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ABSTRACT

A 1lifting surface theory is developed for vertically
oriented hydrofoils piercing a fluid free surface. The
formulation, a singular integral equation, is shown to
reduce to known limiting forms for the cases of zero and
infinite Froude number. Conditions restricting the
mathematical nature of acceptable foil loadings are given
for the general case for finite nonzero aspect ratio and
Froude number. Two simple foil loadings are numerically
investigated, demonstrating the feasibility of a proposed
technique for analyzing the dynamics of arbitrarily
shaped free surface piercing hydrofoils.
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INTRODUCTION

A surface plercing hydrofoil may be any of a variety of
winglike bodies moving with constant velocity at a fluid free
surface and oriented with part of the wing above and part be-
low the free surface. A partial 1list of examples includes
ship's rudders, streamlined vertical struts used to support
horizontal hydrofoils and rigid sidewalls of ailr cushion
vehicles. All of the above are, to some extent, thin bodies
which experience large transverse forces when yawed a small
angle from straight ahead motion.

Were the fluid free surface eliminated by considering
the space above it occupied by fluid and the body's mirror
image, the physical situation could be mathematically mod-
eled using techniques of classical subsonic wing theory or
slender body theory. Very specifically, the present theory
for surface piercing hydrofoils is an extension of 1lifting
surface theory to include the effect of a fluid free surface.
As in classical 1lifting surface theory, the analysis for
lifting and thickness effects can be treated independently
and only lifting effects are considered herein. It is in-
teresting to note that the corresponding thickness effects in
free surface flows have been understood since 1898 when
J. H. Michell wrote his famous paper on the wave resistance

%
of a thin ship (20).

*
Numbers in parentheses refer to references listed in
the bibliography.
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Mathematically, the analysis makes many of the same
assumptions as classical 1lifting surface theory: the body
has no thickness and the angle between it and the flow is
everywhere small. In addition, the'perturbation to the flow
by the body must satisfy certain conditions restricting the
nature of the waves assoclated with the flow. These condi-
tions are known collectively as the free surface boundary
conditions.

As in lifting surface theory, the ultimate goal of the
analysis is to relate the shape of a surface piercing foil
to the forces that act upon it when it moves across a free
surface. With the present theory the shape of a surface
piercing hydrofoil can be obtained directly in terms of the
load distribution it is required to achieve. Reversal of the
order of solution is a complex but relatively straightfor-
ward task, and is often referred to as the inverse problem.
The method of the inverse problem in the present theory is
simply to superpose scolutions to the direct problem in such
a way as to generate the desired hydrofoil shape.

Previous known studies of surface piercing hydrofoils
have been made by Newman (1), Milgram (2) and Daoud (22).
The Newman paper is by far the most comprehensive, Daoud has
developed a numerical proceedure and has extensively studied

1ifting surfaces of relatively low aspect ratilo.

¥
After this final draft was completed, another paper on
this subject by Ismail (24) was brought to the attention of the
author. It reports on analytic and experimental work on ver-
tical foils. The experiments included cases in which the foil
pierced the free surface, but the analytic work addressed itself
primarily to foils which are completely below the free surface.
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I STATEMENT OF THE PROBLEM

A surface piercing hydrofoil of rectangular planform 1is
assumed to move with constant speed in the positive x direc-
tion. The plane y = 0, is that of an undisturbed free sur-
face and the positive y direction is taken downward in the
direction of gravitational acceleration. The transverse
coordinate z is taken positive to port. The surface plerc-
ing hydrofoill is situated near the plane, z = 0, (because
the foil is thin, of small camber and angle of attack) and,
establishing the coordinates moving with the foil, the lead-
ing edge is taken to be at x = CO (the chord length), the
trailing edge at x = 0 and the lower tip at y = SO (the span).
These conventions are shown on Figure 1.

Letting the lengths be nondimensionalized using the
chord length, CO, and defining the aspect ratio, AR, to be

SO/C the analysis is simplified by a reduction of the num-

o?
ber of parameters. Of particular interest 1s the parameter,
gCO/Ug, which is the inverse of the Froude number squared.
This parameter, referred to as F, is central to the analysis.
Figure 2 shows the nondimensional formulation. For the pur-
poses of simplicity, the dimensionless variables are assigned
the same symbol as their nondimensional counterpart. Further
use of the dimensional form is anticipated only when develop-

ing the 1lifting line formulation. The free surface height n

is measured in the positive y direction.
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Figure 1 Dimensional coordinate system

Figure 2 Nondimensional coordinate system
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IT FUNDAMENTAL EQUATIONS

Both the direct (known loading, unknown shape) and the
inverse (unknown loading, known shape) analysis require
determination of flow details near the surface piercing foill
in terms of other known conditions of the flow at the foil.
The inverse analysis specifies that the flow be tangent to
the surface of the foil, whereas the direct problem specifies
the pressure difference across the foil planform. In both
cases other physically motivated restrictlve condltions are
required of the solution. These are that (i) the flow velo-
cities be finite at the trailing edge (the Kutta condition);
(ii1) that fluid particles on free surface move with the free
surface; (iii) that the pressure at the free surface remain
constant; (iv) that any waves generated radiate from the
body and decay in amplitude at a rate such that wave energy
is conserved. Finally, the flow must satisfy the conserva-
tion of mass equation for an inviscid incompressible fluid.

Assuming a velocity potential ¢ represents the flow
field and that V = V¢, the above conditions can be mathe-
matically formalized for the flow region, y > 0:

Letting ¢ be a perturbation potential such that
¢ = -Ux + ¢, the following conditions are imposed on the
solution for ¢.

(i) The body boundary condition requires that the flow

be tangent to the body surface and is written
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ve- n=o on 7:3,“(;,3) (Eulel)
where n is a unit vector normal to the body surface and Z g,
is the location of the body surface (here the mean line of
the body).

(11) The Kutta Condition from airfoil theory requires
that pressures be continuous across the wing surface at the
trailing edge and, in so doing, affords a method of uniquely
setting the circulation and 1ift for the wing. Requiring
only that V¢ be bounded at the trailing edge suffices to
satisfy this condition.

(11i) The Kinematic boundary condition on the free
surface requires that a fluid particle on the free surface

stay on the free surface. It may be compactly stated as

1-9)
;%é_- j - O on 5: ?("’5) (2.1.3)

(iv) Bernoulli's equation, evaluated on the free surface,
is known as the dynamic free surface boundary condition and

is written

(24 Lolh)

ée(vﬁ .v_@)_?ﬂ?.—: cms“'un‘l' on 3=?(K,§!)

(v) The governing equation for the flow 1s Laplace's

V&=o0

and 1t applies at all points within the flow y > 0 that are

equation (2.1.5)

not on a boundary of the flow.
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Solution of the exact problem as specified cannot be
determined using existing analytic techniques. Specifically,
the difficultles are the nonlinearity of the free surface
conditions and the imposition of all the boundary conditions
on surfaces which are not known a priori, but are rather
part of the solution with the exception of the known loca-
tion of the foil (in the inverse problem).

To render the problem tractable, the free surface
condition is linearized and all boundary conditions are
satisfied on known surfaces assumed arbiltrarily close to the
unknown surfaces actually specified. Reduction of the com-
plexity of the boundary conditions is based on the assumption

that the perturbation velocities {¢X, ) ¢Z} = {u, v, w}

y >
are small (second order) compared to U, the free stream velo-
city (first order).

Bypassing the usual steps associated with obtaining a
formulation for the perturbation potential, ¢, the results
of this linearization are:

(1) The flow tangency condition is specified on the
plane z = 0, and the velocity transverse to the flow is

d)% ==U %—}"‘" on 3=0 (2.2.1)

(i1) The Kutta condition requires that the pressure be
constant across the foll at its trailing edge. The linear-

ized pressure is given by Bernoulli's equation.
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P~ Vo by
Ce= = 42 (2.2.2)
FT1eU” /o

The Kutta condition then states that

¢x =0 at the trailing edge x = 0

(1ii) The Kinematic free surface condition is:

(‘(- ) = +(u U)y‘ +w§1 -J= 0
L (2.2.3)

Mo w0\ D .

As the solution is independent of time My = D.

The terms un, and wn, are second order and dropped leaving:

3 b |
= ):’ --U-b—i— ON 3:‘:0

(iv) The dynamic free surface condition; assuming

p =0ony =0, and expanding the V® - V® term is:

4 Z 2 $2—
b1 + 4 - = O
z (§" §3 - ) 37 (2.2.4)
z
1 _ 1 2 _ _ 3
7":((cb,‘ U)+¢3+¢3) 4l=9° on Y=o
keeping only first order terms

"U'd’x~l—3'[=0 on 4=o

(v) As before, Laplace's equation:

vz4)= o (2. A5



1d

must be satisfied at all interior points in the flow. A
combined form of the free surface condition may be formed by

eliminating n to give:

$bq +"g‘1 dyx= 0 on y=o0  (2.3)
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IIT FORMULATION OF THE SOLUTION IN TERMS OF A DIPOLE SHEET

The development of equations relating to the shape of a
foil and the hydrodynamic load acting upon it closely
parallels the development of 1ifting surface theory. As in
1lifting surface theory, an integral equation 1s established
using Green's theorem which states that a potential (here a
velocity potential) may be determined everywhere within and
on the boundaries of a fluid domain in terms of the potentlal
and its normal derivative on the boundaries. The develop-
ment of a theory for a l1lifting surface of zero thickness is
found in many texts on classical incompressible subsonic
aerodynamics and is not included in the present paper. (An
excellent exposition may be found in Ashley and Landahl (10).)

The resulting equation is:

(‘) = gA(b i,:: Aon:’o (3.1)

wu‘j wa\(e,

where ¢ 1is the perturbation velocity potential for the flow
on the foil, A¢ = ¢(x,y,0 ) - ¢(x,y,0" ) is the difference in
value of the potential on adjacent surfaces of the folil, and
¢S is the velocity potential for a point source singularity.
Noting that 3¢S/Bzo is the potential for a dipole whose axis
is transverse to the free stream flow, equation 3.1 may be
viewed as the convolution of a potential Jump distribution
A¢p with the "impulse response" of a point potential jump,

the dipole. The potentials for a source and a dipole at
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(xo, . zo) in an infinite fluid are respectively:

{ |
c')s:.:—r-' (*dz 2 (3.2)

where )
¥ = VU (x-Xa¥ 4+ (y-40) 4 (3-3.)"

When the free surface condition is imposed in the
formulation, it is satisfied by utilizing an elemental point
dipole potential satisfying the free surface conditions.
Many distributions of these dipoles will satisfy the free
surface condition as well; a separate section is devoted to
developing restrictions which delineate exceptional cases.

Two equivalent formulations for a source in the
presence of a free surface are known. In both cases a func-
tion, regular in the fluid domain, is added to the potential
for a dipole in an infinite fluid, with the two functions
collectively satisfying the free surface condition. The
first is what may be called the odd image formulation in
which the function regular in the fluid domain includes an
image sink of equal strength located symmetrically above the
plane of the free surface. This potential may be found in
many treatises on free surface flows including Wehausen (19)
and Peters and Stoker (18). In the present work, a second
form is used and may be referred to as the even image formu-
lation as it contains an image source above the plane of the

free surface. Following Newman (1) and Wehausen (19)
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(equation 13.36), this source potential is:

] ] .
bs=+ * "“R"-S‘ga-—ﬂs«e (3.3)

_A[Y+490+ L(x-x0) cos o]
CoS[ﬁ (5 ?o) S!'la] l: C!A.CIO

where v = g/U2 and x, y, 2 are temporarily dimensional.

=V (x-%)" 4+ (3-90)" + (3-30)*

Vo(x-xaY 5 (q4ay) s (‘5—-%,)"’

The source potential given by Wehausen (19) 1s for the even
formulation. In Appendix F this form is shown equivalent to
that of equation 3.3.

Nondimensionalizing all lengths with the foil's chord CO

and the wave number A with v, ¢S may be rewritten:

w ,e0
. ' _4 = KE
b= Co 'F“"r—_."'__'? Re K- secio (3.4)
o ‘o
w9490 + Lx-X2) cos O]
cos[x# (-3)sime] e dx de

where F = gCO/Uz.

Finally, the corresponding potential for a dipole with
axls transverse to the free stream and situated on the plane

Zo = 0, is:



el

%:aﬁ
A
( ¥ % A (X F) )
4’.;:'?; 3 + P R‘g K- sec’o
o o
) -KF[9+-3¢,+1(1L-1,) cos ej
sin(KF‘jsluQ)e d«de

(3.5)

Now, a potential analogous to equation 3.1 for an
infinite fluid, satisfying the linearized conditions

(equation 2.2) for a surface piercing hydrofoil may be

written:
AR 1
4"’:5,3) = — —'- A ‘b (xo,ﬂo) 4,‘! (1,5,3,K¢,:’¢ ,':)LI—XOA:'o
Z= ) ) (3.6)

The functional relation between foil loading and shape may
be determined by noting that the induced velocity normal to
the foll is 93¢/3y, and that the shape of the foil is:
Y
%M = 3-&1"’) * b%

¢1xﬁ: £3sT)

The loading acting on a foil is specified by A¢ since the
circulation from a point on one foil surface to the adjacent

point on the other is:

X,9,0"

T = %—% . 84 . ~Ad (3.8.1)

X,Y4,0



o
+
9,0 x,9,0t 1,9,0t

==\ &,  dxo _ by dxo =-2 ¢, dxo

‘g"o"’ -
'n":o K-,S,O‘r

(3:8:2)

Since the perturbation velocity ¢_ 1s odd in z, the

I+ X

contribution from each side z = 0% is equal.

With TI'(x,y) known, the local pressure jump can be
determined by noting that the local bound vortex density
y(x,y) =-3I'/3x. Furthermore, the force on a differential
element is‘ﬁUy(x,y)dxdy, and the pressure is pUy(x,y). For
clarity, these results are restated. A positive potential
jump A¢ across the foll results when ¢(x,y;)+) > ¢(x,y0 7).
Integrating ¥ - 32 on a path from (x,y07%) to (x,y0~), the
net circulation for positive A¢ 1s negative (¢XO is positive
on (x,y,0%) in equation 3.8) and the side force is positive
owing to the negative free stream €U < 0); the result that
the total 1ift is equal to pUFT, where FT is the total cir-
culation, is negative for A¢ > 0, and can be computed by

integrating either y(x,y) over the foil or TI'(0,y) across the

span. Summarizing,

Ap = P(%9,0%) - p(x9,0) = 20U &, (x,4,0")

3
2 d’x("r‘.‘:of) =X (x,9) = — '%?

A b (x9) = —T (x9)
(3.9)
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Jump, vorticity, side force, circulation and
pressure Jjump
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These conventions are illustrated in Figure 3 for the
hypothetical case of uniform chordwise loading.

At this point the only modification of the formulation
made is to use it to define velocitiles normal to the foil.
Equation 3.6 for ¢ is differentiated with respect to z, and
then z is set equal to zero, giving an equation for the
"downwash"; a carry over term from airfoil theory where nor-
mal velocities on wings are generally in a downward direction.
Taking the derivative of ¢ in the z direction within the in-
tegral (in this case four integrals) is not always permissible

and care must be taken to properly interpret the resulting ex-

pression in terms of generalized functions. Formally then:
AR 1
w = d) I &‘xﬂx'ja) d (‘!Xoc‘ﬂo
3=0 21lc., d%
0 —m™ 620 (3.10)
where W e
4 “ < F> . 2
B ‘bd T Qe_ sSmm £ .
. aw K- sect®
0o ‘o

—!(F[3+'.‘Io+ L(x-%o) cos 0]
e dxde
Again following 1ifting surface theory, the integral
equation 3.10, for a surface piercing foil may be reduced to
a more compact form by modifying the kernel and reducling the

integration limits.
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IV THE HORSESHOE VORTEX INTEGRAL EQUATION FORMULATION

The integral equation 3.10 for a dipole sheet is
restated with A¢(xo,yo), the local dipole sheet strength,

replaced with F(xo,yo) to eclarify following developments.
AR 14

¢ (x)j) = "21_;"‘" T‘(Ko,'j,) ‘t,_' (X,‘j, Yo, ,F)J‘oajo

0 “Jo (4.1)

Certain physical arguments may be used to compact the region
over which the Green's function ¢d must be integrated. As a
first step, pressure jumps across the wake (x < 0, 0 < y £ AR)
may be ruled out on the physical ground that an unrestrained
pressure discontinuity would result in infinite fluid particle
accelerations. A streamwise increase (or decrease) of
F(xo,yo) in the wake corresponds to a local increase (or
decrease) in the (vertical) vorticity in the flow which must
be zero not to produce an unacceptable pressure jump. It can
therefore be stated that BF/BXO is zero in the wake region

-® < x, 2 0. (A possible exception on the plane of the free
surface exists and is discussed in Appendix E.) With this
result, the integration bounds in equation 4.1 can be re-
duced to include simply the foil's planform (0 < Yo < AR,

0 < £y B 1). This is accomplished by integrating by parts

once in the X direction; details of the derivation are set
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forth in Appendix A. The resulting expression for the

downwash is: AR 1

Ww (X)S) -'—' ——1——" K (XO)SO) G (x;", xo,So, F) C‘«xoéﬂd
2WCo
o ‘0

1 1 - X—Xo
(4-40)" Vx—xadT 4 (9-4.)7

1 _ X-Xeo
(414.)% Y -%x)7 + (y+9)*

z -
[ s ]

K - sec’®

e [9490 + L (X -Xxo) cos o]
dxde (4.2)
where Y(Xo,yo) is the bound vortex sheet strength and 1is
equal to -BF(XO,yD)/axO, and the integral sign with the
X signifies that the integral be evaluated using Mangler's
"recipe™ as set forth in Ashley and Landahl (10), pp. 130-131.
Newman (1) has carried the analysis directly from the
dipole sheet form to one which can be obtained by partially
integrating the above horseshoe formulation over the T direc-
tion. The nonkernel part of the integrand is then BZF/BXOByO
and the kernel is found to represent a point increase in free
vorticity. This form is analogous to that of Robinson and
Lauerman (6) for a lifting surface in an infinite fluid. It
does not, however, yield any further reduction of the integral

bounds and slightly increases the complexity of the kernel.
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It is included in Appendix C for completeness; no future use
of it is made herein.

Before proceeding toward a solution of equation 4.2 for
a surface piercing foil of arbitrary loading or shape, three
limiting cases are discussed to place the general case 1in
perspective. They are the limits of zero and infinite Froude

number and infinite aspect ratio (lifting line).
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V THE ZERO FROUDE NUMBER (F = w®) LIMIT

In his thesis, Letcher (17) makes an observation
helpful to those not thoroughly imbued with the concept of
Froude numbers. It is that when visualizing a limiting Froude
number case, it is often best to imagine that variations of
the acceleration of gravity cause the effect rather than
variations of the length scale or velocity which are generally
more physically apparent and with which one might associate
nonFroude number effects. (For example, Reynolds number
effects with velocity variation.)

The cases of zero and infinite F can be analyzed with
decreasing degrees of mathematical rigor depending upon how
early in the formulation the 1limit is taken. For F, -+ 0, g
can be imagined to tend to infinity with U and the length
scale Co fixed. ‘From the combined free surface boundary con-
dition it can be seen that as g - «® with U held constant, ¢y
must tend to zero since ¢xx must remain finite as physical
arguments require. Thus, the anticipated limit as Fn +~ 0 1is
one satisfying a boundary condition ¢y =0 ony =20 énd phy-
sical corresponds to a foll of span 280 in an infinite fluid.
In equation 4.2 this corresponds to the double integral por-
tion of the kernel vanishing as Fn + 0. Letting KF = A, this

expression becomes

W o0 )
22""4“9 Sin® ..j[‘ylrs, +e(x-%o) c.sa_]
o’o (5.1)
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which tends to zero for F + « (Fﬁ + 0). The integral
equation 4.2 thus reduces to the familiar integral equation

for a lifting surface of span 2AR and may be written:
AR 1

W (x,4)= -—Z{; ¥ U‘ﬁ'&o)( “4o)?

_AR O

X-¥Xo (!)( c‘
o €Yo
N X- %)* + (-9

(5.2)
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VI THE INFINITE FROUDE NUMBER LIMIT (F - 0)

Following the same lines of thought as in developing the
zero Froude number limit, the infinite Froude number limit is
considered to be the result of the gravitational acceleration
tending to zero. From the combined free surface boundary
condition one finds that the new boundary condition on y = 0

is that ¢xx = 0, Since ¢ = 0 for all z at x = +=, this con-

dition is equivalent to the condition that ¢ 0 everywhere
on the plane y = 0. Considering the formulation for the
potential rather than the downwash, it can be seen that the
proper limiting form of the Green's function is one in which
the nonintegral terms form an odd pair whose contributions
to the potential exactly cancel on the surface y = 0. Had
the present formulation been founded on the Green's function
for a source with its odd image, the present task would be to
demonstrate that, after having been manipulated into the
Green's function for the downwash due to a horseshoe vortex,
the double integral part of kernel vanishes in the limit of
Fn + oo,

Conversely, it must now be shown that the double inte-
gral term is such that when its infinite Froude number 1imit
is added to the even image, the resulting kernel contains the
desired negative image. Using the form of the double integral

term in equation 4.2, and separating the residue I, and

Cauchy Principle Ipv value contributions:
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w
z r 2
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IR"—' - —4— Tim ‘Il'i.FSece"'Ma SMme
w ) _
o _£ selo [(849.) +L(x-%s) cos &)
3 de
z
= — 4¥* sec’® Tan o s O cos [F sec® (x.—!cc)] ‘

GE-F:Siu;HP (t34¢3;) c!é?
(6.1)

Here the order of performing the integration first and then
taking the limit is important. For any finite value of

F(y + yo), the integral is convergent as 6 - m/2. The sub-
sequent limit as F - 0 then properly assigns a value of zero

to the residue contribution. The Cauchy Principle value

contribution is:

_-_-: oo
I, = i e Atano sin & sin[A(K-Xo) cos 9] .
w
o o

e Cu+3e) dade (6.2

where the pole has been absorbed by a second order zero at

the origin. In Appendix C this integral is shown to equal:

PY (4+92)2 VOX)™ &+ (9 +9)2
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The formulation for infinite Froude number may thus be

written:
AR 4
wx,9)= — 1. ¥ (x0,9.) 3 — 1 -
2we, (9-y4o)" (6.3)
o o
X-_2e - "1"’ 1 - x %o dxod
Voo + (333 | (yrya)* [CErPSTPITYRNRY, | Raat

In passing it should be noted that the vanishing contribution
from the residue portion of the integral in the kernel might
have been anticipated because that part of the integral re-
presents a three dimensional radiated surface wave. Passing
to the limit of infinite Froude number, there no longer re-
mains a mechanism for the transmission of gravity waves as to
do so there must be a means of storing potential energy.
Since in the limit of infinite Froude number, a wave cannot
propagate in the medium, it is apparent that no contribution

should be made by the residue term.
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VII LIFTING LINE THEORY

Lifting line theory is an approximate theory for wings
whose chords are small compared to their spans. Physically,
the simplifying assumption states that the induced normal
velocity on the wing is dominated by the trailing vorticity
in the wake and that the effect of bound vortiecity can be
neglected. The corresponding mathematical statement is that
the bound vorticity Y(xo,yo) is distributed in the chordwise

direction as a Dirac delta function. Thus,

¥ (X0,9) = S(x.) T'(g.) (7.1)

When substituted into the integral equation 4.2 and integrated
with respect to Xy the delta function selects the value of
the integrand at E, = 0. The result is a simplified integral

equation for the downwash on the 1lifting line x =y = 0:

AR
w(ony=— X TN} + 1 —
m)-»'f%‘z.o 7 Cyry0)* (9-9)* (7.2)
W o0
- 2 _kF(9+30)
—'-_-'4'_- i (*géf:?&es'mofana e dx de L“Jo

Because the chord has been set to zero for the 1lifting
line 1imit, modifications must be made to the nondimensionali-
zation of the equations. Returning to dimensional space

variables, taking F as a parameter of dimension (1/length)
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and AR as the dimensional span gives the proper interpretation.
These all follow if the chord length CO is taken as dimen-
sionless unity wherever it appears.

The only imaginary contribution from the double integral

in the kernel arises from the residue and is:

w
z ..F:sec?é’(fj*fﬂﬂ)

T = — 4]:" -&4..1'9 se¢38 e de (7.3)
o

This can be integrated analytically to give:

=
- 5 (94+95) F
L z K (5 ))
= — ° A
T TP e I ) (7.4)
where K., is the modified Bessel function of the first kind,

1

order one. The complete equation for a surface piercing 1lift-

ing line may then be written as:

AR
. 1 1
w(o,y) = T Irce T3 (495> 7 (9-g*

LT - 5)

_E o
__S_I;_i: e z(ﬂ‘lﬂ D) K. (_2 (5+3,))] J:',_,

For small argument q, K, may be approximated by

1
l(‘ («1) = 1 + > lll - + .

and the contribution to the downwash by the loading in the

vieinity of g = G s
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where € is some small positive number such that for
0 < Ve < € the approximation of Kl is wvalid.

For the downwash on the 1lifting line near the free
surface due to loading near the free surface, the integral
equation indicates that locally the behavior is identical to
an odd image or infinite Froude number formulation.

A primary goal of the present research has been to
determine necessary conditions on the spanwise (vertical) load
distribution which suffice to preclude infinite perturbations
of the velocity on the free surface. The semblance between
proximity of the free surface and infinite Froude number is
central to the resolution of this matter, which is discussed
in a later section.

For the integral equation 7.6 above, conditions on the
circulation F(yo) necessary to insure bounded downwashes on
the 1lifting line are the same as have been obtained by Betz
and Peterson (21) for a 1lifting line and its reversed cir-

culation image. The same result has been obtained by an

alternate method in Appendix D and is that:

T(y) ~ O (jo"‘jo) as Yo—> O
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VITII PERMISSIBLE LOADINGS

With the eventual goal of solving either the direct or
inverse problem by means of linearly superposing downwashes
associated with assumed loading modes, 1t 1s essential to
understand precisely the conditions imposed on loadings nec-
essary to insure finite downwash on the free surface. Accept-
able loadings must satisfy conditions arising from both the
infinite fluid horseshoe vortex (and its image) portion of
the kernel and the double integral contribution to the kernel.

First, consider the contribution of the algebraic terms
in the kernel corresponding to the zero Froude number, double
aspect ratio formulation. By considering the downwash far
downstream in the wake, it can be shown that the loading at
the plane of the free surface must have zero first derivative
with respect to ¥+ Noting first that loading below the free
surface plane is evenly mirrored above the plane and second,
that the derivative of an even function i1s an odd function,
it can be seen that if the derivative of the vertical (span-
wise) loading does not tend to zero as y > 0+, there will be
a discontinuity in the derivative of the spanwise loading
across the plane of the free surface. Since the strength of
the tralling vortex sheet is equal to the derivative of the
spanwise loading, it also will be discontinuous at the plane
of the free surface if the vertical load's derivative is

nonzero. It can easily be seen that the discontinuity of this
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vortex sheet strength precludes the usual principal value
integral cancellation at the discontinuity and gives rise to
a logarithmie singularity in the downwash
AR
b3 ks )
dYo Y-Yo
~AR J

if at the surface y = 0, BP/ayo is discontinuous. The

w (y9) = dy. 2s 1

contribution to the downwash from the immediate € vicinity of

the free surface is

€
- L LA I AT (o*
W(D=-2) 35, Jy. 490 - 3y0 n (9
) BT‘(O") bT'(O-) (8.2
t“: —_— = -

‘b:j’ ‘b:’o

In summary, the portion of the kernel consisting of the
horseshoe and its positive image imposes a restriction of
zero derivative of the loading (circulation or bound vortex
sheet strength) at the plane of the free surface.

The contribution to the downwash from the double integral
term in the kernel cannot be properly assessed far downstream
(as was done for the other terms) because three dimensional
wave radiation effects preclude the downstream reduction to
two dimension (Trefftz plane) flow. (Far downstream the down-
wash from the double integral term in fact vanishes due to

cancellation effects of the highly oscillatory integrand.)
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Proper assessment of the double integral's contribution can
be made by reversing the orders of integration to first
integrate over the foil's planform. Defining the Laplace
transform of the spanwise loading and the Fourier transform

of the chordwise loading as,

. AR e
Y (a) = Y(y.) e dy, (8.3.1)

o
iﬁlp’“a

1
X (pa) = S X(x) e dxo (8.3.2)

X (x,4.) = Y(42) X(x2) (8.3.3)

the double integral contribution in equation 4.2 (with

A = KF and p

cos 68) becomes

Py 2
- = A
W, (¥,9) :”}2“'1 :E: X(pﬁ)Y(ﬂ) pIA - F :
o ‘0
_aAfly+ ixp] (8.4)

p\,‘l—P" e dadp

For the downwash to remain finite for all finite F and y

(and in the 1limit as y » 0) a sufficient condition is that
the product XY be o(l/)g) as A > o, This may be shown by
considering the absolute convergence of the A integral in
equation 8.4. Considering only the contribution to the A

integral from some large A = B >> F/p2 to A = oy

— - Az a9 +ixp]
IT=\X{(NYAN)pa¢ e da

B T

o©
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co
s (= _ ~Alg+cexp]
T 22 \X(pY) 4e PN
P
B (8.5.2)
If the product XY tends to zero as AP for A » w, the integral
will converge only if B > 2 such that +the integrand will be

o(a B+l -B+2

) and its improper integral will decay like A
Since for any B > 2, the integral (8.5.2) converges, the
loading X(pA)Y(A) must be o(l/Ag). In the delimiting case,
X(pA)I(A) ~ O(l/Az) as A > =, the integrand tends to zero as
1/X as A » o and a logarithmic singular in the downwash at

the free surface results.

It seems highly unlikely that the independent logarithmic
singularities in the downwash at the free surface from the
double integral term and from the infinite fluid and image
terms cancel because the double integral term's contribution
must decay far downstream for any nonzero finite F whereas
the infinite fluid terms tend toward two dimensional flow.

In addition, the magnitude of the double integral term con-
tribution is dependent on F while the other contributions are
not, and exact cancellation of the logarithmic singularities
cannot be generally expected.

In summary, for surface piercing hydrofoils of arbitrary
finite aspect ratio operating at any finite nonzero Froude

number, two restrictions on load distributions are imposed.

First, the derivative of the load at the free surface must be
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zero; second, the product of the loading transforms
X(pA)T(A) must be o(1/A°) as A + w.

It will be recalled that the previously obtained
formulation for the 1lifting line case indicated that the
downwash on the lifting line would remain finite if the load-
ing was O(yoﬁnyo) as y, = 0. This clearly violates the con-
ditions imposed on 1lifting surfaces since not only is the
vertical derivative of the load infinite, but product of the

loading transforms:
L1 Xo

X (pA)= SS(xo) dx, = 1 .61

Y (a)= ggolu:‘, 43,- [2 |n(u)] (8.6.2)

% = £u|ers constant
decays only as O(Enk/h ) as A + «, (Here the spanwise

transform has been integrated to infinity for simplicity as
the result i1s sought only for large A, and as A =+ = only the
behavior of the loading in the immediate wvicinity of the free
surface affects the transform.)

This apparent contradiction may be resolved by noting
that in the development for a 1lifting line, only the downwash
on the 1lifting line itself i1s examined. It was found that on
fthe 1lifting line the only double integral term contribution
to the downwash arises from the residue and is a radiated
wave effect. The downwash resulting from the near field
(Cauchy principle value integral) contribution, although zero
on the 1lifting line is unbounded as the free surface is ap-

proached elsewhere on the track z = 0 for some loadings.
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In 1lifting surface theory this infinity of the downwash
could not be tolerated because the foil occupied a finite
portion of the track on the free surface and an infinite
downwash (excepting integrable infinities at discrete points
across the chord) would imply an unrealizable foil shape.

For 1ifting line theory, however, this difficulty does not
arise because the theory does not (and is not expected to)
satisfy body boundary conditions on a foil. It is rather a
theory for an outer region far from the foil, whose inner
limit gives the downwash on a high aspect ratio foil induced
by trailing vorticity in i1ts wake. Whether the infinite
velocity induced on the free surface track z = 0 extends over
the entire free surface is not known. Furthermore, the ac-
ceptability of this infinity in terms of the amount of kinetic
energy per unit distance downstream (and therefore work done
by the foil) remains to be investigated.

In summary, the 1lifting line high aspect ratio theory
need not require finite transverse perturbation velocities
to assure attainable foll shapes, but must not permit infini-
ties which lead to infinite kinetic energy per unit dis-
tance downstream in the wake as this corresponds to a
physically unacceptable infinite drag force. It is apparent
that the conditions imposed in lifting surfaces theory (the
transform of the load being o(l/Az) as A + = and the deriva-

tive of the vertical load being zero) are stronger than
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required for 1lifting line theory, but further investigations
are needed to ascertain whether vertical loadings as sin-

gular as yfny are permissible.
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IX LOADING MODES

A standard lifting surface theory technique for the
inverse problem is to assume a series of loading modes,
calculate the downwash from each mode at selected points on
the planform, and solve a linear matrix equation for the
strengths of the various modes required to produce the known
downwash (the boundary condition on the wing). Experience
has shown that a series of chordwise and spanwise modes
known as the Glauert Series rapidly converge for most wing

shapes. The loadings in this series are:

o
X (x) = ao\2 + E @n sin n e, (9.1.1)
[~ ]

n=1

Y(so)=z b, sin n g, (9.1.2)

n=|
nd

where the angles ¢Sp and ¢CO are related to ¥s and thare shown
on Figure 4. The first chordwise mode, the a, term, corre-
sponds to a two dimensional flat plate; the second, aq gives
a parabolic meanline. Higher chordwise modes do not affect
the total load and serve only to shift the distribution of
chordwise load fore and aft. Likewise, the first spanwise
mode (elliptical) gives all the 1ift and higher modes tend
only to modify the spanwise 1lift distribution. The transforms
of the first two Glauert chordwise modes and the first

Glauert spanwise mode are given below. In addition, several
modes whose transforms are particularly well behaved are

given.



Figure 4 Glauert series mode angle definitions

Ly



TABLE 1

Spanwise Modes

l. Elliptical: first Glauert series term

2 2
1(y) = —— /AR -y,
TAR

T(A) = 2/ARA [T, (ARA) - L;(ARA)]
T(A)~r 0(1/2372) as A » =

Y(o) =1

2. Modified Elliptical:

Vo, VI, (AR - y )

T(A) ~0(1/232) as A »

b5



3. Sinusoid squared:

_2 2 (1
¥(yy) = g5 sin (AR VOJ

T(A)~ 0(1/23) as A + =

4, Cublc spanwise:

2
¥(y,) = 12y, (AR - y )

, -
T(r) = L2 {%aARA[gﬁ_ + AR jL) " 223 _ E%J

F(A) e OLLAAD) as A &

¥(o) =1
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2.

TABLE 2

Chordwlse Modes

Flat plate loading:
. 2 /X_o
X(x,) = m 1 =X,

X(ap) = e *PL5_(Ap) + 1 I (Ap)]

X(Ap)~~ 0(1/VYXp) as Ap = o
X(o) =1
Elliptical loading:
X(x_ ) = s v /1 - X

(0] ki O o)
X - iAp
X(Ap) = o J,(Ap)e

X(Ap) o O(l/(Ap)3/2) as Ap > ®

b7



3. Parabolic loading:

X(x,) = 6x_(1 - x)

= 3 .iip |sin Ap _ cos Ap
X(Ap) 5o © [klp)z D

X(Ap) ~ 0(1/(Ap)2) as Ap =+ =
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X MODIFICATION OF THE FORMULATION FOR NUMERICAL CALCULATIONS

Rewriting the integral equation for the downwash 4.2
to include the developments (for the double integral) of

equation 8.4, the formulation becomes:

j
w(x,s)-—--— f Y(xau.,) —— 1 =
o

(9-90>*
1 X —Xeo
X-Xo LI R dx.d
+ " o
(X—x¥ +(9-Y% * (y-9e) J(¥-x )23 (4y+40) J°
] oo
Aty z
+ 2 X ( X (p2) Y (2) g VI-P" -
w2 o
° (:! +LXP) (10.1)
~A )
e dA dp

where as before Y(xo,yo) = X(xO)Y(yo) and {X,Y} are the
transforms of the loadings as defined in equations 8.3.

The first integral in the above equation can be seen to
be the equation for a lifting surface of aspect ratio 2AR in

an iInfinite fluid and may be rewritten:

AR s}
4
2AR (K,j) = - 21((_0 x (x.,'jo) (10.2)
~AR o©
1 _ X—Xo é J
Gaorl | T ST e § St

To calculate the downwash WEAR(X,Y) due to a loading Y(xo,yo),
the continuous loading is approximated by taking the loading

to be concentrated at equally spaced chordwise positions.
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The resulting "vortex lattice" formulation, proposed by
Faulkner (3), has been successfully employed by Milgram (4)
in the study of yacht sails. Accurate results near the cen-
ter of a wing's span and thus near the plane of the free
surface are attained using this method. A short computer

program has been written to calculate downwashes W using

2AR
this vortex lattice technique.

The second integral contribution to the downwash in
equation 10.1 gives the perturbation from the zero Froude
number limit representing both bound and radiated wave
effects. A change of variables and a factorization of the

load transforms facilitates the numerical integration. Modi-

fied transforms are assumed such that:

— _ -1~ 7
X(PA)'pi XM(PA) (10.3.1)

Y (A) = —,}' -Y_m () (10.3.2)

Letting p = sin 6, the second expression in 10.1 becomes:

"l"l"

W, (%9) = —— Imgé Xom (4 sime) Y (A)

71c¢, A sm’e - F

Ay +ixsme) (10.4)

cos O e c!ld&?
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Taking the imaginary part,

w o0
-z Ay
1_9 e Ym(a) .
W €X53) = w2cC, cos A sin?e - F
e o
cos(xAsine) - I._Y”_(isi-;o) —sim (xAsino)-

F3
Rc —x-m(ﬂs;ue) AA + Tre»s"‘a Y (s-n"o)

cCos (s-ne) Re x--(sm a) + sin (s-ne

A computer program has been written to evaluate this
expression for finite nonzero F and any permissible loading.
The inner integral over A is truncated at a value of A
beyond which the contribution to the integral can be shown

to be negligible. This follows for points below the free
surface from the effect of the decaying exponential and for
points on the free surface from the decay of the pole and the
loading's transform (under the present notation

xmu)s?m(;\)fv 0(1) as A » =),
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XI NUMERICAL RESULTS

Two loadings have been numerically investigated. They
were chosen as representative of two basic loading forms:
those with and those without loading at the plane of the
free surface. In both cases the chordwise loading was taken
to be elliptical. For load extending to the surface, the
elliptical spanwilise loading was chosen and for no load at
the surface the cubic spanwise mode was used. (See defini-
tions in Tables 1 and 2.) In all cases the calculations are
for a negative unit total circulation such that the 1ift
force acts to port (positive z direction) and is of magnitude
pU. The choice of aspect ratio for all loadings was some-
what arbitrarily taken as three, and the effect of varying
aspect ratio has not been studied. Finally, the effect of
the free surface was anticipated to be significant only near
the free surface and has been studied only in this viecinity.

Figures 5 and 6 show the computed downwashes and shapes
for an elliptical spanwise and chordwise loading. At zero
Froude number the shape can be seen to contain both the cam-
ber effect of the bound vorticity and the induced angle of
attack effect of the trailing and free vorticity systems. As
the Froude number increases from 0.0 to 0.2, the most dramatic
effect is the reversal of the sign of the induced angle of
attack. The effect continues to grow as the Froude number

increases to 0.5, where a reduction in camber becomes apparent.
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Both effects continue to develop up to a Froude number of
0.8. Beyond a Froude number of .8, however, the induced
angle increases with Froude number and returns to values of
the same sign as occur in the zero Froude number limit. In
terms of the known infinite Froude number limit, this result
could have been anticipated since in this 1limit the effect
of the free surface is to increase the magnitude of the
downwash on the foil. (In the infinite Froude number limit
the proper image above the plane of the free surface is a
foll 1lifting in the direction opposite that of the actual
foil, and the actual foil operates in the "upwash" of the
image foil.)

The second loading, cubic spanwise with zero load and
zero derilvative of vertical load distribution at the free
surface, generates a downwash whose variations with Froude
number are similar to those for the elliptical spanwise
loading. This is particularly interesting since at =zero
Froude number, the downwash from this loading differs signi-
ficantly from that of the elliptical loading case. Here,
at zero Froude number, there is an upwash near the plane of
the free surface due to dominate free and trailing vortex
effects of the load concentration near the foil's tip. As
may be seen in Figures 7 and 8, the velocitles induced at
the same depth below the free surface by this loading are an
order of magnitude greater than those induced by elliptical

spanwise loading. Like the zero Froude number case, it
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Downwash vs Froude Number
for AR = 3, y = 1/8 Co
(per unit total circulation)

C
o]

Plotted for Fn = 0, and
perturbations to the Fn =0

Figure 5 Downwash for elliptical spanwise
and chordwise loading
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Figure 6 Mean line for elliptical spanwise
and chordwise loading
(Conditions identical to those for Figure 5)
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Downwash vs Froude number for

AR = 3,y = 1/8 C,
(per unit total circulation)
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Figure 7 Downwash for cubilc spanwise and

elliptical chordwise loading
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chord

Figure 8 Mean line for cubic spanwise and
elliptical chordwise loading
(Conditions identical to those for Figure 7
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appears that larger magnitude wave effects result from the
less smooth spanwise loading and the consequential varia-
tions in the strength of the free and trailing vortex sys-
tems. Because of the significantly larger velocities
induced by this second mode, i1t appears that it's strength
would be less than the first mode's in any superposition
scheme/; and therefore, represent a small variation in the
overall dynamics of a foil being studied.
For both loadings, the reversal of the downwash reaches

a maximum at a Froude number of 0.8. Considering the ratio
of the foil's chord to the length of a plane wave propaga-
ting in the direction of the foil at a phase velocity equal
to the foll's velocity, it can be shown that a Froude number
of 0.8 corresponds to a wavelength equal to four chords.

\Jyz:\lfilﬁy/hxr

Frn = .tI)/\IST?;

_nlen VPz U implie_s
Lw/c., = 21r F”l

where LW i1s the length and Vp i1s the phase velocity of a

two dimensional plane progressive wave. For Fn = 0.8,

LW/CO = 14.02 as stated above. Recalling that both the stream-
wise velocity perturbations ¢X and the free surface elevation
n are equal in magnitude and opposite in sign at adjacent

points on the two sides of the foil, a crude physical
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explanation for the connection between Lw/co = 4, and the
maximum reversed downwash may be offered. If the wave pat-
tern near the foil is dominated by a transverse wave of length
LW = MCO with no elevation jump at the leading edge, there
will be a wave crest at the trailing edge on the pressure side
and a trough on the suction side. This clearly violates the
Kutta condition and the condition requiring continuity of
pressure across the wake. One suspects, therefore, that
other waves included in the solution cancel this pressure
Jump at the trailing edge and in the wake. These waves need
not be transverse and will, in general, give both streamwise
and transverse velocity perturbations. It is these transverse
velocities that are suspected of causing the maximum upwash
for a Froude number of 0.8. To some extent this effect is
anticipated at all Froude numbers, but it will be relatively
stronger wherever the transverse wave system has a crest and
trough at opposite sides of the frailing edge. Finally, in
the Fn = 0.8 case, this effect might be expected to reach a
maximum since at this Froude number the total side force due
to this transverse wave system (per unit wave amplitude) is
maximized. At higher Froude numbers the transverse wave's
crest 1s downstream of the foil and at lower Froude numbers
the shorter waves on either side will tend to display can-
cellation effects. Figure 9 illustrates some of these ideas.
The decay of the wave effects below the free surface

was investigated in the case of elliptical spanwise and



Figure 9 Idealized transverse wave system of a
surface pilercing hydrofoil
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chordwise loading. Figure 10 illustrates this behavior for
depths of 1CO, 2Co and 300 below the surface and generally
confirms the anticipated exponential decay below the free

surface that is assoclated with deep water gravity waves.



62

2.0 | AR = 3
For zero Froude number
and perturbations to the
zero Froude number case
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Figure 10 Downwash variation with depth under a
free surface for elliptical spanwise
and chordwise loading
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XII CONCLUSIONS AND FUTURE DIRECTIONS

Two significant results have been achieved. First, a
formulation of the surface piercing hydrofoil problem has
been developed to represent a foll of arbitrary shape in
terms of a distribution of elemental horseshoe vortex singu-
larities. Conditions sufficient to preclude infinities of
the free surface elevation (or perturbation velocities at
the free surface) have been determined and a variety of pos-
slble loading modes have been given along with information
sufficlent to determine their satisfaction of these
conditions.

The second result is the proposed and demonstrated
technique of numerically calculating foil shapes for arbi-
trary loadings. Using a vortex lattice scheme combined with
a numerical calculation of a double improper integral, shapes
due to any permissible loading can be determined. It appears
that using this technique for determining the side forces
acting on a known surface peircing foil shape is possible
using linear superposition. To reduce the expense of com-
puting a large number of downwash (shape) modes, the exist-
ing routines could possibly be modified to more expeditiously
perform the several numerical integrations.

A remaining difficulty with the present theoretical
results is the apparent inability of linear theory to ac-

count for the frequently observed jump in the height of the
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free surface at the trailing edge. A discussion of this
matter is undertaken in Appendix E. Extension of the ana-
lysis to investigate an "inner" region of the flow near the
intersection of the track of the folil and the free surface
might prove most rewarding.

In summary, a formulation for surface piercing
hydrofoils has been developed and the relation between load-
ing and shape has been investigated in several instances to
demonstrate the viability of using this formulation and
assocliated numeric techniques to analyze free surface pilerc-
ing hydrofoils. Future efforts should be directed on two
fronts. First, the physics of the trailing edge free surface
Jump should be studied in greater detail. Second, direct
comparisons between theoretical and experimental results
should be made for some Froude number, aspect ratio and sim-
ple foil shape to determine the applicability of this linear

theory to real physical problems.
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Appendix A
TRANSFORMATION FROM THE DIPOLE TO

HORSESHOE VORTEX FORMULATION

As given in equation 3.10, the dipole formulation is:

AR 4
1 B‘h&
Li(x,9) = “Z—_;-Eo T (xo,. -33 A""'J.‘J" (A.1)
o_g - 3=eo
a‘} 4 1 2 e i(ngsihtﬂB
____‘ — A — i ’Rc, z ‘
% 3 3 ar K — sec’s
3+ ° e (A.2)

& KF [54—3, + (X -Xo) cos a] dxdo

The development for the algebraic terms in the Green's
function A.2, is identical to that for classical lifting
surface theory and is carried out by returning to the form
of the potential with the differentiation, with respect to
z, and the limit as z,tends to zero taken outside the inte-
grals over X, and Vor In this form, an integration by parts
is performed in the X5 coordinate leaving an evaluated por-
tion and an integral equation for unknown, BP/BXO, which is
the negative of the local bound vortex strength, Y(xo,yo).
The steps may be found in many texts including Ashley and
Landahl (10).

The double integral contribution may be evaluated by

integrating with respect to - inside the k and 8 integrals.
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The Xo integration from equation 3.10 is:

1
c kKF Xo cOS8

I = ( T'(“r:'o) € Jxo (A.3)
iy 1
LKFXo cOosO

I - T'(x"‘,:’.) [ <4
LK F cos &

-~ 0

A a-i—‘ (xFXo Cos O
) e dx

A.Y4
+ ¢ bx" KF ctos® ° ( )

o
The evaluated portion is zero at x

o = 1, because P(l,yo) =0
(no load ahead of the leading edge) and as X, * -®, when sub-
sequently integrated over the wave number K, the expression
with Xo + —» will make no contribution due to its highly
oscillatory integrand, as is formally demonstrable using the

Reimann-Lesbeque Lemma. Again reversing the order of inte-

gration, the double integral contribution is:

o ad
2z T_12
q I w F '{ihnd? Sin © -
g K— Sec?e
o ‘o (B )
,_Kp[5+5¢+i(!-Xo)cosé]
e dxdo

The complete expression for w(x,y) in terms of Y(xo,yo) is
given as equation 4.2. Owing to the sign convention
Y(xg5¥,) = - 9T/3x, a sign change is introduced with the

substitution.
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Appendix B
TRANSFORMATION FROM HORSESHOE VORTEX TO
NEWMAN'S AND ROBINSON AND LAURMANN'S FORM
As in Appendix A, only the double integral term is

treated. Development of the algebraic terms can be found in

Robinson and Laurmann (6).

Taking the ¥y integration inside the k and 6 integrals,
AR

-~ KF Yo

I = g x(!o,ﬂo) e J:'o

AR AR
~-KFy -KFy,
¥ (Xey9) e ° (t’- ¥
= — +
o (0]

KF KFE 390

AR
¥(xo,0) % - KF3s )Y

K KF aﬂo
" 4

o
1 dY ( ~-KFYo ) A
3 J
K¥ . Jo

Returning to a form with the ¥ integration carried out after

-
p—t

N

the « and 6 integrals, the complete formulation is:

1 AR .
- o o z
W (x9) = - ¥ xe) | X2 (9-9.)
2w cCo 33.: (x-%2) (:]":]a)
o o
o J(x-x0)*s (4+9.)* . 1

9. (x-X2) (9 +90) Y +9a
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Id)
2
_ A4 K F ) 4+
L o ©
w K — sec*©® St oy o8 x
o Jo

-xr(y-}—i(x-xo) cosa)
_KkFYy,
e (e . 1) dxde Jx,:!y‘,

(B.2)
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Appendix C
THE INFINITE FROUDE NUMBER LIMIT OF THE DOUBLE
INTEGRAL TERM IN THE HORSESHOE VORTEX KERNEL
Letting A = KF, the double integral term in the

horseshoe vortex kernel may be written:

W o0
4 21 2" 4anOsind
T=- TEZ:I;“ A ~ F sec’®
o o
Al Y94Yo + L (X-Xo) cos @
& Al 2T
(C.1)

Assuming for the moment that the proper interpretation of

C.1, as F » 0 can be made setting F = 0,

w oo
4 = .
I= -'_'._.:'IWD 1 {ahe SING -
o ‘o
Aly+yo+ i (x-%x0) coseo])
= . dade
Defining y + Yo = @ X - X = b; (C.2)
x a0
4 2' - -za
I= "'*:‘-l: simo Tano | A sia (iLcoso)g JAJG
a (o]
5 4
zZ .
= +% sin ® tano labcoseo . deo
z z z
o [ct +5 Co:id?]
o
2
Bab S:M,IQ

1]

do
w o [a"-I-L"CoSlGJL
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This may be evaluated using residue theory. The residue
at £ = ic, is found by expanding cz/[c+ic]2 about ¢z = ic,

giving:

2

S S
(g+c])” 4

+ (5-t)- zi'i. PR

The residue is then - fé, the coefficient of the first order
pole of the Laurant expansion for the entire integrand.

The integral may then be evaluated.

IT= 46 o Qi . (. .

" 4c

2 (x-x0) (C. 1)
(949" Y (x-%* 4 (41y.)*

which 1s the proper result for the bound vorticity, but
doesn't include the effect of the trailing vorticity in the
wake. This might have been anticipated since the partial
integration carried out in the wake in arriving at the horse-
shoe formulation is invalid for the case F = 0. From
equation A.4, with the negative infinite 1limit replaced by
-B,

(K F B cose®

B— —-o0 T XF cos ©




T4

Noting that for a unit horseshoe —F(+B,yo) + -1 as B » -

and reintroducing C.5 into the double integral A.2,

-ow =»
z & .
I; A (xF) sim’o . .
1::__“, o Re K - sec’e (K F ecoso
e ] o
-KF[S+3¢+l((r8)co$O]
e dxde
! o
o 2
A | (KFY __ sine tano -
B>-° 37 \m K— sec?®o
oo

-KF‘(5+3,+i{x-B)cong
e dxdo

Again, letting A = KF, this is identical, except for sign,

to the integral in C.1l, and the result may be written

directly.
fim _ 208 ! = - __%
Bo>-o ( 54—3,\" \l (x-BY ¢ (y4Yo)" ( Y ‘l-‘_jo)’.

(C.7)
Thus, in the 1limit as F =+ 0, the double integral term gives

e

2 2 (x-Xo) (C.8)

——nr —

—_— 3 __ E—
I (949.)" Y (x %)% 5 Cy+9.)*

and, in effect, transforms the Green's function into that

which satisfies ¢ = 0 on y = 0, the infinite Froude number

limit of the free surface boundary condition.
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Appendix D

VERTICAL LOAD RESTRICTIONS FOR LIFTING LINES

For small (y # yo), the poles in the kernel of
equation 7.6 dominate the logarithmic singularity. Thus,

for small (y = yo)

€
(e F P— 1°( o o

. (D 1)

where e has been chosen such that the approximation is valid
o @ % Vo < E. Returning to the form preceding differentia-
tion of the potential with respect to z and taking the limit

of z tends to zero,

c
Y
oy bim 3 1 7y
wie,u) 3—=>0 3‘3 2wce J (3-331— 6"
¥
— (D.2)
(3‘*3.)1._%’_ A:’o D.2

Integrating D.2 twice by parts and taking the limit z =+ 0

and derivative with respect to =z

_ 2 AT () €+y
w(o,y) = =1 YT <Y 1 | (—-——-—)
9) e gz * Z 3g.  \Ve-3

AN : AT (1)
L O o B
9o 10 3

(D.3)



For w(0,y) to remain bounded as y -+ 0, the term 5 r(o)

requires I'(0) = 0, and the term

‘;m ‘L %‘%t) (D.4)
U>c

requires that T'(q) tend to zero at least as fast as gfng

as q - 0.
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Appendix E

FREE SURFACE ELEVATION DISCONTINUITIES

A frequently observed phenomenon is a jump in the
elevation of the free surface at the trailing edge of a
surface piercing foil. Although this effect appears to be
of first order magnitude (crude experiments indicate a
linear relation between angle of attack and this elevation
Jump), it has not been possible to predict 1t as part of the
solution to the linearized problem.

The difficulty arises from the imposition of the pressure
continuity condition across the wake. Without a free surface
(at zero Froude number), the pressure everywhere in the flow

is given by the linearized Bernoulli equation:

P= + e Uy » 3¥° (E.1)

This relation also applies at points below a free surface,
but does not hold on the free surface where the linearized

dynamic free surface boundary condition gives:

p=+eU b -0 gl , om y=o (E.2)

and permlits an elevation jump while maintaining the imposed

pressure continuity providing there is a corresponding dis-

continuity in the streamwise velocity perturbation, ¢x°
Although a plausible explanation for the free surface

elevation jump can be argued, based on line singularities
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of presently unknown form and strength, to do so without
first thoroughly investigating a possible inner region of
the flow at the intersection of the free surface and the
foil would be pure conjecture. It should also be noted
that equally plausible nonlinear effects can be argued as

the mechanism producing the free surface jump.
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Appendix B

CONVERSION BETWEEN FORMS OF THE FREE SURFACE SOURCE POTENTIAL

The familiar expression,

oo w
K
2 ' -t laddel &7
e ) Pet 1
etk (Xwsorzsine) (7.1)
may be reduced to:
w o0
z -Ky .
A = _g_ (!9 dK e coS(K3s-ne) cos (lcxcoso)
| g w
o o (F.2)

From Wehausen (19)(equation 13.36), using our coordinates,

the source potential is:

1!: o0

w A cos"@ - D

— —

(ps‘=

<|=

]
-

cos [;l (%-3.) siué] cos [1(x-xo) coSGJ dade

(F.3)
adding and subtracting 2/r' in its two forms,
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w  ©
y A

_ 1 4 >

by =— +—, '":;,:f ( [1“519_1, « 11

o o

~a( o

e S ) (‘A (3 Po) su\.G) cos(l(x—x,) CDSB)

dAde (F.14)

which reduces to the form stated in equation 3.3,

"

—

z

¢s=

-‘-.l.—-—i .
r* w

|
r ﬁ~ *Dsec‘o

~A]949o+ L (x-X5) os®
cos[ﬂs (3-%,) s-ne] ° J

dAde (F.5)
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Appendix G

WAVE EFFECTS OF THE HORSESHOE VORTEX SINGULARITY

At one stage in the development of the present
formulation, it was believed that the downwash contributed
by the double integral term of the horseshoe vortex kernel
(equation 4.2) could be tabulated as a function of (x - X5
y + Yoo F) and used in computing the downwashes corresponding
to various loadings. This approach, however, improperly
restricted the permitted loadings near the free surface (zero
loading at the surface) and was abandoned.

One aspect of this work is significant, and this is the
relation between the forms of the various terms in the horse-
shoe vortex kernel. Figure 10 shows the downwash contributed
by the double integral term of the kernel for various finite
values of the parameter, v, and the limiting case v = 0. It
can be seen that the downwash tends toward the proper limit
quite rapidly upstream and less so downstream where antici-
pated radiating waves give an oscillatory downwash.

Figure 11 shows the effect of approaching the free
surface, and the resulting increases in the downwash which
are seen to be singular roughly as 1/(y+yo)2 as (y+yo) + 0.
Again this result might have been anticipated as this 1s the
manner in which the other terms in the kernel behave for

(y-y,) -~ 0 and (y+y,) > 0, respectively.
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Figure 12 Point horseshoe vortex singularity: downwash
versus (x - XO) for varying (y + y,) at fixed v = 1.
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Appendix H
LISTINGS OF COMPUTER PROGRAMS USED TO EVALUATE DISTRIBUTED

LOAD DOWNWASH CONTRIBUTIONS FROM THE DOUBLE INTEGRAL IN
THE HORSESHOE VORTEX KERNEL USING LOADING TRANSFORMS



D M o= N D N e

st
o

100

40

MAIN PROGRAM FCR CALCULATING DCWNWASH THRU LCAD
COMMCN ER
CIMENSICN W(10)
DATA IRyIW/5,46/
FORMAT (8F10.5)

FORMAT {*1DOWNWASH ALONG CHCRD FCR UNIT CIRCULATICN:?')

FORMAT ("OASPECT RATIO:',F1C.5)
FORMAT(*OFRCUDE NUMBER:',F1C.5)
FORMAT({*OCHORD:',F10.5)
FORMAT(*OFREE STREAM:',F10.5)
FCRMAT(1H 410E11.3)

FORMAT (1H1)

FGRMAT{"OCOWNWASE WITH LEACING EDGE AT RIGHT:',//)
FORMAT (*ODEPTH:',F10.5)
READ(IR,1) CHLC,ARLER
READ(IRs1) YsF

IF{Y.LT.C.0) GCTC 40
UINF=SCRT(32.2%CHD/F)

DO 100 I=1,9

X=e125%FLCAT(I-1)

WRITE(IWel) XsYsFoCHDsARSER
CALL WAVES{XyY FsCHC,AR;ANS)
W{I)=ANS

WRITE(IW:2)

F=SCRT(1./F)

WRITE(IWs3) AR

WRITE(IW+4) F

WRITE(IWs5) CHLC

WRITE{IWs6) UINF

WRITE(IWs11) Y

WRITE(IW+9)

WRITE(IW,7) (W(I)eI=1,95)
WRITE(IW,8)

GOTC 1C

STOP

ENC

TRANSFCRNMS

MAINCCC1
MAINCOC2
MAINCOO3
MAINCGO4
MAINCOCGS
MAINCCOE
MAINCCC7
MAINCCOS
MAINCCOCS
MAINCO1C
MAINCO11
MAINCO12
MAINCO13
MAINCC14
MAINCO1S5
MAINCO1E
MAINCO17
MAINCO18
MAINCO19
FAINCC2C
MAINCOZ21
MAINCOZ22
MAINCOZ23
MAINCOZ24
MAINCO25
MAINCO2E
MAINCO27
MAINCO28
MAINCO29
MAINCC3C
MAINQCO31
MAINCO32
MAINQOC33
MAINCO34
MAINCC35
MAINCO3E

98
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SC

S1
1C0O

SURRCUTINE WAVES{XsYsFsCHDsARyANS)
CCMMON ER

CIMENSICN Q(1CCC)

CATA PI1/3.1415%/

DATA IRsIW/546/

IER=0

IB=2

IE=1C

1S=1

NI=10

PANS=1C

G(1)=0.0C

H=1/FLCAT(NI)

G(NI+1)=0.0

DO 100 I=IB4IE.IS

D3=k*x{]-1)

TH=PI*([C3%%2) /2.

P=SINI(TH)

CALL WVNBRI(P,FyAR XY, ANS,IER)
[F{IER.NE.O) GCTC 2CO

CALL GAMMA(F/(P%%2)4P,AR+GANR,CGAMI)
R1=F%*X/P
R2=GAMR*CCS(R1)+GAMI*SIN(R1)
IF{(R2.EC.C.0) GCTC 90
R=—F¥Y/{(P*¥2)+ALCG{ABS(PI*R2))
[IF{R+180.) 90,4SC,651

R=0.C

GOTGC 1€C

R=(R2Z2/ABS(R2))*EXP(R)
GUIN=(1—P%%2 ) (ANS+R)¥PI*C3
CALL SIMR(IEsE+CyANS)
TEST=ABS{(ANS-FANS) /ANS)
IF{TEST.LT.ER) CGCTC 15¢C
IF(IE.CGT.499) GCTC 14C

CALL SPRCIG,NI+1)

NI=NT%2

WAVECCC1
WAVECQC2
WAVECCQ3
WAVECCO4
WAVECOOS
WAVECOO6
WAVECOC?
WAVECGCE
WAVECCOCS
WAVECCO10
WAVECC11
WAVECC12
WAVECO13
WAVECC14
WAVECO15
WAVECO16
WAVECO17
WAVECO18
WAVECC1S
WAVECC2C
WAVECCZ1
WAVECO22
WAVECO0Z23
WAVECO024
WAVECO2S
WAVECO2¢
WAVECC27
WAVECCZ28
WAVECQ2S
WAVECG3C
WAVECO31
WAVECO32
WAVECO33
WAVECC34
WAVECO35
WAVECO3é

L8



140

150

2C0

10

IE=N]
15=2
PANS=ANS
GCTC 8C

NRITE(IWsl) XyY,FyCHFCy ARy ANS,TEST

FORMAT (!

WAVES:',7E12.3)

WRITE(IWs4)

FORMAT (*

WAVES NCT CONVERGENT')

ANS=ANS%(-2./{CHC*(PI*%2)))

WRITE(IN,

J=NI+1

1) ANS

WRITE{IWs3) (Q(I)yI=1,J)

RETURN

WRITE{IWs2) IERsANS

FORMAT (!
J=NI+]1

WRITE(IW,

WVNBR NCT CCONVERGENT 'y I11C+E2C.6)

3) (€(I)sI=14J)

FORMAT(1H ,10E11.3)

STCP
END

SUBRCUTINE SPRL(SyN)
DIMENSICN S(1)

NN=N-1

CC 10 I=14NN

J=N=-1+1
K=2%J-1

SIK)}=S{J)

RETURN
END

WAVECC37
WAVECC38
WAVECC39
WAVECO4C
KAVECO41
WAVECO42
WAVECO43
RAVECQ44
WAVECC4S
WAVECO46
WAVECC4T
WAVECO48
WAVECQ4S
WAVECOS50
WAVECOS1
WAVECQS52
WAVECOS53
WAVECOCS54
WAVECO55
WAVECOS5E
WAVEC(OS57
WAVECOS58
WAVECCS5S
WAVECQEO
WAVEQQ61
WAVECO62
WAVECOE3
KAVECCE4
WAVECQOES

88



1C

20

SUBRCUTINE TRAP(NI+HyFsANS)
DIMENSICN F(1)

ANS=0.0C

IFINI.EQ.O0) GCTC 2C
ANS=(F(1)+F(NI+1))*C.5

CC 10 I=24NI

ANS=ANS+F(I)

ANS=ANS*H

RETURN

ENC

TRAPCCC1
TRAPCCOZ2
TRAFCCC3
TRAPCCO4
TRAFCGQS
TRAFCQCE
TRAPCCQ7
TRAPCQOB
TRAFCOCS
TRAFCC1C

68



SUBRCUTINE FREG{P,X,AR,A)
A=P%*(2.,-X)
MAXIMUM RACIAN FREQUENCY COF INTEGRANCS SINUSOIDS
RETLURN
ENC

FRECCCO1
FRECCO0OQ2
FRECCCC3
FRECCCO4
FRECCOOQS

06



10

20
3C

SUBRCUTINE SIMRINIyksFUNC,ANS)

DIMENSION FUNCI(1)
K=NI+1

ANS=FUNC({1) +FUNCI(K)
DO 1C J=24NI,2
ANS=ANS+4%FUNC(J)
IF(NI.EC.2)GOTC 30
K=NI-1

DO 2C J=3,K,2
ANS=ANS+2%FUNC(J)
ANS=ANS*H/3.
RETURN

ENC

SIMRCCC1

SIMRCCO2
SIMRCOC3
SIMRCCO4
SIMRCCCS
SIMRCCCE
SIMRCCCT
SIMRCOQS
SIMRCOCY
SIMRCC1O
SIFMRCO11
SIMRCO12
SIMRCO13

T6



oo

SUBRCUTINE WVNBR{P,FyARyX,Y,TCTAL,IER)
CCMMCN ER
CIMENSICON F1(5CcCC)
CATA IRyIW/5,46/
CATA PI/3.14159/
T1=C.0
T2=0.0
T3=0.0
IER=C
TOTAL=0.0
RS=F/(P*%2)
CALL FREGC(P4X4AR,RALCF)
RADF IS MAXIMUM RADIAN FRECQUENXY
TEN INTERVALS PER MINIMUM PERIIC
DR=PI/(5.%¥RACF)
DRX=.25/Y
CRS=RS /4.
C2=CR
[F(D2.GCT.CRX) LC2=CRX
IF(D2.GT.CRS) LC2=DRS
CR=.2%CR
D2=.2%C2
CIW IS CAUCKY INTEGRAL GAP HALF WICTH
CIW=.5%L2
IF(CIWeGTael) CIW=.1
UPLS=RS-CIW
UPLX=170./Y
UPLL=1CC./AR
UL=UPLS
IF(UL.GT.UPLL) UL=UPLL
IF(UL.GT.UPLX) UL=UPLX
NI=UL/C2+1.
[=N1/2
TF(I%2.NEJNI) NI=NI+1
D2=UL/FLCATI(NI)
PORTICON CUT THE SINGULARITY

hVNRCCO1
kVNRCCO2
WVNRCCC3
WVNRCCO4
WVNRCCOS5
WVNRCCO6
WVNRCCC?
WVNRCCOS
WVNRCCCS
WVNRCC1O
KVNRCO11
WVNRCO12
WVNRCO13
WVNRCOL4
WVNRCO15
WVNRCCLE
WVNRCO17
WVNRCOL18
WVNRCO19
WVNRCO2C
kVNRCO21
WVNRCO22
WVNRCO23
WVNRCO24
WVYNRCQ25
WVNRCO2¢€
WVNRCO217
hVNRCC28
WVNRCOC29
WVNRCC3C
WVNRCO31
WVNRCC32
WVNRCC33
WVNRCO34
WVNRCG3S
WVNRCO3¢

26



1CO

225

250

275
30¢C

4CC

F1(1)=0.0
CC 100 I=1,NI
R=1#*02
J=1+1
CALL GAMMA(R,4P4AR,GAMR,GAMI)
FLOJI=EXP(=Y*R)*{GAMI*CCS(R*X*P)-GAMR*SIN(R*X*P) )/ ((P%%2)%R~F)
CALL TRAP(NIsD2+9F1,T1)
IF(UL.LT.UPLS) GCTC 3CC
PRINCIPAL VALUE PART ASSUMING FUNCTICN LESS PCLE BEEAVES
LINEARLY FRCM RS-CIw TC RS+CIW
R=RS+C1IW
CALL GAMMA(R4P,AR,GAMR,GAN])
FL{1)=EXP(-Y*R)*{GAMI*COS(R¥X*¥P)-GAMRESIN (R*X%P))
R=RS-CIW
FL{2)=EXP(-Y*R)*X(GAMI*COS(R*#X*P)-CAMR*SIN (R¥Xx*F))
T2=F1(1)-F1(2)
SINGULASRITY TC INFINITY
TCTAL=T1+72
J=0
RL=RS+CIW
DC 250 I=1,16
R=RL+([-1)*CR
CALL GAMMA(R,P,AR,GAMR,GANM])
FI(I)=EXP(-=Y*R)*¥{GAMI*COS(R*X*P)-GAMRKSIN(R*X*F) )/ ((P**2)*R-F)
CALL TRAP(154CR4F1,T73)
TEST=ABS(T3/(TCTAL+T3))
TOTAL=TCTAL+T3
IF{TEST.LT.ER) CGCTC 275
J=J+1
IF(J.GT.60) GCTC 41C
RL=RL+15.%*DR
GCTC 225
RETURN
TOTAL=T1
RETURN
[ER=-NI

WVNRCO37
WVNRCOC38
WVNRCO39
WVNRCC4C
WYNRCO41
WVNRCC42
WVNRCO43
WVNRCO44
WVNRCO45
WVNRCO4E
WVNRCO47T
WVNRCO4E
WVNRCO49
WVNRCC5C
WVNRCOS1
KVNRCCS52
WVNRCOS53
KVNRCO54
kVNRCO55
WVNRCO56
WVNRCO57
WVNRQOS5E
WVNRCOS9
WVNRCC6C
KVNRCOE&1
WVNRCOE2
WVNRCOE3
WVNRCOE&4
WVNRCOES
WVNRCOG&E
WVNRCO67
WVNROOEE
WVNRCO69
WVNRCCT7C
WVNRCO71
hWVNRCO72

€6



410

TOTAL=R1
RETURN
IER=1
TOTAL=RL
RETURN
ENC

WVNRCC?3
WVNRCO74
hVNRCOTS
WVNRCO76
WVNRCCT77
WVNRCO78

6



GO

1C

15
16

12
17

18

13

19
20

SUBRCUTINE GAMMA(S+P4ARyGANR,GAMI)
CUBIC SPANWISE AND ELLIPTICAL CHCRODWISE LCACING
DATA IWsIR/5,6/
DATA P1/3.1415G/
IF(AR¥S.GT.10C.) GGTO 10
1=54P
IF(Z.6T..82355E+4C6) GOTO 1C
COMPUTE BESSEL FUNCTION CF THE FIRST KINC CRCER CNE USING
POLYNOMIAL APPRCXIMATICN GIVEN IN A ANC S HANCBCCK
IF (Z) 10,10,15
R1=C.0
GAMR=0.0
GAMI=0.0
RETURN
IF(Z-3.) 16418,18
21=1/3.
[F(Z21.LT.1.E-C9) GCTC 12
R1=C.5-.56250%(21%%2)+.210G4% (Z1%%4)-.03954%(Z1%%6)+.0C443%(Z1%%8)
GOTC 17
R1=0.5
R1=R1%7
6070 2C
11=3./1
IF{Z1.LT.1.E-5C) GCTC 10
IF(Z1.LT.1.E-1C) GOTC 13
F1=.79788+4.C00CC156%21+.C1659667#(Z1%%2)+.CCC171C5%(Z21%%3)-.C02495
111#(Z1%%4)+.0C113653%(21%%5)
T1=2-2.35619+.125%71+.C000656%(Z1%%2)-.00637679%(Z1%%3)+,C0CT7435%(
1Z1%%4)+.0C0798%(Z1%%5)
GCTC 19
T1=1
F1=.797€8
R1=F1%CCS(T1)/SCRT(Z)
CCNTINLE
R=S
R2= (EXP(=AR#R)# ( (AR¥%2) /R4+4 KAR/{R*%2)+€./(R¥%3))+2.%AR/ (R¥%2)

GAM1CCC1
GAM1COO02
GANM1CCC3
GAM1CCC4
GAM1CGOS
GAM1CCOE
GAM1ICCO7
GAM1CCOS8
GAM1CCCS
GAM1CC1C
GAM1CO11
GaM1C012
GAM1CO13
GAM1CQOl4
GAM1CO15
GAM1CO1E
GAM1CO17
CAM1CC18
GAM]CO1S
GAvV1CC2C
GANMICOZ1
GAM1CC22
GAM1CO023
GAM1CO024
GAM1CO25
GAM1CO26
GAM1CC27
GAM10028
GAM1CO29
GArM1CC3C
GAM1CC31
GAM1CC3Z
GAM1CO33
GAM1CC34
GAM1CO35
CANM1CC3E

G6



150

1-6./7{R*%3))
GAMR=24 ., %R #R2%(CCS(S*P)
GAMI=24 . %R]1#R2*SIN(S*P)
RETURN

END

GAM1CO027
GAM1CO38
GAM1CO39
GAM1CCA4C
GAM1CO41

96



1C

15
16

12
17

18

SUBRCUTINE GAMMA(S,P,AR,GANMR,GAMI)
ELLIPTICAL SPANWSIE AND CHCRLOWISE LCACDING

CIMENSICN G(51)

CATA P1/3.14156/

CATA IWsIR/5,6/

CATA G/0.0y<047936,.091990,.13248C4+1€971C4.203952,.2354579.264454%
112291151+ 431574C9.338365,.3552764.37853C1.3562G5C1.412679,.42781Cys
2641783 9045469449 .466629y 4776669487877 .497329,.506CE34.51419449.52
3171295286259 45351569 .541164y.5467465.551633,.55€757,.561246,.5654
426195693199 5726489 .57€3334.579492++5824429.585159,.5877769.590187
5145924459 .59456C9.5965429.598402,.6C0147,.6CLT787,.6C3328,.6047771.
66061424.607426/

I=5S*%P

IF{(2.6T..82355€E406) GCTC 1C

CCMPUTE BESSEL FUNCTICN CF THE FIRST KINC CRCER CNE LSING
POLYNCMIAL APPROXIMATION GIVEN IN A AND S HANCBCCK

IF (Z) 16,1Cy15

R1=C.0

GAMR=0.0

GAMI=0.0

RETURN

IF({Z-3.) 16,418,418

I1=12/3.

IF(Z1.LT.1.E-C9) CGCTC 12

R1=C.5-.56250%(Z1%%2)+.21094% (Z1%%4)-.03954%(21%%6)+.0C443%(21%%8)

GOTC 17

Rl=0.5

R1=R1%7

GOTC 2¢C

I1=3./1

[F{(Z1.LT.1.E-5C) GCTO 10

[F{Z1.LT.1.E-1C) GCTO 13

F1=.79788+.C0CCC156*71+.C165G€6T*(Z21%%2)+.CCC171C5*(Z1%*3)-.C02495
111%(Z1%%4)+.00113653%(21%%5)

T1=2-2.35619+.125%21+.C000€56%(Z1%%2)-.CO063T879%(Z1%%3)+,CCCT435%(
1Z1%%4)+.0007982(Z1%%5)

GAM2COO1
GCAMZCCC2
GAMZCCO3
GAN2COO04
GAMZCOCS
GAM2CQCE
GANM2COO7
GAr2C008
GAMZCCCS
GAvVZCO1lC
GAMZCO11
GaM2CO12
GAMZCO13
GAM2COLl4
GAMZ2CO15
GAMZ2CO016
GAN2CO17
GAMZCC1E
GAM2CO19
Gavzco20
Gavz2C021
GAM20022
GAM20023
GAM2CC24
GAM2C025
GAMNZCO2¢€
GAMZCO27
GANZ20028
GAMZ20029
CAMZCO30
GAM2C031
GAM2C032
GAM2C033
GANZ2CO34
GAMZ0035
GAN2CO3é

L6



13

19
20

S0

100

140
150

GCTC 19
TL1=Z

Fl=.797¢&8

R1=F1%CCS(T1)/SCRT(Z)

CCNTINLE

MODIFIED STRUVE FUNCTICN LESS MCDIFIEC BESSEL FULNCTICN CF
THEE SECCND KINC:

BOTH CRCER CNE:

FROM TABLES FOR SMALL

ARGUMENT ANLC VIA ASYMPTCTIC EXPANSICN FCR LARGE

I=AR*S

IF{Z.GT.5.) GCTC 1CC
IF(Z2.EC.5.) GCTC 90
I=10.%72+1.

J=1+1

R2=C(I)I+(GII)-C(I))*(1C.*Z-1+1.)

GOTC 15¢C
R2=G(51)
GCTC 150

R2=—1e+1./(2%%2)
IF(Z.LT.6.93)

GCTC 140

R2=R2+48./(2%%4)+18C./ (1%%*¢€)

R2=-R2%2./P1

GAMR={4./AR)*¥R1*R2*COS{S*P)
GAMI=(4,./AR)*R1¥R2¥SIN(S*P)

RETURN
END

GAM2CO037
GAMZ2CC38
GAMZCO39
GAM2004C
GAMZ20041
GAMZC042
GAM2C043
GAM2CC44
GAM20045
GAN2CO04E
GAM2CO4T
GAMZ(CO048
GAMZ0049
GANM2CCSC
GAM20051
GAMZC052
GAMZ2CO53
GANMZ(0054
GAMZ0055
GAM2COS5E
GAM2CCST
GAM20058
GAM2CO59
GANM2CCEC
GAM20061

86



Appendix I

LISTINGS OF COMPUTER PROGRAMS USED TO EVALUATE
DISTRIBUTED LOAD DOWNWASH CONTRIBUTIONS FROM THE
ZERO FROUDE NUMBER TERMS IN THE HORSESHOE VORTEX KERNEL
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10

20

COUBLE ASPECT RATIC VORTEX VATTICE PRCGRANM
DIMENSICN SPL(3C),CFL(10)

DIMENSICN W(1Q)

DATA IR,IW/5,6/
REAC(IR,1) CHC,AR,NCyNS
FORMAT(2F10.545215)
WRITE(IWsy1) CHCsARyNC4NS

GIVES DOWNWASH PER UNIT CIRCULATICN

F=ua5%AR¥(CHC*%2)

FORMAT (' FOR CIRCULATICN USE:z'+F10C.5+"*UINF*LIFT CCEFFICIENT')

WRITE(IW,2) F
HC=CFC/FLCAT{(NC)
HS=(CHC*AR/FLCATI(NS))
HS2=KS/2.

NP=NC+1

NS1=2%NS-1

CALL LCAD{SPLyCHELsNC4NS)
FAC=1./FLOAT(NC)

CC 1C I=1,NC
CHL{I)=CHL{I)#*FAC
FAC=AR/FLCATI(NS)

CC 20 I=14NS
SPL{I)=SPL(I)*FAC

DO 2C0 L=7+19+¢€
Y=HS*(L-1)

CC 1C0 M=1,NP

DW=C.0
X=(CHD/FLCAT(NC))*(M-1)
K=-1

KCAC=NS+1

le.

CC 5C IY=14NS1
KCAC=KCAC+K
IF(KCAC.EC.1) K=1
YC=—FS*¥NS+HS*1Y
Y1=YC+FS2

VCRLCCO1
VCRLCOO2
VCRLCCO3
VCRLCCO4
VCRLCQOS
VCRLCCCE
VCRLCCO7
VCRLCOOCS
VCRLCCCSY
VCRLCCI1C
VCRLOOC11
VCRLCO12
VCRLCO13
VCRLCO14
VCRLCO15
VCRLCOL¢£
VCRLCC17
VCRLCC18
VCRLCOL1S9
VCRLCC2C
VCRLCO21
VCRLCO22
VCRLCC213
VCRLCO24
VCRLCO25
VCRLCC2¢
VCRLCC27
VCRLCO28
VCRLCO2S
VCRLCC3C
VCRLCO31
VCRLCO32
VCRLCC33
VCRLCC34
VCRLCO35
VCRLCC3¢

00T



50
1CO

2G0

YesYL=h52
DO 5C IXx=

1,NC

X1=HC*(IX-.5)

DW=CW+SPLIKCAC)*CEL (IX)*HCRVOR(XyY9X1sYL,Y2)*B

W(M)=Dh

WRITE(IW,3) (W{M),M=1,NP)

CCNTINUE
FORMAT (?
STOP
ENC

'+10E11.3)

VCRLCC37
VCRLCC38
VCRLCO39
VCRLCC4C
VCRLCO41
VCRLCO42
VCRLCO43
VCRLCC44
VCRLCO4S
VCRLCO4¢E

ToT



FUNCTICN HCRVCR{X,Y3X13Y1l,Y2) HSVRCO0O1

FINITE HCRSESKCE VORTEX COWNWASE HESVRCCO2
DX=X1-X HSVRCCC3
CYl=Y1l-Y HSVRCCO4
DY2=Y2-Y HSVRCOOS
DEN1=SCRT(DX**2+0Y1%%2) HESVRCOCS
DEN2=SCRT(DX*%2+LY2%%2) HSVRCOO7
HCRVCR=(1./CY2)#{1.+4CX/CEN2)-{1./CY1)#*(1.+CX/CEN1)+(1./CX)*(CY2/DE HSVRCOOE

IN2-CY1/CEN1) HSVRCCCS
HORVOR=KCRVCR/(4.%3.14159) HSVRCCO1C
RETURN HFSVRCO11
END HSVRCO12

c0T



100

2C0

SUBRCUTINE LOAC(SPL,CHL#NCyNS)

SPANWISE CUBIC CHORCWISE ELLIPTICAL
DIVMENSICN SPL(3C),.CFL{10)
HC=1./FLCAT(NC)
AR=FLOAT(NS)}/FLCAT(NC)
HS=AR/FLCAT(NS)

CC 1CO I=1sNC

X=FC*{I-.5)
CHLU1)=B.%SCRT(X-X*%2)/3.14159
DC 200 I=1,NS

Y=FLOAT(I-1)*KS
SPLIT)=12.%(Y*%2)%(AR-Y)
RETURN

ENC

LC#1CCO1

LC#1C002
LC#1CCC3
LC#1CCO4
LC#1CCO5
LC#1CCCé
LC#1CCCT

LC#1C008

LC#1C0C9
LC#1CC1C
LC#10011
LC#1C012
LC#1CC13
LC#1CC14

€0t



100

200

SUBRCUTINE LCAC{SPL+CHLsNCoNS)

FOR ELLIPTICAL SPANWISE ANC ELLIPTICAL CHCRCWISE
DIMENSICN SPL(3C),CEL(1C)
HC=1./FLCAT (NC)
AR=FLOATINS)/FLCAT(NC)
HS=AR/FLOAT(NS)
CC 1C0 I=14NC
X=FC#{[-.5)
CHL(I)=8.*SCRT(X-Xx*¥%2)/3.14159
CC 200 I=1sNS
Y=FLCAT(I-1)#%HS
SPL(I)=4.%SCRT(AR*%#2-Y%%2)/(3.14159%(AR*%*2))
RETURN
ENC

LC#2CCC1

LC#2C002
LC#2C003
LC#2CCC4
LC#2CCO05
LC#2C0CeE
LC#2CCCT
LC#2CC08
LC#2CCC9
LC#2CC1C
LC#2CC11
LC#20012
LC#2C012
LC#2CC14

HOT
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Appendix J

LIST OF COMPUTER PROGRAMS USED TO EVALUATE
THE DOWNWASH OF A POINT HORSESHOE VORTEX SINGULARITY



[ I 9

10
14
15
11
20

13

50

POINT HORSESHKCE VCRTEX: FREE SURFACE EFFECTS
PROGRAM ONE MODIFIECD

COMMCN CTH4CPH,ySTEL.C2,CX,Y,F

COMMON THD,SPH,ER

DIMENSICON DUM(1CCC)XN(20)YN{20)

CATA IRyIW/5:06/

DATA PI/3.14156/

FORMAT(3F6.342X44EL5.7)

FORMAT (' RESULTS ABCVE % SGRT Y: CAUCEY' 2 E14.641X%Xy*RESICUEYyELl4.6,
11Xs "UPSTREAM? JE14.641X, "DCKWNSTREAM Y, E14.6,7//7/7)

FORMAT(1H 34FE2C.6,110)

FORMAT (1HOy 9HABS (X-X0) 91Xy F10.591CX9 1 1HCAUCHY PART»4X+E16.6910X917
1HCCWNWASH UPSTREAMN,4X,E16.6)

FORMAT(1H 94HY+YCs6XsF10.591CX+12FRESIDUE PART 43X,E16.6410Xy19KHCOW
INWASH DOWNSTREAM,2X4E1€a65///)

FORMAT(215,2F1C.5)

FORMAT(I1042E2C.6)

FORMAT{8F10.5)

FORMAT(1E +53HTWICE INFINITE FLUIL REVERSED IMAGE CCWNWASH UPSTREA
1My 3X3E15.693Xy 1CHCCWNSTREAMy3XyELS.6E)

REAC(IR,14) NXyNY,FsER

IF{NX.LE.Q) GCTC 4CCC

WRITE{IWe1l4)INXsNY,F,4ER

READ(IRs11) (XN(I)sI=1,4NX)

REAC(IR,11) (YN(I),I=1,NY)

Co 200C0 1YY=1,NY

DO 200C0 IXX=1sNX

DX=XN({IXX)

Y=YN(IYY)

PANS=0.0

NI=10

IB=2

I1E=10

I1S5=1

pDUM(1)=C.0

NP=NI+1

KRNLCOO1
KRNLCQO02
KRNLCOC3
KRNLCOC4
KRNLCOOS
KRNKLCOOS6
KRNLCOO7
KRNLCOOB
KRNLCOO9
KRNLCO1O0
KRNLOO11
KRNLCOL2
KRNLCO13
KRNLCO14
KRNLQO1S
KRNLCOL6
KRNLCO17
KRNLCO18
KRALCO19
KRNLCC2C
KRNLCOZ21
KRNLCO22
KRNLCO23
KRNLCO24
KRNLCO25
KRNLGCO2¢
KRNLCG27
KRNLCO28
KRNLOO29
KRNLCC30
KRNLCO31
KRNLCO32
KRNLCO33
KRNLCO34
KRNLCQO35
KRNLCO3E

90T



1C0O

200
202

280C

2900

H=1./FLCAT(NI)

DO 100 I=IB,IE,IS
D=H*{1-1)
TH=PI*(1.-D¥**2)/2.
THD=90.%TH/1.57C8

CALL WNINT(TH,ANS)
DUM(I)=ANS*Cx*P]

CONTINLE

DUM(NP)}=0.0

CALL SIMR(NI+HsCUM,ANS)
IF(ABS(ANS).LE.1.E-50) GCTC 2CC
TEST=ABS{(ANS-PANS) /ANS)
IF (TEST.LE.ER) GCTO 2C2
PANS=ANS

NI=NI#*2

IF(NI.GE.10C0) GOTO 2CC
CALL SPRC(DUM,NP)

1B=2

IE=NI

[5=2

GCTC 5¢C

WRITE(IW+15) NISTEST,ANS
CONTINUE

CINT=ANS

RESIDUE PART CF KERNEL
SUM=C.C

N=-1

T1=0.0

N=N+1

NS=4
T2=F3Y*((3.14159%(N+.5)/(F*CX))*%2-1.)
IF (T2.LE.0.0) GCTC 28C0O
IF (T2.GE.170.) T2=17C.
PANS=0.0
DT=(T2-T1)/FLCAT(NS)
NS2=NS+1

KRNLCC37
KRNLCO38
KRNLCO39
KRNLCC4C
KRNLCO41
KRNLCOOG2
KRNLCC43
KRNLCO44
KRNLCO45
KRNLCO4¢€
KRNLCO47
KRNLCO48
KRNLOO49
KRNLCCSC
KRNLCO51
KRNLCOS52
KRNLCOS3
KRNLCOS54
KRNLCO55
KRNLOOS6
KRNLCCS57
KRNLCOS5E
KRNLCO59
KRNLCCEC
KRNLCOG61
KRNLCOG62
KRNLCOG63
KRNLCCE4
KRNLCOES
KRNLQOEE
KRNLCO67T
KRNLOCGE
KRNLOOG6S
KRNLCOT7C
KRNLCOT71
KRNLCC72

LOT



3CQC

35G0

37cce
3800

bC 300C TI=1sNS2

J=1-1

Q=J*CT+T1

DUM(I)=RFUNI(Q)#EXP(-Q)

CALL SIMR(NS,CToCUM,ANS)
IF{ABS(ANS).LT.1.E-5C) GOTC 3500
TEST=ABS{{ANS—-PANS)/ANS)

IF (TEST.LT.ER) GCTC 3500

IF{ABS(ANS).LT.ABS{SUM)/ER) GCTC 3500

IF (NS.GT.256) GCTO 35CO
PANS=ANS

NS=NS*2

GOTO 29CO

CCNTINUE

SUM=SUM+ANS

IF (12.GE.170.) GCTC 3700
IF(ABS(SUM).LE.1.E-5C) GOTC 37CC
TEST=ABRS({ANS/SUNM)

IF (TEST.LT.ER) GCTC 3800

T1=T2

GCTC 2800

WRITE(IWs7) T1,T2,ANS,TEST¢NS
SUM=SUMR(-EXP(—-F*Y)*4%F/Y)
UPST=CINT

COWN=SUM-CINT

WRITE(IWs9) DX+CINT UPST
WRITE(IW,10) YsSUM,DOWN
WRITE(Te4) CXeYsFySUM,CINT UPST,0ERN
HV1=1./(Y*%2)
HY2=—0X/((Y*%2)%SQRT(DX¥%k2+Y%%2})
HVUP==2.%(HV1+EVZ2)
HVECN=—2.%(HV1-kV2)

WRITE{IW,20) HVUP,HVDN
FY=SQRT(Y)

CINT=CINT%FY

UPST=UPSTx%FY

KRNLCC73
KRNLCCT74
KRNLCO75
KRNLCO76
KRNLCO77
KRNLCO78
KRNLCOT7S
KRNLCOBC
KRNLCOS81
KRNLCOOB2
KRNLCORB3
KRNLCOB84
KRNLCOBS
KRNLQOOBS
KRNLCOE7
KRNLOOSBE
KRNLOOB9
KRNLCOSC
KRNLCOS91
KRANLCOS2
KRNLCO93
KRNLCCS4
KRNLC095
KRNLCOSE
KRNLCOS7
KRNLCOSE
KRNLCGS9
KRNLOLCO
KRNLC1C1
KRANLO1C2
KRNLO103
KRNLC104
KRNLC1C5
KRANLO106
KRNLO1Q7
KRNLO108

80T



2C000

4000

SUM=SUM*FY

DCWN=DCWN=%FY

WRITE(IWs5) CINT,SUMyUPST,CCWN
CONTINUE

GCTC 13

STCP

END

KRNLO1CS
KRNLO11C
KRNLO111
KRNLOL112
KRNLO113
KRNLOL114
KRNLO115

60T



1C

SUBRCUTINE WNINT(TH,ANS)

INTEGRAL OVER WAVE NUMBERS
COMMON CTHyCPH,STH,C2,CX,Y,F

COMMCN THDs SPHER
DIMENSICN VI(T)+W(7)
DIMENSION DUM(1CCC)

CATA V/e19304491.0266492.567€€+4.90035,8.18215,12.73418,15.39573/
DATA W/4.09319E-C1+4.21831E-0191.47126E-C1+2.C€335E-C241.C74C1E-C3

1,1.58655E-0543.17C32E-08/
FORMAT(I5+6E17.6)

IR=5

IW=6

CTH=COS(TH)

STH=SIN{(TH)

Al1=C.0

A2=0.0

A4=0.0

A3=C.0

DEN=SQRT(Y**2+ (CX¥CTH)*%2)
CPH=Y/LCEN

SPH=-DX*CTH/DEN
DS=DX*CTH/Y

PP=DS%*2

DS=1.732*%CS

IF {(PP.GT.3.0) GCTC 411
SIC=0.5%(3.-PP)

CP':I.

[F(ABS(SZC-1.).GT.LCS) CGOTC 70

cP=S1C
CS=2.%*CS

INTEGRATE REGICN NEAR THE NU MERICAL SINGULARITY

PANS=0.C
TEST=0.0
IB=1
[E=3
[S$=1

KVNICOC1

WVNICOO02
WYNICCO3
WVNICCO4
WVNICOOS
WVNICGCO6
KVNICOO7
WVNICCOZ
WVNICCCS
hVNICO10
RVNICO11
WVNICO12
WVNICOL13
WVNICO14
WVNICO15
WVYNICO1€
WVNICOL17
hVNICCOLlE
WVNICO1S
WVNICC20
WVNICO21
WVNICQ22
WVNICO23
WYNICC24
WVNIQO25
WVNICO26
WVYNICO27
kVNICO28
WVNICO029
WVNICO30
WVNICGC31
WVNIC032
WYNICO33
KVNICC34
WVNICO035
WVNICO3é

OTT



90

100

105
110

19¢C

2C0

IF{CS.GT.CP) CS=CP

NI=2

NP=NI+1
H=2.%0S/FLOAT(NI)

DC 100 I=IB,1E,IS
S5=CP-DS+(I-1)=*¥
CUM{I)=FUNS(S)

CALL SIMR(NI,H,CUM,ANS)
IF(ABS({ANS).LE.1.E~-50) GOTC 110
TEST=ABS({({ANS-PANS)/ANS)
IF (TEST.LE.ER) GCTC 110
IF (NI.GT.256) CCTC 105
CALL SPRC(DUM,NP)
NI=NI*2

IB=2

IE=NI

[§=2

PANS=ANS

GOTC 9C

WRITE(IWs1) NILCSsHsTHEC,ANS,TEST
Al1=ANS

INTEGRATE REGICN ZERC TC PEAK REGICN

PANS=0.0

IF(CS.CGE.CP) GCTC 211
Ig=2

1E=3

15=1]

CUM(1)=C.C

TEST=0.C

NI=2

NP=NI+1
H=(CP-CS)/FLOAT(NI)
DO 2C0 I=IB.1E,IS
S=(1-1)%*K
DUM(I)=FUNS(S)

CALL SIMR{NI,H,CUM,ANS)

WVNICO37
WVNICO38
WVNICO39
WVNICQ40
WVNICO41
WVNICO42
WVNICO043
WVNICO44
WVNICO45
WVNICO4E
WVNICO41
WVNICO48
WVNICO4S
WVNICO50
WVNICOS51
WVNICO0S52
WVNIQO53
WVNICOS54
WVNIQO55
WVNICO56
WVNICOS57
WVNICOS58
WVNIQOS59
WVNICCEC
WVNICO61
WVNICO62
WVNICOE3
WVNICO64
WVNICO6ES
WVYNICOE&S
hVNICOET
WVNICOGE
WVNICO69
WVNICOTO
WVNICCT1
WVNICC72

ITT



205
210
211

385

2940

400

IF (ABS{ANS).LE.1.E-5C) GOTC 21C
TEST=ABS{ (ANS—-FPANS)/ANS)
I1F (TEST.LE.ER) GCTC 210
IF (N1.GT.256) GOTC 205
CALL SPRC(DUM,NP)
NI=NI*2
18=2
IE=NI
1S=2
PANS=ANS
GCTC 150
WRITE(IWs1l) NISCSsHsALl,THCANS,TEST
AZ=ANS
CCNTINLE
INTEGRATE REGICN JUST BREYCONC SINGULAR PCINT
IF{CP+0S.LT.SZC) GCTC 385
SUL=CP+LCS
GCTC 411
SUL=2.*%SZC-CP-CS
PANS=0.0
18=1
[E=3
[S=1
TEST=0.0
NI=2
NP=NI+1
H=2.%(SZC-CP-DS)/FLCAT{NI)
CC 400 I=1IB.IE,IS
S=CP+DS+H*(]I-1)
DUM(I)=FUNS(S)
CALL SIMR(NIsHsLCUM,ANS)
IF (ABS{ANS).LE.1.E-50) GCTC 41C
TEST=ABS{{ANS—-PANS) /ANS)
IF (TEST.LE.ER) GCTO 41C
IF (NI.GT.256) GCTC 405
CALL SPROD(DUMAPR)

WVNICO73

WVNICCT74
WVNICO75
WVNICO76
WVYNICCT?
WVNICO78
WVNICOT7S
WVNICOEC
WVNICOB1
WVNICO82
WVNICO83
hRVNICOE84
WVNICO85
WVNIOOBE
hWVNICOE7
WVNICO8S
WVNICOBS
WVNICOSC
WVNICO91
WVNICO0S2
WVNICOS3
hWVNICOS4
WVNICOS5
WVNICO96
WYNICC97
WVNICOSE
WVNICCSS
KVNICLCO
wWVNIO1C1
WVNIC1C2
WVNIC103
WVNIC1C4
WVNIO1C5
WVNIO106
WYNICLOT
WVNIO108

¢LL



405
410
411

3C0

NI=NI%2
IB=2
IE=NI
1§=2
PANS=ANS
GCTC 39¢C

WRITE(IWy1) NI,SULsHsAL1,THC,ANS,TEST

A4=ANS
CCNTINUE

LAGUERRE POLYNCMIAL INTERPCLATICN CQUADRATURE TO

SS=SUL

CC 300 I=1,7

S=S5S+v(1)

T1=FUNS{S)

BF=1-

IF(T1.L7.0.C) EF=-1.
IF{T1.EC.C.C) GCTO 300
T1=ABS(T1)

E1=ALCG(T1)

E2=v(I])
E3=ALOG(W(I))
E=E1+E2+E3

[F (ABS{E).GT.17C.) GCTC 3CC
A3=A3+BF*EXPI(E)

CCNTINLE

ANS=A1+A2+A3+A4

RETURN

ENC

INFINUTY

WVNIO1CS
WVNICL11C
WVNIC111
WVNIC112
WYNIC113
WVNIC114
WVNIO115
WVNIOC116
WVNICLL7
WVNIC118
WVNIOCL1S
wvhIC12C
WVNIO121
WVNIC122
hWVNIO123
hVNIC124
WVNIC125
RVNIOL2€
kVNIC127
WVNIO128
WVNIO129
WVNIC13C
WVNIC131
WVNIO132
WVYNIC133
WVNIC134
WVNIC135
hWVNIO136

€Tt



FUNCTICN FUNSI(S) FUNSCO0O1

COMMCN CTHyCPHsSTHsC24CXyYF FUNSCQC2
COMMCN THL s SPHJER FUNSCOQ3
IF {(S.LE.C.C) GCTC 20 FUNSCOO04
PP=(CX*CTH/Y)#*%2 FUNSCGCS
T1={4./3.14159)%(F*%2) FUNSCCCEe
T2=STH**%? FUNSCCO7
T3=(CX/Y)*(S*%2) FLNSOCO®
T4=2.%5-3,.+PP FUNSCOCS
T5=—F*Y#S/(CTEX%2) FUNSCO1¢C
T6=(1.+PP)*%2 FUNSCO11
TT=S%%2-2.,%5+1.+4PP FUNSCO12
T8=CTH**4 FUNSCO13
IF {(T8.LE.0.0) GOTC 20 FUNSCO14
TEST=T5-ALCG(TE) FUNSCO15
IF(ABS(TEST).GT.160.) GCTC 2C FUNSCO1¢€
FUNS=(T1*T2%T3#T4/(T6*TT) )¥EXP{TEST) FUNSCO17
RETURN FUNSCO1¢8
FUNS=0.0 FUNSCO1S
RETURN FUNSCC2C
ENC FUNSCO21

HTIT



FUNCTICN RFUNI(Q)

COMMCN CTH9CPHySTHsC24CXyYyF

COMMCON THEC,SPH,LER

X1=C/ (F*Y)
RFUN=SQRT(X1*(X1+1))*CCS(F*CX*SCRT(X1+1))
RETURN

ENC

RFUNCCC1
RFUNCCCZ2
RFUNCCC3
RFUNCOC4
RFUNCCOS

RFUNCQCE6
RFUNCCOQ7

GTI



1C

20
20

SUBRCOUTINE SIMR(NI,H,FLNC,ANS)
DIMENSICN FUNC(1CCC)
K=NI+1
ANS=FUNC(1)+FUNC(K)
DO 10 J=2,N1,2
ANS=ANS+4*%FUNC(J)
[F{NI.EQ.2)GOTC 3C
K=NI-1

CC 20 J=3,4K,2
ANS=ANS+2%FUNC(J)
ANS=ANS*H/3.,

RETURN

ENC

SIMRCCC1
SIMRCOQ2
SIMRCCC3
SIMRCCO4
SIMRCOCS
SIMRCGCE
SIMRCCC?
SIMRCCOB
SIMRCCCSY
SIMRCCIC
SIMRCO11
SIMRCO12
SIMRCOL3

QTT
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