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Abstract

While chiral quantum field theories (QFTs) describe a wide range of physical systems,
from the standard model to topological quantum matter, the realization of chiral
QFTs on a lattice has proved to be difficult due to the Nielsen-Ninomiya theorem
and the possible presence of quantum anomalies. In this thesis, we use the connection
between chiral phases of matter and chiral quantum field theories (QFTs) to define
chiral QFTs on a lattice and allow a huge class of exotic field theories to be simulated
numerically. Our work builds on the ‘mirror fermion’ approach to the problem of
defining chiral theories on a lattice, which defines chiral field theories as the edge
modes of chiral phases. We begin by reviewing the deep connections between chiral
phases of matter, chiral field theories, and anomalies. We then develop numerical
treatments of an 𝑆𝑈(2) chiral field theory, and provide a semiclassically solvable
definition of Abelian 2 + 1 chiral topological orders. This leads to an exactly solvable
definition of chiral 𝑈(1) SPT phases with zero correlation length, which we use to
extract the edge chiral field theories exactly. These zero-correlation length models
are vastly more simple than previous approaches to defining chiral field theories on
the lattice.

Thesis Supervisor: Xiao-Gang Wen
Title: Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction

Quantum Field Theories are wild things. It has been nearly a century since Born,

Heisenberg, Jordan, and Dirac discovered Quantum Field Theories (QFTs) [86, 97],

and yet these theories remain mysterious. They are among our most precise theories

of physics, delivering predictions accurate to one part in a trillion in some cases. How-

ever, as mathematical objects they often make no sense, requiring careful regulation

to tame their divergences. QFTs are extremely versatile: they govern the behavior

of all known quantum systems, ranging from fireballs at trillions of Kelvin inside

the Large Hadron Collider to the cold condensates at at fractions of a billionth of a

Kelvin, just one building over from where this thesis was written. Much of theoretical

physics, from Schwinger and Feynman to Witten and Wen, is devoted to their study,

simulation, and calculation.

QFTs are so powerful and versatile because they capture the universal, long-

distance behavior of quantum systems of many particles. QFTs were discovered in a

context close to modern high-energy physics, where not only do the energies involved

create many particles but the physics itself becomes sensitive to the immense number

of virtual particles winking in and out of existence. However, QFTs find a natural

application to the theory of condensed matter systems, where we may consider ∼1023

particles interacting on a vast lattice. From our condensed matter perspective, the

‘long-distance behavior’ of particles on a lattice describes the characteristic properties

of a phase of matter near a gapless point, where correlation lengths grow and the
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dynamics happen at long distances on the lattice scale. There the QFT can reveal

the fundamental nature of the phase: What are the low-energy excitations? How

does the system respond to a probe? QFTs capture the essence of a system in the

vicinity of a gapless point; in turn, the physics of many particles on a lattice can be

used to study and regulate quantum field theories.

It is a testament to the wonder of physics that studying QFTs more closely makes

them more interesting and more mysterious. In the earliest days, the precise defi-

nition of field theories was a pedagogical complication that could be avoided with

perturbative renormalization. QFTs were allowed to be mathematically ill-defined

because their predictions were so incredibly accurate, while their formalization was

left to mathematicians and mathematical physicists. However, as our understanding

of them grew, we found that many of their most important properties—anomalies,

strange conservation laws, and beyond—were revealed when QFTs were defined pre-

cisely. This relationship is at the core of the relationship between condensed matter

and high energy theorists that has recently ignited a golden age in the study of topo-

logical phases and physics. In turn, a better definition of QFTs allows us to develop

a deeper understanding of the laws that govern the universe and to use those laws to

create new science and technology.

This thesis is anchored around the application of condensed matter theory to the

simulation of chiral phase and QFTs. Chiral phases and field theories, where left

and right-handed excitations behave differently, are particularly challenging to define

owing to the appearance of the ‘quantum anomalies’ that will be defined in Chapter

2. In particular, we set out to define and regulate chiral QFTs in the lattice, in a way

which either cancels out their anomalies or renders those anomalies explicitly calcula-

ble. We will begin with a numerical simulation of a previously proposed approach to

defining chiral QFTs, and end with an exactly solvable approach that more efficiently

creates 𝑈(1) chiral lattice field theories and reveals their subtle properties.Our results

also lead to new phases of chiral matter in condensed matter systems.

Chapters 2 and 3 form the background of this thesis. In Chapter 2, we will set

out a few of the properties of QFTs that we wish to study and demonstrate them
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in the context of simple lattice models. The most important of these are quantum

anomalies. We establish a simple picture of the ‘chiral’ or ‘axial’ anomaly in 1 + 1d

with a lattice model, and we discuss the general relevance of quantum anomalies to

actually defining QFTs on the lattice. In Chapter 3, we will lay out the connections

between phases of matter and quantum field theories that we defined previously. We

will introduce the concepts of ‘topological’ order and ‘SPT’ order and establish the

relationships between the bulk quantum order and the anomalies of the edge theories.

We will also elaborate specific quantum field theories that we wish to simulate in the

following chapters, and comment on their classification.

Our new results are presented in Chapters 4-7. In Chapter 4, we follow a previously

proposed approach to create a new regularization of a 1+1d 𝑆𝑈(2) chiral field theory.

This approach depends on creating a non-chiral field theory, then giving a subset of

fields a large gap so that only the chiral theory is left at low energies, which we are

able to successfully demonstrate. Nonetheless, this approach faces technical obstacles

to generalization. In Chapter 5, we approach a related problem, the simulation of

gapped Abelian topologically ordered theories in 2 + 1d. We are able to create rotor

models which can be reliably solved semiclassically, a significant achievement for

these theories. Following this, in Chapter 6, we ‘ungauge’ the theories of Chapter

5 to create exactly solvable models of SPT ordered phases. These exactly solvable

theories are also a significant achievement, and we use them to create commuting

projector models previously thought to be impossible. In an extraordinary turn,

these SPT models immediately lead to exact chiral field theory models as a corollary,

and we explore these chiral field theories and their anomalies in Chapter 7.

This thesis details an extended, and successful, search [15] for fruitful lattice mod-

els of chiral QFTs. We begin by defining a chiral field theory in a 1+1d 𝑆𝑈(2) model

and, while successful, find obstacles to future work. We then take a meandering path

through higher-dimensional phases, eventually uncovering an SPT formalism which

immediately yields a chiral field theory of the sort we had originally sought. We hope

the reader will find the journey enlightening and useful.
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Chapter 2

Condensed Matter Quantum Field

Theories

In this chapter, we lay out some basics of quantum field theories, establishing our

notions of chirality and symmetry, for the perspective of a reader broadly familiar

with physics and calculus. The expert should refer directly to Chapter 3.

As mentioned in the previous chapter, QFTs capture the long-distance, universal

behavior of a system of many particles. However, with renormalization group (RG)

theory, we can go further. RG leads to equivalence classes of QFTs which have the

same long-distance behavior by erasing or ‘integrating out’ short-distance degrees of

freedom. Under this process, QFTs morph into one another, until eventually only

infinite-range behavior is captured. These infinite correlation length ‘fixed-point’

QFTs are in fact representatives of phases of matter. To study any QFT, fixed point

or otherwise, is to study a phase of matter and gain insight into the collective behavior

of a system.

Something extraordinary arises in QFTs: universality. Because there are relatively

few classes of fixed-point QFTs, there are relatively few patterns of behavior in the

physical world. This allows relationships between various systems and their phase

transitions to be derived, and is why the pattern of cracks in metals and rocks mirror

the image of lightening (eg [29]), while a similar argument applies to the shifts of

sand and snow in piles (eg [69]). The Superfluid-Mott-Insulator transition we study

21



in Chapter 6 is in fact in the same universality class as the condensation of a superfluid

and the ferromagnetic ordering of two-dimensional ‘XY’ magnets, which have both

been studied extensively. This universality is a crowning triumph of modern QFTs

and is a principle behind the ordering of all matter.

Throughout the decades of QFT, significant progress has involved both the con-

densed matter and high-energy communities, from the theory of symmetry multiplets

and particles to the theory of phases and Wilsonian renormalization group (RG). We

are currently in a ‘golden age’ [7] arising from just such a collaboration, where the

theory of quantum anomalies, higher symmetries, and topological phases have been

unified and the two communities are working closer than ever, though differences of

ideas and language remain. This thesis, and the research herein, has its ideas firmly

rooted in the condensed matter side, but seeks to build tools that both the condensed

matter and high-energy communities will find useful. In particular, we set our sights

on the Chiral Fermion Problem, which has plagued simulations of both condensed

matter and high-energy theory for decades. We will demonstrate a solution to it

in Chapter 4, before developing the theory to create a far more efficient solution in

Chapter 7.

2.1 Practical Lessons in QFTs

A huge amount of research has gone into defining just what a QFT is: as sums of

all functions, renormalizable path integrals, quantizations of phase space, operator-

valued distributions, and more. Even more complex is the relationship between tra-

ditional QFTs defined in continuous spacetime and lattice QFTs defined in discrete

spacetime.

We will sidestep all of this and instead take a simple-minded approach. In this

thesis, we always define QFTs as lattice QFTs. Any continuum quantities we write

down will be only useful abstractions that help us reason about the dynamics of an

underlying lattice model. This approach will render many of the more surprising

and subtle properties of QFTs extremely clear, as on the lattice it is difficult for any
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complication to hide.

Let us now see this in practice. We will consider a simple 1 + 1d lattice model

and use it to see some of the major features of QFTs: dynamics, symmetry, chirality,

anomalies, and the relationship between the lattice and the continuum as well as the

Hamiltonian and Lagrangian formalisms.

Consider fermions on a lattice in one spatial dimension. We label the 𝑁 lattice

sites by 𝑖 = 1, ..., 𝑁 with periodic boundary conditions, and introduce creation and

annihilation operators on each site which satisfy {𝑐𝑖, 𝑐†𝑗} = 𝛿𝑖𝑗, {𝑐𝑖, 𝑐𝑗} = {𝑐†𝑖 , 𝑐†𝑗} = 0.

The Hamiltonian for our lattice model is given by:

�̂� = − 𝑡
2

∑︁
𝑖

(︁
𝑐†𝑖𝑐𝑗 + 𝑐†𝑗𝑐𝑖

)︁
− 𝜇

∑︁
𝑖

𝑐†𝑖𝑐𝑖 (2.1)

This free theory describes particles hopping left or right, with a chemical potential

𝜇. It can be diagonalized in momentum space by setting 𝑐†𝑘 = 1√
𝑁

∑︀
𝑗 𝑒

𝑖𝑘𝑗𝑐†𝑗, where

𝑘 = 2𝜋𝑚
𝑁

, 𝑚 = 1, ..., 𝑁 . Doing so, we obtain the Hamiltonian:

�̂�𝑘 = −
∑︁
𝑘

(𝑡 cos(𝑘) + 𝜇)𝑐†𝑘𝑐𝑘 (2.2)

(We will always assume unit lattice spacing). The eigenspectrum of this Hamiltonian

with 𝑡 = 1, 𝜇 = 0 is shown in Figure 2-1. At zero temperature, the states with energy

𝐸 < 𝜇 will be filled by fermions and are depicted in blue, while states with 𝐸 > 𝜇

will be unfilled. The filled states are referred to as the ‘Fermi Sea’, while the states

right at 𝜇 = 0 are the ‘Fermi Surface’ (It is indeed a surface in higher dimensions)

and have Fermi momenta ±𝑘𝐹 .

In the spirit of understanding the long distance physics, it is important to under-

stand what are the low-energy excitations of this system. With some energy 𝜖 ≪ 𝑡,

the only possible charge-conserving excitations involve moving a fermion from a filled

state just below the Fermi surface to an empty state just above the Fermi surface.
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Figure 2-1: (Color Online). (left) Eigenenergies of the Hamilonian (2.2) with 𝜇 = 0.
Filled states, below the chemical potential, are shown in blue, while unfilled states
are shown in red. (middle) As we adiabatically change the background field 𝐴, the
energies evolve as − cos(𝑘 − 𝐴) (right) After adiabatically evolving the background
gauge field from 𝐴 = 0 to 𝐴 = 2𝜋

𝑁
, we transfer charge from the left-moving mode to

the right-moving mode. This is the axial anomaly.

Crucially, each point on the Fermi surface comes with an associated group velocity:

𝑣𝐹 =
𝑑𝐸

𝑑𝑘
= ±𝑡 sin(𝑘𝐹 ) (2.3)

The disturbance we may create by exciting a particle near one of these Fermi points

will move to the left or right along our 1d spatial lattice with velocities given by 𝑣𝐹 .

To understand the phase of matter, we need only understand the physics near

those two points. We do so by writing down a Lagrangian that captures two fermionic

modes: one right-moving and one left moving. The correct model is:

𝑆 =

∫︁
𝑑𝑥𝑑𝑡

[︁
𝜓†
𝐿(𝜕𝑡 + 𝜕𝑥)𝜓𝐿 + 𝜓†

𝑅(𝜕𝑡 − 𝜕𝑥)𝜓𝑅
]︁

(2.4)

Here 𝜓†
𝐿,𝑅, 𝜓𝐿,𝑅 are anticommuting Grassman fields and we have rescaled space so

that 𝑣𝐹 = 1. Note that varying with respect to 𝜓†
𝐿,𝑅 reproduces the equations of

motion:

(𝜕𝑡 + 𝜕𝑥)𝜓𝐿 = 0 (2.5)

(𝜕𝑡 − 𝜕𝑥)𝜓𝑅 = 0 (2.6)

These are the wave equations in 1 + 1d for an excitation moving to the left or right,

respectively.
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In just a few short lines, we have written down both a Hamiltonian and Lagrangian

description of particles hopping in one dimension. Surprisingly, quite a lot can be

derived from these models, including their symmetries and a specifically quantum

phenomenon called a quantum anomaly.

The Hamiltonian models (2.1), (2.2) have an important 𝑈(1) global symmetry

given by:

𝑐𝑖 → 𝑒𝑖𝜃𝑐𝑖 𝑐†𝑖 → 𝑒−𝑖𝜃𝑐†𝑖 (2.7)

𝑐𝑘 → 𝑒𝑖𝜃𝑐𝑘 𝑐†𝑘 → 𝑒−𝑖𝜃𝑐†𝑘 (2.8)

(2.9)

where 𝜃 is a constant. Crucially, this implies that
∑︀

𝑖 𝑐
†
𝑖𝑐𝑖 commutes with �̂�, [

∑︀
𝑖 𝑐

†
𝑖𝑐𝑖, 𝐻] =

0, and so we have a conserved quantity, namely conservation of charge.

We can see the same behavior in the Lagrangian formalism by sending:

𝜓𝐿,𝑅 → 𝑒𝑖𝜃𝜓𝐿,𝑅 𝜓†
𝐿,𝑅 → 𝑒−𝑖𝜃𝜓†

𝐿,𝑅 (2.10)

which leaves (2.4) invariant. Using Noether’s theorem, we see that the charge:

𝑄 =

∫︁
𝑑𝑥(𝜓†

𝐿𝜓𝐿 + 𝜓†
𝑅𝜓𝑅) (2.11)

is a conserved quantity.

Examining the Lagrangian (2.4), it would appear that we could rotate the phase

independently on each of the left-moving and right-moving fields. Formally, we would

implement this by, in addition to the ‘vector’ symmetry (2.10) employing an ‘axial’

symmetry:

𝜓𝐿 → 𝑒𝑖𝜃𝜓𝐿 𝜓†
𝐿 → 𝑒−𝑖𝜃𝜓†

𝐿 (2.12)

𝜓𝑅 → 𝑒−𝑖𝜃𝜓𝑅 𝜓†
𝑅 → 𝑒𝑖𝜃𝜓†

𝑅 (2.13)

which rotates the phases on left and right-moving fields oppositely. Between the
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vector and axial symmetries, we are able to independently rotate the phase on the

left and right moving modes. Instead of the the single conserved quantity (2.11), we

would obtain two:

𝑄𝐿 =

∫︁
𝑑𝑥 𝜓†

𝐿𝜓𝐿 (2.14)

𝑄𝑅 =

∫︁
𝑑𝑥 𝜓†

𝑅𝜓𝑅 (2.15)

These two charges would have the interpretation of the number of excitations at the

left and right Fermi points, respectively.

Turning back to the Hamiltonian model, we see that there is no local way to

interpret these conserved charges in terms of the 𝑐𝑖, 𝑐†𝑖 operators, as there is no way

in the Hamiltonian formulation to address the two Fermi points separately. This is

our first clue that something might be wrong with the axial ‘symmetry.’

More directly, we can consider coupling the model to a background gauge field,

whereby we modify the Hamiltonian to be:

�̂� = − 𝑡
2

∑︁
𝑖

(︁
𝑐†𝑖𝑒

𝑖𝐴𝑐𝑗 + 𝑐†𝑗𝑒
−𝑖𝐴𝑐𝑖

)︁
− 𝜇

∑︁
𝑖

𝑐†𝑖𝑐𝑖 (2.16)

where we may take 𝐴 to be constant in space, but not time. In momentum space,

this Hamiltonian is:

�̂�𝑘 = −𝑡
∑︁
𝑘

cos(𝑘 − 𝐴)𝑐†𝑘𝑐𝑘 (2.17)

where we have set 𝜇 = 0. So we see the effect of this background gauge field is to

shift the energies. Recalling that 𝑘 = 2𝜋𝑚
𝑁

for 𝑚 = 1, ..., 𝑁 , consider the effect of

slowly changing 𝐴 from 𝐴𝑖 = 0 to 𝐴𝑓 = 2𝜋
𝑁

as shown in Figure 2-1. The spectrum is

identical for both 𝐴 = 𝐴𝑖 and 𝐴 = 𝐴𝑓 . However, adiabatically evolving the system

would transfer a filled state above the Fermi sea, effectively transferring charge from

the left-moving mode to the right-moving mode. Thus we see that the left and right

moving modes do not independently conserve charge in the presence of a gauge field.

Only the sum of left and right moving is conserved. The axial ‘symmetry’ is not a
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Figure 2-2: (Color Online). A right-moving mode is created in the middle of an open
wire. If right and left moving charge are independently conserved, then the right
moving mode would continue right off the wire, which is impossible. Hence the axial
symmetry must break at a boundary.

symmetry it all!

It is remarkable that this breaking of the axial symmetry is in fact universal.

Translating the argument above into an equation, we have seen that the change of

the axial charge is given by:

𝜕𝑡𝑄𝐴 =
2𝑒

2𝜋
𝜕𝑡𝐴 (2.18)

In a more general covariant theory with 𝑒 = 1, this can be rewritten as:

𝜕𝜇𝑗
𝜇
𝐴 =

1

2𝜋
𝜖𝜇𝜈𝐹𝜇𝜈 (2.19)

where 𝑗𝜇𝐴 is the axial conserved current which is predicted to be conserved by Noether’s

theorem. This is the exact expression that can also be derived by expanding the action

for 𝐴 in terms of Feynman diagrams [79]. Moreover, this result is general: any lattice

model that has charge-𝑛 right and left moving modes will contain a similar anomaly

term, with the right-hand side multiplied by1 𝑛2. The result is independent of the

details of the model and so is universal.

We can also see this failure from a very physical argument. Suppose that, instead

of closed boundary conditions, we consider the theory on an open line segment as

shown in Figure 2-2. We create a right-moving excitation in the center of the system.

If the axial symmetry held, then the right-moving excitation could only move to the

right, and could not scatter into left-moving modes. It would continue to the right,

right off the end of the system, thereby violating the axial (and vector) symmetry.

1One factor of 𝑛 arises because the mode is 𝑛 times as sensitive to the gauge field, and so we
would lose 𝑛 times as many particles. The second factor arises because each particle carries a charge
of 𝑛.
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This must not happen, and so it must be true that the boundary also breaks the axial

symmetry. In fact, the symmetry breaking on a boundary should be considered as a

consequence of the breaking with a gauge field, as an electric potential could be used

to create a boundary. However, in practice the boundary formulation is often more

convenient.

Whenever a theory would seem to have a symmetry, but that symmetry is broken

in the presence of a gauge field or a boundary, we say that the theory has an anomalous

symmetry or that the symmetry has a quantum anomaly. In this case it is a ‘mixed

anomaly’ between the global 𝑈(1) and the axial 𝑈(1) which breaks axial symmetry.

This anomaly is our first glimpse of a ‘chiral’ anomaly. The next section will dive

much deeper into these anomalies and their relationship to a decades-old problem in

lattice gauge theory.

2.2 The Chiral Fermion Problem

One feature we noted of the axial ‘symmetry’ is that it is not present in the original

Hamiltonian lattice model, nor is it clear how to write down a lattice model in one

dimension that would have a axial symmetry affecting the left and right-moving modes

differently. In many ways, this difficulty of the lattice model is a saving grace: it is

telling us that the theory is anomalous. If we had some local lattice model with an

axial symmetry, we could couple it to a background gauge field and obtain a well-

defined, non-anomalous field theory. But the anomaly is universal and so this is

impossible—and that is what the difficulty in defining an axial lattice symmetry is

hinting at.

The anomaly discussed in the previous section has the unique property that it is

chiral, meaning that it treats left and right differently, and we now adopt the term

chiral anomaly for the behavior we have seen, instead of axial anomaly which is more

common in high-energy physics. More generally, a theory, symmetry, or field is chiral

if it is not invariant under the inversion of one spatial dimension. In general, we will

be concerned with chiral anomalies and their relations to chiral phases of matter.
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In the last section, we wrote down a Lagrangian (2.4) describing left and right

moving modes. It is very tempting to attempt to take only half of that Lagrangian,

say: ∫︁
𝑑𝑥𝑑𝑡𝜓†

𝑅(𝜕𝑡 − 𝜕𝑥)𝜓𝑅 (2.20)

as a model for a chiral field theory. This theory would effectively live under a “vector

+ axial symmetry”, with an anomaly:

𝜕𝜇𝑗
𝜇 =

𝑒

4𝜋
𝜖𝜇𝜈𝐹𝜇𝜈 =

𝑒

2𝜋
𝐹01 (2.21)

This anomaly is even more severe than the axial one, as it is not ‘mixed’ but direct:

flux in the gauge field directly breaks the 𝑈(1) symmetry to which the gauge field

is coupled. Just as the axial symmetry lacked a lattice definition, there is a severe

obstruction to defining this theory on the lattice, and for the same reason: because

the anomaly is universal, it must also appear on the lattice. On the other hand, it is

not immediately clear how such an anomaly could possibly appear in a lattice model.

The difficulty in defining a chiral field theory on a lattice is the subject of the

decades-old chiral fermion problem (CFP). Specifically, the CFP refers to the difficulty

to define a fermion theory in odd spatial dimensions which satisfies:

• The Hilbert space of the theory factorizes as a product of local Hilbert spaces.

• The theory can be coupled to a background gauge field.

• The theory has Hamiltonian or Lagrangian formulation involving only local

terms.

• The theory has symmetry 𝑈(𝜃) which factorizes as a product of operators on

each site 𝑈(𝜃) = ⊗𝑖𝑈𝑖(𝜃).

• The symmetry 𝑈 is not inversion symmetric, i.e. it treats left and right-handed

modes differently (note that this may include a case where there are different

numbers of left and right handed modes).
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In this thesis, we will solve this problem in several ways. For simplicity, we will often

relax the condition that the theory be fermionic. In the most successful way, we will

have a solvable model, but will have to allow a non-on-site symmetry 𝑈(𝜃). In that

case, we will in fact have a lattice model that is local, captures the quantum anomaly,

and satisfies all the other above conditions. However, we have many chapters before

we encounter that theory.

Nielson and Ninomiya proved that that the CFP is impossible to solve without

interactions [77, 78]. The basic argument is already visible in the results of the

previous section. There we saw that the eigenvalues of the Hamiltonian 𝐸𝑗(𝑘) are a

periodic function of 𝑘. We assume that we fill up eigenstates up to some Fermi energy,

and we assume that 𝑑𝐸𝑗

𝑑𝑘
̸= 0 at the Fermi energy, so that the 𝐸𝑗(𝑘) crosses the Fermi

energy linearly (see Figure 2-3). Because the functions are periodic, we are assured

that the number of crossings with 𝑑𝐸𝑗

𝑑𝑘
> 0 (right-movers) is equal to the number

crossings with 𝑑𝐸𝑗

𝑑𝑘
< 0. Hence there are equal numbers of right-and left movers.

Moverover, just as the two modes we examined share a chiral anomaly between them,

in the general case modes pair up so as to share anomalies, and this will imply that

that the charges of the right-moving modes under the non-chiral 𝑈(1) symmetry

will mirror exactly the charges of the left-moving modes, and the total theory is not

chiral. The generalization to higher dimensions involves more mathematics, but the

basic idea is the same.

The difficulty in defining a chiral theory on a lattice has been a serious frustration

for the lattice gauge theory (LGT) community because of the critical role chiral

phenomena play in the standard model. For one, all observed neutrinos are left-

handed, while all observed anti-neutrinos are right-handed [46]. Neutrinos couple to

the dynamical gauge field of the weak sector and simulating this interaction would

be useful to the lattice gauge theory community. Beyond particle physics, simulating

a chiral field theory with its attendant anomalies would have considerable use for

condensed matter theory, which regularly sees chiral field theories in edge theories, a

fact which we will devote almost the entire next chapter to.

Considerable work to evade the Nielsen-Ninomiya result and solve the CFP has
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Figure 2-3: (Color Online). (a) Schematic depiction of a periodic band structure in
one spatial dimension. The chemical potential is denoted by the dotted line. Right
moving modes are highlighted in blue and left moving modes are highlighted in red.
(b) Actual band structure of a random translation-symmetric Hamiltonian with third-
nearest-neighbor hopping.

been performed over the intervening decades. The first thing one might ask is why

can we not start with the momentum-space Hamiltonian (2.2) and restrict to one

point near the Fermi level? Doing so, one effectively creates a discontinuous Hamil-

tonian in momentum space, so when it is Fourier transformed back to real space the

Hamiltonian is infinitely long ranged. Far more elegant versions of this idea exist

[75, 76, 53], and all suffer from the same non-locality. In some cases, these models

can still be coupled to a weak background gauge field, but the non-locality violates

the conditions of the CFP that we set out above. Two other approaches soon came

out of the lattice field theory community. In the overlap formalism [72, 73, 67, 68],

the chiral theory is defined as the overlap of successive ground states. However, the

physical interpretation of this formalism can be difficult, and it is not clear if the

Hilbert space factorizes as a product of local Hilbert spaces. In a somewhat related

model, one can realize the chiral theory as fermions living on a domain wall [54, 85]

inside a higher-dimensional space. However, the gauge field which couples to the

fermions propagates in that higher-dimensional space.

A vein of approaches to the CFP involve similar ideas to what we will explore in

the next chapter, realizing the chiral theory as the boundary of a higher-dimensional

system [101, 95, 118, 44, 33, 70, 40, 43]. This will be explored in detail in the next
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chapter, in conjunction with the development of ideas around topological order and

SPT phases that we will explore in that chapter.

We have taken a short stroll through quantum field theory, with a condensed

matter lens. The great advantage of this approach, blending between continuum

arguments and lattice models, is that it can unite the best of both worlds: the con-

tinuum arguments build intuition for the physical picture, while the lattice model

nails down technical details and clarifies subtleties. This is particularly true in the

case of anomalies, where the use of lattice models allows us to demonstrate the 𝑈(1)

anomaly in just a few lines. We then parlayed this anomaly picture to illustrate the

Chiral Fermion Problem, and the problems with chiral field theories in general. In

the next section, we will explore in detail how chiral theories can appear naturally as

boundary theories.
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Chapter 3

Chiral Field Theories and Quantum

Matter

We have discussed the relationship between field theories and anomalies in the context

of a simple lattice model. Now we will elaborate on the relationship both of these

have with quantum phases of matter, before laying out the general properties and

classification of some of those phases that we will require in subsequent chapters.

3.1 Chiral Field Theories, Edge Theories, and the

Mirror Fermion Approach

In the previous chapter, we discussed several chiral anomalies and found that they

indicated the failure of conservation of charge in a system. We discussed the non-

conservation of charge in a system consisting only of a right-moving mode in one

spatial dimension, and indicated that its anomaly would make the theory difficult to

define on a lattice. A theory with a single right-moving mode in which charge is not

conserved would indeed be hard to make sense of. Particles would be appearing and

vanishing whenever an electric field is applied, and at a boundary the particles would

have to continue out of the system and into the vacuum.

However, there is a very physical way to avoid all of this and define the theory
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Figure 3-1: (Color Online). (a) In a chiral theory in one spatial dimension, charge is
not conserved, and particles (blue dotted line) may travel along before disappearing
(red X). (b) We now conceive of the one-dimensional system as the gapless edge theory
of the gapped two-dimensional bulk. Particles do not disappear, but instead travel
into the bulk.

of a chiral mode on a lattice. We can solve the seeming contradiction of particles

vanishing from the one-dimensional spacetime by understanding the one-dimensional

system as the edge of a two dimensional bulk, as shown in Figure 3-1. We consider the

edge to be gapless, and the bulk gapped. Most of the time, any particle is confined to

traveling along the edge. However, when an electric field is applied, it can tunnel into

the bulk. From the perspective of the edge, the particle has disappeared, while from

the perspective of the bulk a particle has suddenly appeared. Accounting for both

theories, particle number is actually conserved. Mathematically, this will mean that

the edge theory and the bulk theory have equal and opposite anomalies which cancel

only when the two theories are considered together. This approach also nullifies the

anomaly which happened at the boundary of the one-dimensional system: the one-

dimensional system cannot have a boundary because it is itself a boundary of the

two-dimensional system, and boundaries cannot have boundaries [52].

At first glance, this may seem somewhat contrived. However, exactly such a theory

describes the Quantum Hall states. In the next subsection, we describe a detailed

lattice theory for these models and extract the relevant behavior.

3.1.1 Integer Quantum Hall on a Lattice

The Integer Quantum Hall (IQH) effect [93] has been extremely well studied. Here,

we concoct a simple lattice model that reproduces its properties and demonstrates
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the chiral edge mode.

In the IQH, we take a system with two spatial dimensions and apply a transverse

magnetic field. The IQH occurs when there are an integer number of particles per flux

quantum of the magnetic field, i.e. 𝜈 ∈ Z, where 𝜈 is the filling fraction. To implement

this on a lattice, consider a lattice with nearest neighbor and next-nearest-neighbor

hopping. Labeling the points by 𝑥, 𝑦 ∈ {1, ..., 𝐿𝑥} × {1, ..., 𝐿𝑦} We apply a magnetic

field 𝐴𝑥 = 2𝜋 𝑦
2
, 𝐴𝑦 = 0, which leads to a field strength 𝐹 = 𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥 = −𝜋 per

plaquette. With a half flux quantum per plaquette, at half filling, the system should

reproduce the IQH state.

The lattice model is shown in Figure 3-2a. Writing it out explicitly, we have:

�̂� =
∑︁
𝑥

[︁
𝑐†𝑥+1,𝑦𝑐𝑥,𝑦 + (−1)𝑥𝑐†𝑥,𝑦+1𝑐𝑥,𝑦 + 𝑖𝑐†𝑥+1,𝑦+1𝑐𝑥,𝑦 + ℎ.𝑐.

]︁
(3.1)

where we have set the hopping to be unit strength. One may check that hopping

counter-clockwise around any triangle leads to a factor of +𝑖, and therefore the flux

through each square plaquette is 𝜋, as desired.

To understand the edge theory, we Fourier transform in the 𝑥 direction. The

resulting band theory is shown in Figure 3-1b for closed boundary conditions and

Figure 3-1c for open boundary conditions. For closed boundary conditions, we see

a gapped bulk theory across the entire one-dimensional Brillouin zone. The various

bands result because we have not taken the Fourier transform in the 𝑦 direction. Note

that if we place the chemical potential in the range −1.5 ≤ 𝜇 ≤ 1.5, then we fill up

half the bands, leading to the desired half filling.

For open boundary conditions, we see two modes appearing inside the bulk gap.

One is clearly right-moving (𝑑𝐸/𝑑𝑘 > 0) and the other left-moving (𝑑𝐸/𝑑𝑘 < 0). In

this case, however, the two modes are in fact spatially separated—each of them on

their own edge.

We can see the spatial separation of edge modes quite clearly by calculating the

motion of a particle added to the system within the gap. To do so, we calculate the

propagator of a spacetime lattice which uses (3.1) as its spatial model. The results
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Figure 3-2: (Color Online). (a) Spatial Lattice for the Integer Quantum Hall Effect.
Black links indicate a hopping of +1, red a hopping of −1, and green links a hopping
of +𝑖 in the direction of the arrow. The flux through any plaquette is 𝜋, so at half
filling this realizes a 𝜈 = 1 IQH state. (b, c) Fourier transforming in the 𝑥 direction,
we plot the band structure as a function of 𝑘𝑥 for (b) closed boundary conditions,
where we see a gapped bulk, and (c) open boundary conditions, where we see the two
gapless modes. (d, e) Spacetime propagation of a particle wavefunction in an IQH
system. We consider the IQH lattice model with open boundary conditions in the
y direction and periodic boundary conditions in the 𝑥 direction. The two edges are
shown in purple and green, respectively. We inject a particle wavepacket with 𝑘 ≈ 0 at
time 𝑡 = 0. The amplitude for the particle to propagate to point (𝑥, 𝑦, 𝑡) is indicated
by the size of the black markers at (𝑥, 𝑦, 𝑡), and the strength of the background gauge
field is shown in the inset.
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are presented in Figures 3-2d and 3-2e. There we see a spacetime representation of

the IQH system. The two 1 + 1d edges are shown in purple and green, respectively.

We inject a particle with a wavepacket with low momentum (𝑘 ≈ 0) modes at 𝑡 = 0.

The magnitude of the amplitude for particle propagation is shown in black. In 3-

2d, the particle propagates smoothly as a slightly dispersing, right moving mode. It

remains confined to the edge and simply moves to the right. Next, we can effect

a time-varying gauge potential by rotating the boundary conditions1 from 0 to 2𝜋.

The boundary conditions are shown in the inset. In 3-2e, we change the boundary

conditions, and this tunnels the resulting electron through the bulk and to the other

edge, where it then becomes a left-mover. We thus have three theories each with

their own anomalies: two edges and one bulk, and taken together they must in total

conserve charge, i.e. their anomalies must cancel.

So we see that, even though the gapless modes are spatially separated (and they

may be macroscopically so), they are still connected in the same way that the left

and right moving modes of the “cos(𝑘)” model (2.16) were. One may similarly couple

in a spatially constant background gauge field and, by varying it, transfer charge

from the left-moving mode to the right-moving mode. In this case, one also ends

up transferring charge across the system. This is the Integer Quantum Hall Effect!

We have essentially reproduced Laughlin’s argument [60], and we see that the Hall

conductance is quantized because the charge of the particles is quantized.

Thus there is a model which satisfies the rather stringent conditions that we laid

out. This model has also pointed the way to beginning to unify these lattice field

theory considerations with deep principles from condensed matter, and we will explore

those connections in the following. We return to defining chiral field theories on the

lattice in Section 4.1.

1This is a slightly different approach from how we treated the Hamiltonian in the previous section
but is computationally easier. Note that in this case the wavepacket stays localized as it tunnels
through the bulk—that is an artifact of how we have chosen the gauge variation and is not universally
true.
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3.2 Topological Order, SPT Phases, and Local Uni-

tary Quantum Gates

In the last section, we saw that the two counter-propagating gapless modes in an IQH

state may actually be spread across a sample, with one gapless mode appearing one

one edge and the other mode on the other edge. This was a significant feat, as it

allowed us to recognize that a chiral gapless mode can indeed appear alone. However,

it is not true that the modes are isolated from one another, as they are linked by the

anomaly. Exposing one edge to an electric field actually transfers charge across the

system to the other.

The source of the link between these two gapless edge modes, which may be macro-

scopically separated, is the same as the source of all ‘spooky actions at a distance’ in

quantum mechanics: it is entanglement. In the quantum Hall system, degrees of free-

dom in the system arbitrarily far away are entangled. Moreover, this entanglement

cannot be unwound.

We can formalize this into a working definition on how to classify quantum phases

of matter [104, 119]. Suppose we have states |𝜓⟩ , |𝜓′⟩ in a Hilbert space ℋ which

factorizes as a tensor product over local Hilbert spaces ℋ = ⊗𝑖ℋ𝑖. We wish to know

under what conditions |𝜓⟩ and |𝜓′⟩ can be considered to belong to the same phase

of matter. Ultimately, this will cover macroscopic observables like Hall conductance

and anomalies, as well as mappings of the low-energy Hilbert spaces of the systems.

We define a local unitary operator on a site 𝑖 as a unitary operator �̂�𝑖 which acts

as the identity on all the local Hilbert spaces except those in a finite radius 𝜉 of site

𝑖. We define a local unitary operation as a product of local unitary operators. We

say that two states |𝜓⟩ and |𝜓′⟩ are in the same phase if they can be deformed into

one another via a finite number (i.e. independent of system size) of local unitary

operations.

From the condensed matter perspective, these local unitary operations can be

roughly thought of as finite-time evolution under gapped Hamiltonians. The locality

demands the presence of a gap, since otherwise information and entanglement could
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Figure 3-3: (Color Online). (a) A trivial state (blue at bottom) may be unwound
by a finite-depth local unitary circuit (orange blocks) into a product state (blue
at top). (b) A topologically ordered state exhibits long-range entanglement which
cannot be unwound by a finite-depth circuit. Even after application of the circuit,
the entanglement remains (green). (c) A SPT state contains entanglement that can
be unwound into a product state by a finite-depth circuit only if we apply gates which
break the symmetry (red blocks).

propagate at luminal velocities. Hence we are simply considering the finite-time

evolution of our system under perturbations that are local, and gapped. This also

has an appealing interpretation in terms of quantum gates. Local unitary operations

are simply (local) quantum gates, and two states belong to the same phase if they

can be deformed into one another by a finite depth2 circuit.

The local unitary operations, or local quantum gates, allow us to partition the set

of states in a given Hilbert space. If we augment local unitary transformations by

allowing the addition of unentangled ‘ancilla’ qubits that enlarge the physical system,

we now have a proper definition of phases of matter.

Within this definition, there is one class of states that is ‘trivial,’ namely the

product states. Any state which factorizes as |𝜓⟩ = ⊗𝑖 |𝜓𝑖⟩ with |𝜓𝑖⟩ ∈ ℋ𝑖 is trivially

2Formally, we should say that two states belong to the same phase if they require a depth that
grows less than linearly (e.g. logarithmically) with the system size.
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unentangled (Figure 3-3a), and the equivalence class of states that it generates is

known as the ‘trivial phase.’

In addition to the trivial phase, there are many non-trivial phases which cannot be

deformed into the trivial phase or into each other. These are the topologically ordered

states. The basic ingredient leading to non-trivial phases is the aforementioned long-

range entanglement [57]. Any short-range entanglement can be unwound by a finite-

depth circuit. However, a long-range pattern of entanglement cannot be unwound

(Figure 3-3b) and it is this which characterizes the nontrivial topologically ordered

states. On the other hand, these states are physically characterized by their thermal

Hall conductance, i.e. their chiral central charge, the braiding of their excitations, and

their topologically protected ground state degeneracy. Just as the Hall conductance

was connected to a 𝑈(1) anomaly, the thermal Hall conductance appears in field

theory as a gravitational anomaly. Formally, each topological order is defined by

a tensor category [58], though for our purposes we will not need the most general

definition. In Section 3.3, we will review the field theory description and classification

of 2 + 1 Abelian topological orders in terms of 𝑈(1) 𝐾-matrix Chern-Simons theory,

as in Chapter 5 we will create a lattice definition of these states.

Including a symmetry adds another layer to this classification. In doing so, we

should restrict to local unitary gates that commute with the symmetry. This re-

striction leads to new phases. There will be phases that were formerly trivial which

are now non-trivial. These phases feature short range-entanglement, but their en-

tanglement patterns cannot be unwound by any finite-depth circuit which respects

the symmetry. However, they can be unwound by a finite-depth circuit which breaks

the symmetry (Figure 3-3c). Known variously as Symmetry-Protected Trivial or

Symmetry-Protected Topological (SPT) states, these states have trivial ground state

degeneracy, but often host nontrivial, anomalous edges that we describe below. In

Section 6, we will create an exactly solvable lattice path integral and Hamiltonian

model for a large class of 𝑈(1) SPT states.

These two considerations: long-range entanglement and symmetry protection, lead

to a four-fold classification of symmetric phases shown in Figure 3-4. There we see
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Figure 3-4: (Color Online). Phases of matter may exhibit short or long-range en-
tanglement as well as a symmetry that may or may not protect the state. These
two properties lead to a four-fold classification of the types of symmetric phases of
matter: trivial states, topologically ordered states, symmetry-protected trivial states,
and symmetry-enhanced topological states.

the trivial phase, as well as the topologically ordered phases, the SPT phases, and

the symmetry enhanced topological SET phases, which are both topologically ordered

and enjoy symmetry protection. Our focus in this thesis will be on the topologically

ordered and SPT phases3.

We have already seen one of the the simplest examples of topological order: the

IQH state. There, the nontriviality of the phase is revealed not only by the Hall

conductance, which requires 𝑈(1) symmetry to reveal, but by the thermal Hall con-

ductance and its associated gravitational anomaly. Just as it is impossible to trivialize

the bulk due to the long-range entanglement, it is in fact impossible to gap out the

edge due to the gravitational anomaly.

We have not directly seen an SPT phase, but it is easy to create a model using

the ingredients we already have. Consider the two-layer system shown in Figure 3-5a

composed of the IQH state we have already examined, which we denote by IQH+1 and

its time-reversal conjugate, which we denote by IQH−1. We define a 𝑈(1) symmetry

3Note that this classification is for symmetric phases. Spontaneous symmetry breaking, of the
sort we will see in the superfluid phase in Chapter 6, effectively adds a third dimension to this
classification that is not drawn in Figure 3-4.
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Figure 3-5: (Color Online). (a) To create an SPT system, we consider a two layer
system composed of an IQH state and its time-reversal conjugate, with the particles
in the two layers having opposite charges. (b) We may gap out the edge of the system
by inserting lattice links to turn the model into an IQH+1 system folded over on itself,
but only at the cost of breaking the 𝑈(1) symmetry defined in the text.

Topological Order SPT Order
Entanglement Long-Ranged Short-Ranged but Symmetry-Protected

Bulk Thermal Hall Conductance Charge Hall Conductance
Boundary Gravitational Anomaly Gauge Anomaly

Table 3.1: Properties of Chiral Topological Orders and Chiral SPT Orders.

with the particles in the IQH+1 state having charge +1 and the particles in the −1

state having charge −1.

If we do not consider the 𝑈(1) symmetry, then the edge is trivial. As mentioned

above, both layers carry gravitational anomalies, but these cancel because gravity

couples to all particles with the same sign and the two layers are time-reversal conju-

gates. The edge can be gapped out by scattering the respective left and right-moving

modes into one another. Indeed, one can simply augment the lattice model so that

it becomes the IQH+1 state folded over on itself (Figure 3-5b). However, this explic-

itly breaks 𝑈(1) symmetry, as it scatters positive charges from the IQH+1 into the

IQH−1 layer, where they become negative charges. In fact, if we consider the 𝑈(1)

anomaly, we see that, because the particles have opposite charges and the states are

time-reversal conjugates of each other, the gauge anomalies add instead of canceling.

Hence the edge and the bulk are nontrivial when we require 𝑈(1) symmetry, and we

have an example of an SPT state. The model we describe in Chapter 6 has a similar

edge theory to this toy model.
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These two examples—the IQH state and the 𝑈(1) charged SPT state composed

of IQH+1 and IQH−1 states—illustrate some of the fundamental relationships that

we have been exploring, which are summarized in Table 3.1. Topologically ordered

states host long-ranged entanglement in the bulk, while the entanglement pattern

for SPT order is short-ranged by symmetry-protected. In turn, chiral topologically

ordered phases suffer gravitational anomalies that correspond to bulk thermal Hall

conductance, while the chiral SPT phases exhibit gauge anomalies which reflect bulk

charge Hall conductance (often referred to simply as Hall conductance)4.

In Chapter 4, we will use many of these ideas to construct a Chiral fermion model

in 1+1d. Following that, in Chapter 5, will focus on developing a lattice description of

𝐾-matrix Chern Simons theory, which encompasses both topologically ordered and

SPT states in 2 + 1 dimensions. We review this 𝐾-matrix theory in the following

section. In Chapter 6, we will ‘ungauge’ the 𝐾-matrix model to yield an SPT model,

and we review the classification of SPT phases in section 3.4. In Chapter 7, we use

the ungauged model of Chapter 6 to develop a 1 + 1d chiral lattice field theory that

far surpasses the model of Chapter 4.

3.3 Abelian Chern-Simons Theories

Much of our preliminary discussion has focused on the connection between chiral field

theories in 1 + 1d and topological phases in 2 + 1d. However, it we be good to have a

field theory description of those 2 + 1d topological phases. Here we review the 𝑈(1)

Chern-Simons theories which describe 2 + 1d Abelian topological phases [100, 2].

What the topological phases we have described have in common is a conserved

current. Starting from a phenomenological approach in terms of this conserved cur-

rent, we can build a field theoretic description of the IQH states and 𝑈(1) SPT states

we have examined so far. In fact, the general 𝐾-matrix formalism we will describe

goes far beyond that, capturing all 2 + 1d Abelian topological orders [65].

4There is a state, the 𝐸8 state, which hosts chiral edge modes and thermal Hall conductance [65]
but has trivial bulk statistics, and there is some discussion as to whether 𝐸8 is topologically ordered
or an SPT phase.
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The usual way of describing a conserved current, in terms of derivatives of matter

fields that are conserved at the level of the equation of motion, will not be strong

enough for what we want to do. We will not be concerned with the dynamics of

the theories we consider and so we do not wish to rely on an equation of motion to

conserve a current. Instead, we describe a phenomenological conserved current in

terms of a 𝑈(1) gauge field 𝑎𝜇 by writing:

𝑗𝜇 =
1

2𝜋
𝜖𝜇𝜈𝜆𝜕𝜈𝑎𝜆 or 𝑗 =

1

2𝜋
⋆ 𝑑𝑎 (3.2)

where we have included a factor of 2𝜋 because while flux is quantized to 2𝜋Z particle

number should be quantized to Z. On the right-hand side, we have introduced the

differential form notation [16] which we will make use of liberally in this section. The

conserved current is gauge invariant under 𝑎→ 𝑎+𝑑𝜃 and, moreover, is automatically

conserved, as:

𝜕𝜇𝑗
𝜇 =

1

2𝜋
𝜖𝜇𝜈𝜆𝜕𝜇𝜕𝜈𝑎𝜆 = 0 or 𝑑†𝑗 = (⋆𝑑⋆)

(︂
1

2𝜋
⋆ 𝑑𝑎

)︂
=

1

2𝜋
⋆ 𝑑2𝑎 = 0 (3.3)

We do not need to worry about the origins of the conserved current, but instead

should take it as emergent. Much of the power of the formalism we describe here

consists in abstracting away from the microscopics of the system.

With our current 𝑗 = ⋆𝑑𝑎 in hand, we should consider what sort of actions can be

built. One obvious choice is to give the current energy, via:

𝑆 = −1

𝑔
𝑗2 = − 1

(2𝜋)2𝑔
(𝑓 ⋆ 𝑓) (3.4)

where 𝑓 = 𝑑𝑎. This is the usual Maxwell term familiar from electrodynamics. Ac-

cordingly, it gives rise to dynamic suppression of current. We will generically assume

either no or a small Maxwell term to be present, but the topological properties we

are after will have to go beyond dynamics.

However, owing to the fact that we are working in 2 + 1d, there is a unique term
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which we can write down, namely, the Chern-Simons action:

𝑆 =
𝑚

4𝜋

∫︁
𝑎𝑑𝑎 =

𝑚

4𝜋

∫︁
𝑑3𝑥𝜖𝜇𝜈𝜆𝑎𝜇𝜕𝜈𝑎𝜆 (3.5)

At first glance, this action would appear to fail to be gauge invariant. However, it

is indeed gauge invariant under small (continuously connected to the identity) gauge

transformations on a closed manifold. Under large gauge transformations, one can

show that it is gauge invariant if 𝑚 ∈ Z. (If 𝑚 is odd, then the theory is fermionic

and will require a spin structure.) To couple the conserved current to a background

gauge field 𝐴, we write ⋆𝐴𝑗 = 𝐴𝑑𝑎 and integrate by parts so that the action is always

invariant under gauge transformations of the background field. We thus add to the

term an action:
𝑞

2𝜋

∫︁
𝑎𝑑𝐴 (3.6)

where the coefficient has been chosen so that when 𝑞 ∈ Z the action is invariant under

large gauge transformations.

Putting these together, we now have the action:

𝑆 =
𝑚

4𝜋

∫︁
𝑎𝑑𝑎+

𝑞

2𝜋

∫︁
𝑎𝑑𝐴 (3.7)

This Chern-Simons action is a gauge invariant action specified by the integers 𝑚 and

𝑞 describing a quantum system in two spatial dimensions. 𝑞 should be thought of as

the charge of the quasiparticle, while 𝑚 is known as the level of the Chern-Simons

theory.

What then are we to make of this action, and what phase should it describe? We

can match this action to real systems by understanding its Hall conductance. Since

the action is quadratic, we can work classically. Varying 𝑎, we see that the equation

of motion of the action is:

𝑚𝑑𝑎 = 𝑞𝑑𝐴↔ 𝑗 =
𝑞

𝑚
⋆ 𝐹 (3.8)
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where 𝐹 = 𝑑𝐴. Hence we see that the action ‘attaches’ quasiparticle current to the

flux of the gauge field. In the case of magnetic flux, so that 𝐹𝑥𝑦 ̸= 0, the Chern-Simons

equation of motion implies that 𝑗0 ̸= 0, and so the system localizes quasiparticles

proportional to the flux. On the other hand, suppose that couple in an electric field

in the 𝑥 direction, so that, say 𝐹𝑥𝑡 ̸= 0, 𝐹𝑥𝑦 = 𝐹𝑦𝑡 = 0. This equation then says that:

𝑗𝑦 =
𝑞

𝑚
𝐹𝑥𝑡 (3.9)

Let us set 𝑚 = 1. Then we see that applying an electric field results in current in the

𝑦 direction. Noting that the electric current is related to the quasiparticle current

by 𝑗𝑒 = 𝑞𝑗, we see that this is the Quantum Hall Effect, with Hall conductance

𝜎𝑥𝑦 = 1
2𝜋

𝑞2

𝑚
(~ = 𝑒 = 1). Specifically, for 𝑚 = 1, this is the basic 𝐼𝑄𝐻+1 state,

while for higher 𝑚 this leads to the basic Laughlin series fractional quantum Hall

effects. We can obtain higher integer Hall states and more varied fractional quantum

Hall effects by including multiple quasiparticle currents 𝑎1, 𝑎2, ... and allowing them

to couple to both each other and the background gauge field. The resulting action is

the so-called 𝐾-matrix Chern-Simons theory:

𝑆 =
1

4𝜋

∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑎𝐼𝑑𝑎𝐽 +

1

2𝜋

∑︁
𝐼

𝑞𝐼

∫︁
𝑎𝐼𝑑𝐴 (3.10)

Here 𝐾𝐼𝐽 is a symmetric integer-valued matrix which describes the quasiparticle cur-

rents, while 𝑞𝐼 is an integer-valued vector that describes their charges.

The 𝐾-matrix formulation captures the essence of Abelian topological orders in

2 + 1d. To understand its properties, we begin with the Hall conductance. Running

a similar analysis as above, one can see that the Hall conductance is given by 𝜎𝑥𝑦 =

1
2𝜋
𝑞 ·𝐾−1 · 𝑞. On the other hand, the number of right (left) moving chiral edge modes

is given by the number of positive (negative) eigenvalues of 𝐾, and the thermal Hall

conductance is determined by the signature of 𝐾. If any of the diagonal entries is odd,

then it is a theory of fundamental fermions, and one must specify a spin structure.

On a torus, the system will have a ground state degeneracy of | det𝐾|.

46



Figure 3-6: (Color Online). (a) We define 𝑑−1Γ as a one-form dual to a surface
bounded by 𝛾, which is dual to the two-form Γ. (b) Calculating

∫︀
Γ𝑑−1Γ′ leads to the

linking number 𝐿(𝛾, 𝛾′).

Not all theories with different 𝐾-matrices represent different phases. The formula-

tion is redundant under changing the 𝑁 ×𝑁 𝐾-matrix by any matrix 𝑀 ∈ 𝐺𝐿(𝑁,Z)

via 𝐾 → 𝑀−1𝐾𝑀 ; this leads to the 𝐾-matrix classification of Abelian topological

orders, and one can augment this description to allow for the inclusion of internal

symmetries.

One crucial aspect of these theories that will play a role in our SPT work is the

notion of braiding of excitations. Suppose we create two point-like excitations in our

two-dimensional system. If we ‘braid’ one particle around the other, the many-body

wavefunction can transit through the many-body Hilbert space. In Abelian topolog-

ical orders, we assume that when the particles return to their original positions, the

many-body wavefunction returns to its original state (In non-Abelian topological or-

ders there may be a matrix acting on the excitation state manifold). While the state

may remain the same, the many-body wavefunction may pick up a 𝑈(1) geometric

phase resulting from the transit of the wavefunction through the Hilbert space.

We can actually see these particle statistics quite simply in the 𝐾-matrix theory.

Excitations in this theory are generated by Wilson lines 𝑒𝑖𝑤𝐼
∮︀
𝑎𝐼 , where the integral

vector 𝑤𝐼 describes the composite quasiparticle character of the excitation. Including

𝑁 Wilson lines with vectors 𝑤𝑁𝑛 along closed paths 𝛾𝑛, the 𝐾-matrix action becomes:

𝑆 =
𝑁∑︁
𝑛=1

∑︁
𝐼

∫︁
𝛾𝑛

𝑤𝐼𝑎𝐼 +
1

4𝜋

∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑎𝐼𝑑𝑎𝐽 (3.11)

=
𝑁∑︁
𝑛=1

∑︁
𝐼

∫︁
𝑤𝐼𝑛𝑎

𝐼Γ𝑛 +
1

4𝜋

∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑎𝐼𝑑𝑎𝐽
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where we have set the background gauge field 𝐴 to be zero. Here Γ𝑛 is the two-form

which is Poincaré dual to 𝛾𝑛. We assume a contractible manifold so that we can

choose one-forms that we denote by 𝑑−1Γ𝑛 such that 𝑑(𝑑−1Γ𝑛) = Γ𝑛 since 𝛾𝑛 is closed

and so 𝑑Γ𝑛 = 0. As illustrated in Figure 3-6a, one may think of 𝑑−1Γ𝑛 as being one

on a surface (blue) bounded by Γ (black) and zero otherwise. Shifting the integration

variables 𝑎𝐼 → 𝑎𝐼 − 2𝜋
∑︀

𝑛𝐾
−1
𝐼𝐿𝑤

𝐿
𝑛𝑑

−1Γ𝑛, the action becames:

𝑆 =
1

4𝜋

∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑎𝐼𝑑𝑎𝐽 − 𝜋

∑︁
𝑛,𝑛′

(𝑤𝑛 ·𝐾−1 · 𝑤′
𝑛)

∫︁
Γ𝑛𝑑

−1Γ𝑛′ (3.12)

We have successfully eliminated the Wilson line variable and exchanged it for the

second term, which contributes an overall phase to the path integral. We can simplify

it by noting that, as illustrated in Figure 3-6b,
∫︀

Γ𝑛𝑑
−1Γ𝑛′ is the linking number

𝐿(𝛾𝑛, 𝛾𝑛′ between the curves 𝛾𝑛, 𝛾𝑛′ . Reducing to the case of just two curves 𝛾1, 𝛾2,

this phase becomes

2𝜋𝑖(𝑤1 ·𝐾−1 · 𝑤2)𝐿(𝛾1, 𝛾2) (3.13)

This is the expression for the braiding statistics. Repeating a similar analysis, one

encounters the “self-statistics” for a particle turning about itself:

𝜋𝑖(𝑤 ·𝐾−1 · 𝑤)𝐿(𝛾, 𝛾) (3.14)

where 𝐿(𝛾, 𝛾) may be thought of as the number of times a particle turns. (In general,

care must be taken to define 𝐿(𝛾, 𝛾), usually by using the framing in spacetime [113]).

These results on mutual and self statistics are a critical aspect of Chern-Simons

theory. In particular, the statistics characterize topologically ordered states. Even

more strangely, the self-statistics make clear that the excitations themselves may be

fermions ((𝑤·𝐾−1·𝑤) odd), bosons ((𝑤·𝐾−1·𝑤) even), or neither (general (𝑤·𝐾−1·𝑤)).

Note that these are all excitations described by a nominally bosonic field 𝑎𝐼 ; instead

it is the topological term which gives them statistics. This will play a crucial role in

Chapter 6, where we will encounter a topological term which turns a bosonic lattice

model into a model of emergent fermions.
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Returning to the case of a single Chern-Simons gauge field,

𝑚

4𝜋

∫︁
𝑎𝑑𝑎 (3.15)

there is a subtlety in this definition that we must uncover and that will play a crucial

role in Chapter 5. For any 𝑈(1) connection, we may not be able to define 𝑎 everywhere

in spacetime. For example, we know that the flux over any closed surface, say a sphere,

is quantized to be an integer. However, if we have a globally defined gauge field 𝑎,

then trivially
∫︀
𝑆2 𝑑𝑎 = 0, as 𝑆2 has no boundary. Instead, one typically defines 𝑎

in contractible patches that cover spacetime, allowing the the fields on overlapping

patches to differ by a gauge transformation.

Because the Chern-Simons action is gauge invariant only after integration by parts,

if one takes a gauge field defined in patches, the action is no longer well defined. One

can add terms to the action that depend on the connections in the various patches

and the gauge transformation they differ by; this leads to the Cech-Deligne-Beilenson

formulation [3, 92]. However, we will take another route, which instead seeks to

reformulate the Chern-Simons action in terms of the field strength 𝑓 = 𝑑𝑎 which is

gauge invariant and insensitive to the problems of patches. We have two powers of 𝑎

in the Chern-Simons action that we wish to rewrite in terms of 𝑓 . However, 𝑓 is a

two form, and so we would naturally find ourselves facing a four-dimensional integral.

The trick here is to actually define the Chern-Simons term in 2 + 1d as the boundary

of a 3 + 1d action. Namely, let 𝒩 4 be a four-manifold, with boundary ℳ3 = 𝜕𝒩 4.

Then: ∫︁
𝒩 4

𝑓 ∧ 𝑓 =

∫︁
𝒩 4

𝑑(𝑎 ∧ 𝑑𝑎) =

∫︁
ℳ3

𝑎 ∧ 𝑑𝑎 (3.16)

So to evaluate
∫︀
ℳ3 𝑎𝑑𝑎, we extend 𝑎 into a fourth dimension and evaluate

∫︀
𝒩 4 𝑓 ∧ 𝑓 .

Because the four-dimensional theory depends only on 𝑓 , and not on 𝑎, it is insensitive

to the concerns over patches which the three-dimensional “𝑎𝑑𝑎” suffers. This leads to

the Witten’s ‘𝜂 invariant’ formulation of Chern-Simons theory, and we will use the

𝑓 ∧ 𝑓 term to define a topological field theory on a lattice in Chapter 5.

There is one remaining phenomena to address in Chern-Simons theories. We have
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asserted that Chern-Simons theories may host anomalous edge theories. We have

also stated that they are gauge invariant when on a closed manifold, but we have

not discussed the case for an open manifold. In fact, the Chern-Simons action is

not gauge invariant on an open manifold, but rather suffers an anomaly there. We

can exactly match the anomaly suffered at the edge by the Chern-Simons with an

anomaly of an edge theory, and in fact this tells us that an edge theory must appear

at the boundary of the Chern-Simons theory.

One can directly match the anomaly of the edge to the boundary theory, ensuring

that they cancel. This is the field theory statement of the behavior we encountered

in Chapter 2, where charge was transferred from an edge into the bulk and back. The

resulting edge theory is:

𝑆edge =
1

4𝜋

∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑑𝑥𝑑𝑡 𝜕𝑡𝜑

𝐼𝜕𝑥𝜑
𝐽 +

1

2𝜋

∑︁
𝐼

𝑞𝐼

∫︁
𝑑𝑥𝑑𝑡 𝜑𝐼𝑑𝐴 (3.17)

This is the standard ‘bosonized’ edge theory for chiral fermion theories, the Luttinger

liquid, and more, depending on the value of𝐾𝐼𝐽 . For a bosonic theory with det𝐾 = 1,

one can use an 𝐺𝐿(2,Z) transformation to transform any 2× 2 𝐾-matrix into:

𝐾 =

⎛⎝ 0 1

1 0

⎞⎠ (3.18)

which we can rewrite as:

𝑆edge =
1

2𝜋
𝜕𝑡𝜑𝜕𝑥𝜃 (3.19)

in the absence of a background field. In Chapters 6 and 7, we will discuss a lattice

field theory that has a similar continuum limit.
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3.4 Lattice Field Theories and the Group Cohomol-

ogy Picture of SPTs

In the previous section, we elaborated on the continuum field theory description of

Abelian topological and SPT phases in 2+1 dimensions. Here we will lay out a parallel

area of progress, namely the classification of bosonic SPT phases in all dimensions

using Group Cohomology (GC) [17].

In a remarkable paper [26], Chen, et al. argued that SPT phases are in one-to-one

with the cohomology classes of maps from the group which protects the SPT to 𝑈(1).

The GC result is extraordinary: it is as if one discovered the periodic table before

being able to predict the physical properties of the elements, much less actually being

able to isolate any of them. In Chapter 6, we will actually construct models for a

large class of these phases and understand their physical properties.

Our starting point for the group cohomology classification is the formalism of

lattice models on simplicial complexes [52]. Let 𝐺 be a group, and suppose that

ℳ𝑑+1 is a 𝑑 + 1 dimensional spacetime lattice with sites labeled by 𝑖, 𝑗, 𝑘, .... We

consider a lattice path integral in terms of a field 𝑔𝑖 which assigns a 𝐺-valued variable

to each lattice site 𝑖. An action in these models is a function 𝜈 : 𝐺𝑑+2 → 𝑈(1) which

assigns a 𝑈(1) phase to each 𝑑+1-dimensional simplex, each of which has 𝑑+2 lattice

sites:

𝜈(𝑔0, 𝑔1, ..., 𝑔𝑑+1) ≡ 𝜈({𝑔𝑖}) (3.20)

We require that each action be symmetric under the action of 𝐺, namely that:

𝜈({𝑔𝑔𝑖}) = 𝜈({𝑔𝑖}) (3.21)

for any 𝑔 ∈ 𝐺.

Given any function 𝜈 : 𝐺𝑛 → 𝑈(1), we can contruct a function (𝑑𝜈) : 𝐺𝑛+1 → 𝑈(1)

by defining:

(𝑑𝜈)(𝑔0, ..., 𝑔𝑛) =
𝑛∏︁
ℓ=0

𝜈(−1)ℓ({𝑔𝑖 ∖ 𝑔ℓ}) (3.22)
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where {𝑔𝑖 ∖ 𝑔ℓ} means 𝑔0, ..., 𝑔𝑛 excluding 𝑔ℓ. Because SPT states are trivial and have

no topologically protected ground state degeneracy, the action should vanish on any

closed manifold. In other words, the action should be only a surface term. In [26],

Chen et al argue that this means that the action should satisfy the cocycle condition

𝑑𝜈 = 0 (3.23)

At the same time, they argue that phases whose actions differ by an exact cochain,

i.e. 𝜈, 𝜈 ′ such that:

𝜈 ′ = 𝜈 + 𝑑𝜇 (3.24)

are equivalent. One way to understand this is to consider the ground state wavefunc-

tion on a particular lattice. Changing the action by 𝑑𝜇 corresponds to multiplying

the ground state:

|𝜓⟩ → |𝜓′⟩ =
∏︁
𝑆

𝜇(𝑔𝑖 ∈ 𝑆) |𝜓⟩ (3.25)

where the product is over all simplices on a spatial lattice. In particular, this is clearly

a symmetric local unitary transformation as discussed previously, and hence |𝜓⟩ and

|𝜓′⟩ belong to the same phase.

The classifications of cocycles which satisfy eqn. (3.23) modulo symmetric local

unitary transformations (3.24) is known as group cohomology. Specifically, the results

of Chen et al argue that the classification of bosonic SPTs protected by a symmetry

𝐺 in 𝑑+ 1 spatial dimensions is given by:

𝐻𝑑+1(𝐺,𝑈(1)) (3.26)

Moreover, the group cocycles carry a natural abelian ‘addition’ operation which cor-

responds to stacking of SPT phases.

Applying the group cohomology classification to bosonic SPT phases protected by
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𝑈(1) in 𝑑 spatial dimensions, we obtain the following classification:

𝐻𝑑+1(𝑈(1), 𝑈(1)) =

⎧⎪⎨⎪⎩Z 𝑑 = 2

Z1 𝑑 = 1, 3

(3.27)

The nontrivial SPT classification in 2 spatial dimensions corresponds to states which

feature a quantized Hall conductance of 2𝑘 𝑒
2

ℎ
. These are the states which we will

construct in Chapter 6.

Ultimately, while the group cohomology theory provides an exceptionally powerful

classification of SPT phases, it does not provide explicit field theories for these cases.

In the typical way that mathematics can be strange, it is much easier to enumerate all

possible cohomology classes than it is to write down representatives of those classes.

In turn, this is why the work of Chapter 6 is so critical: it provides the first examples

of cocycles theories for continuous groups. These allow for a detailed physical picture

as charged vortex condensates of the 𝑈(1) phases in 2 spatial dimensions to emerge,

and the models we discuss there exhaust all the 𝑈(1) bosonic SPTs in two dimensions.

We have now examined the deep connections between anomalies and quantum

phases of matter. In the next chapter, we use these connections to develop a solution

to the Chiral Fermion Problem.
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Chapter 4

A Proposal for a Non-Perturbative

Lattice Regularization of an

Anomaly-Free 1 + 1d 𝑆𝑈(2) Chiral

Fermion Theory

Here we develop an early-stage numerical treatment of a novel non-perturbative

lattice regularization of a 1 + 1D 𝑆𝑈(2) Chiral Gauge Theory. Our approach fol-

lows recent proposals that exploit the connection between anomalies and topologi-

cal (or entangled) states to create a lattice regularization of any anomaly-free chi-

ral gauge theory, and mirrors much of the discussion of ‘mass without mass terms’

[11, 6, 5, 12, 19, 20, 115, 117, 116]. In comparison to other methods, our regular-

ization enjoys (ultra) local on-site fermions and gauge action, as well as a physically

sensible on-site fermion Hilbert space.

Before proceeding further, let us further specify the problem that we mean to

solve and the conditions under which we do so. We mean to find a path integral on a

space-time lattice which produces the desired chiral fermion theory as the low energy

effective theory, subject to the following conditions:

1. The path integral and the resulting chiral fermion theory have the same space-
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time dimension.

2. There are finitely many degrees of freedom on each lattice point.

3. The lattice path integral is local, i.e. all terms in the Lagrangian have a finite

range (this is sometimes termed ultra-local in the lattice literature).

4. The lattice theory has the symmetry 𝐺 of the chiral fermion theory. This

symmetry should act on-site, so it can be gauged [102], and is not spontaneously

broken.

5. The emergent chiral fermion theory may or may not have Lorentz symmetry

(which would require different species of fermions to have the same velocity),

but must break parity and time-reversal symmetry. In particular, the right and

left-moving modes carry different representations of the gauge group. (Ensuring

Lorentz symmetry will be the subject of future work).

The condition of on-site symmetry discussed above merits further discussion. The on-

site condition means that the quantum operator representing any ‘internal’ symmetry

factorizes as a tensor product of operators that act only on a single site. That is,

𝑈(𝑔) = ⊗𝑖𝑈𝑖(𝑔), with each 𝑈𝑖(𝑔) acting only on fermions at site 𝑖. The conventional

solution to the Ginsparg-Wilson equation [41] is not on-site, and this is precisely

why chiral symmetry breaking is anomalous. In contrast, we are interested in models

without anomalies and with on-site symmetry.

We achieve a solution to this problem by using the mirror fermion approach de-

scribed in the next section. We first create a lattice regularization of both the chiral

theory and its mirror conjugate and then introduce interactions induced by a Higgs

field that gap out only the mirror theory. In particular, we show that a space-time

random Higgs field (which preserves 𝑆𝑈(2) symmetry on average) can gap the fermion

spectrum. We then use topological arguments to argue that the resulting effective

Higgs action can be gapped as well.

The lattice theory can be easily gauged, and the gauged theory is guaranteed

to be 𝐺-gauge invariant (i.e. there is no gauge anomaly), due to the on-site 𝐺-
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Figure 4-1: (Color Online). We define a chiral lattice theory as either (a) a spatial
model or (b) a spacetime model by considering a thin slab of material. A chiral theory
appears on one edge (purple), while the mirror of the chiral theory appears on the
other (green), and they are separated by a bulk (pink). (c) We then try to gap out
the mirror sector using interactions, leaving only the chiral theory.

symmetry and the locality. For weak gauge coupling, the gauged lattice path integral

produces a low energy effective chiral fermion gauge theory and the mirror sector will

remain gapped, though we do not study the gauged theory (dynamically or otherwise).

Furthermore, since there are finitely many degrees of freedom per site, the path

integral is well defined for any finite space-time volume and the chiral fermion theory

is fully regulated. In this case, the chiral fermion theory is defined non-perturbatively.

4.1 The Mirror Fermion Approach and the Bulk-

Boundary Correspondence

Now we can take the ideas behind topological order and SPT phases and build an

approach towards defining a chiral theory on a lattice. We have seen that the major

obstacle to defining a successful chiral field theory is the anomaly, and that one way to

resolve this is to define the theory as an edge theory. Let us formalize this slightly: we

consider spatial model consisting a thin slab of system of 𝐿𝑥×𝑤, as shown in Figure

4-1. We take periodic boundary conditions in the 𝑥 direction and open boundary

conditions in the other, so that 𝑤 is the distance between the two edges and 𝐿𝑥 is

the length of the periodic edges. As before, a chiral field theory (e.g. a left-moving

mode) appears on one edge, while its mirror conjugate theory (e.g. a right-moving

mode) appears on the other edge.
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When taking a thermodynamic limit, we scale the lengths 𝐿𝑥 and, in a spacetime

lattice, 𝐿𝑡. However, we keep 𝑤 fixed. This ensures that the system is truly 1 + 1d

in the thermodynamic limit.

Now it would seem that we have successfully defined a lattice chiral theory. How-

ever, while it is true that we have a chiral theory on one edge, this model also con-

tains the mirror conjugate of the chiral theory on the opposite edge, and the total

low-energy theory remains non-chiral. Moreover, the chiral theory and its mirror are

still coupled, as in the presence of a background gauge field charge may tunnel from

one side to another. The key then is to choose an anomaly-free chiral theory, so that

the edges decouple.

However, even if the edges are decoupled, the low-energy sector still contains the

chiral theory and its mirror conjugate and so is non-chiral. This is exactly where the

results of the previous chapter are crucial: it has been conjectured [103], and in some

cases proven [95], that being free of anomalies is equivalent to having trivial bulk

ordering. In turn, this implies that the mirror edge can be gapped. Hence we can

introduce interactions to the mirror edge to gap it out, and all that should remain is

the chiral theory. This is the mirror fermion approach [101, 118, 44, 70, 40, 43] we

mentioned previously. It is related to the Eichten-Preskill approach [33], which seeks

to use composite fermions to gap out a mirror edge, but the sufficient conditions we

propose are much more strict (it it has been shown [101] that the Eichten-Preskill

conditions cannot be strict enough, as they propose to gap out an anomalous theory).

This chapter will use this approach to define an anomaly-free 𝑆𝑈(2) gauge theory on

the lattice.

4.2 Anomaly Cancellation

We require that our edge theory be free of all anomalies. As discussed in Chapter

3, this implies that the bulk theory is trivially ordered. Confirming that a theory

is free of all anomalies is not generally an easy task. The cancellation of all Adler-

Bell-Jackiw (ABJ) [10, 1] type anomalies can be ensured using the usual anomaly
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cancellation conditions [79, 95], which examine the Lie Algebra of the gauge group 𝐺

to provide powerful constraints (see Section 4.5). However, anomalies beyond those

detectable from the Lie Algebra can still occur (e.g. [112]) which result from the

non-trivial homotopic structure of the gauge group. For our 1 + 1𝑑 system defined on

the edge of a 2 + 1𝑑 bulk, we ought to naïvely require that 𝜋𝑛(𝐺) = 0, 𝑛 ≤ 3.

In practice, our sufficient condition is slightly more forgiving. Consider a 𝑑 + 1

dimensional theory with a chiral theory on one edge, the mirror conjugate theory on

the other, and an otherwise gapped bulk. In order to gap out the mirror edge, we

couple the fermion fields there to a Higgs field 𝜑 transforming in the fundamental

representation of 𝐺. Suppose that, in the symmetry-breaking (𝜑 = const.) case, the

Higgs field gaps out the mirror edge and breaks the symmetry group 𝐺 symmetry

down to 𝐺grnd. If 𝜋𝑛(𝐺/𝐺grnd) = 0 for 𝑛 ≤ 𝑑+ 2, then the connection with entangled

states conjectures that we should be able to restore the symmetry by demanding that

𝜑 be in a disordered phase. In this paper, we provide numerical support for this

conjecture for a specific 1 + 1d theory.

We take the Lie Group 𝐺 = 𝑆𝑈(2). To ensure ABJ anomaly cancellation, we

consider the 𝑈(1) < 𝑆𝑈(2) 𝑆𝑧 subgroup of 𝑆𝑈(2) and ensure that it cancels. This

requires: ∑︁
𝐿

4

3
𝑠𝑖(𝑠𝑖 + 1)(2𝑠𝑖 + 1) =

∑︁
𝑅

4

3
𝑠𝑖(𝑠𝑖 + 1)(2𝑠𝑖 + 1) (4.1)

We also require the cancellation of all gravitational anomalies, which is equivalent to:

∑︁
𝐿

(2𝑠𝑖 + 1) =
∑︁
𝑅

(2𝑠𝑖 + 1) (4.2)

We do not consider any other symmetries for now.

The simplest chiral 𝑆𝑈(2) representation that satisfies the anomaly cancellation

conditions is 1𝑅 ⊕ (0𝑅)5 ⊕ (1/2𝐿)4, where subscripts indicate a collection of left or

right-movers. Topologically, 𝑆𝑈(2) ≃ 𝑆3, and so while 𝜋1(𝑆𝑈(2)) = 𝜋2(𝑆𝑈(2)) = 0,

𝜋3(𝑆𝑈(2)) = Z. Fortunately, this simply reflects the possibility of a Wess-Zumino-

Witten (WZW) [109] term, and corresponds to the perturbative ABJ anomalies which
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are absent in our model by design. Hence we can replace the requirement that

𝜋𝑑+2(𝐺/𝐺grnd) = 0 by the weaker condition 𝜋𝑑+2(𝐺/𝐺grnd) = Z, given that the the-

ory is free of all ABJ anomalies. (In this paper, 𝑑 = 1, 𝐺 = 𝑆𝑈(2), and 𝐺grnd = 1.)

Although there is no 𝑆𝑈(2) symmetric mass term, we will show that the 𝑆𝑈(2) chiral

fermion theory can be fully gapped by strong interactions without breaking the 𝑆𝑈(2)

symmetry.

Note that this sufficient condition is far from necessary. A theory with topological

defects in the Higgs field could form a gas of defects and (possibly) still gap out the

mirror sector. But this restrictive, sufficient condition keeps the theory simple, and

it is more than enough for an interesting system. In fact this condition can regularize

far more complicated and topical theories: a similar proposal uses the same condition

to suggest a regularization for an 𝑆𝑂(10) gauge theory in 3 + 1 dimensions [101].

4.3 Lattice Model

We consider a lattice path integral in imaginary time, which has a form

𝑍 =

∫︁
[
∏︁
𝑖

𝜑𝑖]e−𝑆𝜑(𝜑)

∫︁ ∏︁
𝑖

[d𝜓𝑖𝑎d𝜓†
𝑖𝑎]e

−𝜓†
𝑖𝑎𝑀

1+1𝐷
𝑖𝑎,𝑗𝑏 (𝜑)𝜓𝑗𝑏

=

∫︁
𝐷[𝜑(𝑥)]e−𝑆𝜑(𝜑)Det[𝑀1+1𝐷(𝜑)] (4.3)

where 𝜓𝑖𝑎 is the fermion field, 𝜑𝑖 is the Higgs field on the site-𝑖 of 1+1D space-

time lattice, and index 𝑎 labels different components of the fermion field. Here 𝜑𝑖 ∈
𝑆𝑈(2) and 𝜓𝑎 is a representation of 𝑆𝑈(2). Also, the 𝜑-action 𝑆𝜑(𝜑) and the 𝜑

dependent matrix 𝑀1+1𝐷
𝑖𝑎,𝑗𝑏 (𝜑) have a 𝑆𝑈(2) symmetry. We claim that if we choose

𝑆𝜑(𝜑) and 𝑀1+1𝐷
𝑖𝑎,𝑗𝑏 (𝜑) properly, the above model is described by the following 𝑆𝑈(2)

chiral fermion effective theory

ℒ = Ψ†
𝑅𝛼(𝜕𝜏 − 𝑣𝑅𝛼 i𝜕𝑥)Ψ𝑅𝛼 + Ψ†

𝐿𝛼(𝜕𝜏 + 𝑣𝐿𝛽 i𝜕𝑥)Ψ𝐿𝛼 (4.4)
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at low energies, where 𝛼 = 1, · · · , 8. Ψ𝑅𝛼 and Ψ𝐿𝛼 transform as two different 𝑆𝑈(2)

reducible representations: Ψ𝑅𝛼 is formed by one 𝑆𝑈(2) triplet and five 𝑆𝑈(2) singlets,

while Ψ𝐿𝛼 is formed by four 𝑆𝑈(2) doublets. The velocity parameters in eq. 4.4 are all

positive, but may different in magnitude. Our model breaks parity, which is already

prohibited by the Nielsen-Ninomiya theorem, while promoting this to full Lorentz

invariance will be the subject of a future work.

Our lattice model consists of a hopping part and a Yukawa coupling to a (quenched)

Higgs field. We label the 1+1D space-time lattice site by a pair 𝑖 = (𝑖𝜏 , 𝑖𝑥), where

𝑖𝑥 = 1, · · · , 𝐿𝑥 and 𝑖𝜏 = 1, · · · , 𝐿𝜏 . We label the fermion species by three indices

𝑎 = (𝑜, 𝑖𝑤, 𝛼), where 𝑜 = 𝑅,𝐿, 𝑖𝑤 = 1, · · · , 𝐿𝑤 and 𝛼 = 1, · · · , 8. We choose the

fermion lattice action to have a form

𝜓†
𝑖𝑎𝑀

1+1𝐷
𝑖𝑎,𝑗𝑏 (𝜑)𝜓𝑗𝑏

= 𝜓†
𝑅,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝑅
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

𝜓𝑅,𝑗𝜏 𝑗𝑥𝑗𝑤,𝛼

+ 𝜓†
𝐿,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

𝜓𝐿,𝑗𝜏 𝑗𝑥𝑗𝑤,𝛼

+ [𝜓†
𝑅,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝑅𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝛼𝛽 (𝜑)𝜓𝐿,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛽 + ℎ.𝑐.]. (4.5)

Here 𝜓𝑅,𝛼 is formed by one 𝑆𝑈(2) triplet and five 𝑆𝑈(2) singlets. 𝜓𝐿,𝛼 is formed

by four 𝑆𝑈(2) doublets. This fermion action can be viewed as a fermion action on

2+1D space-time, where the 𝑤-direction has a finite thickness 𝐿𝑤 measured in lattice

spacing.

Viewing the above as a 2+1D system and following the mirror fermion approach,

[33, 70, 40, 43] we choose 𝑀1+2𝐷,𝑅
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

(𝑀1+2𝐷,𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

) such that the fermions 𝜓𝑅,𝛼

are gapped in the 2+1D bulk, and have 8 massless right-moving (left-moving) modes

on the 𝑖𝑤 = 1 boundary and 8 massless left-moving (right-moving) modes on the

𝑖𝑤 = 𝐿𝑤 boundary. Note that 𝑀1+2𝐷,𝑅
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

and 𝑀1+2𝐷,𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

are independent of the

𝑆𝑈(2) Scalar field 𝜑. Their detailed expression will be given in Section 4.3. Using

condensed matter terminology, 𝑀1+2𝐷,𝑅
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

and 𝑀1+2𝐷,𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

both describe a single

filled Landau level but with opposite magnetic fields.

When viewed as a 2+1D system, the 𝑆𝑈(2) scalar field 𝜑𝑖𝜏 ,𝑖𝑥 only lives on the
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Figure 4-2: (Color Online). (a) Layers of fermion hoping model with Chern number
+1 and −1, which give rise to right-hand and left-hand chiral fermions on the 1+1D
boundary. (b) General schematic of our model. Each black line represents a layer of
our hopping model on a 2 + 1D dimensional lattice. We stack 8 Chern number +1
layers (blue) with 8 Chern number −1 layers (red). Next, we organize the fermions on
those layers into 𝑆𝑈(2) representations. Each representation is illustrated by a white
square with the spin label except the trivial spin-0 representations which we omit.
This results in a 1𝑅 ⊕ (0𝑅)5 ⊕ (1/2𝐿)4 theory on the left edge and its mirror (𝐿↔ 𝑅)
theory on the right edge. We couple the fermions on the right edge to a Higgs field
that gaps out the right edge, leaving only the chiral theory on the left edge.

𝑖𝑤 = 𝐿𝑤 boundary and only couples to the fermions on the 𝑖𝑤 = 𝐿𝑤 boundary. We

choose the coupling form in𝑀1+2𝐷,𝑅𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝛼𝛽 (𝜑) such that a constant 𝑆𝑈(2) scalar field 𝜑 can

give all the right-moving and left-moving chiral fermions on the 𝑖𝑤 = 𝐿𝑤 boundary

a finite mass 𝑀𝜑 and then consider configurations where 𝜑 varies smoothly over the

1 + 1d spacetime.

4.3.1 Hopping Terms

Here we present the details of our lattice model. Our model does not directly come

from a discretization of the Weyl or Dirac Lagrangian; instead, we create a space-

time lattice description of states with nonzero Chern number, like those discussed in

Chapter 2.

We first create a hopping model with two edges. One edge will be described

by a gapless chiral theory, with the other edge described by the mirror conjugate

gapless theory and the bulk otherwise gapped. For 1 + 1D chiral theories, the left-

and right-handed excitations simply become spinless left- and right-moving complex
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fermions. In our model, the 8 left- and 8 right-moving fermions carry the following

𝑆𝑈(2) representations 1𝑅⊕(0𝑅)5⊕(1/2𝐿)4, which, as discussed in the previous Section,

are the simplest which satisfy the ABJ anomaly cancellation conditions.

Our approach begins by creating a fermion hopping model on a 2+1D space-time

lattice which contains 16 layers. Each layer has a finite gap in the 2+1D bulk and

one chiral complex fermion mode on the 1+1D boundary. 8 layers have right-handed

chiral fermions on the edge, and the other 8 layers have left-handed chiral fermions.

We choose the 2+1D space-time lattice to be a thin slab of size 𝐿𝑡 × 𝐿𝑥 × 𝐿𝑤. We

will fix 𝐿𝑤 while taking 𝐿𝑡 = 𝐿𝑥 ≡ 𝐿 → ∞, so the system is effectively 1 + 1D.

One surface of the slab is the normal sector and the other surface is the mirror sector

(see Fig. 4-2). We will add interactions between the fermions in the mirror sector

(i.e. only on one surface). The interactions are induced by an 𝑆𝑈(2) Higgs field

in the fundamental representation, which breaks the 𝑈(8) × 𝑈(8) symmetry of the

non-interacting system down to 𝑆𝑈(2). The 8 right-moving and 8 left-moving chiral

fermions form the following 𝑆𝑈(2) representations: 1𝑅⊕ (0𝑅)5⊕ (1/2𝐿)4 in the mirror

sector (and 1𝐿 ⊕ (0𝐿)5 ⊕ (1/2𝑅)4 in the normal sector, see Fig. 4-2).

We split our hopping model into spatial and temporal hopping, i.e. splitting the

imaginary time Lagrangian into ‘𝜕𝜏 ’ and Hamiltonian terms as ℒ = 𝜕𝜏 − 𝐻. The

spatial (Hamiltonian) terms, detailed below, are motivated by Chern number states

discussed previously, whereas the temporal hopping is provided by a doubling-free

hopping term. Our approach breaks discrete rotational (Lorentz) symmetry, which

only reappears at low energies. While all fermions will still have linear velocities, it is

possible that, after the mirror edge is gapped, fermions on the chiral edge may have

differing velocities.

The spatial component of our lattice is provided by the Chern number ±1 states

shown in Figure 4-3a, and leads to an 𝐿𝑤𝐿𝑥×𝐿𝑤𝐿𝑥 matrix. We can write this matrix
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Figure 4-3: (Color Online). (a): Chern number +1 hopping model. Fermion sites are
shown as spheres, with hopping terms as links. A yellow link indicates a hopping of
+1, a red link a hopping of −1, and a green link a hopping of +𝑖 in the direction of the
arrow and −𝑖 in the opposite direction. Hopping around any plaquette generates a
phase of 𝜋, hence with 1 fermion per site this is a Chern number 1 (Integer Quantum
Hall) state. (b): Spacetime lattice with 𝐿𝑤 = 2. Each spatial component is just a
slice of a IQH state shown in (a), while the purple links represent a Hopping of 𝑡
in only the direction of the double arrows. In addition, each site is given the onsite
chemical potential −𝑡𝜓†

𝑖𝜓𝑖; we later set 𝑡 = 3. The Hopping matrix corresponding to
this model is our spacetime Lagrangian. (c) Dispersion relation for the spatial lattice
with 𝐿𝑤 = 2. (d) Complex Eigenvalues of the spacetime hopping model.
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explicitly as:

𝐻𝐿,(𝑖𝑥,𝑖𝑤,𝑖𝜏 ),(𝑗𝑥,𝑗𝑤,𝑗𝜏 ) =

𝛿𝑖𝜏 ,𝑗𝜏
(︀
(−1)𝑤(𝑖𝛿𝑖𝑥,𝑗𝑥+1𝛿𝑖𝑤,𝑗𝑤 + 𝛿𝑖𝑥,𝑗𝑥+1𝛿𝑖𝑤,𝑗𝑤+1)

+𝛿𝑖𝑥,𝑗𝑥𝛿𝑖𝑤,𝑗𝑤+1) + H.C. (4.6)

However, it is easier to understand either using Figure 4-3a. The essential feature

is that the hopping clockwise around any triangular half-plaquette yields a phase of
𝜋
2
, so that at the lattice model describes particles hopping in an applied magnetic

field. The physics of particles hopping on a lattice with varying fluxes is rich; here

we only study particles with 𝜋 flux per plaquette. At half filling (ie filling only the

lower band), there is one flux quantum per fermion. The model we have chosen

leads to a lattice version of Landau levels: semiclassically, particles will travel in

closed cyclotron orbits, leading to level quantization. In the bulk (i.e. with periodic

boundary conditions in both the 𝑥 and 𝑤 directions) the model we have chosen has

two bands, at energies ±1, with the chemical potential set to zero.

In condensed matter physics, our lattice model describes a state known as a Chern

number +1 state, due to the quantized curvature of the eigenstates of the lower

(occupied) band. Crucially, states with nonzero Chern number cannot be smoothly

deformed without closing the band gap to a state with zero Chern number, such as

the vacuum. If we take open boundary conditions in the 𝑤 direction, there must be

gapless chiral edge modes localized at the edges of the lattice. In this case, there is

is a right mover at 𝑤 = 1, which we call the chiral edge, at a left mover at 𝑤 = 𝐿𝑤,

which we call the mirror edge. In this way, we have a condensed matter-inspired

realization of the ‘Domain Wall’ idea; instead of a standard lattice Dirac operator

with a region with positive mass term situated next to a region with negative mass

term, we have a Chern number +1 state next to the (zero Chern number) vacuum.

The essential features of this model can also be understood in momentum space.

Taking the Fourier transform in the 𝑥-direction, with open boundary conditions in
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the 𝑤 direction, the Hamiltonian becomes an 𝐿𝑤 × 𝐿𝑤 matrix of the form:

𝐻𝑅 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 sin 𝑘𝑥 1− 𝑒𝑖𝑘𝑥 0 0 ...

1− 𝑒−𝑖𝑘𝑥 −2 sin 𝑘𝑥 1 + 𝑒𝑖𝑘𝑥 0 ...

0 1 + 𝑒−𝑖𝑘𝑥 2 sin 𝑘𝑥 1− 𝑒−𝑖𝑘𝑥 ...

0 0 1− 𝑒−𝑖𝑘𝑥 −2 sin 𝑘𝑥
. . .

...
...

...
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Near 𝑘𝑥 = 0, this becomes:

𝐻𝑅 ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝑘𝑥 0 0 0 0 ...

0 −2𝑘𝑥 2 0 0 ...

0 2 2𝑘𝑥 0 0 ...

0 0 0 −2𝑘𝑥 2 ...

0 0 0 2 2𝑘𝑥
. . .

...
...

...
...

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This Hamiltonian has two low energy modes: a right mover at 𝑤 = 1 (the chiral edge),

which appears above, and a left mover other at 𝑤 = 𝐿𝑤 (the mirror edge), which would

appear in the lower-right corner above (at 𝑘𝑥 = 0 for even 𝐿𝑤). Otherwise, one can

check that the system has a gap of approximately 2 for all 𝑘𝑥. If we were to implement

periodic boundary conditions in the 𝑤 direction, we would add a term 1± 𝑒𝑖𝑘𝑥 in the

upper right corner and 1± 𝑒−𝑖𝑘𝑥 in the lower left, and again one can check that this

leads to a completely gapped Hamiltonian. We also define a left moving Hamiltonian

𝐻𝐿 = 𝐻*
𝑅 in real space or 𝐻𝐿(𝑘𝑥) = 𝐻𝑅(−𝑘𝑥) in momentum space, which has a left

mover at 𝑤 = 1 and a right mover at 𝑤 = 𝐿𝑤.

The above Hamiltonian, with open boundary conditions in the 𝑤 direction, pro-

vides the spatial hopping 𝐻 in our Lagrangian “𝜕𝜏 − 𝐻”. Now we need to add the

“𝜕𝜏 ” term. In lattice gauge theory, there are many standard ways to construct fermion

hopping models, but many of them have fermion doubling in time direction. We use

the trick in Ref. [74] to prevent time-direction fermion doubling, which introduces a

hopping in frequency space of 3(1 − 𝑒−𝑖𝜔). The total (one-flavor) hopping model is
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then given by

𝑀1+2𝑑
𝐿,(𝑖𝑥,𝑖𝑤,𝑖𝜏 ),(𝑗𝑥,𝑗𝑤,𝑗𝜏 )

= 3(𝛿𝑖𝜏 ,𝑗𝜏+1 − 𝛿𝑖𝜏 ,𝑗𝜏 )𝛿𝑖𝑥,𝑗𝑥𝛿𝑖𝑤,𝑗𝑤 −𝐻𝐿,(𝑖𝑥,𝑖𝑤,𝑖𝜏 ),(𝑗𝑥,𝑗𝑤,𝑗𝜏 ) (4.7)

and similarly for 𝑀1+1𝑑
𝑅 . For example, for 𝐿𝑤 = 2, the Lagrangian Hopping matrix

in frequency momentum space becomes:

𝑀𝐿 = 𝛿𝛼,𝛽

(︃
2 sin 𝑘𝑥 + 3(1− 𝑒−𝑖𝜔) 1− 𝑒𝑖𝑘𝑥

1− 𝑒−𝑖𝑘𝑥 −2 sin 𝑘𝑥 + 3(1− 𝑒−𝑖𝜔)

)︃
(4.8)

where 𝑀𝐿 acts diagonally on the flavor indices 𝛼, 𝛽. The right-handed version acts

as 𝑀𝑅(𝑘𝑥, 𝜔) = 𝑀𝐿(−𝑘𝑥, 𝜔). These define the matrices 𝑀1+2𝐷,𝑅 and 𝑀1+2𝐷,𝐿 shown

in eq. (4.5).

4.3.2 Higgs Field and Yukawa Coupling

The mass term that gaps out all the mirror fermions can be generated by an 𝑆𝑈(2)-

Higgs field 𝜑 in the fundamental representation that breaks 𝐺 = 𝑆𝑈(2) down to

𝐺grnd = 1. Topologically, 𝐺/𝐺grnd = 𝑆𝑈(2) ≃ 𝑆3, and so while 𝜋1(𝑆𝑈(2)) =

𝜋2(𝑆𝑈(2)) = 0, 𝜋3(𝑆𝑈(2)) = Z. Fortunately, this simply reflects the possibility

of a Wess-Zumino-Witten (WZW) [109] term, and corresponds to the perturbative

ABJ anomalies which are absent in our model by design.

Let us use a 8-component 𝜓𝑅 to describe the 8-layers of fermions with Chern

number 1, and 𝜓𝐿 for the 8-layers with Chern number −1. The Higgs coupling on

the mirror surface is given by

ℒint = 𝜓†
𝑅,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝑅𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝛼𝛽𝜓𝐿,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛽 (4.9)

where

𝑀1+2𝐷,𝑅𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝛼𝛽 = 𝑔𝛿𝑖𝑤,𝐿𝑤𝛿𝑖,𝑗Θ𝐿[𝜑(𝑖𝜏 , 𝑖𝑥)]Θ𝑅[𝜑(𝑖𝜏 , 𝑖𝑥)]

† (4.10)

where 𝛿𝑖𝑤,𝐿𝑤 constrains the action to the mirror surface. We have assumed the Higgs

field 𝜑 to have a unit ampltude |𝜑| = 1. In this case, the Higgs field can be viewed
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as an element in the 𝑆𝑈(2) group. Θ𝑅[𝜑] and Θ𝐿[𝜑] (as well as Θ𝐿[𝜑]Θ†
𝑅[𝜑] and

Θ𝑅[𝜑]Θ†
𝐿[𝜑]) are representation matrices of 𝑆𝑈(2) that make the above Higgs coupling

𝑆𝑈(2) invariant. The explicit 8× 8 matrices Θ𝑅[𝜑] and Θ𝐿[𝜑] are listed below:

Θ𝑅[𝜑] = Θ1[𝜑]⊕ 𝐼5×5,

Θ𝐿[𝜑] = Θ1/2[𝜑]⊕Θ1/2[𝜑]⊕Θ1/2[𝜑]⊕Θ1/2[𝜑]. (4.11)

where Θ𝑠(𝜑) is the spin-𝑠 representation (with dimension 2𝑠 + 1). Because 𝜓𝑅 con-

tains three fermions in the spin-1 representation and five singlets, Θ†
𝑅𝜓𝑅 is invariant

under 𝑆𝑈(2), and similarly for Θ†
𝐿𝜓𝐿. Hence the coupling Lagrangian, composed of

𝜓†
𝐿Θ𝐿[𝜑]Θ†

𝑅[𝜑]𝜓𝑅 and its conjugate, is as well.

With the above Higgs coupling on the mirror surface, the total Lagrangian is given

by eq. (4.5), reproduced below:

𝜓†
𝑖𝑎𝑀

1+1𝐷
𝑖𝑎,𝑗𝑏 (𝜑)𝜓𝑗𝑏

= 𝜓†
𝑅,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝑅
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

𝜓𝑅,𝑗𝜏 𝑗𝑥𝑗𝑤,𝛼

+ 𝜓†
𝐿,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝑗𝜏 𝑗𝑥𝑗𝑤

𝜓𝐿,𝑗𝜏 𝑗𝑥𝑗𝑤,𝛼 (4.5)

+ [𝜓†
𝑅,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛼

𝑀1+2𝐷,𝑅𝐿
𝑖𝜏 𝑖𝑥𝑖𝑤;𝛼𝛽 (𝜑)𝜓𝐿,𝑖𝜏 𝑖𝑥𝑖𝑤,𝛽 + ℎ.𝑐.].

Schematically, this is:

𝜓† /𝐷Ψ = Ψ†

⎛⎝ 𝑀𝑅 𝑔𝛿𝑤,𝐿𝑤Θ†
𝑅Θ𝐿

𝑔𝛿𝑤,𝐿𝑤Θ†
𝐿Θ𝑅 𝑀𝐿

⎞⎠Ψ (4.12)

where Ψ† = (𝜓†
𝑅, 𝜓

†
𝐿). On the mirror surface and in the continuum limit, we have

Ψ† /𝐷Ψ = Ψ†

⎛⎝ 𝜕𝑡 − i𝜕𝑥 𝑔Θ†
𝑅Θ𝐿

𝑔Θ†
𝐿Θ𝑅 𝜕𝑡 + i𝜕𝑥

⎞⎠Ψ (4.13)
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which has the familiar field theory form. On the normal surface, we have

Ψ† /𝐷Ψ = Ψ†

⎛⎝ 𝜕𝑡 + i𝜕𝑥 0

0 𝜕𝑡 − i𝜕𝑥

⎞⎠Ψ (4.14)

which is the gapless chiral theory we seek. Our task now is to ensure that the Higgs

interaction gaps out the mirror theory (4.13) while preserving (4.14) Denoting the

full content of eq. (4.5) as Ψ† /𝐷Ψ, the full partition function of our system is now:

𝑍 =

∫︁
𝐷𝜑𝑒−𝑆H[𝜑]

∫︁
𝐷Ψ†𝐷Ψ exp[−Ψ† /𝐷Ψ]

=

∫︁
𝐷𝜑𝑒−𝑆H[𝜑] det( /𝐷)

(4.15)

where 𝑆𝐻 [𝜑] = −𝑈 [𝜑] is the action for the Higgs and we have neglected a proportion-

ality constant.

We choose the Higgs action 𝑆𝐻 [𝜑] such that the Higgs field is in a disordered 𝑆𝑈(2)

symmetric state with correlation length 𝜉 > 1 (with unit lattice spacing). If we took

𝜉 → ∞, i.e. if the Higgs field 𝜑 were a constant (which breaks 𝑆𝑈(2) symmetry),

the mirror sector would be fully gapped and all eigenvectors of /𝐷 with eigenvalues 𝜆

with |𝜆| < ∆ would be localized near the normal surface. The central result of this

chapter is that the mirror edge is still gapped for a finite correlation length, and the

normal sector is hardly affected by the gapping process.

Performing the full integral of 𝜑 disordered Higgs phase is intractable. Instead,

we study the above path integral in two steps. In the next Section, we consider

a typical random space-time Higgs fields with a finite correlation length 𝜉 which

preserves 𝑆𝑈(2) symmetry on average. We will show that the mirror sector can be

fully gapped by these random Higgs fields when 𝜉 & 7 for 𝑔 = 1 and system sizes

up to 𝐿 = 80. Then we can safely integrate out the mirror fermions and obtain a

non-linear 𝜎-model for the Higgs field. Lastly, we argue that the non-linear 𝜎-model

can be in the 𝑆𝑈(2) symmetric disordered phase with a gap, the only low energy

excitations coming from the massless chiral fermions in the normal sector which is

unaffected by the gapping process in the mirror sector.
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The choice of dynamical Higgs field is of central importance. If at any point 𝜑

fluctuates too rapidly, a low-energy fermion mode may be localized there. An ideal

configuration would have |∇𝜑(𝑥)| = const. > 0. In the lattice model, we first choose a

random 𝜑(𝑥) and then smooth it, taking care to apply the most smoothing in regions

of largest |∇𝜑|. This nonlinear smoothing process leads to a 𝜑 with nearly constant

but nonzero |∇𝜑|. In a continuum sense, this can be achieved by a an action of the

form 𝑆(𝜑) = −
∫︀
𝑑2𝑥(−|∇𝜑|2 + |∇𝜑|4 + ...). Since we cannot yet perform the integral

over Higgs configurations, we do not specify a lattice action at this point.

4.4 Gapping Process

We first show that introducing a Higgs field opens a spectral gap in the fermion

determinant. Next, we confirm that this gap remains in a thermodynamic limit

and check that the gapped mirror edge is indeed decoupled from the chiral edge.

Finally, we address the resulting non-linear sigma model for the Higgs field obtained

by integrating out the mirror fermions.

4.4.1 Numerical Results

To see what the process of gapping out the mirror theory looks like, let us first

fix the system size 𝐿𝑥 = 𝐿𝑡 = 𝐿 = 80 and Higgs correlation length 𝜉. Figure 4-

4 (upper panels) show the integrated density of states (the number of eigenvalues

whose absolute values are less then |𝜆|) as we turn on the interaction from 𝑔 = 0

to 𝑔 = 1. At 𝑔 = 0, there are 32 gapless modes—16 from the chiral theory and 16

from the mirror conjugate. As we turn on the interaction, the fluctuating Higgs field

smoothly gaps out the mirror theory modes, leaving only the chiral theory at low

energies. Using eq. (4.7), we can calculate the integrated density of states (IDOS)

for the normal sector alone, which we present in the lower-right panel of Figure 4-4.

Comparing the normal sector IDOS to the lattice results, we see that the low-lying

modes of the lattice models are indeed described by the unaffected normal sector

alone.
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Figure 4-4: (Color Online). Integrated Density of States (IDOS) for various choices of
the coupling strength 𝑔 and the correlation length of the Higgs field 𝜉 with 𝐿 = 80 and
𝐿𝑤 = 2. The horizontal axis is the eigenvalue magnitude, while the vertical axis is the
eigenvalue number (in order of increasing magnitude). We first find the low-magnitude
eigenvalues of the matrix 𝑀1+1𝐷 in eqn. (4.3), and order them |𝜆𝑛| ≤ |𝜆𝑛+1|. Each
plot shows 𝑛 vs. |𝜆𝑛|. States localized on the normal surface (the weight of the
eigenvector on the normal surface is larger than 0.8) are denoted by green circles,
others are denoted by blue squares. A black dashed line indicates the magnitude of the
lowest mirror-surface eigenvalue. In the upper panels, we use the same configuration
of the Higgs field with 𝜉 ≈ 10.4 and different Higgs couplings 𝑔. For 𝑔 = 0, the IDOS
is two copies of our chiral edge theory. As the interaction strength increases, states
not localized to the normal surface are gapped out until at 𝑔 = 1 only the normal
sector remains (below |𝜆| . .45). In the lower panels, we fix 𝑔 = 1 and smooth the
Higgs field, increasing the correlation length from 𝜉 ≈ .6 until 𝜉 ≈ 11.4. For 𝜉 ≈ 3.8,
there are many low-lying mirror states. As we increase 𝜉, the mirror gap increases
until at 𝜉 ≈ 11.4 no mirror-edge states remain (below |𝜆| . .45). Normal sector: In
the lower-right panel, we calculate the IDOS for the normal sector using (4.14). This
IDOS matches that of our model with Higgs coupling 𝑔 = 1 and 𝜉 > 10. Thus the
low lying modes of our model are exactly described by the normal sector only, and
the mirror sector is fully gapped. The slight 𝜆𝑛 renormalization can be mitigated by
increasing 𝐿𝑤.
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Figure 4-5: (Color Online). (a-b): Integrated Density of States (IDOS) for two val-
ues of the width 𝐿𝑤. The horizontal axis is the eigenvalue magnitude, while the
vertical axis is the eigenvalue number (in order of increasing magnitude). We fix
𝐿𝑥 = 𝐿𝑡 = 60, choose a single Higgs configuration 𝜑 with correlation length 𝜉 ≈ 8.1,
and examine the low-energy IDOS as we vary 𝐿𝑤. States localized on the normal
edge (i.e. with ⟨𝑤⟩ < 1.2) are denoted by green circles, others are denoted by blue
squares. Vertical dotted lines indicate the magnitude of the free (no Higgs) eigen-
values. For 𝐿𝑤 = 2 (a), the gapless modes remain but the momentum structure is
substantially affected by the gapping of the mirror edge. For 𝐿𝑤 = 4, the low-lying
states match with their free (Higgs-less) eigenvalues very well. No mass, and minimal
momentum renormalization, is transmitted to the normal sector by the gapping of
the mirror sector. The computation can be extended to larger values of 𝐿𝑤 at high
computational cost. (c) IDOS for the normal sector, calculated artificially using the
momentum-space Lagrangian. The 𝐿𝑤 = 4 lattice IDOS matches this artificial normal
sector IDOS, though higher-magnitude modes are shifted upwards by the lowest-lying
gapped mirror modes.

We can determine if a given eigenstate |𝑣⟩ is localized on the normal edge by

examining the expectation value of the 𝑤 position operator with respect to |𝑣⟩. If a

state were indeed perfectly localized at 𝑤 = 1, then we would have ⟨𝑤⟩𝑣 = 1. For our

purposes, we say that a state is localized on the normal edge if ⟨𝑤⟩𝑣 < 1.2. While the

precise value of this cutoff is arbitrary, for larger 𝐿𝑤, this is a very strong condition,

as it implies that the wavefunction of |𝑣⟩ vanishes except for very near the 𝑤 = 1

edge and implies that |𝑣⟩ has essentially no probability near the 𝑤 = 𝐿𝑤 edge.

Next, we fix 𝑔 = 1 and instead vary the Higgs field correlation length 𝜉 in Figure

4-4 (lower panels). For 𝜉 . 4, the mirror edge modes appear at small magnitude,

though their momentum structure is wiped out by the rapidly fluctuating Higgs field.

As 𝜉 is increased, the mirror theory modes again are driven to large magnitude,

leaving only the chiral theory at small eigenvalues.
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The mirror edge is effectively decoupled from the chiral edge. To see this, we

fix 𝐿𝑥 = 𝐿𝑡 = 60, choose a single Higgs configuration 𝜑 with correlation length

𝜉 ≈ 8.1, and examine the low-energy IDOS as we vary 𝐿𝑤. In Figure 4-5(a-b), we

plot the IDOS for 𝐿𝑤 = 2, 4. States localized on the normal edge are marked in

green while all others are marked in blue. Further, we have plotted the 𝑔 = 0 (no

Higgs coupling) eigenvalues as vertical dotted lines. For 𝐿𝑤 = 2, we see that while

the mirror sector is indeed gapped out, the low-lying excitation energies are smeared

away from their 𝑔 = 0 values. For 𝐿𝑤 = 4, the normal sector excitation energies are

almost exactly their 𝑔 = 0 eigenvalues, decoupling from the gapped mirror sector with

no residual mass. One can compute this for higher values of 𝐿𝑤 (though at significant

computational cost) and find that the low-lying eigenvalues almost exactly match their

𝑔 = 0 values. Additionally, we can calculate ‘by hand’ what the integrated density of

states for the normal sector alone and finite lattice size would look like. We plot this

in Figure 4-5c. Comparing the lattice results (a-b) to the ‘by-hand’ calculation (c),

we see that at low magnitude, the lattice results reproduce the expected ‘by-hand’

result very well for larger 𝐿𝑤, thus demonstrating that the normal sector decouples

from the mirror sector with no residual mass. Surprisingly, we find that even just

𝐿𝑤 = 2 is enough to capture the gapping process and allows us to reach large system

sizes with modest computational resources. In Figures 4-4 and 4-5 we took 𝐿𝑤 = 2,

as we will in the rest of this paper.

The Higgs interaction in the mirror sector could leak into the normal sector and

cause residual couplings in the normal sector. The only relevant couplings in the

normal sector would be mass terms, but by design the 𝑆𝑈(2) chiral fermions in the

normal sector have no 𝑆𝑈(2) symmetric mass terms. Hence residual couplings from

the mirror sector can generate only exponentially small 𝑆𝑈(2) symmetric interactions

on the chiral theory edge. Since there is no 𝑆𝑈(2) symmetric mass term, the effect of

the exponentially small 𝑆𝑈(2) symmetric interactions is weak and the gapless chiral

theory is effectively decoupled from the gapped mirror theory.

Now we turn to the thermodynamic behavior, fixing 𝑔 = 1 and examining the gap

given to the mirror modes. Figure 4-6 shows how this mirror-mode gap scales with
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Figure 4-6: Mirror theory gap as a function of correlation length 𝜉 for various choices
of 𝐿. We couple the fermions on the mirror surface to a Higgs field fluctuating with
correlation length 𝜉 and look for the smallest magnitude eigenvalue for states not
localized on the chiral theory edge. 𝜉 = 𝐿 would correspond to the usual symmetry-
breaking Higgs mechanism. We choose a finite 𝜉, independent of 𝐿. For 𝜉 & 8, the
mirror edge is gapped with ∆ ≈ .35, and this gap is independent of 𝐿 for 𝐿 & 40,
indicating thermodynamic behavior. Note that, in the 𝜉 = 𝐿 → ∞ ‘symmetry-
breaking’ limit, ∆ = 𝑔 = 1.

the system size 𝐿 and the correlation length 𝜉. At 𝜉 ≈ 8, for system sizes 𝐿 & 40, we

see that the gap is roughly constant at ∆ ≈ .35, and largely independent of system

size. This indicates that we are indeed seeing thermodynamic-limit behavior and that

we have successfully gapped out only the mirror theory.

4.4.2 Effective Higgs Action

The spectral gap of /𝐷 in the mirror sector allows us to safely integrate out the mirror

fermions and obtain a 1+1D non-linear 𝜎-model of the Higgs field 𝜑 on the mirror

surface. Since /𝐷 is not Hermitian, this determinant may be complex and its phase

can fluctuate. The complex phase could give rise to the topological terms in the

non-linear 𝜎-model which would make the Higgs effective theory gapless. However,

the target space of the 𝑆𝑈(2) Higgs non-linear 𝜎-model is 𝑆𝑈(2) = 𝑆3 which has no

topological defects in 1+1D space-time. The only potential topological term in the

1+1D 𝑆3 non-linear 𝜎-model is the WZW term from 𝜋3(𝑆
3) = Z. This topological

term would correspond to the ABJ 𝑆𝑈(2) anomaly. Such a topological term does

not appear since our model is free of ABJ anomalies by design. It is believed that a

non-linear 𝜎-model with no topological defects or topological term can be a gapped
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Representation Left Anomaly Left Chiral Central Charge
1/2𝐿 ⊕ 9/22𝐿 ⊕ 3/2𝑅 ⊕ 5/2𝑅 ⊕ 11/2𝑅 662 22

1/2𝐿 ⊕ 17/22𝐿 ⊕ 7/22𝑅 ⊕ 21/2𝑅 3878 38
1/2𝐿 ⊕ 3/2𝐿 ⊕ 13/2𝐿 ⊕ 17/2𝐿 ⊕ 5/23𝑅 ⊕ 19/2𝑅 2870 38

Table 4.1: A Few Anomaly-Free Chiral 𝑆𝑈(2) Representations for Fermionic Excita-
tions. We ensure that the Adler-Bell-Jackiw anomalies cancel for every 𝑈(1) subgroup
of 𝑆𝑈(2). We assume that all excitations are fermionic, and spin-statistics requires
that the fermionic excitations have odd spin.

disordered phase that does not break any symmetry. This is the phase we believe our

model to be in, though further numerical study of nonlinear 𝜎-models is needed to

conclusively confirm this.

We have demonstrated that coupling the mirror edge to a disordered Higgs field

introduces a gap in the fermion spectrum on the mirror edge, and have argued that

the resulting non-linear 𝜎-model for the Higgs field is gapped. Because the chiral

theory is effectively decoupled from the mirror edge, all that remains at low energy

is our low energy, chiral, 𝑆𝑈(2) theory.

4.5 Anomaly Matching and Application to a Con-

densed Matter System

The model we considered in this Chapter needs a significant modification to be con-

sidered as a true condensed matter system, as it violates the spin statistics theo-

rem (SST). In particular, the SST states that fermions have half-integer spin, while

bosons have integer spin. However, we have considered a fermion model with one

spin-1 mode. Here we propose several other models that escapes this issue. However,

these new models result in larger on-site matrices which introduce further technical

challenges. We also include 𝑈(1) symmetry, and ensure that, as holds in condensed

matter systems, all fermions have odd change.

Recall that in order for the 𝑈(1) 6 𝑆𝑈(2) ABJ anomalies to cancel, we require
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(1/2, 3)𝐿 ⊕ (5/2, 3)𝐿 ⊕ (9/2, 3)𝐿 ⊕ (9/2, 11)𝐿(⊕3/2, 7)𝑅 ⊕ (5/2, 7)2𝑅 ⊕ (11/2, 7)𝑅
Left 𝑆𝑈(2) Anomaly Left 𝑈(1) Anomaly Left Chiral Central Charge

732 1372 28
(1/2, 3)𝐿 ⊕ (9/2, 3)2𝐿 ⊕ (9/2, 11)𝐿 ⊕ (3/2, 3)𝑅 ⊕ (5/2, 7)𝑅 ⊕ (9/2, 7)𝑅 ⊕ (11/2, 7)𝑅
Left 𝑆𝑈(2) Anomaly Left 𝑈(1) Anomaly Left Chiral Central Charge

992 1408 32

Table 4.2: A Few Anomaly-Free Chiral 𝑆𝑈(2)× 𝑈(1) Representations for Fermionic
Excitations. We ensure cancellation of the Adler-Bell-Jackiw anomalies independently
for the 𝑈(1) and 𝑆𝑈(2) symmetries. In addition to spin-statistics requiring that
fermionic excitations have odd spin, in condensed matter systems all fermions will
have odd charge.

that: ∑︁
𝐿

4

3
𝑠𝑖(𝑠𝑖 + 1)(2𝑠𝑖 + 1) =

∑︁
𝑅

4

3
𝑠𝑖(𝑠𝑖 + 1)(2𝑠𝑖 + 1) (4.16)

We also require the cancellation of all gravitational anomalies, which is equivalent to:

∑︁
𝐿

(2𝑠𝑖 + 1) =
∑︁
𝑅

(2𝑠𝑖 + 1) (4.17)

Combining these, and ensuring that we only use half-integer 𝑆𝑈(2) representations,

we can search for chiral representations, several of which are shown in in Table 4.1.

If we also include 𝑈(1) symmetry, with charges 𝑞𝑖, then we have a further anomaly

cancellation condition:

∑︁
𝐿

(2𝑠𝑖 + 1)𝑞2𝑖 =
∑︁
𝑅

(2𝑠𝑖 + 1)𝑞2𝑖 (4.18)

Including this condition, we can search for chiral 𝑆𝑈(2)×𝑈(1) theories, two of which

are given in Table 4.2.

Finally, let us note the mathematical perspective on these spin-statistics restric-

tions. In any fermionic system, there is an additional fermionic parity symmetry Z𝑓2 .

A system with symmetry group 𝐺 would naively have the actual symmetry group

𝑔 × Z𝑓2 . However, in reality Z𝑓2 is realized as a subgroup of 𝐺. In the case of 𝑆𝑈(2),

Z𝑓2 is given by the subgroup {𝐼,−𝐼}, while for 𝑆𝑈(2)× 𝑈(1), the subgroup appears

as {(𝐼, 1), (−𝐼, 1) = (𝐼,−1)}.

76



4.6 Summary of the 𝑆𝑈(2) Model

The method that we have demonstrated in this chapter leads to a lattice regularization

for chiral QFTs. Both fermions and the gauge symmetry 𝐺 are defined on on a space-

time lattice with no extra dimensions, and the lattice model is entirely local. Our

approach should work for any 𝑑 + 1D chiral fermion theory that satisfies: (1) there

exist mass terms that make all the chiral fermions massive and break the 𝐺 symmetry

down to 𝐺grnd; and (2) 𝜋𝑛(𝐺/𝐺grnd) = 0 for 𝑛 ≤ 𝑑+ 2.

While this work presents progress towards a solution to the long standing chiral

fermion problem, three important considerations remain. First, although all low-

energy modes in our model are linear, the velocities of fermions in different 𝑆𝑈(2)

representations may be different; in the future we will try to include a ‘shift’ symmetry

that fixes the velocities to be equal. Second, the integral over Higgs considerations

can be performed numerically in an approximate way. This is not a trivial task, as

the system suffers from a sign problem. Finally, coupling to a weak gauge field (with

𝑈 = exp[𝑖𝐴𝑖𝑗] near unity) should be studied as well.

These remaining challenges are considerable. Because the problem requires inter-

actions, it will be almost always be difficult to solve. This rather severe technical

challenge both limits the future utility of the approach, and obscures the proof of its

concept. In the next Chapter, we will move up a dimension and consider a lattice

regularization of Chern-Simons theories, which describe the 2 + 1d bulk that a chiral

theory might live on. The Chern-Simons theory will lead to an ungauged SPT in that

we study in Chapter 6, which, as an almost trivial consequence, will yield a much

more tractable chiral edge theory in Chapter 7.

77



78



Chapter 5

A Lattice Rotor Model for 2 + 1d

Bosonic 𝑈𝜅(1) Chern-Simons Theory

In the last chapter, we saw a lattice model for a fermionic chiral field theory. That

model faced significant challenges in its implementation due to strong interactions.

In this chapter, we attack a related problem in one higher dimension: the description

of Abelian topological order through 𝑈𝜅(1) Chern-Simons theory. We will develop

a lattice model which describes these theories at low energy. This will be a theory

of 𝑈(1) lattice rotor variables, and is to our knowledge the first of its kind. The

semiclassical approximations we use to extract this low-energy behavior are more

reliable and under better control than the Higgs integration of the previous chapter;

in turn, this theory itself will lead us back to the chiral edge in the following chapter.

In the rest of this thesis, we will use the simplicial cochain formalism detailed in

Appendix A. We will also work in units where the flux of field variables, and the total

angle of a circle, is quantized to unity rather than 2𝜋.

We wish to develop a lattice model for the Chern-Simons theories described by an

action:

𝑆 = 𝜋𝑖
∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑎𝐼𝑑𝑎𝐽 (5.1)

where, as in Chapter 3, 𝐾𝐼𝐽 is a symmetric integer matrix (note that we have adjusted

the flux quantization condition relative to the standard version we used previously).
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For simplicity, we assume that the theory is bosonic, so that 𝐾𝐼𝐽 has even diagonal

entries. The simplest guess for a lattice model is to transpose (5.1) to the lattice,

exchanging forms for cocycles, the wedge product for the cup product, and 𝑑 for the

lattice differential:

𝜋𝑖
∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝑎𝐼𝑑𝑎𝐽 +

1

𝑔

∑︁
2

∑︁
𝐼

(𝑑𝑎𝐼)
2 (5.2)

where the integral “
∫︀ ′′ is interpreted as evaluation against a generator of the top

cohomology of the spacetime manifold and 2 labels plaquettes. This action has a

similar ‘doubling’ problem as lattice fermions at momenta±𝜋, and we have introduced

a Maxwell term to suppress those points. However, this action has a more fundamental

issue as well: the field 𝑎 is naturally R-valued and cannot be interpreted as a 𝑈(1)

variable. In getting around this, we will discover a new Chern-Simons action.

These technical issues with Chern-Simons lattice actions are well known, but

they have not stopped considerable work on putting the theory on the lattice. One

approach has been to attempt to construct local lattice models for Chern-Simons

theory whose many-body Hilbert space admits a tensor product decomposition 𝒱 =⨂︀
𝑖 𝒱𝑖, where 𝒱𝑖 is the local Hilbert space on site-𝑖. The key is to find a proper

local Hamiltonian 𝐻 acting on 𝒱 such that the low energy properties of 𝐻 are fully

described by a Chern-Simons field theory [121, 107, 37, 99, 38, 108, 64, 87, 59].

However, those lattice models are usually not solvable. Given a lattice model, we

usually do not know if it is in a quantum-Hall topologically ordered phase, if the

lattice model produce a Chern-Simons theory at low energy, or even which Chern-

Simons theory it produces. Here we are looking for a better controlled result, where we

can derive, under a controlled approximation, the low energy effective Chern-Simons

field theory from the lattice model.

A second approach [34, 90, 13, 14] also tried to construct lattice gauge models that

produce Chern-Simons field theory at low energies. The many-body Hilbert space

𝒱gauge for the lattice gauge theory in these cases is formed by gauge invariant states,

which are not local, as the 𝒱gauge does not admit the tensor product decomposition

𝒱gauge ̸=
⨂︀

𝑖 𝒱𝑖. References [34, 90] proposed lattice gauge models with compact 𝑈(1)
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gauge group. However, in those models the gauge field in each link is not compact;

rather the compactness is enforced at global level. In contrast, the link variables in

this paper are already in compact 𝑈(1) groups. References [13, 14] proposed lattice

gauge models with an entirely non-compact 𝑈(1) gauge group (i.e. R), which is quite

different from the compact 𝑈(1) gauge theory we describe here.

Our goal is to realize the most general bosonic 𝑈(1) Chern-Simons theory via a

local bosonic lattice model with compact degrees of freedom on each link. In contrast

to previous lattice models of Chern-Simons theory, we want our local lattice model to

be semiclassically solvable, in the sense that we can reliably determine its low energy

effective theory.

We will find local bosonic model on spacetime lattice satisfying exactly these

conditions. Under a controlled semi-classical approximation for small 𝑔 in (5.9), we

show that our spacetime lattice model can produce any even-𝐾-matrix CS field theory

[108] of compact 𝑈(1)’s in continuum limit (see (5.17)).

5.1 Lattice Model

Now we can turn to the main lattice model. Letℳ3 be a three-dimensional simplicial

complex, with (possibly empty) boundary ℬ2 = 𝜕ℳ3. Our field variables 𝑎 will be

defined on the links of Since 𝑎𝐼 is R/Z-valued, all physical quantities to be invariant

under the following “gauge” transformation

𝑎𝐼 → 𝑎𝐼 + 𝑛𝐼 , (5.3)

where 𝑛𝐼 are arbitrary Z-valued 1-cochains. In this language, the naïve action ampli-

tude 𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑎𝐼𝑑𝑎𝐽 is not locally a 𝑈(1) theory because it is not gauge invariant.

We can motivate our final action by going to to one-higher dimension, as in Chap-

ter 3. Instead of considering Chern-Simons theory on a three manifoldℳ3, we go to

81



a four manifold 𝒩 4 bounded byℳ3 (i.e. ℳ3 = 𝜕𝒩 4) and evaluate:

𝑖𝜋
∑︁
𝐼,𝐽

𝐾𝐼𝐽

∫︁
𝒩 4

𝑓𝐼 ∪ 𝑓𝐽 (5.4)

The cup product, as well as general conventions for lattice cocycles, is defined in

Appendix A. The question is now how to define 𝑓𝐼 . We might expect to have 𝑓𝐼 = 𝑑𝑎𝐼 ,

but this cannot be correct: the field strength is a physical quantity and so must be a

periodic function of 𝑎. Instead, we choose the field strength:

𝑓𝐼 = 𝑑𝑎𝐼 − ⌊𝑑𝑎𝐼⌉ (5.5)

where ⌊𝑥⌉ denotes the nearest integer to 𝑥. On any plaquette ⟨𝑖𝑗𝑘⟩, we have:

𝑓𝐼 =
1

2𝜋𝑖
log
[︀
𝑒2𝜋𝑖𝑎𝐼(𝑖𝑗)𝑒2𝜋𝑖𝑎𝐼(𝑗𝑘)𝑒2𝜋𝑖𝑎𝐼(𝑘𝑖)

]︀
(5.6)

where the logarithm is taken with a branch cut along the negative real axis. Hence 𝑓

is manifestly invariant under 5.3. The resulting action is:

𝑖𝜋
∑︁
𝐼,𝐽

∫︁
𝒩 4

(𝑑𝑎𝐼 − ⌊𝑑𝑎𝐼⌉)(𝑑𝑎𝐽 − ⌊𝑑𝑎𝐽⌉) (5.7)

Let us first assume that the field strength is weak, which implies that 𝑑𝑎𝐼−⌊𝑑𝑎𝐼⌉ ≈ 0

and hence 𝑑⌊𝑑𝑎𝐼⌉ = 0. Then we may rewrite the action as:

2𝑖𝜋
∑︁
𝐼≤𝐽

∫︁
𝒩 4

𝑑 [𝑎𝐼(𝑑𝑎𝐽 − ⌊𝑑𝑎𝐽⌉)− ⌊𝑑𝑎𝐼⌉𝑎𝐽 ] (5.8)

which would lead us to the surface term action that we desired. However, we need

to add back in a term to account for cases when 𝑑⌊𝑑𝑎⌉ ̸= 0. The key here is to

preserve a certain 1-form symmetry that will be examined in Section 5.2. This leads

to another term in the action −2𝜋𝑖
∑︀

𝐼≤𝐽
∫︀
ℳ3𝑎𝐽 ∪1 𝑑⌊𝑑𝑎𝐽⌉. The 1-cup product ⌣

1
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[89] is defined in Appendix A. All told, we consider the following partition function:

𝑍 =

∫︁
[
∏︁

𝑑𝑎𝐼 ] 𝑒
𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
ℳ3 𝑑

(︀
𝑎𝐼(𝑎𝐽−⌊𝑎𝐽⌉)

)︀
𝑒𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
ℳ3 𝑎𝐼(𝑑𝑎𝐽−⌊𝑑𝑎𝐽⌉)−⌊𝑑𝑎𝐼⌉𝑎𝐽 (5.9)

𝑒
−𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
ℳ3 𝑎𝐽⌣

1
𝑑⌊𝑑𝑎𝐼⌉

𝑒−
∫︀
ℳ3

|𝑑𝑎𝐼−⌊𝑑𝑎𝐼⌉|
2

𝑔 ,

To see that the path integral (5.9) is invariant under gauge transformation (5.3), even

when the spacetime manifoldℳ3 has a boundary, we first note that 𝑒−𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑎𝐽⌣

1
𝑑⌊𝑑𝑎𝐼⌉

and 𝑑𝑎𝐼 − ⌊𝑑𝑎𝐼⌉ are invariant under (5.3). Under (5.3), the term

𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑎𝐼(𝑑𝑎𝐽−⌊𝑑𝑎𝐽⌉)−⌊𝑑𝑎𝐼⌉𝑎𝐽 (5.10)

changes by a factor

𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑛

𝐼𝑑𝑎𝐽−𝑑𝑛𝐼𝑎𝐽 = 𝑒−𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
𝜕ℳ3 𝑛

𝐼𝑎𝐽 (5.11)

This is exactly canceled by the change of the term

𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑑

(︀
𝑎𝐼(𝑎𝐽−⌊𝑎𝐽⌉)

)︀
= 𝑒𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
𝜕ℳ3

(︀
𝑎𝐼(𝑎𝐽−⌊𝑎𝐽⌉)

)︀
(5.12)

Hence the action amplitude of the above path integral is indeed invariant under (5.3),

even whenℳ3 has a boundary.

Now we show that the bosonic lattice model (5.9) realizes a topological order

described by 𝑈𝜅(1) Chern-Simons topological quantum field theory in the limit of

small 𝑔. Taking this limit forces 𝑑𝑎𝐼 to be nearly integer-valued, i.e. 𝑑𝑎𝐼 −⌊𝑑𝑎𝐼⌉ ≈ 0.

In turn, this imples that 𝑑⌊𝑑𝑎𝑖⌉ = 0 since if 𝑑𝑎𝐼 = 𝜖+ ⌊𝑑𝑎𝐼⌉ where 𝜖 is small, then

𝑑⌊𝑑𝑎𝐼⌉ = −𝑑𝜖+ 𝑑𝑑𝑎𝐼 = −𝑑𝜖. (5.13)

As 𝑑⌊𝑑𝑎𝐼⌉ is quantized to be an integer, we must have 𝑑⌊𝑑𝑎𝐼⌉ = 0. This Z-valued
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2-cocycle ⌊𝑑𝑎𝐼⌉ characterize the 𝑈𝜅(1) principle bundle on the spacetime, since

∫︁
ℳ2

(𝑑𝑎𝐼 − ⌊𝑑𝑎𝐼⌉) = −
∫︁
ℳ2

⌊𝑑𝑎𝐼⌉ (5.14)

for any closedℳ2. Note that
∫︀
ℳ2(𝑑𝑎𝐼−⌊𝑑𝑎𝐼⌉) is the magnetic flux throughℳ2 which

is always quantized to be an integer. In other words, −
∫︀
ℳ2⌊𝑑𝑎𝐼⌉ is the Chern number.

Furthermore, on any local patch of spacetime, we can use the gauge transformation

(5.3) to set ⌊𝑑𝑎𝐼⌉ = 0 on the patch. In this case, the action amplitude in the path

integral (5.9) becomes quadratic (i.e. non-interacting)

𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑎𝐼𝑑𝑎𝐽 (5.15)

Since 𝑑𝑎𝐼 is close to zero, we can use a 1-form 𝐴𝐼 to describe the 1-cochain 𝑎𝐼 :∫︁ 𝑗

𝑖

𝐴𝐼 = 2𝜋(𝑎𝐼)𝑖𝑗 (5.16)

Then the above action amplitude can be rewritten as

𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝑎𝐼𝑑𝑎𝐽 ≈ 𝑒𝑖

∑︀
𝐼𝐽

𝐾𝐼𝐽
4𝜋

∫︀
𝑀3 𝐴

𝐼𝑑𝐴𝐽

𝐾𝐼𝐽 = 𝐾𝐽𝐼 ≡

⎧⎪⎨⎪⎩2𝑘𝐼𝐽 , if 𝐼 = 𝐽,

𝑘𝐼𝐽 , if 𝐼 < 𝐽,

(5.17)

when 𝐴𝐼 is nearly constant on the lattice scale. Hence the low energy dynamics of

our lattice bosonic model are described by a 𝑈𝜅(1) Chern-Simons field theory (5.17)

at low energies.

When 𝑓𝐼 = 𝑑𝑎𝐼−⌊𝑑𝑎𝐼⌉ ≈ 0, i.e. when 𝑑𝑎𝐼 is nearly an integer, we also have gauge

invariance under the usual gauge symmetry:

𝑎𝐼 → 𝑎𝐼 + 𝑑𝜃𝐼 (5.18)

for 𝜃𝐼 an R/Z-valued one-cochain. This is apparent both in the formulation (5.15)

84



and its continuum counterpart (5.17). In order for this gauge invariance to emerge,

we had to assume that spacetime ℳ3 had no boundary and that 𝑑⌊𝑑𝑎𝐼⌉ = 0, i.e.

that the field configurations had no monopoles. That gauge invariance should break

on the boundary is, as discussed Chapter 3, no surprise in Chern-Simons theories.

Furthermore, we should understand the monopole-free requirement in the same way:

the monopole should be thought of as trapping a defect. In topological quantum

field theories, defects can be realized as punctures in the manifold, which therefore

are boundaries. In effect, each monopole traps a region of non-topologically ordered

matter, which therefore carries a gauge-symmetry breaking boundary.

Due to the boundaries induced by monopoles, it is not clear what the ground state

is for large 𝑔, and it may have a different topological order from the one described by

the 𝐾-matrix Chern-Simons theory. However, the higher-form symmetries we discuss

in the next section always hold.

5.2 Higher Symmetries and Anomalies

The most powerful aspect of the action we have constructed is its 1-symmetries.

First, consider the model on a closed manifold, so that we may ignore the surface

term. Then under the shift:

𝑎𝐼 → 𝑎𝐼 + 𝛽𝐼
∑︁
𝐼

𝛽𝐼𝐾𝐼𝐽 ∈ Z (5.19)

where 𝛽𝐼 are R/Z-valued 1-cocycles, the exponentiated action is invariant so long as∑︀
𝐼 𝛽𝐼𝐾𝐼𝐽 are Z-valued 1-cochains. These transformations (5.19) are the 1-symmetries

of lattice model (5.9).

To see this result, we first note that, under the transformation (5.19), the action

amplitude in (5.9) on a closed manifold changes by a factor

𝑒
𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
ℳ3 𝛽

R/Z
𝐼 (𝑑𝑎

R/Z
𝐽 −⌊𝑑𝑎R/Z𝐽 ⌉)−⌊𝑑𝑎R/Z𝐼 ⌉𝛽R/Z

𝐽 −𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
ℳ3 𝛽

R/Z
𝐽 ⌣

1
𝑑⌊𝑑𝑎R/Z𝐼 ⌉ (5.20)
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Because we may integrate by parts on a closed manifold and 𝑑𝛽
R/Z
𝐼 = 0, the change

is of the form (see Appendix A):

𝑒
−𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
ℳ3 𝛽

R/Z
𝐼 ⌊𝑑𝑎R/Z𝐽 ⌉+⌊𝑑𝑎R/Z𝐼 ⌉𝛽R/Z

𝐽 +𝛽
R/Z
𝐽 ⌣

1
𝑑⌊𝑑𝑎R/Z𝐼 ⌉

= 𝑒−𝑖2𝜋
∑︀

𝐼𝐽 𝐾𝐼𝐽

∫︀
ℳ3 𝛽

R/Z
𝐼 ⌊𝑑𝑎R/Z𝐽 ⌉ (5.21)

which remains unity for all ⌊𝑑𝑎R/Z𝐽 ⌉ iff
∑︀

𝐼 𝛽
R/Z
𝐼 𝐾𝐼𝐽 are Z-valued cochains. We see

that, on a fixed link 𝑖𝑗, the allowed values of (𝛽
R/Z
𝐼 )𝑖𝑗 form the rational lattice 𝐾−1.

The 1-symmetries are given by the rational lattice 𝐾−1 modulo the integer lattice,

which is same as the integer lattice modulo the lattice 𝐾. In other words, the 1-

symmetries are 𝑍𝑘1 × 𝑍𝑘2 × · · · 1-symmetries, with 𝑘𝑖 being the diagonal entries of

the Smith normal form of 𝐾.

For example, for 𝑈(1) Chern Simons theory with 𝜅 = 1 and 𝐾11 = 2𝑘11 = 𝑘, we

have a Z𝑘 1-symmetry. For mutual Chern-Simons theory (that describes a 𝑍𝑛 gauge

theory), with (𝐾𝐼𝐽) =

⎛⎝ 0 𝑛

𝑛 0

⎞⎠ we have a 𝑍𝑛 × 𝑍𝑛 1-symmetry.

Some of the above 1-symmetries are anomalous. To determine which, we need

examine which of the transformations in (5.19) changes the action amplitude when

the spacetime has a boundary. Under the transformation (5.19), the action amplitude

in (5.9) only changes by a factor defined on the boundary 𝜕ℳ3:

𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
𝜕ℳ3 𝑎

R/Z
𝐼 (𝛽

R/Z
𝐽 −⌊𝛽R/Z

𝐽 ⌉)+𝛽R/Z
𝐼 (𝑎

R/Z
𝐽 −⌊𝑎R/Z𝐽 ⌉)+𝛽R/Z

𝐼 (𝛽
R/Z
𝐽 −⌊𝛽R/Z

𝐽 ⌉)...

× 𝑒𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
𝜕ℳ3 𝛽

R/Z
𝐽 ⌣

1
⌊𝑑𝑎R/Z𝐼 ⌉−𝛽R/Z

𝐼 𝑎
R/Z
𝐽

= 𝑒
𝑖2𝜋

∑︀
𝐼≤𝐽 𝑘𝐼𝐽

∫︀
𝜕ℳ3 𝑎

R/Z
𝐼 (𝛽

R/Z
𝐽 −⌊𝛽R/Z

𝐽 ⌉)+𝛽R/Z
𝐼 (𝛽

R/Z
𝐽 −⌊𝛽R/Z

𝐽 ⌉)+𝛽R/Z
𝐽 ⌣

1
⌊𝑑𝑎R/Z𝐼 ⌉

...

× 𝑒−𝑖2𝜋
∑︀

𝐼≤𝐽 𝑘𝐼𝐽
∫︀
𝜕ℳ3 𝛽

R/Z
𝐼 ⌊𝑎R/Z𝐽 ⌉ (5.22)

We see that the transformations leave the action amplitude invariant if
∑︀

𝐼≤𝐽 𝑘𝐼𝐽𝛽
R/Z
𝐽 =

0 and
∑︀

𝐼≤𝐽 𝑘𝐼𝐽𝛽
R/Z
𝐼 = integer. We note that 𝛽R/Z

𝐼 satisfy the condition
∑︀

𝐼𝐽 𝐾𝐼𝐽𝛽
R/Z
𝐼 ∈

Z, and so the first equation implies the second. We find that the 1-symmetry trans-
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formations in (5.19) are anomaly-free if

∑︁
𝐼≤𝐽

𝑘𝐼𝐽𝛽
R/Z
𝐽 = 0, ∀𝐼 (5.23)

For the level 𝑘 = 𝐾11 Chern-Simons theory with a single 𝑈(1) gauge field, this

is simply the fact that the only 𝑍𝑘 1-symmetry is anomalous and must break at the

boundary. For the case of mutual Chern-Simons theory (ie the 𝑍𝑛 gauge theory) with

𝑍𝑛 × 𝑍𝑛 1-symmetry, this implies that one of the 𝑍𝑛 1-symmetries is anomalous and

must break at the boundary, while the other 𝑍𝑛 1-symmetry is anomaly-free. Note

that the choice of lattice model automatically selects which of the 𝑍𝑛 1-symmetry is

anomalous; one can select the opposite by replacing all
∑︀

𝐼≤𝐽 with
∑︀

𝐼≥𝐽 .

5.2.1 Framing Anomaly

It is well known that the Chern-Simons theory has a framing anomaly [111, 47]. After

integrating out the physical degrees of freedom 𝑎
R/Z
𝐼 in (5.9) in the small 𝑔 limit, we

should get a partition function given by the 2+1D gravitational Chern-Simons term:

𝑍(𝑀3, 𝑔𝜇𝜈) ∝ 𝑒𝑖
2𝜋𝑐
24

∫︀
𝑀3 Ω3 (5.24)

where the 3-form Ω3 satisfies 𝑑Ω3 = 𝑝1 and 𝑝1 is the first Pontryagin class for the

tangent bundle. Here 𝑐 is the chiral central charge – the difference between the

numbers of positive and negative eigenvalues of the 𝐾-matrix. There is a framing

anomaly when 𝑐 ̸= 0 mod 24.

This framing anomaly might prevent a local lattice realization of chiral Chern-

Simons theory with a non-zero central charge 𝑐 ̸= 0. However, our construction

shows that chiral 𝑈(1) Chern-Simons theory can always be realized on any 2+1D

spacetime lattice. We believe that this is possible because our spacetime lattice

has extra structure, namely the branching structure [30, 27, 24], which encodes the

ordering of lattice vertices and appears in the definition of the cup product. If we take

different branching structures on the same spacetime lattice, the resulting partition
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function 𝑍 may be different. In turn, this branching structure dependence of partition

function may represent the framing anomaly.

5.3 Summary of the Bosonic Lattice Chern-Simons

Model

We have constructed a local bosonic model which realizes any Abelian 2+1d topologi-

cal order, represented as a lattice model of 𝐾-matrix Chern-Simons theory. Moreover,

this model has a local Hilbert space, and is manifestly a function of compact rotor vari-

ables. This is a significant improvement on previous models. Even stronger evidence

for the phase produced by this model is given by the exactly realized 1-symmetries

and their anomalies. We now have a lattice model for any 2 + 1d Abelian topological

order.

Nonetheless, it is not clear how to use this achievement to get back towards a

chiral 1 + 1d field theory. While these topological orders carry edge modes, it is not

clear how this could be extracted from the actions we have constructed. In the next

section, we will ‘ungauge this model,’ turning a 2 + 1d topological order into a 2 + 1d

SPT state. Moreover, these SPT models will be exactly solvable, and that will point

the way back towards the edge theory.
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Chapter 6

A 𝑈(1) SPT and Discontinuous

Lattice Topological Terms

In this chapter, we develop an exactly solvable model for SPT states by ‘ungauging’

the Chern-Simons model of the previous chapter. In this new, exactly solvable SPT

model, we will find examples of almost every phenomenon discussed in Chapters 2

and 3, from chiral anomalies to the short-range entanglement that characterizes SPTs.

This will lead to a 1 + 1d chiral lattice field theory as an almost trivial corollary in

the next chapter.

We begin in Section 6.1 where we make use of an ungauging process to turn the

lattice gauge theory model of topological order from Chapter 5 into a lattice non-linear

sigma model describing SPT states. This allows us to get our first glimpse of the larger

model, and by ungauging the model in the presence of a background gauge field we

will establish the first proof of the Hall conductance of this model. In Section 6.2, we

integrate this model into a two-dimensional phase diagram describing the superfluid-

Topological Mott Insulator transition (SF-tMI). The original ‘ungauged’ action then

corresponds to the tMI fixed points, and we build an understanding of these phases

as condensates of charged vortices. We then examine the phase transitions for these

models in Section 6.5, and present a brief lattice renormalization group argument in

Section 6.6.
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6.1 Ungauging the Chern-Simons Theory

Here we ungauge the Chern-Simons lattice action to build our SPT model, both as-is

and in the presence of a background gauge field. Let us begin with the Chern-Simons

action reduced to just a single mode:

𝑆 = 2𝜋𝑖𝑘

∫︁ [︀
𝑎(𝑑𝑎− ⌊𝑑𝑎⌉)− ⌊𝑑𝑎⌉𝑎− 𝑎 ∪1 𝑑⌊𝑑𝑎⌉+ 𝑑

(︀
𝑎(𝑎− ⌊𝑎⌉)

)︀]︀
(6.1)

where we have dropped the Maxwell term. Recall that, because we are working with

angular variables 𝑎𝑖𝑗, and not the rotor variables 𝑈𝑖𝑗 = 𝑒2𝜋𝑖𝑎𝑖𝑗 , we must impose a

gauge redundancy on all physical quantities. In order to to ensure that the degrees

actually remain rotors, we require a “rotor redundancy”, with all physical quantities

being invariant under the replacement

𝑎𝑖𝑗 → 𝑎𝑖𝑗 +𝑚𝑖𝑗 (6.2)

Put more simply, we require that all physical quantities must be periodic functions

of 𝑎𝑖𝑗. This redundancy ensures that the action (6.1) is a function of R/Z ≃ 𝑈(1)

variables, and in turn is the source of level quantization, ensuring that 𝑘 ∈ Z.

The Chern-Simons action is formulated in terms of a one-cochain 𝑎, i.e. variables

defined on the links of the lattice. To ungauge this model we set [106]:

𝑎𝑖𝑗 = 𝜑𝑖 − 𝜑𝑗, or 𝑎 = 𝑑𝜑 (6.3)

where 𝜑 is zero-cochain defined on the vertices. The partition function is now given

by:

𝑍 =

∫︁
[
∏︁

𝑑𝜑]𝑒𝑖2𝜋𝑘
∫︀
ℳ3 𝑑𝜑𝑑⌊𝑑𝜑⌉ (6.4)

whereℳ3 may have boundaries, and the measure is taken to be integration over all

sites,
∫︀ ∏︀

𝑑𝜑 =
∏︀

𝑖

∫︀ 1
2

− 1
2

𝑑𝜑𝑖.

This action has a similar “rotor redundancy” as the Chern-Simons action. Note
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that we may shift:

𝜑𝑖 → 𝜑𝑖 + 𝑛𝑖 (6.5)

where 𝑛𝑖 is a Z-valued zero-cochain. The term 𝑑⌊𝑑𝜑⌉ is invariant because it transforms

as:

𝑑⌊𝑑𝜑⌉ → 𝑑⌊𝑑𝜑+ 𝑑𝑛⌉ = 𝑑⌊𝑑𝜑⌉+ 𝑑2𝑛 = 𝑑⌊𝑑𝜑⌉ (6.6)

and so the whole action is invariant modulo 2𝜋. As in the case of the Chern-Simons

theories, this redundancy ensures that this action is a function of the 𝜑𝑖 as R/Z ≃ 𝑈(1)

variables. Beyond this rotor redundancy, our models will also possess two global

symmetries. The first is the 𝑈(1) symmetry of boson number conservation, which

acts as

𝜑𝑖 → 𝜑𝑖 + 𝜃 (6.7)

where 𝜃 is a constant. We also have a charge conjugation symmetry:

𝜑𝑖 → −𝜑𝑖, (6.8)

which sends 𝑔𝑖 = 𝑒2𝜋𝑖𝜑𝑖 → 𝑔*𝑖 . Note that eq. (6.4) enjoys all three of these symmetries.

In particular, the level 𝑘 is quantized as a direct result of the gauge redundancy (6.5).

To understand this action, note that 𝚥𝑣 ≡ ⋆(−𝑑⌊𝑑𝜑⌉) is the vortex current. To

see this, first note that ⌊𝑑𝜑⌉ is a one-cochain which, in three dimensions, is dual to a

surface where 𝜑 has a branch cut. Hence 𝑑⌊𝑑𝜑⌉ is dual to the line where the branch

cut surface ends (Figure 6-1a). Branch cut surfaces end at vortex lines; a 2d slice of a

vortex line and branch cut are shown in Figure 6-1b, where we see that the branch cut

terminates in a vortex. On a more microscopic level, consider the 2d lattice in figure

6-1c. The 𝑈(1) variables on sites are shown as clocks with zero marked as a vertical

line. The branch cut links with ⌊𝑑𝜑⌉ = 0 are marked in turquoise, and the branch

cut terminates in a vortex (blue) and anti-vortex (red). Hence we see that −𝑑⌊𝑑𝜑⌉ is

indeed the vortex number on a plaquette, with the sign fixed so that −𝑑⌊𝑑𝜑⌉ = +1

at a plaquette hosting a vortex. Note that conservation of vortex number means that

𝑑†𝚥𝑣 = 0, where 𝑑† ≡ ⋆𝑑⋆.
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Figure 6-1: (color online). (a) In 2 + 1 dimensions, ⌊𝑑𝜑⌉ is dual to a surface where
𝜑 has a branch cut, and 𝚥𝑣 = −𝑑⌊𝑑𝜑⌉ is dual to the line where a branch cut ends,
i.e. a vortex (b). (c) Working in two dimensions for convenience, we can see on
a microscopic level that −𝑑⌊𝑑𝜑⌉ is the vortex number on a plaquette. The field
variables are shown as clocks, while links with nonzero ⌊𝑑𝜑⌉ are marked in turquoise.
Plaquettes with −𝑑⌊𝑑𝜑⌉ ≠ 0 are marked in blue (vortex) and red (anti-vortex).
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To gain intuition, we can also rewrite the action in terms of the group variables

𝑔𝑖 = 𝑒2𝜋𝑖𝜑𝑖 . The vortex current an a plaquette 𝑝 becomes:

⋆ 𝚥𝑣 = −𝑑⌊𝑑𝜑⌉ = − 1

2𝜋𝑖
𝑑 log(𝑔𝑖𝑔

*
𝑗 ) = − 1

2𝜋𝑖
(log(𝑔𝑖𝑔

*
𝑗 ) + log(𝑔𝑗𝑔

*
𝑘) + ...) (6.9)

where the logarithm is taken with a branch cut along the negative real axis. In terms

of these variables, the exponentiated action becomes:

𝑒𝑖𝑆 =
∏︁

⟨𝑖,𝑗⟩∈ links

(𝑔𝑖𝑔
*
𝑗 )
⋆𝚥𝑣(2(𝑖,𝑗)) (6.10)

where 2(𝑖𝑗) is the plaquette dual to the link ⟨𝑖, 𝑗⟩ under the cup product. This

formulation is not as useful as working in terms of the 𝜑𝑖, but we do wish to establish

that this is truly a 𝑈(1) theory.

The topological action suggests that this model realizes an SPT state. To see the

SPT order, we repeat the ungauging in the presence of a weak background gauge

field �̄� and evaluate the effective action for 𝐴. In the presence of background 𝑈𝜅(1)

background gauge field 𝐴, the ungauing is done via

𝑎 = 𝐴+ 𝑑𝜑. (6.11)

Now the model is given by

𝑍 = 𝑒
𝑖2𝜋𝑘

∫︀
ℳ3 𝐴(𝑑𝐴−⌊𝑑𝐴⌉)−⌊𝑑𝐴⌉𝐴−𝑖2𝜋𝑘

∫︀
ℳ3 𝐴⌣

1
𝑑⌊𝑑𝐴⌉∫︁

[
∏︁

𝑑𝜑] 𝑒
−𝑖2𝜋𝑘

∫︀
ℳ3 𝑑𝜑⌣

1
𝑑⌊𝑑𝐴⌉+𝑖2𝜋𝑘

∫︀
ℳ3 𝑑𝜑(𝑑𝐴−⌊𝑑𝐴⌉)−⌊𝑑𝐴⌉𝑑𝜑+𝑖2𝜋𝑘

∫︀
𝜕ℳ3 (𝐴+𝑑𝜑)(𝐴+𝑑𝜑−⌊𝐴+𝑑𝜑⌉)

Note that this model has a rotor redundancy for 𝐴:

𝐴→ 𝐴+𝑚 (6.12)

93



in addition to the usual one for 𝜑. Ifℳ3 is closed, this can be simplified to

𝑍 = 𝑒
𝑖2𝜋𝑘

∫︀
ℳ3 𝐴(𝑑𝐴−⌊𝑑𝐴⌉)−⌊𝑑𝐴⌉𝐴−𝑖2𝜋𝑘

∫︀
ℳ3 𝐴⌣

1
𝑑⌊𝑑𝐴⌉∫︁

[
∏︁

𝑑𝜑]𝑒
−𝑖2𝜋𝑘

∫︀
ℳ3 𝑑𝜑⌣

1
𝑑⌊𝑑𝐴⌉−𝑖2𝜋𝑘

∫︀
ℳ3 𝑑𝜑⌊𝑑𝐴⌉+⌊𝑑𝐴⌉𝑑𝜑 (6.13)

Now we assume that the background field is “weak.” Because we are working with

R/Z valued fields, a weak field means that 𝑑𝐴 is nearly an integer, i.e. |𝑑𝐴−⌊𝑑𝐴⌉| < 𝜖.

Noting that this implies that 𝑑⌊𝑑𝐴⌉ = 0, the path integral becomes:

𝑍 = 𝑒𝑖2𝜋𝑘
∫︀
ℳ3 𝐴(𝑑𝐴−⌊𝑑𝐴⌉)−⌊𝑑𝐴⌉𝐴 (6.14)

This is the Chern-Simons response on lattice. When ℳ3 is closed, the action is

invariant under gauge transformations of the background gauge field 𝐴→ 𝐴+ 𝑑𝜙. If

ℳ3 is a disk, the redundancy (6.12) can be used to set ⌊𝑑𝐴⌉ = 0, and the response

becomes:

𝑍 = 𝑒𝑖𝜋
∑︀
𝑘
∫︀
ℳ3 𝐴𝑑𝐴 (6.15)

This Chern-Simons response, in terms of the level 𝑘, describes the Hall conductance

and is the SPT invariant for our model. We will use this action, coupled to a back-

ground gauge field 𝐴 in what follows below, and will see the Hall conductance from

several different perspectives.

6.2 Generalization to Arbitrary 𝑘 and the Topologi-

cal Mott Insulators

With the model (6.4) in hand, we can actually pursue a generalization to non-integer

𝑘. The key to this is to note that we can replace the action by:

𝑆 = 2𝜋𝑖𝑘

∫︁
𝑑𝜑𝑑⌊𝑑𝜑⌉ = 2𝜋𝑖𝑘

∫︁
(𝑑𝜑− ⌊𝑑𝜑⌉)𝑑(𝑑𝜑− ⌊𝑑𝜑⌉) (6.16)
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Now, this action is rotor redundant under (6.5) for any 𝑘. In this section, we elaborate

this model, adding to it a second term which reveals the character of this action as a

topological Mott Insulator.

6.2.1 The Topological Mott Insulators

The phase transitions that occur in lattice boson systems between Mott insulators

[71] and superfluids (SF) have been extensively studied [45, 8, 31, 80, 36, 88, 8], in

part because they embody the competition between kinetic energy and interactions

which underlies much of condensed matter physics. If the kinetic energy dominates,

the bosons condense into a superfluid. On the other hand, repulsive interactions tend

to favor the bosons being localized in real space; if they dominate the system forms

a Mott Insulator.

In a seminal work [35], Fisher et. al. showed that the superfluid-Mott insulator

(SF-MI) quantum phase transition generically falls into one of two universality classes.

In the Mott insulating phase, the average density is pinned to a fixed integer; if the

the chemical potential is varied, then the extra bosons (or holes) may condense into a

SF, leading to an ‘ideal’ mean-field transition with dynamical critical exponent 𝑧 = 2.

On the other hand, if the chemical potential is chosen so that particle-hole symmetry

is maintained, then the SF-MI transition is actually a multicritical point and lies in

the XY universality class, with 𝑧 = 1. The XY transition in particular in 2 + 1d

is in the same universality class as the condensation of superfluid helium at a finite

temperature, and so has seen impressive theoretical [18, 42, 50, 48] and experimental

[62, 63] study.

This story becomes more complex in systems where time-reversal symmetry is

broken. In 2+1d, the insulating state can develop a quantized Hall conductance, with

such states being known variously as 𝑈(1) symmetry protected topological phases

[27], topological Mott Insulators (tMIs), or the Bosonic Integer Quantum Hall Effect

[66, 84, 39]. These models generated significant excitement; recently a fermionic

analogue [81] has been proposed as the mechanism behind the Quantum Anomalous

Hall state in twisted bilayer graphene [22] (though we will focus on bosonic tMIs
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in this chapter). The topological Mott insulating states are labeled by their Hall

conductance, which for the bosonic systems we consider is always an even integer

multiple of 𝑒2/ℎ, viz. 𝜎𝑥𝑦 = (2𝑘) 𝑒
2

ℎ
for 𝑘 ∈ Z.

As for the SF-MI transition, we can ask about the nature of the phase transition

that occurs between a SF and a tMI. What should the the critical exponents of this

transition be? Due to the strong charge density and current fluctuations, the answer

is not immediately clear.

We will focus on the particle-hole symmetric 𝑧 = 1 multicritical point, where we

will be able to write down a lattice field theory well-suited for describing the phase

diagram at fixed integer boson density. We show that the critical exponents of the

SF-tMI 𝑋𝑌 transition are exactly the same as the regular SF-MI 𝑋𝑌 transition.

Moreover, we will see that the bulk dynamics of all local excitations are identical at

or even away from the critical point, unless there is an applied background gauge field.

We do this by constructing a well defined lattice model and showing that the bulk

dynamics are invariant under a “level-shift symmetry” induced by adding a topological

𝜃-term, that changes the Hall conductance by 2𝑘 𝑒
2

ℎ
, hence connecting the dynamics of

the tMIs to the 𝑘 = 0 trivial MI. As our model is well-regulated on the lattice, we can

show that this level-shift symmetry is exact, i.e. valid at all relevant energy scales.

Crucially, this means that the extraordinary numerical, theoretical, and experimental

study of the 2 + 1d XY transition is applicable to the SF-tMI transition as well.

In the presence of a background gauge field, level-shift symmetry is broken and

the topological term leads to a Chern-Simons response and quantized Hall conduc-

tance. In particular, the topological term causes the vortices which proliferate in the

insulating phase to carry charge. We discuss how charged vortices lead directly to the

quantized Hall response. This quantized Hall response characterizes the tMI phase

and we argue that it persists in the vicinity of the SF-tMI transition.

For two transitions related by the level-shift symmetry (i.e. for two models differ-

ing only by the topological term), the correlations of any local operators are identical,

at and away from the transition point, even though the two transition points have

different Hall conductance. This is possible since the level-shift symmetry, i.e. the
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topological term, changes the definition of current operators.

Beyond the description of the topological Mott insulators, these models also rep-

resent an advance on a purely theoretical front. It has been known for some time

[27, 25, 105] that topological terms for 𝑑+1-dimensional spacetime lattice models are

labeled by elements of the group cohomology 𝐻𝑑+1(𝐺,𝑈(1)). The cocycles of these

models provide actions that are lattice analogs of continuum 2𝜋-quantized topological

𝜃-terms (i.e. with 𝜃 = 0 mod 2𝜋), and some of our analysis parallels continuum work

[114]. It has also been known that in order to obtain a nontrivial group cohomology

class for continuous groups, one must consider discontinuous cocycles. However, the

first explicit expression of these discontinuous cocycles was only found very recently;

the 𝑈(1) models discovered in [32] and suitably generalized here are the first exam-

ples. They follow considerable work placing quantum Hall physics on lattices [23, 91],

and join similar works aiming to describe 2 + 1d systems with [96] or without [9] gap-

pable boundaries. They are one of several approaches demonstrating ways around

[49, 32] a related no-go theorem [55, 120] preventing Hall conductance on the lattice,

which does not hold in our case due to the infinite-dimensional on-site 𝑈(1) rotor

Hilbert space. These discontinuous cocycles are the key to understanding the SF-tMI

transition, and also pave the way for studying more complicated transitions involving

nonabelian Lie groups.

6.3 Model Overview

We will be concerned with lattice systems of bosons in 2 + 1𝑑 at fixed average integer

density. As in the traditional 𝑋𝑌 model, the field variables in our theory are 𝑈(1)

rotors living on the sites 𝑖 of a three-dimensional Euclidean spacetime lattice. We

denote the field variables by 𝜑𝑖, which correspond to the phase of the microscopic

boson operator on site 𝑖 (as we are working at fixed average density, we are allowed to

work solely with the phase modes 𝜑𝑖). As before, we let the 𝜑𝑖 be periodic under shifts

by unity, rather than by 2𝜋. Hence a 𝑈(1) angle 𝜑𝑖 will take values in [0, 1), while a

group element is given by 𝑔𝑖 = 𝑒2𝜋𝑖𝜑𝑖 . This will avoid numerous factors of 2𝜋 below,
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and one may always convert back to the usual notation by replacing 𝜑→ 𝜑/2𝜋.

The trivial (i.e. non-topological) 𝑋𝑌 model Lagrangian satisfies all of these sym-

metries. It is

𝑆 = −1

𝑔

∑︁
⟨𝑖,𝑗⟩

cos(2𝜋(𝑑𝜑)𝑖𝑗) (6.17)

Here the sum runs over all links ⟨𝑖, 𝑗⟩ in the 2 + 1d lattice, and (𝑑𝜑)𝑖𝑗 = 𝜑𝑖 − 𝜑𝑗.

The phase of the model is controlled by 𝑔. As 𝑔 → 0, the strong ‘kinetic’ term sets

𝑑𝜑 = 0 and so 𝜑 = const., confining all vortices and resulting in the 𝑈(1) symmetry

breaking superfluid phase. As 𝑔 → ∞, the fluctuations of 𝜑 overpower the kinetic

suppression and vortices proliferate, destroying long-range order and leading to the

Mott insulating phase.

To get the tMIs from a lattice model, we simply add our topological term:

𝑆𝑘 = −2𝜋𝑖𝑘

∫︁
(𝑑𝜑− ⌊𝑑𝜑⌉)𝑑(𝑑𝜑− ⌊𝑑𝜑⌉) = 2𝜋𝑖𝑘

∫︁
(𝑑𝜑− ⌊𝑑𝜑⌉)𝑑⌊𝑑𝜑⌉ (6.18)

as 𝑑2 = 0. The full model combines the kinetic energy with the theta term:

𝑆𝑔,𝑘[𝜑] = −1

𝑔

∑︁
links

cos(2𝜋𝑑𝜑) + 2𝜋𝑖𝑘

∫︁
(𝑑𝜑− ⌊𝑑𝜑⌉)𝑑⌊𝑑𝜑⌉ (6.19)

and the complete partition function is:

𝑍𝑘,𝑔 =

∫︁
𝐷𝜑𝑒

1
𝑔

∑︀
links cos 2𝜋𝑑𝜑−2𝜋𝑖𝑘

∫︀
(𝑑𝜑−⌊𝑑𝜑⌉)𝑑⌊𝑑𝜑⌉ (6.20)

where the measure
∫︀
𝐷𝜑 =

[︁∏︀
𝑖

∫︀ 1
2

− 1
2

𝑑𝜑𝑖

]︁
has already gauge-fixed the rotor redun-

dancy (6.5).

We thus have a two parameter phase diagram, defined in terms of a rotor-redundant

model with global 𝑈(1) and particle-hole symmetries. Our task in the remainder of

this section will be to understand this phase diagram.

Let us first fix 𝑘 = 0, in which case we have reduced to the traditional 𝑋𝑌

model for the SF-MI transition. This model has been extremely well studied, and

it is known that there are two phases: for small 𝑔, the system spontaneously breaks
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𝑈(1) symmetry, setting 𝑑𝜑 = 0 and resulting in a superfluid phase. For large 𝑔,

the system is in a disordered symmetry preserving phase, corresponding to a Mott

insulator. The transition between the two occurs at some non-universal 𝑔𝑐, with

𝑔 < 𝑔𝑐 corresponding to the superfluid phase and 𝑔 > 𝑔𝑐 corresponding to the Mott

Insulator phase. Physically, we can understand this in terms of spin-zero bosons on

a lattice at unit filling. When the system is a superfluid, phase rigidity 𝜑 ≈ const.

develops. On the other hand, when the system is a Mott insulator, the phase of each

Boson fluctuates independently, thereby preserving 𝑈(1) symmetry and destroying

any long-range order.

Adding the topological term (and thereby breaking time-reversal symmetry) turns

the one-dimensional phase diagram into a two-dimensional one. In the superfluid

phase, vortices are suppressed, and we expect that the topological term should be

unimportant, leading to just a single SF phase. On the other hand, vortices proliferate

in a disordered phase, and so we expect the topological term to be important in the

disordered phase. As we will soon see, the tMI fixed points are given by 𝑔 → ∞,

𝑘 ∈ Z. For generic 𝑘 and large 𝑔, we will see that the system flows to attractive fixed

points at 𝑘 → ⌊𝑘⌉ and 𝑔 → ∞ which are studied in Section 6.4. For large 𝑔 and

half-odd-integer 𝑘 we have the tMI-tMI transition discussed in Section 6.5.

In terms of this vortex current 𝚥𝑣, we may rewrite the action as:

𝑆𝑔,𝑘[𝜑] = −1

𝑔

∑︁
links

cos(2𝜋𝑑𝜑)− 2𝜋𝑖𝑘

∫︁
(𝑑𝜑− ⌊𝑑𝜑⌉) ⋆ 𝚥𝑣, (6.21)

where we see that the effect of the topological term is to couple 𝜑 to the vortex

current. Moreover, the topological term actually gives the vortices mutual statistics.

Written in terms of 𝚥𝑣, the topological term on a closed manifold is

𝑆𝑘[𝜑] = −2𝜋𝑖𝑘

∫︁
⌊𝑑𝜑⌉ ⋆ 𝚥𝑣 = 2𝜋𝑖𝑘

∫︁
𝚥𝑣 ∪

𝑑

�
𝚥𝑣, (6.22)

where � is the Laplacian. That this term gives statistical phases to braided vor-

tex lines can be seen by noting that it is of the same form as the response of a
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Chern-Simons gauge field coupled to a background current. More directly, current

conservation 𝑑†𝚥𝑣 = 0 allows us to write 𝚥𝑣 = ⋆𝑑𝐿, where the Poincare dual of 𝑑𝐿

marks the vortex lines in spacetime. In terms of 𝐿,

2𝜋𝑖𝑘

∫︁
𝚥𝑣 ∪

𝑑

�
𝚥𝑣 = 2𝜋𝑖𝑘

∫︁
𝐿 ∪ 𝑑𝐿, (6.23)

which indeed gives 2𝜋𝑖𝑘 times the linking number of the vortex worldlines. Hence

we see that the topological term changes the statistics of vortices, with vortex lines

having mutual statistics of 𝑒2𝜋𝑖𝑘.

Given that the topological term charges the statistics of vortices to be 𝑒2𝜋𝑖𝑘, we

expect that the bulk dynamics are only sensitive to the value of 𝑘 mod 1. This is

indeed true, and this fact is responsible for constraining the critical exponents of the

SF-tMI transition to be equal to those of the usual SF-MI transition. To see this,

note that

𝑆𝑔,𝑘+1[𝜑]− 𝑆𝑔,𝑘[𝜑] = 2𝜋𝑖

∫︁ (︁
𝑑𝜑𝑑⌊𝑑𝜑⌉ − ⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉

)︁
(6.24)

The first term is a surface term, while the second is an integer multiple of 2𝜋𝑖 and

may be dropped. Hence, away from a boundary, the bulk dynamics at 𝑘 and 𝑘+1 are

identical. All correlation functions of local operators, and hence all critical exponents,

are identical (see Appendix B for a physical interpretation). We will call the bulk

invariance under 𝑘 → 𝑘 + 1 the “level shift symmetry”.

Continuum topological 𝜃 models have similar level shift symmetries. From a the-

oretical perspective, shifting the level in this model corresponds to adding an SPT

order. In this particular case, it is remarkable that doing so changes the action by

only a surface term and therefore does not change the bulk dynamics of the system

for any local operator and hence leads to identical critical behavior of local opera-

tors at the SF-MI and SF-tMI critical points. More generally, this may be true not

just for the SF-tMI transition but for generic symmetry breaking transitions. If two

topological phases have the same symmetry, differ only by the addition of an SPT

or invertible topological order, and undergo symmetry-breaking phase transitions to

the same symmetry-breaking phase, similar arguments may imply that the critical
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Figure 6-2: (color online) For 2𝑘 ∈ Z, the action of the 𝑊𝑘 operators cancels out the
effects of time-reversal on the boundary of an open manifold.

behavior of the two models is identical — but more study will be required in this

area.

Returning to the model at hand, the level-shift symmetry under 𝑘 → 𝑘 + 1 has

important implications for the action of time-reversal symmetry. Note that time-

reversal reverses the orientation of the lattice and so exchanges the representative of

the top cohomology, effectively changing the sign on the integral in the topological

term 𝑆𝑘[𝜑], which consequently is odd under time reversal. This implies that if 2𝑘 ∈ Z,

then the bulk dynamics are time-reversal symmetric.

While the standard time reversal symmetry does not hold on the boundary, a

modified time-reversal symmetry does. Time-reversal symmetry holds for 2𝑘 ∈ Z

because 𝑆𝑔,𝑘 and 𝑆𝑔,−𝑘 differ only by a surface term:

𝑆𝑔,𝑘 − 𝑆𝑔,−𝑘 = 2𝜋𝑖(2𝑘)

∫︁
𝑑(𝜑𝑑⌊𝑑𝜑⌉) (6.25)

On a closed manifold, this surface term vanishes, and the theory at 𝑘 and its time-

reversed conjugate at −𝑘 are identical. To extend this symmetry to open manifolds,

we need to cancel the leftover effects on the boundary (See Figure 6-2). Let us consider
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Figure 6-3: (color online.) Because the bulk dynamics are invariant under 𝑘 → 𝑘+1,
we may construct a sketch of the RG flow diagram. Along the 𝑔 =∞ axis are the 𝒯𝑘
fixed points, while at 𝑔 = 𝑔𝑐 we have the SF-(t)MI transitions.

a spacetime manifold ℳ3 with a spatial boundary ℬ2. For 2𝑘 ∈ Z, we define the

operators ℰ̂2𝑘 = 𝑒−2𝜋𝑖(2𝑘)
∫︀
ℬ2 𝜑𝑑⌊𝑑𝜑⌉, and let �̂� be the complex conjugation operator.

We define the time-reversing operators:

𝒯𝑘 = �̂�ℰ̂2𝑘 (6.26)

For 𝑘 = 0, this reduces to the usual time-reversal operator. For other integer or

half-odd-integer 𝑘, the operator ℰ̂𝑘 corresponds to shifting the level by 2𝑘. This is

precisely the the boundary change of the bulk level under shifting 𝑘 by an integer.

For each 𝑘 with 2𝑘 ∈ Z, the model is invariant under the 𝒯𝑘 operator.

Together, these observations lead to the RG flow diagram shown in Figure 6-3.

The line at 𝑔𝑐 separates the disordered phase from the symmetry breaking phase. As

there are few vortices in the symmetry breaking phase, we expect that the topological

term will be only be relevant in the MI phase. The novel parts of this model are the

disordered fixed points with modified time-reversal symmetry with 2𝑘 ∈ Z at 𝑔 →∞.

Later, we will see that the integer fixed points with 𝑘 ∈ Z describe gapped SPT
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phases with Hall conductance, while the half-odd-integer fixed points describe the

topological transition between tMIs at 𝑘 and 𝑘 + 1.

In the next section, we will study the integer 𝑘 phases in detail. We will discuss

in detail how to see that they describe the topological Mott insulators, and will

describe the physical mechanisms behind the SF-tMI phase transition and the tMI

Hall conductance. In Section 6.5, we will study the half-odd-integer phases, and argue

that they are the transitions between the tMIs.

6.4 The Integral Phases

We now consider the fixed point phases with 𝑔 → ∞ and 𝑘 ∈ Z. In this case, the

action reduces to:

2𝜋𝑖𝑘

∫︁
𝑑𝜑𝑑⌊𝑑𝜑⌉ = 2𝜋𝑖𝑘

∫︁
𝑑(𝜑𝑑⌊𝑑𝜑⌉) (6.27)

This is the action of the exactly solvable model in [32], where it is shown that this

action creates a ground state which has a nontrivial Chern number 2𝑘 and Hall

response of 2𝑘 𝑒
2

ℎ
. In what follows, we will see that the ground state consists of a

condensate of charged vortices, and that this condensation leads to an SPT phase

with Hall conductance.

Before proceeding to that ground state physics, it will be useful to examine the

model coupled to a background gauge field. In the SF phase1, we may minimally

1Up to one-cup products, the minimally coupled gauged action and the one derived by ungauging
the lattice Chern-Simons action differ by a term:

4𝜋𝑖𝑘

∫︁
(𝑑𝜑−𝐴)(⌊𝑑𝐴⌉+ 𝑑⌊𝑑𝜑−𝐴⌉) = 2𝜋𝑖𝑘

∫︁
(𝑑𝜑−𝐴)⌊⋆𝑗⌉ (6.28)

which vanishes in the SF phase, since there ⌊⋆𝑗⌉ = 0. In the tMI phase, we take the action derived by
ungauging. Note that the ungauged action is only rotor redundant for 𝑘 ∈ Z, which means that we
do not know how to couple the model to a background gauge field in the tMI phase for non-integer
𝑘.
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couple the action to get:

𝑆𝑔,𝑘[𝜑;𝐴] =
1

𝑔

∑︁
⟨𝑖,𝑗⟩

cos 2𝜋((𝑑𝜑)𝑖𝑗 − 𝐴𝑖𝑗)

+ 2𝜋𝑖𝑘

∫︁
(𝑑𝜑− 𝐴− ⌊𝑑𝜑− 𝐴⌉)𝑑(𝐴+ ⌊𝑑𝜑− 𝐴⌉) (6.29)

where we have used the form of the action in eq. (6.18) to create the minimal

coupling. As with 𝜑, we have also taken 𝐴 to have a period of unity, rather than 2𝜋.

Correspondingly we have two rotor redundancies

𝜑𝑖 → 𝜑𝑖 + 𝑛𝑖 (6.30)

𝐴𝑖𝑗 → 𝐴𝑖𝑗 +𝑚𝑖𝑗 (6.31)

with 𝑚,𝑛 ∈ Z, in addition to the usual gauge symmetry:

𝜑𝑖 → 𝜑𝑖 + 𝜙𝑖

𝐴𝑖𝑗 → 𝐴𝑖𝑗 + 𝜙𝑖 − 𝜙𝑗 (6.32)

and global 𝑈(1) symmetry. With 𝑘 ∈ Z, the topological part of the action in the

superfluid phase becomes:

𝑆𝑘[𝜑;𝐴] = +2𝜋𝑖𝑘

∫︁ (︁
(𝑑𝜑− 𝐴)𝑑𝐴− ⌊𝑑𝜑− 𝐴⌉𝑑𝐴+ (𝑑𝜑− 𝐴)𝑑⌊𝑑𝜑− 𝐴⌉

)︁
, (6.33)

where the term
∫︀
⌊𝑑𝜑 − 𝐴⌉𝑑⌊𝑑𝜑 − 𝐴⌉ has been dropped on account of it being an

integer. With the background field, the vortex current becomes:

⋆ 𝚥𝑣 = 𝑑(𝑑𝜑− 𝐴− ⌊𝑑𝜑− 𝐴⌉) = −(𝑑𝐴+ 𝑑⌊𝑑𝜑− 𝐴⌉) (6.34)

Evaluating (6.33) on a closed manifold and substituting in the vortex density, the
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topological part of the action becomes:

𝑆𝑘[𝜑;𝐴] = 2𝜋𝑖𝑘

∫︁ (︀
𝐴𝑑𝐴+ 𝐴 ∪ (⋆𝚥𝑣) + (⋆𝚥𝑣) ∪ 𝐴

)︀
(6.35)

Thus we see a second effect of the topological term: in addition to giving the vortices

mutual statistics at non-integer 𝑘, at integer 𝑘 it gives vortices a charge of 2𝑘. In

turn, we will see next that it is the condensation of these charged vortices that gives

rise to the tMI phase.

6.4.1 Ground State and SPT Order

A closer look at the action (6.27) above reveals an apparent paradox. The action

would seem to be trivial, as the Lagrangian 𝑑𝜑𝑑⌊𝑑𝜑⌉ = 𝑑(𝜑𝑑⌊𝑑𝜑⌉) is a total derivative,

and yet we will see [32] that the state is a stable, gapped phase with Hall conductance.

The resolution to this reflects the SPT nature of the tMI phase. In particular, the

term which the Lagrangian is a total derivative of, viz. 𝜑𝑑⌊𝑑𝜑⌉, is itself not locally

𝑈(1) symmetric. On a closed manifold, one may rewrite the Lagrangian as a total

derivative of −𝑑𝜑[𝑑𝜑], but in this case the rotor redundancy does not hold locally, and

the model thus fails to even be well-defined. There is no way to write the Lagrangian

total derivative of a term which is locally both 𝑈(1) symmetric and rotor redundant.

Thus the apparent paradox is not a paradox at all. The Lagrangian is indeed

a total derivative, but it is not a derivative of anything 𝑈(1) symmetric and rotor

redundant. If we break 𝑈(1) symmetry, then the model is trivial, and the action can

be canceled by an allowed total derivative term. On the other hand, so long as 𝑈(1)

symmetry is preserved (along with rotor redundancy, which is always required) then

the action is nontrivial.

At the same time, the model is easily solved because it is a total derivative. In

particular, the bulk dynamics are trivial: if 𝜕ℳ3 = 0, then the action vanishes and

the partition function simply becomes unity. However, the ground state of the model,

exposed on a spatial boundary of spacetime, contains nontrivial physics.

We can see this behavior directly from the ground state wavefunction, by which we
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mean the wavefunction created on the boundary. Specifically, we obtain the ground

state on a 2d manifold ℬ2 by evaluating the action (6.27) on a spacetime ℳ3 with

(spacelike) boundary ℬ2 = 𝜕ℳ3. Because the action is a surface term, we can

immediately write down the 𝑔 →∞ ground state:

|𝜓𝑘⟩ =

∫︁
𝐷𝜑𝑒2𝜋𝑖𝑘

∫︀
ℬ2 𝜑𝑑⌊𝑑𝜑⌉ |{𝜑}⟩ (6.36)

where |{𝜑}⟩ = ⊗𝑖 |𝜑𝑖⟩𝑖 and again where we gauge-fix the measure as
∫︀
𝐷𝜑 =

∏︀
𝑖∈ℬ2

∫︀ 1
2

− 1
2

𝑑𝜑𝑖.

To understand the ground state further, let us first examine the 𝑘 = 0 case. In

that case, the 𝑔 →∞ ground state is

|𝜓𝑘=0⟩ =

∫︁
𝐷𝜑 |{𝜑}⟩ = ⊗𝑖 |0⟩𝑖 (6.37)

where |0⟩ =
∫︀ 1

2

− 1
2

𝑑𝜑 |𝜑⟩ is the 𝑈(1) symmetric state with eigenvalue 1. This is the

ground state of a trivial Mott insulator. Recall that 𝜑𝑖 should be thought of as the

phase of a particle at site 𝑖. In the Mott insulating phase, the particle wavepackets do

not overlap and their phases fluctuate independently, as in eq. (6.37) This should be

compared to deep in the symmetry breaking phase, where phase rigidity develops and

where all the 𝜑𝑖 are equal in the ground state. For nonzero 𝑘, the MI wavefunction

is ‘twisted’ by the operator

ℰ̂𝑘 = 𝑒2𝜋𝑖𝑘
∫︀
𝜑𝑑⌊𝑑𝜑⌉ = 𝑒−2𝜋𝑖𝑘

∫︀
𝜑𝜌𝑣 (6.38)

so that

|𝜓𝑘⟩ = ℰ̂𝑘 |𝜓𝑘=0⟩ (6.39)

Thus ℰ̂𝑘 is the operator that provides the SPT entanglement to twist the trivial MI

into a tMI. Note that on a closed manifold, ℰ̂𝑘 is 𝑈(1) invariant, as under 𝜑→ 𝜑+ 𝜃,

ℰ̂𝑘 → 𝑒2𝜋𝑖𝑘𝜃
∫︀
𝜌𝑣 ℰ̂𝑘 (6.40)
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On a closed manifold, the total vortex number must vanish, and so
∫︀
𝜌𝑣 = 0. This is

however not necessarily true on a manifold with boundary; hence the 𝑈(1) symmetry

is anomalous and breaks in the presence of a boundary.

We can also see this behavior locally. Let us split the ℰ̂𝑘 into operators on each

plaquette ∆ that transform the 𝑘 = 0 wavefunction into a nontrivial 𝑘 ground state,

namely:

𝑀𝑘[∆] = 𝑒−2𝜋𝑖𝑘
∫︀
Δ 𝜑𝜌𝑣 (6.41)

so that

|𝜓𝑘⟩ =
∏︁
Δ

𝑀𝑘[∆] |𝜓𝑘=0⟩ = ℰ̂𝑘 |𝜓𝑘=0⟩ (6.42)

On any plaquette ∆, 𝑀𝑘[∆] is not 𝑈(1) invariant. However, when multiplied together

over a closed manifold, the 𝑀𝑘 are indeed 𝑈(1) invariant, as

∏︁
Δ∈ℬ2

𝑀𝑘[∆] = ℰ̂𝑘 (6.43)

which, as discussed above, is 𝑈(1) invariant. This behavior is how SPTs are often

characterized: if we relinquish 𝑈(1) symmetry, then a finite set of local unitary trans-

formations (the 𝑀𝑘[∆]) suffices to transform the trivial ground state |𝜓𝑘=0⟩ into a

general |𝜓𝑘⟩. On the other hand, if we require 𝑈(1) symmetry, then only the nonlocal

operator ℰ𝑘 =
∏︀

Δ𝑀𝑘[∆] suffices.

6.4.2 Hall Conductance

The topological invariant for these phases is the Hall conductance. In Section 6.4.3,

the Chern number of the integer ground states will be calculated explicitly by con-

sidering the model with twisted boundary conditions, and we will find it to be 2𝑘.

Physically, we can understand this result in the context of the Laughlin thought ex-

periment. Consider the system on an open cylinder, as shown in Fig. 6-4. We wish

to twist the boundary conditions around the open direction by unity. Let |𝜓𝑘, 𝜃 = 0⟩
be the ground state at level 𝑘 before twisting of boundary conditions and |𝜓𝑘, 𝜃 = 2𝜋⟩
be the ground state after an adiabatic twisting process. The two are related by the
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Figure 6-4: (color online). In the Laughlin thought experiment, twisting the bound-
ary conditions of an open cylinder by a flux quantum transfers charge from one edge
to another. We may understand the twisting boundary conditions as the tunneling
of a vortex from one edge to another. Because the vortices carry charge 2𝑘, twist-
ing boundary conditions transfers charge 2𝑘 from one edge to another and the Hall
conductance is 2𝑘.

the creation of a vortex/anti-vortex pair at opposite edges of the sample, with the

resulting branch cut providing the 2𝜋 phase jump:

|𝜓𝑘, 𝜃 = 2𝜋⟩ = 𝑉Δ,Δ′ |𝜓𝑘, 𝜃 = 0⟩ , (6.44)

where 𝑉𝑖𝑗 creates a vortex at plaquette ∆ and an anti-vortex at plaquette ∆′. We can

physically imagine this as dragging a vortex across the cylinder in order to create the

branch cut. However, we have seen that the vortices have charge 2𝑘, and so dragging

a vortex across the sample transfers charge from one side of the sample to the other,

resulting in a hall conductance of 2𝑘 𝑒
2

ℎ
.

This Hall conductance is measurable through the tMI phase, and should persist in

the vicinity of the SF-tMI phase transition. Taking into account (6.35) near a phase

transition, an effective field theory becomes:

𝑆eff = 𝛼(𝜌𝑆𝐹 )

∫︁
(Π𝑇𝐴)2 + 2𝜋𝑖𝑘

∫︁
𝐴𝑑𝐴+ 𝛽(𝜌𝑆𝐹 )

∫︁
(Π𝑇𝐴)𝑑(Π𝑇𝐴) + ... (6.45)

where Π𝑇 is the transverse projector. The functions 𝛼(𝜌𝑆𝐹 ), 𝛽(𝜌𝑆𝐹 ) must vanish

with 𝜌𝑆𝐹 → 0, since they may only arise from integrating out gapless modes. In
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particular, as the transition is continuous, no term may suddenly cancel the transverse

conductance due to the Chern-Simons term.

We have now examined the tMI integer phases of the model, examined the the

entanglement structure of the tMIs, understood the SF-tMI transition as the prolif-

eration charged vortices, and explained how this leads to a Hall conductance in the

disordered phase and near the transition. In the next section, we create a commuting

projector model for the tMI phase.

6.4.3 Commuting Projector Model

Given that the bulk behavior of the path integral is trivial, we expect that we

should be able to create an exactly solvable Hamiltonian model to describe the time-

evolution. Furthermore, because the path integral defines a wavefunction on any

spatial boundary independently of the bulk dynamics, we expect that this Hamilto-

nian model should be a commuting projector onto a ground state. As we shall now

see, both are true.

Commuting projector models have been a central tool for understanding the new

zoo of theories. Employed most famously by Kitaev [57] to provide an exactly solvable

model for the previously proposed 2+1d 𝑍2 topological order [83, 98] with emergent

fermions and anyons, they now describe models for a wide class of string-net topo-

logical order [61], recently unleashed a flurry of research on fractons [21, 94], and

continue to underlie our microscopic understanding of exotic phases.

It is quite surprising then that no commuting projector model has been discovered

for gapped phases with non-zero Hall conductance. It was commonly believed that

none could exist, and recently a no-go theorem has been proposed [56], ruling out a

large class of potential theories with a finite Hilbert space on each site.

We can use the spacetime formalism to construct a commuting projector Hamil-

tonian on a triangular lattice of the sort shown in Fig. 6-5a. To do so, we consider

the time evolution of a single site, 𝜑4 → 𝜑5, while preserving the orientation of lattice

links as shown in fig 6-5b. Evaluating the path integral on the complex shown yields
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the matrix elements for the transition 𝜑4 → 𝜑5 as a function of the surrounding 𝜑𝑖:

𝑀𝜑4→𝜑5(𝜑1, ..., 𝜑8) = exp
{︁

2𝜋𝑖𝑘
[︁

𝜑0

(︁
⌊𝜑5 − 𝜑2⌉+ ⌊𝜑3 − 𝜑5⌉+ ⌊𝜑4 − 𝜑3⌉+ ⌊𝜑2 − 𝜑4⌉

)︁
+ 𝜑2

(︁
⌊𝜑5 − 𝜑6⌉+ ⌊𝜑2 − 𝜑5⌉+ ⌊𝜑4 − 𝜑2⌉+ ⌊𝜑6 − 𝜑4⌉

)︁
+ 𝜑3

(︁
⌊𝜑7 − 𝜑5⌉+ ⌊𝜑4 − 𝜑7⌉+ ⌊𝜑3 − 𝜑4⌉+ ⌊𝜑5 − 𝜑3⌉

)︁
+ 𝜑5

(︁
⌊𝜑6 − 𝜑5⌉+ ⌊𝜑8 − 𝜑6⌉+ ⌊𝜑7 − 𝜑8⌉+ ⌊𝜑5 − 𝜑7⌉

)︁
+ 𝜑4

(︁
⌊𝜑7 − 𝜑4⌉+ ⌊𝜑8 − 𝜑7⌉+ ⌊𝜑6 − 𝜑8⌉+ ⌊𝜑4 − 𝜑6⌉

)︁]︁}︁
(6.46)

We will interpret this transition amplitude as the matrix element for an operator �̂�4

acting on site-4. However, eq. (6.46) is somewhat daunting. Let us set consider �̂�4 as

an operator acting only on the Hilbert space on site-4. If 𝑘 = 0, then ⟨𝜑′
4| �̂�4 |𝜑4⟩ =

1, and �̂�4 is simply the projector onto the state with zero angular momentum in

each 𝑈(1). For nonzero 𝑘, we may rewrite the transition amplitude as 𝑀𝜑4→𝜑5 =

exp(2𝜋𝑖(𝑓(𝜑5) − 𝑓(𝜑4)) (note that this implies hermiticity) where 𝑓(𝜑) is a function

defined in the appendix that depends on 𝜑 and takes as parameters 𝜑1...𝜑8, but not

𝜑4 or 𝜑5. This implies that, up to an overall phase, the �̂�𝑖 act as

�̂� |𝜑⟩ ∝
∫︁
𝑑𝜑𝑒2𝜋𝑖𝑓(𝜑) |𝜑⟩ (6.47)

We see then that these projectors may be thought of as ‘twisting’ the zero angular

momentum state by a phase function 𝑓(𝜑) which depends on the surrounding values

of 𝜑𝑖. The phase itself is determined by the cocycle of the action in (6.4). We may

construct �̂�𝑖 for an entire lattice.

The �̂�𝑖 inherit a number of remarkable properties from the fact that the 2+1d path

integral action contains only a surface term. First, they mutually commute: consider

the three spacetime complexes in figure 6-5c, which addresses the only nontrivial case

of two adjacent �̂�𝑖. The two colored complexes correspond to time evolving either

the blue site followed by the red or the red followed by the blue, respectively. Because
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Figure 6-5: (Color Online). We construct a commuting projector model for the lattice
in (𝑎) by evaluating the spacetime path integral for the complex in (𝑏) and turning
the amplitude into operators. Because the path integral contains only a surface term,
we can show that (𝑐) the matrix is hermitian, (d) the operators commute, and (𝑒)
they are projectors.

the action contains only a surface term, and the surfaces are identical, it assigns the

same amplitude to both cases. Back in the Hamiltonian picture, this implies that

[�̂�𝑖, �̂�𝑗] = 0.

For the same reason, the �̂�𝑖 are projectors. The fundamental mechanism is illus-

trated in Fig. 6-5d, where we see the effect of time-evolving twice. In the language

of eq. 6.46, this is the expression 𝑀𝜑5→𝜑9𝑀𝜑4→𝜑5 ; in the Hamiltonian picture this is

�̂�2
𝑖 . However, because the path integral action depends only on the values of 𝜑 on

the surface, we could equally well drop site 5 and its associated links; the amplitude

will not change. This implies that �̂�2
𝑖 = �̂�𝑖.

The aforementioned hermiticity of the �̂�𝑖 is also due to this reason, as reversing

the orientation of the link ⟨4, 5⟩ in Fig. 6-5c changes the amplitude by complex

conjugation.

There is a simple way to view �̂�𝑖. We note that the groundstate wave function
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(6.36) on a spatial latticeℳ2 is a phase factor, which defines the unitary operator

ℰ̂𝑘 = 𝑒−2𝜋𝑖
∑︀

𝐼,𝐽 𝑘
∫︀
ℳ2 𝜑

R/Z
𝐼 𝜌𝑣𝐽 , (6.48)

where 𝜌𝑣𝐽 = −𝑑⌊𝑑𝜑R/Z
𝐽 ⌉ is the vortex density operator defined previously. Let 𝑃𝑖

be the projector onto the state of zero momenta at site 𝑖, with matrix elements

⟨𝜑′
𝐼(𝑖)|𝑃𝑖|𝜑𝐼(𝑖)⟩ = 1. Then we find:

�̂�𝑖 = ℰ̂𝑘𝑃𝑖ℰ̂†𝑘 (6.49)

Thus the �̂�𝑖 operators are essentially projectors onto zero angular momentum states,

twisted by the phases of the unitary operators ℰ̂𝑘. On a spatial lattice without

boundary, the groundstate wave function (6.36) has 𝑈(1) symmetry, i.e. is invariant

under 𝜑𝑖 → 𝜑𝑖 + 𝜃 + 𝑛𝑖. Thus the �̂�𝑖 also have 𝑈(1) symmetry. Note also that the

commuting, projector, and Hermitian properties of �̂�𝑖 immediately follow from this

description. The ground state wavefunction is given by (6.36) and can be written

as |𝜓𝑘⟩ = 𝒰𝑘 |𝜓0⟩, where |𝜓0⟩ = ⊗𝑖 |ℓ = 0⟩𝑖 is the product state of the zero-angular-

momentum states |ℓ = 0⟩ on each site 𝑖.

Using the mutually commuting projectors �̂�𝑖, we can define a Hamiltonian

𝐻 = −𝑔
∑︁
𝑖

�̂�𝑖 (6.50)

to obtain a system with ground state |𝜓⟩ from eq. (6.36) and gap 𝑔.

With a model producing the ground state eq. (6.36) now in hand, we return to

the Hall conductance. We have already argued from the path integral that coupling

the system to a background gauge field leads to the expected Chern-Simons response

function, but here we appeal directly to the wavefunction of the system on a torus to

confirm the hall conductance.

Consider the wavefunction on the lattice shown in Fig. 6-6. We twist the boundary

conditions by 𝜃𝑥𝑛, 𝜃𝑦𝑚, so that 𝜑𝑥=0,𝑦 = 𝜑𝑥=𝐿𝑥,𝑦 − 𝜃𝑥𝑛 and 𝜑𝑥,𝑦=0 = 𝜑𝑥,𝑦=𝐿𝑦 − 𝜃𝑦𝑚𝐼 ,

where the integral vectors 𝑛𝑚 allow us to describe both direct (𝑛 = 𝑚) and mixed
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Figure 6-6: (Color Online). (𝑎) The commuting projectors act on a hexagon to define
a ground state. (𝑏) To calculate the Chern number of the ground state wavefunction
over the holonomy torus, we twist the boundary conditions by 𝜃𝑥𝑛 and 𝜃𝑦𝑚 in the 𝑥
and 𝑦 directions, respectively.

hall responses. Denote the ground state with boundary conditions 𝜃𝑥, 𝜃𝑦 by |𝜃𝑥, 𝜃𝑦⟩.
We are interested in the phase accumulated when we twist the boundary conditions

by an integer, sending 𝜃𝑥 → 𝜃𝑥 + ℓ𝑥, 𝜃𝑦 → 𝜃𝑦 + ℓ𝑦 with ℓ𝑥, ℓ𝑦 ∈ Z.

Consider first the plaquettes marked in red. The contribution of these plaquettes

to the path integral is of the form:

exp
{︁
− 2𝜋𝑖𝑘

[︁
(𝜑𝑥=𝐿,𝑦 + 𝑛𝜃𝑥 − 𝜑𝑥=𝐿𝑥−1,𝑦)⌊𝜑𝑥=𝐿𝑥,𝑦+1 − 𝜑𝑥=𝐿𝑥,𝑦⌉

−
(︁

(𝜑𝑥=𝐿𝑥−1,𝑦+1 − 𝜑𝑥=𝐿𝑥−1,𝑦)⌊𝜑𝑥=𝐿𝑥,𝑦+1 + 𝑛𝜃𝑥 − 𝜑𝑥=𝐿𝑥−1,𝑦+1⌉
)︁]︁}︁

Incrementing 𝜃𝑥 by ℓ𝑥 changes the first term by an integer, while the second term

changes by (𝜑𝑥=𝐿𝑥−1,𝑦+1− 𝜑𝑥=𝐿𝑥−1,𝑦)ℓ𝑥, and so the multiplicative change on the path

integral is:

𝑒2𝜋𝑖𝑘(𝜑𝑥=𝐿𝑥−1,𝑦+1−𝜑𝑥=𝐿𝑥−1,𝑦)𝑛ℓ𝑥 (6.51)

Similarly, the plaquettes marked in blue change by:

𝑒−2𝜋𝑖𝑘(𝜑𝑥+1,𝑦=𝐿𝑦−1−𝜑𝑥,𝑦=𝐿𝑦−1)𝑚ℓ𝑦 (6.52)
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On the purple plaquettes at the corner, the contribution to the path integral is:

exp
{︁
−2𝜋𝑖𝑘

[︁(︁
(𝜑𝑥=𝐿𝑥,𝑦=𝐿𝑦−1+𝑛𝜃𝑥−𝜑𝑥=𝐿𝑥−,𝑦=𝐿𝑦−1)⌊𝜑𝑥=𝐿𝑥,𝑦=𝐿𝑦+𝑚𝜃𝑦−𝜑𝑥=𝐿𝑥,𝑦=𝐿𝑦−1⌉

)︁
−
(︁

(𝜑𝑥=𝐿𝑥−1,𝑦=𝐿𝑦 +𝑚𝜃𝑦 − 𝜑𝑥=𝐿𝑥−1,𝑦=𝐿𝑦−1)⌊𝜑𝑥=𝐿𝑥,𝑦=𝐿𝑦 + 𝑛𝜃𝑥 − 𝜑𝑥=𝐿𝑥−1,𝑦=𝐿𝑦⌉
)︁]︁}︁
(6.53)

which will change by:

exp
{︁
− 2𝜋𝑖𝑘

[︁
(𝜑𝑥=𝐿𝑥,𝑦=𝐿𝑦−1 + 𝑛𝜃𝑥 − 𝜑𝑥=𝐿𝑥−,𝑦=𝐿𝑦−1)𝑚ℓ𝑦

− (𝜑𝑥=𝐿𝑥−1,𝑦=𝐿𝑦 +𝑚𝜃𝑦 − 𝜑𝑥=𝐿𝑥−1,𝑦=𝐿𝑦−1)𝑛ℓ𝑥

]︁}︁
(6.54)

Combining the change on the red, blue, and purple plaquettes, the overall change to

the wavefunction is:

𝑒
−2𝜋𝑖𝑘

[︁
𝑛𝜃𝑥𝑚ℓ𝑦−𝑚𝜃𝑦𝑛ℓ𝑥−𝑛ℓ𝑥

∫︀
𝛾1
𝑑𝜑+𝑚ℓ𝑌

∫︀
𝛾2
𝑑𝜑

]︁
(6.55)

where 𝛾1, 𝛾2 are the red and blue loops in Fig. 6-6, respectively. As that 𝛾1, 𝛾2 are

closed, the sums along those curves vanish. Hence the wavefunction transforms as:

|𝜃𝑥 + ℓ𝑥, 𝜃𝑦 + ℓ𝑦⟩ = 𝑒−2𝜋𝑖𝑘[𝑛𝜃𝑥𝑚ℓ𝑦−𝑚𝜃𝑦𝑛ℓ𝑥] |𝜃𝑥, 𝜃𝑦⟩ (6.56)

To make sense of this, apply the gauge transformation:

|𝜃𝑥, 𝜃𝑦⟩ → 𝑒−2𝜋𝑖𝑘𝑛𝑚𝜃𝑥𝜃𝑦 |𝜃𝑥, 𝜃𝑦⟩ (6.57)

In this gauge, one may replace the phase in eq. (6.56) by:

𝑒−2𝜋𝑖𝑘(𝑛𝑚+𝑛𝑚)𝜃𝑥ℓ𝑦 (6.58)

We should recognize this as the boundary conditions for a particle on a torus with
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flux:

2𝑘𝑚𝑛 (6.59)

We see then that our Hamiltonian system has the (mixed) Hall conductance 𝑛 · 𝑘 ·𝑚,

in agreement with the Chern-Simons response function derived from the spacetime

path integral. In the case of 𝜅 = 1 with 𝑛 = 𝑚 = 1, this becomes a system with

integer hall conductance 𝐾 = 2𝑘 wich is an even integer.

We must also understand how this model evades the no-go theorem. The infinite

dimensional on-site Hilbert space of the rotors, combined with an action that is not

a continuous function of the field variables, is what allows this model to exist. The

discontinuous action is critical for commuting projectors; if it were continuous, then

one could truncate the Hilbert space to low-angular momentum modes and render the

on-site Hilbert space finite while retaining the full 𝑈𝜅(1) symmetry and commuting-

projector property, hence running afoul of the no-go theorem [56]. Conversely, the

no-go theorem assumes that the ground state wavefunction is a finite Laurent polyno-

mial in 𝑒𝑖𝜃𝑥 , 𝑒𝑖𝜃𝑦 , an assumption which is violated in our model (See the details of the

Chern number calculation in the Appendix for an example). This commuting pro-

jector model represents a fixed-point theory for 𝑈𝜅(1) SPT phases with nonzero Hall

conductance; it may be that any such fixed-point theory requires an infinite on-site

Hilbert space.

6.5 Topological Transitions at Half-Integer 𝑘

We have now established that the phases at integral 𝑘 are gapped SPT states. We also

understand the 𝑋𝑌 transition caused by increasing 𝑔 along 𝑘 = 0 and, by level-shift

symmetry, for all integer 𝑘. In this section, we examine a different phase transition,

that obtained by changing 𝑘 along the line 𝑔 =∞. We argue that that this must be a

topological transition, and map it to a model of superconducting fermions. Whether

the resulting order parameter is complex or real, and thus the superconductor breaks

time-reversal symmetry or is gapless, corresponds to whether the transition is first-
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order or second order. We are, however, unable to discern which of the two occurs2.

Taking 𝑔 →∞ and setting 𝑘 = 𝑚− 1
2
, with 𝑚 ∈ Z, the action (6.19) becomes:

𝑆𝑔→∞,𝑘=𝑚− 1
2
[𝜑] = 𝜋𝑖(2𝑚− 1)

∫︁
ℳ3

(𝑑𝜑− ⌊𝑑𝜑⌉)𝑑⌊𝑑𝜑⌉ (6.60)

This action is invariant under the time-reversing operator 𝒯𝑚+ 1
2

defined previously.

If 𝜕ℳ = ∅, then the action reduces to:

𝑆𝑔→∞,𝑘=𝑚− 1
2
[𝜑] = −𝜋𝑖(2𝑚− 1)

∫︁
ℳ3

⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉. (6.61)

As a first measure, note that we may rewrite the bulk action as the boundary of a

time-reversal symmetric term in one higher dimension. For a four-manifold 𝒩 4 such

that 𝜕𝒩 4 =ℳ3,

− 𝜋𝑖(2𝑚− 1)

∫︁
ℳ3

⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉ = −𝜋𝑖(2𝑚− 1)

∫︁
𝒩 4

𝑑⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉ (6.62)

Note that this action, after exponentiation, is invariant under the usual time-reversal.

For the our purposes, the critical fact is that time-reversal forces 𝑚 to be an integer

in the four dimensional theory, and hence the four dimensional theory is a 𝑈(1)× 𝒯
SPT. Our three-dimensional theory, as the boundary of an SPT, must break the 𝑈(1)

or 𝒯 symmetry, be gapless, or develop topological order.

We do not believe that these theories develop topological order. On the one

hand, the integer 𝑘 phases are stable 𝑈(1) SPTs; if the half-odd-integer phases were

stable topological orders, then there would be to be another class of critical 𝑘 points,

somewhere between the integer and half-odd-integer 𝑘 (recall Figure 6-3). On the

other hand, in Section 6.6, we show a numerical RG calculation that suggests that 𝑘

flows to the nearest integer, with the points where 𝑘 is a half-odd-integer separating

different phases. We find no evidence of a stable phase at half-odd-integer 𝑘, nor do

we find any fixed points besides the integer and half-odd-integer 𝑘.

Hence we are left with the options of the half-odd-integer phases breaking 𝑈(1)×𝒯
2The nature of the transition may depend on lattice details.
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symmetry (in which case the transition between the integer 𝑘 𝑈(1) SPTs would be

first order) or gaplessness (in which case the transition is second order). We now

argue that when 𝑘 is a half-odd-integer, the model admits a description in terms of

emergent fermions, which order in a way dependent on whether or not the transition

is continuous.

6.5.1 Emergent Fermions

Let us work with the bulk action (6.61). Recall that that the vortex current is given

by 𝚥𝑣 = − ⋆ 𝑑⌊𝑑𝜑⌉. Using this, we can rewrite this action as

− 𝜋𝑖(2𝑚− 1)

∫︁
ℳ3

𝚥𝑣
𝑑

2
𝚥𝑣 (6.63)

Recall that in 2 + 1d, the 1-cochain ⌊𝑑𝜑⌉ is dual to a two dimensional surface which

describes the branch cut emanating from a vortex. The 2-cochain 𝑑⌊𝑑𝜑⌉ is dual to a

one-dimensional vortex line. The topological ⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉ term counts the intersections

of the vortex lines with the branch cut walls, i.e. twice the linking number (See figures

6-7a, 6-7b).

In the bulk, this action (6.61) is invariant under the rotor redundancy because

sending 𝜑→ 𝜑+𝑛 corresponds to a moving a branch cut wall or creating/annihilating

them in pairs. As shown in figure 6-7, in the bulk, a local move of a branch cut wall

must generate intersections in pairs, hence the action is invariant.

We can further understand the character of these vortices by examining their

braiding. First, consider two disconnected, contractible lines. As shown in figure

6-7b, these two lines must intersect in two places. In fact ⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉ is twice their

linking number; because the action assigns a factor of (−1) to each intersection, these

two lines have no braiding phase, and the vortices do not have anyonic statistics.

However, a more complex situation arises when we consider just a single vortex

line. In figure 6-7e, we see a line representing the creation of two vortex-antivortex

pairs, the exchange of two vortices, and the annihilation of the swapped pairs. Figure

6-7f is topologically equivalent, and shows the case of a 2𝜋 rotation of a vortex. In
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Figure 6-7: (color online). (𝑎) The topological term at half integer 𝑘 assigns a factor
of (−1) for each intersection (red 𝑥) of a vortex line (black) with a branch cut wall
(blue). (𝑏) Disconnected lines must have two such intersections and so may not have
anyonic statistics. (𝑐) Rotor redundancy 𝜑 → 𝜑 + 𝑛 locally moves the branch cut
walls, and always create intersections in pairs in the bulk. (𝑑) in the presence of
a boundary (red), moving a domain wall can create a single intersection, and rotor
redundancy is preserved by a charge at the end of the vortex line (magenta star)
implemented by the 𝑑𝜑 term. A single vortex line describing the exchange of two
particles has a single intersection, as does the (topologically equivalent) case of (𝑑) a
2𝜋 rotation of a single particle. Hence the vortices are fermions.
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either case, a single intersection is created, resulting in a factor of (−1). Hence the

vortices are fermions.

Now that we have identified the vortices as fermions, it may seem that the task

is complete. The content of the action (6.61) is exhausted, and a simple guess for

the emergent behavior of the system may be completely free fermions. However, this

misses a crucial factor. There is a Jacobian we neglected passing from the rotor field

𝜑 to the branch cut and vortex fields ⌊𝑑𝜑⌉ and 𝚥 = − ⋆ 𝑑⌊𝑑𝜑⌉. This Jacobian leaves

a statistical imprint on the theory which will generate interactions for the fermions.

First, recall that we have defined the path integral measure as

∫︁
𝐷𝜑 =

[︃∏︁
𝑖

∫︁ 1
2

− 1
2

𝑑𝜑𝑖

]︃
(6.64)

As each 𝜑𝑖 ∈ [−1
2
, 1
2
), the branch cut field ⌊𝑑𝜑⌉𝑖𝑗 = ⌊𝜑𝑖 − 𝜑𝑗⌉ may take values in

{−1, 0, 1}. However, ⌊𝑑𝜑⌉ is not distributed uniformly over these three values. If we

let 𝜑𝑖 and 𝜑𝑗 be chosen randomly, the probability 𝑝 that ⌊𝑑𝜑⌉ takes on a given value

is

⌊𝑑𝜑⌉ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 𝑝 = 1/8

0 𝑝 = 3/4

1 𝑝 = 1/8

(6.65)

This immediately leads to a probability for the observation of a vortex. On a given

plaquette, the vortex number is given by 𝜌𝑣 = −𝑑⌊𝑑𝜑⌉, and on a triangular lattice

must take values in {−3,−2, ..., 3}. One can extrapolate the probabilities from those
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for ⌊𝑑𝜑⌉ to get:

𝜌𝑣 = −𝑑⌊𝑑𝜑⌉ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3 𝑝 = 1/512

−2 𝑝 = 18/512

−1 𝑝 = 111/512

0 𝑝 = 252/512

1 𝑝 = 111/512

2 𝑝 = 18/512

3 𝑝 = 1/512

(6.66)

We see that when the 𝜑 are completely random, although having no vortex is the

most likely single option, it is still less than 50% probability. More than half of the

time there is a vortex on a plaquette.

The details of the induced interactions are lattice dependent. However, the generic

behavior can be described simply as follows. For random 𝜑, approximately one quar-

ter of the lattice plaquettes will host a vortex, while another quarter will host an

anti-vortex. Vortices and anti-vortices on adjacent sites have a weak attractive inter-

action and may annihilate, while both vortices and anti-vortices may hop to adjacent

plaquettes with real amplitude.

Recalling that the vortices and anti-vortices are statistically fermions for half-

odd-integer 𝑘, we may convert this rough theory into an effective fermion theory. We

consider a honeycomb lattice (the dual of the triangular lattice) with real hopping

coefficients. We denote vortices as spin-up fermions, anti-vortices as spin down, and

impose a strong on-site repulsive interaction to prevent overlap. In this context,

conservation of vortex current density corresponds to 𝑆𝑧 symmetry, while vortex-

antivortex annihilation results in superconducting pairing terms. A Hamiltonian for
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this model is accordingly

𝐻 =
∑︁
⟨𝑖,𝑗⟩

(︁
𝑡
∑︁
𝜎

(𝑐†𝑖,𝜎𝑐𝑗𝜎 + 𝑐†𝑗,𝜎𝑐𝑖,𝜎) + ∆(𝑐†𝑖↑𝑐
†𝑗 ↓+ 𝑐𝑗↓𝑐𝑖↑)− 𝑔𝑐†𝑖,↑𝑐𝑖,↑𝑐†𝑗,↓𝑐𝑗,↓

)︁
− 𝜇

∑︁
𝑖

∑︁
𝜎

𝑐†𝑖,𝜎𝑐𝑖,𝜎 + 𝑈
∑︁
𝑖

𝑐†𝑖,↑𝑐𝑖,↑𝑐
†
𝑖,↓𝑐𝑖,↓ (6.67)

Here the 𝑡 term represents the fermion hopping; ∆ the vortex-antivortex annihila-

tion; 𝑔 > 0 the nearest neighbor attractive interactions; 𝑈 → ∞ the strong on-site

repulsion; and 𝜇 the chemical potential. The parameters should be tuned to roughly

reproduce the fermion density, hopping, pairing, and attractive interactions from the

statistical analysis.

Within this framework, we can again see the question of symmetry breaking or

gaplessness (or, equivalently, of a first-order or second-order transition) in the topo-

logical transition between 𝑘 and 𝑘 + 1 phases. The question is of the form of the

pairing wavefunction 𝜓𝑖𝑗 = ⟨𝑐†𝑖,↑𝑐†𝑗,↓⟩. The strong on-site repulsion will suppress s-

wave pairing, and we are left with p-wave or d-wave pairing. These must either break

time-reversal symmetry or be gapless; whichever the dynamics favor will determine

the nature of the topological transition. However, determining which case occurs

(which may depend on the lattice), would have to be determined in a future work.

6.6 Lattice Renormalization Group

In this section we calculate the effects of integrating out a rotor on a given site, which

reveals the flow of 𝑘 to integer fixed points. Taking 𝑔 →∞ recall that the action in

this limit is:

𝑆 = 2𝜋𝑖𝑘

∫︁
𝑑𝜑𝑑⌊𝑑𝜑⌉. (6.68)

To evaluate this, we place it on a tetrahedral lattice shown in Figure 6-8a and per-

form a course-graning. Consider integrating out point 0 in Figure 6-8a. We wish to
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Figure 6-8: (Color Online). (a) We integrate out 𝜑0 in the simplex shown to perform
a simple Lattice RG calculation. (b), (c): Phase of the quantity Φ𝑐 calculated in eq.
(6.73) (blue) and Φ𝑘 from eq. (6.71) (orange) for (b) 𝑘 = .8 and (c) 𝑘 = 1.2. (d),
(e): Magnitude of Φ𝑐 for (d) 𝑘 = .8 and (e) 𝑘 = 1.2.
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calculate:

∫︁
𝑑𝜑0 exp

{︃
2𝜋𝑖𝑘

[︃
(𝜑1 − 𝜑0 − ⌊𝜑1 − 𝜑0⌉)

[︁
𝑒− (⌊𝜑2 − 𝜑1⌉+ ⌊𝜑3 − 𝜑2⌉ − ⌊𝜑3 − 𝜑1⌉)

+ (⌊𝜑2 − 𝜑1⌉+ ⌊𝜑4 − 𝜑2⌉ − ⌊𝜑4 − 𝜑1⌉)− (⌊𝜑3 − 𝜑1⌉+ ⌊𝜑4 − 𝜑3⌉ − ⌊𝜑4 − 𝜑1⌉)
]︁

+ (𝜑2 − 𝜑0 − ⌊𝜑2 − 𝜑0⌉) [⌊𝜑3 − 𝜑2⌉+ ⌊𝜑4 − 𝜑5⌉ − ⌊𝜑4 − 𝜑2⌉]
]︃}︃

(6.69)

which can be rewritten as:

∫︁
𝑑𝜑0 exp

{︃
−2𝜋𝑖𝑘

[︃
(𝜑2−𝜑1−⌊𝜑2−𝜑0⌉−⌊𝜑0−𝜑1⌉) (⌊𝜑3 − 𝜑2⌉+ ⌊𝜑4 − 𝜑3⌉ − 𝜑4−𝜑2)

]︃}︃
(6.70)

Or, setting 𝜌234 = −⌊𝜑3 − 𝜑2⌉+ ⌊𝜑4 − 𝜑3⌉ − ⌊𝜑4 − 𝜑2⌉,

𝑒−2𝜋𝑖𝑘(𝜑2−𝜑1−⌊𝜑2−𝜑1⌉)𝜌𝑣⏟  ⏞  
Φ𝑘

∫︁
𝑑𝜑0𝑒

2𝜋𝑖𝑘(⌊𝜑2−𝜑0⌉+⌊𝜑0−𝜑1⌉−⌊𝜑2−𝜑1⌉)𝜌234⏟  ⏞  
Φ𝑐

(6.71)

Now the amplitude has decomposed into the expected phase Φ𝑘, times a correction

term Φ𝑐. Turning our attention to the integral in Φ𝑐, we may use 𝑈(1) symmetry to

set 𝜑2 = 0. Then The integral becomes:

Φ𝑐 =

∫︁
𝑑𝜑0𝑒

2𝜋𝑖𝑘(⌊𝜑0−𝜑1⌉+⌊𝜑1⌉−⌊𝜑0⌉) = 1− |𝜑1 − ⌊𝜑1⌉|+ |𝜑1 − ⌊𝜑1⌉|𝑒2𝜋𝑖𝑘𝜌234sgn(𝜑1−⌊𝜑1⌉)

(6.72)

Restoring 𝑈(1) symmetry, this is:

Φ𝑐 = 1−|𝜑2−𝜑1−⌊𝜑2−𝜑1⌉|+ |𝜑2−𝜑1−⌊𝜑2−𝜑1⌉|𝑒−2𝜋𝑖𝑘𝜌234sgn(𝜑2−𝜑1−⌊𝜑2−𝜑1⌉) (6.73)

To understand this expression, fix 𝜌234 = 1. The phase of both Φ𝑘 and Φ𝑐 functions of

𝜑2 − 𝜑1 are plotted in figures 6-8b and 6-8c for 𝑘 = .8 and 𝑘 = 1.2, respectively. For

𝑘 = .8, the phase of Φ𝑘 and Φ𝑐 vary jointly, and Φ𝑐 is pushing the effective 𝑘, back

towards 𝑘 = 1. For 𝑘 = 1.2, they vary oppositely, and Φ𝑐 is pushing the effective 𝑘

down, again back towards 𝑘 = 1.
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This trend continues across the spectrum. For 𝑘 neither integer nor half integer, Φ𝑐

acts to push the effective 𝑘 back towards the nearest integer. For 𝑘 ∈ Z, Φ𝑐 = 1, and

there is no correction, reflecting the fact that the integral theories are time-reversal-

invariant, fixed point theories. For 𝑘 ∈ Z + 1
2

Φ𝑐 is real, reflecting the time-reversal

invariance of the half-odd-integer theories.

A further question arises because |Φ𝑐| < 1 when 𝑘 /∈ Z and |𝜑2−𝜑1−⌊𝜑2−𝜑1⌉| > 0.

Figures 6-8d and 6-8e show |Φ𝑐| for 𝑘 = .8 and 𝑘 = .5, respectively. For 𝑘 = .8, the

damping effect is somewhat small, while for 𝑘 = .5 it is extreme, and |Φ𝑐| = 0 for

|𝜑2−𝜑1−⌊𝜑2−𝜑1⌉| = ±.5. For general 𝑘 and small |𝜑2−𝜑1−⌊𝜑2−𝜑1⌉|, this implies

that there should be a logarithmic term in the action. Note that this only applies

when 𝜌234 ̸= 0; when 𝜌234 = 0, Φ𝑐 = 1 in all cases.

6.7 Discussion

In this Chapter, we have used a new discontinuous cocycle model to shed light on the

transition between a superfluid and a topological Mott Insulator. Without a back-

ground gauge field, the correlation functions of all local operators are identical at and

away from the SF-tMI and SF-MI transitions, while introducing a background gauge

field leads to different Hall responses for MI and tMI. This immediately implies that

all critical exponents of correlation functions of 𝑒𝑖2𝜋𝜑𝑖 and its conjugate momentum

must be the same in the SF-MI and SF-tMI phases, which allows the considerable

numerical results of the XY model to be applied to the SF-tMI transition.

We may also ask what other topological phases may be described by a similar

framework. An obvious 𝑈(1)× 𝒯 phase in 1 + 1d is one coming from the action:

𝑆 = 𝑖𝜋𝑘

∫︁
ℳ2

𝑑⌊𝑑𝜑⌉ (6.74)

On the other hand, 𝑑+ 1 dimensional, with even 𝑑 > 0, generalizations of our model

are given by:

𝑆 = 2𝜋𝑖𝑘

∫︁
ℳ𝑑+1

(𝑑𝜑− ⌊𝑑𝜑⌉)(𝑑⌊𝑑𝜑⌉) 𝑑
2 (6.75)
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where the exponent is taken using the cup product. If, as in 2 + 1 dimensions, these

are SPT states for integral 𝑘, they would exhaust all the 𝑈(1) SPTs predicted by

group cohomology [28]. Many more possibilities arise with multiple 𝑈(1) fields 𝜑𝐼 .

One could also consider extending this formalism to SPTs with nonabelian symmetry.

Could the Haldane phase be described by a similar exactly solvable discontinuous path

integral? In every case, the existence of a model of the sort we have described here

would carry the same implication of level-shift symmetry: in the absence of a gauge

field, all correlations of local operators would be the same in the symmetry-breaking

to topological transition as in a similar symmetry-breaking to trivial state transition.

The SPT order would then by diagnosed by the response to an applied gauge field.

Even just the model we have described has further applications. Because the edge

theory may be treated alone, this proposes a solution to the 𝑈(1) “chiral fermion

problem:” The edge theory must describe pairs of counter-propagating modes with

differing charges, so that the total chiral central charge of the edge theory vanishes,

while the modes carry a chiral representation of 𝑈(1). This is the subject of the next

chapter.
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Chapter 7

A Chiral Lattice Field Theory in

1 + 1d

We can now create the promised simple chiral lattice field theory. All the ingredients

for this theory are actually in the last chapter, where we developed an exactly solvable

lattice model for a 𝑈(1) SPT. Here we extract the bosonic chiral edge theory and

examine its properties. This 1 + 1d chiral boson edge theory also paves the way

for simulation of more complicated chiral QFTs, including in higher dimensions and

for nonabelian symmetries. The simplest extension of this theory is a chiral fermion

theory that may be obtained by introducing a spin structure, which solves the Chiral

Fermion Problem.

All of the properties we need in the SPT theory from the previous chapter arise

because that theory is a fixed-point theory. In turn, the key to writing a fixed-point

theory on the lattice was first discovered in the group cohomology formalism [26]

but not implemented until the works described in this thesis: in order to capture

topological actions, we must allow for actions which are not continuous functions of

the field variables. Once we have a fixed-point topological action in 2 + 1d, we have a

gapped bulk and a gapless 1+1d edge which decouple exactly, since the penetration of

the gapless mode into the bulk must be zero at the fixed point. This is what enables

us to write down the 1 + 1𝑑 model and study its properties.

In retrospect, that we should require physical quantities that are not continuous
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Figure 7-1: The model we study works on any lattice with a simplicial structure, but
we will write down explicit expressions on this square lattice.

functions of the field variables in fixed-point theories follows from a simple argument.

Consider, as we will shortly, a lattice QFT consisting of 𝑈(1) variables on the sites

of a lattice. The space of field configurations is 𝑈(1)nsites . Consider a function 𝜌

of the field variables which indicates the vortex number on each plaquette. In a

fixed-point theory, the output of 𝜌 should be an integer for each plaquette, i.e. an

element of Znplaquettes . As a function from a connected manifold, 𝑈(1)nsites , to a discrete

space, Znplaquettes , 𝜌 must be either discontinuous or constant, and constant would be

useless. Hence when describing vortices in a fixed point theory, we should allow for

discontinuous physical quantities; this holds for topological defects in many theories.

7.1 Lattice Model

The starting point for our 1 + 1d chiral lattice model is actually the 2 + 1d action

from the last section, with 𝑘 ∈ Z and 𝑔 → ∞. In this Chapter, we will be focused

on its 1 + 1d boundary, so we change notation and let 𝒩 3 be the 2 + 1d lattice, with

ℳ2 = 𝜕𝒩 3 its 1 + 1d boundary. Hence the action is:

𝑆𝑘[𝜑] = −2𝜋𝑖𝑘

∫︁
𝒩 3

(𝑑𝜑− ⌊𝑑𝜑⌉) ∪ 𝑑(𝑑𝜑− ⌊𝑑𝜑⌉)

= 2𝜋𝑖𝑘

∫︁
𝒩 3

𝑑𝜑 ∪ 𝑑⌊𝑑𝜑⌉ = −2𝜋𝑖𝑘

∫︁
𝒩 3

𝑑𝜑 ∪ 𝜌𝑣 (7.1)

where used the fact that 𝑑2 = 0 and that the action appears as 𝑒𝑖𝑆 to simplify the

action and introduced 𝜌𝑣 ≡ −𝑑⌊𝑑𝜑⌉. Recall that we have a gauge redundancy which
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ensures that the theory is genuinely a function of 𝑈(1) rotors:

𝜑→ 𝜑+ 𝑛 (7.2)

The full path integral is:

𝑍 =

∫︁
𝐷𝜑𝑒𝑖𝑆𝑘[𝜑]

∫︁
𝐷𝜑 =

∏︁
𝑖

∫︁ 1
2

− 1
2

𝑑𝜑𝑖 (7.3)

where the integral measure is gauge-fixed under (7.2).

The most important aspect of the action (7.1) for our present purposes is that it

is a surface term which vanishes on a closed manifold. Hence we may obtain a theory

solely onℳ2 = 𝜕𝒩 3:

𝑆𝑘 = 2𝜋𝑖𝑘

∫︁
ℳ2

𝜑𝑑⌊𝑑𝜑⌉ = −2𝜋𝑖𝑘

∫︁
𝜑𝜌𝑣 (7.4)

This is the model which we wish to present and, together with its gauged version we

will see later, is the chiral lattice field theory. It is very simple. In indices on a square

lattice, the action is:

𝑆𝑘[𝜑] = −2𝜋𝑖𝑘
∑︁
𝑖∈ℳ2

𝜑𝑖

(︁
⌊𝜑𝑖 − 𝜑𝑖+𝑥⌉+ ⌊𝜑𝑖+𝑥 − 𝜑𝑖+𝑥+𝑦⌉

− ⌊𝜑𝑖+𝑦 − 𝜑𝑖+𝑥+𝑦⌉ − ⌊𝜑𝑖 − 𝜑𝑖+𝑦⌉
)︁

(7.5)

where 𝑖 sums over the sites of the lattice. As before, under the redundancy (7.2),

the action is invariant, since 𝜌𝑣 is invariant and 𝑛𝜌𝑣 is integer-valued and so does not

affect the exponential.
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7.2 Anomalies

This action has the unusual, anomalous 𝑈(1) symmetry discussed in the previous

chapter. Under 𝜑→ 𝜑+ 𝜃, with 𝜃 a global constant, the action transforms as:

𝑆𝑘[𝜑]→ 𝑆𝑘[𝜑]− 2𝜋𝑖𝑘𝜃

∫︁
ℳ2

𝜌𝑣 (7.6)

If ℳ2 is closed, then the total vortex number is zero, as
∫︀
ℳ2 𝜌𝑣 = −

∫︀
ℳ2 𝑑⌊𝑑𝜑⌉ = 0

by summation by parts, and so the theory is 𝑈(1) symmetric. Ifℳ2 has a boundary

ℬ1 = 𝜕ℳ2, then the action is not 𝑈(1) invariant. The breaking of 𝑈(1) symmetry in

the presence of a boundary is one characterization of the 𝑈(1) anomaly (we saw this

behavior in the context of the ground state wavefunction in the previous chapter).

It should be considered as a consequence of the familiar expression of the anomaly

in a background gauge field (which we investigate next), as a background gauge field

could impose an electric potential that would create a boundary. The resolution, of

course, is to recall that the 1 + 1d action (7.4) should be considered as the boundary

of the 2 + 1d system (7.1). Hence ℬ1 = 𝜕ℳ2 = 𝜕2𝒩 3 = ∅, as boundaries do not have

boundaries.

We can see the anomaly in a different light by coupling to a background gauge

field. The resulting 2 + 1d action was given in Chapter 6 and is:

𝑆𝑘[𝜑;𝐴] = −2𝜋𝑖𝑘

∫︁
𝒩 3

{︁
(𝑑𝜑− 𝐴)(𝑑𝐴− ⌊𝑑𝐴⌉)

− ⌊𝑑𝐴⌉(𝑑𝜑− 𝐴)− 𝑑
[︁
(𝑑𝜑− 𝐴)(𝑑𝜑− 𝐴− ⌊𝑑𝜑− 𝐴⌉)

]︁}︁
(7.7)

As before, we quantize 𝐴 to have cycles in unity and this action has three gauge

redundancies. Two are of the same “rotor redundancy” form:

𝜑𝑖 → 𝜑𝑖 + 𝑛𝑖 (7.8)

𝐴𝑖𝑗 → 𝐴𝑖𝑗 +𝑚𝑖𝑗 (7.9)
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for 𝑛𝑖,𝑚𝑖𝑗 ∈ Z. The third is the typical gauge invariance:

𝜑→ 𝜑+ 𝜃 𝐴→ 𝐴+ 𝑑𝜃 (7.10)

for 𝜃 an R/Z-valued field. We also assume 𝐴 to be weak, in the sense that 𝑑𝐴−⌊𝑑𝐴⌉ ≈
0. This implies that 𝑑⌊𝑑𝐴⌉ = 0, i.e. that field configurations are free of monopoles.

Now we separate (7.7) into boundary terms and bulk terms. We can rewrite the

action as:

2𝜋𝑖𝑘

∫︁
𝒩 3

{︁
− 𝐴(𝑑𝐴− ⌊𝑑𝐴⌉) + ⌊𝑑𝐴⌉𝐴− 𝑑(𝐴(𝐴− ⌊𝐴⌉))

}︁
+ 2𝜋𝑖𝑘

∫︁
ℳ2

{︁
𝜑(𝑑𝐴− ⌊𝑑𝐴⌉)− ⌊𝑑𝐴⌉𝜑

− (𝑑𝜑− 𝐴)(𝑑𝜑− 𝐴− ⌊𝑑𝜑− 𝐴⌉) + 𝐴(𝐴− ⌊𝐴⌉)
}︁

(7.11)

We have now split the action into ‘bulk terms’ consisting only of 𝐴 and ‘boundary

terms’ which contain all the 𝜑. Each of them are separately invariant under 𝜑→ 𝜑+𝑛,

and we have added and subtracted terms to ensure that they are invariant under

𝐴→ 𝐴+𝑚. They are not separately invariant under the gauge symmetry (7.10).

The boundary integral is the proper gauged action for the edge mode, i.e. our

1 + 1d chiral boson model. Specifically, it is:

𝑆 = 2𝜋𝑖𝑘

∫︁
ℳ2

{︁
𝜑(𝑑𝐴− ⌊𝑑𝐴⌉)− ⌊𝑑𝐴⌉𝜑

− (𝑑𝜑− 𝐴)(𝑑𝜑− 𝐴− ⌊𝑑𝜑− 𝐴⌉) + 𝐴(𝐴− ⌊𝐴⌉)
}︁

(7.12)
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Or, writing it on a square lattice,

𝑆 = 2𝜋𝑖𝑘
∑︁
𝑖

𝜑𝑖

(︁
𝐴𝑖,𝑖+𝑥 + 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − 𝐴𝑖+𝑦,𝑖+𝑥+𝑦

− ⌊𝐴𝑖,𝑖+𝑥 + 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − 𝐴𝑖+𝑦,𝑖+𝑥+𝑦⌉
)︁

− ⌊𝐴𝑖,𝑖+𝑥 + 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − 𝐴𝑖+𝑦,𝑖+𝑥+𝑦⌉𝜑𝑖+𝑥+𝑦
− (𝜑𝑖 − 𝜑𝑖+𝑥 − 𝐴𝑖,𝑖+𝑥)(𝜑𝑖+𝑥 − 𝜑𝑖+𝑥+𝑦 − 𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − ⌊𝜑𝑖+𝑥 − 𝜑𝑖+𝑥+𝑦 − 𝐴𝑖+𝑥,𝑖+𝑥+𝑦⌉)

+ (𝜑𝑖 − 𝜑𝑖+𝑦 − 𝐴𝑖,𝑖+𝑥𝑦)(𝜑𝑖+𝑦 − 𝜑𝑖+𝑥+𝑦 − 𝐴𝑖+𝑦,𝑖+𝑥+𝑦 − ⌊𝜑𝑖+𝑦 − 𝜑𝑖+𝑥+𝑦 − 𝐴𝑖+𝑦,𝑖+𝑥+𝑦⌉)

+ 𝐴𝑖,𝑖+𝑥(𝐴𝑖+𝑥,𝑖+𝑥+𝑦 − ⌊𝐴𝑖+𝑥,𝑖+𝑥+𝑦⌉)− 𝐴𝑖,𝑖+𝑦(𝐴𝑖+𝑦,𝑖+𝑥+𝑦 − ⌊𝐴𝑖+𝑦,𝑖+𝑥+𝑦⌉) (7.13)

Together with the ungauged (𝐴 = 0) model (7.4), eq. (7.12) describes the chiral

lattice field theory. One can check that the action is invariant under both of the

symmetries (7.8) and (7.9). However, it is not invariant under (7.10), i.e. 𝜑→ 𝜑+ 𝜃,

𝐴 → 𝐴 + 𝑑𝜃. The anomaly structure is in general complicated, but takes a simple

form when we set 𝑑𝜃 = 0. In that case, the action changes by a term:

− 2𝜋(2𝑘)𝑖𝜃

∫︁
𝑀2

⌊𝑑𝐴⌉ (7.14)

Now,
∫︀
ℳ2(𝑑𝐴−⌊𝑑𝐴⌉) = −

∫︀
ℳ2⌊𝑑𝐴⌉ is the total flux of the gauge field overℳ2, and

so this is precisely 2𝜋(2𝑘)
∫︀
𝜃𝐹 , i.e. the anomaly required by the Hall conductance.

In the context of the Laughlin thought experiment, we twist boundary conditions by

2𝜋, which sets −
∫︀
⌊𝑑𝐴⌉ = 1. In that case, eq. (7.14) tells us that charge 2𝑘 has

appeared in the edge theory, i.e. has been added to the edge theory from the bulk.

We should recognize this as the expected Adler-Bell-Jackiw anomaly, i.e. as a lattice,

discrete generalization of 4𝜋𝑖𝑘
∫︀
𝜃𝑑𝐴. As is usual, this failure of gauge invariance is

cancelled by an equal and opposite term from the bulk terms in eq. (7.11).

We have now examined the 1+1d lattice model in detail and seen the 𝑈(1) anomaly

through both symmetry breaking in the presence of a boundary and through direct

coupling to a background gauge field. Now we write down a continuum model for the

edge theory and explain how it creates a chiral representation of 𝑈(1) and a nonzero
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quantized Hall conductance.

7.3 Continuum Theory

The ungauged action (7.4) describes a bosonic field 𝜑 coupled to its vortices. To

develop a continuum description, we describe the vortices using a hydrodynamic ap-

proach:

𝜌𝑣 ∼ 𝜕𝑥𝜕𝑡𝜃(𝑥, 𝑡) (7.15)

We consider an action which ensures that that vortices shift 𝜑 by 2𝜋 i.e. that

[𝜑(𝑥), 𝜕𝑥𝜃] = 2𝜋𝑖:

𝑆 ∼ 2𝜋𝑖

∫︁
𝜑𝜕𝑥𝜕𝑡𝜃 (7.16)

where 𝜑 has charge 1 and, as discussed in the previous chapter, the vortex field 𝜃 has

charge 2𝑘. We define the composite fields 𝜑𝑅 = 1
2
(𝜑+ 𝜃), 𝜑𝐿 = 1

2
(𝜑− 𝜃) to get:

2𝜋𝑖

∫︁
(𝜑𝑅𝜕𝑥𝜕𝑡𝜑𝑅 − 𝜑𝐿𝜕𝑥𝜕𝑡𝜑𝐿) (7.17)

Thus the chiral model consists of a right-moving mode 𝜑𝑅 and a left moving mode 𝜑𝐿.

As there are equal numbers of left and right moving modes, there is no gravitational

anomaly or, equivalently, thermal Hall conductance.

On the other hand, there is a 𝑈(1) anomaly which arises because 𝜑𝐿 and 𝜑𝑅 have

differing charges. Denote the change of a field 𝜙 by 𝐶[𝜙], so that 𝐶[𝜑] = 1. We

have seen that vortices have charge 2𝑘 and so 𝐶[𝜃] = 2𝑘. Hence the anomaly has

coefficient:

𝐶[𝜑𝑅]− 𝐶[𝜑𝐿] = 𝐶[𝜃] = 2𝑘 (7.18)

This is consistent with the Hall conductance of the bulk system, which is 2𝑘 𝑒
2

ℎ
[32].

We have written down a boson theory with chiral 𝑈(1) symmetry in 1 + 1d by

extracting the edge theory from an exactly solvable 2 + 1d chiral model. We then

demonstrated the 𝑈(1) anomaly by both inspection of the ungauged theory and by

explicitly coupling in a background gauge field and calculating the variation of the
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edge action. Finally, we wrote down a continuum theory for our model and showed

that it carries chiral 𝑈(1) charge as expected. They key to our model, and indeed

the main lesson from this thesis, is that discontinuous actions are essential when

considering exactly solvable fixed-point theories on lattices, and that with these we

can build exactly solvable theories that we previously believed to be impossible.
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Chapter 8

Outlook

This thesis has been a deep exploration of chiral phases, and their attendant chiral

field theories, on the lattice. The key to our work was the relationship between a

renormalization-group class of Quantum Field Theories and phases of matter. In

essence, we defined our field theories as the low-energy effective theories (on the edge

or in the bulk) of phases of matter, and then used techniques from condensed matter

physics to understand the field theories. Here we review our work, lay out immediate

next steps, and speculate on the sources of future progress in the field.

8.1 Review

We began with a numerical realization of the ‘Mirror Fermion’ approach. There we

went beyond previous Abelian models to create an 𝑆𝑈(2) chiral gauge theory. We

saw the gap opened, and numerically demonstrated the preservation of symmetry,

but were faced with significant technical challenges: we could not sufficiently address

how to perform the integral over Higgs configurations, nor could we reduce the model

in such a way that the Higgs field was unnecessary. We won the battle of opening a

gap in the fermion spectrum, but the Higgs problem means that this victory was a

Pyrrhic one.

Following the difficulties in defining 1 + 1d chiral edge modes, we changed our

approach in two key ways: we pivoted to the bulk theory in 2 + 1 dimensions, and
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also restricted to Abelian Chern-Simons theories. This led to a significant success:

we were able to define a lattice model for any Abelian topological order, the low-

energy behavior of which we could reliably determine semi-classically. Moreover, this

theory was one of local rotor degrees of freedom, a feature which no one had been

able to reliably incorporate into Chern-Simons theories. The added appearance of

exact 1-symmetries then provided extremely strong evidence for the validity of the

model.

The next step was the mathematically obvious one. Given a model of topological

order in terms of a gauge field, we ungauged it to get an SPT model. However,

the utility of the model went far beyond that. On the heels of a number of results

arguing that no commuting projector model could host Hall conductance, our model

provided exactly that. Moreover, we later connected it to the theory of the 𝑋𝑌

transition between a superfluid and a topological Mott insulator, and understood

both the transition and the Hall conductance as a condensation of charged vortices.

Of course, the ungauged model had another critical application. Because it is a

zero-correlation-length, fixed-point model, the edge theory could be exactly decoupled

from the bulk. This gave us an exact, 1+1d 𝑈(1) chiral lattice field theory. Moreover,

we could directly compute its anomaly and confirm that it had the expected behavior.

This is remarkable: we retreated from gapless chiral edge theories, went to the bulk

theory and, after several intermediate steps, found a perfect chiral edge theory handed

back to us. Moreover, that formulation paves the way for far more complicated chiral

field theories, which we elaborate on in the next section.

8.2 Further Lattice Field Theories

The discontinuous cocycle models we have discovered are an extraordinary tool with

which we can create new exactly solvable models of SPT phases and their chiral

gapless edge theories. An obvious 𝑈(1)× 𝒯 phase in 1 + 1d is one coming from the

action:

𝑆 = 𝑖𝜋𝑘

∫︁
ℳ2

𝑑⌊𝑑𝜑⌉ (8.1)
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On the other hand, 𝑑+ 1 dimensional, with even 𝑑 > 0, generalizations of our model

are given by:

𝑆 = 2𝜋𝑖𝑘

∫︁
ℳ𝑑+1

(𝑑𝜑− ⌊𝑑𝜑⌉)(𝑑⌊𝑑𝜑⌉) 𝑑
2 (8.2)

where the exponent is taken using the cup product. If, as in 2 + 1 dimensions, these

are SPT states for integral 𝑘, they would exhaust all the 𝑈(1) SPTs predicted by

group cohomology [28]. This leads to a 4 + 1d SPT action:

𝑆 = 2𝜋𝑖𝑘

∫︁
ℳ4+1

𝑑𝜑𝑑⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉ (8.3)

which would host a 3 + 1d 𝑈(1) chiral edge theory on the boundary ℬ3+1 = 𝜕ℳ4+1:

𝑆 = 2𝜋𝑖𝑘

∫︁
ℬ3+1

𝜑𝑑⌊𝑑𝜑⌉𝑑⌊𝑑𝜑⌉ (8.4)

This theory thus defines chiral fermions with 𝑈(1) symmetry propagating in spacetime

just like ours. Many more possibilities arise with multiple 𝑈(1) fields 𝜑𝐼 , and it is

probably that this formalism would capture all of them. We are also preparing a

discontinuous model which captures all the time-reversal SPTs.

One could also consider extending this formalism to SPTs with non-Abelian sym-

metry. The most obviously relevant theories are the 𝑆𝑈(𝑁) SPTs in 𝐷 = 3 + 4𝑛

spacetime dimensions.

In the particular case of 𝑆𝑈(2) SPTs, we can use the fact that 𝑆𝑈(2) ≃ 𝑆3 to

establish how these theories should be constructed. Let 𝑔𝑖 be the zero-cochain lattice

variable. In that case, any tetrahedron with elements 𝑔𝑖 of 𝑆3 defined at its corners

defines a tetrahedron on the surface of 𝑆3. Let the three-cochain Ω[𝑔] be the volume

of that tetrahedron in 𝑆3 (this is easier to thing about in one lower dimension, i.e.

with elements of 𝑆2 on the corner of triangles, and Ω a solid angle). At the same

time, any four-simplex (i.e. one higher dimension than a tetrahedron) with elements

of 𝑆3 at its corners defines a wrapping number from its surface to 𝑆3. Let 𝑊 [𝑔] be

the four-cochain which is that wrapping number. Now, these 𝑆𝑈(2) theories would
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have the form:

𝑆 ∝ 𝑖𝑘

∫︁
ℳ3+4𝑛

Ω ∪𝑊 𝑛 (8.5)

where 𝑘 is the level and 𝑛 is adjusted for the appropriate dimension. Moreover, one

can see that Ω must be exact up to an integral part, and 𝑊 is always exact, so we

once again have a surface term formalism and commuting projector model. All of this

follows as an immediate generalization of our work here; the difficulty lies in actually

writing down formulae for Ω and 𝑊 .

While the discontinuous cochain formalism describes SPT phases and their chi-

ral edges which suffer gauge anomalies, we are also interested in topological orders

and their gravitational anomalies. The formalism we described in Chapter 5 pro-

vides a description of all Abelian topological orders which is semi-classically solvable.

However, we would like to develop an exactly solvable formalism. Doing so is more

difficult, and probably cannot be described quite the same sense as the SPT phases:

we have seen that the surface term formalism leads to a commuting projector model.

However, it is believed that commuting projector models cannot have thermal Hall

conductance, which corresponds to gravitational anomalies, because thermal Hall con-

ductance would lead to energy flow through the system. The change in energy at a

site 𝑖 is given by:

�̇�𝑖 = 𝜕𝑡 ⟨�̂�𝑖⟩ = −𝑖
[︁
�̂�, �̂�𝑖

]︁
= −𝑖

∑︁
𝑗

[︁
�̂�𝑗, �̂�𝑖

]︁
= 0 (8.6)

Here �̂�𝑖 are the commuting projectors and �̂� =
∑︀

𝑖 �̂�𝑖 is the Hamiltonian. Hence

commuting projector models cannot host gravitational anomalies and so we do not

expect one for chiral topological orders. Of course, that has not stopped us from some

trials towards exactly solved models of topologically ordered phases, and we describe

one incomplete approach in Appendix C.
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8.3 What’s Next

In Chapter 3, we briefly mentioned that the meeting of condensed matter physics and

high-energy theory had triggered a golden age. This continues apace, and has been

the source of enormous progress through the past decade. There are new materials,

field theories, and phases of matter being discovered almost daily.

A new player has also arrived: the exploding fields of quantum computing and

quantum information (QC/QI). New hardware, materials, and algorithms have un-

leashed an entire new field of science and an entire new industry. Progress in quan-

tum algorithms is proceeding extremely fast, and the first demonstrations of quantum

supremacy have been achieved in the past few years. Huge teams of quantum engi-

neers are being hired, while a quantum computing startup recently received a $2B

valuation. The future is extraordinarily bright.

I will be working in quantum computing after graduation, so I am biased, but I

do genuinely believe that what is next in physics will come from the intersection of

QC/QI and other fields. Indeed, the entire group cohomology formalism arose when

a QI student under Ike Chuang began working with Xiao-Gang. Now I make the

reverse journey, as I begin a fellowship working with Ike and I look forward to what’s

next.
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Appendix A

Cochains and Cohomology

Let us first set some notation. We consider a three-dimensional simplicial complex

𝑀 , which we take to contain 0-simplices (vertices), 1-simplices (links), 2-simplices

(faces), and 3-simplices (faces). In this thesis, we consider our spacetime lattice to be

a simplicial complex with matter fields living on the vertices and gauge fields living

on the links. Moreover, we assume that these fields take values in an Abelian group.

The matter fields, denoted 𝑔𝑖, form a map from the 0-simplices of 𝑀 (or more

formally, form a map from the space of 0-chains of 𝑀) to the target space. This map

is called a 0-cochain, as it defines a linear map from the free abelian group on the

0-simplices of 𝑀 to the target space. Similarly, a gauge field 𝑎𝑖𝑗 living on the links of

the lattice defines a 1-cochain. One can continue this, with 𝑛-cochains defining maps

from the 𝑛-simplices to the target space.

To see the explicit action of an 𝑛-cochain, let us label simplices by their vertices,

so that an 𝑛-simplex is given by [𝑣0, ..., 𝑣𝑛]. Then an 𝑛-cochain 𝑎 assigns a target space

element 𝑎([𝑣0, ..., 𝑣𝑛]) to any 𝑛-simplex. Furthermore, this map is multilinear over a

formal sum of 𝑛-simplices with coefficients in Z. For example, let 𝜎1 = [𝑣0, ..., 𝑣𝑛] and

𝜎2 = [𝑤0, ..., 𝑤𝑛]. Then

𝑎(2𝜎1 − 𝜎2) = 2𝑎(𝜎1)− 𝑎(𝜎2) (A.1)
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Given any 𝑛-cochain 𝑎, we can create an 𝑛+ 1 cochain d𝑎 via:

d𝑎([𝑣0, ..., 𝑣𝑛+1]) =
𝑛+1∑︁
𝑖=0

(−1)𝑖𝑎([𝑣0, ..., 𝑣𝑖, ..., 𝑣𝑛+1]) (A.2)

where 𝑣𝑖 means that we omit that index. One can then see that d(d𝑎) = 0. This allows

us to construct cohomology groups as the cohomology of the complex of 𝑛-chains:

← 𝐶𝑛 ← 𝐶𝑛−1... 𝐶1 ← 𝐶0 ← 0 (A.3)

here the maps are just given by 𝑑𝑛, eg 𝑑 acting on elements of 𝐶𝑛, and the cohomology

groups are just ℑ 𝑑𝑛/ ker 𝑑𝑛.

In the case that the target space is a ring, we have an additional structure called

the cup product. The cup product takes an 𝑚-form 𝑎𝑚 and an 𝑛-form 𝑏𝑛 and returns

an 𝑛+𝑚 form 𝑎 ⌣ 𝑏, defined by:

𝑎𝑚 ⌣ 𝑏𝑛([𝑣0, ..., 𝑣𝑛+𝑚])

= 𝑎𝑚([𝑣0, ..., 𝑣𝑚])𝑏𝑛([𝑣𝑚, ..., 𝑣𝑚+𝑛]) (A.4)

Furthermore, when considered on cohomology classes, this cup product is graded

anticommutative. This means that there is a 𝑛+𝑚− 1 cochain 𝑐𝑚+𝑛−1 such that:

𝑎𝑚 ⌣ 𝑏𝑛 = (−1)𝑛𝑚𝑏𝑛 ⌣ 𝑎𝑚 + d𝑐𝑚+𝑛−1 (A.5)

To get an explicit expression for 𝑐𝑚+𝑛−1, we need to introduce higher cup product

𝑎𝑚 ⌣
𝑘
𝑏𝑛 which gives rise to a (𝑚+ 𝑛− 𝑘)-cochain[89]:

𝑎𝑚 ⌣
𝑘
𝑏𝑛([0, 1, · · · ,𝑚+ 𝑛− 𝑘])

=
∑︁

0≤𝑖0<···<𝑖𝑘≤𝑛+𝑚−𝑘

(−)𝑝𝑎𝑚([0→ 𝑖0, 𝑖1 → 𝑖2, · · · ])×

𝑏𝑛([𝑖0 → 𝑖1, 𝑖2 → 𝑖3, · · · ]), (A.6)
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and 𝑎𝑚 ⌣
𝑘
𝑏𝑛 = 0 for 𝑘 < 0 or for 𝑘 > 𝑚 or 𝑛. Here 𝑖 → 𝑗 is the sequence

𝑖, 𝑖+ 1, · · · , 𝑗 − 1, 𝑗, and 𝑝 is the number of permutations to bring the sequence

0→ 𝑖0, 𝑖1 → 𝑖2, · · · ; 𝑖0 + 1→ 𝑖1 − 1, 𝑖2 + 1→ 𝑖3 − 1, · · · (A.7)

to the sequence

0→ 𝑚+ 𝑛− 𝑘. (A.8)

For example

𝑎𝑚 ⌣
1
𝑏𝑛([0→ 𝑚+ 𝑛− 1]) =

𝑚−1∑︁
𝑖=0

(−)(𝑚−𝑖)(𝑛+1)×

𝑎𝑚([0→ 𝑖, 𝑖+ 𝑛→ 𝑚+ 𝑛− 1])𝑏𝑛([𝑖→ 𝑖+ 𝑛]). (A.9)

We can see that ⌣
0

=⌣. Unlike cup product at 𝑘 = 0, the higher cup product of two

cocycles may not be a cocycle. For cochains 𝑎𝑚, 𝑏𝑛, we have[89]

d(𝑎𝑚 ⌣
𝑘
𝑏𝑛) = d𝑎𝑚 ⌣

𝑘
𝑏𝑛 + (−)𝑚𝑎𝑚 ⌣

𝑘
d𝑏𝑛+ (A.10)

(−)𝑚+𝑛−𝑘𝑎𝑚 ⌣
𝑘−1

𝑏𝑛 + (−)𝑚𝑛+𝑚+𝑛𝑏𝑛 ⌣
𝑘−1

𝑎𝑚

The above result also allows us to see that the cup product interacts with d in the

familiar way:

d(𝑎𝑚 ⌣ 𝑏𝑛) = (d𝑎𝑚) ⌣ 𝑏𝑛 + (−1)𝑚𝑎𝑚 ⌣ d𝑏𝑛 (A.11)

which we can interpret as the Leibniz rule. In the case that there is no boundary,

we can interpret this as yielding a form of integration by parts, so that d𝑎𝑚 ⌣ 𝑏𝑛 =

−(−1)𝑚𝑎𝑚 ⌣ d𝑏𝑛. We will abbreviate the cup product with using ‘⌣,’ so that

𝑎𝑏 ≡ 𝑎 ⌣ 𝑏.

153



154



Appendix B

Physical Interpretation of Level Shift

Symmetry

In the main text, we saw that the fact that the cocycle was a surface term for our

model implied that the bulk correlation functions of local operators are identical to

the trivial case, and that this implied that the critical exponents for the SF-tMI

transition were the same as for the SF-MI transition. Now we discuss why we might

expect that on general grounds.

We wish to consider the SF-tMI transition, and we begin in the tMI phase. Rather

than directly breaking the symmetry in the tMI, suppose that we stack the tMI with

a trivial MI. We can then break the 𝑈(1) symmetry in the trivial state, which involves

a phase transition with the usual critical exponents. After the symmetry is broken

in the trivial phase, we couple in the tMI. With the provision of symmetry breaking,

the tMI can be trivialized, and also reduced to a trivial state. The critical exponents

for this transition are thus the same as the usual SF-MI transition.

This argument shows that there must always be a SF-tMI critical point with the

same exponents as the SF-MI critical point. What we have shown in this paper is that

the XY SF-tMI transition, in the absence of a background gauge field, is precisely

this transition.

A similar argument may be applied to any SPT, thus showing that there exists

a symmetry-breaking transition out of the SPT that has the same exponents as the
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symmetry breaking transition of a symmetric trivial state. On the mathematical side,

this reflects the fact that all group cocycles 𝜈 have the form 𝜈 = 𝑑𝜇, where 𝜇 may

not be 𝐺-symmetric, i.e. that all SPTs are trivial in the absence of symmetry.
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Appendix C

Cech-Deligne-Beilinson Approach to

Chern-Simons Theory

C.1 Introduction

It is quite rare in theoretical physics for a system to be both exactly soluble and well

defined. When we find a system that is, like the harmonic oscillator, we tend to make

extensive use of it. Topological Field Theories (TFTs) are indeed exactly soluble,

but their realization as a field integral is difficult to define, while the mathematical

approaches to TQFTs tend to abandon the field integral entirely. In this Appendix, we

propose a method to define TQFTs on a spacetime lattice that remains exactly soluble.

We argue that we can reduce the field integral to a few real integrals and sums that

can be evaluated using standard methods of calculus, and we calculate the partition

function exactly in several example cases. While we largely focus here on Chern-

Simons theories and Z𝑁 gauge theories in three spacetime dimensions, the method

we have developed can be extended to topological field theories in any dimension.

The model we present is a lattice gauge theory. Gauge invariance is central to the

calculations we present, and will allow us to calculate exact partition functions on

various manifolds. In that sense, the integral measure—and hence any Hilbert space

of a related Hamiltonian formulation—is not a product of local integrals. This stands

in contrast to the models presented in the main body of this thesis.
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a) b) c) d)

Figure C-1: (color online) a) and b) A gauge field 𝐴 may only be expressed as a one-
form 𝑎𝛼 in open sets 𝑈𝛼, represented by the dashed lines. To define physical quantities,
such as an action, we must divide the manifold into closed sets with overlaps of zero
measure, within which we use a particular one-form 𝑎1, 𝑎2, .... Here we denote such a
choice by the solid black lines. We refer to this choice as a division. On the lattice,
the division is exactly the lattice cells. c) and d) Schematic depiction of two choices
of division, with open sets not drawn. In order to ensure that the physical action is
independent of choice of division, we have to add extra terms to the action along the
black 1-cell and 0-cell boundaries. It is this amended action that we are able to put
on the lattice.

Throughout this Appendix, as in Chapters 5-7, we use a normalization so that

the cycles of 𝑈(1) variables are quantized to unity. This means that for a scalar field

𝜑, 𝜑 ∼ 𝜑+ 1, and that the naïve level-𝑘 Chern-Simons Lagrangian is 𝜋𝑘𝑎𝑑𝑎. One can

always return to the usual normalization by replacing 𝜑→ 𝜑/2𝜋, 𝑎→ 𝑎/2𝜋.

Furthermore, we freely use notation from Differential Geometry and Algrebraic

Topology [82, 51]. When working in the continuum, we represent differential forms

as, e.g., 𝑎 ≡ 𝑎𝜇𝑑𝑥
𝜇. We will make extensive use of the wedge product without writing

it, so that 𝑎𝑏 ≡ 𝑎𝜇𝑏𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . When working on the lattice, we will denote lattice

indices by latin letters 𝑖, 𝑗, 𝑘, ... and dual lattice indices greek letters 𝛼, 𝛽, 𝛾, ... Like

in the continuum case, we will extensive use of the cup product without writing it,

though we symmetrize it as we describe in Section ??.

The best way to demonstrate our formalism is by example. In this section, we

demonstrate the calculation of the partition function of Chern-Simons Theory in

three spacetime dimensions on 𝑇 2× [0, 1]. We assume that the lattice is cubical. The

generalization to other lattices and spacetimes of general topology will be treated in

the subsequent sections.

To define gauge theories on a lattice, we rely on a simple general idea from contin-
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uum field theory. The basic principle that we review in Section ?? is that 𝑈(1) gauge

fields can only be defined as one-forms on contractible patches, while on overlaps they

differ by a gauge transformation. To define physical quantities, such as an action or a

Lagrangian, we cut the open patches into closed sets with overlaps of zero measure, as

shown in Figure C-1. At these lower-dimensional overlaps, we must add extra terms

to the Lagrangian to ensure that the Lagrangian is independent of how we cut the

open patches into closed sets. Here we will simply quote the resulting Lagrangian,

with a derivation to follow.

We focus only on square and cubic lattices. We denote zero-cells of the dual lattice

by 𝑉 0
𝛼 , one-cells of the dual lattice by 𝑉 1

𝛼𝛽 ≡ 𝑉 0
𝛼 ∩ 𝑉 0

𝛽 , two-cells of the dual lattice as

𝑉 2
𝛼𝛽𝛾𝜎 ≡ 𝑉 0

𝛼 ∩𝑉 0
𝛽 ∩𝑉 2

𝛾 ∩𝑉 2
𝜎 , and so forth. We assume that 𝑉 1

𝛼𝛽 inherits its orientation

from 𝑉 0
𝛼 , 𝑉 2

𝛼𝛽𝛾𝜎 inherits its orientation from 𝑉 1
𝛼𝛽, etc.

The crux of our lattice formalism is each lattice cell 𝑉 0
𝛼 carries its own gauge field

𝑎𝛼𝑖𝑗 that lives on the links of the cell. When a link is shared by two lattice cells 𝑉 0
𝛼 , 𝑉

0
𝛽 ,

we do not require the gauge fields in the lattice cells to be equal, but allow them to

differ by a gauge transformation:

𝑎𝛼𝑖𝑗 − 𝑎𝛽𝑖𝑗 = (𝑑𝜑𝛼𝛽)𝑖𝑗 ̸= 0 (C.1)

A gauge field in our formulation is the collection 𝑎𝛼, together with the 𝜑𝛼𝛽 that glue

cells together. One can do the same thing for a scalar field—on overlaps we require

that a scalar field differ by an integer 𝜃𝛼𝑖 − 𝜃𝛽𝑖 = 𝑚𝛼𝛽 ∈ Z. Below we formalize these

ideas for both a scalar field and a gauge field.

C.1.1 Definition of a Scalar Field on the Lattice

Let us examine first how this works for a 𝑈(1) scalar field Θ. Recall that we enumerate

lattice sites by 𝑖, 𝑗, 𝑘... and dual lattice sites by 𝛼, 𝛽, 𝛾....

In our formalism, a scalar field Θ consists of:

• On each lattice cell (i.e. zero-cell of the dual lattice), a zero cochain 𝜃𝛼𝑖
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• One each overlap of lattice cells (i.e. one-cell of the dual lattice), a constant1

𝑚𝛼𝛽 ∈ Z

such that:

• On each one-cell of the dual lattice,

𝜃𝛼𝑖 − 𝜃𝛽𝑖 = 𝑚𝛼𝛽 (C.2)

• On each two-cell of the dual lattice

𝑚𝛼𝛽 +𝑚𝛽𝜎 −𝑚𝛼𝛾 −𝑚𝛾𝜎 = 0 (C.3)

where 𝛼 < 𝛽 < 𝛾 < 𝜎. One can in fact derive (C.3) from (C.2). Finally, a scalar field

comes with the following redundancy:

𝜃𝛼𝑖 → 𝜃𝛼𝑖 + ℓ𝛼 (C.4)

𝑚𝛼𝛽 → 𝑚𝛼𝛽 + ℓ𝛼 − ℓ𝛽

In our formalism, a scalar field Θ consists of both the collection of zero-cochains 𝜃𝛼𝑖
and constants 𝑚𝛼𝛽. We will often write this as Θ = (𝜃𝛼,𝑚𝛼𝛽).

Let us unpack the physical picture behind these definitions. Most of the lattices

we will refer to in this paper—such as square lattices, cubic lattices, and so forth—

carry a one-to-one correspondence of points to lattice cells. Denote the lattice cell (i.e.

zero-cell of the dual lattice) corresponding to the 𝑖𝑡ℎ lattice point as 𝛼(𝑖). Then one

can fix the redundancy (C.4) by requiring that 𝜃𝛼(𝑖)𝑖 ∈ [0, 1). Thus at each lattice site,

we have an angular variable 𝜃𝛼(𝑖)𝑖 , but between lattice sites we also have an integer

𝑚𝛼(𝑖)𝛼(𝑗). The ‘continuum’ picture to have in mind is that of of scalar field 𝜃 that has

the value 𝜃𝛼(𝑖)𝑖 at 𝑖 and 𝜃𝛼(𝑗)𝑗 at 𝑗, but winds 𝑚𝛼𝛽 times between 𝑖 and 𝑗. For instance,

the winding number about a nontrivial cycle is just the sum of the 𝑚𝛼𝛽 along that

cycle.
1To unify notation with the situation of a gauge field 𝐴 described below, one may consider a

integer constant to be a “−1” form, as Z→ 𝑈(1)→ 0 is exact.
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In the conventional lattice formulation of a scalar field 𝜃𝑖, we lack the integers

𝑚𝛼𝛽, and in lieu of (C.4) we impose the redundancy 𝜃𝑖 → 𝜃𝑖 + ℓ𝑖, ℓ𝑖 ∈ Z. As such, a

typical ‘kinetic’ term is − cos(𝜃𝑖−𝜃𝑗) and a typical ‘potential’ term would be − cos(𝜃𝑖).

Instead, in our regularization, the difference of any two field values in the same patch

𝛼 is well defined as a value in R, and so a typical ‘kinetic term’ might be

−1

2
(𝜃
𝛼(𝑖)
𝑖 − 𝜃𝛼(𝑖)𝑗 )2 = −1

2
(𝜃
𝛼(𝑖)
𝑖 − 𝜃𝛼(𝑗)𝑗 +𝑚𝛼(𝑖)𝛼(𝑗))2 (C.5)

On the other hand, a ‘potential’ term with just a single 𝜃𝛼𝑖 must still be periodic:

− cos(𝜃
𝛼(𝑖)
𝑖 ) (C.6)

The inclusion of the integers 𝑚𝛼𝛽 are why this regularization differs radically from

the usual, but they are also what will render our model exactly soluble.

C.1.2 Definition of a Gauge Field on the Lattice

A gauge field 𝐴 in our approach consists of:

• On each lattice cell (i.e. zero cell of the dual lattice), a one cochain 𝑎𝛼𝑖𝑗

• On each overlap (i.e. one-cell of the dual lattice), a scalar field Φ𝛼𝛽
𝑖 = (𝜑𝛼𝛽𝑖 ,𝑚𝛼𝛽𝛾𝜎).

such that:

• on each one-cell of the dual lattice:

𝑎𝛼𝑖𝑗 − 𝑎𝛽𝑖𝑗 = (𝑑𝜑𝛼𝛽)𝑖𝑗 (C.7)

• on each two-cell of the dual lattice:

𝜑𝛼𝛽𝑖 + 𝜑𝛽𝜎𝑖 − 𝜑𝛼𝛾𝑖 − 𝜑𝛾𝜎 ≡ 𝑛𝛼𝛽𝛾𝜎 ∈ Z (C.8)
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Every lattice gauge field comes equipped with the gauge redundancy:

𝑎𝛼𝑖𝑗 → 𝑎𝛼𝑖𝑗 + (𝑑𝜃𝑎)𝑖𝑗 (C.9)

𝜑𝛼𝛽𝑖 → 𝜑𝛼𝛽𝑖 + 𝜃𝛼𝑖 − 𝜃𝛽𝑖

where 𝜃𝛼𝑖 is a scalar field independently defined on each lattice cell.

As in the case of a scalar field, our treatment of a gauge field is radically different

from the usual. For one, the flux through a plaquette is unbounded, whereas typical

treatments of lattice field theory have flux that is only defined modulo 2𝜋. Again,

this property is essential in making our approach well defined.

Furthermore, one can show [4] that on any closed, oriented two-dimensional surface

𝑆, the sum of 𝑑𝑎 over the generator of 𝐻2(𝑆) is given by the sum of the 𝑛𝛼𝛽𝛾𝜎 over

𝑆. In other words, flux is still quantized on closed surfaces. This will be a useful tool

in the partition functions below.

C.2 Lattice Lagrangians

We use the Alvarez approach [4] to derive lattice Lagrangians that can evaluate

the action for gauge fields 𝐴 that are only defined by one-forms 𝑎𝛼 locally. In our

lattice formalism, we translate these Lagrangians to the lattice in the most naïve

possible way: substitute the continuum differential “𝑑” for the lattice differential “𝑑”,

replace the wedge product “∧” with a symmetrized cup product “∪,” and exchange

integration for evaluation against restrictions of the generator of the top cohomology

of the manifold.

We focus on the case of a cubic lattice on 𝑆1 × 𝑆1 × 𝐼 where 𝐼 = [0, 1]. Labeling

the three directions 𝑥, 𝑦, and 𝑧, we assume that lattice sites have been numbered by

proceeding first in the 𝑥 direction, then in the 𝑦 direction, and then in the 𝑧 direction.

To each lattice cell, we assign the number of the site in the (−�̂�,−𝑦,−𝑧) corner. See

Figure C-2. In later sections, we can remove this awkward requirement by phrasing

it as a certain branching structure condition, which will be essential to generalize
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Figure C-2: (color online) a) Example of a cubic lattice on two cells. For more
larger cubic lattices, we number lattice points first in the 𝑥 direction, then in the
𝑦 direction, and lastly in the 𝑧 direction, as we have done for this two cell lattice.
b) Visual representation of the symmetrized cup product of a one-cochain and a
two cochain. c) The interwoven branching structures of the lattice (black) and dual
lattice (pink), where we use the self-duality of the cubic lattice to assign a branching
structure to the dual lattice.

approach to more complicated manifolds.

For boundary conditions, we take the gauge field to have zero flux on 𝑇 2 × {0}
and 𝑇 2×{1}, as well as identical holonomy at both times. The zero flux condition is

typical and represents a truncation of the Hilbert space to ‘low-energy states’, while

the requirement of identical holonomy reflects the fact that the partition function is

a trace.

We we also need a cyclic symmetrization of the usual cup product on this cubic

lattice. Let 𝜔𝑖𝑗 be a one-cochain and 𝜈𝑖𝑗𝑘𝑙 a two cochain on our cubic lattice. Then

we define the cup product as:

(𝜔 ∪ 𝜈)𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 = 𝜔𝑖𝑗𝜈𝑖𝑘𝑚𝑜 + 𝜔𝑖𝑘𝜈𝑖𝑚𝑗𝑛 + 𝜔𝑖𝑚𝜈𝑖𝑗𝑘𝑚 (C.10)

This may be understood as a symmetrization of the usual cup product over cyclic

permutations of indices; a visual demonstration is given in Figure C-2b. As before,

we will always drop the cup “∪.”

We will also need the expression for the holonomy. Consider the situation in
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Figure C-3: a) Schematic depiction of the Wilson line when 𝐴 is only represented by
one-forms 𝑎𝛼 locally. The corresponding picture on the lattice, where 𝐴 is represented
by one-cochains 𝑎𝛼𝑖𝑗 in each lattice cell.

Figure C-3. In each closed interval, we use a particular one form 𝑎𝑎, however where

two closed sections intersect between regions 𝛼 and 𝛽 we must add a term −𝜑𝛼𝛽,
where 𝑎𝛼 − 𝑎𝛽 = 𝜑𝛼𝛽. So the continuum expression for a Wilson line is

The action we obtain from the Alvarez procedure is:

𝑆 = 𝜋𝑘

⎧⎨⎩∑︁
𝛼

𝑎𝛼𝑑𝑎𝛼 −
∑︁
𝑉𝛼𝛽

𝜑𝛼𝛽𝑑𝑎𝛽 +
∑︁
𝑉𝛼𝛽𝛾𝜎

𝑛𝛼𝛽𝛾𝜎𝑎𝜎 (C.11)

−
∑︁

𝑉𝛼𝛽𝛾𝜎𝛿𝜆𝜌𝜁

(𝑛𝛼𝛽𝛿𝜆𝜑𝜆𝜁 − 𝑛𝛼𝛽𝛾𝜎𝜑𝜎𝜁 − 𝑛𝛼𝛾𝜆𝜌𝜑𝜌𝜁)

⎫⎬⎭
where we sum over all lattice cubes 𝑉𝛼, faces 𝑉𝛼𝛽, edges 𝑉𝛼𝛽𝛾𝜎 and points 𝑉𝛼𝛽𝛾𝜎𝛿𝜆𝜌𝜁 .

Each term is evaluated on the appropriate restriction of the top cohomology of 𝑇 2×𝐼.
For example, consider the cube in Figure C-2c above. The terms in the action for

this cube are:

𝑎112(𝑑𝑎
1)1,4,7,10 + 𝑎114(𝑑𝑎

1)1728 + 𝑎117(𝑑𝑎
1)1245 − 𝜑12

1 (𝑑𝑎𝛽)1357 − 𝜑13
2 (𝑑𝑎3)2637 − 𝜑15(𝑑𝑎5)4567

(C.12)

+𝑛1256𝑎657 + 𝑛1357𝑎767 + 𝑛1234𝑎437 − (𝑛1256𝜑68
7 + 𝑛1234𝜑48

7 + 𝑛1367𝜑78
7 )
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where 𝑑𝑎𝛼𝑖𝑗𝑘𝑙 = 𝑎𝛼𝑖𝑗+𝑎
𝛼
𝑗𝑙−𝑎𝛼𝑖𝑘−𝑎𝛼𝑘𝑙. One can then proceed over all cubes of an arbitrarily

large cubic lattice, assigning terms as above.

At this point one can see already because 𝜑𝛼𝛽 carries an integer redundancy 𝜑→
𝜑 + ℓ𝑖, the action is only well defined if 𝑘 ∈ 2Z, reflecting the fact that our theory

describes bosonic Chern Simons theory2. For convenience, we relax this restriction to

𝑘 ∈ 𝑍below.

C.2.1 Evaluation of Partition Functions

We believe that our theory describes a renormalization group fixed point, in that one

can evaluate the integrals over certain lattice links and end up with the same action

on a reduced lattice. With that in mind, here we evaluate the partition function on

the simplest possible lattice: a single lattice cell covering 𝑀 = 𝑆1 × 𝑆1 × 𝐼, ‘glued’

to itself around the nontrivial loops of 𝑀 .

The single lattice is shown in Figure . Since there is only one cell, we drop the

cell index.

Instead of periodic boundary conditions, we allow the links to differ by a gauge

transformation. Specifically, we assume that there is a field 𝜑 defined on faces

5678, 2468, and 3478 (see Figure C-5) such that:

𝑎34 − 𝑎12 = (𝑑𝜑)34 𝑎78 − 𝑎56 = (𝑑𝜑)56 (C.13)

𝑎37 − 𝑎15 = (𝑑𝜑)48 = 𝑎15 − 𝑎26 (C.14)

𝑎24 − 𝑎13 = (𝑑𝜑)24 𝑎68 − 𝑎57 = (𝑑𝜑)57 (C.15)

Note that, because 1 ∼ 2 ∼ 3 ∼ 4 represent the same point as do 5 ∼ 6 ∼ 7 ∼ 8,

(𝑑𝜑)12, (𝑑𝜑)13, (𝑑𝜑)56, (𝑑𝜑)57 ∈ 𝑍. On the other hand, (𝑑𝜑)15 ∈ R, and because the

link 15 is contractible we can take the temporal gauge with 𝑎14 = 0.

Now we can write down the Lagrangian on our lattice. Directly translating eq.

2Indeed, the Alvarez approach [4] was developed specifically to explain level quantization without
resorting to the homology of the underlying manifold.
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a) b) c)
Figure C-4: Pruning of the lattice for Chern-Simons Theory. a) We begin with a
large cubic lattice on 𝑇 2× 𝐼. b) In Section (), we show that by integrating out lattice
variables, we can obtain the same theory on a reduced lattice. We do so gradually
until it is a single “stack” of non-simply-connected cubes along 𝐼. In this frame,
we denote the flat-connection boundary conditions by shading. c) After integrating
out yet more lattice points, we can reduce the lattice until it is a single cubic cell,
non-simply connected to itself. In this diagram, 1 ∼ 2 ∼ 3 ∼ 4 are a single actual
point, though we denote them differently to make it easier to notate links. Similarly,
5 ∼ 6 ∼ 7 ∼ 8 are a single point. We have dropped the shading that was present in
(b).
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Figure C-5: Detailed view of the single-cell lattice. a) We do not require that the
lattice variables are periodic, but instead allow them to differ by a gauge transforma-
tion 𝑑𝜑, where 𝜑 is defined on the orange faces. b) Taking the temporal gauge with
all links in the vertical direction zero, we can rewrite the Lagrangian in terms of the
holonomy in the 𝑥 and 𝑦 directions, 𝐻𝑥 and 𝐻𝑦 respectively, as well as the flux on
the 𝑥𝑧 and 𝑦𝑧 faces.

(C.12), we obtain:

𝑆 = 𝜋𝑘
[︁
𝑎13(𝑑𝑎)1256 + 𝑎12(𝑑𝑎)1357 − 𝜑1(𝑑𝑎)1256 − 𝜑1(𝑑𝑎)1357 (C.16)

𝑛1256𝑎13 + 𝑛1357𝑎12 − 𝑛1256𝜑1 − 𝑛1357𝜑1

]︁
Let us rename these quantities in a more transparent way. We rename the

holonomies as:

𝐻𝑥 ≡ Hol(𝐴, 12) 𝐻𝑦 = Hol(𝐴, 13) (C.17)

and the fluxes as:

𝐹𝑧𝑥 = (𝑑𝑎)1256 𝐹𝑦𝑧 = (𝑑𝑎)1357 (C.18)

The action becomes:

𝑆 = 2𝜋𝑘 [𝐻𝑦𝐹𝑧𝑥 +𝐻𝑥𝐹𝑦𝑧] (C.19)

which has the virtue of being written in completely gauge-invariant, non-redundant
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quantities.

Now we can evaluate the partition function. When doing so, we can sum over the

‘𝑥’ variables first or the ‘𝑦’ variables first. Whichever variable we sum over first plays

the role of the canonical momentum from canonical quantization, while the second

play the role the canonical position. Let us sum over the ‘𝑥’ variables first, 𝐻𝑥, 𝐹𝑧𝑥.

The partition function is:

𝑍 =
∑︁
𝐹𝑦𝑧∈Z

1∫︁
0

𝑑𝐻𝑦

∑︁
𝐹𝑧𝑥∈Z

1∫︁
0

𝑑𝐻𝑥 exp {2𝜋𝑖𝑘 [𝐻𝑦𝐹𝑧𝑥 +𝐻𝑥𝐹𝑦𝑧]} (C.20)

We have reduced the quantum mechanical problem to two real integrals over [0, 1),

and two sums over Z. Evaluating from right to left, we have:

1. Integrate 𝐻𝑥 from 0 to 1. Recalling that 𝐹𝑦𝑧 ∈ Z we have,

1∫︁
0

𝑑𝐻𝑥𝑒2𝜋𝑖𝑘𝐻𝑥𝐹𝑦𝑧 =

⎧⎪⎨⎪⎩1 𝐹𝑦𝑧 = 0

0 𝐹𝑦𝑧 ̸= 0

(C.21)

Hence the integral over 𝐻𝑥 sets up a Kronecker 𝛿-function 𝛿𝐹𝑦𝑧 ,0.

2. Sum 𝐹𝑧𝑥 over Z. This sets up a Dirac comb:

∑︁
𝐹𝑧𝑥∈Z

𝑒2𝜋𝑖𝑘𝐻𝑦𝐹𝑧𝑥 =
∑︁
ℓ∈Z

𝛿(ℓ− 𝑘𝐻𝑦) =
1

𝑘

∑︁
ℓ∈Z

𝛿

(︂
𝐻𝑦 −

ℓ

𝑘

)︂
(C.22)

These Dirac 𝛿-functions force the 𝑦-holonomy 𝐻𝑦 to be in Z𝑘.

Let us unpack the physical picture here. The Kronecker 𝛿-function sets the flux

𝐹𝑦𝑧 to be zero. This is analogous to setting 𝐻𝑦 to be time-independent. In the

Hamiltonian picture, the holonomy around one nontrivial loop is the canonical po-

sition and uniquely labels ground states. Similiarly, the Dirac 𝛿-function constrains

that same holonomy to be in Z𝑘, reflecting the 𝑘 ground states on a torus. One may

exchange the roles of 𝐻𝑥 and 𝐻𝑦 by exchanging the order of integrating over variables,

namely by integrating over 𝐻𝑦 and summing over 𝐹𝑦𝑧 and then integrating over 𝐻𝑥
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and summing over 𝐹𝑥𝑧.

Performing the remaining integrations, we have

𝑍 =
∑︁
𝐹𝑦𝑧∈Z

1∫︁
0

𝑑𝐻𝑦

(︀
𝛿𝐹𝑦𝑧 ,0

)︀ 𝑘−1∑︁
ℓ=0

1

𝑘
𝛿

(︂
𝐻𝑦 −

ℓ

𝑘

)︂
= 1 (C.23)

The 𝑘 contributions to the partition function from the 𝑘 ground states on a torus are

multiplied by the 1
𝑘
, reflecting the fact that our formalism calculates a normalized

partition function; future work will generalize this calculation to the ground state

degeneracy and braiding of Wilson loops.
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Appendix D

Commentary

I have not asked him, but I believe that Xiao-Gang and I began to work with each

other because we both believe that the universe must fundamentally be computable.

To that end, I took the least computable ideas I could imagine: chiral quantum

field theories, and sought to render them well defined on the lattice so that we can

simulate them on a computer. Of course, the great joy of reality becomes apparent

when, instead of somehow taming the wildness of Quantum Field Theory, defining

them on the lattice only reveals an even more extraordinary nature.

Not all of my drive comes from abstract considerations. I hope deeply that this

work proves useful to other scientists over the long term. Most of my work in the

latter days of my PhD has been seeking to communicate these ideas to those from

the Lattice Gauge Theory and Quantum Information fields, in the hopes that it

solve several related problems for them not only in principle, but in practice. In my

experience, progress in abstract considerations is best measured by its contribution

to hard, down-to-earth problems.

Many physicists would ask why, given my obsession with computability, I did

not work in quantum information. On the one hand, I will spend my coming post-

doctoral fellowship, and likely the rest of my career, building quantum computers,

and I could not be more excited for that. But I do not regret working in condensed

matter quantum field theory at all. There is something extraordinary about quantum

mechanics in spacetime, where dimensionality plays a central, even defining role. I
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did not want to study states in an abstract Hilbert space, but rather correlation

functions stretched out across space and time. And, most of all, I wanted to work

with Xiao-Gang.

Feynman first said that we do not understand a theory unless we can explain it to

freshmen. About halfway through my PhD, I first heard the “Wen Principle:” that we

do not understand a theory unless we can program it into a computer1. (Surely this

is more flexible than Feynman’s rule.) The Wen principle has drastic implication for

the nature of our world: If you believe that the universe can be understood, or even,

as I do, that it is our destiny to understand it, then the universe must be computable.

All of the quantum field theories that control the behavior of the physical world must

be computable. That is what my PhD work, and this thesis, have been about.

The connection between understanding and computation goes much farther. In

the “it-from-bit” and “it-from-qubit” formulations, we often speak of the universe as

a computation. However, it is not that reality is modeled after computation, but the

opposite: all of our computation, and even all of our cognition, is modeled after the

nature of the universe. Equations encode words, words communicate ideas, and ideas

emerge from the world around us. I think often of C.S. Lewis’ belief that there is an

order to things, and the thing in our experience which that order most resembles is a

mind. The Wen principle then follows naturally: computers model minds, and minds

model reality.

Again from Feynman: “what I cannot create I do not understand.” Perhaps to

understand is to create [100]. Or, from Wen’s principle, to compute. Because I

suspect that, at the center of things, at the beginning of it all, lays the idea, the
1This is very similar to Wilson’s principle, named for the founder of modern renormalization

group theory Kenneth Wilson. From his Nobel lecture [110]:

“In thinking and trying out ideas about ‘what is a field theory’ I found it very helpful
to demand that a correctly formulated field theory should be soluble by computer, the
same way an ordinary differential equation can be solved on a computer, namely with
arbitrary accuracy in return for sufficient computing power.”

Yet there is a key difference between the viewpoints of Wen and Wilson. Wilson saw the lattice as
a useful way to define a quantum field theory, while field theory itself was closer to the fundamental
theory of the universe. Wen sees the lattice as a candidate for a fundamental theory of our uni-
verse, and quantum field theories as useful ways to reason about many-body systems. I am clearly
sympathetic to Wen’s view.
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order. The logos.
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