pik

§ = tk

ti2

Figure 4.1 Directed Circuit Containing ti and tJ

The processing is assumed to start at =0 (no transitions are

therefore executing at t=0) so that, at any instant t, we have trivially:

<
e ¢ 5

(4.3)

I

T.(¢) I.(z)
- Jd J.

Now, since in the firing process the initiation of a transition "consumes”

68

one token from its input places and the termination "produces” one token in
its output places, we have trivially, at any instant t©, for the transitions

ti and tj considered:

(PN

]
Ii(t) Mji + Tj(t) (4.4)

I~

I(v) $M, + T (v) (4.5)
J 1] 1 .

Using inequality (4.3), (4.4) and (4.5) yields:

(]
- (4
Ii(t) Mji A Ij(t) (4.6)
I.(t) + M, 2 I.(¢v) 4.7)
1 lJ J

Consider the instant of time

where n is any positive integer (this is the instant at which the
(n+Mgi)-th firing initiation of transition t; occurs). By definition, at

this instant:

I, (t) =n+M
i ji

Replacing in (4.5) yields:

Ij(t) 2n

Otherwise stated, the number of initiations of transition tj in [0,%x] is at

least equal to n, which implies:

69

Likewise, considering the instant of time:

n—Mo
T = S. 1J
i

where n is assumed greater than M;-, then:

J

I.(t) =n- M?.
i’ ij

and replacing in (4.7) yields:

n 2 I.(t)
J

which implies this time:

Finally, for any positive integer n, such that n > M;j, we have:
n-M; e’
s, 13 o¢gn < I
i J i

Hence, dividing by n:

70

n—M. . n+M
n-M, s, I s? S, i n+ M,
1] 1 .S g _(_ 1 J1l
n n- M?. n n + Mﬁ. n
iJ Ji

By taking the limits as n goes to infinity:

s oM 0 n+M° .
n—Mi. Si 1] S, Si Ji n+M..
lim — 2 — < lin —IJI—S lim —— n31
n— +w n-M, . n— += n—>+e n+M, .
1) 1J
which means exactly:
o, L o. Lo
i J i
and therefore: Oi = ej. Q.E.D.

In the next sections, we will denote by © the unique average cycle

time and
1
?=3

will denote the average firing rate of all the transitions. (]

characterizes the average processing rate of the overall system and for

that reason, will be called the throughput rate.

4.2.2. Average Circuit Processing Time

In the previous section, we have proved in that any two transitions of
a directed circuit have the same average cycle time. It is now possible to
determine what would this average cycle time be, assuming that the circuit

were by itself, i.e., could function independently of the remaining system.

71

Let us consider a directed circuit, as shown in Figure 4.2, that we
denote, without loss of generality by p = (t, p, t, e ty pk); Let us

assume now that the circuit has only one token in it, which is initially in

place Py Let p(p) denote the sum of the transition firing times, i.e.,
k
nip) = E By
=1

where p; = p(ti) is the firing time of t;, as defined in Chapter 2, Section

2.4.1., We willlbegin by assuming that the firing times are deterministic

and will then extend the analysis to the random case. Now, in the steady
state process, the token fires every transition in the circuit in turn and
reappears in p; every p(p) seconds, assuming that no time is allowed to
elapse between a transition being enabled and being initiated. Quite

naturally, we shall call p(p) the circuit processing time corresponding to

the amount of time it takes to complete the processing operations of
the circuit, under the previous assumption. In that case, every
transition fires at intervals of u(p) seconds: therefore, the cycleitime of

any transition of the circuit is preéisely plp), i,e., @ = p(p).

tk

pi ’ pk

t2

Figure 4.2 Directed Circuit

Now, suppose that the circuit has n tokens instead of 1, assuming that

72

all the tokens are identical (which is always implicit in ordinary Petri
Nets). Then, the average cycle time of every transition of the circuit

becomes:

Clearly enough,

plp)
.

represents the average amount of time between a token moving from Py and a
token reappearing in Py Extending the previous analysis, we shall call
this ratio the average circuit processing time. At this point, it is
interesting to recall that the token content of a circuit represénts, in
our model, the resources available for processing the correspoding
operations of the circuit. Hence, the average circuit processing time is
determined as the sum of the task processing times divided by the number of
resources available. Since the resources (i.e., the token content) are
specified by the initial marking of the places of the circuit, the précise

definition is finally the following one:

Definition: Let p be any directed circuit that we denote (without loss of

generality) by p = (t, Py ««» t; Py -«« ty py). The average circuit

processing'time, denoted by a(p), is defined as:

k
a(p) = ;:i:) = i:; (4.8)
i=1

where:

73

p; = w(ty) denotes the firing time of transition t;.

M

i denotes the initial marking of place Pi» and

M°(p) characterizes the token content of the circuit. Furthermore,

the quantity

1
a(p)

will be called the average circuit processing rate.

Now, for the random process, corresponding to the case where the
transition firing times may be discrete random variables (with a finite set
of values) with a fixed probability distribution, this definition is easily
extended 'by taking the expected firing time for each transition. For
instance, let us suppose that the firing time of transition ti is a random
variable that can take the values

{ll. : u. f.nAtf“i‘u]“

according to the probability distribution

{y. ., 7

. L L] 0] }
1,27 Vi,2700 007y,

u.

where u denotes the number of possible processing times for transition ti.

The probability distribution satisfies, as usual, the equality
J=u
RARE (4.9)
J=1

For simplicity, we assume that the processing times of all the other

transitions but ti are deterministic. The results can be extended

74

trivially to the case where more than one transition has a non—
deterministic processing time. We also assume, for clarity, that the token
content of the circuit is one. Let us denote then by ﬁi the expected

firing time of ti. i.e.,

n, = } Yi,j "i,j (4.10)

It turns out that the circuit processing time, i.e., the amount of time it
takes for the token to complete the processing operation of the circuit,
takes the value

= + ...++
ui,j(p) B, v op, ¥ By gt My

whenever the firing time of transition ti takes the value: p(ti) = "i.j'

If we consider a large number of repetitions of the circuit, i.e., assuming
that the token runs cyclically in the circuit, the expected circuit

processing time will be:
u
m = + +.'l+ - +..I+
u(p) } i, (n, +n, Mg m)
J=1

which can be written simply, given (4.9) and (4.10)

H(p) = Byt telt Hi +ooot e

Naturally, in the general case, we would obtain

Blp) = . + [, +.o.oe+ W, +...+

75

assuming that all the transition firing times are discrete random
variables. Likewise, if we assume that there are n tokens, instead of one,
given the assumption'that the probability distribution is independent from
one token to the next, as stated in Chapter 3, Section 3.4, the average

circuit processing time would be:

alp) = ﬁip) (4.11)

Hence, in the non—deterministic case, the average circuit processing time,
as defined by (4.11) determines the average cycle time of all the
transitions. Otherwise stated, (4.8) is simply extended by taking, in that

case, the expected firing time of each transition.

In brief, we have showed that, under the assumption that the circuit
is by itself; and that no time would elapse between a transition being
enabled and 'being initiated, the average c¢ircuit processing time, as
defined previously, determines the average cycle time of every transition

of the circuit.

4.2.3 Maximum Average Circuit Processing Time

In the previous section, we have considered a circuit of the net, as
if it were isolated from the remaining system and we have determined in
that case what would be the average cycle time of each transition of the
circuit. The fundamental assumption was that there was no time delays
between the different processing operations. Considering now the system as
a whole, it is clear that the different circuits are in fact

interconnected, as shown for instance in Figure 4.3.

It turns out that the interconnected circuits will affect each others
processing time. For instance, in the example of Figure 4.3, transition t,
belongs to both circuit p, and p,. Clearly enough, the avebage cycle time

of this transition cannot to lower than the maximum of e(p,) and a(p,),

76

. p1 p2 .

Figure 4.3 Interconnected Circuits

which are the average processing time of each of the circuit. Indeed, in
order for t, to be initiated, both places p, and p, should contain at least
one token. Since we have proved, in Section 4.2.1., that the average cycle
time, O, is the same for all the transitions of the net, it should

intuitively be clear that @, in the, general case, cannot be lower than:

@ = max (“(91)’ a(pz) sesss a(pr))

where p,, PyreeesPp denote all the directed circuits of the net. That is

what we are now going to prove rigorously.

Definition: Let p,;, PyseeesPp denote all the directed circuits of the

net. We call maximum average circuit processing time, denoted by o, the

value:

a = max (a(pl), a(pz) sevas a(pr)) (4.12)

where a(pi) is the average processing time of circuit py» as defined by

relation (4.8). Naturally,

77

1 e (A 1 _
P min a(pl) secey a(pr)

will be called the minimum average circuit processing rate. At this point,

it is emphasized that the minimum is taken over all the directed circuits
of the net.

We have now the following result:

Theorem 4.2: The maximum average circuit processing time is a lower bound

of the average cycle time, i.e., © 2 a.

Let us first point out that this result holds only for the type of

Petri Nets used here to modeling the DMO, i.e., strongly connected Event-

Graphs. As already stated in the introduction of this chapter, this result
was first obtained by Ranchandami [6] but with restrictive assumptions: 1In
his work, the transition firing times were assumed deterministic and,
moreover, the steady—state process was assumed strongly periodic (i.e.,
transitions fire at regular intervals of time). We extend the result to
the non—-deterministic case, where firing times may be discrete random
variables. In addition, we do not make any assumption regarding the
periodicity of the deterministic system, which will be shown in the next
chapter to be of a more complex type (as already mentioned before, the

deterministic process is in fact K—periodic).

In order to prove Theorem 4.2, it is sufficient to prove that, for any
directed circuit p of the net, we have necessarily: 0 2 a (p). This is

actually the proof given below.

Proof: Let p be any directed circuit that we denote (without loss of
generality) p = (t, p, t, ... ty Pg). Let us consider, for instance, the
sequence SE (n = 1,2,3,...) corresponding to the instant at which the

firings of transition t, are initiated successively. We first assume that

78

all the transition firing times are deterministic.

Now, let us consider any couple of transitions (ti, ti+1) of the
circuit that are connected by place p; as shown in Figure 4.2 (pi is the
output place of ti and the input place of ti+1 in the ecircuit). The

inequalities (4.4) - (4.5) established previously for (ti,tj) can be

applied here for (ti,t), so that, at any instant <:

i+a1

< (]
L, $M + T () (4.13)

where M; denotes the initial marking (at t=0) of place py-

Let us consider then the instant:

where n is any positive integer, such that n > Mg and By is the firing time
of ti. T is the instant of the (n—M;)-th firing termination of transition

ti, hence at this instant:
T.(t) = n - M?
i i

Using relation (4.13) yields:

<
Ii+1(r) Sn

which implies:

79

sH >e=s"M ., (4.14)

Now, by iterating (4.14) from i=1 to i=k, we obtain:

n n n Mo(p) %

_ 5 -

S1 Sk+:|. 4 81 o+ My
=1

where

k
Mo(p) = 2 M;

i=1

Finally, for any positive integer n, such that n > M°(p):

o
st 2 sf'” ®) 4w (4.15)
where M°(p) denotes the token content of the circuit and ul(p) the circuit

processing time.

Let us now take a place of the circuit which has a non—null initial
marking (i.e., contains initially at least one token). We will assume,
without loss in generality, that this is the case fdr place p,. If we
consider p, as the origin for the circuit, we shall say that the circuit
has been repeated exactly K times (K=1,2,3...) when all the tokens have
gone through p, exactly K times (i.e., all the tokens have been processed K
times through the circuit). In that case, the number, n, of firing

occurences of transition t, is determined by:

80

=]
I

KM (p) +r

[=]
I~

r < Mo(p)
where r denotes the number of tokens that are initially not in place p,.
Indeed, all these tokens must be fired by transition t, once to reach place

p, (the origin) for the first time.

By iterating (4.15) for n = r, M(p) +r ,..., K M°(p) + r, we obtain:
st 2 s] + K ulp) (4.16)

Now, dividing by n, we obtain:

n r
S1 N S1 K
n - T e, . Yo ulp)
KM(p) +r KM(p) +r
Finally, when n goes to infinity:
n r
. sl > . Sl . K
lim = ° lim ———— + lim ———— ulp)
n— +e K>+ KM (p) + r K=2+o KM (p) +r
(al o C
Y~ Y
=0 - xlp)
1]
M (p)
which means, given (4.2) and (4.8):
n
S
6 = lim El 2 alp) = u:P)
n—>+e : M (p) Q.E.D.

In case where the firing times are discrete random variables, it is

81

not difficult to extend the proof. Suppose, for instance, that the firing

time of ti is a random variable thatvcan take the values

}

Ty ar By areeerby)
according to the probability distribution

{Yinlf Yi:z,.. .’Yinu}.

In addition, all the other processing times are deterministic, exactly as
we have assumed in the previous section. Recall that the circuit

processing time takes the value

= + +.II+ - - +...+
uij(p) B, *u, M5 M

with probability i, j when u(ti) i, j Clearly enough, (4.16) becomes
now: '
u
n r }
Sp 2 S) Ky w0 4
§=1

where Kj denotes the number of times that the circuit processing time was

equal to "i,j(p) for the K occurences of the circuit. By the definition of

the probability distribution:
K.
lim - = Y. . for j=1,2,...,u.

K=+ Lad

From (4.17), we deduce:

82

s} S 4 K.

=2 + —_— u ()

n o ° 1,3
KM(p) +r 321 KM(p) +r o

When n goes to infinity, we obtain the same result given in (4.11):

Sn

0 = lim — } —J— p, .(p) = Tx(p) = alp)

© 1, ‘ g
n—¥ =1 M’ (p) _ M (p)

Remark: In the determination of the maximum average circuit processing
time (as defined by (4.12)), it is necessary to include all the transition
processing times. Indeed;' in our model of the DMO, each transition
contains in fact a self-loop with one token, as discussed in Chapter 2,
Section 2.4.2. Therefore, each transition constitutes by itself a eircuit;
ﬁhose token content is one. In that case, the average circuit processing
time is trivially the processing time of the transition. In order to
differentiate later the self-loops from the other directed circuits, we

will refer to the former as the trivial circuits.

4.2.4 Maximum Throughput Rate

In the previous section, we have found that the maximum average
circuit processing time, as determined by (4.12), is a lower bound of the

average cycle time, 0. 'Naturally, this result eén also be stated this way:

The throughput rate of the system,] -1/9 as defined in Section

4.2. 1, is bounded from above by the mlnlmum average circuit proce331ng

rate, i.e., by 1/a
The problem before us now is to know whether or not this bound is

actually achievable. In other words, we have to determine whether the

minimum average circuit processing rate characterizes the maximum

83

throughput rate of the system. It is clear that if the arrival rate of
external inputs is low enough, the DMO will be able to handle all the
arriving inputs and the throughput rate will be precisely the rate at which
inputs arrive. However, there is a rate above which the DMO will be
overloaded, in the sense that inputs will queue at the entry of the system
and this queue will grow to infinity over time. This rate characterizes
the maximum throughput rate of the DMO, i.e., the maximum rate at which
inputs can be processed in the organization. From the analysis carried out
so far, we know that the maximum throughput rate is necessarily lower or
equal to the minimum average circuit processing rate, as determine by 1/e.
Indeed, the average rate at which transitions can fire, i.e., ©, cannot
exceed 1/a (Theorem 4.2): Therefore, if the arrival rate of inputs exceeds
1/a, we are sure that the queue of inputs will grow to infinity over time.
As we are going to see, 1/e characterizes in fact the maximum throughput

rate for the deterministic system, i.e., when all the transition firing

times are deterministic. It will be shown that it is generally not true

for the non-deterministic case.
4.2.4,1 Deterministic System

For the deterministic system, the following result holds:

Theorem 4.3: The minimum average circuit processing rate determines the

maximum thfoughput rate.

As stated earlier, we have proved that the minimum average circuit
processing rate, as determined by 1/e¢ (relation (4.12)), bounds the maximum
throughput rate. We will not prove here that 1/a cofresponds effectively
to the maximum throughput rate. This result will be derived from the
analysis carried out in Chapter 5, which concerns the execution schedule of
the system. In Chapter 5, we will determine the precise instants of time
at which transitions fire, assuming that the process occurs repetitively
and that the firings are initiated as soon as the transitions are enabled.

From the execution schedule obtained, it will be shown that the (average)

84

 rate at which the transition fires is determined by the minimum average

circuit processing rate.

Theorem 4.3 allows the maximum throughput rate to be computed very
easily, once we have determined all the directed circuits of the net (which
only dépend on the structure of the Petri Net). In order to determine all
the directed circuits, we have used an algorithm developed by Alaiwan and
Toudic [19] that determines the S-—invariants (Chapter 2, Section 2.2) of an
6rdinary' Petri Net. This algorithm is described in Appendix A of the
thesis.

Let us analyze further how we can relate the evaluation of the maximum
throughput rate to the resource and time constraints. To that extent, we

need a further definition characterizing the critical circuits.

Definition: A circuit py is said to be critical, if its average processingv

time is maximal over all the directed circuits, i.e.,

a = max (a(pl) yeoes a(pr)) = a(pi)

The following corollary of Theorem 4.3 is straightforward:

Corollary 4.3: The average processing rate of the critical circuits

determines the maximum throughput rate (for the deterministic system).

This corollary is very interesting because it provides a way for
determining which resource and time constraints are actually binding, i.e.,
bound the throughput rate. Indeed, these will be the task processing times
(resp. resources) that correspond to the transitions (resp. token content)
of the critical circuits. Hence, the problem of modifying the right
constraints so as to improve the maximum throughput rate beconmes
straightforward. In addition, by determining the critical circuits of

different organizational structures, a comparative study of performance can

85

be achieved, with respect to the throughput rate. This type of performance
evaluation will be carried out in the last sectionbof this chapter for the

example of the two DM organization.
4.2.4.2 Non-Deterministic System

Let us recall that the characteristic of the non-deterministic system
studied here is the following: The transition firing times are discrete
random variables, that can take a finite number of possible values,
according to a fixed probability distribution (i.e., independent from one
token to the next). As discussed in Chapter 3; Section 3.4, these
assumptions allow fdr modeling the decision nodes or switches. Recall also
that the average circuit processing time is computed by taking the expected
(or mean) firing time of each transition. In that case, it turns out that,
in generél, the maximum throughput rate is lower than the minimum average
circuit prdcessing rate, as defined by relation (4.12). Let us see why on

a simple example.

Let us consider the Petri Net shown on Figure 4.4, which is a strongly

connected Event—Graph with the following two4circuits:'

Py (to p, &, pz?

P, (to P, tz p4)

Now, suppose that:

— the token content of both circuit is one

- the firing time of t, is deterministic: p,=l.

- the set of possible firing times for transition t, is p, = {1,3}

according to the probability distribution: {y, , = 0.5, v, , = 0.5

86

t1 p2 t0 p3 t2

5. L2

Figure 4.4 Non Deterministic Example

— the set of possible firing times for t, is p,= (2,4}, according to

the probability distribution: {y, , = 0.5, vy, , = 0.5}.

There are four deterministic cases that correspond to the random
systemn. In each case, we can easily compute the best cycle time
achievable, as determined by the maximum average circuit processing time

(Theorem 2.3). These are:

- for p, =1, py, =2 then a, = alp,) = p, + p, =3
- for u, =1, p, =4 then a, = alp,) =y, + p, =35
- for p, =3, u, =2 then a, = alp,) = p, + p, =4
- for p, =3, u, =4 then o, = alp,) = p, + p, =5

Given the probability distribution, the average cycle time of the system

(taken over a large number of repetitions of the process) is clearly:

© = 73 ,172,2% F Y1, 1Y2,2% F V1, 2Y5,1% F V1 275,20

]

0.25 (3+5+4+5) = 4.25

As said earlier, the maximum throughput rate corresponds to the average
rate at which transitions fire, assuming that the system works continously

and that the firings are initiated as soon as the transitions are enabled.

87

By construction, ® = 1/4.25 determines the maximum throughput rate in that
case. If we compute now the maximum average circuit processing time of the

random system, by taking the expected firing time of t, and t,, we obtain:

0.5(1+3) + 1

I
w

alp,) =y + u,

[l
N

alp,) = @

=
[Y]
+
=
[-]
|

= 0.5(2+4) + 1

¢ = max (a(p,), alp,)) = 4

and therefore the minimum average circuit processing rate equals:
i _1
a 4

Finally, it turns out that:

This example proves that, in contrast to the deterministic system, the
maximum throughput rate can be lower then the minimum average circuit
processing rate, as determined by 1/a. The reason should be clear from
this example: the critical circuits are not necessarily the same among the
deterministic systems obtained by setting a deterministic value (among
those possible) for each transition firing time. In our example, when p,=1
and p,=2, p, is the critical circuit and when p, = 3, p, = 2, the critical
circuit is p,. By averaging the corresponding circuit processing times
over the probability distribution, we do not necessarily obtain a(p), where
p is the critical circuit obtained when the different circuit processing

times are computed by taking the expected firing times of each transition.

88

In the non-deterministic case, we can obtain a lower and an upper
bound for the maximum throughput rate. From the analysis above, the upper
bound is given by 1/e, the minimum average circuit processing rate. If the
arrival rate of inputs exceeds 1/a, we are sure that the DMO will be
overloaded, i.e., the queue of inputs will grow to infinity over time.
Now, the lower bound is trivially obtained by assigning to each transition
its'Hgggg, i.e., longest, firing time possible and computing the minimum
average circuit processing rate for the corresponding deterministic system.
For arrival rates of inputs that do not exceed this lower bound, we are
sure that the DMO will be able to handle all inputs. Interestingly enough,
if the upper and lower bound turned out to be the same, which is the case,
when in our model of the DMO the critical circuits do not contain switches,
we have then completely characterized the maximum throughput rate. Let us
point out that, as for the deterministic system, the lower and upper bound
so determined are directly expressed as a function of both the time and
resource constraints. Therefore, the performance evaluation, based on the

circuits that are critical can also be applied here.
4.3 APPLICATION TO THE TWO MEMBER ORGANIZATION

In this section, we illustrate the results obtained so far using the
example of the two member organization presented in Chapter 3, Section 3.5.
We recall that the first structure, shown on Fig. 3.7, includes an
interaction of the result sharing type between the two DMs, while the
second one, shown on Fig. 3.8, implies a hierarchical relationship between
them.

4.3.1 Analysis of the Processing Rate Constraints

In order to compute the maximum throughput rate, it is first necessary
to determine all the directed circuits of the net. The algorithm developed
by Alawain and Toudic [19], that is described in Appendix A, has been used.
In this simple éxample, it is however easy to check the directed circuits

graphically. Given the labeling of transitions and places shown in Figs.

89

3.7 and 3.8, there are three directed circuits that have the same structure

in both cases. These are:

Pi (¢, p, t; Py t4 P, t5 Ry)
p, = (tg Pg £, P, ty Py ty Ry)

p; = (t; Py tg Pg ty Py ty Py ty Pas tio Re)

Additionally, for structure (a), Fig. 3.7,

(tg Py ty Py t, Py ts Pyo t, Py tg Py ty Ry)

il

(t, Py t, P, £ Py £y Py b5 Pyo t7 Py b5 Py £y Pag £y Ry)

Péa = (t, Ps te Py Ty ty Py tg Pyo ty Py Ty Py £y Pyy tyo Ro)

and for structure (b), Fig. 3.8,
Pap © (t¢ Py t, Py ty Py £ Py ts Py ty Ry)
Psp = (ty Py €5 P2 ts Py bty Py by Pyg ty Py t5 Py ty0 Ro)
Pep = (t, P tg Py £ty Ps t, Py t5 Pyo ty Pg ty Pyy tyo R,y)
If we denote by By the processing time of transition ty and by n, (resp.

n,, n,) the amount of resources (i.e., the number of tokens that is

initially in the corresponding resource place) available for processing the

organizational inputs (resp. the inputs to DMl and DM2), then the average

circuit processing times are:

90

a(pl) - n,
Be + H, + L + H,
a(pz) = o
pl + ".6 + "7 + ua + l-l’ + "'10
a(ps) =
. no
Be * o, + M, * B + H, + By *K,
a(p4a) = 5
. 2
p1+"2+"3+u4+u5+p1+“l+p9+“10
alp_) =
sa n,
p'1+p.6+l13+u4+p5+u1+p3+u9+u10
a(p‘a) =
no
;) - B *p, tptp op o
e p4b, n,
a,(p)_p1+"2+“3+u4+"5+"l+u9+u10
5b - n
[
u1+p6+u3+u4+"5+pl+u9+p10
a(p‘b) = -

We recall that, in order to determine the maximum throughput rate, it is
also necessary to take into account the processing times of the individual
transitions, which constitute the trivial circuits of the net. Let us

denote by:

91

Then, the maximum average circuit processing time is, for structure (a):

e, = max (a(p,), alp,), alp;), alp,,), elpsy)s alpg), npay)

and, for structure (b):

ey = max (alp,), alp,), alp,), alp,y), alpgy), alpgp), Hyay)

However, we have seen in Chapter 3, Section 3.2, (relation (3.5)) that:

)

describes the maximum processing rate that characterizes DMl. Identically,
for DM2, it is: ’

[y

a(pI) ’ M,

=

s =min (=i, Ll L L
. By Ky,

Moreover, it turns out that:

M, + By + My

o,

alp,) = alpy) +

Hence a(p,a) 2 a(p,), whatever the processing times and the resources may

be. Similarly, we have always:

a(p‘b) 2 a(ps)

We deduce finally that the minimum average circuit processing rate is

determined for structure (a), by:

1 1 1 1 1 1
Q =— = min » » » » » —
a~ (¢1 9, a(p,) alp,) > alp,) u, "10)

and for structure (b):

Now, the

1 .
Qb—a_—mln (?1; ¢2' » » s T s

1 1 1 1 1
a(p‘b) a(psb) a(p‘b) m

expressions above are especially interesting to interpret. It

turns out that the throughput rate of the DMO is bounded by three types of

constraints:

(i)

(ii)

(iii)

The constraint that comes from the maximum processing rate of

each DM, as defined by p, and ¢,.

The constraints due to the structure of the organization, as
determined by the interactions between the DMs and between the
DMs and the environment. In the example, these constraints are
derived from the average processing rates of the circuits Pag’
Psy and pg, (resp. P4p> Psp and Pcb)' We will refer to these

constraints as structural constraints.

The time constraint ul.(resp. "10)’ specific to the first (resp.
last) processing stage, which corresponds to the allocation of
inputs between the DMs (resp. the production of the
organizational response). These tasks are indeed different from

the four processing stages that characterize the DM, i.e., the

93

SA, IF, CI, and RS stages, as described in Chapter 3, Section
3.1.

However, it should be clear that all these constraints are actually
strongly interrelated; For example, the resources available to DM2 (i.e.,
n,) are used to compute ¢, but also to compute the average processing rate
of the circuit Page Likewise, the average processing rate of the circuits
Ps5 and ps, depends on p, and p,,. In particular, the critical circuits
which, as said earlier, determine the maximum throughput rate, may be at
the same time in the three categories described above. In other words,
there is not necessarily only one type of constraint which is the binding
constraint, given the values of the various processing times and resources

available.

The differentiation is nevertheless very useful in carrying out the
perfohmance evaluation, especially when the point is to compare different
protocols of operations for the same organization. Indeed, in that case,
it is sufficient to look at the structural constraint only. For instance,
assuming that the processing times and resources available are identical
for both organizations (structure (a) and (b)), it turns out that the

following inequalities are always verified:
(p,) L alp,)
alp,,) 2 alp,,
() < alp,)
alp,p) = alpyy

alpgy) £ alpg,)

Therefore, Qb 2 Qa'

In fact, the equality between Qb and Qa is only verified if the
binding constraint comes from the processing rate of one of the DMs

(i.e., & =9, or §, = ¢,) or from the processing time of the input or

a

94

output task, i.e.:

g =1 o § -1
a By b Hio

In any case, it turns out that the performance of the hierarchical
structure (structure (b)) is always at least as good as that of the result
sharing type (structure (a)). We are now going to analyze further how the
performance of the organization is related to the different types of
constraints previously described, by assuming various numerical values for
the resource and time constraints. To that extent, we will consider only

one organizational form, structure (b) of the two member organization.

4.3.2 Evaluation of the Maximum Throughput Rate

In this section, we consider the two member organization, with
structure (b), as shown in Figure 3.8. For simplicity, all the processing
times are aésumed deterministic. 1Indeed, our objective here is to make
clear how to carry out the performance evaluation depending on the type of
binding constraints. To that extent, and according to the development
presented in the previous section, we will consider three cases: The first
one is an example where the throughput rate is bounded by the maximum
processing rate of one DM. In the second one, the binding processing rate
constraint comes from a structural constraint. In the last one, the
processing time of the partitioning operation (which corresponds to p,) is

the binding constraint.

Remark: For clarity, the circuits previously denoted by Pubr Psp and Psb

will be simply denoted by p,, p,, and p,.
4.3.2.,1 Example 1

Let us assume that it takes one unit of time to complete any one of

the tasks, except for the SA stage of DMl, which takes four units of time,
i.e., u; =1 for i = 1,3,4,...,10 and p, = 4. In addition, DMl and DM2 can
only process one input at a time, i.e.,

n, =n, =1

and the overall organization can handle at most eight inputs at a time,

ioeal
n, = 8

In that case, the average processing times of the different circuits are:

a(pl) =17
a(pz) = 4
043
(5, - 0
alp,) = 5

alp,) = 5= 1

and M = max B, = 0, = 4

The maximum throughput rate is therefore determined by:

1

$=min G.Z7.3.¢°37" =3

The maximum processing rate of each DM is:

96

soomn Ao, A 11 1,1
. -0(91) ’ k. ’ H, ’ H, ’ Hs 7
1 1 1 1 1 1
=min() T, Ty T,) =
p, a(pz) M B, T opg u,) 4

The maximum processing rate of DMl is clearly the binding constraint to the
throughput rate of the overall organization. Indeed, p, is the unique

eritical circuit of the net.

Now, there are only two possible alternatives so as to improve the
perfofmahce of the organization: either increase the resources available to
DMl or reduce the processing time of one its processing stages (or both),
which are indeed the only ways to reduce a(p,). For instance, it would be
possible to improve the performance, if DM1 waé better trained, so that he
could handle more information at the same time (which means that he has
more cognitive resources) or execute the tasks faster (or both). In any
case, the only way to .improve the organizational performahce is by

imprbving the individual performance of DM1.
4.3.2.2 Example 2

Let us keep the same values as before, except that p, equals now one

unit of time like the other task processing times. In this example:

a(pl) = a(pz) = 4, a(p’) =-%-, a(p4) =6 , a(ps) = a(p‘) =1
K =1

max

Hence:

97

- 1

a\|r

and the maximum processing rate of each DM is the same:
_ _1
¢1—¢z_T

The maximum throughput rate is determined by a structural constraint, since
p4 is now the unique critical circuit. Given the structure of p,, the only
way to improve the throughput rate is, in that case, by either increasing
the resources available to DM2 (i.e., n,) or reducing the processing times
of the corresponding tasks of the circuits (or both). Interestingly
enough, it will have no effect to either increase the resources of DMl
(i.e., n,) or the processing time of its SA stage (i.e., p,), in contrast

to the prévious case.
4.3.2.3 Example 3

At last, let us assume that:

By 1 fori=2,...,10

B, 2 (processing time of the input transition, corresponding

to the partitioning operation)

n, =8, n, =n, =4 (Both DMs can now handle four inputs

simultaneously)

then, in that case:

98

I
jw
1)

“(91) alp,) =1, a(pa) =

, a(p4) ==, (p)=alp) =

- oo

max

Hence:

o 8 2 8 1, 1
$=mn A,7,3.35.3) =3

In that case, the processing time of t,, corresponding to the
partitioning operation, determines the maximum throughput rate. The way to
improve the performance of the organization is very simple in that case,
since the only alternative possible is to reduce the amount of time it
takes to allocate the external inputs to the DMs interacting directly with

the environment.
4.4 CONCLUSION

We have showed in this chapter that the maximum throughput rate is
bounded from above by the minimum average circuit processing rate. 1In
addition, this bound characterizes the maximum throughput rate for
deterministic systems. In the next chapter, we will analyze the execution
schedule, i.e., the instant of times at which the various operations take

place in the process.

99

100

CHAPTER V

ANALYSIS OF EXECUTION SCHEDULES

In the previous chapter, we have carried out the computation of the
maximum throughput rate as a function of both the time and resource
constraints, specific to the DMO. This throughput rate bounds the rate
with which inputs can arrive without overloading the organization. In this

chapter, we want to determine the execution schedule (also called firing

schedule, by reference to the transition firings), i.e., the instant of
times at which the various operations occur in the process, for allowable
rates of incoming inputs. It is emphasized that the firing schedule
computed here will characterize the dynamic behavior of the DMO: starting
from an initial state, the process will be assumed to occur repetitively,
which supposes that there are always inputs available at the entry of the
system. By doing so, we will obtain the best performance, with respect to

real—-time processing, that can be achieved by the organization.

Naturally, the precise firing schedule can only be obtained for the

deterministic process, in which all the processing times are deterministic.

For the non—-deterministic case, where processing times may be discrete
random variables (as defined for switches), it will be possible to obtain
the earliest (resp. latest) firing schedule by taking the shortest (resp.

longest) firing time of each transition.

5.1 ANALYSIS OF SEQUENTIAL AND CONCURRENT OPERATIONS

Before modeling the dynamic behavior of the DMO, taking into account
the time and resource constraints, it is first necessary to analyze further
how the different operations take place in the process. Indeed, the
precise sequence of operations in the process is completely determined by
the structure of the net. In other words, the structure of the Petri Net

characterizes the causality of the system, i.e., the fact that certain

transitions must fire before others, corresponding to the sequential tasks,
while others can fire independently, corresponding to the concurrent tasks.
Apart from the task processing times and the resources available, this
partial order in the different operations, as determined by the structure
of the net, is clearly a determinant factor of the execution schedule.
This is the reason why our objective here is to find a convenient
fepresentation that could account for the causal dependence and

independence between the various processing tasks.

5.1.1 Representation of the Process as an Occurence Net

In order to model the precise sequence of activities in the process,
we first consider the net that is obtained by deleting all the resource
places, including the resource place of the overall organization (R,) and
of each DM. The corresponding net for the example of the two member
organization described in Chapter 3, Section 3.5 (structure (a)) is shown

in Figure 5.1.

DM1
p1 t2 p2 t3 p3 t4 p4 t5

pi1 t10
5599 p10)5 I

p5 16 P6 t7 p7 18 p8 19
DM2

Figure 5.1 Model of the Two Member Organization as an Occurence Net

Naturally, the net so constructed is exactly the Petri Net model of
the DMO, as introduced in [2], which represents the information structure
within the organization. Let us recall that, as 1long as the model

corresponds to an admissible organizational structure, we are sure that

102

this net will contain no loops (or directed circuits), as discussed in
Chapter 3, Section 3.5. At this point, a Petri Net which satisfies the

two properties:

(1) it is acyeclic (i.e., contains no loops)
(2) each place has at most one input transition and at most one

output transition

is called an Occurence Net [20]. The Petri Net obtained is therefore a
model of an occurence net. The second property is trivially satisfied,
since our model of the DMO is an Event—Graph (each place has exactly one
input and one output transition). If we identify the reachable markings as
the states of the process and the transitions as the steps, then property 1
implies that the process is completed in a finite sequence of steps and
property 2 implies that the passage from one state to another one is

uniquely defined (and can be predicted).

5.1.2 Characterization of Lines and Slices

We call marked places the places of the occurence net that contain one
token. We assume that initially, there are no marked places in the net.
Let us denote by Tl = {t,}, where t, is the input transition of the
occurence net. Assume now that t, fires and let 51 be the resulting set of
marked places, which, in that case, are also the output places of t,. 1In
the example of Figure 5.1, ?1 = {pl, ps}. Let Tz be the set of transitions
that are enabled by P, : T, = {t,, ts}. Assume now that all the
transitions of Tz fire and let 53 be the new set of marked places:
?z = {p,, Pg» P,}. Similarly T, will be the set of transitions that are
enabled by 53 and so on. By iterating this procedure, we will eventually

construct a sequence T,, T,....,Ts such that: TS = {ty)}, where t_ denotes

the output transition.

In the example of Figure 5.1:

103

T, = {t,} P, = {p,.,p,}
T, = (t,] P, = {p,.pg)
T, = {t,} P, = {Dg.Py,}
Te = {t,] P¢ = {p,}

T, = {t,} P, = {p,}

T, = {t,} P, = {p,,}

T, = {t;,)

Let us analyze the properties of the sequence (Ti) i=1,..,s so constructed.
We first give the definition of a slice and a line of an occurence net, as
described in [21]. Let < denote the partial order relation, defined as
follows. Let a and b be any two nodes (place or transition) of the net,
then:

a { b iff there exists a directed path that goes from a to b.

Naturally the definition is consistent, since an occurence net is
acyclical (and therefore there could not exist a directed path from a to b
and from b and a). The definitions of a line and a slice are:

Line: A line is a set B of nodes (places or transitions) such that:

(1) for any two nodes a ¢ B, b & B:

a<b or b < a

(2) B is maximal: there does not exist a node ¢ in the net which

satifies (1) but does not belong in B.

Slice: A slice is a set D of nodes (places or transitions) such that:

(3) for any two nodes a € D, b & D:

atb and b<¢a

104

(4) D is maximal: there does not exist a node ¢ in the net which

satifies (3) but does not belong in D.

Clearly, the elements of a slice are unordered (independent with respect to
{): the elements of a slice characterize the concurrent activities of the
process. In contrast, the elements of a line are strictly ordered
(causally dependent): these elements characterize the activities that take

place sequentially in the process.

In our analysis, we are only interested in the slices that are set of
transitions, since we want to determine the tasks that are concurrent in

the process. By construction, each Ti' as previously defined, is a slice.
Assume, for instance, that it would take exactly one unit of time for each
transition to fire. In that case, the transitions of Ti are all the
transitions that fire concurrently at the i-th instant. In fact, the
sequence 51, Tz,...,Ts represents the steps of the process with the
transitions that fire concurrently at each step. The order of these slices
determines precisely the partial order between the various processing
tasks, in the following sense: If we consider a 1line (a sequential
subprocess), then each transition of the line belongs to a different slice
(a line cuts necessarily any slice at most once, as it can be deduced
straightforwardly from the definitions) and the order of the corresponding
slices corresponds to the order in which the transitions fire in the
sequential subprocess. This property of TI,...,TS is fundamental and will
be used in the next section for determining the precise firing schedule.

Remark: In our model, where there is an input transition (t,) and an
output transition (tm). the lines are exactly the directed paths that go
from t, to tm. The determination of the lines is straightforward from the
development in Chapter 4. By adding the resource place (R,) of the overall
organization to a line, we obtain a directed circuit. Therefore, once we
have determined all the directed circuits of a net (so as to compute the
maximum throughput rate), we can obtain all the lines by selecting the

circuits that contain R, as unique resource place and deleting it.

105

5.2 EXECUTION SCHEDULE OF THE DMO

In this section, we are going to carry out the computation of the
firing schedule and analyze its properties. As stated previously, it is

only possible to predict the precise firing schedule for the deterministic

process. Therefore, in this section, all the transition firing times are
therefore assumed deterministic. We will see later how to use the results
when processing times are discrete random variables (corresponding to the
switches) so as to obtain the earliest execution schedule and the latest
one. We élso assume here that external inputs are always available at the
entry of the system: In other words, there is a queue of inputs, such that
the process occurs repetitively. Given this assumption, we will be able
to characterize the execution schedule as a function of both the time and
resource constraints specific to the organization, independently of the
arrival rate of inputs. As for the maximum throughput rate, the execution
schedule obtained will characterize the dynamic performance of the DMO.
Let us point out that, here again, the analysis is based on the fact that

the Petri Net Model corresponds to a strongly connected Event-Graph.

5.2.1 Assumptions of the Model

Let us recall that S? denotes the instant of the n-th initiation

firing of transition ti and By the firing time of ti. From now on, we will
use the sequence (S?) for n=1,2,3,...,N and for all the transitions
(i=1,...,m) to characterize the execution schedule of the system. For
clarity, ﬁe will denote the places differently: since each place has
exactly one input and one output transition, it is possible to specify
precisely a place by its unique input and unique output transition.
Accordingly, we will denote by pij the place whose input transition is t;

and output transition tj. Likewise, M;j (res. M (tr)) will denote the

ij
marking of place p.. initially (resp. at instant t).
ij .

At this point, it is emphasized that our objective here is to analyze

the dynamic behavior of the DMO. Otherwise stated, starting from an

106

initial state, we want to compute the sequence of initiation firings (S?),
assuming that the process occurs repetitively. Quite naturally, we will
assume that the processing starts at t = 0, so that initially M;j = 0 for

all the places pij’ except fo the resource places, meaning that there are,

at the initial instant, no inputs being proeessed; Naturally, the initial
marking of the resource places will denote the resources available for

processing (and this initial marking is consequently strictly positive).

5.2.2 Feasible Firing Schedules

The underlying assumption concerning the firing schedule that we are
interested in computing, is that the firing initiations occur as soon as
the corresponding transitions are enabled. Otherwise stated, the tasks are
executed as soon as the corresponding information is available. This will
give us indeed the best time performance of the DMO, since the instant of
times at which the various tasks are executed are clearly the earliest
ones. However, we could imagine that some tasks are arbitrarily delayed
and, in particular, that the firing schedule is set up externally for the
system. At this point, in treating (Sg) as parameters for the system, the
problem necessarily arises as to whether or not this firing schedule is
realizable (or feasible), given the transition firing times (time
constraints) and the initial marking (resource constraints). A firing
schedule would be feasible, if every transition was actually ehabled at the
instant the firing should be initiated. If it were not the case, the
firing schedule would be infeasible, i.e., the firing initiation of at

least one transition is required to occur before it is enabled.

Ramchandani [6] has given a precise characterization of a feasible

firing schedule, in case of an Event—Graph:

Theorem 5.1: A firing schedule (Sg). i=1,...,m (where m is the number of
transitions) is feasible if and oniy if, for any place pij (whose input
transition 'is, by definition, t; and output transition tj) and for

i
n=1,2,3,...:

107

S, iJ 2 S + p, (5.1)

The above result is intuitively clear. If we consider the instant of

the n-th termination firing of transition ti. i.e., the instant

then, transition ti has exactly "produced” n tokens in place pij (since ti

has fired n times). Now

o
n+M. .
= 1)
T, = Sj

is the instant at which the firing of transition tj is initiated for the
(n+M;j)—th time. At this instant, transition t.\.j has "consumed” (n+M;j)
tokens in pij‘ Because there were initially only M;j tokens in pij (i.e.,
at t=0), T, should necessarily occur after t,, i.e., after the instant at

which transition t; has fired n times. The inequality

corresponds exactly to relation (5.1). It is noted that a rigorous

demonstration of Theorem 5.1 is proVided in Appendix B.

5.2.3 Determination of the Execution Schedule

The result stated in Theorem 5.1 provides an easy way to compute the
earliest firing schedule, i.e., the one in which the firings are initiated
as soon as the transitions are enabled. Let t. be any transition and let

J
us denote by

108

the input places of tj. Following the notation defined earlier,

ti,.ti ...ti correspond to the input transitions of each of these places,
1 2 T
as shown in Figure 5.2. Applying now the previous result to each of these

places yields:

S. K 2 st o+ T for k =1,2,...,r (5.2)

At this point, we recall that our model of the DMO as a Timed Event-Graph
includes an additional constraint, when compared to the model of Timed
Petri Nets introduced by Ramchandani [6]. As discussed in Chapter 2,
Section 2.4.2, a transition is not enabled, if it is already executing,
which can be modeled by adding a self-loop to each transition. The

corresponding place should be denoted by pjj (which means that its input
0

and output transition is tj) with an initial marking MJj

= 1. Applying the
inequality (5.1) to this place yields:

n+1 >
s> o (5.3)
j j %5

This is therefore the additional constraint that should be included in our

modeling, for specifying a feasible firing schedule.

Let us now assume that n, the number of repetitions, is large enough,
so that:

n> M, . for k=1,...,r. (5.4)

The previous inequalities (5.2) and (5.3) can be written:

109

Figure 5.2 Input Places and Transitions of t.

J
0
n-M. .

st 2 S, ed o+ by for k = 1,2,...,r. (5.5)
J o Kk Kk '

and
st sVt 4 (5.6)
i~ "3 3 !

The earliest n—th firing initiation of transition t. is then determined by:

J

n—M; j
st = max (s; Ko+ ow o, ST p)) (5.7)
4 k=1,...r Kk k Y J :

By construction, such a firing schedule is feasible and it is necessarily
the earliest one. The instant, as defined in (5.7), corresponds to the
instant at which the transition is enabled for the n-th time. As expected,
the places pij for which the maximum is obtained have received a token at
the latest instant of time, therefore enabling transition tj.

Now if,

110

n{M . for some k (k ¢ {1,2,...,r})
i , o

the equality (5.7) still holds, except that, in the determination of the
maximum, we do hot take into account the corresponding values of k.
Indeed, it means that the corresponding places py j have still a marking
strictly positive (from the initial marklng) and therefore these places do

not disable transition tJ.

Relation (5.7) turns out to be an implicit equation, which permits the
computation of the firing schedule by iteration on n, the number of firing

repetitions. If the initial marking of all the 'places were strictly
. (1]
positive (i.e., MiJ

be easily computed, using (5.7), from the determlnatlon of (Sk). for

> 0 for all the places le), (for j=1,2,...,m) could

k=1,2,...,n-1 and i=1,2,...,m. This is however not the case in the model,
given the assumptions made in Section 5.2.1; As already stated, only the

resource places have a non—nullAinitial marking. For a pair of transitions

(ti.tj) connected by the place Pj j such that M;j = 0, we obviously need to
determine first S? to compute Sg, using (5.7). This condition implies that
the computation of Sg for the various transitions (j = 1,2,...,m) should be
carried out following a precise order. As it will be discussed now, this
order is characterized by the slices of the net, as introduced in Section

5'1.2.

Given our assumptions that the processing starts at t=0, the places
Pij for which M1J = 0, as stated in Section 5.2.1, are all the places of
the net, except the resource places. In other words, these places are the
places of the occurence net that describes the precise sequence of
activities in the process, as constructed in Section 5.1.1. Let us

consider then the sequence of slices Tl,...T which has allowed us to

S’
characterize the sequential and concurrent activities of the process.

Any pair of tranmsitions (t; .tj). (connected by place pij) belongs to

111

a line (since trivially ti < tj) and both transitions are therefore
elements of two different slices, let us say T, and T,. As we have
explained, the order of the slices reflects the partial order between the
transitions, so that we have necessarily: a < b. It turns out that, if we
have determined the instants of the n-th firing initiation for all the
transitions belonging to TI,...,Tk_i. then we will be able to derive, using
relation (5.7), the corresponding instant for the transitions belonging to
Tk' Now, Sf, corresponding to Tl = {t,} (input transition) is never a
problem, since t, has a unique input place, which is the resource place,
R,» of the overall organization. Hence, M;I. where Ppa denotes the
resource place R,, given the notation defined previously (tm being the
output transition), is always strictly positive and a direct iteration on n

generates Sg, i.e., using (5.7):

+ p , S

°

=My
n 1
(Sm - N .

S’ = max
1

n
J!
carried out, is determined by the partial order defined by the slices

T1'Tz’---st- Let us point out that, for the transitions belonging to the

The order in which the computation of S for j = 1,...,m, should be

same SIice. the order has strictly no importance since the transitions fire

concurrently.

In brief, relation (5.7) allows the determination of the execution
schedule by iteration on n,v which corresponds to the number of firing
repetitions from the initial instant. At each iteration, however, the
instants at which the different tasks are executed should be determined,
following the order with which the operations occur in the process, i.e.,
the partial order defined by the slices. A detailed description of the

corresponding algorithm is provided in Appendix C.

Finally, we have been able to determine the best execution schedule
(i.e.; the earliest one) of the DMO, as a function of both the time

constraints and resource constraints. Indeed, in relation (5.7), u; are

the task processing times and, as we have said, the initial marking M;j of
the net models the resource constraints. The execution schedule so
obtained characterizes the dynamic behavior of the DMO: starting from the
initial state at t = 0 (where no inputs are processed and all the resources
are available), the process is assumed to occur repetitively (external
inputs are assumed queueing). Naturally, the results developed here are

only valid for the deterministic process, as we have said in the

introduction. Now, in the case where processing times are discrete random
variable, it is not possible to predict precisely the instants of time at
which the various operations take place. However, by considering on the
one hand the shortest processing time for each random variable and on the
other hand the longest processing time, we obtain two deterministic models.
Computing the firing schedule yields in the first case the earliest
execution schedule possible and in the second case the latest one.
Naturally, the real-time firing schedule is in between these two bounds.
Accordingly, we can say that the earliest execution schedule characterizes
the best possible performance of the DMO and the latest one, the worst
possible performance. In addition, we can easily compute the probability
of each occuring. From the probability distribution assigned to the
possible processing times, we know the probability of the shortest (resp.
longest) processing time for each transition. By computing the product of
these probabilities for all the transitions, we obtain precisely the

probability that the best (resp. worst) performance occurs,

5.2.4 Properties of the Execution Schedule

In this section, we carry out the analysis of the firing schedule and
investigate the properties of the steady state process. The fundamental
result presented here, which characterizes the periodicity of the steady-
state process, has been obtained by Chretienne [16]. Let us first give the

definition of the K-periodicity that he introduced in [16].

Definition: A sequence S, (n = 1,2,3,...) is said to be K-periodic, with

period n, iff for all n 2 1:

1i3

n=Kq+r

> Sn = Sr +qn (5.8)
0{r<K

If we identify the sequence Sn as the instant of times at which the same
operation occurs successively, it means that the K successive occurences

repeat periodically, as it can be visualized on Figure 5.3.

n n + K n +2K

Occurences | J I |
L L i L 1 1 4 L | >
| &)\, I\ v
n n g
stant

Instants S S +n S+ 2n

n n n

Figure 5.3 K-Periodic Sequence with period =
When K = 1, it corresponds to the usual periodicity (also called strong

periodicity by Ramchandani [6]). The ratio K/mn represents the (average)

rate (or frequency) with which the operation occurs. We will denote this
rate by:

_K
i “n
so that (5.8) can be rewritten:

S =S +gq %% (5.9)

The fundamental property that characterizes the dynamic behavior of the

system is the following one:

Theorem 5.2 [16]: The firing schedule (as determined previously) becomes

K—periodic aftér a finite number of firing repetitions, which means that

114

there exist K and N, such that, for n 2 N, and for j = 1,2,...,m (where m

is the number of tfansitions):

n - No =Kq+r

= " - s]\.]°+"+q% (5.10)
0fr<kK J J '

The rate ® is equal to the minimum average circuit processing rate as
defined in”Chapter 4, Section 4.2.2.1.

Let us point out first that this Theorem holds only for the type of
Petri Nets used for modelihg the DMO; i.e., strongly connected Event-—

Graphs,'and for deterministic processing times. Let us now comment on the

besult.

This result completes the development carried out in the previous
chapter, concerning the maximum throughput rate. At it was discussed
there, the minimum average circuit processing rate bounds the allowable
rate at which inputs can arrive, in the sense that above this rate, the
queue of inputs at the entry of the system will necessarily grow to
infinity over time. This theorem makes sure that, in the deterministic
case, this rate corresponds effectively to the maximum throughput rate that

can be achieved by the DMO, as stated in Chapter 4, Section 4.2.4.1.

In addition, we have a further result: We know that this throughput
rate is actually achieved within a finite amount of time or, in other
words, after a finite number of repetitions of the process. This result is
not surprising; A Petri Net which is live and bounded (which is the case of
our model) has necessarily a finite number of reachable markings, i.e., the
forward mérking class, as defined in Chapter 2, Section 2.1.5 is finite.

Therefore, there is at least one state, s (i.e., one marking) which

o'
occurs cyclically in the repetitive process. Furthermore, in case of an
Event—-Graph, the set of all reachable markings from any initial marking is

uniqueiy defined and can be predicted, as stated in Section 5.1.1,

115

Consequently, all the states that take place between the successive
occurences of S, also repeat cyclically. It means that, once the state So
is reached for the first time, the reachable states repeat periodically,
determining the steady-state process. However, as Theorem 5.2 proves it,
the period in real time (i.e., given the transition firing times) turns out

to be of a more complex type than the simple (or strong) periodicity.

From the determination of the firing schedule (S?) and of the rate 9,
computed as the minimum average c¢ircuit processing rate, it is now
straightforward to deduce K, the periodicity factor. However, an
interesting result further obtained in [16], states that if all the
critical circuits, as defined in Chapter 4, Section 4.2.2.2, contain only
one token, then K = 1. In that case, it means that the steady-state process
is strongly periodic, i.e., each transition fires at the same regular
interval of time. Otherwise stated, the processing rate is constant (for
the steady-state). Interestingly enough, for the model of the DMO analyzed

here, it would be this case if:

— either the critical circuits contain only one resource place and this
resource place has initially one token (meaning that the corresponding

DM or the overall organization can only process one input at time)

- or the critical circuits correspond to individual transitions (recall

that a transition contain in fact a self loop with one token).
5.3 MEASURES OF PERFORMANCE FROM THE EXECUTION SCHEDULE

In the first two sections, we have been able to characterize the
dynamic behavior of the DMO, having first determined the sequential and
concurrent operations of the process and then computed the precise
execution schedule for any number of repetitions of the process. In
addition, we know that the steady state process is K-periodic, with a
processihg rate & which corresponds to the minimum average circuit

processing rate. Recall that this analysis is appplicable under the

following assumptions:

(i) the process is deterministic, which implies that all the task

processing times are deterministic,
(ii) the process occurs repetitively from the initial instant © = 0.

(iii) The tasks are executed as soon as the corresponding information
is available, which means that, in the Petri Net model, the
firing initiations occur as soon as the transitions are enabled.
The execution schedule so obtained is the best possible, in the
sense that the instants of time at which the various tasks are

processed are the earliest ones.

In the case where the processing times are discrete random variable,
as it is the case for switches, we can extend this analysis by considering
the deterministic process associated with the shortest processing times and
the one associated with the longest processing times of each transition.
In the first case, we obtain the earliest execution schedule possible and
in the second case the latest execution schedule possible. Naturally, the

real-time process is in between these two bounds.

It is now interesting to analyze qualitatively the results obtained
and derive related measures of performance. There are actually two
measures that are particularly interesting to analyze: The execution
schedule (S§) of the input transition and the execution schedule (Sf) of

the output transition.

5.3.1 Execution Schedule of the Input Transition

Each time that the firing of the input transition t, is initiated, it
means that the DMO starts processing a new input. Given the assumptions
made for determining the firing schedule, Sf represents the earliest

instant at which the n—-th input can be processed; i.e., whatever may be,

117

the instant of times at which inputs arrive successively, the schedule (Sf)
(n =1,2,3,...) determines the earliest instants at which the DMO is able
to handle these inputs. Because this schedule is not necessarily strongly
periodic but only K-periodic in its steady state, we do not generally
obtain the best performance by regulating inputs at the entry of the
system, such that the arrival rate be constant. Suppose for example that
K=2 and that

N, L2
_Slo+3'ooo (5.11)

N0+1 No + _1_ , SNO-'.z
1

as shown on Figure 5.4 (Recall that, after N,, repetitions the process is

in its steady—state).

Occurences
N No+12 N,+2 N +3 N _+4
N N I L
Instants sio g™t spett sjet? st
—
1 3 1 3
2% 29 29 2%

Figure 5.4 2-Periodic Firing Schedule

If the interarrival time of inputs was constant and equal to 1/% (&
being the maximum throughput rate), the processing of every two inputs
would be delayed by 1/2%, compared to what it could be if, for example, two
inputs were arriving simultaneously at regular interval of time 2/®. 1In
fact, so as to reduce at the minimum possible the processing delays, K
inputs should arrive simultaneously at regular intervals of time duration
K/®. Naturally, this supposes that the buffer capacity at the entry of the

syétem; is at least equal to K.

118

5.3.2 Execution Schedule of the Qutput Transition

Let us denote by:

where ([is the processing time of the output transition tm' TE is the
instant of the n—-th firing termination of tm' the output transition. Each
time that the firing of tm is terminated, it means that the DMO has
completed the processing of an input and has produced the corresponding
response. Now, let us assume that n inputs arrive simultaneously at t© =
0. Then Tﬁ (k = 1,2,...,n) represents the instant of time at which the
processing of the k-th input (defined by the order in which inputs are

handled) is completed: For that reason, we shall say that the schedule

(T3) represents the dynamic response time of the DMO. At this point, we
should emphasize the difference existing between the time-delay of the DMO,
as computed in [3] and this measure. In [3], the time-delay measures the
duration from input entering the system to the response taking place. This
time-delay is a static measure, in the sense that the system is supposed to
process one input at a time. Quite obviously, this measure would
correspond to T; = S; + u, in our model, i.e., the amount of time it takes
to process the first input, since the processing is supposed to start at

©=0. Likewise, it would also correspond to the difference:

dn=Tz—s‘1‘=sl';—sf+um (5.12)
for n 2 N, (where N, determines the number of repetitions above which the
process is in its steady state) and assuming that the resource place of the
overall organization, R,, contains only one token. As we have discussed in
Chapter 3, Section 3.3.2, it means indeed that the DMO can only handle, in
that case, one input at a time. This intuitive result can actually be

proved rigorously. Let us consider all the lines (or directed path of the

119

occurence net, as defined in Section 5.1, for which the sum of the
transition firing times is maximal. By adding the resource place Ry, we
would trivially obtain all the critical circuits, precisely because R,
contains only one token. In that case, the maximum average circuit
processing time, i.e., 1/®, is equal to the maximum time—delay over all the
possible directed paths, denoted by Dmax' Now, since the token content of
the critical circuits is one, the periodicity factor K equals one (Section
5.2.4), which means that the steady state is strongly periodic. In

partiéular, for n 2 N,:
+ D (5.13)

Applying relation (5.7) to the place Ppa» which, following the notation
used previously, denotes the resource place R, of the overall organization,

yields:
s = pax (sl‘: g ST + u,) (5.14)

since M;l = 1, by assumption.

I

Now, the expression, for any n 1:

Do)

n
Sm + oy~ (S1 2)

represents the amount of time it takes to complete the processing of the
n—-th input, once the input operation (modeled by tl) is completed. Hence,

this quantity is always positive, so that in fact, (5.14) can be written:

Using relation (5.13), we deduce:

120

d =T -s* =p Q.E.D.
m

In that case, the amount of time it takes for the DMO to complete the
processing of n inputs is clearly equal to nDMax' However, it should be
clear that, in the general case, where the DMO can handle more than one
input at a time, the amount of time it takes to complete the processing of
n inputs may actually be much less. With the assumption that the
processing starts at t=0, this amount of time is precisely given by T8, the

dynamic response time.

Now, we can define:

[=]

n

Tm Sm * um
RT = 1lim — = 1lim —— (5.15)
n+e 1 nd+e 8

as the average response time of the DMO. From Chapter 4, Section 4.2.1, we

know that this limit will precisely be equal to @, which is also equal to
1/3. Hence the average response time of the DMO corresponds to the maximum

average circuit processing time.

At this point we should make a clear distinction between what we have

defined as the average response time and what would correspond to the

average processing time (the equivalent of the time—delay defined in [3]1),

that is:

121

d = limd = 1lim (Tg-s’:) (5.16)
n—y +e n—>+e ' o

which can also be written as:

d + d +l'.+ d
+ —
q=-2 a IK ntk-1 for any n 2N

because of the K-periodicity of the steady-state process. d is an average
measure of the amount of time it takes to complete the processing of any
individual input. 1In the general case, the value of d is necessarily
greater or equal to the maximum time-delay of the directed paths,
previously denoted by DMax’ i.e., the corresponding value when the DMO
handles only one input at a time. It may be indeed greater precisely
because more than one input can be processed at the same time, so that
additional delays occur, due to the unavailability of the limited
resources. In fact, d can be characterized quite easily. In the steady-
state process, M;; inputs are processed simultaneously (M:l1 is the initial
marking of the resource place, R,, of the overall organization). Since d
is the average processing time of each input, every transition fires at the

average rate:

Mm1

Since ® is precisely the processing rate:

so that, finally:

122

d = 3 (5.17)

Let us now prove that we have necessarily: d 2 Dyax+ As stated earlier, by
adding the resource place R, to the directed paths (i.e., lines) for which
the time-delay is maximal and therefore equal to DMax' we obtain a circuit.
The token content of such a circuit is M&l, the corresponding average

circuit processing rate is:

°
Mm1

DMax

By definition, @ is the minimum average circuit processing rate, therefore

g ¢ m

Max

=

Given (5.17), we deduce immediately:
>
d 2 Dy Q.E.D.

In brief, we have defined the dynamic response time as the amount of
time it takes to complete the processing of n inputs, which would arrive
simultaneously at the initial instant (i.e., ©=0). For large number of
inputs (when n goes to infinity), dividing by n yields the average response
time of the organization and it was proved that the average response time
is precisely determined by the maximum average circuit processing time.
However, the average processing time, d, for each individual input, i.e.,
the average time—delay from one input entering the system to the response

taking place is determined by:

123

[
ALY
STw

In other words, d is equal to the total number of inputs being processed

simultaneously times the average response time, as would be expected.
5.4 CONCLUSION

In this chapter, we have carried out the analysis of the execution
schedule for the DMO model. We have first described the sequential and
concurrent activities of the process, using the slices of a Petri Net. A
method has been developed to compute the firing schedule, for the case
where all the transition processing times are deterministic. The property
of K-periodicity that characte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>