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Abstract

The fundamental nature of dark matter remains a mystery. As crucial evidence for
its existence comes from its effects on early universe observables, perhaps clues to its
fundamental nature also reside in its behavior in the early universe. In this thesis, I
explore two scenarios in which dark matter is capable of exotic behavior in the early
universe. In the first scenario, I consider particle dark matter that is able to decay or
annihilate into standard model matter. I describe a code package, DarkHistory, that
quickly and accurately calculates the effects such annihilations and decays have on
the evolution of the ionization levels, matter temperature, and spectrum of photons
in the early universe. I then use DarkHistory and measurements of the Ly𝛼 forest to
place constraints on the decay lifetime and annihilation rates of dark matter. In the
second scenario, I consider dark matter that consists of dark quarks and gluons. In
the specific model I consider, the confinement phase transition is of first order, leading
to the formation of bubbles. The dynamics of these bubbles and their interactions
with the dark quarks dramatically modifies their present-day abundance.
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Chapter 1

Introduction

Dark matter is a great puzzle. First, it is real. It is responsible for important phenom-

ena in our universe, including the formation of galaxies like our own and the statistical

properties of radiation from the Big Bang. Second, it is mysterious. It could consist of

undiscovered particles so light that their wavelengths extend astronomical distances,

or conventional matter so heavy that it forms black holes. Therefore, when one puzzles

over dark matter, they can feel satisfied that they are working towards understanding

a substance real enough to actually exist in our universe, but mysterious enough to

warrant full use of their imagination when trying to figure out what dark matter is.

Any solution to the dark matter puzzle would likely have important consequences.

If dark matter consists of a new particle or field, or a collection of them, then the

new particles or fields would have to be included in the Standard Model of Particle

Physics. Dark matter could then provide solutions to outstanding problems like

baryogenesis [1], the hierarchy problem (see Weakly Interacting Massive Particles [2]),

or the Strong-CP problem (see the QCD axion [3]). If instead of a new particle or field,

dark matter consists of primordial black holes [4, 5], then its formation mechanism

could shed light on the inflationary epoch. Even falling short of identifying what dark

matter is, but learning that it interacts non-gravitationally with itself, or interacts

non-gravitationally with Standard Model matter, or has the ability to dissipate energy,

could lead to a deeper understanding of structure formation and galactic dynamics.
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1.1 Dark Matter Overview

Observations of light from space are key to dark matter research. Stars, gas, galaxies,

and the hot plasma created after the Big Bang all emanate light that encodes infor-

mation about dark matter. Through experiments that carefully collect this light and

analyze it, physicists have pinned down important properties of dark matter, namely

that it is gravitationally-interacting, cold, stable, abundant, and has no currently

detected non-gravitational interactions. These properties taken together define the

Cold Dark Matter (CDM) paradigm.

1.1.1 Evidence

To establish the CDM paradigm, the physics community performed a large variety

of experiments and observations (for a more thorough review, see [6] or Chapter 27

of [7]). All of these experiments and observations find evidence of a non-luminous

substance existing in and beyond galaxies, modifying the gravitational potential in

a number of observable ways. These observations are so numerous, take place over

such a wide range of length and time scales, and are so consistent with a single dark

matter interpretation that they place the dark matter hypothesis on a very strong

footing.

At the smallest scales, it has been observed within many galaxies that stellar rota-

tion curves flatten well beyond the bulk of visible matter [8–11]. These observations

point to the existence of large amounts of invisible matter that stretch well beyond

the visible galaxy and tug on gravitationally bound stars. Not just the coherent rota-

tional motion of stars, but also the random motion of stars in dwarf galaxies suggests

that there is a lot more gravitational pull on these stars than can be accounted for by

luminous matter, and can thus be attributed to dark matter [12]. In addition to stars,

the distribution and properties of gas in large galaxies and galaxy clusters determine

the gravitational potential of these galaxies, and indicate that they contain about 5

times more matter than is visible [13].

Dark matter does not just tug on matter, but also on light. For example, studies
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of galaxy collisions like the Bullet Cluster (left panel of Fig. 1-1) show a large sepa-

ration between X-ray emitting gas near the collision area and non-luminous matter

well beyond the collision, the latter of which is only perceptible by its ability to grav-

itationally lens background light [14]. The interpretation of the Bullet Cluster is that

after the collision of the galaxies, which both contain gas and dark matter, the gas

slowed down due to its ability to dissipate energy, but the dark matter passed right

through due to its inability to interact non-gravitationally. More general analyses

of lensing within galaxies, galaxy clusters, and large-scale structure all indicate that

there is a more abundant component of dark matter than luminous matter throughout

the universe [15].

At the largest scales, dark matter plays an important role in the formation of

gravitationally bound structures in our universe [16]. As opposed to standard model

matter, for which electromagnetic interactions resist the tendency to clump under the

influence of gravity, dark matter clumps efficiently very early on in the history of the

universe. These clumps provide potential wells in which tiny initial matter overden-

sities are able to gradually grow into the galaxies and clusters we observe today. The

statistical properties of these clumps then become imprinted on the statistical prop-

erties of present-day galaxies, allowing for an inference of the gravitational properties

of dark matter [17]. These clumps also affect the statistical properties of the radia-

tion bath, the Cosmic Microwave Background (CMB). By measuring the deviations

of the CMB intensity from the mean and correlating different points along the sky

at different angular scales, one can construct the right plot of Fig. 1-1. From this

detailed measurement, we have learned that dark matter has been around for over 13

billion years, and accounts for about 84.4% of the mass contained in the universe [18].

These observations teach us valuable lessons about dark matter. We learn that

dark matter accounts for most of the mass in the universe. We surmise that it is

stable, since the fraction of dark matter remains fixed for so much of cosmic history.

We also infer that dark matter interacts with matter and radiation gravitationally,

and that any non-gravitational interactions are either non-existent or too feeble to be

observed.
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Figure 1-1: Two key pieces of evidence that establish the existence of dark matter.
Left : The Bullet Cluster, 1E0657-56. (Figure credit: Left: Schumann et al.[19]; Right:
NASA/CXC/CfA/ M.Markevitch et al.) Right : The CMB TT anisotropy power
spectrum for dark matter densities 0.11 ≤ Ω𝑐 ≤ 0.43, with all other cosmological
parameters held constant. The best fit to the 2018 Planck data [18] is shown (black,
dashed).

1.1.2 Deviations from CDM

If dark matter had no non-gravitational interactions, it would be difficult to learn what

it actually is. We would not be able to capture it and send it through a magnetic field

to learn about its intrinsic spin, as we can with electrons. We could not shine light on

dark matter and search for deflection or absorption to learn about its characteristic

size and electric dipole moment, as we can with hydrogen. Nor could we produce it

in a collider to learn about its mass and interactions with other particles, as we can

a W-boson.

On the other hand, non-gravitational interactions open the prospect of very in-

formative signatures. If dark matter could collide with standard model matter, one

could fill a container with a large density of targets and search for evidence of colli-

sions between targets and dark matter traveling through our galaxy, motivating the

field of direct detection. If dark matter could convert to standard model matter or

vice versa, then one could try to produce it at a collider, or look for its products

in space, motivating the field of indirect detection. In the first part of this thesis, I

consider the indirect detection scenario by supposing that dark matter can convert
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to standard model matter, and investigate the effects of its products in the early

universe.

Non-gravitational interactions also open the possibility for an explanation of the

dark matter abundance that we observe today. For a classic example, consider 2-to-2

thermal freeze-out [20]. Let us assume that dark matter is made of particles, denoted

𝜒, and that there exists an interaction that can convert a pair of dark matter particles

to a pair of standard model particles or vice versa, 𝜒𝜒 ↔ 𝑆𝑀 𝑆𝑀 , with cross-section

𝜎. Then by integrating the Boltzmann equation for dark matter over all phase space

variables, we find that its number density evolves according to

�̇�𝜒 = −3𝐻𝑛𝜒 − ⟨𝜎𝑣⟩
(︁
𝑛2
𝜒 −

(︀
𝑛eq
𝜒

)︀2)︁
, (1.1)

where 𝑣 is the relative velocity between colliding particles in the 2-to-2 process and

is averaged against the cross-section. The first term on the right accounts for the

dilution of the number density due to the expansion of space, where the expansion

occurs at the Hubble rate, 𝐻. The ⟨𝜎𝑣⟩𝑛2
𝜒 term is the dark matter particle loss rate

per unit volume as the interaction converts 𝜒 particles to standard model particles,

while the remaining term is the inverse rate that replenishes the dark matter number

density, which has been calculated using detailed balance. At early times, densities

are high, making ⟨𝜎𝑣⟩𝑛2
𝜒 large compared to the Hubble term. We can neglect the

Hubble term, leaving us with an equation that drives 𝑛𝜒 to 𝑛eq
𝜒 – when 𝑛𝜒 > 𝑛eq

𝜒 the

right hand side is negative, causing 𝑛𝜒 to decrease down towards 𝑛eq
𝜒 ; when 𝑛𝜒 < 𝑛eq

𝜒

the right hand side is positive, causing 𝑛𝜒 to increase up towards 𝑛eq
𝜒 . We thus

find that at early enough times the number of dark matter particles is completely

determined by the common temperature 𝑇 that all particles in the early universe

share. As the universe steadily becomes more dilute, the interaction rate becomes less

than the Hubble rate, making the latter two terms negligible. The comoving number

of dark matter particles stays essentially fixed, neglecting the residual amounts of

annihilations that still occur, and is no longer determined by 𝑇 . Dark matter is said

to have “frozen out” at this point. By adjusting the interaction strength, ⟨𝜎𝑣⟩, one can
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arrange for the observed abundance of dark matter seen today. It is important to note

that although freezeout means that the dark matter density is no longer significantly

affected by annihilations, these annihilations are still important. As I will explain

further below and in Chapters 2 and 3, for a wide range of interaction strengths, the

residual amounts of annihilation that take place are still large enough to significantly

heat or ionize matter in the universe.

2-to-2 thermal freezeout is far from the only way to achieve the correct dark matter

abundance. There are spinoffs, like 3-to-2 thermal freeze-out [21, 22] or freeze-in [23],

and completely different ideas, like gravitational production during inflation [24], the

misalignment mechanism for axion dark matter [25], or primordial black hole (PBH)

production for PBH dark matter [5]. In the second half of this thesis, I consider

an extension of the thermal freeze-out scenario in which freeze-out initially produces

too much dark matter, but then a first-order phase transition compresses the dark

matter, effecting a second stage of annihilation that depletes the dark matter down

to the correct abundance.

As a final note, typically within indirect detection there are two strategies, the

model-independent and the model-dependent strategy. The model-independent strat-

egy is concerned with generic types of interactions that dark matter may have, like

self-interactions, energy dissipation, or collisions with nuclei. The model-dependent

strategy is concerned with specific forms dark matter can take, like axion dark matter,

WIMP dark matter, or sterile neutrino dark matter. Each strategy comes with its

own advantages and disadvantages, and the two are complementary to one another.

In the first half of this thesis I will take a more model-independent approach. The

type of interaction I consider is annihilation or decay of dark matter to standard

model matter. In the second half, I will take a more model-dependent approach. I

will consider a model in which dark matter is comprised of dark quarks and gluons.
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Figure 1-2: Types of interactions between dark matter and standard model matter.
To the left is a 3-point interaction, which can lead to dark matter decay to standard
model particles. To the right is a 4-point interaction, which can lead to dark matter
annihilation to standard model particles. Both annihilation and decay give rise to
dark matter energy in the early universe.

1.2 Annihilating and Decaying Dark Matter

In the first part of this thesis I explore the effects of dark matter conversion into

standard model matter in the early universe. This type of interaction is a common

feature of many models. To see why, let us assume that dark matter consists of

particles, as I will throughout the rest of this thesis. Quantum Field theory then tells

us that the interactions between dark matter and standard model particles can be

described by 𝑛-point amplitudes, with at least one dark matter particle leg and at

least one standard model particle leg. At the lowest non-trivial order is a three-point

amplitude. If this amplitude has one dark matter leg and two standard model legs, as

depicted in the left half of Fig. 1-2, then this interaction can give rise to dark matter

decays. At the next order is a four-point amplitude. If it involves two dark matter

particles and two standard model particles, as depicted in the right half of Fig. 1-2,

then this type of interaction gives rise to annihilation. Different combinations can

exist and have been explored (see [21, 26]), but in this thesis I restrict to decays and

2-to-2 annihilations.
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1.2.1 Energy Injection

If dark matter has a decay rate of Γ, then its comoving number density evolves

according to

𝑑

𝑑𝑡

(︀
𝑎3𝑛𝜒

)︀
= −Γ𝑛𝜒 . (1.2)

I have assumed that the universe is dilute enough that the inverse process in which the

decay products combine to make a dark matter particle is negligibly small compared

to the decay process. If we only consider regimes in which dark matter behaves like

non-relativistic matter, then its energy density is given by 𝜌𝜒 = 𝑚𝜒𝑛𝜒. The amount

of energy released by dark matter decay per volume and time is then given by

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂
inj, decay

=
𝑚𝜒𝑛𝜒

𝜏
. (1.3)

where I have defined the lifetime as 𝜏 = Γ−1.

If dark matter annihilates with a cross-section of 𝜎, then the number of dark

matter particles that annihilate per volume is 𝑛2
𝜒 ⟨𝜎𝑣⟩. In this analysis, I assume that

the two annihilating 𝜒 particles are indistinguishable, but the distinguishable case

proceeds similarly. The energy injection rate is then

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂
inj, ann

= 𝜌2𝜒
⟨𝜎𝑣⟩
𝑚𝜒

, . (1.4)

The velocity averaged cross-section, ⟨𝜎𝑣⟩, can be simplified further. Again, by as-

suming that dark matter is non-relativistic, we can expand the velocity averaged

cross-section in powers of the root-mean-square dark matter velocity, 𝑣𝑟𝑚𝑠 [27],

⟨𝜎𝑣⟩ = 𝑏0 + 𝑏1𝑣
2
𝑟𝑚𝑠 + ... . (1.5)

𝑠-wave annihilation refers to the case when the first term dominates while 𝑝-wave

annihilation refers to the case when the second dominates. In Chapter 3 I will con-

strain models of 𝑝-wave annihilating DM. Note that the above assumes a contact
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interaction; with a long-range interaction we could have 𝑣−1 terms.

𝑝-wave annihilation occurs for various specific dark matter models like, for ex-

ample, scalar millicharged dark matter [28]. To write the 𝑝-wave velocity-averaged

cross-section in a slightly more convenient way, evaluate it at a reference velocity, 𝑣𝑟𝑒𝑓 ,

which I will take to be 100 km s−1 throughout this thesis. We then have a reference

value for the cross-section, (𝜎𝑣)𝑟𝑒𝑓 = 𝑏1𝑣
2
𝑟𝑒𝑓 , which allows us to rewrite 𝑏1. The 𝑝-wave

cross-section at any velocity is then ⟨𝜎𝑣⟩ = (𝜎𝑣)𝑟𝑒𝑓
𝑣2𝑟𝑒𝑓

𝑣2𝑟𝑚𝑠.

To calculate 𝑣𝑟𝑚𝑠 and 𝜌𝐷𝑀 , we must consider two regimes, the high-redshift regime

and the low-redshift regime. In the high-redshift regime, matter over- and under-

densities are small and the density of dark matter is homogeneous to a good approx-

imation. After freezeout, the energy density evolves solely due to Hubble expansion,

𝜌𝐷𝑀(𝑧) = 𝜌𝐷𝑀,0(1 + 𝑧)3, where 1 + 𝑧 is the redshift factor of the universe and 𝜌𝐷𝑀,0

is the measured dark matter energy density today. Also in the post-freezeout, high-

redshift regime, the dark matter velocity distribution can be taken to be Maxwell-

Boltzmann, with a temperature that scales with two powers of redshift after kinetic

decoupling as non-relativistic matter must in the expanding universe [29]. Therefore,

𝑣2𝑟𝑚𝑠 =
3
2

𝑇
𝑚𝐷𝑀

∝ (1 + 𝑧)2.

In the low-redshift regime, structure formation is important. The density of dark

matter can no longer be taken to be homogeneous. I now show that the dark matter

inhomogeneities lead to boost factors in the energy injection rates for annihilation, but

not decay [30]. As time progresses, more and more dark matter falls into potential

wells, wells that become deeper with time. 𝑝-wave annihilation, for example, gets

boosted by two effects, the increase in 𝜌2𝜒 as gravitational attraction increases dark

matter densities, and the increase in 𝑣𝑟𝑚𝑠 as gravitational potential energy converts to

kinetic energy. 𝑠-wave annihilation also gets a boost due to the increase in 𝜌2𝜒. Hence,

higher density regions become the dominant sources of energy injection. In reality,

then, energy injection should be treated as an inhomogeneous process, as is done in

Refs. [31, 32]. Instead, in this thesis I will simplify my calculations by assuming that

energy injection can be considered homogeneous. This assumption could be justified

if one showed that the injected particles had long mean free paths compared to the
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typical distance between overdensities. Then, since the overdensities are distributed

homogeneously, the particles injected from different overdensities would eventually

mix and become homogeneous again.

This reasoning explains why there is no boost factor for decay. For every overdense

region with increased decay there is an underdense region with decreased decay. If

we assume that the injected particles quickly homogenize, then we can calculate

the energy injection rate by placing the average dark matter density in Eq. 1.3,

and forgetting about the inhomogeneities altogether. Otherwise put, my assumption

that the injected particles quickly homogenize translates to an averaging procedure

of the energy injection rate over space. Since Eq. 1.3 is linear in its fluctuating

variable 𝑛𝜒, the averaging procedure merely replaces 𝑛𝜒 by the average dark matter

number density. On the other hand, the 𝑠-wave annihilation rate is quadratic in its

fluctuating variable 𝜌2𝜒, and the 𝑝-wave is quartic in its fluctuating variables 𝜌2𝜒𝑣
2
𝑟𝑚𝑠.

The averaging procedure of Eq. 1.4 then produces boost factors relative to their

averages, 𝜌2𝜒 → ⟨𝜌2𝜒⟩ = ⟨𝜌𝜒⟩2 ℬ𝑠 and 𝜌2𝜒𝑣
2
𝑟𝑚𝑠 → ⟨𝜌2𝜒𝑣2𝑟𝑚𝑠⟩ = ⟨𝜌𝜒⟩2⟨𝑣𝑟𝑚𝑠⟩2 ℬ𝑝. We

will find that the boost factors become important at redshifts 𝑧 . 50, and that for

unconstrained models, the 𝑝-wave annihilation rate is essentially negligible up until

that point. In the rest of this thesis I will leave the averaging symbols ⟨·⟩ for 𝜌 and

𝑣𝑟𝑚𝑠 implicit.

In summary, the total homogeneous energy injection rate is

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜌𝜒,0(1 + 𝑧)3/𝜏 , decay,

𝜌2𝜒,0(1 + 𝑧)6⟨𝜎𝑣⟩/𝑚𝜒 ℬ𝑠 , 𝑠− wave annihilation,

𝜌2𝜒,0(1 + 𝑧)8(𝜎𝑣)𝑟𝑒𝑓/𝑚𝜒
𝑣2𝑟𝑚𝑠

𝑣2𝑟𝑒𝑓
ℬ𝑝 , 𝑝− wave annihilation,

(1.6)

where 𝜌𝜒,0 is the present day energy density of DM.

1.2.2 Energy Deposition

We have determined how much raw energy is injected into the universe in the form

of standard model particles in either scenario, but this energy is quickly processed in
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complicated ways. The energy can be injected in the form of any pair of particles

– quark and anti-quark, electron and positron, neutrino and anti-neutrino, photons,

or other gauge bosons. If any of these particles are unstable, as the heavy quarks

and heavy leptons are, or if they hadronize, as the gluons and light quarks do, they

resolve into a cascade of stable particles. The decay and hadronization timescales are

always fast compared to other timescales, so we can assume that the conversion to

stable particles happens instantaneously.

The stable particles that are produced are electrons, positrons, photons, neutri-

nos, protons, and other light nuclei. The neutrinos interact so weakly that we can

ignore them, treating them solely as a form of energy loss. The nuclei larger than

a proton are produced in negligible amounts, so we neglect them, too. The protons

and anti-protons, are typically produced in smaller abundances [33] and interact more

weakly than other electromagnetically interacting particles, but are not completely

negligible [34]. As a first approximation, I ignore protons and anti-protons, taking

the philosophy that the complications they add to my calculations do not justify

the small corrections they add to my results. Moreover, the effect of adding protons

and anti-protons is likely one-sided – adding them would just increase the amount of

energy deposited. We are then left with electrons, positrons, and photons.

The injected electrons, positrons, and photons are typically initially at much

higher energies than the thermal bath of photons and electrons present in the early

universe. Therefore, these particles cool, depositing energy into a number of different

channels as they thermalize. The fraction of energy deposited into each channel is

summarized by deposition fraction functions,

𝑓𝑐 =

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂
dep, c

⧸︃(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂
inj

. (1.7)

The channels, 𝑐, include ionization and excitation of atoms, heating of the cooler

thermal baths, or a distortion to the photon blackbody spectrum. These fractions are

very convenient, as they condense all the information that existed in the complicated

cascade of injected particles into a set of simple functions.
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1.2.3 Temperature and Ionization Evolution

With
(︀

𝑑𝐸
𝑑𝑉 𝑑𝑡

)︀
inj and 𝑓𝑐 in hand, we can start exploring the effects that dark matter

energy injection has on the evolution of the early universe. Given the channels – ex-

citation, ionization, heating, and distortion – one may expect there to be four sets of

evolution equations that should be solved, one for the excitation levels of atoms, an-

other for ionization levels, another for temperatures of the different thermal baths, and

another for the spectrum of photons. Fortunately, transition rates between different

excited states are very fast compared to cosmological timescales, and the excitation

levels quickly achieve a steady-state. The excitation levels can then be calculated via

a set of steady-state conditions [35, 36]. Even these steady-state conditions usually do

not need to be solved since all states but the ground state are negligibly populated.

The ionization equations, on the other hand, are important. Although the time

scales for ionization and recombination of atoms are also fast compared to cosmologi-

cal timescales, the net transition rate is comparable, and eventually slower. However,

since all atomic transition rates are so fast, the ionization equations take a relatively

simple form. Consider the hydrogen ionization equation [30, 37, 38],

�̇�HII =− 𝒞
[︀
𝑛H𝑥𝑒𝑥HII𝛼H − 4(1− 𝑥HII)𝛽H𝑒

−𝐸𝛼/𝑇CMB
]︀

+

[︂
𝑓H ion

ℛ𝑛H
+

(1− 𝒞)𝑓exc

𝐸𝛼𝑛H

]︂(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

+ �̇�re
HII , (1.8)

where ℛ ≈ 13.6 eV is the Rydberg energy, 𝐸𝛼 = 3ℛ/4 is the Lyman-𝛼 excitation

energy, 𝑛H is the density of hydrogen atoms (bound or unbound), and 𝑇CMB is the

CMB temperature. 𝑥𝑖 = 𝑛𝑖/𝑛H is a density normalized per hydrogen atom. Specif-

ically, 𝑥𝑒 = 𝑛𝑒/𝑛H where 𝑛𝑒 is the density of unbound electrons and 𝑥HII = 𝑛HII/𝑛H

where 𝑛HII is the density of ionized hydrogen atoms. I use the convention where the

roman numeral attached to an atomic symbol denotes the degree to which an atom is

ionized: HI is neutral hydrogen, HII is ionized hydrogen, HeI is neutral helium, HeII

is singly-ionized helium, and HeIII is doubly-ionized helium.
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Due to the separation of atomic and cosmological timescales, all complications

introduced by the atomic structure of the hydrogen atom, with its infinite tower

of excited states, has been condensed into the Peebles-𝐶 factor, the recombination

coefficient 𝛼H, and the ionization coefficient, 𝛽H. The deposition functions appear in

a simple way, with the hydrogen ionization and excitation coefficients each appearing

as separate ionization terms. The 𝑓𝐻𝑖𝑜𝑛 term appears as a direct ionization term,

while the 𝑓𝑒𝑥𝑐 term appears with an extra factor of (1 − 𝒞) to account for the net

fraction of atoms excited by dark matter energy injection that end up fully ionizing.

The last term accounts for the effects of reionization and will be the subject of Ch. 3.

The temperature evolution equation is also important. Naively, one may have

expected multiple temperature evolution equations, one for each type of matter and

a separate one for the radiation, but in reality there is only one non-trivial equation.

Let us start with the CMB temperature. Recalling that for every one baryon there

are about 2 billion photons [18], we see that the heat capacity of the CMB is much

larger than the matter heat capacity. Therefore, even though electrons are able to

act as a conduit through which heat can flow from the CMB to the matter bath, to a

great approximation, 𝑇𝐶𝑀𝐵 remains unaffected by any heat transfer. The evolution

of 𝑇𝐶𝑀𝐵 is then given by 𝑇𝐶𝑀𝐵(𝑧) = 𝑇𝐶𝑀𝐵,0(1 + 𝑧), where 𝑇𝐶𝑀𝐵,0 is the CMB

temperature as measured today, as necessary for a radiation bath in an expanding

universe. Now we move on to the dark matter temperature. If the annihilation or

decay rate were comparable to the expansion rate, then heat exchange between dark

matter and standard model matter would be important. Fortunately, we will find

that constraints are stringent enough that annihilation and decay rates must be small.

Since I will assume that there are no additional interactions between dark matter and

standard model matter throughout this thesis, there is no thermal coupling between

the two baths. Since the dark matter temperature is unobservable, we can then ignore

it.

Finally, we turn to the matter temperature equation. It turns out that ions,

electrons and neutral atoms exchange energy with each other and among themselves

quicker than all other energy exchange rates in the problem [37]. All species of
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matter can then be assumed to be at a common, well-defined temperature, 𝑇𝑚. This

temperature evolves according to

�̇�𝑚 = −2𝐻𝑇𝑚 + Γ𝐶(𝑇CMB − 𝑇𝑚) +
2𝑓heat

3(1 + ℱHe + 𝑥𝑒)𝑛H

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

+ �̇� re
𝑚 , (1.9)

where Γ𝑐 is the Compton cooling rate (defined in Chapter 2), ℱHe = 𝑛He/𝑛H is the

fraction of helium atoms per hydrogen atoms. The first term cools matter due to

the expansion of the universe. The second allows heat to exchange between the

photon bath and the matter bath. The third is a source of heat due to dark matter

energy injection. Finally, the fourth is a source of heat due to the sources that drive

reionization.

The last evolution equation we must consider is that of the distortion to the CMB

spectrum. Over a wide range of frequencies, the spectrum of CMB photons has been

measured to be a perfect blackbody spectrum to within one part in 104 precision [39].

As injected electrons scatter against CMB photons and injected photons cool down

and ultimately add to the CMB, this spectrum of photons can be distorted away

from a perfect blackbody. While this distortion is an important effect and will be the

subject of a future upgrade of DarkHistory, it will not be a focus of this thesis.

In Chapter 2 I will explain how DarkHistory effectively organizes all steps of this

calculation. DarkHistory calculates the 𝑓𝑐 functions for arbitrary energy injection

scenarios, including decay and 𝑠- or 𝑝- wave annihilation to arbitrary spectra of pho-

tons or 𝑒+𝑒− pairs. Using these 𝑓𝑐 functions, it is able to quickly and accurately

compute the ionization levels and temperature of the universe as a function of time.

In Chapter 3 I will use DarkHistory to calculate how decay and 𝑝-wave annihila-

tion modifies the temperature of matter at low redshifts. Using measurements of the

matter temperature at low temperatures coming from observations of the Lyman-𝛼

forest, I constrain dark matter decay lifetimes and annihilation cross-sections.
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1.3 Strongly Interacting Dark Matter

The standard model often serves as inspiration for dark matter models. The hope is

that since nature has already set a precedent by allotting the Standard Model with

certain types of particles and interactions, maybe it allotted similar particles and

interactions to the dark sector. For example, authors have taken this philosophy and

constructed models of dark photons [40], dark atoms [41], dark pions [42] – even an

entire dark Standard Model [43]. In this thesis, I explore one such model inspired by

Quantum Chromodynamics (QCD).

1.3.1 QCD-like Dark Matter

To begin, let us take inspiration from the Standard Model and guess that dark matter

can be described by a gauge theory. Rather than the complicated gauge group of the

Standard Model, 𝑆𝑈(3)⊗𝑆𝑈(2)⊗𝑈(1), let us consider 𝑆𝑈(𝑁𝑐) as a dark gauge group,

where 𝑁𝑐 will denote the number of dark quark colors. We have therefore specified

that there are dark gauge bosons in our dark sector, which we will call dark gluons

by analogy to QCD. At this point we could construct a valid theory of dark matter

by ensuring that the stable glueballs in this theory constitute the dark matter [44],

but instead let us continue our analogy with QCD and include dark quarks in our

model. Let us assume that these dark quarks are in the fundamental representation

of 𝑆𝑈(𝑁𝑐). Unlike the standard model, we will assume that there is only one flavor

of quark, and that it is stable. With the particle content we have specified so far,

there are only two parameters that I need to fix, the interaction strength 𝛼 and the

quark mass 𝑚𝑞.

To fix 𝛼, I must first specify how it runs. At an energy scale 𝜇, where 𝑁𝑓 (𝜇)

flavors contribute to the beta function, we have at leading order (see Chapter 9 of

Ref. [7])

𝛼(𝜇) =
12𝜋

(11𝑁𝑐 − 2𝑁𝑓 (𝜇)) log
𝜇2

Λ2

(1.10)

𝛼 is then fully determined once Λ is specified. Importantly, we have chosen 𝑁𝑓 (𝜇) ≤ 1,
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meaning that 𝛼(𝜇) gets weaker at higher energy scales. In other words, our dark

sector is asymptotically free, just like QCD is. We can therefore interpret Λ as the

confinement scale. The cosmological implication for asymptotic freedom is that when

the dark sector is hot and dense enough in the early universe, with a temperature

𝑇 ≫ Λ, the quarks and gluons will have a much higher energy than Λ on average.

Their interactions will not be strong enough to keep them in bound states, meaning

that they will exist in an unbound Quark Gluon Plasma. At the other extreme, when

the dark sector cools due to Hubble expansion and 𝑇 ≪ Λ, the quarks and gluons

will have a much lower energy than Λ on average. Their interactions will be very

strong causing them to confine, binding into color neutral bound states. At some

intermediate temperature, there will then be a phase transition.

With 𝛼 specified, we now move on to the quark mass, 𝑚𝑞. When specifying 𝑚𝑞,

the important question is: how large is it compared to Λ? If we were to choose 𝑚𝑞

comparable to or less than Λ, then many processes would be in the non-perturbative

regime, and therefore too difficult to calculate without considerable aid from lattice

simulation. Choosing 𝑚𝑞 ≫ Λ instead not only fixes this problem, but also makes the

cosmology of this model very interesting. The confining phase transition becomes a

first-order phase transition [45], meaning that there will be an era of bubble formation

and complicated bubble dynamics. In fact, my main motivation for considering 𝑚𝑞 ≫
Λ will be to explore the interesting effects such a phase transition has on the evolution

of this dark sector in the early universe.

1.3.2 The Heavy Quark Regime

Let us end this section by better appreciating how the heavy quark regime sim-

plifies the analytic and numerical aspects of our problem. Many of the analytic

simplifications stem from the fact that the heavy quarks can be taken to be in the

non-relativistic limit. As a result, the entire 2-to-2 freezeout discussion leading up

to Eq. 1.1, which assumed non-relativistic dark matter, can be applied to the quark,

anti-quark to gluon annihilation process, 𝑞𝑞 ↔ 𝑔𝑔. Furthermore, we can use a non-

relativistic scattering formalism to compute ⟨𝜎𝑣⟩. Using the inter-quark potential
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calculated on the lattice [46], we can calculate ⟨𝜎𝑣⟩ and find an expression similar to

that of Eq. 1.5, with additional corrections due to the long-range nature of the inter-

quark force, and also due to the interactions with the surrounding plasma [47]. The

entire process of quark freezeout is then calculable in the heavy quark limit. When

we consider the phase transition, we will be able to neglect pair production of quarks.

We will also be able to treat the quarks in an almost Newtonian manner, considering

how its velocity (which is only well-defined in the non-relativistic limit) evolves due

to the forces exerted on it by the bubbles.

In addition to analytic calculations, numerical calculations using lattice QCD

are easier in the heavy-quark limit. In this limit, the most resource intensive part

of the lattice calculation, the fermion determinant, can be neglected. As a result,

many important numerical results are available from the lattice. First, the potential

between two quarks and the potential between a quark and an anti-quark have been

determined at any temperature [46]. This information is necessary for the calculation

of ⟨𝜎𝑣⟩. Second, the two most important non-perturbative quantities determining

the bubble dynamics during the first-order phase transition have been calculated: the

surface tension 𝜎 and the latent heat, 𝑙 [48–52]. The surface tension determines the

amount of energy per unit area it takes to form an interface between the two phases

co-existing in the phase transition. The latent heat determines how much heat is

released as the high energy phase converts to the lower energy phase.

In Chapter 4 I investigate this QCD-like dark matter model in more detail, focus-

ing on its early universe evolution and its first-order phase transition in particular. I

show that the phase transition leads to a second stage of dark matter annihilation,

dramatically modifying the dark matter relic abundance calculation.

Chapter 2 was published as [53] in collaboration with Hongwan Liu and Tracy

Slatyer. Chapter 3 was published as [54] in collaboration with Hongwan Liu, Wenzer

Qin, and Tracy Slatyer. Chapter 4 was published as [55] with a companion paper [56]

in collaboration with Pouya Asadi, Eric Kuflik, Eric David Kramer, Tracy Slatyer,

and Juri Smirnov.
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Chapter 2

DarkHistory: A Code Package for

Calculating Modified Cosmic

Ionization and Thermal Histories

with Dark Matter and Other Exotic

Energy Injections

2.1 Introduction

Dark matter annihilation or decay and other exotic sources of energy injection can

significantly alter the ionization and temperature histories of the universe. In this

chapter we describe a new public code package, DarkHistory, that allows fast and ac-

curate computation of these possible effects of exotic energy injection on astrophysical

and cosmological observables.

In particular, we will focus on interactions that allow dark matter (DM) to decay

or annihilate into electromagnetically interacting Standard Model particles. This

case has been studied extensively in the literature: stringent constraints on the dark

matter annihilation cross section and decay lifetime have been derived from the way
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these Standard Model products would distort the anisotropies of the cosmic microwave

background (CMB) [57–60], or increase the temperature of the Inter-Galactic Medium

(IGM), consequently affecting 21-cm and Lyman-𝛼 line emission [30, 61–63].

DarkHistory facilitates the calculation of these observables and the resulting con-

straints. In particular, DarkHistory makes the temperature constraint calculations

significantly more streamlined, self-consistent, and accurate. It has a modular struc-

ture, allowing users to easily adjust individual inputs to the calculation – e.g. by

changing the reionization model, or the spectrum of particles produced by dark mat-

ter annihilation/decay. Compared to past codes developed for such analyses [64],

DarkHistory has a number of important new features:

∙ the first fully self-consistent treatment of exotic energy injection. Exotic en-

ergy injections can modify the evolution of the IGM temperature 𝑇IGM and free

electron fraction 𝑥𝑒, and previously this modification has been treated pertur-

batively, assuming the backreaction effect due to these modifications on the

cooling of injected particles is negligible. This assumption can break down to-

ward the end of the cosmic dark ages for models that are not yet excluded

[30]. DarkHistory solves simultaneously for the temperature and ionization

evolution and the cooling of the injected particles, avoiding this assumption;

∙ a self-contained treatment of astrophysical sources of heating and reionization,

allowing the study of the interplay between exotic and conventional sources of

energy injection;

∙ a large speed-up factor for computation of the full cooling cascade for high-

energy injected particles (compared to the code employed in e.g. [30]), via pre-

computation of the relevant transfer functions as a function of particle energy,

redshift and ionization level;

∙ support for treating helium ionization and recombination, including the effects

of exotic energy injections; and

∙ a new and more correct treatment of inverse Compton scattering (ICS) for
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mildly relativistic and non-relativistic electrons; previous work in the literature

has relied on approximate rates which are not always accurate.

Due to these improvements, DarkHistory allows for rapid scans over many different

prescriptions for reionization, either in the form of photoheating and photoioniza-

tion rates, or a hard-coded background evolution for 𝑥𝑒. The epoch of reionization

is currently rather poorly constrained, making it important to understand the ob-

servational signatures of different scenarios, and the degree to which exotic energy

injections might be separable from uncertainties in the reionization model. Previous

attempts to model the effects of DM annihilation and decay into the reionization

epoch have typically either assumed a fixed ionization history [64] – requiring a slow

re-computation of the cooling cascade if that history is changed [30] – or made an

approximation for the effect of a modified ionization fraction on the cooling of high-

energy particles [61, 63, 65–67].

Despite our emphasis on dark matter annihilation and decay, DarkHistory can

be used to explore the effect of other forms of exotic particle injection. Other such

possible sources include Hawking radiation from black holes [67, 68], radiation from

accretion onto black holes [69], and processes from new physics such as de-excitation

of dark matter or decay of meta-stable species [70].

In Section 2.2 we review the physics of the ionization and temperature evolution,

in the context of the three-level-atom (TLA) approximation, including the possibil-

ity of exotic energy injections. In Section 2.3 we discuss the overall structure of

DarkHistory, which self-consistently combines the TLA evolution of the ionization

and gas temperature with the cooling of particles injected by exotic processes. This

section also describes the implementation of various physical processes in the code,

in particular the treatment of cooling and production of secondaries by electrons

and photons. In Section 2.4 we relate these processes to the various modules of

DarkHistory, before providing a number of worked examples in Section 2.5. We

present our conclusions and discuss some future directions in Section 4.5. We discuss

our improved treatment of ICS in detail in Appendix A.1, provide the photon spec-

tra from positronium annihilation in Appendix A.2, discuss a series of cross checks
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in Appendix A.3, and provide a table of definitions used throughout this chapter in

Appendix A.4.

2.2 Ionization and Thermal Histories

DarkHistory computes the ionization and temperature evolution of the universe in

the presence of an exotic source of energy injection, such as dark matter annihilation

or decay, using a modified version of the three-level atom (TLA) model for both

hydrogen and helium, based on RECFAST [38, 71]. The reader may refer to Ref. [72]

for a detailed derivation of the unmodified TLA equations with hydrogen only, and

Refs. [38, 71, 73] for the treatment of helium recombination in RECFAST. In this section,

we will neglect the evolution of helium for simplicity, leaving a detailed discussion of

our treatment of helium to Sec. 2.3.7.

In the absence of any source of energy injection, the TLA model, first derived

in [37, 74], provides a pair of coupled differential equations for the matter temperature

in the IGM and the hydrogen ionization fraction:

�̇� (0)
𝑚 = −2𝐻𝑇𝑚 + Γ𝐶(𝑇CMB − 𝑇𝑚) ,

�̇�
(0)
HII = −𝒞

[︀
𝑛H𝑥𝑒𝑥HII𝛼H − 4(1− 𝑥HII)𝛽H𝑒

−𝐸21/𝑇CMB
]︀
, (2.1)

where 𝐻 is the Hubble parameter, 𝑛H is the total number density of hydrogen (both

neutral and ionized), 𝑥HII ≡ 𝑛HII/𝑛H where 𝑛HII is the number density of free protons,

𝑥𝑒 ≡ 𝑛𝑒/𝑛H is the free electron fraction with 𝑛𝑒 being the free electron density, and

𝐸21 = 10.2 eV is the Lyman-𝛼 transition energy. 𝑇𝑚 and 𝑇CMB are the temperatures

of the IGM and the CMB respectively.1 𝛼H and 𝛽H are case-B recombination and

photoionization coefficients for hydrogen respectively,2 and 𝒞 is the Peebles-C factor

that represents the probability of a hydrogen atom in the 𝑛 = 2 state decaying to the

ground state before photoionization can occur [37, 72]. The photoionization coefficient
1We follow the standard astrophysical convention in which H and H+ are denoted HI and HII,

while He, He+ and He2+ are denoted HeI, HeII and HeIII respectively.
2The value of 𝛽H used in DarkHistory includes the constant and gaussian fudge factors used by

version 1.5.2 of RECFAST.
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is evaluated at the radiation temperature, 𝑇CMB, in agreement with Ref. [75]. Γ𝐶 is

the Compton scattering rate, given by

Γ𝐶 =
𝑥𝑒

1 + ℱHe + 𝑥𝑒

8𝜎𝑇𝑎𝑟𝑇
4
CMB

3𝑚𝑒

, (2.2)

where 𝜎𝑇 is the Thomson cross section, 𝑎𝑟 is the radiation constant, 𝑚𝑒 is the electron

mass, and ℱHe ≡ 𝑛He/𝑛H is the relative abundance of helium nuclei by number. In the

absence of helium, note that 𝑥𝑒 = 𝑥HII. The solutions to Eq. (2.1) — i.e. without any

sources of energy injection — define what we will call the baseline temperature and

ionization histories, 𝑇 (0)
𝑚 (𝑧) and 𝑥

(0)
HII(𝑧). More accurate calculations of 𝑇𝑚 and 𝑥HII

such as cosmorec [76] and hyrec [72] are routinely used for CMB analyses, but

such a high degree of accuracy is not currently needed when computing the impact

of potential energy injection sources, since the uncertainties associated with these

processes and the cooling of the injected particles are relatively large.

Exotic sources may inject additional energy into the universe, altering the thermal

and ionization evolution shown in Eq. (2.1). For example, the rate of energy injection

from DM annihilating with some velocity averaged cross section ⟨𝜎𝑣⟩, or decaying

with some lifetime 𝜏 much longer than the age of the universe, is given by

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

=

⎧⎪⎨⎪⎩𝜌2𝜒,0(1 + 𝑧)6⟨𝜎𝑣⟩/𝑚𝜒 , annihilation,

𝜌𝜒,0(1 + 𝑧)3/𝜏 , decay,
(2.3)

where 𝜌𝜒,0 is the mass density of DM today, and 𝑚𝜒 is the DM mass. This injected

energy, however, does not in general manifest itself instantaneously as ionization,

excitation, or heating of the gas. Instead, the primary particles injected into the

universe may cool over timescales significantly larger than the Hubble time, producing

secondary photons that may redshift significantly before depositing their energy into

the gas.

Although the primary particles injected into the universe may be any type of

Standard Model particle, we will only need to consider the cooling of photons and

electron/positron pairs [57]. This simplification occurs because either the primaries
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are stable particles like photons, electrons and positrons, neutrinos, protons and anti-

protons, and heavier nuclei, or are unstable particles that resolve into these particles

on time scales much shorter than the cosmological time scales under consideration.

For typical sources of energy injection we can neglect heavier nuclei because they

are produced in negligible amounts, and neutrinos because they are very ineffective

at depositing their energy. Protons and antiprotons generally form a subdominant

component of stable electromagnetic particles across all possible Standard Model pri-

maries [33], and deposit energy less effectively than electrons, positrons, and photons

(although their effects are not completely negligible [34]). We therefore only decom-

pose the injection of any primary into an effective injection of photons, electrons,

and positrons, in accordance with Ref. [57] and subsequent works. Adding the con-

tribution from protons and antiprotons may strengthen these constraints by a small

amount.

A significant amount of work has been done on computing the cooling of high

energy photons, electrons, and positrons [57, 58, 77–84]. Once the cooling of in-

jected primary particles is determined, the energy deposited into channel 𝑐 (hydrogen

ionization, excitation, or heating) can be simply parametrized as

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

𝑐

= 𝑓𝑐(𝑧,x)

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

, (2.4)

with all of the complicated physics condensed into a single numerical factor that is

dependent on the redshift and the ionization fractions of all of the relevant species

in the gas, which we denote x ≡ (𝑥HII, 𝑥HeII, 𝑥HeIII). When helium is neglected, the

ionization dependence of these 𝑓𝑐 functions simplifies to a dependence on 𝑥HII = 𝑥𝑒.

These 𝑓𝑐 functions also depend on the energies and species of the injected particles,

but for simplicity of notation we will not write these arguments explicitly.

The effect of energy injection on the thermal and ionization history can now be
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captured by additional source terms,

�̇� inj
𝑚 =

2𝑓heat(𝑧,x)

3(1 + ℱHe + 𝑥𝑒)𝑛H

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

,

�̇�inj
HII =

[︂
𝑓H ion(𝑧,x)

ℛ𝑛H
+

(1− 𝒞)𝑓exc(𝑧,x)

0.75ℛ𝑛H

]︂(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

, (2.5)

where ℛ = 13.6 eV is the ionization potential of hydrogen.

Prior to this work, 𝑓𝑐(𝑧,x) has largely been computed assuming the standard ion-

ization history computed by recombination codes xstd(𝑧), essentially making 𝑧 the

only independent variable of 𝑓𝑐 as a function. These calculations are therefore ap-

plicable only so long as any perturbations to the assumed ionization history (e.g.

by additional sources of energy injection) are sufficiently small. This is generally a

good approximation near recombination: at these redshifts, the ionization history

is well-constrained by CMB power spectrum measurements, and therefore large per-

turbations to 𝑥𝑒 are highly disfavored. For 𝑧 . 100, however, ionization levels that

exceed the standard value of 𝑥𝑒 ∼ 2× 10−4 by several orders of magnitude are exper-

imentally allowed [30]. Moreover, star formation during the process of reionization

rapidly ionizes and heats the universe at 𝑧 . 20, causing the ionization and thermal

history to diverge from the baseline histories.

The primary effect of an increase in ionization levels is to decrease the number

of neutral hydrogen and helium atoms available to ionize, decreasing the fraction of

injected power that goes into ionization of these species; on the other hand, increasing

𝑥𝑒 increases the number of charged particles available for low-energy electrons to

scatter off and heat the IGM, increasing the fraction of power going into heating. Since

energy injection processes generally increase 𝑥𝑒 with time, the power into heating

increases at an accelerated rate at late times, making a proper calculation of 𝑓𝑐(𝑧,x)

crucial for an accurate computation of the temperature history.

Computing the full x-dependence of 𝑓𝑐(𝑧,x) also allows us to perform, for the

first time, a consistent calculation of the temperature and ionization histories with

both exotic energy injection processes and reionization. At the onset of reionization,

stars begin to form, and the ionizing radiation emitted by these objects injects a
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large amount of energy into the IGM. There remains a large degree of uncertainty

regarding how reionization proceeds, but given some model for the photoionization

and photoheating rates, and including other important energy transfer processes such

as collisional ionization and excitation, additional terms �̇� re
𝑚 and �̇�re

HII (as well as the

corresponding terms for helium) can be included in Eq. (2.1) to model reionization.

These terms are discussed in much greater detail in Sec. 2.3.7.

To summarize, DarkHistory computes the ionization and thermal history in the

presence of exotic sources of energy injection, with the evolution equations in the

absence of helium given by

�̇�𝑚 = �̇� (0)
𝑚 + �̇� inj

𝑚 + �̇� re
𝑚 ,

�̇�HII = �̇�
(0)
HII + �̇�inj

HII + �̇�re
HII . (2.6)

In the rest of the chapter, we will describe how we calculate the inputs required to

integrate these equations, i.e. 𝑓𝑐(𝑧,x), �̇� re
𝑚 , �̇�re

HII and the modifications necessary to

include helium.

2.3 Code Structure and Content

In this section we discuss the structure and physics content of the DarkHistory

package.

2.3.1 Overview

Fig. 2-1 shows a flowchart depicting the overall structure of DarkHistory. The overall

goal of the code is to take in some injected spectrum of photons and electron/positron

pairs at a given redshift, and partition the energy into several categories as they lose

their energy over a small redshift step:

1. High-energy deposition. This is the total amount of energy deposited into ioniza-

tion, excitation and heating by any high-energy (above 3 keV) electron generated
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during any of the cooling processes;

2. Low-energy electrons. These are electrons that have kinetic energy below 3 keV

where atomic cooling processes typically dominate over ICS after recombination.

These electrons are separated out at each step in order to treat their energy

deposition (which occurs in a timescale much shorter than the time step) more

carefully;

3. Low-energy photons. These are photons with energies below 3 keV that either

photoionize within the redshift step, or lie below 13.6 eV. Such photons either

lose all their energy within the redshift step, or cool only through redshifting,

and thus can be treated in a simplified manner; and

4. Propagating photons. These are photons that are present at the end of the

redshift step and are not included in the low-energy photons category.

Throughout the chapter, we use the word “electrons” to refer to both electrons and

positrons. Although the interactions of electrons and positrons with the gas differ,

the ICS cross-sections are identical, and ICS dominates the energy losses down to

energy scales where the positron is nonrelativistic [85]. For nonrelativistic positrons,

their mass energy is converted into photons through annihilation with electrons. Since

the positron mass is much larger than the kinetic energy in this regime, neglecting

differences in kinetic energy loss between electrons and positrons is unlikely to be

important. In a future version of DarkHistory we plan to include a more sophisticated

treatment of low energy electrons and positrons.

The outputs in the first three categories are used to compute the evolution of the

ionization and temperature history at this redshift step, before the code moves on to

the next step and performs the same calculation again. A brief description of a step

in this loop is as follows:

1. Input. Before the code begins, the user specifies a DM energy injection model or

some other redshift-dependent energy injection rate, as well as the photon and

𝑒+𝑒− spectra produced per energy injection event. By default, DarkHistory
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Figure 2-1: Flowchart showing schematically how the calculation of ionization and
thermal histories in DarkHistory proceeds. Solid boxes represent input spectra (light
pink), intermediate spectra used in calculations (black) and output spectra and quan-
tities (purple), while arrows indicate numerical calculations that take place within the
corresponding color-coded modules. The dashed grey box encloses all of the transfer
functions for electron cooling (blue) and photon propagation and deposition (red),
which are defined in Sec. 2.3.4 and 2.3.5 respectively. The calculation of 𝑓𝑐(𝑧) (or-
ange) and the integration of the TLA (green) are explained in Sec. 2.3.6 and 2.3.7
respectively. Propagating photons and ionization/temperature values, which are used
in calculating the transfer functions, are used as inputs for the next step (purple). All
notation used here are defined in the text, and a summary table with their definitions
can be found in Appendix A.4. Each step is outlined in Sec. 4.2, and then explained
in more detail in subsequent subsections within Sec. 2.3. The modules shown here
will also be outlined in Sec. 2.4.

starts from an initial redshift of 1 + 𝑧 = 3000, ensuring that the spectra of

particles present at and after recombination (at 𝑧 ∼ 1000) are accurate. Details

are provided in Sec. 2.3.3. Inputs to the code are provided to the function

evolve() found in the module main; some tools for obtaining spectra from

an arbitrary injection of Standard Model particles can be found in the pppc

module;
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2. Injected electron cooling. Injected electrons (and positrons) cool through a com-

bination of atomic processes and ICS. Transfer functions that map these injected

electrons to high-energy deposition, secondary photons from ICS and positron

annihilation, and low-energy electrons are computed and applied to the injected

electrons. A discussion of these calculations can be found in Sec. 2.3.4 and in

the electrons module of the code.

The sum of the secondary photons produced by electron cooling, photons in-

jected on this timestep, and propagating photons from the previous timestep

are used as input to the photon cooling transfer functions, which we describe

next;

3. Photon propagation and energy deposition. At this stage, we have a spectrum of

photons that can undergo a range of cooling processes to lose their energy over

this redshift step. The effect of these cooling processes on the photon spectrum

can be reduced to three transfer functions that we will describe in detail in

Sec. 2.3.5. These transfer functions have been pre-computed separately and

can be downloaded at https://doi.org/10.7910/DVN/DUOUWA, together with

all the other data required to run the code. These transfer functions determine

how photons in this redshift step turn into propagating photons that continue

on to the next redshift step, and low-energy photons and low-energy electrons

that undergo further processing. All of these computations occur in the main

module;

4. Calculating 𝑓𝑐(𝑧,x). The low-energy photons and low-energy electrons from

this redshift step deposit their energy into ionization, heating and excitation

of atoms, and the value of 𝑓𝑐(𝑧,x) at this step is computed by comparing the

energy deposited in each channel to the energy injection rate for this timestep.

Details of this computation are given in Sec. 2.3.6, and can be found in the

low_energy module;

5. TLA integration and reionization. With 𝑓𝑐(𝑧,x) at this step, we can now in-

tegrate the TLA across this redshift step. We can also include a reionization
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model, or track helium ionization, both of which add more terms to the TLA,

as detailed in Sec. 2.3.7. We now know the x and 𝑇𝑚 that are reached at the

end of this step. These calculations are done in the history module; and

6. Next step. The x and 𝑇𝑚 values computed above are passed to the next redshift

step, so that all transfer functions at the next step can be computed at the

appropriate ionization level. The propagating photons found above are also

passed to the next step, and the loop repeats.

Because 𝑓𝑐(𝑧,x) is computed by integrating the TLA at each step, and all transfer

functions are evaluated at the value of x in the step, the backreaction of increased

ionization levels is now fully accounted for.

In the next several sections, we will describe both the physics and numerical

methods that go into the loop.

2.3.2 Discretization

Before describing in detail each part of DarkHistory, we will first describe how dis-

cretization occurs in our code, and the notation we will use throughout this chapter.

Typically, we will deal with some smooth spectrum of particles 𝑑𝑁/𝑑𝐸(𝐸,𝐴,𝐵, · · · ),
which is a function of the energy abscissa 𝐸, and several other variables that we

denote here as 𝐴,𝐵, · · · . Smooth functions that are derivatives will always use ‘𝑑’

to denote differentiation, and parentheses to denote functional dependence. We shall

always discretize such spectra as

𝑑𝑁

𝑑𝐸
(𝐸𝑖, 𝐴𝑗, 𝐵𝑘, · · · ) ≈ S[𝐸𝑖, 𝐴𝑗, 𝐵𝑘, · · · ] . (2.7)

The discretized spectrum S is a matrix of dimension equal to the number of variables

it depends on, where 𝑖, 𝑗, 𝑘, ... index discrete values of these variables. Throughout

this chapter, we will denote vectors (quantities which depend on a single variable) by

a bold typeface and matrices (quantities that depend on multiple variables) by a sans-

serif typeface. Discrete steps or changes are denoted by ‘Δ’, and discrete functional
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dependencies are written in square brackets.

S times the bin width should always be regarded as a matrix of number of particles

inside some bin, all with energy given by 𝐸𝑖. This matrix is mathematically defined

as

N[𝐸𝑖, 𝐴𝑗, 𝐵𝑘, · · · ] ≡ S[𝐸𝑖, 𝐴𝑗, 𝐵𝑘, · · · ] × 𝐸𝑖Δ log𝐸𝑖 , (2.8)

where Δ log𝐸𝑖 is the log-energy bin width. We will always take 𝐸𝑖Δ log𝐸𝑖 to be the

bin width by convention. In DarkHistory, spectra are binned into energy values that

are evenly log-spaced. 𝐸𝑖 should be regarded as the bin center, with the bin bound-

aries occurring at the geometric mean of adjacent energy values, and the boundaries

of the first and last bin are taken to be symmetric (in log-space) about the bin centers.

2.3.3 Input

To initialize the loop described above, the user must specify the discretized photon

and electron spectra produced per injection event, which we denote N
𝛾

inj[𝐸
′
𝑗] and

N
𝑒

inj[𝐸
′
𝑗]. Bars denote spectra or transfer functions that have been normalized by

some process or quantity, while spectra without any markings denote a number of

particles per baryon from here on, unless otherwise specified.

Given the redshift-dependent rate of injection events per volume (𝑑𝑁/𝑑𝑉 𝑑𝑡)inj

we can determine the spectrum of particles N𝛼
inj injected within a log-redshift step of

width Δ log(1 + 𝑧) per baryon by

N𝛼
inj[𝐸

′
𝑖, 𝑧] = N

𝛼

inj[𝐸
′
𝑖]

(︂
𝑑𝑁

𝑑𝑉 𝑑𝑡

)︂inj

𝐺(𝑧) , (2.9)

where 𝛼 take on values 𝛾 or 𝑒, and

𝐺(𝑧) ≡ Δ log(1 + 𝑧)

𝑛𝐵(𝑧)𝐻(𝑧)
, (2.10)

where 𝑛𝐵 is the number density of baryons. 𝐺(𝑧) converts between the rate of injection
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events per volume and the number of injection events per baryon in the log-redshift

step.

In the following sections, we will be mostly concerned with log-redshift steps, and

so it is convenient to define

𝑦 ≡ log(1 + 𝑧) , (2.11)

and likewise Δ𝑦 ≡ Δ log(1 + 𝑧).

2.3.4 Injected Electron Cooling

After specifying the injected spectra, the next step of the code is to resolve the in-

jected electron/positron pairs, N𝑒
inj. High-energy electrons and positrons cool through

atomic processes (collisional ionization, collisional excitation and Coulomb heating),

as well as ICS off CMB photons. After losing their kinetic energy to these pro-

cesses, positrons ultimately annihilate with free electrons in the IGM, producing

high-energy photons. All of these processes occur within a timescale much shorter

than the timesteps considered in DarkHistory. Because of this, the code converts all

input high-energy electrons into energy deposited into ionization, excitation, heating,

scattered photons from ICS, and low-energy electrons (below 3 keV), which we treat

separately. The photons produced from ICS are added to those that are injected

promptly from the DM energy injection process, as well as propagating photons from

the previous step.

We will first briefly discuss our calculation of the scattered photon and electron

spectra from ICS, and then move on to describe the numerical method used to com-

pute electron cooling.

Inverse Compton Scattering

ICS off CMB photons is an important energy loss mechanism for electrons/positrons

over a large range of energies and redshifts. The efficiency of ICS as a cooling mecha-

nism relative to atomic cooling processes has been the subject of some confusion in the
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literature, with some earlier studies [78, 79] underestimating the cooling rate of the

electrons. ICS becomes more important relative to atomic processes as the electron

energy increases, but a correct treatment shows that even nonrelativistic electrons

can have ICS as the main cooling mechanism in the early universe; at 𝑧 ∼ 600, for

example, it is the primary energy loss mechanism for electrons with kinetic energy

& 10 keV [80, 82]. Existing work on electron cooling has focused on the highly nonrel-

ativistic regime (electron kinetic energy below 3 keV) [86], where ICS is unimportant

compared to atomic cooling processes, or on the relativistic regime [78, 79, 87].

Earlier work by one of the authors [58, 82] already incorporates ICS cooling for

electrons across both the Thomson and the relativistic regimes. DarkHistory im-

proves the accuracy of the calculation in the Thomson regime by using the full ex-

pression for the spectrum of scattered photons, with no further approximation. As

a result, the code is able to accurately calculate the scattered photon spectrum and

the energy loss spectrum of electrons. This means that we fully cover all relevant

regimes for ICS for electrons of arbitrary energy scattering off the CMB at all red-

shifts 𝑧 ∼ 109 and below.3 These calculations are fast and numerically stable even for

nonrelativistic electrons, where conventional numerical integration can be unreliable

due to the presence of catastrophic cancellations between large terms.

We leave a full discussion of how DarkHistory treats ICS to Appendix A.1. In

summary, the code is able to compute the scattered photon and electron spectra that

are produced per unit time due to ICS off the CMB across all relevant kinematic

regimes. These spectra are then taken as inputs for the numerical computation of

how an electron cools taking into account all processes, which is described below.

Numerical Method

Consider an injected electron (or positron) with kinetic energy 𝐸 ′ (all quantities

associated with injected particles throughout this chapter will be denoted with ′).

Let 𝑅𝑐(𝐸
′) be the energy eventually deposited into some channel 𝑐 by this electron,

3Above this redshift, photons have energies comparable to the electron mass 𝑚𝑒, and Klein-
Nishina scattering can occur between photons and non-relativistic electrons, which falls outside of
the two regimes considered here.
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once it has lost all of its initial energy. Within a short time interval Δ𝑡 (taken to be

1 s in our calculation), the electron undergoes all possible cooling processes with some

probability, producing the (averaged) secondary electron spectrum 𝑑𝑁/𝑑𝐸. Within

this same interval Δ𝑡, some portion of the energy 𝑃𝑐(𝐸
′) is also deposited promptly

into the channel under consideration. The secondary electron spectrum then deposits

its energy according to 𝑅𝑐 for energies lower than 𝐸 ′. We can thus write the following

recursive equation:

𝑅𝑐(𝐸
′) =

∫︁
𝑑𝐸 𝑅𝑐(𝐸)

𝑑𝑁

𝑑𝐸
+ 𝑃𝑐(𝐸

′) . (2.12)

Note that 𝑅𝑐(𝐸
′) does not include deposition to the channel 𝑐 via secondary photons

from ICS or positron annihilation; because the cooling times of secondary photons can

be much longer than a timestep, they must be treated separately. 𝑅𝑐(𝐸
′) as defined

here is the “high-energy deposition” from electrons within the timestep, as described

in Section 4.2. The relevant channels are 𝑐 = {‘ion’, ‘exc’, ‘heat’} for deposition into

collisional ionization, collisional excitation and heating respectively. The ‘ion’ and

‘exc’ channels include ionization and excitation off all species.

As long as the time step Δ𝑡 is much shorter than the characteristic interaction

timescale of all of the interactions, 𝑑𝑁/𝑑𝐸 is simply the sum of all of the scattered

electron spectra due to each process within Δ𝑡, normalized to a single injected elec-

tron. A detailed accounting of the relevant cross sections and secondary spectra is

provided in Ref. [57], and these results can be used to calculate 𝑑𝑁/𝑑𝐸 and 𝑃𝑐. We

will denote the discretized version of the normalized scattered electron spectra by N,

since it is normalized to one electron.

Numerically, we would like to compute R𝑐, a vector containing the energy de-

posited into channel 𝑐, with each entry corresponding to a single electron with initial

kinetic energy 𝐸 ′. The overline notation serves as a reminder that the quantity is

normalized to one injected electron. The discretized version of Eq. (2.12) reads

R𝑐[𝐸
′
𝑖] =

∑︁
𝑗

N[𝐸 ′
𝑖, 𝐸𝑗]R𝑐[𝐸𝑗] +P𝑐[𝐸

′
𝑖] , (2.13)
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where P𝑐 is the vector of the prompt energy deposition in channel 𝑐 per electron.

This is a linear system of equations, and we can solve for each R𝑐 given N and P𝑐.

A similar procedure also works for finding the ICS photon spectrum after an

electron completely cools. Let the discretized spectrum be TICS,0[𝐸
′
𝑒,𝑖, 𝐸𝛾,𝑗], where

𝐸 ′
𝑒 is the initial electron kinetic energy, and 𝐸𝛾 is the photon energy. Then the ICS

photon spectrum produced after complete cooling of a single electron satisfies

TICS,0[𝐸
′
𝑒,𝑖, 𝐸𝛾,𝑗] =

∑︁
𝑘

N[𝐸 ′
𝑒,𝑖, 𝐸𝑒,𝑘]TICS,0[𝐸𝑒,𝑘, 𝐸𝛾,𝑗]

+ NICS[𝐸
′
𝑒,𝑖, 𝐸𝛾,𝑗] , (2.14)

with NICS being the discretized version of the scattered photon spectrum defined in

Eq. (A.1.1) within Δ𝑡, and indices 𝑒 and 𝛾 have been inserted to clarify the difference

between electron and photon energies. This spectrum consists of CMB photons that

are upscattered by the injected electron; in order to be able to track energy conser-

vation, we also need to keep track of the initial energy of the upscattered photons.

We therefore also need to solve

RCMB[𝐸
′
𝑖] =

∑︁
𝑗

N[𝐸 ′
𝑖, 𝐸𝑗]RCMB[𝐸𝑗] +PCMB[𝐸

′
𝑖] , (2.15)

where PCMB is the total initial energy of photons upscattered in Δ𝑡.4 At this point, we

now define 𝑇 ICS to be the ICS photon spectrum with the upscattered CMB spectrum

subtracted out, so that 𝑇 ICS now represents a distortion to the CMB spectrum:

TICS[𝐸
′
𝑒,𝑖, 𝐸𝛾,𝑗] =TICS,0[𝐸

′
𝑒,𝑖, 𝐸𝛾,𝑗]

−RCMB[𝐸
′
𝑒,𝑖]NCMB[𝐸𝛾,𝑗] , (2.16)

where NCMB is the CMB spectrum normalized to unit total energy. The total of
4We do not have to track the photon spectrum, since the initial CMB photon energy is only

significant for nonrelativistic injected electrons, which are always in the Thomson regime and hence
scatter in a frequency-independent manner. For relativistic electrons, the initial CMB photon energy
is neglected, as the photon is overwhelmingly upscattered to a much higher final energy.
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energy of 𝑇 ICS for each 𝐸 ′
𝑒,𝑖 therefore gives the energy lost by the incoming electron

through ICS.

Finally, the low-energy electron spectrum produced is similarly given by

T𝑒[𝐸
′
𝑒,𝑖, 𝐸𝑒,𝑗] =

∑︁
𝑘

Nhigh[𝐸
′
𝑒,𝑖, 𝐸𝑒,𝑘]T𝑒[𝐸𝑒,𝑘, 𝐸𝑒,𝑗]

+ Nlow[𝐸
′
𝑒,𝑖, 𝐸𝑒,𝑗] , (2.17)

where Nhigh (Nlow) is N with only high-energy (low-energy) 𝐸𝑒,𝑘 included.

In DarkHistory, we choose a square matrix N with the same abscissa for both

injected and scattered electron energies. As a result, N has diagonal values that are

very close to 1, since most particles do not scatter within Δ𝑡. Because of this, we find

that it is numerically more stable to solve the equivalent equation

̃︀𝐸[𝐸 ′
𝑖]

𝐸 ′
𝑖

R𝑐[𝐸
′
𝑖] =

∑︁
𝑗

̃︀N[𝐸 ′
𝑖, 𝐸𝑗]R𝑐[𝐸𝑗] +P𝑐[𝐸

′
𝑖] , (2.18)

where

̃︀N[𝐸 ′
𝑖, 𝐸𝑗] ≡

⎧⎪⎨⎪⎩N[𝐸 ′
𝑖, 𝐸𝑗] , 𝐸 ′

𝑖 < 𝐸𝑗 ,

0 , otherwise,
(2.19)

̃︀𝐸[𝐸 ′
𝑖] ≡

∑︁
𝑗

̃︀N[𝐸 ′
𝑖, 𝐸𝑗]𝐸𝑗 +

∑︁
𝑐

R𝑐[𝐸
′
𝑖]

+
∑︁
𝑗

TICS[𝐸
′
𝑖, 𝐸𝛾,𝑗]𝐸𝛾,𝑗 . (2.20)

The variables ̃︀N and ̃︀𝐸 are simply the number of electrons and total energy excluding

electrons that remained in the same energy bin after Δ𝑡. Eqs. (2.16) and (2.17)

can be similarly transformed in the same way as Eq. (2.18) and solved. Since ̃︀𝑁 is

a triangular matrix, the SciPy function solve_triangular() is used for maximum

speed.5

5The upscattering of electrons during ICS is negligible: see Appendix A.1 for more details.
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Having calculated R𝑐, TICS and T𝑒, all normalized to a single electron, the final

result when an arbitrary electron spectrum N𝑒
inj[𝐸

′
𝑒,𝑖] completely cools is simply given

by contracting these quantities with N𝑒
inj. Note that all of these quantities are also

dependent on redshift: we have simply suppressed this dependence for notational

simplicity in this section.

Finally, after positrons have lost all of their kinetic energy, they are assumed to

form positronium and annihilate promptly, producing a gamma ray spectrum that

also gets added to the propagating photon spectrum. The positronium spectrum is

given simply by

N𝛾
pos[𝐸𝑖] =

1

2
N

𝛾

pos[𝐸𝑖]
∑︁
𝑗

N𝑒
inj[𝐸

′
𝑗] , (2.21)

where N
𝛾

pos is the positronium annihilation spectrum normalized to a single positron,

shown in Appendix A.2. The factor of 1/2 accounts for the fact that N𝑒
inj contains

both electrons and positrons in equal number.

Since all calculated quantities depend on 𝑧 and x, all quantities discussed in this

section have to be computed at each redshift step. This allows us to properly capture

the effect of changing ionization levels on the energy deposition process.

2.3.5 Photon Propagation and Energy Deposition

After resolving the injected electrons and obtaining the photons produced from their

cooling, the spectrum of photons that have been newly injected per baryon per log-

redshift can be discretized as

𝑑𝑁𝛾
new

𝑑𝐸 ′
𝑗 𝑑𝑦

(𝐸 ′
𝑗)× 𝐸 ′

𝑗 logΔ𝐸 ′
𝑗 ×Δ𝑦 ≈ N𝛾

new[𝐸
′
𝑗] , (2.22)
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where N𝛾
new is the sum of photons injected directly by the injection event, and photons

produced by the cooling of injected electrons, i.e.

N𝛾
new[𝐸

′
𝑗] = N𝛾

inj[𝐸
′
𝑗] +N𝛾

pos[𝐸
′
𝑗]

+
∑︁
𝑖

TICS[𝐸
′
𝑒,𝑖, 𝐸

′
𝑗]N

𝑒
inj[𝐸

′
𝑒,𝑖] . (2.23)

These photons can cool through a number of processes, including redshifting, pair

production, Compton scattering and photoionization. Within a particular log-redshift

step, low-energy photons and low-energy electrons are produced, and some high-

energy deposition from high-energy electrons produced by N𝛾
new occur. On the other

hand, some part of the photon spectrum lies above 13.6 eV and does not photoionize

within the log-redshift step; instead, these photons propagate forward to the next

step.

The resulting deposition into low-energy photons and electrons was used to com-

pute 𝑓𝑐 in Ref. [82], assuming the fixed baseline ionization history. In order to capture

the dependence on ionization history, however, we need to be able to calculate the

propagation and deposition processes at any ionization level, redshift and injected

particle energy.

One of the main ideas of DarkHistory is to capture the photon cooling processes

as precomputed transfer functions with injection energy, redshift and ionization lev-

els as the dependent variables. These transfer functions then act on some incoming

spectrum and produce a spectrum of propagating particles, a spectrum of deposited

particles or some amount of deposited energy within a log-redshift step. These trans-

fer functions can be evaluated at various points in injection energy, redshift, and

ionization levels, and interpolated at other points. With a given injection model, we

can then string together these transfer functions to work out the propagation of pho-

tons and the deposition of energy, over an extended redshift range, given any exotic

source of energy injection.
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Propagating Photons

Consider a spectrum of photons per baryon denoted 𝑑𝑁𝛾/𝑑𝐸 ′ that is present in the

universe at some log-redshift 𝑦. As these photons propagate, various cooling processes

result in these photons being scattered into energies below 13.6 eV, or they may

photoionize on an atom in the gas. Those particles that do not undergo either process

within a redshift step are called “propagating photons”, and continue to propagate

into the next redshift step.

We define the transfer function for propagating photons 𝑃
𝛾
(𝐸 ′, 𝐸, 𝑦′, 𝑦) through

the following relation:

𝑑𝑁𝛾
prop

𝑑𝐸

⃒⃒⃒⃒
𝑦

=

∫︁
𝑑𝐸 ′ 𝑃

𝛾
(𝐸 ′, 𝐸, 𝑦′, 𝑦)

𝑑𝑁𝛾

𝑑𝐸 ′

⃒⃒⃒⃒
𝑦′
. (2.24)

𝑃
𝛾 takes a spectrum of photons that are present at 𝑦′ and propagates them forward

to a spectrum of propagating photons at 𝑦. 𝑃
𝛾
(𝐸 ′, 𝐸, 𝑦′, 𝑦) is exactly the number

of propagating photons per unit energy that results from a single photon injected

at log-redshift 𝑦′ with energy 𝐸 ′ cooling until log-redshift 𝑦. The 𝑃
𝛾 functions are

calculated separately using the code described in Ref. [57, 82].

We distinguish between two different sources of photons between two redshifts 𝑦′

and 𝑦 (with 𝑦′ > 𝑦): propagating photons at 𝑦′, 𝑑𝑁𝛾
prop/𝑑𝐸

′, and the newly injected

photons between the redshifts 𝑦′ and 𝑦, defined in discretized form in Eq. (2.23).

With these sources, we can write the spectrum of propagating photons at 𝑦 as

𝑑𝑁𝛾
prop

𝑑𝐸

⃒⃒⃒⃒
𝑦

=

∫︁
𝑑𝐸 ′ 𝑃

𝛾
(𝐸 ′, 𝐸, 𝑦′, 𝑦)

𝑑𝑁𝛾
prop

𝑑𝐸 ′

⃒⃒⃒⃒
𝑦′

+

∫︁
𝑑𝐸 ′

∫︁ 𝑦′

𝑦

𝑑𝜂 𝑃
𝛾
(𝐸 ′, 𝐸, 𝜂, 𝑦)

𝑑𝑁𝛾
new

𝑑𝐸 ′ 𝑑𝜂

⃒⃒⃒⃒
𝜂

. (2.25)

We discretize this expression by defining the following discrete quantities according
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to the conventions set down in Eqs. (2.7) and (2.8):

P
𝛾
[𝐸 ′

𝑖, 𝐸𝑗, 𝑦
′,Δ𝑦]𝐸 ′

𝑖Δ log𝐸 ′
𝑖 ≈ 𝑃

𝛾
(𝐸 ′

𝑖, 𝐸𝑗, 𝑦
′, 𝑦′ −Δ𝑦) ,

N𝛾
prop[𝐸

′
𝑖, 𝑦

′] ≈ 𝑑𝑁𝛾
prop

𝑑𝐸 ′

⃒⃒⃒⃒
𝑦′
𝐸 ′

𝑖 Δ log𝐸 ′
𝑖 , (2.26)

where we have chosen some fixed value of Δ𝑦, so that the final redshift is 𝑦 = 𝑦′−Δ𝑦.

In DarkHistory, the default value is Δ𝑦 = 10−3, although this can be adjusted by

the process of coarsening, described in Sec. 2.3.5. Dropping the dependence on Δ𝑦

for simplicity, the discretized version of Eq. (2.25) reads

N𝛾
prop[𝐸𝑗, 𝑦] =

∑︁
𝑖

P
𝛾
[𝐸 ′

𝑖, 𝐸𝑗, 𝑦
′]N𝛾[𝐸 ′

𝑖, 𝑦
′] , (2.27)

where we have defined

N𝛾[𝐸 ′
𝑖, 𝑦] ≡ N𝛾

prop[𝐸
′
𝑖, 𝑦] +N𝛾

new[𝐸
′
𝑖, 𝑦] . (2.28)

Energy Deposition

Aside from P
𝛾, we also have three deposition transfer functions describing the energy

losses of N𝛾 into high-energy deposition, low-energy electrons and low-energy photons,

as defined in Sec. 4.2. These transfer functions are defined by their action on the

discretized photon spectrum, N𝛾, and are discretized in a similar manner.

The low-energy electron deposition transfer matrix, D𝑒, yields the low-energy elec-

trons produced via cooling of N𝛾. Adding the low-energy electrons produced directly

from the injected electrons N𝑒
inj, we obtain the full low-energy electron spectrum

N𝑒
low[𝐸𝑗, 𝑦] at a particular redshift step:

N𝑒
low[𝐸𝑒,𝑗, 𝑦] =

∑︁
𝑖

D
𝑒
[𝐸 ′

𝛾,𝑖, 𝐸𝑒,𝑗, 𝑦
′]N𝛾[𝐸 ′

𝛾,𝑖, 𝑦
′]

+N𝑒
low,inj[𝐸𝑒,𝑗, 𝑦] , (2.29)
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where

N𝑒
low,inj[𝐸𝑒,𝑗, 𝑦] =

∑︁
𝑖

T
𝑒
[𝐸 ′

𝑒,𝑖, 𝐸𝑒,𝑗, 𝑦]N
𝑒
inj[𝐸

′
𝑒,𝑖, 𝑦] , (2.30)

while the deposition transfer matrix D
𝛾 yields the low-energy photons,

N𝛾
low[𝐸𝑗, 𝑦] =

∑︁
𝑖

D
𝛾
[𝐸 ′

𝑖, 𝐸𝑗, 𝑦
′]N𝛾[𝐸 ′

𝑖, 𝑦
′] . (2.31)

N𝛾
low is computed as a distortion to the CMB spectrum, with D

𝛾 computed with the

initial spectrum of upscattered CMB photons subtracted, in the same way as 𝑇 ICS,

as shown in Eq. (2.16).

As the propagating photons cool over a single log-redshift step, they generate

high-energy electrons along the way. These are handled in a similar manner to in-

jected high-energy electrons as described in Sec. 2.3.4, but instead of performing the

calculation at each step, we simply provide transfer functions Dhigh
c that act on prop-

agating photons and return the high-energy deposition into the channels 𝑐 ={‘ion’,

‘exc’, ‘heat’}.6 We can then combine this with the result from electron cooling to

obtain the high-energy deposition per baryon within a log-redshift step into each

channel 𝑐:

𝐸high
𝑐 [𝑦] =

∑︁
𝑖

D
high
c [𝐸 ′

𝛾,𝑖, 𝑦
′]N𝛾[𝐸 ′

𝛾,𝑖, 𝑦
′]

+
∑︁
𝑖

R𝑐[𝐸
′
𝑒,𝑖, 𝑦

′]N𝑒
inj[𝐸

′
𝑒,𝑖, 𝑦

′] . (2.32)

To summarize, we have defined the following transfer functions: P𝛾 for propagating

photons, and D
𝛾, D𝑒 and D

high
𝑐 for deposition into low-energy photons, low-energy

electrons and high-energy deposition channels respectively. These transfer functions

act on the spectrum of photons N𝛾 (from both the injection source and the cooling

of injected electrons). Together with the transfer functions for the cooling of injected
6For legacy reasons, DarkHistory actually computes the transfer function that returns the high-

energy deposition per second; this is just a difference in convention.
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electrons, we have all the information needed to propagate injected particles and

compute their energy deposition as a function of redshift.

Coarsening

The propagating photons transfer function P
𝛾 can always be evaluated with the same

input and output energy abscissa, so that the 2D transfer matrix at each 𝑦 is square.

If the transfer function P
𝛾 does not vary significantly over redshift, then in the interest

of computational speed, we can make the following approximation of Eq. (2.27) for

propagation transfer matrices:

N𝛾
prop[𝐸𝑗, 𝑦 − 𝑛Δ𝑦] ≈

(︁
P
𝛾

1/2

)︁𝑛
𝑗𝑖
N𝛾

𝑖 [𝑦] , (2.33)

where repeated indices are summed. 𝑖 and 𝑗 index input and output energies, and

P
𝛾

1/2 is P𝛾 evaluated at log-redshift 𝑦−𝑛Δ𝑦/2 to minimize interpolation error. When

making this approximation, we also have to ensure that we redefine

N𝛼
inj[𝐸

′
𝑖, 𝑦] → 𝑛N𝛼

inj[𝐸
′
𝑖, 𝑦] (2.34)

for both channels 𝛼 = 𝑒 and 𝛾, so that we (approximately) include all of the particles

injected between 𝑦 and 𝑦 − 𝑛Δ𝑦.

Likewise, if both the deposition and propagation matrices do not vary significantly

over redshift, we can approximate Eq. (2.31) as

N𝛾
low[𝐸𝑗, 𝑦 − 𝑛Δ𝑦] ≈

(︁
D

𝛾

1/2

)︁
𝑗𝑘

∑︁
𝑚

(︁
P
𝛾

1/2

)︁𝑚
𝑘𝑖
N𝛾

𝑖 [𝑦] , (2.35)

with repeated indices once again being summed over. D
𝛾

1/2 is defined in the same

manner as P
𝛾

1/2. This equation essentially applies the deposition transfer matrix at

𝑦−𝑛Δ𝑦/2 to all 𝑛 steps of the propagation of the spectrum N𝛾 from 𝑦 to 𝑦−Δ𝑦, which

itself is approximated by P
𝛾

1/2. In our code, we call these approximations “coarsening”,

and the number 𝑛 in both Eqs. (2.33) and (2.35) the “coarsening factor”.
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Different Redshift Regimes

In DarkHistory we separate our transfer matrices into three redshift regimes: red-

shifts encompassing reionization (𝑧 < 50), redshifts encompassing the times between

recombination and reionization (50 ≤ 𝑧 ≤ 1600), and redshifts well before recom-

bination (𝑧 > 1600). During the redshifts encompassing reionization, we allow our

transfer functions to be functions of 𝑥HII and 𝑥HeII, enabling the use of reionization

models that evolve hydrogen and helium ionization levels separately. We only con-

sider singly-ionized helium in the current version of DarkHistory since we expect

𝑥HeIII not to play an important role until 𝑧 ∼ 6. We compute the transfer functions

on a grid of 𝑧𝑘, 𝑥𝑚
HII, and 𝑥𝑛

HeII, and linearly interpolate over the grid of pre-computed

transfer functions.

Between recombination and reionization, the helium ionization level lies at or

below the hydrogen ionization level, since helium has a larger ionization potential

at 24.6 eV. After recombination, current experimental constraints typically forbid a

large ionization fraction, i.e. we expect 𝑥HII . 0.1 [30]. As such, setting 𝑥HeII = 0

is a good approximation for the photon propagation and deposition functions: since

ℱHe ∼ 8%, neglecting helium ionization only results in . 8% error to 𝑥𝑒, and . 10%

error in the density of neutral helium. We therefore follow the same procedure as

before, except we now calculate and interpolate the transfer functions over a grid of

𝑧𝑘 and 𝑥𝑚
HII values while holding the helium ionization level fixed to zero.

Finally, well before recombination, we expect the universe to be close to 100%

ionized and tightly coupled thermally to the CMB. Any extra source of exotic energy

injection that is consistent with current experimental constraints will likely have a

negligible effect on the ionization and thermal histories. We thus calculate and inter-

polate our transfer functions over a grid of 𝑧𝑘 values while holding the hydrogen and

helium ionization levels to the baseline values provided by RECFAST [73].

The actual grid values 𝑧𝑘, 𝑥𝑚
HII, and 𝑥𝑛

HeII in each of these regimes can be found in

the code, and have been chosen so that interpolation errors are at the sub-10% level

when 𝑓𝑐(𝑧) is calculated using the same method detailed in Ref. [82]. Our results for
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𝑓𝑐(𝑧) without taking into account backreaction, including some improvements over

Ref. [82], can be found in Appendix A.3.

2.3.6 Calculating 𝑓𝑐(𝑧)

The low-energy photons N𝛾
low[𝐸𝑖, 𝑧] and low-energy electrons N𝑒

low[𝐸𝑖, 𝑧], defined in

Sec 4.2, transfer their energy into ionization and excitation of atoms, heating of

the IGM, and free-streaming photons to be added to the CMB continuum. In

DarkHistory we keep track of how much energy low energy photons and electrons

deposit into channels c ∈ {‘Hion’, ‘Heion’, ‘exc’, ‘heat’, ‘cont’}, which represent hy-

drogen ionization, helium ionization, hydrogen excitation, heating of the IGM, and

sub-10.2 eV continuum photons respectively. The energy deposition fractions 𝑓𝑐(𝑧)

are then found by normalizing the total energy deposited into channel c within a

redshift step by the total energy injected within that step according to Eq (2.4). We

closely follow the method for computing 𝑓𝑐(𝑧) described in Ref. [82].

Before calculating 𝑓𝑐(𝑧) for each channel, it is instructive to see how to calcu-

late the total amount of energy deposited per unit time and volume, (𝑑𝐸/𝑑𝑉 𝑑𝑡)dep.

The low-energy photon and electron spectra N𝛾
low[𝐸𝑖] and N𝑒

low[𝐸𝑖] as defined above

contain a number of particles per baryon deposited within each log-redshift bin (the

𝑧-dependence has been suppressed since all calculations in this section occur at the

same redshift step). We can convert between these and spectra containing the num-

ber of particles produced per unit volume and unit time using the conversion factor

𝐺(𝑧) introduced in Eq. (2.10). For example, to obtain the total amount of energy de-

posited at a given redshift per unit time and volume, one simply sums over low-energy

particle type and applies the conversion factor,

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

low
=

1

𝐺(𝑧)

∑︁
𝛼

∑︁
𝑖

𝐸 ′
𝑖 N

𝛼
low[𝐸

′
𝑖] . (2.36)

To calculate the total amount of energy deposited we must also add the amount
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deposited by high energy electrons and photons, which we computed in Eq. (2.32):

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

high
=

1

𝐺(𝑧)

∑︁
𝑐

𝐸high
𝑐 . (2.37)

Then the total deposited energy summed over all channels is given by

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

=

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

low
+

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

high
. (2.38)

With this example in mind, we are now ready to understand how to split the energy

deposition into the different channels.

Photons

We first compute 𝑓𝑐(𝑧) for low-energy photons, starting with energy deposition into

continuum photons. These are photons with energy below 3ℛ/4 = 10.2 eV that are

unable to effectively transfer their energy to free electrons or atoms, so they just

free stream. The energy of these photons constitutes deposition into the continuum

channel, i.e.

(︂
𝑑𝐸𝛾

𝑑𝑉 𝑑𝑡

)︂dep

cont
=

1

𝐺(𝑧)

3ℛ/4∑︁
𝐸𝑖=0

𝐸𝑖 N
𝛾
low[𝐸𝑖] . (2.39)

To calculate the total amount of energy deposited into hydrogen excitation, we

make the approximation that all photons with energies between 3ℛ/4 = 10.2 eV and

ℛ = 13.6 eV deposit their energy instantaneously into hydrogen Lyman-𝛼 excitation,

following [82]:

(︂
𝑑𝐸𝛾

𝑑𝑉 𝑑𝑡

)︂dep

exc
=

1

𝐺(𝑧)

ℛ∑︁
𝐸𝑖=3ℛ/4

𝐸𝑖 N
𝛾
low[𝐸𝑖] . (2.40)

A more complete treatment of excitation would involve keeping track of sub-13.6 eV

energy photons as they redshift into the Lyman-𝛼 transition region at 10.2 eV, and

51



should also include two-photon excitation into the 2𝑠 state.7 Finally, helium excitation

has been neglected, since the de-excitation of helium atoms, which occurs quickly,

produces photons that can eventually photoionize hydrogen. We therefore expect

almost no net deposition of energy into helium excitation. Energy injection through

helium excitation would mainly affect the process of helium recombination, when the

probability of ionization after excitation to a higher state is significant due to the

photon bath. However, we do not track this small effect, since the change to 𝑥𝑒 would

be very small. We leave a more careful treatment of excitation that can correctly

take into account all of these effects to future work.

We now move on to ionization. All photons above ℛ = 13.6 eV that are included

in 𝑁𝛾
low have photoionized one of the atomic species (HI, HeI and HeII). However,

after photoionizing a helium atom, the resulting ion may quickly recombine with an

ambient free electron, producing an ℛHe = 24.6 eV or 4ℛ = 54.4 eV photon, which

may then go on to photoionize hydrogen instead.8

We can handle low-energy photons with energy 𝐸𝛾 that photoionize neutral helium

in one of the following three ways:

1. if helium is completely ignored, the photon is assumed to photoionize hydrogen,

producing a low-energy electron with energy 𝐸𝛾 −ℛ from photoionization and

depositing ℛ into hydrogen ionization. This is the approach used in previous

calculations of 𝑓𝑐(𝑧) [82], but leaves us unable to self-consistently track 𝑥HeII if

desired;

2. the photon produces a low-energy electron with energy 𝐸𝛾−ℛHe from photoion-

ization, depositing ℛ into hydrogen ionization from the recombination photon

(with energy ℛHe) and producing an electron with energy ℛHe − ℛ, which

ultimately deposits energy into hydrogen excitation, heating and sub-10.2 eV

photons. This approach was previously discussed in Ref. [80], and found to
7Two-photon 1𝑠 → 2𝑠 transitions are in fact as important as Lyman-𝛼 transitions near recombi-

nation in determining the ionization history, due to the fact that the Lyman-𝛼 line is optically thick
at this time.

8The photoionization rate on neutral hydrogen is much faster than the Hubble rate for 𝑥HII .
0.9999 for 𝑧 > 3.
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result in very little difference when compared to method (1); or

3. the photon produces a low-energy electron with energy 𝐸𝛾 − ℛHe from pho-

toionization and deposits ℛHe into helium ionization.

The most accurate accounting of helium ionization lies somewhere between meth-

ods (2) and (3); however, either method will likely lead to very similar results in

terms of 𝑥𝑒 and 𝑇𝑚, since the bulk of the energy is deposited by the electron from

the initial photoionization for photon energies 𝐸𝛾 ≫ ℛHe, and the remaining energy

always leads to one ionization event overall. DarkHistory offers the choice of these

three options for implementing helium ionization.

We have checked that all three methods lead to similar ionization and temperature

histories for DM models over a large range of masses decaying to both 𝑒+𝑒− and 𝛾𝛾;

these checks are shown in Appendix A.3. We recommend simply using method (1)

with helium turned off if the user is interested in ionization and temperature histories

well before reionization, and using both method (2) and (3) with helium turned on

to bracket the uncertainties associated with energy deposition on helium if the user

is interested in the epoch of reionization.

To summarize, the amount of deposited energy into hydrogen per unit time and

volume is given by

(︂
𝑑𝐸𝛾

𝑑𝑉 𝑑𝑡

)︂dep

Hion

=
ℛ

𝐺(𝑧)

∑︁
𝐸𝑖>ℛ

𝑞𝛾H[𝐸𝑖]N
𝛾
low[𝐸𝑖] , (2.41)

and into helium ionization by:

(︂
𝑑𝐸𝛾

𝑑𝑉 𝑑𝑡

)︂dep

Heion

=
ℛHe

𝐺(𝑧)

∑︁
𝐸𝑖>ℛHe

𝑞𝛾He[𝐸𝑖]N
𝛾
low[𝐸𝑖] , (2.42)
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Method 𝑞𝛾H 𝑞𝑒H 𝑞𝛾He 𝑞𝑒He,a 𝑞𝑒He,b

1 1 1 0 0 0
2 1 𝑞 0 1− 𝑞 1− 𝑞

3 𝑞 𝑞 1− 𝑞 1− 𝑞 0

Table 2.1: List of 𝑞-coefficients for use in Eqs. (2.41)–(2.43). The variable 𝑞 is defined
in Eq. (2.44).

producing a low-energy electron spectrum after photoionization of

N𝑒
ion[𝐸𝑖] = 𝑞𝑒H(𝐸𝑖 +ℛ)N𝛾

low[𝐸𝑖 +ℛ]

+ 𝑞𝑒He,a(𝐸𝑖 +ℛHe)N
𝛾
low[𝐸𝑖 +ℛHe]

+ 𝛿[𝐸𝑖 −ℛHe +ℛ]
∑︁
𝑗

𝑞𝑒He,b(𝐸𝑗)N
𝛾
low[𝐸𝑗] , (2.43)

where 𝛿[𝐸𝑖 −ℛHe +ℛ] is one when the bin boundaries span the energy ℛHe −ℛ and

is zero otherwise, and

𝑞(𝐸𝑖) ≡

⎧⎪⎨⎪⎩
𝑛HI𝜎HI(𝐸𝑖)

𝑛HI𝜎HI(𝐸𝑖)+𝑛HeI𝜎HeI(𝐸𝑖)
, 𝐸𝑖 > ℛ,

0, otherwise,
(2.44)

with the 𝜎’s denoting the photoionization cross section of the appropriate species.

N𝑒
ion is added to the low-energy electron spectrum, N𝑒

low, which is then treated in the

next section. The values of the 𝑞-coefficients depend on the method, and are shown

in Table 2.1.

Electrons

To compute how low-energy electrons deposit their energy into the different channels,

we use the results obtained by the MEDEA code [78, 79], following a similar treatment

to Ref. [80]. Although DarkHistory also includes a calculation of electron energy

deposition, which we discussed in Sec. 2.3.4, the MEDEA results are more accurate

in the sub-3 keV electron energy range, including a more detailed accounting of all
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possible atomic processes (such as 2𝑠 → 1𝑠 deexcitations) and with more up-to-date

cross sections. However, at mildly nonrelativistic to mildly relativistic regimes, our

calculation of ICS is more accurate, as argued in Sec. 2.3.4. Furthermore, the MEDEA

results assume that hydrogen and helium are at similar ionization levels, which is not

always a good assumption. In future versions of DarkHistory, an improved treatment

of electrons may be a useful addition to the code.

The MEDEA code uses a Monte Carlo method to track high-energy electrons as

they are injected into the IGM, and determines the fraction of the initial electron

energy deposited into ionization, Lyman-𝛼 excitation, heating of the gas and sub-

10.2 eV photons. We use a table of these energy deposition fractions 𝑝𝑐(𝐸𝑖, 𝑥𝑒,𝑗) [80],

where 𝑐 ∈ {‘Hion’, ‘Heion’, ‘exc’, ‘heat’, ‘cont’} as before, 𝑥𝑒,𝑗 ranges between 0 and

1, and 𝐸𝑖 ranges between 14 eV and 3 keV, and perform an interpolation over these

values. The energy deposition from electrons is then simply given by

(︂
𝑑𝐸𝑒

𝑑𝑉 𝑑𝑡

)︂dep

c
=

1

𝐺(𝑧)

∑︁
𝑖

𝑝𝑐(𝐸𝑖, 𝑥𝑒)𝐸𝑖 N
𝑒
low[𝐸𝑖] , (2.45)

keeping in mind that N𝑒
ion has already been added to N𝑒

low. Between energies of 10.2 eV

and 13.6 eV, where collisional excitations of hydrogen are possible but not ionization,

we use the result at 14 eV, but setting the component into hydrogen ionization to

zero and normalizing to unit probability. Below 10.2 eV, electrons can only deposit

energy through Coulomb heating.

High-Energy Deposition

Finally, the high-energy deposition component of the total energy deposited is given

by:

(︂
𝑑𝐸high

𝑑𝑉 𝑑𝑡

)︂dep

𝑐

=
1

𝐺(𝑧)
𝐸high

𝑐 , (2.46)

where 𝑐 ∈ { ‘ion’, ‘exc’, ‘heat’ }. Here, we add the high-energy excitation and ioniza-

tion component to Lyman-𝛼 excitation and hydrogen ionization for simplicity, even
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though the high-energy deposition is computed for all atomic species. A more accurate

computation of this together with a more consistent treatment of helium ionization

will be a potential improvement in a future version of DarkHistory.

With the rate of energy deposition through both low-energy photons and low-

energy electrons computed, the total energy deposition rate is then straightforwardly

given by

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂dep

𝑐

=
∑︁
𝛼

(︂
𝑑𝐸𝛼

𝑑𝑉 𝑑𝑡

)︂dep

𝑐

, (2.47)

where 𝛼 ∈ {𝛾, 𝑒, high}.

2.3.7 TLA Integration and Reionization

DarkHistory offers several options for which set of assumptions should be used when

integrating the ionization and thermal histories. In the simplest case, the user may

integrate Eq. (2.6) at each redshift step based on the 𝑓𝑐(𝑧,x) calculated above, with

the reionization terms switched off. As we have discussed, including this backreaction

is already a significantly better treatment compared to calculations which assume a

standard recombination history, i.e. using 𝑓𝑐(𝑧,xstd(𝑧)) (although backreaction can

also be switched off within DarkHistory).

The next significant improvement that is implemented within DarkHistory is the

tracking of the neutral helium ionization fraction. Well before reionization, neglecting

helium is a good approximation, since the number density of helium nuclei is only

ℱHe ≃ 0.08 of hydrogen, and we should expect only at most an 8% correction to 𝑥𝑒 if

we include helium.

However, tracking helium allows us to accomplish a self-consistent modeling of ex-

otic energy injection and the reionization of hydrogen and neutral helium. DarkHistory

allows users to input a model of reionization, for the first time extending the validity

of these energy injection calculations into a regime where hydrogen is fully ionized

and helium is singly ionized.
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Helium

The DarkHistory evolution equation governing helium without any energy injection

is identical to the RECFAST model, and is given by [73]

�̇�
(0)
HeII = 𝒞𝑠

HeI

(︀
𝑥HeII𝑥𝑒𝑛H𝛼

𝑠
HeI

− 𝛽𝑠
HeI(ℱHe − 𝑥HeII)𝑒

−𝐸𝑠,He
21 /𝑇CMB

)︀
+ 𝒞𝑡

HeI

(︀
𝑥HeII𝑥𝑒𝑛H𝛼

𝑡
HeI

− 3𝛽𝑡
HeI(ℱHe − 𝑥HeII)𝑒

−𝐸𝑡,He
21 /𝑇CMB

)︀
. (2.48)

The singlet and triplet ground states of helium must be treated separately, and terms

relevant to the singlet or triplet state are represented with a superscript 𝑠 or 𝑡 re-

spectively. Here, 𝛼HeI and 𝛽HeI are the recombination and photoionization for HeI,

𝐸He
21 represents the energy difference between the corresponding 𝑛 = 1 and 𝑛 = 2

states, and finally 𝒞HeI is the analog to the Peebles-C coefficient found in Eq. (2.1),

representing the probability of a helium atom in the 𝑛 = 2 state decaying to either the

singlet or triplet ground state before photoionization can occur. The reader should

refer to Refs. [73, 88, 89] for details on the numerical values of the coefficients, as well

as how to compute 𝒞HeI.

We emphasize that although we have implemented all of the modifications to the

standard TLA in Eq. (2.1), our code should not be used for high-precision cosmology,

given that it has not been tested extensively, e.g. with different cosmological param-

eters from the central values used in DarkHistory. We find that our code agrees to

within 3% of the RECFAST 𝑥𝑒 values for the cosmological parameters used here, which

is sufficient for computing the effects of exotic energy injection at this stage.

In the presence of exotic sources of energy injection, low-energy photons and

electrons can also change the helium ionization level. Once again, we express the

energy injection source term as

�̇�inj
HeII =

𝑓He ion(𝑧,x)

ℛHe𝑛H

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

, (2.49)
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where ℛHe = 24.6 eV is the ionization potential of neutral helium. As we discussed in

Sec. 2.3.6, there are three different methods available to evaluate 𝑓Heion which bracket

the uncertainties involved in helium ionization.

To summarize, the user may opt to track the change in helium ionization levels.

This means that in addition to Eq. (2.6), we also include

�̇�HeII = �̇�
(0)
HeII + �̇�inj

HeII + �̇�re
HeII , (2.50)

where �̇�re
HeII is the contribution from processes that are active during reionization.

Reionization

The evolution equations shown in Eqs. (2.6) and (2.50) can be integrated with all

reionization terms switched off if the user is primarily interested in temperatures or

ionization levels well before reionization starts at 𝑧 ∼ 20. In this regime, turning off

helium is also a reasonable approximation.

With reionization however, the helium ionization level should be solved as well for

complete consistency. We solve the TLA differential equations shown in Eqs. (2.6)

and (2.50) in two separate redshift regimes. Prior to some user-defined reionization

redshift 1+𝑧re (𝑧re ≤ 50), we set �̇� re
𝑚 , �̇�re

HII and �̇�re
HeII to zero. Once reionization begins,

we set �̇�
(0)
HII and �̇�

(0)
HeII to zero for 𝑧 < 𝑧re instead, switching over to the specified

reionization model with its own photoionization and recombination rates.9 We also

begin tracking doubly-ionized helium 𝑥HeIII, which is always assumed to be zero before

reionization.

The �̇� re
𝑚 , �̇�re

HII and �̇�re
HeII terms depend on the details of how reionization proceeds,

which is still relatively uncertain. However, choosing a model for the formation of

stars and active galactic nuclei (AGNs) and the associated photoionization and pho-

toheating rates, these terms can be evaluated. DarkHistory by default includes the

Puchwein+ model of Ref. [90]. We also demonstrate how to implement the older

9We do not set �̇�
(0)
𝑚 = 0, since both adiabatic cooling and Compton scattering off the CMB

remain active during reionization.
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Madau and Haardt model [91] in Example 8. Both models provide a photoionization

rate Γion
𝛾𝑋(𝑧) and a photoheating rate ℋion

𝛾𝑋(𝑧) as a function of redshift and species 𝑋.

Along with these energy injection rates, we must also include other relevant pro-

cesses that alter the ionization fraction of each species. Since these processes generally

convert kinetic energy to atomic binding energy, cooling or heating of the gas due to

these processes must also be included in �̇� re
𝑚 . The processes we include are:

1. collisional ionization, occuring at a rate Γion
𝑒𝑋 for each species 𝑋, and an associ-

ated cooling rate −ℋion
𝑒𝑋 ;

2. case-A recombination, described by a rate coefficient 𝛼𝐴,𝑋 for each species 𝑋,

and an associated cooling rate −ℋrec
𝑋 ;

3. collisional excitation cooling, with a rate −ℋexc
𝑒𝑋 ; and

4. bremsstrahlung cooling, with a rate −ℋbr.

The cooling rates here have been defined with a negative sign so that all quantities

denoted by ℋ contribute positively to any temperature change. Expressions for all of

these rates can be found in Ref. [92]. They are explicitly dependent on the ionization

fraction of all three of the relevant species, namely 𝑥HI, 𝑥HeI and 𝑥HeII. The full

expressions for the evolution of each of these fractions are as follows:

�̇�re
HII =𝑥HI

(︀
Γion
𝛾HI + 𝑛𝑒Γ

ion
𝑒HI

)︀
− 𝑥HII𝑛𝑒𝛼𝐴,HI ,

�̇�re
HeII =𝑥HeI

(︀
Γion
𝛾HeI + 𝑛𝑒Γ

ion
𝑒HeI

)︀
+ 𝑥HeIII𝑛𝑒𝛼𝐴,HeIII

− 𝑥HeII
(︀
Γion
𝛾HeII + 𝑛𝑒Γ

ion
𝑒HeII + 𝑛𝑒𝛼𝐴,HeII

)︀
,

�̇�re
HeIII =𝑥HeII

(︀
Γion
𝛾HeII + 𝑛𝑒Γ

ion
𝑒HeII − 𝑥HeIII𝑛𝑒𝛼𝐴,HeIII

)︀
, (2.51)

with the temperature evolution given by

�̇� re
𝑚 =

2

3(1 + ℱHe + 𝑥𝑒)𝑛H

×
∑︁
𝑋

(︀
ℋion

𝑒𝑋 +ℋrec
𝑋 +ℋexc

𝑒𝑋 +ℋbr)︀ . (2.52)
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Instead of specifying a full reionization model, the user may also choose the sim-

pler alternative of fixing the value of 𝑥HII and 𝑥HeII as a function of redshift once

reionization begins, and integrate the temperature evolution alone instead. We note

that this approach is not self-consistent, since fixing the ionization levels forces us to

neglect any additional contribution to ionization from exotic energy injection sources.

However, if the contribution to ionization is known to be small, this can serve as a

useful approximation.

Numerical Integration

To ensure that ionization fractions always remain appropriately bounded during in-

tegration, we introduce the variable

𝜁𝑖 ≡ arctanh
[︂
2

𝜒𝑖

(︂
𝑛𝑖

𝑛H
− 𝜒𝑖

2

)︂]︂
, (2.53)

where 𝜒𝑖 = 1 for HI and 𝜒𝑖 = ℱHe for HeI and HeII. This transformed equation is

then integrated using the standard odeint integrator provided by SciPy.

At early times, the equations we are integrating are very stiff, and solving them

directly with numerical integration can often run into difficulties. We therefore as-

sume that when 𝑥HII > 0.99 or 𝑥HeII > 0.99ℱHe, either variable follows their Saha

equilibrium values.

In Sec. 2.5.4, we will show several thermal and ionization histories that show-

case DarkHistory’s capabilities in tracking the helium ionization level, exotic energy

injection and reionization all at the same time.

2.4 Modules

In this section we summarize the main modules in DarkHistory. We will pay par-

ticular attention to the modules shown in the flow chart in Fig. 2-1, and as far as

possible provide links between the code and the text. Keep in mind that this is not a

complete list and that it is subject to change in future versions of the code. There is
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more thorough documentation in DarkHistory itself that will be periodically updated

at https://darkhistory.readthedocs.io, and will contain a more complete explanation

of the code. In the interest of space, we only provide the full path of each module in

the code when it is mentioned for the first time.

2.4.1 Data

First, the user must download the data files found at https://doi.org/10.7910/DVN/DUOUWA.

These files contain the photon propagation transfer function P𝛾 and deposition trans-

fer functions D𝛾, D𝑒 and D
high
𝑐 , which have all been precomputed as discussed above.

They also contain transfer functions for ICS calculations discussed in Appendix A.1,

structure formation annihilation boost factors computed in Ref. [30], the baseline

thermal and ionization histories, data from pppc4dmid [33, 93] and 𝑓𝑐(𝑧) computed

without backreaction for DM annihilation and decay, where photons and 𝑒+𝑒− are

injected at a fixed set of energies.

2.4.2 config

The config module contains the code required to access the downloaded data, and

to store them in memory for use. Users should ensure that the variable data_path

points to the directory containing the data files.

2.4.3 main

The main module contains the function that implements the loop shown in Fig. 2-1,

evolve(). The usage of this function will be discussed in great detail in Sec. 2.5.

2.4.4 darkhistory.physics

This module contains physical constants and useful functions found in cosmology, par-

ticle physics and atomic physics. We use units of cm for length, s for time and eV for

energy, mass and temperature. Some examples of functions that are included in this
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module include the Hubble parameter as a function of redshift, physics.hubble(),

and the Peebles-C factor 𝒞 found in Eq. (2.1), physics.peebles_C(). Constants pro-

vided in this module are taken from central values of the Planck 2018 TT,TE,EE+lowE

results [18] and the Particle Data Group review of particle physics [94].

2.4.5 darkhistory.electrons

The electrons module contains all of the functions necessary to perform the electron

cooling calculation. The positronium submodule contains functions that return the

spectrum of photons obtained during positronium annihilation, which we denoted

as N
pos
𝛾 in Eq. (2.21); Example 7 demonstrates how to use this module. The ics

submodule contains all of the machinery necessary to compute the ICS scattered

photon and electron spectra; for more details on how to use this submodule, refer to

Example 4 in the code.

elec_cooling contains the code necessary to compute the transfer functions R𝑐,

TICS and T𝑒, as defined in Eqs. (2.13), (2.16) and (2.17) respectively; Example 6

shows how this module is used.

2.4.6 darkhistory.history

This module contains our implementation of the TLA and reionization. The sub-

module tla corresponds to Sec. 2.2 where the function get_history implements the

TLA, including all of the terms discussed in Eqs. (2.6) and Eqs. (2.50)–(2.52). The

submodule reionization contains the Puchwein+ reionization model, and contains

all of the coefficients found in Eqs. (2.51) and (2.52).

2.4.7 darkhistory.low_energy

This module calculates 𝑓𝑐(𝑧). The lowE_photons and lowE_electrons submodules

correspond to Sec. 2.3.6 and Sec. 2.3.6, respectively, implementing Eqs. (2.39)–(2.43)

and Eq. (2.45) respectively. The lowE_deposition submodule then combines the
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energy deposited by photons, electrons (including photoionized electrons) and high-

energy deposition to make 𝑓𝑐(𝑧,x).

2.4.8 darkhistory.spec

This module contains functions for handling and generating spectra and transfer

functions. All one dimensional spectra in the code can be handled using the class

Spectrum, which stores not just the data of the spectrum, but also the abscissa, and

other relevant information like redshift or the injection energy of the particle that

produced the spectrum. This class includes many convenience functions, such as the

ability to rebin the spectrum into a new binning while conserving total number and

energy, or the ability to quickly obtain the total number of particles within some

energy range. Example 1 in our code gives a quick introduction to this class.

The user may also want to store closely related spectra in one object. This may

be desirable for spectra of the same particle type over different redshifts, or if they

correspond to spectra from the same injected particle but at different injection ener-

gies. The class Spectra has been written to do exactly this. Example 2 provides a

good overview of what this class can do.

2.4.9 darkhistory.spec.pppc

Within the spec module, a dedicated submodule pppc has been written to calculate

the electron and photon spectra from the injection of any arbitrary Standard Model

particle, based on the pppc4dmid results. The function pppc.get_pppc_spec() is

the main function to use for this end. See Example 4 for more information on how

to use this function.

2.5 Using the Code

We will now apply DarkHistory to perform a variety of calculations in order to

highlight the key functionalities of the code. Each of the subsections corresponds to
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an example Jupyter notebook that has been provided as part of the code; the user

should refer to these examples for a deeper look at the full capability of the code,

as well as to the online documentation. In this chapter, we will simply highlight

capabilities and interesting physics results.

Within the code and in this section, the word “redshift” and variables that repre-

sent redshift (usually called rs in the code) refer to the quantity 1 + 𝑧, since this is

the physically relevant quantity in many cosmological calculations.

2.5.1 A Simple Model: 𝜒𝜒 → 𝑏�̄�

As a first example, we will demonstrate how to compute the ionization and thermal

history of a simple annihilation model. Consider a 50GeV Majorana fermion DM

particle that undergoes 𝑠-wave annihilation to a pair of 𝑏𝑏 quarks, with an annihilation

cross section ⟨𝜎𝑣⟩ = 2× 10−26 cm3 s−1, close to the required thermal freezeout cross

section for the correct relic abundance. Similar models have been considered as a

possible dark matter explanation for the galactic center excess [95] and the AMS-

02 antiproton excess [96, 97]. We perform the calculation in a relatively simplified

setting: with no reionization, no backreaction included, but with a boost to the

annihilation rate from structure formation. For more details, see Example 9 in the

code.

The function that we use to compute histories is main.evolve(). There are many

keyword parameters that can be used with this function, and the user should refer to

the example notebooks and the online documentation for more information. To find

the thermal history for this model, evolve() can be called in the following fashion:

import main

import darkhistory.physics as phys

bbbar_noBR = main.evolve(

DM_process=’swave’, mDM=50e9,

sigmav=2e-26,
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Figure 2-2: Photon (left) and 𝑒+𝑒− (right) spectra produced by a single annihilation
event, 𝜒𝜒 → 𝑏𝑏, with 𝑚𝜒 = 50GeV. These spectra are based on the raw data provided
by pppc4dmid.

primary=’b’, start_rs=3000.,

coarsen_factor=32, backreaction=False,

struct_boost=phys.struct_boost_func()

)

The keyword parameters are as follows:

1. DM_process=’swave’ – specifies the DM process of interest. Currently, DarkHistory

can handle 𝑠-wave annihilating and decaying DM models (DM_process=’decay

’) with this keyword;

2. mDM=50e9 – specifies the DM mass, in eV;

3. sigmav=2e-26 – specifies the velocity averaged annihilation cross section, in

cm3 s−1;

4. primary=’b’ – specifies the annihilation channel. The options include all of

those offered by pppc4dmid [33, 93], and the spectra are extracted from the

raw data provided by the cookbook. The 𝑒+𝑒− and photon spectra from the

showering of a single 𝑏𝑏 pair are shown in Fig. 2-2. These are proportional to
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the injection spectra N𝛼
inj defined in Sec. 2.3.3, and can be generated using the

function pppc.get_pppc_spec();

5. start_rs=3000 – the redshift at which to start the evaluation. 1 + 𝑧 = 3000

is the highest redshift at which we have produced the photon cooling transfer

functions, and represents the highest redshift that should be specified here. In

this example, start_rs fixes the initial conditions of the TLA in Eq. (2.1) at

the baseline ionization and temperature values at this redshift;

6. coarsen_factor=32 – the coarsening factor, defined in Sec. 2.3.5. For a com-

parison between solutions with different coarsening factors, see Appendix A.3;

7. backreaction=False – this turns backreaction on and off; and

8. struct_boost=phys.struct_boost_func() – the structure formation prescrip-

tion to use. Once dark matter halos start to collapse, the annihilation rate gets

enhanced by the factor

1 + ℬ(𝑧) ≡ ⟨𝜌2𝜒⟩
⟨𝜌𝜒⟩2

(2.54)

compared to the smooth annihilation rate shown in Eq. (2.3). Here, struct_boost

is a function that takes redshift as the argument, and returns 1 + ℬ(𝑧). The

user can make use of the structure formation boosts that are saved by default in

DarkHistory in the physics module, which include the boost factors computed

in Ref. [30], and is used as the default boost factor by struct_boost_func().

By default, the solver integrates the equations down to 1 + 𝑧 = 4, and will not

evolve the helium ionization levels. These choices can of course be changed with

other keyword parameters. Note that the function is not limited to DM processes

or pppc4dmid spectra; other keyword parameters allow the user to specify their

own injection rates as a function of redshift (see the documentation for the keyword

parameters rate_func_N and rate_func_eng), along with the spectra of photons
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and 𝑒+𝑒− injected (see the documentation for the keyword parameters in_spec_elec

and in_spec_phot).

The output of evolve(), stored in bbbar_noBR, is a dictionary containing the

redshift abscissa of the solutions, the ionization and temperature solutions, the propa-

gating photon, low-energy photon and low-energy electron spectra, and the computed

value of 𝑓𝑐(𝑧). To access the redshift, ionization and temperature, we can simply do:

# Redshift abscissa.

rs_vec = bbbar_noBR[’rs’]

# Matter temperature in eV.

Tm_vec = bbbar_noBR[’Tm’]

# Ionization fraction.

# Stored as 1+z by {xHII, xHeII, xHeIII}.

xHII_vec = bbbar_noBR[’x’][:,0]

In Fig. 2-3 we plot 𝑇𝑚 and 𝑥HII as a function of redshift for the 𝜒𝜒 → 𝑏�̄� model.

For DM masses above & 10GeV, values of ⟨𝜎𝑣⟩ required for thermal freezeout are un-

constrained by the CMB anisotropy power spectrum energy injection constraints: the

ionization fraction, which changes by approximately 25% only at high redshifts, does

not change enough to affect the power spectrum significantly. The sudden increase in

ionization and temperature at 𝑧 ∼ 30 corresponds to an increase in the boost factor

used (halos with an Einasto profile with halo substructure boost included [30], found

in physics.struct_boost_func()).

We also show in Fig. 2-3 for completeness the effect of turning on backreaction, i.e.

including the effect of the increased ionization level on the evolution of the ionization

and thermal histories. This is conveniently done by setting backreaction=True. In

this particular example, the effect of backreaction is small, but we will show more

scenarios where backreaction has large effect on 𝑇𝑚, and explain why this can be

significant in the next example.
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Figure 2-3: Matter temperature 𝑇𝑚 (left) and hydrogen ionization fraction 𝑥HII (right)
solved in the presence of dark matter annihilation into 𝑏�̄� pairs using DarkHistory
. Eq. 2.6 is solved without dark matter energy injection to produce the baseline
histories (black, dashed), with energy injection but without backreaction (blue), and
with dark matter annihilation and backreaction (orange). We assume a dark matter
mass of 50 GeV and a velocity averaged annihilation cross section of 2 × 10−26 cm3

s−1.

2.5.2 Backreaction

Let us explore the effects of backreaction a bit more using some of the code found

in Example 10 of DarkHistory. As was described in Sec 2.2, one of DarkHistory’s

main improvements to ionization and temperature history calculations is its ability

to include the effects of back-reaction. To see its importance, consider the example

of 100MeV dark matter decaying to a pair of 𝑒+𝑒−, with a lifetime of 𝜏 = 3× 1025 s,

a value that is close to the minimum lifetime allowed by constraints from the CMB

power spectrum [59]. The ionization and thermal histories can be evaluated in this

way:

decay_BR = main.evolve(

DM_process=’decay’, mDM=1e8, lifetime=3e25,

primary=’elec_delta’, start_rs=3000.,

coarsen_factor=16, backreaction=True

)
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Figure 2-4: Temperature (left) and ionization (right) histories including the effects
of dark matter decay to electrons and positrons. We choose a lifetime of 3× 1025 s,
which is consistent with the CMB constraints from Ref. [59]. We plot the baseline
histories (black, dashed), the histories including dark matter energy injection but not
backreaction (blue), and the histories including energy injection and backreaction
(orange). These plots are a single vertical slice of the contour plots in Fig. 2-5.
Additionally, these plots constitute a cross-check on DarkHistory, as they agree well
with similar results obtained in Ref. [30].
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The new keywords here are:

1. DM_process=’decay’ – specifies the DM process of interest to be decays;

2. lifetime=3e25 – specifies the decay lifetime in seconds; and

3. primary=’elec_delta’ – the primary channel options ’elec_delta’ and ’

phot_delta’ can be used to inject an 𝑒+𝑒− and 𝛾𝛾 pair respectively, with no

electroweak corrections applied.

To do the calculation without backreaction, we can simply set backreaction=

False. However, with primary=’elec_delta’ or ’phot_delta’, DarkHistory can

instead rely on tabulated results of 𝑓𝑐(𝑧) for these two channels, using the same

method based on results from Ref. [82], to calculate the ionization and thermal his-

tories without evolving the input spectrum, leading to a significant speed-up. This

can be done using the function tla.get_history():

import numpy as np

from darkhistory.tla import get_history

# get_history takes a redshift vector:

rs_vec = np.flipud(np.arange(5, 3000, 0.1))

result = get_history(

rs_vec, baseline_f=True, mDM=1e8,

lifetime=3e25, DM_process=’decay’,

inj_particle=’elec_delta’

)

with the following parameters:

1. rs_vec – the redshift vector, ordered from high to low, over which the temper-

ature and ionization histories are to be evaluated;

2. baseline_f=True – this tells the code to use the baseline 𝑓𝑐(𝑧) computed by

DarkHistory without backreaction. As we discussed in Sec. 2.3.6, these 𝑓𝑐(𝑧)

agree with those computed in Ref. [82] to within 10%, and
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3. inj_particle=’elec_delta’ – used to specify one of two options ’elec_delta

’ or ’phot_delta’.

The output result is an array of shape (len(rs_vec), 4), with the second

dimension indexing {𝑇𝑚, 𝑥HII, 𝑥HeII, 𝑥HeIII}. The temperature (in eV) can be accessed

through T_m = results[-1,0].

Although only the 𝑓𝑐(𝑧) values for the injection for an 𝑒+𝑒− and 𝛾𝛾 pair have been

saved for use with DarkHistory, the 𝑓𝑐(𝑧) for any arbitrary channel can be computed

from a weighted average of the electron and photon results [82]. We stress once again,

however, that this can only be done assuming no backreaction.

The histories are shown in Fig 2-4, with and without backreaction turned on.

First, even though the ionization level at 𝑧 ∼ 10 is three orders of magnitude larger

than the baseline, such a scenario is actually still consistent with the CMB power

spectrum constraints, owing to the fact that the ionization build-up occurs relatively

late: the CMB constraints are sensitive to changes in 𝑥𝑒 near recombination, and

become less sensitive at later times.

Comparing the temperature histories with and without backreaction, we see that

the main effect of this increase in 𝑥𝑒 on the energy deposition processes is to increase

energy deposition into heating. Ionization and excitation rates depend on the neutral

fraction, which is still close to 100% even with energy deposition from DM. However,

the energy rate into Coulomb heating is proportional to 𝑥𝑒, so taking into account the

significantly elevated 𝑥𝑒 values leads to higher temperature levels. By about 𝑧 ∼ 10,

𝑇𝑚 with backreaction is larger than without backreaction by a factor of ∼ 4, with

the difference continuing to grow. Neglecting backreaction therefore leads to a severe

underestimate of 𝑇𝑚, and including this effect consistently will certainly be important

in understanding what measurements of 𝑇𝑚 at 𝑧 ≃ 20 through the 21-cm signal or

the Lyman-𝛼 power spectrum can tell us about exotic sources of energy injection.

We can perform the calculation over a range of DM masses by looping over values

of mDM. For each value of 𝑚𝜒, we select the minimum lifetime 𝜏 which is consistent

with the CMB power spectrum constraints, and compare the difference between the

temperature history with backreaction (𝑇𝑚,BR) and without (𝑇𝑚,0) by computing the
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Figure 2-5: Contour plots of the fractional change in temperature 𝛿𝑇𝑚/𝑇𝑚,0 caused by
including the effects of backreaction, as a function of dark matter mass and redshift
(See Eq. (2.55)). For each dark matter mass, we choose the minimum 𝜏 or maximum
⟨𝜎𝑣⟩ allowed by current CMB power spectrum constraints [59, 98].

fractional change in temperature,

𝛿𝑇𝑚

𝑇𝑚,0

(𝑚𝜒, 𝑧) =
𝑇𝑚,BR(𝑚𝜒, 𝑧)− 𝑇𝑚,0(𝑚𝜒, 𝑧)

𝑇𝑚,0(𝑚𝜒, 𝑧)
. (2.55)

In Fig 2-5 we plot this variable over a range of redshifts and dark matter masses for

this particular channel (𝜒 → 𝑒+𝑒−), but also for decay and annihilation into 𝑒+𝑒− and

𝛾𝛾, taking the maximum ⟨𝜎𝑣⟩ again allowed by the CMB power spectrum constraints.

At a redshift of 𝑧 ∼ 17 near the end of the cosmic dark ages, 𝛿𝑇𝑚/𝑇𝑚,0 ∼ 100% (i.e.

𝑇𝑚 with backreaction is a factor of 2 larger than without) or more can easily be

obtained. Even larger deviations are possible at lower redshifts, depending on the

channel under consideration.
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2.5.3 21-cm Sensitivity

The global 21-cm signal is a measurement of the sky-averaged differential brightness

temperature 𝑇21 with respect to the background radiation. Measurements of this sig-

nal would open a window into the ionization and temperature histories of the universe

at the cosmic dawn (see e.g. Ref. [99] for a review of 21-cm cosmology). A first claim

of such a measurement has already been made by the EDGES collaboration [100].

The brightness temperature of the 21-cm hydrogen absorption line relative to the

background radiation temperature is given by [99]:

𝑇21 ≈ 𝑥HI(𝑧)

(︂
0.15

Ω𝑚

)︂1/2(︂
Ω𝑏ℎ

0.02

)︂
×
(︂
1 + 𝑧

10

)︂1/2 [︂
1− 𝑇𝑅(𝑧)

𝑇𝑆(𝑧)

]︂
23mK , (2.56)

where Ω𝑏 is the baryon energy density today as a fraction of the critical density,

ℎ is the Hubble parameter today in km s−1Mpc−1, 𝑇𝑅 is the background radiation

temperature (typically assumed to be the CMB temperature) and 𝑇𝑆 is the spin tem-

perature of neutral hydrogen as a function of redshift, which determines the relative

population of neutral hydrogen in the two hyperfine states. Due to the presence of an

intense Lyman-𝛼 radiation field once stars begin to form, it is expected that 𝑇𝑆 ≈ 𝑇𝑚

at the cosmic dawn. This fact allows us to turn the 21-cm global signal into a limit

on 𝑇𝑚 itself, assuming that 𝑇𝑅 = 𝑇CMB.

We will focus on 1 + 𝑧 ≈ 18, roughly the central value of the absorption trough

measured by EDGES [100]. At this redshift, almost all hydrogen is neutral, i.e.

𝑥HI ≈ 1, and we can invert Eq. (2.56) to find 𝑇𝑆 as a function of 𝑇21. Since 𝑇𝑚 < 𝑇𝑆,

this yields the bound

𝑇𝑚(𝑧 = 17) <

(︂
1− 𝑇21

35mK

)︂−1

49K . (2.57)

This temperature bound in turn puts a limit on the DM decay lifetime or cross-section

because too much dark matter decay/annihilation would heat up 𝑇𝑚 past this point.
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Figure 2-6: The minimum dark matter decay lifetime (top row) and maximum anni-
hilation cross section (bottom row) bounds, derived from the global 21-cm signal. We
assume a differential 21-cm brightness temperature of 𝑇21 = −50mK, corresponding
to a maximum 𝑇𝑚 of about 20.3K at 𝑧 ∼ 17. We consider decay and annihilation
into 𝛾𝛾 (left column) and 𝑒+𝑒− (right column) and compute the bounds with (orange,
solid) and without (purple, dashed) backreaction.
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of redshift. 𝑥𝑒 is solved in DarkHistory with (blue) and without (orange) helium;
both options lead to a similar temperature history (blue). With helium, helium
recombination is correctly computed (inset). The CMB temperature is shown (black,
dashed) for reference.

In contrast to the CMB power spectrum energy injection bounds, which is most

sensitive to changes in 𝑥𝑒 around the time of recombination, the 21-cm global signal

constraints are more sensitive to energy injection processes that are more active at late

times, and are dependent primarily on 𝑇𝑚 instead. Since 𝑇𝑚 is significantly impacted

by including the effects of backreaction, the calculation performed by DarkHistory

becomes important for setting accurate constraints using the 21-cm global signal.

To illustrate this, we perform a simple sensitivity study by obtaining the con-

straints for a measured 𝑇21 of −50mK, and compare the constraints with and without

backreaction taken into account. Although this value of 𝑇21 is inconsistent with the

EDGES experiment, it is impossible to interpret the EDGES result without propos-

ing new physics that may be at play during the cosmic dark ages [62], which is a

more complicated task and less relevant to helping users understand the code. The

following analysis is worked out in more detail within the code in Example 11.

𝑇21 = −50mK means that we require 𝑇𝑚 < 20.3K according to Eq. (2.57). We

once again scan over a grid of dark matter masses and lifetimes/cross-sections de-

caying/annihilating into 𝑒+𝑒− and 𝛾𝛾, using get_history() for the case with no
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Figure 2-8: Temperature (left) and free electron fraction (right) as a function of
redshift, solved in DarkHistory with the default Puchwein+ reionization model [90].
The IGM temperature (blue) is shown on the left, while the ionization fractions
𝑛HII/𝑛H (blue), 𝑛HeII/𝑛He (orange) and 𝑛HeIII/𝑛He (green) are shown as well. These
results agree very well with the same plots shown in Ref. [90].

backreaction and evolve() for the case with backreaction, as explained in the previ-

ous section, to find where in parameter space dark matter energy injection leads to a

violation of Eq. (2.57).

The resulting exclusion plots are shown in Fig. 2-6. We see that in each case the

calculation with backreaction can be between 10%-50% stronger than without back-

reaction, which we would expect because backreaction leads to larger temperatures.

We emphasize that this is the result for just one chosen value of 𝑇21; for larger (less

negative) 𝑇21, we expect that the importance of backreaction will increase, since the

energy injection is less constrained, allowing for larger values of 𝑥𝑒.

2.5.4 Helium, Dark Matter and Reionization

Finally, we will take a closer look at the different options one can use within the code

to evaluate temperature and ionization histories. Throughout this section, we will

demonstrate these different options mostly using get_history(), but similar options

are also available in evolve(), which calls get_history() with all of the relevant
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Figure 2-9: Temperature (left) and hydrogen ionization (right) history of the uni-
verse with DM decay and the default reionization model. The DM has a mass of
𝑚𝜒 = 100MeV and decays to 𝑒+𝑒− with a lifetime of 3× 1025 s. The temperature
and ionization with DM decay alone is shown without (blue, dotted) and with (orange,
dotted) backreaction included. The combined effect of DM decay and reionization
without (green) and with (red) backreaction can be compared to the reference reion-
ization model (black, dashed).

options provided. We refer the reader to the online documentation and to Example

8 in the code for more details.

Without any exotic energy injection or any reionization, the function get_history()

accepts a redshift vector, and simply returns the baseline ionization and temperature

histories, obtained by solving Eq. (2.6):

import numpy as np

from darkhistory.tla import get_history

# Redshift vector in decreasing order.

rs_vec = np.flipud(np.arange(1., 3000., 0.1))

soln_baseline = get_history(rs_vec)

Turning on helium evolution within get_history() is controlled by the flag helium_TLA,

i.e.

soln_He = get_history(rs_vec,helium_TLA=True)
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Fig. 2-7 shows the solution to Eq. (2.1) with just the “(0)” terms, i.e. without any

energy injection or reionization, and compares that solution to one with Eq. (2.50)

added as well. This is simply the standard ionization history with helium recombi-

nation (𝑧 ∼ 1800) and hydrogen recombination (𝑧 ∼ 1100), eventually leading to the

residual ionization fraction at redshifts well below hydrogen recombination of about

𝑥𝑒 ∼ 2 × 10−4. The inset of Fig. 2-7 shows that DarkHistory is able to correctly

reproduce helium recombination; the entire ionization history agrees with RECFAST

results at the central cosmological parameters used by DarkHistory to within ∼ 3%.

We recommend that helium ionization levels are tracked when used in combination

with reionization.

The next important option is whether to include the effects of reionization. This

option is controlled by the flag reion_switch:

soln_default_reion = get_history(

rs_vec, helium_TLA=True, reion_switch=True

)

With no other options set, setting reion_switch to True causes DarkHistory to use

the standard reionization model, which is based on the photoionization and photo-

heating rates provided in [90]. Fig. 2-8 shows the IGM temperature as well as the

ionization levels of the different atomic species as a function of redshift. Both of these

results agree well with the same result shown in Ref. [90]. Reionization of hydrogen

and neutral helium is complete by about 𝑧 ∼ 6; soon after, HeII starts to become

doubly ionized, leading to a decrease in 𝑛HeII and a corresponding increase in 𝑛HeIII.

Dips in 𝑇𝑚 correspond to a decrease in photoheating rates once a species becomes

completely ionized and the production of high-energy electrons from photoionization

off these species ceases.

Aside from the default reionization model, the user may also supply their own

reionization models in two different ways: by either providing their own photoioniza-

tion and photoheating rates on each atomic species (e.g. based on a model that is

different from the default, e.g. [91]), or by fixing the ionization history below a certain
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redshift, e.g. with a tanh model [101, 102]. We leave a discussion of how to use these

options to Example 8 in the code.

With the ability to include both helium and reionization, we can now add a new

source of energy injection and compute the effects on ionization and temperature

levels. We remind the reader that this means we are solving Eq. (2.6) together

with Eq. (2.50). This is accomplished in the code with both reion_switch and

helium_TLA set to True, and supplying the same keyword parameters used to inject

energy from DM shown in Sec. 2.5.2. We can add decaying DM with mass 100MeV

into an 𝑒+𝑒− pair with a lifetime of 3× 1025 s, like so (using evolve() in this example):

main.evolve(

DM_process=’decay’, mDM=1e8,

lifetime=3e25, primary=’elec_delta’,

start_rs=3000., coarsen_factor=1,

backreaction=True, helium_TLA=True,

reion_switch=True

)

By turning on and off the various flags backreaction, helium_TLA and reion_switch,

we can produce histories including or excluding these various effects.

The results from different combinations of these switches are summarized in Fig. 2-

9. The dashed lines shows the histories with DM decay only, and illustrates the

significant difference that can arise after taking into account backreaction, which

we have already seen in Fig. 2-4. Combining the DM energy injection with the

reionization model gives the solid lines in Fig. 2-9. These curves should be compared

to the default reionization model temperature and ionization histories, shown in the

black, dashed lines. When computing the DM energy deposition without taking into

account backreaction, we find that the amount of energy deposited into heating from

DM is much smaller than heating from reionization processes once they begin in

earnest, and so adding the DM decays on top of reionization produces only a small

perturbation in the temperature history relative to 𝑇𝑚 for just the reionization model
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alone. In some cases, the addition of DM actually decreases 𝑇𝑚: this can happen due

to reionization proceeding at a faster rate, leaving fewer atoms to photoionize and

thus suppressing photoheating.

It is clear, however, that neglecting backreaction leads to a severe underestimation

of the energy deposition into heating. Performing the full calculation with DM, reion-

ization and backreaction correctly accounted for produces the line in red, which shows

that the addition of DM significantly increases 𝑇𝑚 compared to both the reioniza-

tion model and the case where DM energy deposition is added without backreaction.

Reionization greatly enhances the energy deposition rate into heating of the IGM by

increasing the number of free charged particles available for Coulomb heating, and

properly accounting for backreaction using DarkHistory is critical to predicting the

IGM temperature growth due to energy injection once reionization begins.

2.6 Future Directions

An important future application for DarkHistory will be the computation of spectral

distortions. The effects of DM energy injection have already been explored at very

high redshifts in the form of 𝜇-type distortions for 5× 104 . 𝑧 . 2× 106 and 𝑦-type

distortions for lower redshifts [103], and also another class of so-called ‘non-thermal

relativistic’ distortions at redshifts 1100 . 𝑧 . 2 × 105 [104]. DarkHistory thus

will be able to complement these earlier studies and calculate the spectral distortions

coming from redshifts below recombination, 𝑧 . 1100. As a demonstration of the type

of calculation DarkHistory will perform, we show the component of this late-time

spectral distortion that DarkHistory is currently able to compute in Fig. 2-10. We

consider the case of DM annihilation into photon pairs, with 5 different masses and

the maximum ⟨𝜎𝑣⟩ allowed by CMB anisotropy measurements. We emphasize that

this computed spectral distortion is incomplete. DarkHistory does not resolve the

spectrum of photons produced during the cooling of sub-3 keV electrons, and it also

does not account for the distortions induced by absorption or emission of photons

due to atomic transitions. We leave the complete calculation of late-time spectral
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Figure 2-10: Calculation of the spectral distortion caused by DM annihilation into
photon pairs during redshifts 4 < 1 + 𝑧 < 3000. We use 5 different DM masses
and use the maximum ⟨𝜎𝑣⟩ allowed by CMB anisotropy measurements [82]. Since
DarkHistory currently does not resolve the spectrum of photons produced during the
cooling of sub-3keV electrons, the distortion is incomplete and may be missing the
dominant source of distortions.

distortions to future work.

Another future application of DarkHistory will be to compute the effects of

DM energy injection on stars, galaxies, and other aspects of structure formation.

Since these are features of an inhomogeneous universe, we will need to generalize

DarkHistory to relax the assumption of homogeneity that is currently built into it.

Once generalized, DarkHistory can be used to explore the effects of DM energy in-

jection on the formation of 𝐻2, and hence star formation, as in Ref. [105], on the

growth of DM halos as in Ref. [106], on star fragmentation as in Ref. [107], and the

effects on gas within halos as in Ref. [108].
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2.7 Conclusion

We have developed and made public a new code package for mapping out the effects of

arbitrary exotic energy injections — including dark matter annihilation and decay to

arbitrary Standard Model final states — on the temperature and ionization history of

the early universe. DarkHistory is capable of self-consistently including the effects of

conventional astrophysical sources of ionization and heating, and of including feedback

effects that can significantly enhance the degree of heating. Additionally, the ICS

module can be employed independently of the rest of the code, as an accurate and

efficient numerical calculator of ICS across a very wide range of electron and photon

energies. We have outlined here a number of worked examples, and provide more

examples with the online code at https://github.com/hongwanliu/DarkHistory.

DarkHistory has a modular framework and can in the future be improved in

several different directions, while keeping the same underlying structure. In this

first version we have focused on the homogeneous signal, and neglected the possible

effect of new radiation backgrounds and/or gas inhomogeneities on the cascade of

secondaries produced by injected high-energy particles. Such effects may become im-

portant in the late cosmic dark ages and the epoch of reionization. The spectrum of

low-energy photons produced by energy injection, and the resulting distortion to the

spectrum of the CMB, is a possible observable in its own right; the current version

of DarkHistory provides only a partial calculation of this spectral distortion, due

to our approximate treatment of low-energy electrons, but we intend to improve this

aspect in future work. The effects of other new physics on the temperature/ionization

evolution – in particular, scattering between baryons and DM – can be incorporated

within the same framework. We also intend to explore the possibility of interfac-

ing DarkHistory with existing public codes for computing the recombination history,

perturbations to the CMB, and 21cm signals.

The tools we have developed in this work can be used to understand the visible

imprints of exotic energy injections that could appear in the CMB and the 21cm line of

neutral hydrogen, and hence to place precise constraints on dark matter annihilation
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and decay. We hope they will help pave the way for a comprehensive description of

the ways in which dark matter interactions, and other physics beyond the Standard

Model, could reshape the early history of our cosmos.
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Chapter 3

Lyman-𝛼 Constraints on Cosmic

Heating from Dark Matter

Annihilation and Decay

3.1 Introduction

Dark matter (DM) interactions such as annihilation or decay can inject a signif-

icant amount of energy into the early Universe, producing observable changes in

both its ionization and temperature histories. Changes in the free electron frac-

tion, for example, can alter the cosmic microwave background (CMB) anisotropy

power spectrum [109–111], allowing constraints on the annihilation cross section

[57, 58, 60, 80, 98, 112–118] and the decay lifetime of DM [59, 67, 119, 120] to be set us-

ing Planck data [121]. Constraints based on modifications to the temperature history

focus on two redshift ranges where measurement data is or will potentially be avail-

able: (i) before hydrogen reionization at 𝑧 ∼ 20, and (ii) during the reionization epoch

at 2 . 𝑧 . 6. In the former redshift range, the 21-cm global signal [62, 67, 68, 122–

124] and power spectrum [61, 81] have been shown to be powerful probes of DM

energy injection, and have the potential to be the leading constraint on the decay

lifetime of sub-GeV DM [62]. In the latter range, measurements of the intergalactic
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medium (IGM) temperature derived from Lyman-𝛼 flux power spectra [125, 126] and

Lyman-𝛼 absorption features in quasar spectra [127, 128] have been used to constrain

the 𝑠-wave annihilation cross section [129], the 𝑝-wave annihilation cross section, and

the decay lifetime of DM [63, 67, 130]. The IGM temperature can also be used to

set limits on the kinetic mixing parameter for ultralight dark photon DM [131–133],

the strength of DM-baryon interactions [134], and the mass of primordial black hole

DM [135].

In this chapter, we revisit the constraints on 𝑝-wave annihilating and decaying dark

matter from the IGM temperature measurements during reionization. This work is

timely for two reasons. First and foremost, the development of DarkHistory [53]

allows us to improve on the results of Refs. [63, 129, 130] considerably. We can

now self-consistently take into account the positive feedback that increased ionization

levels have on the IGM heating efficiency of DM energy injection processes. This

effect can give rise to large corrections in the predicted IGM temperature [53] during

reionization. Furthermore, DarkHistory can solve for the temperature evolution of

the IGM in the presence of both astrophysical reionization sources and dark matter

energy injection; previous work only set constraints assuming no reionization [129] or

a rudimentary treatment of reionization and the energy deposition efficiency [63, 130].

Second, experimental results published since Refs. [63, 129, 130] have considerably

improved our knowledge of the Universe during and after reionization. These include:

1. Planck constraints on reionization. The low multipole moments of the Planck

power spectrum provide information on the process of reionization [121]. In

particular, Planck provides 68th and 95th percentiles for the ionization fraction

in the range 6 . 𝑧 . 30 using three different models [136, 137], arriving at

qualitatively similar results.

2. New determinations of the IGM temperature. By comparing mock Lyman-

𝛼 power spectra produced by a large grid of hydrodynamical simulations to

power spectra calculated [138] based on quasar spectra measured by BOSS [139],

HIRES [140, 141], MIKE [142], and XQ-100 [143], Ref. [144] (hereafter Walther+)
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determined the IGM temperature at mean density in the range 1.8 < 𝑧 < 5.4,

overcoming a degeneracy between gas density and deduced temperature that

hampered previous analyses [126, 145]. More recently, Ref. [146] (hereafter

Gaikwad+) fit the observed width distribution of the Ly𝛼 transmission spikes

to simulation results, enabling a determination of the IGM temperature at mean

density in the 5.4 < 𝑧 < 5.8 redshift range, again with only a weak dependence

on the temperature-density relation.

These improvements to both the understanding of energy deposition and the ion-

ization/temperature histories are combined in our analysis into robust constraints on

DM 𝑝-wave annihilation rates and decay lifetimes. These constraints are competitive

in the light DM mass regime (. 10GeV) with existing limits on DM decay from the

CMB anisotropy power spectrum [59] and are complementary to indirect detection

limits [147–150], being less sensitive to systematics associated with the galactic halo

profile and interstellar cosmic ray propagation.

In the rest of this chapter, we introduce the IGM ionization and temperature

evolution equations, discuss the data and statistical tests used, and finally present

our new constraints. We also include Supplemental Materials that provide additional

details to support our main text.

3.2 Ionization and temperature histories

In this section, we write down the equations governing the evolution of the IGM

temperature, 𝑇m, and the IGM hydrogen ionization level, 𝑥HII ≡ 𝑛HII/𝑛H, where 𝑛H

is the number density of both neutral and ionized hydrogen. The ionization evolution

equation is:

�̇�HII = �̇�atom
HII + �̇�DM

HII + �̇�⋆
HII . (3.1)

Here, �̇�atom
HII corresponds to atomic processes, i.e. recombination [38, 71, 72, 76] and

collisional ionization, which depend in a straightforward way on the ionization and
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temperature of the IGM, while �̇�DM
HII is the contribution to ionization from DM energy

injection. These terms are discussed in detail in Ref. [53], and are given in full in the

Supplemental Materials, as well as a completely analogous HeII evolution equation.

The remaining term, �̇�⋆
HII, corresponds to the contribution to photoionization from

astrophysical sources of reionization. This term will inevitably source photoheating,

which will be important for the IGM temperature evolution equation (discussed be-

low). �̇�⋆
HII can in principle be determined given a model of astrophysical sources of

reionization, but there are large uncertainties associated with these sources. For ex-

ample, the fraction of ionizing photons that escape into the IGM from their galactic

sites of production is highly uncertain, ranging from essentially 0 to 1 depending on

the model [151].

Instead, we rely on the Planck constraints on the process of reionization to fix

the form of �̇�e, allowing us to fix �̇�⋆
HII while remaining agnostic about astrophysical

sources of reionization. Specifically, we begin by choosing a late time ionization

history, 𝑥Pl
e (𝑧) for 𝑧 < 30, within the 95% confidence region determined using either

the “Tanh” or “FlexKnot” model adopted by Planck [121]. We then make the common

assumption that during hydrogen reionization HI and HeI have identical ionization

fractions due to their similar ionizing potentials, but that helium remains only singly

ionized due to HeII’s deeper ionization potential [152]. These assumptions allow us

to set 𝑥Pl
HII = 𝑥Pl

e /(1 + 𝜒), where 𝜒 ≡ 𝑛He/𝑛H is the primordial ratio of helium atoms

to hydrogen atoms. Given a choice of 𝑥Pl
e (𝑧) we can then rearrange Eq. (3.1) to set

�̇�⋆
HII =

(︂
�̇�Pl

e

1 + 𝜒
− �̇�atom

HII − �̇�DM
HII

)︂
𝜃(𝑧⋆ − 𝑧) , (3.2)

where 𝜃 is a step function that enforces �̇�⋆
HII = 0 at sufficiently early redshifts when

astrophysical reionization sources do not exist yet. To fix 𝑧⋆, notice that at early

times when �̇�⋆
HII is turned off, ionization due to DM energy injection produces 𝑥e(𝑧) ≥

𝑥Pl
e (𝑧). Since DM cannot significantly reionize the universe [130], there will exist a

redshift past which 𝑥e(𝑧) < 𝑥Pl
e (𝑧) if we do not turn on �̇�⋆

HII. We define 𝑧⋆ to be this

cross-over redshift where 𝑥e(𝑧
⋆) = 𝑥Pl

e (𝑧⋆).
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Thus, for any given DM model and 𝑥Pl
e we can use Eq. (3.2) to construct ion-

ization histories that self-consistently include the effects of DM energy injection and

reionization simultaneously. We do not require the astrophysics that produces �̇�⋆
HII to

obey any constraint other than �̇�⋆
HII ≥ 0, which maximizes freedom in the reionization

model and leads to more conservative DM constraints.

The IGM temperature history can similarly be described by a differential equation:

�̇�m = �̇�adia + �̇�C + �̇�DM + �̇�atom + �̇� ⋆ , (3.3)

where �̇�adia is the adiabatic cooling term, �̇�C is the heating/cooling term from Comp-

ton scattering with the CMB, �̇�DM is the heating contribution from DM energy in-

jection, and �̇�atom comprises all relevant atomic cooling processes. These terms are

also fully described in Ref. [53], and included in the Supplemental Materials for com-

pleteness. We stress that �̇�DM is computed, using DarkHistory [53], as a function

of both redshift and ionization fraction 𝑥e, self-consistently taking into account the

strong dependence of �̇�DM on 𝑥e, and strengthening the constraints we derive.

The remaining term, �̇� ⋆, accounts for photoheating that accompanies the process

of photoionization, as described in Eq. (3.2). We adopt two different prescriptions for

treating the photoheating rate, which we name ‘conservative’ and ‘photoheated’. In

the ‘conservative’ treatment, we simply set �̇� ⋆ = 0. This treatment produces highly

robust constraints on DM energy injection since the uncertainties of the reionization

source modeling do not appear in our calculation. Any non-trivial model would only

serve to increase the temperature of the IGM, strengthening our constraints.

In the ‘photoheated’ treatment, we implement a two-stage reionization model. In

the first stage — prior to the completion of HI/HeI reionization — we follow a simple

parametrization adopted in e.g. Refs. [144, 152, 153] and take �̇� ⋆ = �̇�⋆
HII(1 + 𝜒)Δ𝑇

for some constant Δ𝑇 . This parameter is expected to be within the range 2× 104K–

3× 104K based on analytic arguments [154] and simulations [155, 156]. We will either

restrict Δ𝑇 ≥ 0 or impose a physical prior of Δ𝑇 ≥ 2× 104K in what we call our

‘photoheated-I’ or ‘photoheated-II’ constraints, respectively.
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Figure 3-1: The ionization history (Left) and IGM temperature history (Right) as
functions of redshift. The left plot shows the ionization history in the absence of DM
energy injection and reionization sources (solid black), the 95% confidence region for
Planck’s FlexKnot (shaded blue) and Tanh (shaded red) reionization histories, and the
ionization history in the presence of both DM energy injection and reionization sources
that produce Planck’s latest (solid purple) and earliest (dashed magenta) FlexKnot
histories at late times. The right plot shows the temperature history assuming (i) DM
decay and the ‘conservative’ treatment of �̇� ⋆ (blue), (ii) the ‘photoheated’ treatment
and no DM energy injection (red), and (iii) the ‘photoheated’ treatment with DM
decay (purple). (i) and (iii) assume a DM mass of 1GeV and decay to 𝑒+𝑒− pairs with
a lifetime of 1025 s while (ii) and (iii) assume the latest FlexKnot reionization history
and use parameter values (Δ𝑇, 𝛼bk) = (24 665K, 0.57) and (0K, 1.5), respectively.
Also included are the data from Ref. [144] (black diamonds) and Ref. [146] (blue
stars), where the solid data constitute our fiducial data set.

In the second stage — after reionization is complete — the IGM becomes optically

thin. In this regime, reionization-only models find that the IGM is, to a good approx-

imation, in photoionization equilibrium [157]. The photoheating rate in this limit

is specified completely by the spectral index 𝛼bk of the average specific intensity 𝐽𝜈

[with units eV s−1Hz−1 sr−1 cm−2] of the ionizing background near the HI ionization

threshold, i.e. 𝐽𝜈 ∝ 𝜈−𝛼bk [153, 156]. By considering a range of reionization source

models and using measurements of the column-density distribution of intergalactic

hydrogen absorbers, the authors of Ref. [156] bracketed the range of 𝛼bk to be within

−0.5 < 𝛼bk < 1.5, which we will use in our analysis.

In summary, the ‘photoheated’ prescription is

�̇� ⋆ =

⎧⎪⎪⎨⎪⎪⎩
�̇�⋆

HII(1 + 𝜒)Δ𝑇 , 𝑥HII < 0.99 ,∑︁
𝑖∈{H,He}

𝐸𝑖I𝑥𝑖

3(𝛾𝑖I − 1 + 𝛼bk)
𝛼A,𝑖I𝑛H , 𝑥HII ≥ 0.99 ,

(3.4)
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Figure 3-2: Constraints for decay (left) or 𝑝-wave annihilation (right) to 𝑒+𝑒− pairs
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‘photoheated-I’ (red band), or ‘photoheated-II’ (orange band) treatment. The darkly
shaded bands show the variation of our constraints as we vary through the 95%
confidence regions of Planck’s Tanh and FlexKnot reionization models. We also
include constraints from the CMB [59] (dashed-black), X/𝛾-ray telescopes [147, 148,
159] (dot-dashed purple), INTEGRAL [160] where we have assumed ⟨𝑣2⟩ = 220 km s−1

in the Milky Way, Voyager I [149, 150] (dotted pink), and gamma-ray observations of
dwarf galaxies [161] (dot-dashed red).

where 𝑖 runs over H and He (thus 𝑥𝑖 =1, 𝑛He/𝑛H), and for species 𝑖, 𝐸𝑖I is the ioniza-

tion potential, 𝛾𝑖I denotes the power-law index for the photoionization cross-section at

threshold, and 𝛼𝐴,𝑖I is the case-A recombination coefficient [156]. The ‘photoheated’

model is therefore fully specified by two parameters, Δ𝑇 and 𝛼bk. Additionally, once

HI/HeI reionization is complete, we set 1−𝑥e = 4× 10−5, which is approximately its

measured value [158]. This small fraction of neutral HI and HeI atoms dramatically

decreases the photoionization rate relative to its pre-reionization value for photons

of energy 13.6 eV < 𝐸𝛾 < 54.4 eV injected by DM. Consequently, there is a non-

negligible unabsorbed fraction of photons in each timestep, exp
(︁
−∑︀𝑖∈{HI,HeI} 𝑛𝑖𝜎

ion
𝑖 (𝐸𝛾)Δ𝑡

)︁
,

where 𝜎ion
𝑖 (𝐸𝛾) is the photoionization cross-section for species 𝑖 at photon energy 𝐸𝛾.

We modify DarkHistory to propagate these photons to the next timestep.

To demonstrate the effects of DM energy injection and our reionization modeling,

we show in Fig. 3-1 example histories obtained by integrating Eqs. (3.1) and (3.3) for

both the ‘conservative’ and ‘photoheated’ treatments, with and without DM decay.

The left plot shows how our method can produce ionization histories that both take

into account the extra ionization caused by DM energy injection and also vary over

Planck’s 95% confidence region for the late-time ionization levels. In the right panel,
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we assume the Planck FlexKnot curve with the latest reionization, and show in red our

best fit temperature history assuming no DM energy injection, with the ‘photoheated’

treatment. This history is a good fit to the fiducial data, with a total 𝜒2 of about 5.

Additionally, once DM is added we show a model that is just consistent with our (95%

confidence) ‘conservative’ constraints but ruled out by the ‘photoheated’ constraints.

3.3 Comparison with data

We compare our computed temperature histories with IGM temperature data ob-

tained from Walther+ [144] within the range 1.8 < 𝑧 < 5.4 and Gaikwad+ [146]

within 5.4 < 𝑧 < 5.8. To construct our fiducial IGM temperature dataset, we only

consider data points with redshifts 𝑧 > 3.6 (see Fig. 3-1, solid data points) since these

redshifts are well separated from the redshift of full HeII reionization [126], allowing

us to safely use the transfer functions that DarkHistory currently uses, which assume

𝑥HeIII = 0. By neglecting HeII reionization and its significant heating of the IGM [151]

we derive more conservative constraints. Additionally, the two Walther+ data points

above 𝑧 = 4.6 are in tension with the Gaikwad+ result; we discard them in favor of

the higher 𝑇m values reported by Gaikwad+, since this results in less stringent limits.

To assess the agreement between a computed temperature history and our fiducial

temperature dataset using our ‘conservative’ method, we perform a modified 𝜒2 test.

Specifically, our test statistic only penalizes DM models that overheat the IGM rela-

tive to the data, which accounts for the fact that any non-trivial photoheating model

would only result in less agreement with the data, whereas DM models that underheat

the IGM could be brought into agreement with the data given a specific photoheating

model. We define the following test statistic for the 𝑖th IGM temperature bin:

TS𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0 , 𝑇𝑖,pred < 𝑇𝑖,data ,(︂
𝑇𝑖,pred − 𝑇𝑖,data

𝜎𝑖,data

)︂2

, 𝑇𝑖,pred ≥ 𝑇𝑖,data ,
(3.5)

where 𝑇𝑖,data is the fiducial IGM temperature measurement, 𝑇𝑖,pred is the predicted
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IGM temperature given a DM model and photoheating prescription, and 𝜎𝑖,data is the

1𝜎 upper error bar from the fiducial IGM temperature data. We then construct a

global test statistic for all of the bins, simply given by TS =
∑︀

𝑖 TS𝑖. Assuming the

data points {𝑇𝑖,data} are each independent, Gaussian random variables with standard

deviation given by 𝜎𝑖,data, the probability density function of TS given some model

{𝑇𝑖,pred} is given by

𝑓(TS|{𝑇𝑖,pred}) =
1

2𝑁

𝑁∑︁
𝑛=0

𝑁 !

𝑛!(𝑁 − 𝑛)!
𝑓𝜒2(TS;𝑛) . (3.6)

𝑁 is the total number of temperature bins and 𝑓𝜒2(𝑥;𝑛) is the 𝜒2-distribution with

argument 𝑥 and number of degrees-of-freedom 𝑛, where the 𝑛 = 0 case is defined to

be a Dirac delta function, 𝑓𝜒2(𝑥; 0) ≡ 𝛿(𝑥). The hypothesis that the data {𝑇𝑖,data} is

consistent with the {𝑇𝑖,pred} can then be accepted or rejected at the 95% confidence

level based on Eq. (3.6). See the Supplemental Materials for more details.

For our ‘photoheated’ constraints, we perform a standard 𝜒2 goodness-of-fit test.

For any given DM model we marginalize over the photoheating model parameters by

finding the Δ𝑇 and 𝛼bk values that minimize the total 𝜒2 subject to the constraints

Δ𝑇 ≥ 0 (‘photoheated-I’) or 2× 104K (‘photoheated-II’) and −0.5 < 𝛼bk < 1.5. We

then accept or reject DM models at the 95% confidence level using a 𝜒2 test with 6

degrees of freedom (8 data points - 2 model parameters).

Fig. 3-2 shows constraints for two classes of DM models: DM that decays or 𝑝-

wave annihilates to 𝑒+𝑒−. Our 𝑝-wave annihilation cross-section is defined by 𝜎𝑣 =

(𝜎𝑣)ref×(𝑣/𝑣ref)
2 with 𝑣ref = 100 km s−1. We also use the NFW boost factor for 𝑝-wave

annihilation calculated in Ref. [130]. Although we only show constraints for 𝑒+𝑒− final

states, our method applies to any other final state (see the Supplemental Materials).

The blue, red, and orange regions are excluded by our ‘conservative,’ ‘photoheated-I,’

and ‘photoheated-II’ constraints, respectively. The ‘photoheated’ limits are generally

a factor of 2− 8 times stronger than the ‘conservative’ constraints.

The thickness of the darkly shaded bands correspond to the variation in the con-

straints when we vary 𝑥Pl
e in Eq. (3.2) over the 95% confidence region of Planck’s Flex-
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Knot and Tanh late-time ionization curves. The ‘conservative’ and ‘photoheated-I’

bands are narrow, demonstrating that the uncertainty in the late-time ionization curve

is not an important uncertainty for these treatments. However, the ‘photoheated-II’

treatment shows a larger spread, since the larger values of Δ𝑇 imposed by the prior

significantly increase the rate of heating at 𝑧 ∼ 6, making the earliest temperature

data points more constraining, and increasing the sensitivity to the ionization his-

tory at 𝑧 ≃ 6. A better understanding of the process of reionization could therefore

enhance our constraints significantly.

Our ‘conservative’ constraints for decay to 𝑒+𝑒− are the strongest constraints in

the DM mass range ∼ 1MeV−10MeV and competitive at around 1GeV while our 𝑝-

wave constraints are competitive in the range ∼ 1MeV− 10MeV. For higher masses,

constraints from Voyager I observations of interstellar cosmic rays are orders of mag-

nitude stronger for both 𝑝-wave [150] and decay [149]. Constraints from X/𝛾-ray

telescopes [147, 148, 159, 161] are stronger than ours for 𝑚𝜒 > 1GeV and comparable

for 𝑚𝜒 < 1GeV.

Importantly, all three types of constraints are affected by different systematics.

The telescope constraints are affected by uncertainties in our galactic halo profile

while Voyager’s are affected by uncertainties in cosmic ray propagation. The 𝑝-wave

boost factor is relatively insensitive to many details of structure formation, since it is

dominated by the largest DM halos, which are well resolved in simulations (see the

Supplemental Materials). A more important systematic comes from our assumption

of homogeneity. We assume that energy injected into the IGM spreads quickly and

is deposited homogeneously, when in reality injected particles may be unable to ef-

ficiently escape their sites of production within halos [31, 32]. We leave a detailed

exploration of these inhomogeneity effects for future work.

3.4 Conclusion

We have described a method to self-consistently construct ionization and IGM tem-

perature histories in the presence of reionization sources and DM energy injection
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by utilizing Planck’s measurement of the late-time ionization level of the IGM. We

construct two types of constraints for models of DM decay and 𝑝-wave annihilation.

For the first ‘conservative’ type of constraint, we assume that reionization sources

can ionize the IGM but not heat it, resulting in constraints that are robust to the

uncertainties of reionization. For the second ‘photoheated’ type of constraint, we

use a simple but well-motivated photoheating model that gives stronger limits than

the ‘conservative’ constraints by roughly a factor of 2 − 8. We expect that as the

uncertainties on the IGM temperature measurements shrink, and as reionization and

photoheating models become more constrained, these ‘photoheated’ constraints will

strengthen considerably.
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Chapter 4

Thermal Squeezeout of Dark Matter

4.1 Introduction

The cosmic abundance of dark matter (DM) is comparable to the abundance of Stan-

dard Model (SM) particles up to an 𝒪(1) factor [18]. The similarity of these two

ostensibly unrelated abundances raises the suspicion that the two sectors may have

been in chemical equilibrium at some point in their history, implying some sort of

interaction portal between the SM and DM. Numerous experimental efforts to look

for such a portal are under way. Nonetheless, the particle nature of DM and any

potential portals to the SM remain unknown at present.

In addition to probing interactions between DM and the SM, many experimental

and theoretical efforts aim to probe possible dynamics within the dark sector itself.

Often simplified dark sectors with only a single DM particle are considered. Yet, the

rich gauge structure of the SM offers no particular reason to believe that the dark

sector will be significantly simpler. A wide range of more involved dark sectors have

been studied, especially scenarios with a new confining force in the dark sector; see for

instance Refs. [22, 162–194]. Depending on the details of the sector, different hadronic

states can be the DM candidate in different theories and the stabilizing symmetry

and the DM mass scale can vary widely [189]. Such a sector can further give rise to

rich dynamics that can potentially solve other problems in the SM as well, e.g. see

Refs. [166, 195] where the observed baryon asymmetry is tied to the DM abundance.

An interesting class of confining dark sector models is the scenario where all the
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dark quarks are substantially heavier than the dark confinement scale, Λ. These

models and their experimental signals have been studied extensively, see for instance

Refs. [166, 183–185, 187]. For sufficiently heavy quarks, lattice calculations have

shown that the phase transition in such a sector is of first-order for 𝑆𝑈(𝑁) with

𝑁 = 3 [46, 196–199] or 𝑁 > 3 [48, 200]. There has been a recent surge of interest

in the study of the potential effects of first-order phase transitions in other DM

models, e.g. see Refs. [201–204]1, but the effects of the phase transition on the relic

abundance of dark matter in confining dark sector models are mostly unexplored,

with the exception of a recent study of dark sectors with only light quarks (𝑚𝑞 6 Λ)

[208].

In this work, we consider the simplest such confining model – an 𝑆𝑈(3) gauge

theory with one heavy quark in the fundamental representation – and focus on the

effects of the first-order phase transition on the DM relic abundance calculation.

Similar to the arguments put forward in Ref. [209], we will argue that toward the

end of the phase transition we will be left with pockets of the high temperature, i.e.

deconfined, phase submerged in a sea of low temperature, i.e. confined, phase. We will

argue that the heavy quarks are all initially trapped inside these contracting pockets.2

To determine important properties of these pockets such as their initial characteristic

size and contraction rate, we will develop a simplified model to numerically simulate

the phase transition.

As a pocket contracts, the dark quarks within it are compressed, allowing them to

recouple and go through a second stage of annihilation. We calculate the fraction of

the quarks that survive this new annihilation stage and escape the pockets in the form

of dark baryons. We refer to this process as “thermal squeezeout”, as the dark quarks

are squeezed within the pockets and eventually leak out, in contrast to the standard

“thermal freezeout”. We find a dramatic suppression in the final abundance thanks to

this phenomenon, which points to much heavier dark matter parameter space than

was previously thought. In particular, the fact that the local DM density is much
1See also Refs. [205–207] for another mechanism affecting DM abundance in the presence of

significant supercooling during a phase transition.
2This depends on the representation of the quarks under the dark confining gauge group. For

instance, if the quarks were in the adjoint representation (similar to the model in Ref. [186]), they
could combine with the surrounding gluons, form color-neutral hadrons, and move into the confined
phase. Similarly, if in addition to the heavy quarks the spectrum were to include light quarks in the
fundamental representation as well, the heavy quarks would not remain trapped within the pocket
as they could make a color-neutral bound state with one of many light quarks surrounding them to
escape the pocket.
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larger than the globally averaged DM density during this second stage of annihilation

invalidates the homogeneity assumption made in the unitarity bound argument of

Ref. [210].3 As a result, this model allows the DM candidate to be heavier than

the perturbative unitarity bound on Weakly-Interacting Massive Particles (WIMPs),

despite being thermal.

Since this second stage of annihilation is controlled by the dynamics within the

dark sector and not the interaction between the dark sector and SM, our results are

largely independent of the portal to the SM. In fact, we do not constrain ourselves to

any specific portal in this chapter. The only assumptions we make about such a portal

is that (i) it exists, (ii) it keeps the SM and the dark sector in thermal contact during

the phase transition, and (iii) it respects the dark baryon number that stabilizes the

dark baryons. These assumptions streamline our calculations significantly. However,

it is worth considering the possibility of models in which we can relax one or more of

these assumptions; we leave this for future work.

The current work is merely the start of a broader program of studying such models

in more details. The phenomenology of all such models should be revisited in light

of the dramatic change in the relic abundance calculation. Depending on the gauge

group under study, the quarks’ representation, and the portal, different models (with

vastly different phenomenology) can be constructed.

Our study indicates a natural window of DM masses between 1-100 PeV for such

a setup. While conventional searches may lose sensitivity for such a high DM mass,

the stochastic gravitational wave background due to the first-order phase transition

in this scenario can be detected by planned future facilities. (See Ref. [213] for the

projected reach of such facilities.) While this signal depends on the UV parameters

that control the thermodynamics of the phase transition, it does not depend on the

nature of the portal.

The rest of this chapter is organized as follows. In Sec. 4.2 we provide an overview

of the cosmology of our dark sector. In Sec. 4.3 we write down and solve the Boltz-

mann equations that determine the relic abundance of the dark matter. In Sec. 4.4

we provide an overview of the possible phenomenological implications of our dark sec-

tor before concluding in Sec. 4.5. We also provide three appendices to supply more

details. In App. C.1 we provide more details on the thermodynamics of first-order
3See also Refs. [211, 212] for more recent studies of the unitarity bound on thermal DM models.
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phase transitions in an expanding universe and detail a simulation we performed to

fix the phase transition parameters that enter the relic abundance calculation. In

Apps. C.2 and C.3 we review some results in the literature for the cross sections and

binding energies of heavy quarks and their bound states.

4.2 A Qualitative Overview of the Cosmology

We consider a dark sector with a non-abelian 𝑆𝑈(3) gauge group and a single flavor

of heavy quarks 𝑞 in the fundamental representation

ℒ ⊃ −1

4
𝐺𝜇𝜈𝐺𝜇𝜈 + 𝑞 (𝑖𝛾𝜇𝐷

𝜇 −𝑚𝑞) 𝑞 , (4.2.1)

where 𝐺𝜇𝜈 is the dark gluon field strength and 𝑚𝑞 is the dark quark mass with 𝑚𝑞 ≫ Λ

(in practice we consider 𝑚𝑞 > 100Λ), where Λ is the dark confinement scale at which

a phase transition takes place.

Given that 𝑚𝑞 ≫ Λ we expect that such heavy quarks decouple from the thermal

bath well before the phase transition, so that the phase diagram of this model is

very close to that of pure Yang-Mills for 𝑇 ≪ 𝑚𝑞. Since the heavy quark regime

can be well-approximated by the pure-gauge regime, the phase transition behavior is

almost independent of the number of heavy quark flavors [45]. The only constraining

condition on the number of quark flavors is then asymptotic freedom, or in special

cases asymptotic safety [214]. Various lattice gauge theory studies have established

that the 𝑆𝑈(3) phase transition takes place at a critical temperature very near the

confinement scale, 𝑇𝑐 ≈ Λ, and is first-order [46, 197–199]. We will therefore assume

that this dark sector features a first-order phase transition exactly at 𝑇𝑐 = Λ.

The effects of this phase transition on the relic abundance of DM have been

relatively unexplored in previous studies of such a confining gauge sector, e.g. [184].

We will discuss in this section how this phase transition dramatically changes the

relic abundance calculation by causing a second stage of significant DM annihilation.

We remain agnostic about how the dark quark mass is generated as it will not

affect our study. We also do not commit to any specific portal between the dark

sector and the SM. We merely assume such a portal exists and keeps the dark sector

in kinetic equilibrium with the SM. The portal enables the decay of the dark glueballs

and mesons to the SM while respecting the dark baryon number symmetry, thus
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stabilizing the dark baryons. These baryons, which are three-quark bound states, are

the DM candidate in this setup. We will also assume a symmetric initial condition,

𝑛𝑞 = 𝑛𝑞.

In this section we provide an overview of the cosmology of such a sector, focusing

primarily on the effect that the phase transition has on the DM relic abundance. The

goal is to provide the reader with a broad picture of the various moving parts in

this study, while leaving some of the more detailed calculations for later sections and

App. C.1.

4.2.1 Pre-confinement epoch

For high enough temperatures, 𝑇 > 𝑇𝑐, the dark sector exists in a deconfined thermal

state in which quarks move freely within a gluon bath. Naively this setup seems at

odds with confinement, which requires that colored objects not propagate freely over

distances greater than the confinement length, Λ−1. However, qualitatively, these

colored quarks can move freely because they are connected to a network of thermal

gluons [215]. These gluons screen a quark’s color charge so that the quark effectively

behaves like a color neutral object, in a process analogous to Debye shielding in

plasmas. More quantitatively, lattice simulations have shown that when 𝑇 ≥ 𝑇𝑐, the

potential between two heavy quarks flattens when they are separated by a distance

of roughly more than Λ−1 [46]. In other words, distant quarks in a gluon bath do not

influence one another.

In the deconfined phase, the quark relic abundance calculation proceeds anal-

ogously to a standard WIMP relic abundance calculation. For large enough dark

quark masses, 𝑚𝑞 & 20Λ, which will be satisfied for all the parameter space we con-

sider in our analysis, the dominant number changing process 𝑞𝑞 ↔ 𝑔𝑔 freezes out

before confinement. The Boltzmann equation governing this freeze-out is simply

�̇�𝑞 + 3𝐻(𝑇 )𝑛𝑞 = −⟨𝜎𝑣⟩
(︁
𝑛2
𝑞 −

(︀
𝑛eq
𝑞

)︀2)︁
, (4.2.2)

where 𝐻(𝑇 ) is the Hubble constant at temperature 𝑇 , ⟨𝜎𝑣⟩ is the thermally averaged

annihilation rate for 𝑞𝑞 ↔ 𝑔𝑔, 𝑛𝑞 is the quark number density, and 𝑛eq
𝑞 is its value in

thermal equilibrium with a thermal bath of temperature 𝑇 and with zero chemical
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potential. Since 𝑇 ≫ Λ in this epoch, ⟨𝜎𝑣⟩ can be calculated perturbatively [47],

⟨𝜎𝑣⟩ = 𝜁 𝜋
𝛼2(𝑚𝑞)

𝑚2
𝑞

, (4.2.3)

where 𝛼(𝑚𝑞) is the dark, strong coupling constant evaluated at the dark quark mass

scale and 𝜁 is a prefactor encapsulating plasma effects and non-relativistic enhance-

ments (with numerical values presented in Fig. C-5). We will find that the exact size

of this cross section does not qualitatively change the main results of this chapter.

For further elaboration about this cross section and others, see App. C.2.4 For the

running coupling constant we use [7]

𝛼(𝑚𝑞) =
12𝜋

(11𝑁𝑐 − 2𝑁𝑓 (𝑚𝑞)) log
𝑚2

𝑞

Λ2

, (4.2.4)

where 𝑁𝑓 (𝜇) is the number of light flavors contributing to the beta function at mass

scale 𝜇. We set 𝑁𝑐 = 3 and 𝑁𝑓 (𝑚𝑞) = 1.

In the left panel of Fig. 4-1 we show the resulting quark number density evolution

for specific choices of quark mass and confinement scale. A generic obstacle in the

study of strong sectors is the uncertainty in determining cross sections. To character-

ize this uncertainty, we vary the cross section within an order of magnitude around

the central value in Eq. (4.2.3), which produces the green bands.

Importantly, we find that heavy quarks are well-separated just before the phase

transition begins. To characterize their separation, we define the typical inter-quark

spacing in units of the confinement length,

𝜉(𝑡𝑛) ≡
Λ

(𝑛𝑞(𝑡𝑛))
1/3

, (4.2.5)

where 𝑡𝑛 is the time at which extensive bubble nucleation starts, i.e. the onset of

the phase transition, and 𝑛𝑞(𝑡𝑛) is the number density of the quarks at this time.

This quantity measures, in units of Λ−1, the typical distance between quarks at the

onset of the phase transition. When 𝜉(𝑡) is large, quarks are separated by much

more than a confinement length. In the right panel of Fig. 4-1 we show 𝜉(𝑡𝑛) as a

function of 𝑚𝑞 and Λ. Indeed, quarks are generically further from each other than
4In addition to 𝑞𝑞 annihilation, quarks are able to bind into diquarks via the attractive anti-triplet

channel [47] and diquarks can bind with quarks to form baryons. We have checked that in the pre-
confinement epoch and for the parameter space we are considering, this bound state production is
negligible (see Sec. 4.3).
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Figure 4-1: Left: The yield (number density normalized by the entropy density of
the universe), 𝑌 = 𝑛𝑞

𝑠
, of the quarks for a quark mass of 103 TeV and confinement

scale of 1TeV. Right: The average separation of quarks as defined in Eq. (4.2.5) at
the onset of the phase transition for various values of Λ and 𝑚𝑞/Λ. In each plot we
vary the cross section by a factor of 10 above or below the central value (dashed lines)
in Eq. (4.2.3) to produce the shaded regions.

a confinement length just as the phase transition begins. Were quarks not so well

separated, the details of the phase transition would have a less dramatic effect on

the DM relic abundance calculation and we would be able to use the combinatorial

method of Ref. [184].

4.2.2 Bubble dynamics

Once the universe cools down to the critical temperature, 𝑇𝑐 = Λ, a first-order phase

transition begins. Phase conversion cannot occur right at the critical temperature as

both phases have the same free energy, so the temperature of the deconfined phase

initially cools slightly below 𝑇𝑐. As the deconfined phase supercools further into a

metastable state, bubbles of the confined phase begin to nucleate and expand at a

non-negligible rate.

As the deconfined phase is converted to confined phase, latent heat is released.

In contrast to weakly coupled phase transitions, there is no perturbative parameter

suppressing the latent heat, meaning that phase conversion will serve as a significant

heat source in the temperature evolution of the universe. As a result, the plasma

heats back up to a temperature very close to 𝑇𝑐 quickly after bubble nucleation

becomes efficient. Since the nucleation rate is exponentially sensitive to the degree of

supercooling, (𝑇 −𝑇𝑐)/𝑇𝑐, subsequent nucleation of bubbles is completely suppressed.

For the phase transition to continue, at least some of the bubbles from the brief

period of efficient nucleation must continue to grow. To determine the bubble growth
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Figure 4-2: The degree of supercooling prior to percolation. The temperature su-
percools until bubbles nucleate efficiently. The nucleated bubbles quickly expand,
depositing latent heat that drives 𝑇 back up to 𝑇𝑐 and eliminates further bubble nu-
cleation. The temperature then stays roughly constant as latent heat deposited from
bubble growth nearly cancels Hubble cooling. This plot ends at percolation, when
half of the universe is in each phase. Notice that the timescale of the phase transition
is much shorter than the Hubble timescale.

rate, we borrow an argument from [209]. As bubbles grow, the local temperature at

the bubble walls increases towards 𝑇𝑐, diminishing the free energy difference between

the two phases that drives the expansion. The expansion rate is then limited by the

rate at which the wall can cool. The cooling rate is controlled by the temperature

gradient between the wall and surrounding fluid – if there were no temperature dif-

ference, heat would not flow. Since the wall temperature cannot exceed 𝑇𝑐 without

reversing direction, we assume that this temperature difference is bounded above by

the small degree of supercooling (𝑇𝑐 − 𝑇 )/𝑇𝑐. By modeling the heat dynamics near

the wall in App. C.1, we estimate that the wall velocity is also bounded above by the

degree of supercooling, 𝑣𝑤 ≤ (𝑇𝑐−𝑇 )/𝑇𝑐. For simplicity, we assume that 𝑣𝑤 saturates

this bound.

In Fig. 4-2 we plot the degree of supercooling as a function of time during the

bubble expansion stage of the phase transition. This result comes from a simple sim-

ulation that we develop to track the nucleation and growth of bubbles during this

epoch. Further details about this simulation can be found in App. C.1. The stages of

the phase transition discussed above are visible in this plot. The universe initially su-

percools through Hubble expansion until bubble nucleation becomes efficient, leading

to quick bubble growth and latent heat injection that reheats the universe. The heat-

ing and cooling rates then roughly balance one another, leaving the temperature at

a value very near 𝑇𝑐, which suppresses further bubble nucleation as explained above.
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Eventually, half of the universe converts to the confined phase. At around this

so-called percolation time, most bubbles are in contact with one another and start

coalescing. Soon after we are left with isolated “pockets” of the deconfined phase

submerged in a sea of the confined phase. To properly compute the spectrum of

shapes and sizes of these pockets would require a full numerical 3D bubble simulation.

Instead, to simplify our analysis, we will assume that soon after percolation there is a

characteristic size of a typical pocket, that pockets can be approximated as spherical,

and that the details of the spectrum of pocket shapes and sizes will give only sub-

dominant corrections to our results.

To determine this characteristic pocket size, we first determine the characteristic

size of bubbles just before percolation. Using our simulation from App. C.1, we find

that at percolation the spectrum of bubble radii peaks strongly at

𝑅0 ≈ 10−6 ×
(︂

Λ

𝑀𝑝𝑙

)︂−0.9
1

Λ
, (4.2.6)

where 𝑀𝑝𝑙 = 2.4 × 1018 GeV is the reduced Planck mass. We now borrow another

argument from [209] to argue that for most values of Λ, these bubbles coalesce quickly

until they reach a larger characteristic size, denoted as 𝑅1.

The central idea is that small bubbles coalesce and merge quickly into bigger

bubbles, and that the time scale for two bubbles in contact to merge becomes longer

as bubble sizes grow. Intuitively, the larger the coalescing bubbles, the more matter

has to be moved via the bubbles’ surface tension, which takes more time. Thus there

is a special bubble size, 𝑅1, above which bubbles merge slower than the timescale

over which the phase transition takes place. We find this critical size to be

𝑅1 ≈
(︂

𝑀pl

104 Λ

)︂2/3
1

Λ
. (4.2.7)

Figure 4.2.2 shows that for Λ >∼ 1 TeV the typical size of bubbles just before perco-

lation (𝑅0) is always smaller than 𝑅1. Thus, we assume that, for this range of Λ, at

percolation all bubbles quickly coalesce until they reach a size of 𝑅1. For smaller Λs

we assume that all bubbles will have radius 𝑅0 instead. We then make the simplifying

assumption that the characteristic size of pockets just after percolation is the same

as the characteristic size of bubbles just before percolation, i.e.

𝑅𝑖 = max (𝑅0, 𝑅1) , (4.2.8)
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Figure 4-3: Left: The typical radius of bubbles just before percolation (blue line) and
the characteristic coalescence radius 𝑅1 (orange line). For any Λ with 𝑅0 ≤ 𝑅1, we
assume that bubbles quickly coalesce and grow to radius 𝑅1 at percolation. Right:
The asymptotic velocity of the pocket wall during its contraction as a function of the
confinement scale when quark pressure is ignored. In the more realistic case where
internal quark pressure is allowed to resist the contraction of the pocket, we expect
𝑣𝑤 to be much smaller, and to not necessarily asymptote to a constant value at small
radii.

where 𝑅𝑖 is the characteristic initial pocket radius after percolation.

It is more complicated to determine the wall velocity of the contracting pocket.

The main complication is that quarks are trapped within pockets, which we will

show in the next section, and will generically slow down the wall. For now we will

assume that we can neglect the effect of the enclosed quarks, which will lead to an

overestimate of 𝑣𝑤. In Sec. 4.2.4 we will revisit the effect these quarks have on 𝑣𝑤.

In App. C.1 we find that at radii much smaller than 𝑅𝑖, the pocket contraction

rate asymptotes to a constant value, which is shown in the right panel of Fig. 4.2.2

and can be fit by

𝑣𝑤(Λ) ≈ 0.2×
(︂

Λ

𝑀𝑝𝑙

)︂0.2

. (4.2.9)

It will turn out in Sec. 4.3 that the relic abundance of DM is set while 𝑅 ≪ 𝑅𝑖, so we

can neglect the initial stages when 𝑣𝑤 varies and treat it as a constant. The pockets’

radii therefore shrink as a function of time according to

𝑅(𝑡′) = 𝑅𝑖 − 𝑣𝑤𝑡
′ (4.2.10)

where 𝑡′ is the time after percolation.

To the best of our knowledge, the problem of characteristic bubble properties,

e.g. the wall velocity and charactristic size at percolation, is not completely settled
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for first-order phase transitions even in weakly interacting theories (see [216] and

the references therein for recent discussions on calculating the wall velocity). In our

numerical calculations in Sec. 4.3, we characterize these uncertainties by varying both

𝑣𝑤 and 𝑅𝑖 within one order of magnitude of the results shown in Fig. 4.2.2.

We note here that since the quark temperature is fixed near 𝑇𝑐 throughout the

phase transition, the typical quark velocity is

𝑣𝑞 ∼
√︁

Λ/𝑚𝑞 . (4.2.11)

For the range of parameters that we will be interested in, we find 𝑣𝑞 ≫ 𝑣𝑤. This

inequality will become important in the next section when we analyze the effects that

the walls have on the quarks.

To summarize, the phase transition begins with an initial, complicated stage of

bubble nucleation and growth until bubbles come into contact with one another. It

then enters an even more complicated bubble coalescence stage. The space between

bubbles is made of pockets of the deconfined phase with the same characteristic size,

𝑅𝑖. These pockets become isolated and eventually spherical, then contract initially

with a velocity that is determined by the local heat diffusion rate. The contraction

rate gradually slows down due to the pressure of the enclosed quarks, and the pockets

eventually vanish. The phase transition has completed at this point, and the universe

can proceed with its standard expansion history.

Further details of this phase transition, as well as an overview of the relevant

thermodynamics can be found in App. C.1. Our study of the phase transition’s

effect on the DM relic abundance is insensitive to many of the details of the phase

transition; we merely need an expression for the characteristic initial radius of pockets

and their wall velocity, which are respectively provided in Eqs. (4.2.8) and (4.2.9).

We emphasize that this latter expression for 𝑣𝑤, which neglects the effect of quark

pressure, overestimates the wall velocity during the contraction phase .

4.2.3 Heavy quarks during the phase transition

During the entire process of bubble nucleation and expansion described in the previ-

ous section, bubble walls run into quarks and anti-quarks. In this section we study

these encounters in detail, and argue that the walls are impermeable to quarks, but

permeable to color-neutral bound states. While we will focus on the interaction be-
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tween walls and quarks, our conclusions hold for anti-quarks as well.

When a wall encounters a quark, the quark can push against it and deform it

locally. Whereas in electroweak-like phase transitions a particle is able to penetrate

through the wall at the cost of only a finite mass difference [201, 202], the energy

cost for an isolated quark to enter the confined phase is unbounded [46], preventing it

from traveling far into the confined phase. Therefore, a quark can enter a bubble only

if it either forms a color-neutral bound state before it enters the bubble, or deforms

the wall so that it remains immersed in the color-screening gluon bath (see Fig. 4-4).

There are two ways in which the quark could form a bound state. First, 𝑞𝑞

pairs could be spontaneously created, binding with the quark as it passes through

the wall. We can imagine a scenario as in Fig. 4-4 in which the quark pushes into

the bubble and is connected to a gluon string [215] starting from its initial point of

contact with the wall. If the quark were light enough, at some point this stretched

string could break into a 𝑞𝑞 pair and the 𝑞 could bind with the incoming quark to

form a color-singlet bound state that enters the bubble (see [208] for an example in

which this process is efficient). However, for a heavy quark, the string breaking rate

is extremely suppressed; this rate can be approximated [217] using the Schwinger

mechanism [218],

(𝑡string)
−1 ∼ 𝑚𝑞

4𝜋3
𝑒−𝑚2

𝑞/Λ
2

. (4.2.12)

The exponential of the square of the large ratio 𝑚𝑞/Λ makes this string breaking

timescale much larger than all other timescales, completely shutting off this process.

The inefficiency of string breaking and the quark’s inability to pass through bubble

walls is the main feature distinguishing our model from those that involve light quarks.

The second way a quark could form a bound state is by encountering an anti-quark

or two quarks somewhere within the deconfined phase, binding, then escaping into

the confined phase before the bound state dissociates. These processes are important

and will be analyzed in the next section via Boltzmann equations.

If a quark has not managed to bind into a color singlet state by the time it reaches

a bubble wall, it deforms the wall to avoid entering the confined phase. As the wall

deforms, its surface area increases, which increases the energy of the system. The

surface tension therefore creates a force that opposes this deformation. If we estimate

this force to be of order Λ2 on dimensional grounds, then we find that the timescale

for the surface tension to restore the shape of the wall and reverse the quark’s velocity
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Figure 4-4: A depiction of a quark interacting with a phase boundary. As bubbles of
confined phase grow (the wall moves to the right in the figure), their walls run in to
quarks that move with typical velocity, 𝑣𝑞, which is much larger than the wall velocity,
𝑣𝑤 (left configuration). The quark locally deforms the wall (center configuration),
introducing an opposing force via surface tension. One can think of the quark as
connected to the deconfined phase through a gluon string [215]. Since string breaking
is shut off, i.e. the quark-gluon configuration does not have sufficient energy to pull
a heavy 𝑞𝑞 pair out of the thermal background, eventually the quark comes to a halt
and then rebounds back into the deconfined phase with its initial speed (the right
configuration).

is

𝑡rebound ∼ 𝑣𝑞
�̇�𝑞

∼ 𝑣𝑞
Λ2/𝑚𝑞

=

√︂
𝑚𝑞

Λ

1

Λ
. (4.2.13)

This rebound timescale is much shorter than the string breaking timescale. It is

also orders of magnitude smaller than the phase transition timescale, which we find

in App. C.1 to be 𝑡PT ∼ 10−2𝐻−1 ∼ 10−2𝑀pl/Λ
2 (also, see Fig. 4-2). Finally, the

pocket contraction timescale is of order 𝑡contract ∼ 𝑅/𝑣𝑤. Since 𝑅 > Λ−1 and we

find that 𝑣𝑤 . 10−3, we have 𝑡contract > 103/Λ. Since we only consider quark masses

that satisfy
√︀

𝑚𝑞/Λ ≤ 102 in this chapter, we have 𝑡rebound ≪ 𝑡contract. Since this

rebound timescale is the shortest timescale in the problem, quarks rebound off walls

very quickly before any other process can take place. Therefore, the bubble walls act

like very stiff surfaces that quickly reflect quarks that come into contact with them.

As these bubbles grow, the walls sweep quarks and anti-quarks into the ever-

shrinking deconfined regions, increasing the quark density over time. Moreover, since

𝑣𝑞 ≫ 𝑣𝑤, quarks that are swept in can quickly travel through the shrinking deconfined

region and maintain homogeneity, meaning that 𝑛𝑞 is independent of position in the

pocket throughout the phase transition. Eventually, these particles end up inside the

isolated pockets formed toward the final stage of the phase transition (see Fig. 4-5).
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Figure 4-5: Schematic illustration of different stages of the phase transition and its
effect on the DM abundance. Violet indicates the confined phase and light blue the
deconfined phase. Top Left: Once the temperature drops slightly below 𝑇𝑐 = Λ,
bubbles of confined phase begin nucleating everywhere. The nucleated bubbles start
growing and push quarks (black dots) around. Top Middle: The bubbles grow to
a point that a 𝒪(1) fraction of the universe has converted into the confined phase.
At this point bubbles start coalescing and quickly grow larger. Top Right: As the
bubbles keep growing and combining, eventually we are left with isolated pockets
of the deconfined phase submerged in a sea of the confined phase. Bottom Left:
A single isolated pocket with quarks trapped inside it. Each pocket contracts as
the phase transition continues. Bottom Middle: The particles in the pocket are
compressed and their interactions recouple. During this phase the particles can either
annihilate or bind with one another. Non-singlet states can not enter the confined
phase, but once they form color-neutral bound states (orange dots) they can escape
into the confined phase. Bottom Right: In the end, the pockets vanish and only the
fraction of quarks that ended up inside color-neutral baryons survive. These particles
diffuse away from the original pocket’s position due to their local overdensity.
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We note that in models with additional light (though not massless) quarks, there

would be no first-order phase transition [219], and even if such a transition did exist,

quarks would easily pass through bubble walls and would most likely be unaffected

by the phase transition.

Within any fixed volume of the universe, including the isolated pockets, the baryon

number is a fluctuating random variable. Although the baryon number averaged over

all pockets must be zero due to our symmetric initial condition, any given pocket

is expected to have an overabundance or underabundance of quarks relative to anti-

quarks, which we call the pocket asymmetry, 𝜂. We find that the initial total number

of quarks in a pocket, 𝑁 initial
𝑞 , is large, so that by the central limit theorem the

standard deviation of fluctuations above and below the mean is
√︁
𝑁 initial

𝑞 . Therefore,

no matter how efficient 𝑞𝑞 annihilation processes are in these contracting pockets, on

average, at least a fraction

𝜂rms ≡
√︀
⟨𝜂2⟩ =

√︁
𝑁 initial

𝑞 /𝑁 initial
𝑞 = 1/

√︁
𝑁 initial

𝑞 (4.2.14)

of the initial quarks (or antiquarks) in a pocket will survive. This observation will

have important consequences for our relic abundance calculation in the next section.

Once isolated pockets have formed and their asymmetries have been set, they will

contract and compress quarks and anti-quarks until formerly frozen-out interactions

turn back on. These interactions include 𝑞𝑞 annihilation as well as 𝑞 + 𝑞 binding via

the attractive anti-triplet channel [47]. As these diquarks build up their occupation

number, they can eventually bind with quarks to form color-singlet baryons that can

quickly fly out of the pocket.5 These escaping stable baryons constitute the DM

candidate of our model, while the rest of the particles eventually dump their energy

into the SM sector through an unspecified portal interaction.

We define a survival factor as the fraction of quarks and antiquarks that escape

the pocket within baryons and antibaryons,

𝒮 ≡ 𝑁 survived
𝑞

𝑁 initial
𝑞

. (4.2.15)

In the next section we write down the Boltzmann equations governing the quark

dynamics within contracting pockets and calculate this survival factor. As remarked
5 Notice that the formation of baryons through an intermediate diquark is more efficient than

the formation of baryons via direct 3-body recombination, which we ignore.
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above, 𝒮 is bounded below by the asymmetry of a given pocket, and the expectation

value of this lower bound is

𝒮 > 𝜂rms =
1√︁

𝑁 initial
𝑞

. (4.2.16)

After these surviving baryons escape the pockets and after the phase transition even-

tually completes, these baryons continue to diffuse away until they re-establish ho-

mogeneity in the universe. If the asymmetry bound is not saturated, baryons and

anti-baryons can continue to annihilate as they diffuse outside of the pocket. A more

detailed study of this final annihilation stage requires integrating inhomogeneous

Boltzmann equations, which we leave for future work.

In summary, the dark matter undergoes a short squeeze, where collapsing bubbles

during the phase transition induce a second stage of rapid annihilation that drastically

depletes the universe’s pre-existing stock of dark matter. This extra annihilation

after freeze-out opens up parameter space that had previously been ruled out due to

overproduction of DM. We will show that this effect allows for this thermal DM to

be heavier than the conventional unitarity bound of ∼ 300TeV [210].

4.2.4 The quark pressure on the wall

Although we have considered the effect that the wall has on the trapped quarks, we

have ignored the effect that the trapped quarks have on the wall. In this section, we

will argue that the trapped quarks generically slow down the contraction rate of the

wall.6

Much like a piston, a pocket wall can contract only if it does work on the enclosed

gas of heavy quarks. Since we have assumed that this gas is thermally coupled to the

rest of the SM bath, which has a much larger heat capacity than that of the dark

sector, the quarks contract at constant temperature. Using an ideal gas equation of

state, we can write the pressure of this quark gas as 𝑝𝑞 = 𝑛𝑞𝑇 . The work that the wall

does on the gas when it contracts by an amount 𝑑𝑅 is therefore 𝑝𝑞𝑑𝑉 = 4𝜋𝑅2𝑛𝑞𝑇𝑑𝑅.

The forces that are responsible for this change of pocket radius are the surface

tension and net gluonic pressure, the latter of which is directed inward whenever

𝑇 < 𝑇𝑐. We will show in the next section that during the earliest stages of pocket
6We thank Filippo Sala for pointing out this effect.
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contraction, quark interactions are inefficient and the total number of quarks in the

pocket is initially conserved. As a result, when the pocket shrinks the work required

to contract the pocket grows like 𝑅−1. At the same time, the work that the surface

tension and net gluonic pressure do when contracting the pocket by 𝑑𝑅 is propor-

tional to the change in area and volume, respectively, and so shrink like 𝑅 and 𝑅2.

Altogether, as 𝑅 contracts, the forces pushing out grow while the forces pushing in

shrink. We therefore expect that 𝑣𝑤 decreases with decreasing 𝑅.

As this physics involves non-equilibrium, strong dynamics, we cannot reliably

compute 𝑣𝑤 as a function of 𝑅. Instead, in the remainder of this section we will

argue that the effect of quark pressure is to slow down 𝑣𝑤 by orders of magnitude

relative to the upper bound of Eq. (4.2.9) we computed when we neglected the quark

pressure. For more details relevant to the following discussion, we refer the reader to

App. C.1.4.

When we simulate pocket contraction while keeping track of the quark density

within a pocket (see next section), we find that there always comes a point when

the quark pressure has grown to such an extent that, were we to suddenly include

it, the quark pressure would exactly oppose all inward-pointing forces. This point

of mechanical equilibrium is defined by 𝜎 𝑑𝐴+ (
∑︀

𝑝) 𝑑𝑉 = 0, where 𝜎 is the surface

tension, 𝑑𝐴 the change in surface area, 𝑑𝑉 the change in volume, and
∑︀

𝑝 the sum

of pressures acting on the wall. (Inward-pointing pressures are defined to be positive

while outward facing pressures are negative.) If we were to suddenly include the

effects of quark pressure, the motion of the wall would suddenly become calculable,

since the state of the wall would be determined by equilibrium physics. The pocket

would suddenly slow down and proceed to adiabatically shrink while maintaining

mechanical equilibrium. Number changing processes would deplete 𝑛𝑞, diminishing

the quarks’ outward-pointing pressure, and the universe would supercool further,

increasing the net gluonic inward-pointing pressure. We find that in this scenario, 𝑣𝑤

suddenly drops by orders of magnitude when mechanical equilibrium is achieved, and

𝑣𝑤 steadily decreases many more orders of magnitude as the pocket contracts.

The discontinuous drop in 𝑣𝑤 signals a breakdown of our assumption that quark

pressure was negligible before mechanical equilibrium was achieved. This simulation

merely demonstrates that it is inconsistent to neglect quark pressure, and that it

can potentially slow down the pocket contraction rate by orders of magnitude. We
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therefore expect that a more realistic simulation that correctly includes the effects

of quark pressure from the very beginning will lead to a 𝑣𝑤 that gradually decreases

from our upper bound of Eq. (4.2.9), which eventually overestimates 𝑣𝑤 by orders of

magnitude.

We will use the results of our pocket evolution simulations to calculate a few

parameters that enter the Boltzmann Equations that govern the abundances of various

bound states in the pocket. While the expression for the pocket radius, Eq. (4.2.8),

is robust to the uncertainties introduced by quark pressure, we argued that the wall

velocity 𝑣𝑤 is sensitive to this uncertainty. In the next section, we will study the

evolution of the bound state abundances in the pocket in two extreme cases: (i)

when the effect of quark pressure on 𝑣𝑤 is completely ignored, or (ii) when its effect

dramatically reduces 𝑣𝑤.

4.3 Boltzmann Equations During Compression

As described above, toward the end of the phase transition, the deconfined regions

form isolated pockets that contain all of the dark quarks. In this section, we describe

the dynamics of the dark quarks and their bound states as the contracting pockets

compress them. The Boltzmann equations that we solve keep track of the many pro-

cesses by which quarks either ultimately annihilate into gluons or form baryons that

escape the pockets and become dark matter. We will solve the Boltzmann equations

for a typical pocket with initial characteristic radius 𝑅𝑖 and pocket asymmetry set to

its root-mean-square value,
√︁
𝑁 initial

𝑞 . We assume that the 𝒮 of this typical pocket

is approximately equal to 𝒮 averaged over the full distribution of initial pocket radii

and pocket asymmetries. The total number of DM particles that survive until today

will then equal the total number of DM particles entering the phase transition times

𝒮.

4.3.1 Ingredients of the Boltzmann equations

We begin by listing the degrees of freedom that we will include in our Boltzmann

equations, which have been tabulated in Tab. 4.1. We have neglected a host of exotic

hadronic bound states like tetra- and penta-quark states because we assume that

they are unstable and promptly decay to the states listed in Tab. 4.1. We also do not

consider excited states of any of the bound states. To simplify the notation, we label
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State Dark Quark Number Color Rep.

Gluons 0 8

Quark 1 3

Diquark 2 3̄

Baryon 3 1

Table 4.1: Different degrees of freedom entering the Boltzmann equations of the
contracting pockets. We use the quark number of each state to refer them throughout
the text. The existence of anti-particles, with negative dark quark numbers and
conjugate representations under 𝑆𝑈(3), are implied.

states by their quark number throughout the text (for example, a baryon state is a 3

state while an anti-diquark is a −2 state).

We also neglect the mesons 𝑞𝑞 in our analysis. This can be justified by comparing

their decay rate to the fastest annihilation rate that we will encounter (see App. C.2)

Γ𝑞𝑞 ∼ 𝛼5𝑚𝑞, (4.3.1)

⟨𝜎𝑣⟩max𝑛𝑞 ∼ 1

𝛼3

𝛼2

𝑚2
𝑞

(︂
Λ

𝜉(𝑡)

)︂3

,

=⇒ ⟨𝜎𝑣⟩max𝑛𝑞

Γ𝑞𝑞

∼
(︂

1

𝜉(𝑡)𝛼2

Λ

𝑚𝑞

)︂3

≪ 1,

where the last inequality is obtained because we have heavy quarks (𝑚𝑞/Λ > 100)

and the interquark spacing in units of Λ satisfies 𝜉(𝑡) ≥ 1. Such a fast meson decay

rate ensures that these states are kept in equilibrium so that their number density is

negligibly small. We also have verified numerically that including the mesons in our

Boltzmann equations below has a negligible effect on our results.

Let us now look into the Boltzmann equation for the particles in Tab. 4.1 as they

are compressed by the contracting pockets. We start with the Liouville operators. For

the colored particles, i.e. ±1 (quarks/anti-quarks) and ±2 (diquarks/anti-diquarks),

we have

𝐿[𝑖] = �̇�𝑖 − 3
𝑣𝑤
𝑅
𝑛𝑖, 𝑖 = 1, 2, (4.3.2)

where the second term captures the effect of pocket compression. Notice that we

have not included the usual factor of +3𝐻𝑛𝑖 for the dilution of space due to Hubble

expansion. As argued above, 𝑡PT ≪ 𝐻−1. Therefore, the Hubble dilution rate is

negligible during the phase transition and can be ignored.

For the color-neutral particles, i.e. baryons and anti-baryons, the compression
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term will be absent. Unlike the colored particles, the baryons are not constrained by

confinement to remain in the deconfined pockets. The baryons formed in the pocket

can then be thought of as a gas created in a container without walls. The gas of

baryons will thus escape with a rate governed by its internal pressure, or equivalently

by the thermal velocities of the baryons.7

Once the baryons escape the pocket they are no longer tracked by the Boltz-

mann equations. So we must include baryon escape as a sink term in our Boltzmann

equations, which we do by modifying the Liouville operator,

𝐿[3] = �̇�3 + 3
𝑣𝑞
𝑅
𝑛3. (4.3.3)

To derive this escape rate, consider a small time step, 𝑑𝑡. In each time step the

pocket radius contracts by 𝑣𝑤𝑑𝑡. The typical baryon moves a distance of about 𝑣𝑞𝑑𝑡,

where we ignore the distinction between the baryon and quark velocities. We then

overestimate the escape rate by an 𝒪(1) factor by assuming that all baryons at the

edge of the bubble move radially outward, giving a total number of escaped baryons

of

𝑑𝑁 esc
3 = 4𝜋𝑅2𝑛3(𝑅)(𝑣𝑞 + 𝑣𝑤)𝑑𝑡 . (4.3.4)

Combining this with the rate of change for pockets volume gives the density loss rate

due to baryon escape used in Eq. (4.3.3).

It will be convenient to track the evolution of the total number of particles in a

pocket as opposed to number densities. Define the pocket volume,

𝑉 (𝑅) =
4𝜋

3
𝑅3 . (4.3.5)

Multiplying the number density of species 𝑖 by the volume of a pocket then gives the

total number of species 𝑖 in the pocket,

𝑁𝑖 ≡ 𝑉 𝑛𝑖 . (4.3.6)

It will also be convenient to replace the time coordinate with 𝑅 using Eq. (4.2.10).
7Notice that the justification for why baryons in the pocket are homogeneously distributed is

different than that of the quarks and diquarks. Gradients in the baryon density naturally arise as
the baryons flow from their high density points of creation to the low density exterior of the pockets.
However, a homogeneous component of baryons is constantly being produced within a pocket due to
the binding of (homogeneously distributed) quarks and diquarks. We find that the rate of production
is faster than the escape rate, so the baryon density in the pocket remains homogeneous to a good
approximation.
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We can then rewrite the Liouville operators as

𝐿[𝑖] = −𝑣𝑤
𝑉

𝑁 ′
𝑖 , 𝑖 = 1, 2, (4.3.7)

𝐿[3] = −𝑣𝑤
𝑉

(︂
𝑁 ′

3 −
3

𝑅

𝑣𝑞 + 𝑣𝑤
𝑣𝑤

𝑁3

)︂
, (4.3.8)

where 𝑁 ′ ≡ 𝑑𝑁/𝑑𝑅 and we have used �̇� = −𝑣𝑤.

Now that we have dealt with the Liouville operators we write down the collision

operators. We will only be concerned with 2-to-2 processes since 𝑛-to-2 processes

are Boltzmann suppressed while 2-to-𝑛 processes are suppressed by extra factors of

𝛼(𝑚𝑞) and phase space factors. We denote each of these terms with the following

notation,

⟨
(𝑎, 𝑏) → (𝛼, 𝛽)

⟩
= ⟨𝜎𝑣⟩𝑎𝑏→𝛼𝛽

(︃
𝑛𝑎𝑛𝑏 − 𝑛𝛼𝑛𝛽

𝑛𝑒𝑞
𝑎 𝑛𝑒𝑞

𝑏

𝑛𝑒𝑞
𝛼 𝑛𝑒𝑞

𝛽

)︃

=
⟨𝜎𝑣⟩𝑎𝑏→𝛼𝛽

𝑉 2
(𝑁𝑎𝑁𝑏 −𝑁𝛼𝑁𝛽𝑓𝑎𝑏,𝛼𝛽) , (4.3.9)

with 𝑎, 𝑏, 𝛼, 𝛽 = 0,±1,±2,±3, and 𝑓𝑎𝑏,𝛼𝛽 ≡ 𝑁𝑒𝑞
𝑎 𝑁𝑒𝑞

𝑏

𝑁𝑒𝑞
𝛼 𝑁𝑒𝑞

𝛽
. For gluons we have 𝑛0 = 𝑛

(𝑒𝑞)
0 ,

i.e. the gluons are always in equilibrium.

Once we have identified all the important interactions to be included in our Boltz-

mann equations, we can write down the complete system of differential equations for

𝑁𝑖(𝑅). We supply these equations with the initial conditions, which were derived

in Sec. 4.2. The initial pocket radius is 𝑅𝑖 while the initial quark number in the

pocket, 𝑁1, is found by multiplying the number density result of the pre-confinement

freeze-out calculation in Eq. (4.2.2) by 4𝜋
3
𝑅3

𝑖 . We find that the initial conditions for

𝑁2 and 𝑁3 are irrelevant, as they quickly approach an equilibrium value independent

of whatever values we initially choose (so long as 𝑁2, 𝑁3 ≪ 𝑁1 initially). All that is

left is to write down these equations and solve them.

4.3.2 Complete set of Boltzmann equations

The complete set of Boltzmann equations is:

𝐿[𝑖] = 𝐶[𝑖], 𝑖 = 1, 2, 3. (4.3.10)

𝐶[1] = −
⟨
(−3, 1) → (−1,−1)

⟩
−
⟨
(−3, 1) → (−2, 0)

⟩
+ 2
⟨
(3,−1) → (1, 1)

⟩
+

⟨
(3,−2) → (1, 0)

⟩
−
⟨
(1,−1) → (0, 0)

⟩
+
⟨
(2, 2) → (3, 1)

⟩
− 2
⟨
(1, 1) → (2, 0)

⟩
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+
⟨
(−3, 2) → (−2, 1)

⟩
+
⟨
(2,−2) → (1,−1)

⟩
+
⟨
(2,−1) → (1, 0)

⟩
−

⟨
(2, 1) → (3, 0)

⟩
−
⟨
(−2, 1) → (−1, 0)

⟩
+
⟨
(3,−3) → (1,−1)

⟩
,

𝐶[2] =
⟨
(1, 1) → (2, 0)

⟩
−
⟨
(−3, 2) → (−1, 0)

⟩
+
⟨
(3,−1) → (2, 0)

⟩
−

⟨
(2,−2) → (0, 0)

⟩
+
⟨
(3,−2) → (2,−1)

⟩
+
⟨
(3,−3) → (2,−2)

⟩
−

⟨
(2,−1) → (1, 0)

⟩
− 2
⟨
(2, 2) → (3, 1)

⟩
−
⟨
(2, 1) → (3, 0)

⟩
−

⟨
(−3, 2) → (−2, 1)

⟩
−
⟨
(2,−2) → (1,−1)

⟩
,

𝐶[3] =
⟨
(2, 1) → (3, 0)

⟩
+
⟨
(2, 2) → (3, 1)

⟩
−
⟨
(3,−3) → (0, 0)

⟩
−
⟨
(3,−1) → (2, 0)

⟩
−

⟨
(3,−1) → (1, 1)

⟩
−
⟨
(3,−3) → (1,−1)

⟩
−
⟨
(3,−3) → (2,−2)

⟩
−

⟨
(3,−2) → (2,−1)

⟩
−
⟨
(3,−2) → (1, 0)

⟩
where

⟨
(· , ·) → (· , ·)

⟩
is defined in Eq. (4.3.9). The right-hand side consists of all

interactions that are consistent with quark number conservation. We also make the

approximation that

𝑁𝑖 = 𝑁−𝑖. (4.3.11)

While this equality is not strictly satisfied due to the pocket asymmetry, we are able

to make it because only one of three scenarios can occur: either (i) the symmetric

component is never depleted to the point that the asymmetry is important, (ii) it is

completely depleted and the accidental asymmetric abundance is all that survives, or

(iii) the symmetric and the asymmetric components are comparable and our answer

is off by an 𝒪(1) factor. As argued before, this asymmetry introduces a lower bound

on 𝒮 (Eq. (4.2.16)).

Despite Eq. (4.3.10) having numerous terms, solving these equations numerically

is rather straightforward. For convenience we list the important parameters entering

into these equations and their reference values in Tab. 4.2. We remind the reader that

Eq. (4.2.9) overestimates 𝑣𝑤 since it neglects the quark pressure’s ability to oppose

pocket contraction. As we will discuss below, we can bracket the effect that a slower

𝑣𝑤 would have on the final DM relic abundance quite robustly, see Sec. 4.3.5 for further

details. We also reemphasize that we have used simple approximations for some of

other quantities – particularly the bubble radius – and a rigorous determination of

them is only possible through more extensive numerical calculations.

In Fig. 4-6, we show the solution of the Boltzmann equations in Eq. (4.3.10) for
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Quantity 𝑣𝑤 𝑅𝑖(Λ) 𝜉(𝑡𝑛) 𝑣𝑞 𝜎𝑣 Binding energies

Central Value See main text. Eq. (4.2.8) Eq. (4.2.5) Eq. (4.2.11) See App. C.2 See App. C.3

Table 4.2: The relevant quantities in the Boltzmann equations and our expression for
each. More discussion on how we treat 𝑣𝑤 is included in the main text.

a specific quark mass and confinement scale when we neglect quark pressure and use

Eq. (4.2.9) for the pocket wall velocity. There are a number of important observations

to be made about this figure. First, the fractions of diquarks and baryons are initially

very small, justifying why we did not include them in our calculations prior to pocket

formation. Next, as the pockets contract, the number of bound states initially grows

while the number of free quarks decreases due to binding or annihilation to gluons.

As the number of free quarks decreases, the annihilation or escape of bound states

become more important than their production, so their occupation numbers reach a

maximum and monotonically decrease from there. Finally, we see that each step in

the chain of bound state formation (𝑞+𝑞+𝑞 → 𝑞𝑞+𝑞 → 𝑞𝑞𝑞) results in a suppression,

i.e. the total number of diquarks is suppressed compared to the total number of free

quarks, while the total number of baryons is suppressed compared to the diquarks.

We anticipate that had we started with a larger 𝑆𝑈(𝑁) gauge group (𝑁 > 4), the

bound states with higher quark numbers would have been further suppressed and the

final DM survival factor would be lower. We leave a more detailed analysis of this

scenario to future work.

Finally, to calculate the survival factor, we simply integrate Eq. (4.3.4) to calculate

the total number of baryons that escaped during the contraction of the pocket and

normalize to the initial quark number in the pocket. Rewriting Eq. (4.3.4) in terms

of 𝑁 and 𝑅, we find

𝒮symm. =
3
∫︀
𝑑𝑁 esc

3

𝑁 initial
𝑞

=
9

𝑁1(𝑅𝑖)

∫︁
𝑑𝑅

𝑣𝑞 + 𝑣𝑤
𝑣𝑤𝑅

𝑁3(𝑅), (4.3.12)

where we have used Eqs. (4.2.10) and (4.3.6) to change variables, and the subscript

in 𝒮symm. is to indicate that this is the survival factor of the symmetric component of

the dark quarks. The factor of 3 in the first equality accounts for the fact that three

quarks exists within every one baryon that escapes.

Note that in deriving this result we assumed no asymmetry exists in the pocket.

Combining this result with the lower bound on 𝒮 from the asymmetry component,
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Figure 4-6: Top: Evolution of the fractional number of free quarks (red), diquarks
(green), and baryons (black) inside the pocket, normalized to the initial quark number.
We neglect the effect of quark pressure on 𝑣𝑤 in solving the Boltzmann equations for
this plot, meaning that we use Eq. (4.2.9) for 𝑣𝑤. As the phase transition proceeds, the
pocket radius decreases. Initially, almost all the quarks are unbound. As the pocket
contracts, more bound states are formed and fewer quarks are found as free particles.
As their numbers increase, the various states’ annihilation rates increase as well. At
some point their production and annihilation rates are comparable and the number
of bound states inside the pocket reaches its maximum. The accumulative surviving
fraction assuming zero pocket asymmetry predicted by Eq. (4.3.12) is denoted by the
dotted purple line. The asymptotic value of this line is equal to 𝒮symm.. We denote the
asymmetry lower bound on 𝒮 from Eq. (4.2.16) by the orange dashed line. Bottom:
The DM abundance evolution for this mass and confinement scale. The 𝑇 > Λ region
is similar to Fig. 4-1; the confinement takes place at 𝑇 = Λ and gives rise to the
abundance suppression predicted by Eq. (4.3.13).
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Eq. (4.2.16), we have

𝒮 = max {𝒮symm., 𝜂rms} . (4.3.13)

In Fig. 4-6 we show 𝒮symm. and 𝜂rms as well. We find that for the chosen Λ and 𝑚𝑞,

while neglecting the effect of quark pressure on the wall velocity, 𝒮symm. > 𝜂rms, i.e.

the local pocket asymmetry is not saturated during the contraction, but 𝒮 is within

∼ 1 order of magnitude of this asymmetry bound. In fact, we find this is true for

all the points in the parameter space that we study. In the upcoming section we will

describe how we can leverage this observation to bracket the range of parameter space

that gives rise to the correct DM relic abundance.

4.3.3 Analytic approximation

While the Boltzmann equations in Eq. (4.3.10) can be solved numerically, the large

number of terms involved can muddle one’s intuition. In this section, we develop a

simple analytic approximation for solving these equations and determining 𝒮symm..

From the full set of interactions included in Eq. (4.3.10), we identify and neglect

all but the most relevant processes that provide a closed set of equations with an ana-

lytic, asymptotic solution that shows good qualitative agreement with the numerical

treatment. The subset of processes that we include are the formation of diquarks,

and the subsequent capture of quarks that lead to the formation of baryons. The

reduced set of Boltzmann equations is then

−𝑣𝑤
𝑉

𝑁 ′
1 = −

⟨
(1,−1) → (0, 0)

⟩
− 2
⟨
(1, 1) → (2, 0)

⟩
−
⟨
(2, 1) → (3, 0)

⟩
+
⟨
(2,−1) → (1, 0)

⟩
,

−𝑣𝑤
𝑉

𝑁 ′
2 = −

⟨
(2,−2) → (0, 0)

⟩
−
⟨
(2, 1) → (3, 0)

⟩
+ 2
⟨
(1, 1) → (2, 0)

⟩
, (4.3.14)

−𝑣𝑤
𝑉

𝑁 ′
3 = −

⟨
(3,−3) → (0, 0)

⟩
−
⟨
(3,−1) → (2, 0)

⟩
+
⟨
(2, 1) → (3, 0)

⟩
− 𝑑𝑁 esc

3

𝑑𝑅
.

The analytic solution for this set of equations is obtained relying on several as-

sumptions.

∙ The initial dark quark abundance 𝑁 initial
𝑞 is determined by the pre-confinement

freezeout of the elementary constituents.

∙ As long as the annihilation rate and the baryon escape rate in the contracting

pocket is slower than the pocket contraction rate 𝑣𝑤/𝑅, the total quark number

119



is conserved. Once those rates are of the same order, the annihilation process

“recouples", and the free quark abundance drops toward zero. The condition

Γann ≈ 𝑁 initial
𝑞 ⟨𝜎𝑣⟩1(−1)→00/𝑉 = 𝑣𝑤/𝑅 defines the recoupling pocket radius

𝑅rec =

√︃
3𝑁 initial

𝑞 ⟨𝜎𝑣⟩1(−1)→00

(4𝜋𝑣𝑤)
. (4.3.15)

∙ The initial number of bound states, 𝑁𝑋 (𝑋 = 2, 3), is negligible. As the pocket

contracts, bound states start forming. Thus, we can write 𝑁𝑋 ∼ 𝑅−𝑛, with

𝑛 > 0, which implies 𝑁 ′
𝑋 ∼ 𝑁𝑋/𝑅. Inserting this into the Boltzmann equation

shows that there is a small parameter controlling the rate of change, which is

proportional to 𝛿 = 𝑁𝑋⟨𝜎𝑣⟩/(𝑅2𝑣𝑤) ∝ ⟨𝜎𝑣⟩/𝑅2
1 ∼ ⟨𝜎𝑣⟩Λ10/3/𝑀

4/3
pl ≪ 1. Thus

expanding in 𝛿 the leading order result is obtained by setting 𝑁 ′
𝑋 ≈ 0, which is

the equilibrium condition before the recoupling due to pocket contraction.

Given the above assumptions, before the annihilation process recouples, we have

the quark number conservation 𝑁1 = 𝑁 initial
𝑞 − 2𝑁2 − 3𝑁3. Applying the equilibrium

condition before recoupling and neglecting the escape and annihilation terms for the

bound states at that point gives

2 ⟨𝜎𝑣⟩11→20

(︁
𝑁2

1 − 𝑓1𝑁2𝑉
)︁
= ⟨𝜎𝑣⟩21→30

(︁
𝑁2𝑁1 − 𝑓2𝑁3𝑉

)︁
,

⟨𝜎𝑣⟩21→30

(︁
𝑁1𝑁2 − 𝑓2𝑁3𝑉

)︁
= ⟨𝜎𝑣⟩3(−1)→20

(︁
𝑁3𝑁1 − 𝑓3𝑁2𝑉

)︁
, (4.3.16)

where

𝑓1 =
(𝑛𝑒𝑞

1 )2

𝑛𝑒𝑞
2

∝ exp (−Δ𝐸1/𝑇𝑐) ,

𝑓2 =
𝑛𝑒𝑞
2 𝑛𝑒𝑞

1

𝑛𝑒𝑞
3

∝ exp (−Δ𝐸2/𝑇𝑐) ,

𝑓3 =
𝑛𝑒𝑞
3 𝑛𝑒𝑞

1

𝑛𝑒𝑞
2

∝ exp (−Δ𝐸3/𝑇𝑐) , (4.3.17)

and Δ𝐸𝑖 denote the heat released during the above processes. The solution to the

above algebraic set of equations provide the abundances of quarks and bound states

in the contracting pocket before recoupling as a function of the pocket radius 𝑅.

The total abundance of produced color-singlet baryons is given by the total baryon

abundance 𝑁3 evaluated at the recoupling radius 𝑅rec. Notice that 𝑒−Δ𝐸1,2/𝑇𝑐 ∼
𝑒−𝛼2𝑚𝑞/𝑇𝑐 ≫ 𝑒−Δ𝐸3/𝑇𝑐 ∼ 𝑒−𝑚𝑞/𝑇𝑐 , where 𝛼 is evaluated at the bound state’s Bohr
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radius. Thus, we identify a strong hierarchy 𝑓1 , 𝑓2 ≫ 𝑓3.

As a result, a simple analytic expression for the baryon fraction that survives the

phase transition relative to the initial quark abundance 𝑁 initial
𝑞 can be found. In the

limit of inefficient bound state breaking reactions 𝑓1,2 𝑉 ≪ 1 it is

𝑁3

𝑁 initial
𝑞

=
2⟨𝜎𝑣⟩21→30⟨𝜎𝑣⟩11→20

⟨𝜎𝑣⟩3(−1)→20⟨𝜎𝑣⟩21→30 + 4⟨𝜎𝑣⟩3(−1)→20⟨𝜎𝑣⟩11→20

. (4.3.18)

Thus, assuming all the cross sections are of the same order of magnitude, we see that

the baryon survival factor is of order one, if deeply bound states dominate the system.

This is the case if the scale hierarchy 𝑚𝑞 ≫ Λ is taken to be extremely large.

In the regime of efficient bound state breaking 𝑓1,2𝑉 ≫ 1, we find stronger DM

abundance suppression. To simplify things even further, we assume the terms with 𝑓

dominate and that 𝑓1 ∼ 𝑓2.8 With these assumptions, we find that at the recoupling

radius we have

𝑁3

𝑁 initial
𝑞

=
4𝜋𝑣3𝑤

3𝑓 2
1𝑁

initial
𝑞 ⟨𝜎𝑣⟩31(−1)→00

. (4.3.19)

Now if we assume in Eq. (4.3.12) the integral is dominated by the contribution around

the recoupling point where the bound states total numbers peak, we find

𝒮symm. ≈ 9
𝑣𝑞
𝑣𝑤

4𝜋𝑣3𝑤
3𝑓 2

1𝑁
initial
𝑞 ⟨𝜎𝑣⟩31(−1)→00

. (4.3.20)

We can better understand from this equation the effects that various parameters

have on the survival factor. Increasing the quark velocity 𝑣𝑞 enhances their escape rate

(see Eq. (4.3.4)) thus increasing 𝒮symm.. We also see that by increasing ⟨𝜎𝑣⟩1(−1)→00,

the survival factor decreases, which was expected since by increasing this cross section

quarks annihilate more against each other instead of binding in bound states. For

shallower bound states the binding processes are less favored, thus we expect the sur-

vival factor should decrease. This is exactly what Eq. (4.3.20) suggests: for shallower

bound states, the Boltzmann suppression in 𝑓1 becomes less severe and 𝑓1 increases,

thus 𝒮symm. decreases.

The initial density of quarks in a pocket is determined via a pre-confinement,

perturbative freezeout calculation. Yet, 𝑁 initial
𝑞 in Eq. (4.3.20) depends on the initial

8Both 𝑓1 and 𝑓2 depend on the ratio 𝑚𝑞/Λ. For 𝑚𝑞/Λ . 1000 they are within an orders of
magnitude of each other, justifying our assumption. Neglecting this difference allows us to find a
simple analytic formula that sheds light on the effect of various quantities on the survival factor.

121



pocket radius too. Thus, through 𝑁 initial
𝑞 we find that 𝒮symm. ∼ 𝑅−3

𝑖 .

Finally, by decreasing 𝑣𝑤, according to Eq. (4.3.15), the recoupling radius in-

creases, which gives less time for the baryon abundance in the pocket to build up

before the interactions become efficient again, see Fig. 4-6. A larger recoupling radius

means a smaller peak value for the 𝑁3 abundance, like the one seen at 𝑅Λ ∼ 105 in

Fig. 4-6, which in turn decreases the survival factor 𝒮symm.. This behavior is exactly

what we see in Eq. (4.3.20).

4.3.4 The effect of quark pressure and summary of assump-
tions

The 𝑣𝑤 scaling of Eq. (4.3.20) helps us better understand how our determination of

𝒮 would change had we included the effect of quark pressure on 𝑣𝑤. This equation

suggests that by using Eq. (4.2.9) for 𝑣𝑤 and ignoring the fact that quark pressure can

oppose pocket contraction, we are actually calculating an upper bound on the survival

factor, since we are certainly overestimating 𝑣𝑤. Also, this 𝑣𝑤 scaling, combined with

the proximity of 𝒮symm. to the asymmetry bound 𝜂rms across our parameter space

when we use Eq. (4.2.9), motivates us to believe that when the quark pressure is

properly taken into account, we should expect that we saturate the the asymmetry

bound 𝒮 = 𝜂rms for every point in the parameter space that we study (see App. C.1.4

for more empirical evidence of this claim). In the upcoming section we use these two

limits to bracket the parameter space of the model that reproduces the observed DM

relic abundance. We refer to these two limiting scenarios as the zero quark pressure

and the asymmetry scenarios.

Before jumping to the result of solving the Boltzmann equations, it is useful to

review all the parameters affecting our calculation of 𝒮 and the final DM abundance.

The UV model has a very limited set of parameters: the confinement scale, Λ, and

the quark mass, 𝑚𝑞. These parameters feed into the calculation of a few secondary

quantities that directly affect the calculation of 𝒮 and are listed in Tab. 4.2. A

precise calculation of these secondary quantities requires various non-perturbative

studies. These quantities can be divided into two broad categories: macroscopic and

microscopic.

The macroscopic quantities are those concerning the dynamics of the bubbles and

pockets, i.e. their initial radius 𝑅𝑖 and their wall velocity 𝑣𝑤. While our expressions
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for these quantities in Eqs. (4.2.8) and (4.2.9) were based on a simplified simulation

of the phase transition (see App. C.1), there is extensive literature concerned with

the detailed calculation of these quantities. Unfortunately, this literature has not yet

settled on a single, definitive calculation of these quantities, which is why we content

ourselves with simple order of magnitude estimates. (See, for example, Refs. [216,

220–222] and references within for various calculations of the wall velocity.)

The microscopic quantities include various cross sections and binding energies.

They also determine the dimensionless inter-quark spacing, 𝜉, which directly affects

our final results as well. We use the results from [47] for the cross sections and the

binding energies. We summarize the relevant quantities in Apps. C.2-C.3.

It is also worth reiterating a few important assumptions that significantly stream-

lined our analysis. Recall that in Sec. 4.2.2 we argued that the wall velocity is

controlled by the amount of supercooling and quark pressure during the phase tran-

sition. Following that assumption, we found that the typical velocity of quarks in

Eq. (4.2.11) is much faster than the wall velocity even when the quark pressure effect

is neglected in Eq. (4.2.9). Therefore, any density gradient within a pocket caused

by the compression of the walls can be quickly smoothed out by the thermal mo-

tions of the quarks. As a result, we assume that the particles within the pockets are

homogeneously distributed, which simplifies our analysis significantly.

We also neglect the abundance of the bound states before the phase transi-

tion. Furthermore, as suggested in Fig. 4-1, we assume the quarks are initially well-

separated inside the pockets, and that they rebound off the wall surface promptly.

As we will argue later, all of our assumptions determine the parts of the parameter

space where our analysis is valid.

In principle the formed baryons could further interact to form dark nuclei at the

end of the pocket contraction phase. The formation of such multi baryon states in

dark sectors has been discussed in Ref. [223]. To estimate the effect in our scenario,

we can rescale the predicted interaction rate by the compression factor inside the

pockets, which quadratically enhances the formation rate. The contraction factor is

defined as 𝑐𝑓 = (𝑅1/𝑅rec)
3, where 𝑅rec is the radius where the interactions recouple.

An estimate of this value based on our analytic solution gives 𝑐𝑓 ≈ 104(𝑚𝑞/Λ)
3/2. In

addition the number density of baryons is rescaled by the survival factor of 1/
√︁

𝑁 initial
𝑞 ,

which counteracts the compression effect. Evaluating this in our scenarios, where
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Figure 4-7: Contours of constant survival factor 𝒮 (green contours) in the two limiting
scenarios that we consider: (i) assuming the asymmetry bound on 𝒮 is saturated (on
the left), or (ii) neglecting the quark pressure effect on the pocket wall velocity (on the
right). The contours of constant DM mass in TeV are shown as well (black dashed).
To obtain the right plot, we solve the full set of Boltzmann equations in Eq. (4.3.10)
using the values for the initial pocket radius 𝑅𝑖 and the pocket wall velocity 𝑣𝑤 based
on our simulation results discussed in Sec. 4.2 and App. C.1. In the light blue region
on the right plot we find that the suppression is so severe that only the accidental
asymmetric abundance of quarks in each pockets survives after the phase transition.
For the left plot we simply assume 𝒮 = 𝜂rms for every point in the parameter space.
We observe orders of magnitude suppression in the DM abundance due to the second
stage of annihilation during the phase transition in either scenarios. Note that the
small difference in the 10−7 contours in the overlap region is a plotting artifact.

the constituent quark mass is large, and thus the number density at freezeout is

significantly reduced, leads to the conclusion that in the parameter space region we

consider the di-baryon fraction is at most of the order of 0.5%. Formation of larger

multi-baryon clusters is also severely suppressed due to this di-baryon production

bottleneck.

4.3.5 Results and discussion

We now turn to the central results of this chapter. We scan over a range of Λ and

𝑚𝑞/Λ values, solving the Boltzmann equations at each point to calculate the survival

factor 𝒮. As mentioned above, we use Eq. (4.2.9) for the wall velocity when solving the

equations and finding the viable part of the model’s parameter space that produces

the correct present-day abundance of DM. We argued that this zero quark pressure

scenario and the asymmetry scenario, in which we assume 𝒮 = 𝜂rms, are the two

limiting cases that bracket the uncertainties in our DM relic abundance calculation.

We will find that these two scenarios only give rise to an 𝒪(1) difference in the DM

mass range that can explain the observed relic abundance.

In Fig. 4-7 we show contours of constant survival factor for both these scenarios
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and for different values of Λ and 𝑚𝑞/Λ. The asymmetry scenario plot shows the

smallest survival factor possible while the zero quark pressure scenario gives an upper

bound on the survival factor for every point in the parameter space, see the discussion

in Sec. 4.3.3. In the asymmetry scenario the only sources of uncertainty are those

affecting the pre-confinement calculation and the initial pocket size, while in the zero

quark pressure scenario the uncertainty in determining the wall velocity 𝑣𝑤 should

also be included.

The available parameter space in the asymmetry limit scenario is shown in Fig. 4-

8. Equation (4.2.7) shows that as Λ increases, 𝑅1, and so the number of trapped

quarks inside the pocket, decreases. Thus, as expected from Eq. (4.2.16), we find

that the larger the initial radius, the smaller the survival factor.

We should keep in mind that many simplifying approximations were made about

the dynamics of the phase transition in App. C.1 in order to obtain Eq. (4.2.8) for the

bubble radius. This, inevitably, introduces some uncertainty in our calculation. To

characterize this uncertainty, in Fig. 4-8 we introduce a fudge factor for the bubble

radius denoted by 𝑓𝑅, to be multiplied against the values from Eq. (4.2.8). The

observed relic abundance line moves within the light purple band as we vary 𝑓𝑅

between 0.1 and 10. Any point above and to the right of the relic abundance line,

including the entire red region, is ruled out.

Since the asymmetry limit scenario was the lowest attainable 𝒮 in our setup, the

relic abundance line in this scenario is an upper bound on the possible masses in our

model.

In the other limit, the zero quark pressure scenario provides us with a lower bound

on the range of DM masses in this setup that can explain the observed DM abundance.

In Fig. 4-9 we show the available parameter space in this scenario. The calculation

can now be affected by a change in both the initial pocket radius 𝑅1 and its wall

velocity 𝑣𝑤. To characterize this uncertainty, in Fig. 4-9 we introduce a fudge factor

for both the bubble radius and the wall velocity, denoted by 𝑓𝑅 and 𝑓𝑣, respectively.

As expected, for any fixed Λ the observed DM relic abundance in this scenario is

obtained by smaller DM masses than that of the asymmetry scenario in Fig. 4-8.

In this figure we also show the relic abundance line when we use the analytic

approximation of Eq. (4.3.20) to calculate the survival factor. We find reasonable

agreement between our analytic approximation (the orange curve) and the full nu-
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Figure 4-8: The produced abundance of dark baryons, the DM candidate, in the
asymmetry abundance scenario. The black dashed lines are contours of constant DM
mass in TeV. The relic abundance line (with the initial radius fixed to its central value,
i.e. 𝑓𝑅 = 1) is plotted (purple line) along with its uncertainty (light purple shades)
corresponding to an order of magnitude variation of the initial radius. The shaded red
region is excluded, as it produces too much DM, while the unshaded region produces
too little DM. The baryons can therefore constitute a sub-component of the DM
within the unshaded regions of parameter space. The survival factor is determined
by the accidental asymmetry of the pocket, which is independent of the wall velocity
as long as the asymmetry bound is saturated. Thus, the major source of uncertainty
in the location of the relic abundance line is the initial pocket radius. We also find
that the uncertainty from microscopic quantities is sub-dominant to those of initial
pocket radius. This figure clearly shows that the baryon masses accounting for the
observed DM abundance can be much heavier than the unitarity bound [210].

merical result (the purple curve).

In both these limiting scenarios studied in Figs. 4-8-4-9, we find a similar range of

DM masses and Λ that can account for the present-day DM abundance. We expect

that these two scenarios bracket the true location of the relic abundance line when

the effect of the quark pressure on the pocket wall velocity is appropriately included.

The figures indicate that, depending on the macroscopic parameters, the region of

parameter space that produces the observed DM abundance predicts 𝑚DM ∼ 𝒪(1)−
𝒪(100) PeV, well above the thermal relic unitarity bound of 𝑚DM . 300 TeV [210].

Even with various sources of uncertainty, our results predict a confinement scale

roughly in the 𝒪(1)−𝒪(100) TeV range, in contrast to [184], which predicts a much

wider range of confinement scales in such models. The parameter space above this

range is ruled out, while the remaining parameter space is allowed, producing a sub-

component of DM.

The values of the cross sections and the binding energies entering the Boltzmann
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Figure 4-9: Similar to Fig. 4-8 but now with zero quark pressure. We vary the pocket
initial radius (top) or the wall velocity (bottom) within one order of magnitude of
the central values in Eqs. (4.2.8) and (4.2.9) to characterize the uncertainty in the
final relic abundance calculation stemming from these quantities. The relic abundance
line using the analytic approximation of Eq. (4.3.20) for the survival factor is denoted
by the orange curve too. Even with the quark pressure neglected, we still find a
substantial suppression in the DM abundance during the phase transition. We still
find that the baryon masses accounting for the observed DM abundance can be much
heavier than the unitarity bound [210].

equations can be found in appendices C.2 and C.3, respectively. We find that the

uncertainty in our results due to these microscopic quantities is sub-dominant to the

uncertainty from the macroscopic bubble dynamics parameters discussed above. For

further details about these parameters and the uncertainties in determining them see

the aforementioned appendices and the references therein.

Determining the exact position of the relic abundance line requires more precise

calculations of both macroscopic and microscopic quantities. Nonetheless, such cal-

culations will not change our qualitative conclusions: that the phase transition gives
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rise to a new stage of annihilation that reduces the relic abundance by orders of

magnitude and shifts the DM mass to well above the unitarity bound.

We can also understand the expected results for the parts of parameter space

not plotted. For larger Λs than were plotted, Figs. 4-8-4-9 suggests that this model

always overproduces DM and is ruled out. For smaller Λs than were plotted, our as-

sumption that the pre-confinement abundances of bound states are negligible breaks

down. Since so many baryons are produced before the start of the phase transition,

the survival factor becomes comparable to 1. For low enough Λ, we should use the

combinatoric calculation of the relic abundance described in Ref. [184]. An additional

aspect is that in this region of parameter space the glueball lifetime can be substantial,

which leads to entropy injection and makes the abundance calculation more model de-

pendent, as discussed explicitly for several models in Ref. [184]. Further investigation

of this region is left for future works.

As we go to larger values of 𝑚𝑞/Λ, our assumption that 𝑣𝑞 ≫ 𝑣𝑤 breaks down. In

this case, local inhomogeneities appear in the distribution of particles in the pockets

and the entire homogeneous system of equations in Eq. (4.3.10) must be modified.

Furthermore, we find that, for higher 𝑚𝑞/Λ than is shown in Figs. 4-8-4-9, the quark

separations during the contraction epoch can become as low as ∼ 1/Λ (due to the

small cross sections allowing for a greater degree of compression). In this case, the

picture of well-separated quarks that rebound off the stiff bubble wall (before they

run into other colored particles) must be modified. Non-perturbative effects become

more relevant in this case. It is also possible that at such high densities quarks bind

into more stable and massive dark nuclear states such as nuggets, see [224] for a study

of dark quark nuggets in the light dark quark limit.

Furthermore, a recent study has investigated the creation of multi-baryon bound

states in a very similar framework [225]. It was found that at 𝑚𝑞/Λ > 108 the fermi-

pressure of the quark constituents can lead to the formation of compact objects.

However, the framework of the mentioned investigation significantly differs from the

setup used in our work. In particular the DM number density is fixed by a preexisting

asymmetry and the temperature of the decoupled dark sector is chosen as an initial

condition.

Finally, as we go to lower values of 𝑚𝑞/Λ, eventually the first-order phase transi-

tion turns into a second order one and then a cross over, see e.g. [199]. In this regime
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there will be no bubble walls to compress quarks into a second stage of annihilation.

Even for lower values of 𝑚𝑞/Λ for which there still exists a first-order phase transition

we run the risk of breaking our assumption that the string breaking rate is negligible,

so that quarks and diquarks can escape from the pocket before significant annihilation

takes place.

All in all, outside of the window shown in Figs. 4-8-4-9, either the parameter space

is already ruled out, or at least one of the simplifying assumptions we made fails and

our analysis becomes unreliable.

4.3.6 Extensions of our analysis

So far we have focused on a confining 𝑆𝑈(3) gauge group with a single generation

of heavy fermions in the fundamental representation. Nonetheless, it is conceptually

straightforward to repeat our analysis for slightly different setups. In this section

we comment on the differences that we expect would have arisen had we varied the

number of colors, 𝑁𝑐, or the quark representation.

Had we chosen a gauge group with a larger number of colors, 𝑆𝑈(𝑁𝑐 > 4), we

expect that we would have found a smaller 𝒮symm. since the stable DM candidate

in such a theory (the analogue of the baryon) requires more constituent quarks to

bind together in more steps. (Notice that in Fig. 4-6 as the quark number of a state

increases, its abundance decreases within a pocket.) However, if even with 𝑁𝑐 = 3

we find 𝒮symm. 6 𝜂rms, we expect to saturate the asymmetry bound for larger gauge

groups as well. The additional 𝒮symm. suppression would not change the final survival

factor 𝒮.

The quark representation under the dark gauge group has a slightly more compli-

cated effect on our results. For any quark representation, one must first identify the

list of all possible bound states and then write down the Boltzmann equations with all

possible interactions. As explained in Sec. 4.3.3, the binding energies of these bound

states can also have a significant effect on the solutions of the Boltzmann equations.

As an example, consider the case in which quarks are in the adjoint representation

of the group. These quarks can bind with gluons to form color-neutral gluequarks

[186]. Since the gluons can be found abundantly, we expect that quarks can easily

pass through pocket walls by binding with a nearby gluon. Thus, pocket walls will

not compress the quarks, and there will be no second stage of annihilation due to the
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phase transition.

Besides changing the model under consideration, our work would also benefit

from improving our order of magnitude estimates and simplifying assumptions. Ded-

icated numerical simulations that more carefully model the bubble dynamics and

non-perturbative physics could reduce the uncertainties in both macroscopic and mi-

croscopic quantities listed in Tab. 4.2, narrowing down the uncertainty on the relic

abundance line in Figs. 4-8-4-9.

4.4 Potential Experimental Signals

Our study so far only relied on fairly general properties of a dark sector. We only

assumed the dark sector under study is a confining 𝑆𝑈(3) gauge theory with a single

generation of heavy fermions; we also assumed a portal exists between the sectors

that keeps them in kinetic equilibrium and allows the glueballs and mesons to decay

to the SM. All the conclusions drawn in the previous sections were independent of

further details of the portal and the origin of the heavy dark quark mass.

A detailed study of all the phenomenological signals of such a sector has to be

carried out in a model-dependent way with a specified portal. As a result, here we

merely list the signals and constraints that should be expected from this broad class

of models.

∙ The main feature of our setup is a first-order phase transition in the early uni-

verse. Such a phase transition can also give rise to a stochastic gravitational

wave (GW) background that can be detected in a host of different future ex-

periments, e.g. see [226] for a recent study of the GW signals of confining dark

sectors. The characteristics of the resulting GW, such as the frequency and the

strength, depend on a handful of thermodynamical parameters, see [227] for a

brief review. This GW signal is independent of the portal to the SM. A naive

estimate9 shows that different parts of our parameter space could potentially

be probed in future experiments like DECIGO [229, 230] and BBO [231]. Early

universe phase transitions can also give rise to anisotropies in the GW spectrum,

which can potentially be detected at future facilities (see e.g. [232]). Given the

extremely high mass range of the DM candidates in our model, the GW signals
9We use the formulas in [228] to estimate the GW signal produced during the phase transition.

We use the interface introduced in [213] to compare the result to the reach of various experiments.
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could have the highest discovery potential in such sectors. We leave the further

study of GW signals in this class of models for future work.

∙ The glueballs and the mesons are unstable due to the portal to the SM. Strin-

gent bounds from BBN require that these relics have a short lifetime. See for

instance [233–235] for recent studies. As a rule of thumb, one can avoid various

constraints by assuming all these bound states decay before the BBN, i.e. their

lifetime is 𝜏 6 1s. This bound on the lifetime introduces a lower bound on

the strength of the portal. This lower bound can vary substantially depending

on the details of the portal. Our requirement that both sectors are in kinetic

equilibrium also imposes a lower bound, though we expect the BBN bound to

be more stringent.

∙ The portal to the SM introduces possible direct and indirect detection signals.

However, the DM number density in the universe and in our galaxy is very

suppressed due to this model’s heavy DM mass. A naive estimation suggests

that our model’s indirect signal from DM annihilation within the Milky Way is

severely suppressed and undetectable. The direct detection signal, however, de-

pends on the details of the portal and should be studied model-dependently. We

note that in this heavy mass range even very large DM-SM elastic cross sections

are allowed, but within the reach of upcoming and ongoing experiments [236].

∙ A separate indirect detection signal comes from the observation that our com-

posite DM model admits excited states. De-excitations from these excited states

might lead to radiation that could be detected. Excitations could be produced

in the early universe or via interactions with matter today.

∙ Yet another indirect signal could come from the capture of DM in celestial

bodies see for example Refs. [237, 238].10 As DM accumulates at the bottom

of these potential wells, it can begin to annihilate at a significant rate, possibly

affecting the evolution of these celestial bodies in an observable way or enhancing

a potential annihilation signal [241, 242].

∙ For the 𝒪(PeV) and above DM masses predicted in our model, direct produc-

tion of DM at collider facilities is not possible in the foreseeable future. Yet, if
10See also [239] and [240] for studies of lighter DM capture in gravitational basins or exoplanets,

respectively.
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the portal is substantially lighter, it can be directly observed at collider exper-

iments. While the dark quarks are too heavy to produce at collider facilities,

the glueballs of the new dark sector, whose mass is 𝒪(10Λ), could potentially

be produced at future colliders.

∙ Various studies suggest an upper bound on the DM self-scattering [243–249].

As a rough estimate

𝜎SI/𝑚DM . 1 cm2g−1 ∼ (60 MeV)−3 . (4.4.1)

It is straightforward to check that for the high confinement scales we are study-

ing, this upper bound is easily satisfied.

∙ One can also search for signals coming from the inhomogeneities in the DM

density that were produced during the phase transition when DM was com-

pressed by contracting pockets, but this seems unlikely. By performing a Jeans

stability analysis we find that the internal baryon pressure easily overcomes the

self-gravity of these overdensities. Pockets therefore do not seed self-gravitating

DM clumps. One might also look for modifications to the matter power spec-

trum due to these overdensities, but initial estimates indicate that the matter

power spectrum would only be modified at unobservably small mass scales if

at all. Specifically, the total DM mass within a horizon radius soon after the

phase-transition epoch (after which the comoving abundance is fixed) can be

estimated as the DM density multiplied by 𝐻−3, with a DM density crudely ap-

proximated (ignoring changes in the number of relativistic degrees of freedom

over time) as ∼ (Λ/𝑇CMB,0)
3× the present cosmological density of DM, where

𝑇CMB,0 ∼ 2×10−4 eV is the present-day temperature of the radiation bath. This

gives an enclosed mass:

𝑀enc ∼ (Λ2/𝑀pl)
−3(Λ/𝑇CMB,0)

3 × 10−6GeV/cm3 ∼
(︂
1TeV
Λ

)︂3

× 10kg (4.4.2)

Thus for phase transitions at the TeV scale and above, we would expect phase-

transition-induced inhomogeneities to affect DM clumps at the kg scale and

below. Even if these clumps survived, this mass scale is vastly lower than can be

probed by any possible observational constraints on the matter power spectrum,

which are currently exploring halo masses of order 107−8𝑀⊙ (e.g. [250–252]).
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Because of its low number density, the dark matter in our setup can have significant

interactions with the SM particles and still have escaped detection so far. Creative

new search strategies will be needed to explore this possibility. Novel ideas for direct

detection of such a scenario have been put forward in Ref. [236], and interesting

signals in heavy isotope searches [253] could arise if our dark baryons can bind to SM

atoms and nuclei.

In addition to the above signals, which should exist for any specific realization

of the DM-SM portal, there may exist additional portal-dependent signatures. We

also find, using the results of Ref. [184], that depending on the type of the portal

to the SM the glueballs lifetime could be larger than the Hubble time at 𝑇 = Λ.

In such a scenario, the delayed decay of the glueballs can further dilute the DM

abundance [186, 189] in the parameter space that we have studied, thus pushing the

relic abundance line in Figs. 4-8-4-9 to even higher DM masses. A proper study of

this effect, as well as other signals from any specific portal, is left for future works.

4.5 Conclusion

In this work we studied the consequences of a first-order phase transition in a confining

dark sector with a single heavy quark in the fundamental representation. We assumed

a portal exists between our sector and the dark sector that keeps the two sectors at

kinetic equilibrium at the time of the phase transition and respects dark baryon

number conservation. The arguments we presented do not depend on further details

of the portal.

We argued that the bubbles of the confined phase, after nucleation, expand very

slowly. Soon after the bubbles come in contact and coalesce, pockets of the deconfined

phase form, and are submerged in a sea of the confined phase. The quarks are trapped

inside these isolated and ever-contracting deconfined phase pockets. There is always

an accidental asymmetry in the net dark baryon number in a given pocket, due to

local stochastic fluctuations in the number of quarks and anti-quarks at the onset

of pocket formation. As the pockets contract, the enclosed quarks compress until

formerly frozen-out interactions recouple, giving rise to a second stage of annihilation.

We wrote down the complete set of Boltzmann equations with all 2 → 2 in-

teractions between lowest lying bound states of the heavy quark. By solving these

equations, we were able to calculate the fraction of dark quarks that survive the sec-
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ond annihilation event. These surviving quarks bind into stable, color-singlet states

that comprise the DM abundance we see today. We find that these Boltzmann equa-

tions predict a dramatic suppression in the DM relic abundance. This suppression is

sensitive to the initial size of the pocket, the density of the quarks trapped within,

and the pocket wall velocity. While there is a large uncertainty in determining these

parameters, we showed that for virtually any reasonable values of these parameters

there is a significant suppression in the DM relic abundance.

We find the effect of quark pressure on the pocket wall velocity difficult to model.

However, we do know that this effect will further slow down the pocket wall, which

we showed will imply a smaller survival factor. We calculated the relic abundance of

DM in this setup in two extreme scenarios: (i) the zero quark pressure scenario, and

(ii) when we assume the quark pressure is so severe that the asymmetry bound on

the survival factor is saturated. These two limiting scenarios bracket the range over

which the relic abundance line can move when the quark pressure effects are properly

taken into account. We found that for a fixed dark confinement scale Λ, the DM mass

in this setup only changes by 𝒪(1) factors between these two scenarios.

After identifying the parts of the 𝑚𝑞−Λ parameter space that predict the observed

present-day DM abundance, we found that this large suppression opens up parts of

the parameter space that were previously thought to be ruled out. In particular, we

found a DM mass scale well above the often-quoted unitarity bound. Our calculation

also suggests an upper bound on the dark confinement scale Λ ∼ 𝒪(1)−𝒪(100) TeV.

For any Λ above this bound DM is overproduced, despite the dramatic suppression

of its abundance during the phase transition. Depending on the value of Λ, the dark

baryon mass that can explain the observed DM abundance varies roughly between

103 to 105 TeV.

There are many possible signals that our setup can give rise to. With the exception

of gravitational waves, all the other potentially detectable signals depend on the

specific form of this model’s portal to the SM. It will be interesting to investigate the

signatures of specific portals and their constraints, which we leave to future work.

There are numerous ways in which our analysis can be improved. To decrease the

uncertainties in our results it will be important to perform more detailed numerical

simulations of the macroscopic bubble dynamics during the phase transition and the

microscopic strong dynamics that determine the particle interactions. The most im-
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portant quantities to be calculated would be the initial pocket size and its subsequent

contraction rate, and the cross sections and binding energies included in our Boltz-

mann equations. Additionally, it will also be interesting to study the relic abundance

calculation for other gauge groups and different quark representations. Furthermore,

for any specific portal we should study the potential DM dilution due to a delayed

glueball decay after the phase transition.

Confining sectors are natural dark sector candidates. In this chapter we focused

on such sectors with only a single species of heavy dark quark. We have pointed out

the dramatic effect that this model’s first-order phase transition has on the relic DM

abundance of such a sector. The dynamics lead us to a sharp prediction about the

natural mass scale of such DM candidates, 103−5 TeV. It is of paramount importance

to study variations of these minimal dark sectors in greater detail and their potential

signatures in various upcoming experiments.
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Chapter 5

Conclusion

In this thesis, I have offered a glimpse into the power of early universe studies of exotic

dark matter. A wide range of scenarios, like dark matter conversion to standard model

matter or a first-order phase transition in the dark sector, produce significant effects

in the early universe. These effects can then have observable consequences, as was the

case in Chapter 2 and Chapter 3, or expand our conception of what can constitute

dark matter, as was the case in Chapter 4.

There are many directions in which to extend the ideas presented in this thesis.

Specifically, DarkHistory can be used to explore the effects of dark matter energy

injection on other early universe observables. By improving the treatment of low-

energy electrons and tracking the transitions between the different excited states of

Hydrogen, DarkHistory will be able to calculate the spectral distortion to the CMB

due to dark matter energy injection. By relaxing the assumption of homogeneity of

energy injection and deposition and also interfacing with 21-cm codes, DarkHistory

will also be able to calculate the effect that dark matter energy injection has on the

21-cm power spectrum.

Hopefully some of the general ideas presented in this thesis, like model-dependent

and model-independent studies of dark matter or the use of early universe observables,

will lead to a better understanding of dark matter. With so much high-quality cosmo-

logical and astrophysical data coming our way – coming from new telescopes, 21-cm

experiments, state-of-the-art N-body simulations, gravitational wave detectors, etc.

– I am optimistic that we will eventually be able to crack the dark matter mystery.
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Appendix A

DarkHistory

A.1 Inverse Compton Scattering

In this appendix, we discuss in detail the methods used to compute the spectra of

photons that are produced by the cooling of electrons through ICS. We restore ~, 𝑐

and 𝑘𝐵 in this appendix, since the exact numerical value of these spectra is important.

A.1.1 Scattered Spectra

We begin with some preliminaries that will be important in understanding our sub-

sequent discussion of ICS. The goal is to determine the secondary photon spectrum

produced on average by multiple scatterings of a single electron.

Consider an electron with energy 𝐸𝑒 and corresponding Lorentz factor 𝛾 incident

on some distribution of photons 𝑛(𝜖) with initial energy 𝜖 in the comoving frame. Since

we are only interested in ICS off the CMB, we will only consider an isotropic photon

bath in the co-moving frame, distributed as a blackbody with some temperature 𝑇 .

The electron has some probability per unit time of scattering the photons into some

outgoing energy 𝜖1, with some probability distribution 𝑑𝑁𝛾/(𝑑𝜖 𝑑𝜖1 𝑑𝑡), which we call

the “differential scattered photon spectrum”. This quantity is proportional to the

number density per unit energy of the photon bath 𝑛(𝜖), so that integrating over

𝜖 also integrates over the distribution of these photons. This can be interpreted as

a normalized scattered photon spectrum for ICS by many electrons with the same

energy. Integrating the differential scattered photon spectrum with respect to 𝜖 gives

us the “scattered photon spectrum”,

𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡
(𝐸𝑒, 𝑇, 𝜖1) =

∫︁ 𝜖max

𝜖min

𝑑𝜖
𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝐸𝑒, 𝑇, 𝜖, 𝜖1) , (A.1.1)

137



with 𝜖min and 𝜖max determined by the kinematics of ICS.

We further define the “scattered photon energy loss spectrum”,

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸𝑒, 𝑇,Δ) =

∫︁
𝑑𝜖

𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝐸𝑒, 𝑇, 𝜖, 𝜖1 = 𝜖+Δ), (A.1.2)

where Δ is the change in energy of a photon scattering by a single electron. This is

simply the distribution of scattered photons as a function of the energy gained or lost

by the photon during the scattering.

Now, consider some arbitrary injection spectrum of electrons 𝑑�̃�𝑒/𝑑𝐸1. The tilde

serves to remind the reader that this is a distribution of electrons, and not a normal-

ized quantity. From the definition of Eq. (A.1.2), we define the “scattered electron

spectrum” as

𝑑�̃�𝑒

𝑑𝐸1 𝑑𝑡
=

∫︁ ∞

0

𝑑𝐸
𝑑�̃�𝑒

𝑑𝐸

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸, 𝑇,Δ = 𝐸 − 𝐸1) , (A.1.3)

where 𝐸1 is the energy of the scattered electron. However, this result allows some

electrons to gain energy after scattering, significantly complicating our calculations.

Intuitively, we expect electrons that upscatter from 𝐸 → 𝐸1 to partially cancel with

downscatters from 𝐸1 − 𝐸, justifying an approximate treatment where we simply

cancel out photons that downscatter (and upscatters an electron) with photons that

upscatter (and downscatters an electron). We leave a full justification of this to the

end of this section, but for now, we will accordingly define the “scattered electron net

energy loss spectrum”,

𝑑𝑁𝑒

𝑑Δ 𝑑𝑡
(𝛽, 𝑇,Δ) =

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝛽, 𝑇,Δ)− 𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝛽, 𝑇,−Δ), (A.1.4)

with Δ ≥ 0 in the expression above. For relativistic electrons, the average energy lost

due to an upscattering a photon is much larger than the average energy gained due to

downscattering a photon, and it is therefore a good approximation to consider only

scattering events where electrons lose their energy [254]. The upscattered photons

also have outgoing energy 𝜖1 ≫ 𝜖, and so a reasonable approximation to make in the

relativistic limit is

𝑑𝑁𝑒

𝑑Δ 𝑑𝑡

⃒⃒⃒⃒
𝛽→1

≈ 𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡

⃒⃒⃒⃒
𝛽→1

. (A.1.5)

We now turn our attention to justifying the approximation laid out in Eq. (A.1.4).
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First, we split the exact integral in Eq. (A.1.3) into an integral from 0 to 𝐸1, and

from 𝐸1 to ∞. The first integral can be rewritten as (dropping the 𝑇 dependence for

clarity)

∫︁ 𝐸1

0

𝑑𝐸
𝑑�̃�𝑒

𝑑𝐸

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸,Δ = 𝐸 − 𝐸1)

= −
∫︁ 2𝐸1

𝐸1

𝑑𝑥
𝑑�̃�

𝑑𝑥

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸 = 2𝐸1 − 𝑥,Δ = 𝐸1 − 𝑥) , (A.1.6)

where we have simply made the substitution 𝑥 = 2𝐸1−𝐸. In this part of the integral,

we are dealing with upscattered electrons and downscattered photons, and so we know

that 𝑑𝑁𝛾/(𝑑Δ 𝑑𝑡) only has support when 𝐸 −𝐸1 ∼ 𝑇CMB ≪ 𝐸,𝐸1, since ICS is only

included for electrons with 𝐸 > 3 keV [82]. This implies that the integral only has

support near 𝑥 = 𝐸1, and we can therefore make the following approximation:

∫︁ 𝐸1

0

𝑑𝐸
𝑑�̃�𝑒

𝑑𝐸

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸,Δ = 𝐸 − 𝐸1)

≈ −
∫︁ ∞

𝐸1

𝑑𝑥
𝑑�̃�𝑒

𝑑𝑥

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸 = 𝑥,Δ = 𝐸1 − 𝑥)

= −
∫︁ ∞

𝐸1

𝑑𝐸
𝑑�̃�𝑒

𝑑𝐸

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸,Δ = 𝐸1 − 𝐸) , (A.1.7)

where in the last step we have trivially relabeled 𝑥 → 𝐸. We have therefore shown

that

𝑑�̃� ′
𝑒

𝑑𝐸1 𝑑𝑡
≈−

∫︁ ∞

𝐸1

𝑑𝐸
𝑑�̃�𝑒

𝑑𝐸

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸,Δ = 𝐸1 − 𝐸)

+

∫︁ ∞

𝐸1

𝑑𝐸
𝑑�̃�𝑒

𝑑𝐸

𝑑𝑁𝛾

𝑑Δ 𝑑𝑡
(𝐸,Δ = 𝐸 − 𝐸1) , (A.1.8)

and that is a good approximation due to the relatively low temperature of the CMB.

With these definitions in mind, we are now ready to understand how to compute

these scattered spectra when the electron is in two limits. For 𝛾 > 20, the spectra

are computed in the relativistic limit, while below that, scattering with the CMB at

all relevant redshifts lie well within the Thomson regime. Together, they cover all

relevant kinematic regimes that we consider in our code.
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Relativistic Electrons

The differential upscattered photon spectrum produced by ICS between an electron

and the CMB blackbody spectrum in the relativistic regime (𝛾 ≫ 1) is given by [254]

𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
=
2𝜋𝑟20𝑐

𝛾2

𝑛(𝜖, 𝑇 )

𝜖

[︂
2𝑞 log 𝑞 + (1 + 2𝑞)(1− 𝑞) +

1

2

(Γ(𝜖)𝑞)2

1 + Γ(𝜖)𝑞
(1− 𝑞)

]︂
, (A.1.9)

where 𝑟0 is the classical electron radius, 𝑚𝑒 is the electron mass, 𝜖 is the incident

photon energy in the comoving frame, and 𝜖1 is the scattered photon energy in the

same frame, and we have defined

Γ(𝜖) =
4𝜖𝛾

𝑚𝑒𝑐2
, 𝑞 =

𝜖1
𝛾𝑚𝑒𝑐2 − 𝜖1

1

Γ(𝜖)
. (A.1.10)

We stress that Eq. (A.1.9) is strictly only correct when photons are upscattered

by the incoming electron, which corresponds to the kinematic regime 𝜖 ≤ 𝜖1 ≤
4𝜖𝛾2/(1 + 4𝜖𝛾/𝑚). In the opposite regime where 𝜖/(4𝛾2) ≤ 𝜖1 < 𝜖 and photons

get downscattered, we have [255]

𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
=

𝜋𝑟20𝑐

2𝛾4𝜖

(︂
4𝛾2𝜖1
𝜖

− 1

)︂
𝑛(𝜖, 𝑇 ) . (A.1.11)

For ICS off CMB photons, the 𝑛(𝜖) is the number density of photons per unit energy;

for a blackbody, this is

𝑛BB(𝜖, 𝑇 ) =
1

𝜋2~3𝑐3
𝜖2

exp(𝜖/𝑘𝐵𝑇 )− 1
, (A.1.12)

where 𝑇 is the temperature of the CMB.

The complete upscattered photon spectrum for ICS off the CMB is therefore

obtained by performing the integral in Eq. (A.1.9) over 𝜖, with the kinematic limits

given by 1/4𝛾2 ≤ 𝑞 ≤ 1 [254]. Since the CMB photons at 𝑧 . 3000 have energies

less than 1 eV, the amount of energy transferred by an electron is always completely

dominated by Eq. (A.1.9). Furthermore, one can check that at 𝑞 = 1/4𝛾2, 𝜖 ≫
𝑇 . We can therefore make the approximation that Eq. (A.1.9) gives the full ICS

spectrum while neglecting Eq. (A.1.11), and take the integral limits to be 0 ≤ 𝑞 ≤ 1

instead. This assumption is made in the ICS transfer functions provided as part of the

downloaded data, but options are available in the ics module to turn these various

assumptions off.

The quantity Γ(𝜖) separates the two kinematic regimes of Compton scattering:
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Γ ≫ 1 for the Klein-Nishina regime, where Compton scattering in the electron rest

frame is highly inelastic, and Γ ≪ 1 for the Thomson regime, where it is almost

elastic instead.1 Eq. (A.1.9) applies to both regimes, with the only assumption being

𝛾 ≫ 1.

To avoid computing the scattered photon spectrum repeatedly in the code, we use

the following relation between spectra at different temperatures:

𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡
(𝐸𝑒, 𝑦𝑇, 𝜖1) = 𝑦4

𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡
(𝑦𝐸𝑒, 𝑇, 𝑦𝜖1) , (A.1.13)

for any real positive number 𝑦, even if 𝑦𝐸𝑒 is unphysical.2 In DarkHistory, we

evaluate the scattered photon spectrum at 1 + 𝑧 = 400, and use this relation to

compute the subsequent spectra at lower redshifts by a straightforward interpolation.

Thomson Regime

In the Thomson regime, the rate at which photons are scattered is given by [254]

𝑑𝑁𝛾

𝑑𝑡
= 𝜎𝑇 𝑐𝑁rad, (A.1.14)

where 𝑁rad is the total number density of incident photons, with 𝜎𝑇 = 8𝜋𝑟20/3 being

the Thomson cross section. Note that the scattering rate is independent on the

incident photon energy. The energy loss rate of the electron is [254]

𝑑𝐸𝑒

𝑑𝑡
=

4

3
𝜎𝑇 𝑐𝛾

2𝛽2𝑈rad, (A.1.15)

where 𝛽 is the velocity of the electron, with 𝑈rad being the total energy density of the

incident photons.

While Eqs. (A.1.14) and (A.1.15) are well-known, the actual spectrum of scattered

photons in the Thomson regime is much less so. The complete expression for the

differential scattered photon spectrum with no further assumptions is, as far as the

authors know, first given in Ref. [256], and we reproduce their final result here for
1Although the scattering process is almost elastic in the initial electron rest frame, it is certainly

not elastic in the co-moving frame. In the co-moving frame, the electron loses a small fraction of its
energy per collision, but each collision can upscatter a CMB photon by a significant factor.

2This trick can only be performed by integrating over 0 ≤ 𝑞 ≤ 1, and is the key reason for making
such an approximation.
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completeness. For (1− 𝛽)𝜖1/(1 + 𝛽) < 𝜖 < 𝜖1, we have

𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖, 𝜖1)

⃒⃒⃒⃒
𝜖<𝜖1

=
𝜋𝑟20𝑐𝑛(𝜖, 𝑇 )

4𝛽6𝛾2𝜖

{︃
1

𝛾4

𝜖

𝜖1
− 1

𝛾4

𝜖21
𝜖2

+ (1 + 𝛽)

[︂
𝛽(𝛽2 + 3) +

1

𝛾2
(9− 4𝛽2)

]︂
+ (1− 𝛽)

[︂
𝛽(𝛽2 + 3)− 1

𝛾2
(9− 4𝛽2)

]︂
𝜖1
𝜖

− 2

𝛾2
(3− 𝛽2)

(︁
1 +

𝜖1
𝜖

)︁
log

(︂
1 + 𝛽

1− 𝛽

𝜖

𝜖1

)︂}︃
, (A.1.16)

and for 𝜖1 < 𝜖 < (1 + 𝛽)𝜖1/(1− 𝛽),

𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖, 𝜖1)

⃒⃒⃒⃒
𝜖≥𝜖1

= − 𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(−𝛽, 𝑇, 𝜖, 𝜖1)

⃒⃒⃒⃒
𝜖<𝜖1

. (A.1.17)

All other values of 𝜖 outside of the ranges specified are kinematically forbidden, and

so to find the spectrum, we need to integrate over 𝜖 with 𝑛(𝜖) = 𝑛BB(𝜖) in the finite

range specified above, i.e.

𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖1) =

∫︁ 𝜖1

1−𝛽
1+𝛽

𝜖1

𝑑𝜖
𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖, 𝜖1)

⃒⃒⃒⃒
𝜖<𝜖1

−
∫︁ 1+𝛽

1−𝛽
𝜖1

𝜖1

𝑑𝜖
𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(−𝛽, 𝑇, 𝜖, 𝜖1)

⃒⃒⃒⃒
𝜖<𝜖1

. (A.1.18)

The relationship between spectra at different temperatures is given by

𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡
(𝛽, 𝑦𝑇, 𝜖1) = 𝑦2

𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖1/𝑦) . (A.1.19)

The scattered photon energy loss spectrum 𝑑𝑁𝛾/(𝑑Δ 𝑑𝑡) is similarly given by

𝑑𝑁𝛾

𝑑Δ𝑑𝑡
(𝛽, 𝑇,Δ) =

⎧⎪⎪⎨⎪⎪⎩
∫︀∞

1−𝛽
2𝛽

Δ
𝑑𝜖 𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖, 𝜖+Δ)

⃒⃒⃒
𝜖<𝜖1

, Δ > 0,∫︀∞
− 1+𝛽

2𝛽
Δ
𝑑𝜖 𝑑𝑁𝛾

𝑑𝜖 𝑑𝜖1 𝑑𝑡
(𝛽, 𝑇, 𝜖, 𝜖+Δ)

⃒⃒⃒
𝜖≥𝜖1

, Δ ≤ 0.

(A.1.20)

The relation shown in Eq. (A.1.19) between scattered photon spectra of different

temperatures also holds for the energy loss spectrum, with 𝜖1 → Δ.

A.1.2 Numerical Methods

Computationally, to evaluate all of the scattered spectra, we need to perform numer-

ical quadrature over a large range of electron and scattered photon energies; using a
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standard grid of 5000× 5000 energy values, the grid would take the standard numpy

integrator over a day to populate. While a substantial speed-up may be obtained

by using packages like Cython [257], numerical quadrature for ICS in the Thomson

regime is also subject to significant numerical errors when the electron is nonrela-

tivistic due to the existence of catastrophic cancellations. A semi-analytic approach

provides both a faster method and a way to avoid such errors in a robust manner.

Thomson and Relativistic Regime: Large 𝛽

For 𝛽 & 0.1, we can obtain the scattered photon spectrum in Eq. (A.1.16) in the

Thomson regime or Eq. (A.1.9) in the relativistic regime, as well as the scattered

electron energy loss spectrum in the Thomson regime in Eq. (A.1.4), by direct inte-

gration.

The problem of integrating these expressions reduces to obtaining an expression

for indefinite integrals over the Bose-Einstein distribution of the form

𝑃𝑓 (𝑦) ≡
∫︁

𝑓(𝑦) 𝑑𝑦

𝑒𝑦 − 1
. (A.1.21)

Throughout this appendix, we ignore the constant of integration for such indefinite

integrals, since we will ultimately be taking differences of such expressions to find

definite integrals. For 𝑓(𝑦) ≡ 𝑦𝑛 with integer 𝑛 ≥ 0, the indefinite integral is known

explicitly:

𝑃𝑦𝑛(𝑥) = −𝑛!
𝑛∑︁

𝑠=0

𝑥𝑠

𝑠!
Li𝑛−𝑠+1(𝑒

−𝑥) (𝑛 = 0, 1, 2, · · · ), (A.1.22)

where Li𝑚(𝑧) is the polylogarithm function of order 𝑚 with argument 𝑧 (see Ap-

pendix A.1.4 for the definition). Note however that NumPy does not have a numerical

function for the polylogarithm of order 𝑚 > 2, and so the semi-analytic method that

we describe below is still necessary for 𝑃𝑦𝑛 , 𝑛 ≥ 2 due to this limitation.

For other functions 𝑓(𝑦), closed-form solutions do not exist. However, an expres-

sion for the indefinite integral as an infinite series can be obtained [258]. Importantly,

more than one series expression exists for all of the integrals 𝑃𝑓 (𝑥) of interest in both

the relativistic and nonrelativistic regimes, so that it is always possible to find a series

expression that converges quickly for any integration limit. We tabulate the series

expressions already found in Ref. [258] for completeness, together with the many new
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series expressions derived in this appendix required for the nonrelativistic limit in

Appendix A.1.4.

Thomson Regime: Small 𝛽

In the Thomson regime for 𝛽 . 0.1, catastrophic cancellations between terms in

the integral make even the method described above insufficient. After integrating

Eq. (A.1.18) over 𝜖 to get the scattered photon spectrum, for example, the final result

must be 𝒪(𝛽0), even though the prefactor in Eq. (A.1.16) is 𝒪(𝛽−6). The integrals of

all of the terms in the curly braces of Eq. (A.1.16) and their analog from Eq. (A.1.17)

must therefore cancel among themselves to 1 part in 𝛽−6; such a computation is

impossible to perform for 𝛽 . 0.003 due to floating point inaccuracy, even with

double precision.

We avoid this problem by expanding the scattered photon spectrum in Eq. (A.1.18)

and the mean electron energy loss spectrum in Eq. (A.1.4). Eq. (A.1.18) can be

expanded straightforwardly in 𝛽, but Eq. (A.1.4) must be expanded in both 𝛽 and

𝜉 ≡ Δ/𝑇 , since catastrophic cancellations occur when either variable is small. In

DarkHistory, we expand these expressions up to 𝒪(𝛽6) and 𝒪(𝜉6), but the precision

of this calculation is systematically improvable by adding more terms to the code as

desired. The exact expressions for the expansions, details of their derivations and

several consistency checks for these expressions can be found in Appendix A.1.4.

A.1.3 Results

Figs. A-1 and A-2 show the scattered photon spectrum in the Thomson and relativistic

regimes respectively as a function of electron energy, at a CMB temperature of 0.25 eV,

corresponding to a redshift of 𝑧 ≈ 1065 that is near recombination. By default,

DarkHistory transitions between these two limits at 𝛾 = 20. Fig. A-3 shows the mean

electron energy loss spectrum in the Thomson regime. Above 𝛾 = 20, DarkHistory

uses the approximation shown in Eq. (A.1.5). Finally, the computed secondary photon

spectrum after completely cooling of all electrons and positrons through ICS is shown

in Fig. A-4.

All results shown here are computed using a 500× 500 grid of electron and pho-

ton energies/energy loss, and each can be completed under ten seconds on a typical

personal computer.
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Figure A-1: The ICS scattered photon spectrum in the Thomson regime, with 𝑇CMB

= 0.25 eV.

108 109 1010 1011 1012 1013 1014

Electron Kinetic Energy [eV]

10−8

10−5

10−2

10

104

107

1010

1013

1016

Sc
at

te
re

d
Ph

ot
on

En
er

gy
[e

V
]

Relativistic Regime
TCMB = 0.25 eV

ICS Scattered Photon Spectrum

10−25

10−18

10−12

10−8

10−4

1

dN
γ

dE
γ

dt
[e

V
−

1
s−

1 ]

Figure A-2: The ICS scattered photon spectrum in the relativistic regime, with 𝑇CMB

= 0.25 eV.

A.1.4 Integrals and Series Expansions

We are now ready to detail the integrals and series expansions used in the numerical

methods described above.
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Figure A-3: The ICS mean electron energy loss spectrum in the Thomson regime,
with 𝑇CMB = 0.25 eV.
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Figure A-4: The ICS secondary photon spectrum after complete cooling of a single
electron, with 𝑇CMB = 0.25 eV.

Bose Einstein Integrals

Each 𝑃𝑓 (𝑥) that is of interest has a series that converges quickly for small values of

𝑥, and another that converges quickly for large values of 𝑥. DarkHistory by default

chooses 𝑥 = 2 as the value to switch between the two expressions.

Suppose we approximate the indefinite integral in Eq. (A.1.21) 𝑃𝑓 (𝑥) by the first
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𝑁 terms of its series expression, which we denote 𝑆𝑁(𝑥). Let 𝑆𝑠
𝑁(𝑥) and 𝑆𝑙

𝑁(𝑥) be

the series expressions we obtain for 𝑥 < 2 and 𝑥 ≥ 2 respectively. In all of the cases

we are interested in, 𝑆𝑙
𝑁→∞(𝑥 → ∞) = 0 (with the constant of integration taken to

be zero) due to the exponential function in the denominator of the original integral,

and so

𝑆𝑙
𝑁→∞(𝑏 > 2) = −

∫︁ ∞

𝑏

𝑓(𝑦) 𝑑𝑦

𝑒𝑦 − 1
. (A.1.23)

Then defining Δ𝑆𝑠,𝑙
𝑁 (𝑎, 𝑏) = 𝑆𝑠,𝑙

𝑁 (𝑏)− 𝑆𝑠,𝑙
𝑁 (𝑎), the definite integral is evaluated as

∫︁ 𝑏

𝑎

𝑓(𝑦) 𝑑𝑦

𝑒𝑦 − 1
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑆𝑠

𝑁→∞(𝑎, 𝑏), 𝑎 < 2, 𝑏 < 2;

Δ𝑆𝑠
𝑁→∞(𝑎, 2) + Δ𝑆𝑙

𝑁→∞(2, 𝑏), 𝑎 < 2, 𝑏 ≥ 2;

Δ𝑆𝑙
𝑁→∞(𝑎, 𝑏), 𝑎 ≥ 2, 𝑏 ≥ 2.

(A.1.24)

Terms are added sequentially until the next contribution to the full integral falls below

a given relative tolerance; the default value for this tolerance used by DarkHistory

is 10−10.

Before listing the series expressions, we must first introduce some notation that

will be relevant. The numbers and analytic functions defined below are all well-

known, but are often defined with different normalizations or given different names.

We explicitly define all relevant functions used here for clarity.

𝐵𝑛 are the Bernoulli numbers, defined through the following exponential generat-

ing function:

𝑥

𝑒𝑥 − 1
≡

∞∑︁
𝑛=0

𝐵𝑛𝑥
𝑛

𝑛!
, (A.1.25)

with 𝐵0,1,2,··· = 1,−1/2, 1/6, · · · . Note that 𝐵2𝑗+1 = 0 for all integers 𝑗 > 0.

Next, we define the generalized exponential integrals

𝐸𝑛(𝑥) ≡
∫︁ ∞

1

𝑒−𝑥𝑡

𝑡𝑛
𝑑𝑡 (A.1.26)

and the closely related incomplete gamma function

Γ(𝑛, 𝑥) ≡
∫︁ ∞

𝑥

𝑡𝑛−1𝑒−𝑡 𝑑𝑡. (A.1.27)
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The polylogarithm of order 𝑚, denoted Li𝑚(𝑧), is defined as

Li𝑚(𝑧) =
∞∑︁
𝑘=1

𝑧𝑘

𝑘𝑚
. (A.1.28)

Finally, we define 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧), the Gaussian hypergeometric function, as

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) ≡ 1 +
𝑎𝑏

1!𝑐
𝑧 +

𝑎(𝑎+ 1)𝑏(𝑏+ 1)

2!𝑐(𝑐+ 1)
𝑧2 + · · · =

∞∑︁
𝑛=0

(𝑎)𝑛(𝑏)𝑛
(𝑐)𝑛

𝑧𝑛

𝑛!
, (A.1.29)

where (𝑥)𝑛 ≡ 𝑥(𝑥+ 1) · · · (𝑥+ 𝑛− 1) is the Pochhammer symbol. This function only

appears in the form 𝑅(𝑛, 𝑥) ≡ Re[2𝐹1(1, 𝑛 + 1;𝑛 + 2;𝑥)], where Re denotes the real

part; to avoid the slow evaluation of the hyp2f1 function in NumPy, we use instead

the following relation:

𝑅(𝑛, 𝑥) ≡ Re[2𝐹1(1, 𝑛+ 1;𝑛+ 2;𝑥)]

= − (𝑛+ 1)𝑥−(𝑛+1) log (|1− 𝑥|)−
𝑛∑︁

𝑗=1

𝑛+ 1

𝑗
𝑥𝑗−𝑛−1 . (A.1.30)

The list of all of the series expressions that we use, including those already derived

in [258], are shown in Tables A.1 and A.2 for 𝑥 < 2 and 𝑥 ≥ 2 respectively.

Nonrelativistic Thomson Limit: Small Parameter Expansion

The expression for the scattered photon spectrum in the Thomson limit, shown in

Eq. (A.1.18), can be expanded in the small 𝛽 limit, to obtain

𝑑𝑁𝛾

𝑑𝜖1𝑑𝑡1
=

3𝜎𝑇𝑘
2
𝐵𝑇

2

32𝜋2~3𝑐2
∞∑︁
𝑛=0

2𝑛∑︁
𝑗=1

𝐴𝑛𝛽
2𝑛𝑥3

1𝑃𝑛,𝑗(𝑥1)𝑒
−𝑗𝑥1

(1− 𝑒−𝑥1)2𝑛+1
, (A.1.31)

where 𝑥1 = 𝜖1/𝑇 , 𝐴𝑛 is a constant, and 𝑃𝑗,𝑛(𝑥1) is some rational or polynomial

function in 𝑥1. These quantities are as follows. For 𝑛 = 0 i.e. 𝒪(𝛽0),

𝐴0 =
32

3
, 𝑃0,1(𝑥) =

1

𝑥
. (A.1.32)

For 𝑛 = 1, i.e. 𝒪(𝛽2),

𝐴1 =
32

9
, 𝑃1,1(𝑥) = 𝑥− 4, 𝑃1,2(𝑥) = 𝑥+ 4 . (A.1.33)
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𝑓(𝑦) 𝑃𝑓 , 𝑥 < 2

𝑦𝑛, 𝑛 ≥ 1
∞∑︁
𝑘=0

𝐵𝑘𝑥
𝑘+𝑛

𝑘!(𝑘 + 𝑛)

𝑦 log 𝑦 𝑥 log 𝑥− 𝑥+
∞∑︁
𝑘=1

𝐵𝑘𝑥
𝑘+1

𝑘!(𝑘 + 1)

[︂
log 𝑥− 1

𝑘 + 1

]︂
𝑦 log(𝑦 + 𝑎), 𝑎 > −𝑥

∞∑︁
𝑘=0

𝐵𝑘𝑥
𝑘+1

𝑘!(𝑘 + 1)

[︂
log(𝑥+ 𝑎) +

𝑅(𝑘,−𝑥/𝑎)

𝑘 + 1
− 1

𝑘 + 1

]︂
1 log(1− 𝑒−𝑥)

log 𝑦
1

2
log2 𝑥+

∞∑︁
𝑘=1

𝐵𝑘𝑥
𝑘

𝑘!𝑘

[︂
log 𝑥− 1

𝑘

]︂
log(𝑦 + 𝑎), 𝑎 > 0 log 𝑥 log 𝑎− Li2(−𝑥/𝑎) +

∞∑︁
𝑘=1

𝐵𝑘𝑥
𝑘

𝑘!𝑘

[︂
log(𝑥+ 𝑎)− 𝑥

𝑎(𝑘 + 1)
𝑅(𝑘,−𝑥/𝑎)

]︂
log(𝑦 + 𝑎), −𝑥 < 𝑎 < 0 log(−𝑥/𝑎) log(𝑥+ 𝑎)− Li2(1 + 𝑥/𝑎) +

∞∑︁
𝑘=1

𝐵𝑘𝑥
𝑘

𝑘!𝑘

[︂
log(𝑥+ 𝑎)− 𝑥

𝑎(𝑘 + 1)
𝑅(𝑘,−𝑥/𝑎)

]︂
1

𝑦 + 𝑎
, 𝑎 > −𝑥

1

𝑎
log

(︂
𝑥

𝑥+ 𝑎

)︂
+

∞∑︁
𝑘=1

𝐵𝑘𝑥
𝑘

𝑘!𝑘

[︂
1

𝑎
− 𝑘𝑥

(𝑛+ 1)𝑎2
𝑅(𝑘,−𝑥/𝑎)

]︂
𝑦−𝑛, 𝑛 ≥ 1

𝑛−1∑︁
𝑘=0

𝐵𝑘

𝑘!

𝑥𝑘−𝑛

𝑘 − 𝑛
+

𝐵𝑛

𝑛!
log 𝑥+

∞∑︁
𝑘=1

𝐵𝑘+𝑛

(𝑘 + 𝑛)!

𝑥𝑘

𝑘

Table A.1: Series expressions for the relevant indefinite integrals of the form shown in Eq. (A.1.21). Here, 𝑦 is the integration variable, and 𝑥
denotes the integration limit of interest. These expressions are used for 𝑥 < 2.

149



𝑓(𝑦) 𝑃𝑓 , 𝑥 ≥ 2

(𝑦 + 𝑎)𝑛, ∀𝑛 ∈ Z, 𝑎 > −𝑥
∞∑︁
𝑘=1

𝑒𝑘𝑎Γ
(︀
𝑛+ 1, 𝑘(𝑥+ 𝑎)

)︀
𝑘𝑛+1

=
∞∑︁
𝑘=1

𝑒𝑘𝑎𝐸−𝑛

(︀
𝑘(𝑥+ 𝑎)

)︀
(𝑥+ 𝑎)−𝑘−1

𝑦 log(𝑦 + 𝑎), 𝑎 > −𝑥
∞∑︁
𝑘=1

𝑒𝑘𝑎

𝑘2

[︀
(1 + 𝑘𝑥)𝑒−𝑘(𝑥+𝑎) log(𝑥+ 𝑎) + (1 + 𝑘𝑥)𝐸1

(︀
𝑘(𝑥+ 𝑎)

)︀
+ 𝐸2

(︀
𝑘(𝑥+ 𝑎)

)︀]︀
log(𝑦 + 𝑎), 𝑎 > −𝑥

∞∑︁
𝑘=1

𝑒𝑘𝑎

𝑘

[︀
𝑒−𝑘(𝑥+𝑎) log(𝑥+ 𝑎) + 𝐸1

(︀
𝑘(𝑥+ 𝑎)

)︀]︀

Table A.2: Series expressions for the relevant indefinite integrals of the form shown in Eq. (A.1.21). Here, 𝑦 is the integration variable, and 𝑥
denotes the integration limit of interest. These expressions are used for 𝑥 ≥ 2.
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For 𝑛 = 2, i.e. 𝒪(𝛽4),

𝐴2 =
16

225
,

𝑃2,1(𝑥) = 7𝑥3 − 84𝑥2 + 260𝑥− 200,

𝑃2,2(𝑥) = 77𝑥3 − 252𝑥2 − 260𝑥+ 600,

𝑃2,3(𝑥) = 77𝑥3 + 252𝑥2 − 260𝑥− 600,

𝑃2,4(𝑥) = 7𝑥3 + 84𝑥2 + 260𝑥+ 200, (A.1.34)

and finally for 𝑛 = 3, i.e. 𝒪(𝛽6),

𝐴3 =
16

4725
,

𝑃3,1(𝑥) = 11𝑥5 − 264𝑥4 + 2142𝑥3 − 7224𝑥2 + 9870𝑥− 4200,

𝑃3,2(𝑥) = 3(209𝑥5 − 2200𝑥4 + 6426𝑥3 − 2408𝑥2 − 9870𝑥+ 7000),

𝑃3,3(𝑥) = 2(1661𝑥5 − 5280𝑥4 − 10710𝑥3 + 28896𝑥2 + 9870𝑥− 21000),

𝑃3,4(𝑥) = 2(1661𝑥5 + 5280𝑥4 − 10710𝑥3 − 28896𝑥2 + 9870𝑥+ 21000),

𝑃3,5(𝑥) = 3(209𝑥5 + 2200𝑥4 + 6426𝑥3 + 2408𝑥2 − 9870𝑥− 7000),

𝑃3,6(𝑥) = 11𝑥5 + 264𝑥4 + 2142𝑥3 + 7224𝑥2 + 9870𝑥+ 4200. (A.1.35)

Furthermore, when 𝑥1 is small, it becomes numerically advantageous to expand

Eq. (A.1.31) in 𝑥1 as well, leaving a simple polynomial in 𝑥1 and 𝛽, i.e.

𝑑𝑁1

𝑑𝜖1𝑑𝑡1
=

3𝜎𝑇𝑘
2
𝐵𝑇

2

32𝜋2~3𝑐2
∞∑︁
𝑛=0

∞∑︁
𝑗=1

𝐶𝑛,𝑗𝛽
2𝑛𝑥𝑗

1 . (A.1.36)

The values of 𝐶𝑛,𝑗 are shown in Table A.3.

Three checks can be performed to verify that this is indeed the correct expan-

sion in 𝛽. First, taking 𝛽 → 0, the scattered photon spectrum simply becomes

𝑑𝑁𝛾/(𝑑𝜖1 𝑑𝑡1) = 𝑛BB(𝜖1, 𝑇 )𝜎𝑇 𝑐, which is exactly the expected result for Thomson

scattering in the rest frame of the electron: all photons simply scatter elastically at

a rate governed by the Thomson scattering cross section, thus remaining in a black-

body distribution. Second, a more non-trivial check is to integrate Eq. (A.1.31) with

respect to 𝜖1, giving the total Thomson scattering rate given in Eq. (A.1.14). Since

the scattering rate is independent of 𝛽, the 𝒪(𝛽0) term in the series should integrate

to exactly 𝜎𝑇 𝑐𝑁rad where 𝑁rad is the number density of the blackbody photons, while
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𝐶𝑛,𝑗 𝑥1 𝑥2
1 𝑥3

1 𝑥5
1 𝑥7

1 𝑥9
1 𝑥11

1

𝛽0 32/3 -16/3 8/9 -2/135 1/2835 -1/113400 1/4490640

𝛽2 -64/9 0 32/27 -4/45 8/1701 -1/4860 1/124740

𝛽4 -256/225 0 32/27 -296/1125 1208/42525 -64/30375 389/3118500

𝛽6 -832/1575 0 32/27 -1828/3375 31352/297675 -10669/850500 10267/9355500

Table A.3: List of coefficients 𝐶𝑛,𝑗 for use in Eq. (A.1.36).
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the other higher order terms should integrate to exactly zero. This is indeed the case

for the series expansion shown here. Lastly, one can check that Eq. (A.1.31) agrees

with the energy loss expression Eq. (A.1.15), by noting that∫︁
𝑑𝑁𝛾

𝑑𝜖1 𝑑𝑡1
𝜖1 𝑑𝜖1 = 𝜎𝑇 𝑐𝑢BB(𝑇 ) +

4

3
𝜎𝑇 𝑐𝛽

2𝛾2𝑢BB(𝑇 ) , (A.1.37)

where 𝑢BB(𝑇 ) is the blackbody energy density with temperature 𝑇 , i.e. the produced

secondary photon spectrum must have the same energy as the upscattered CMB

photons plus the energy lost from the scattering electron. This check has also been

performed for the series expansions shown here.

For the scattered electron energy loss spectrum shown in Eq. (A.1.4), the small 𝛽

and 𝜉 expansion can be written as

𝑑𝑁𝑒

𝑑Δ 𝑑𝑡
=

3𝜎𝑇𝑘
2
𝐵𝑇

2

32𝜋2~3𝑐2
∞∑︁
𝑛=0

[︃
2𝑛∑︁
𝑗=1

𝐴𝑗+1𝑄𝑛,𝑗(𝑒
−𝐴)

(1− 𝑒−𝐴)𝑗𝛽−2𝑛
+𝑅𝑛(𝐴)

]︃
, (A.1.38)

where 𝑄𝑛,𝑗(𝑥) is a polynomial, 𝐴 ≡ Δ/(2𝛽𝑇 ) = 𝜉/(2𝛽), and 𝑅𝑛(𝐴) is a sum of

integrals of the form

𝑃𝑘(𝐴) = 𝐴𝑘+1

∫︁ ∞

𝐴

𝑥−𝑘 𝑑𝑥

𝑒𝑥 − 1
. (A.1.39)

These integrals can be evaluated using the same methods detailed in Appendix A.1.4.

The list of polynomials 𝑄𝑛,𝑗 and of 𝑅𝑛(𝐴) is given below. All expressions not listed

should be taken to be zero. For 𝑛 = 0,

𝑅0(𝐴) =
176

15
𝑃0 −

64

3
𝑃3 +

128

5
𝑃5 . (A.1.40)

For 𝑛 = 1,

𝑄1,1(𝑥) = −32

3
𝑥 , 𝑄1,2 =

8

3
𝑥 ,

𝑅1(𝐴) = −1168

105
𝑃0 +

128

3
𝑃3 −

2176

15
𝑃5 +

1280

7
𝑃7 . (A.1.41)

For 𝑛 = 2,

𝑄2,1(𝑥) = −512

15
𝑥 , 𝑄2,2(𝑥) =

8

5
𝑥 ,

𝑄2,3(𝑥) = − 8

15
𝑥(1 + 𝑥) ,

𝑄2,4(𝑥) =
2

15
(𝑥+ 4𝑥2 + 𝑥3) ,
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𝑅2(𝐴) = −64

3
𝑃3 +

640

3
𝑃5 − 768𝑃7 +

14336

15
𝑃9 . (A.1.42)

And finally for 𝑛 = 3,

𝑄3,1(𝑥) = −416

3
𝑥 , 𝑄3,2(𝑥) =

1184

105
𝑥 ,

𝑄3,3(𝑥) = −256

315
(𝑥+ 𝑥2) ,

𝑄3,4(𝑥) = − 2

63
(𝑥+ 4𝑥2 + 𝑥3) ,

𝑄3,5(𝑥) = − 4

315
(𝑥+ 11𝑥2 + 11𝑥3 + 𝑥4) ,

𝑄3,6(𝑥) =
1

315
(𝑥+ 26𝑥2 + 66𝑥3 + 26𝑥4 + 𝑥5) ,

𝑅3(𝐴) = − 512

3465
𝑃0 −

1408

15
𝑃5 +

6912

7
𝑃7 −

161792

45
𝑃9 +

49152

11
𝑃11 . (A.1.43)

These are all the terms necessary to work at order 𝒪(𝛽6) and 𝒪(𝜉6). As before, if 𝐴

becomes small, we should expand Eq. (A.1.38) as

𝑑𝑁𝑒

𝑑Δ 𝑑𝑡
=

3𝜎𝑇𝑘
2
𝐵𝑇

2

32𝜋2~3𝑐2
∞∑︁
𝑛=0

[︃
∞∑︁
𝑗=0

𝐷𝑛,𝑗𝛽
2𝑛𝐴𝑗 +𝑅𝑛(𝐴)

]︃
, (A.1.44)

with the values of 𝐷𝑛,𝑗 shown in Table A.4. These expressions are complicated, but

can be checked in a similar fashion as the scattered photon spectrum by integrating

over Δ 𝑑Δ to obtain the mean energy loss rate of electrons scattering of a blackbody

spectrum, given exactly in Eq. (A.1.15). Using the fact that∫︁ ∞

0

𝑑ΔΔ𝑃𝑘(𝐴) =
4𝜋4𝛽2𝑇 2

15(𝑛+ 2)
, (A.1.45)

one can verify that integrating the 𝒪(𝛽6) expansion gives

𝑑𝐸𝑒

𝑑𝑡
=

4

3
𝜎𝑇 𝑐𝑈rad𝛽

2(1 + 𝛽2 + 𝛽4 + 𝛽6) , (A.1.46)

which is precisely the Taylor expansion of Eq. (A.1.15) in powers of 𝛽.
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𝐷𝑛,𝑗 𝐴 𝐴2 𝐴3 𝐴5 𝐴7 𝐴9 𝐴11

𝛽2 -8 16/3 -10/9 7/270 -1/1260 11/453600 -13/17962560

𝛽4 -164/5 256/15 -134/45 161/2700 -19/9450 359/4536000 -289/89812800

𝛽6 -40676/315 208/3 -1312/105 4651/18900 -416/59535 989/4536000 -173/22453200

Table A.4: List of coefficients 𝐷𝑛,𝑗 for use in Eq. (A.1.44).
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A.2 Positronium Annihilation Spectra

The spin-triplet 3𝑆1 state of positronium annihilates to three photons, producing a

photon spectrum per annihilation given by [259]

𝑑𝑁𝛾

𝑑𝐸𝛾

⃒⃒⃒⃒
3𝑆1

=
6

(𝜋2 − 9)𝑚𝑒

{︂
2− 𝑥

𝑥
+

𝑥(1− 𝑥)

(2− 𝑥)2
+ 2 log(1− 𝑥)

[︂
1− 𝑥

𝑥2
− (1− 𝑥)2

(2− 𝑥)3

]︂}︂
,

(A.2.1)

where 𝑥 ≡ 𝐸𝛾/𝑚𝑒. The kinematically allowed range is 0 ≤ 𝑥 ≤ 1. Assuming that

the formation of positronium by low energy positrons populates all of the degenerate

ground states equally, the averaged photon spectrum per annihilation is

𝑑𝑁𝛾

𝑑𝐸𝛾

⃒⃒⃒⃒
Ps

=
1

4
𝛿(𝐸𝛾 −𝑚𝑒) +

3

4

𝑑𝑁𝛾

𝑑𝐸𝛾

⃒⃒⃒⃒
3𝑆1

. (A.2.2)

A.3 Cross Checks

A.3.1 Helium Deposition

In this section, we compare the various helium energy deposition methods discussed

in Sec. 2.3.5. We pick a dark matter candidate which decays to two photons with a

lifetime of 3× 1024 s as an example, but the results are similar across different dark

matter masses and energy injection rates.

Switching between methods can be done with the parameter compute_fs_method

passed to evolve(), with the following strings for each method: (1) ’no_He’, (2)

’He_recomb’ and (3) ’He’, e.g.

helium_method_alt = main.evolve(
DM_process=’decay’, mDM=1e8, lifetime=3e24,
primary=’phot_delta’, start_rs=3000., backreaction=True,
helium_TLA=True, compute_fs_method=’He_recomb’

)

Fig. A-5 shows the helium ionization fraction 𝑥HeII as a function of redshift for

each of the different methods. In method (1), 𝑥HeII is simply the baseline helium

ionization fraction, which is almost entirely neutral once helium recombination is

complete. No energy is assigned to helium iondization at all. Method (2) has no

contribution to helium ionization from photons, since every ionized helium atom is

assumed to recombine, producing a photon that photoionizes hydrogen instead (i.e.
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Figure A-5: Helium ionization fraction with different helium energy deposition meth-
ods: (1) no tracking of the helium evolution (i.e. 𝑥HeII takes its baseline value) (blue)
(2) all photoionized HeI atoms recombine, producing a photon that photoionizes hy-
drogen (orange), and (3) photoionized HeI atoms remain photoionized (green). The
energy injection corresponds to 100MeV DM decaying through 𝜒 → 𝛾𝛾 with a lifetime
of 3× 1024 s.
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Figure A-6: Matter temperature (left) and free electron fraction (right) evolution with
different helium energy deposition methods: (1) no tracking of the helium evolution
(i.e. 𝑥HeII takes its baseline value) (blue) (2) all photoionized HeI atoms recombine,
producing a photon that photoionizes hydrogen (orange), and (3) photoionized HeI
atoms remain photoionized (green). The CMB temperature is shown for reference
(black, dashed). The energy injection corresponds to 100MeV DM decaying through
𝜒 → 𝛾𝛾 with a lifetime of 3× 1024 s.
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Figure A-7: Matter temperature evolution with the default reionization model with
no coarsening (blue), a coarsening factor of 8 (orange) and 32 (green).

setting 𝑞𝛾He = 0 in Eq. (2.42)). The helium ionization level therefore deviates from the

baseline only from energy injection in the Heion channel from low-energy electrons.

On the other hand, method (3) assumes that all helium atoms that get photoionized

stay ionized, maximizing the amount of energy into Heion from photons (i.e. setting

𝑞𝛾He = 1− 𝑞 in Eq. (2.42)). This explains the higher 𝑥HeII obtained.

Despite these differences in 𝑥HeII, the evolution of 𝑥𝑒 remains almost identical,

due to the fact that the total number of ionization events between both hydrogen and

helium remains the same regardless of method used. This in turn ensures only a small

difference in 𝑇𝑚 between the methods. The ionization and temperature histories for

all three methods for the particular channel we have chosen are shown in Fig. A-6.

Users may bracket the uncertainty in the treatment of helium with methods (2) and

(3).

A.3.2 Coarsening

In the absence of reionization, a coarsening factor of up to 32 has been found to yield

a small relative difference of between 5–10% in the values of 𝑓𝑐(𝑧) across the full

range of redshifts used in DarkHistory. With reionization, however, 𝑇𝑚 evolves more

rapidly and attains larger values, and too much coarsening can lead to large absolute
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differences and somewhat larger relative differences in 𝑇𝑚, since we are averaging over

the 𝑇𝑚 evolution over many redshift points. Fig. A-7 shows the resultant temperature

evolution as a function of redshift for the same model used in the previous section but

with the default reionization model turned on, with coarsening factors of 1, 8 and 32.

Once reionization starts, the difference in 𝑇𝑚 is ∼ 15% for 𝑛 = 32 compared to the

uncoarsened result at 𝑧 ∼ 4, corresponding to an absolute error of ∼ 5000K. Prior

to reionization, the relative errors are slightly smaller at . 10%.

We therefore recommend using a coarsening factor of up to 32 if no reionization

models are used, depending on the level of precision desired, and to use coarsening

with care once reionization is included. We also emphasize that when using coarsen-

ing, it is best to check for convergence by comparing the result with less coarsening.

A.3.3 𝑓𝑐(𝑧) Contours

Fig. A-8 show the computed 𝑓𝑐(𝑧) contours within DarkHistory for all channels of

interest without any backreaction. The new 𝑓𝑐(𝑧) calculation by DarkHistory makes

several small physics and numerical improvements over the previous calculation of

these results [30, 82], but still agree to within less than 10% when methodologies

(cosmological parameters, methods of interpolation etc.) are standardized between

the code used in Ref. [82] and DarkHistory. The new calculation also corrects a

bug in earlier work in the treatment of prompt energy deposition from nonrelativistic

and mildly relativistic injected electrons. This accounts for the bulk of the visible

differences in Fig. A-8 between the current contours and those of Refs. [30, 82], which

are most pronounced for DM annihilation/decay to electrons and low injected particle

energies.

A.4 Table of Definitions

Table A.5 shows a list of variables and their definitions for reference.
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Figure A-8: Computed 𝑓𝑐(𝑧) values without backreaction with DarkHistory for (from
left to right) 𝜒 → 𝛾𝛾 decays, 𝜒 → 𝑒+𝑒− decays, 𝜒𝜒 → 𝛾𝛾 annihilations and 𝜒𝜒 →
𝑒+𝑒− annihilations (with no boost factor). The results from Refs. [30, 82] are shown
for comparison (dashed lines). These contour plots agree with the previous results
to within 10% if all calculation methods are standardized between DarkHistory and
Refs. [30, 82], and represent an improved calculation of 𝑓𝑐(𝑧) neglecting backreaction.
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Category Symbol Definition

General
𝑦 log-redshift, 𝑦 ≡ log(1 + 𝑧).

Δ𝑦, Δ𝑡
log-redshift step size and associated time

step size.

x

Ionization levels: x ≡ (𝑥HII, 𝑥HeII, 𝑥HeIII) ≡
(𝑛HII/𝑛H, 𝑛HeII/𝑛H, 𝑛HeIII/𝑛H) i.e. the

fractional abundance of ionized hydrogen

atoms, singly-ionized helium atoms and

doubly-ionized helium atoms with respect

to the number of hydrogen atoms (both

neutral and ionized).

𝜁𝑖

arctanh [(2/𝜒𝑖) (𝑛𝑖/𝑛H − 𝜒𝑖/2)] where

𝑖 ∈ {HII,HeII,HeIII}, convenient

reparametrization of x introduced for

numerical purposes.

𝑇𝑚 Temperature of the IGM.

𝑇
(0)
𝑚 , 𝑥(0)

HII(𝑧)
Baseline temperature and ionization

histories, obtained from Eq. (2.1).

𝑚𝜒, 𝜏 , ⟨𝜎𝑣⟩
Dark matter mass, lifetime, and

velocity-averaged annihilation cross

section.

(︀
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︀
inj

Energy injection rate per volume for exotic

forms of energy injection, given for dark

matter annihilation/decay in Eq. (2.3).

Spectra
𝐺(𝑧)

Conversion factor between the rate of

injected events per volume to the number

of injected events per baryon within a

log-redshift step, as defined in Eq. (2.10).
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N
𝛼

inj[𝐸
′
𝛼,𝑖]

Spectrum containing number of particles

of type 𝛼 ∈ {𝛾, 𝑒} injected into energy bin

𝐸 ′
𝛼,𝑖 per annihilation event.

N𝛼
inj[𝐸

′
𝛼,𝑖, 𝑦

′]

Spectrum containing the number of

particles per baryon in a log-redshift step

of type 𝛼 injected into energy bin 𝐸 ′
𝛼,𝑖 at

log-redshift 𝑦′, as defined in Eq. (2.9).

N
𝛾

pos[𝐸
′
𝛾,𝑖]

Spectrum of photons produced from a

single positronium annihilation event.

N𝛾
new[𝐸

′
𝛾,𝑖, 𝑦

′]

Sum of the spectra of primary injected

photons, and secondary photons produced

by the cooling of electrons, as defined in

Eq. (2.23).

N𝛾
prop[𝐸

′
𝛾,𝑖, 𝑦

′]

Spectrum of propagating photons with

energies greater than 13.6 eV that do not

photoionize or get otherwise deposited into

low-energy photons.

N𝛾[𝐸 ′
𝛾,𝑖, 𝑦

′]
N𝛾

prop[𝐸
′
𝛾,𝑖, 𝑦

′] +N𝛾
new[𝐸

′
𝛾,𝑖, 𝑦

′], as defined in

Eq. (2.28).

N𝛼
low[𝐸𝛼,𝑖, 𝑦]

Low-energy photons (𝛼 = 𝛾) or electrons

(𝛼 = 𝑒) at log-redshift 𝑦.

Photon

Cooling P
𝛾
[𝐸 ′

𝛾,𝑖, 𝐸𝛾,𝑗, 𝑦
′,Δ𝑦,x]

Transfer function for propagating photons,

which multiplies N𝛾[𝐸 ′
𝛾,𝑖, 𝑦

′] and produces

N𝛾
prop[𝐸𝛾,𝑗, 𝑦

′ −Δ𝑦], as defined in

Eq. (2.27).

D
𝑒
[𝐸 ′

𝛾,𝑖, 𝐸𝑒,𝑗, 𝑦
′,Δ𝑦,x]

Low-energy electron deposition transfer

function, which multiplies N𝛾[𝐸 ′
𝛾,𝑖, 𝑦

′] and

produces N𝑒
low[𝐸𝑒,𝑗, 𝑦

′ −Δ𝑦], as defined in

Eq. (2.29).
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D
𝛾
[𝐸 ′

𝛾,𝑖, 𝐸𝛾,𝑗, 𝑦
′,Δ𝑦,x]

Low-energy photon deposition transfer

function, which multiplies N𝛾[𝐸 ′
𝛾,𝑖, 𝑦

′] and

produces N𝛾
low[𝐸𝛾,𝑗, 𝑦

′ −Δ𝑦], as defined in

Eq. (2.31).

D
high
𝑐 [𝐸 ′

𝛾,𝑖, 𝑦
′,Δ𝑦,x]

High-energy deposition transfer matrix,

which multiplies N𝛾[𝐸 ′
𝛾,𝑖, 𝑦

′] and returns

the total energy that greater than 3 keV

electrons produce during the cooling

process deposit into channel 𝑐 ∈ {‘ion’,

‘exc’, ‘heat’}, as defined in Eq. (2.32) in

the next log-redshift step at 𝑦′ −Δ𝑦.

(︁
P
𝛾

1/2

)︁𝑛
Coarsened propagating photon transfer

function with a coarsening factor of 𝑛, as

defined in Eq. (2.33), which multiplies

N𝛾[𝐸 ′
𝛾,𝑖, 𝑦

′] and produces

N𝛾
prop[𝐸𝛾,𝑗, 𝑦

′ − 𝑛Δ𝑦].

Electron

Cooling N[𝐸 ′
𝑒,𝑖, 𝐸𝑒,𝑗]

Spectrum of secondary electrons produced

due to the cooling of a single injected

electron with initial energy 𝐸 ′
𝑒,𝑖.

R𝑐[𝐸
′
𝑒,𝑖]

High-energy deposition vector containing

the total energy deposited into channel

𝑐 ∈{‘ion’, ‘exc’, ‘heat’} by a single injected

electron with kinetic energy 𝐸 ′
𝑒,𝑖, as

defined in Eq. (2.13).

RCMB[𝐸
′
𝑒,𝑖]

Total initial energy of CMB photons that

are upscattered via ICS due to the cooling

of a single electron of energy 𝐸 ′
𝑒,𝑖.

TICS,0[𝐸
′
𝑒,𝑖, 𝐸𝛾,𝑗]

Spectrum of photons produced with energy

𝐸𝛾,𝑗 due to the cooling of a single electron

of energy 𝐸 ′
𝑒,𝑖, as defined in Eq. (2.14).
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TICS[𝐸
′
𝑒,𝑖, 𝐸𝛾,𝑗]

The same as 𝑇 ICS,0, but with the

pre-scattering spectrum of upscattered

CMB photons subtracted out, as defined

in Eq. (2.16).

T𝑒[𝐸
′
𝑒,𝑖, 𝐸𝑒,𝑗]

Low-energy electron spectrum produced

due to the cooling of a single electron of

energy 𝐸 ′
𝑒,𝑖, as defined in Eq. (2.17).

Low-

Energy

Deposi-

tion

𝑓𝑐(𝑧,x)

Ratio of deposited to injected energy, as a

function of redshift 𝑧 and the ionization

level x, into channels 𝑐 ∈ {‘H ion’, ‘He ion’,

‘exc’, ‘heat’, ‘cont}, as defined in Eq. (2.4).

(︀
𝑑𝐸𝛼

𝑑𝑉 𝑑𝑡

)︀
𝑐

Energy deposited per volume and time by

low-energy photons (𝛼 = 𝛾) or electrons

(𝛼 = 𝑒) into channel 𝑐.

𝐸high
𝑐 [𝑦]

Total amount of high-energy deposition

into channels 𝑐 ∈{‘ion’, ‘exc’, ‘heat’} at

log-redshift 𝑦.

Table A.5: A list of the important definitions used in DarkHistory. In this table, all

spectra are discretized spectra as described in Sec. 2.3.2. Spectra without overlines

are normalized so that their entries contain number (per baryon) of particles produced

in a redshift step. A primed energy denotes the energy of an injected particle, and

by energy we mean kinetic energy. In this table, when we refer to electrons we will

always mean electrons plus positrons.
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Appendix B

Lyman-𝛼 Constraints

B.1 Terms in the Evolution Equations

In this appendix we provide explicit expressions for the terms appearing in Eq. (3.1)

and (3.3) and explicitly write down the helium ionization evolution equations. Start-

ing with the non-DM temperature sources,

�̇�adia = −2𝐻𝑇m ,

�̇�C = −Γ𝐶(𝑇CMB − 𝑇m) , (B.1.1)

where 𝐻 is the Hubble parameter, 𝑇CMB is the temperature of the CMB, and Γ𝐶 is

the Compton cooling rate

Γ𝐶 =
𝑥e

1 + 𝜒+ 𝑥e

8𝜎𝑇𝑎𝑟𝑇
4
CMB

3𝑚e
. (B.1.2)

Here, 𝜎𝑇 is the Thomson cross section, 𝑎𝑟 is the radiation constant, and 𝑚e is the

electron mass. The DM temperature source is given by

�̇�DM =
2𝑓heat(𝑧,x)

3(1 + 𝜒+ 𝑥e)𝑛H

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

(B.1.3)

where 𝑓heat(𝑧,x) is the deposition efficiency fraction into heating of the IGM as a

function of redshift 𝑧 and a vector, x, storing the ionization levels of HI and HeII,

which is computed by DarkHistory.
(︀

𝑑𝐸
𝑑𝑉 𝑑𝑡

)︀inj is the total amount of energy injected

per volume per time through DM decays or annihilations. Finally, �̇�atom is given

by the sum of the recombination, collisional ionization, collisional excitation, and

bremsstrahlung cooling rate fitting functions given in Appendix B4 of Ref. [92]. In

Fig. B-1, we plot these rates for a model of DM decaying to photons with a lifetime
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of 2× 1022 s and 𝑚𝜒 = 800MeV. We set 𝑥Pl
e to Planck’s latest FlexKnot ionization

history and use the ‘conservative’ treatment for the photoheating term. Fig. B-1

demonstrates that in a hot and reionized universe, cooling processes that were once

negligible become important and possibly dominant.
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Figure B-1: The absolute value of the atomic cooling rates included in �̇�atom, the
adiabatic cooling rate, and the DM heating rate. We assume a model of DM decaying
to photons with a lifetime of 2× 1022 s and 𝑚𝜒 = 800MeV. The blue line corresponds
to the sum of all cooling rates while the red corresponds to the DM heating rate, the
only source of heating in the ‘conservative’ treatment.

Moving on to the ionization equations, we write down the helium version of

Eq. (3.1),

�̇�HeII = �̇�atom
HeII + �̇�DM

HeII + �̇�⋆
HeII ,

𝑥HeIII = 0 , (B.1.4)

where 𝑥HeII ≡ 𝑛HeII/𝑛H is the density of singly-ionized helium atoms in the IGM nor-

malized to the density of hydrogen atoms, and 𝑥HeIII is defined similarly. As explained

above, the second of these two equations reflects the fact that there are negligibly few

fully ionized helium atoms in the IGM over the redshifts under consideration in our

analysis. Therefore we only need to keep track of the relative levels of HeI and HeII

using the first equation. Similarly to the �̇�⋆
HII term, we have engineered the astrophys-

ical reionization source term to turn off for 𝑧 > 𝑧⋆ and produce a helium ionization
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curve that is equal to 𝜒
1+𝜒

𝑥Pl
e (𝑧) for 𝑧 < 𝑧⋆. In other words,⎧⎪⎨⎪⎩
�̇�HeII = �̇�atom

HeII + �̇�DM
HeII , 𝑧 > 𝑧⋆ ,

𝑥HeII =
𝜒

1 + 𝜒
𝑥Pl

e (𝑧) , 𝑧 < 𝑧⋆ .
(B.1.5)

Notice that we do not need to know the explicit form of �̇�⋆
HeII in contrast to �̇�⋆

HII, which

we need to compute to evaluate �̇� ⋆ in Eq. (3.4). Due to this simplified treatment,

𝑥HeII can be discontinuous at 𝑧⋆; we have tested alternative prescriptions and found

negligible effects on our constraints.

The atomic sources contain a contribution from photoionization and a contribution

from recombination. For 𝑧 > 𝑧⋆, we assume a case-B scenario [38, 71, 73],

�̇�atom
HII = 4 𝒞H

[︀
(1− 𝑥HII) 𝛽

𝐵
H𝑒

−𝐸H/𝑇CMB − 𝑛H 𝑥e 𝑥HII 𝛼
𝐵
H

]︀
�̇�atom

HeII = 4
∑︁
𝑠

𝒞HeII,𝑠

[︁
𝑔𝑠(𝜒− 𝑥HeI) 𝛽

𝐵
HeI,𝑠𝑒

−𝐸HeI,𝑠/𝑇CMB

− 𝑛H 𝑥e 𝑥HeII 𝛼
𝐵
HeI,𝑠

]︁
, (B.1.6)

where 𝐸𝑖, 𝛽𝐵
𝑖 , 𝛼𝐵

𝑖 , and 𝒞𝑖 are, respectively, the binding energy, case-B photoioniza-

tion coefficient (including the gaussian fudge factor used in RECFAST v1.5.2 [38, 71]),

case-B recombination coefficient, and Peebles 𝒞𝑖 factor for species 𝑖 ∈ {H;HeI, singlet;HeI, triplet}
[37]. Notice, there is a sum over both spin states of the two electrons in the excited

HeI atom. For the spin singlet, 𝑔1 = 1 and 𝐸HeI,1 = 20.616 eV, while for the spin

triplet state 𝑔3 = 3 and 𝐸HeI,3 = 19.820 eV.

When 𝑧 < 𝑧⋆, we assume a case-A scenario, which is applicable during reioniza-

tion [92]:

�̇�atom
HII = 𝑛H (1− 𝑥HII)𝑥e ΓeHI − 𝑛H 𝑥e 𝑥HII 𝛼

𝐴
HII . (B.1.7)

The collisional ionization rate, ΓeHI, and case-A recombination coefficient, 𝛼𝐴
HII, can

be found in Ref. [92]. Notice that the case-A photoionization term from CMB photons

is not included because it is exponentially suppressed at these low redshifts, and that

the photoionization term from astrophysical reionization sources is already accounted

for in �̇�⋆
HII. Additionally, we do not need the analogous HeII version of Eq. (B.1.7)

since at these redshifts we have assumed 𝑥HeII = 𝜒𝑥HII.
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Figure B-2: Constraints for decay (left) or 𝑝-wave annihilation (right) to 𝛾𝛾 pairs
with 𝑣ref = 100 km s−1. We show our constraints using the ‘conservative’ (blue band),
‘photoheated-I’ (red band), and ‘photoheated-II’ (orange band) treatments. We also
include the CMB constraint for decay [59] (dashed-black). Telescope constraints [260–
264] are many orders of magnitude stronger than ours, and are not shown for clarity.

The DM ionization source terms are given by

�̇�DM
HII =

[︂
𝑓H ion(𝑧,x)

𝐸H𝑛H
+

(1− 𝒞H)𝑓exc(𝑧,x)

0.75𝐸H𝑛H

]︂(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

,

�̇�DM
HeII =

𝑓He ion(𝑧,x)

𝐸HeI𝑛He

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

,

�̇�DM
HeIII = 0 , (B.1.8)

where 𝑓H ion(𝑧,x), 𝑓He ion(𝑧,x), 𝑓exc(𝑧,x) are the deposition efficiency fractions into

hydrogen ionization, single neutral helium ionization, and hydrogen excitation calcu-

lated by DarkHistory.

B.2 Other Final States

In this appendix we provide constraints for DM decay and 𝑝-wave annihilation to 𝛾𝛾,

𝜇+𝜇−, 𝜋+𝜋−, and 𝜋0𝜋0.

B.2.1 Photons

Fig. B-2 shows decay and annihilation constraints for 𝛾𝛾 final states using the ‘con-

servative’ (blue), ‘photoheated-I’ (red), or ‘photoheated-II’ treatments (orange). As

in the main text, the 𝑝-wave annihilation cross-section is defined by 𝜎𝑣 = (𝜎𝑣)ref ×
(𝑣/𝑣ref)

2 with 𝑣ref = 100 km s−1 and we use the NFW boost factor for 𝑝-wave an-

nihilation calculated in Ref. [130], which accounts for enhanced annihilation due to

increased DM density and dispersion velocity in halos. Just as in the main text, the

darkly shaded blue, red, and orange bands show the variation of our constraints as
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we vary 𝑥Pl
e in Eq. (3.2) over the 95% confidence region of Planck’s FlexKnot and

Tanh late-time ionization curves. As before, the ‘conservative’ and ‘photoheated-I’

bands are narrow, demonstrating an insensitivity to the precise form of the reioniza-

tion curve, while the ‘photoheated-II’ curve is broader for the reasons discussed in

the main text.

The photon final state constraints are less competitive with existing constraints

than are the 𝑒+𝑒− constraints. For example, CMB constraints [59] are stronger for all

masses in the decay channel. Additionally, telescope constraints (see e.g. Refs. [260–

264]) are many orders of magnitude stronger than ours since telescopes can search

directly for the produced photons, in contrast to our temperature constraints that

indirectly look for the effects that these photons have on the IGM.

Our 𝛾𝛾 constraints are weaker than our 𝑒+𝑒− constraints because the photoion-

ization probability is small (equivalently, the path length is long) for the redshifts

and photon energies of interest. In contrast, electrons can efficiently heat the gas ei-

ther through direct Coulomb interactions (for non-relativistic and mildly relativistic

electrons) or through inverse Compton scattering that produces efficiently-ionizing

photons (for higher-energy electrons).

B.2.2 Muons and Pions

While we could also consider any other Standard Model particle final state, our re-

sults from the previous section and the main text indicate that our constraints are

most competitive at masses below 10GeV. Therefore, we consider some of the most

important final states that are available to sub-GeV DM besides those already con-

sidered: muons, charged pions, and neutral pions. To compute the final spectra of

𝑒+𝑒− and 𝛾 produced by the decay of pions or muons, we use the PPPC4DMID for

DM masses above 10GeV.

For DM masses below 10GeV, we follow the method described in Ref. [160]. We

start with the spectrum of electrons in the muon rest frame, which is given by

𝑑𝑁𝜇→𝑒𝜈𝜈
𝑒

𝑑𝐸𝑒

=
4
√︀

𝜉2 − 4𝜚2

𝑚𝜇

[𝜉(3− 2𝜉) + 𝜚2(3𝜉 − 4)] (B.2.1)

between energies of 𝑚𝑒 < 𝐸𝑒 < (𝑚2
𝜇 + 𝑚2

𝑒)/(2𝑚𝜇) and is otherwise zero. In this

equation, 𝜉 = 2𝐸𝑒/𝑚𝜇 and 𝜚 = 𝑚𝑒/𝑚𝜇. For a particle 𝐴 with mass 𝑚𝐴 decaying with

some spectrum 𝑑𝑁/𝑑𝐸 ′ in its rest frame, the spectrum 𝑑𝑁/𝑑𝐸 in an arbitrary frame
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Figure B-3: Constraints for decay (left) or 𝑝-wave annihilation (right) to 𝜇+𝜇− (yel-
low), 𝜋+𝜋− (blue), and 𝜋0𝜋0 (red) pairs with 𝑣ref = 100 km s−1. We show our con-
straints only using the ‘conservative’ treatments.

where 𝐴 has energy 𝐸𝐴 is given by

𝑑𝑁

𝑑𝐸
=

1

2𝛽𝛾

∫︁ 𝐸′
max

𝐸′
min

𝑑𝐸 ′

𝑝′
𝑑𝑁

𝑑𝐸 ′ , (B.2.2)

where 𝛾 = 𝐸𝐴/𝑚𝐴 is the Lorentz factor, 𝛽 =
√︀

1− 𝛾−2, and 𝐸 ′
max/min = 𝛾(𝐸 ± 𝛽𝑝).

In the case of decay to muons, we can use this equation to boost from the muon

frame to the dark matter frame, where the muon has energy 𝑚𝜒 for annihilations or

𝑚𝜒/2 for decays. For decay to pions, we first boost to the pion rest frame where the

muon has energy (𝑚2
𝜋 +𝑚2

𝜇)/(2𝑚𝜋), and then the dark matter frame where the pion

similarly has energy 𝑚𝜒 for annihilations or 𝑚𝜒/2 for decays.

We plot our constraints in Fig. B-3. 𝜇+𝜇− and 𝜋+𝜋− ultimately decay to 𝑒+𝑒− and

neutrinos, meaning that these constraints are comparable to the 𝑒+𝑒− constraints,

though somewhat weaker because the produced electrons share at most an 𝒪(1)

fraction of the total DM injected energy with the other neutrinos. 𝜋0𝜋0 decays almost

exclusively to 4𝛾, so the photons carry half the energy as compared to photons that

result from 𝜒 → 𝛾𝛾 decays. Thus, the pion constraints look exactly like the 𝛾𝛾

constraints shifted by a factor of 2 to the left.

B.3 Cross Checks

Here, we provide cross checks to validate the assumptions we made in our analysis.

First, we will validate maintaining 𝑥HeIII = 0 after H and HeI reionization despite DM

injecting HeII ionizing photons. Second, we will check that our 𝑝-wave constraints

are insensitive to the uncertainty in the halo boost factor coming from the halo

profile. Finally, we will validate our use of ionization histories that feature significant
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ionization levels prior to reionization, by checking that they do not violate constraints

on the total 𝑧 < 50 optical depth.

B.3.1 Treatment of HeIII

In calculating the constraints shown in Fig. 3-2, we assume that there is no ionization

of HeII to HeIII – i.e. 𝑥HeIII = 0 – consistent with the assumptions that went into

the making of DarkHistory’s transfer functions. We still account for energy depo-

sition through ionization of HeII by allowing photons with energies 𝐸𝛾 > 54.4 eV to

be absorbed by HeII atoms, thus producing electrons of energy 𝐸𝛾 − 54.4 eV that

thermalize with the IGM. This is not entirely self-consistent because these photoion-

ization events would gradually increase the fraction of HeII atoms as they convert into

HeIII atoms. Having fewer HeII atoms could then affect our constraints by decreasing

the heating deposition fraction, since fewer photoionized electrons could be produced

and thermalize with the IGM.

We test our sensitivity of our constraints to this approximation by adding a new

�̇�HeIII source term and accounting for recombination photons once HI/HeI reionization

is complete. We restrict this correction to after HI/HeI reionization because it is

expected to make the biggest difference in the heating rate then, since HeII atoms

are the only possible source of photoionized electrons at this point, and because the

temperature data we use are primarily in this redshift range.

To apply our correction, we first modify Eq. (B.1.4) to track the fully ionized

helium fraction,

�̇�HeIII =
𝑓He ion(𝑧,x)

4𝐸H𝑛He

(︂
𝑑𝐸

𝑑𝑉 𝑑𝑡

)︂inj

+ 𝑛H (𝜒− 𝑥HeIII)𝑥e ΓeHeII

− 𝑛H 𝑥e 𝑥HeIII 𝛼
𝐴
HeIII , (B.3.1)

where the deposition fraction 𝑓He ion(𝑧,x) computed by DarkHistory accounts for the

total energy deposited into HeII ionization and ΓeHeII is the collisional ionization rate

of HeII [92]. We then compute the fraction of HeIII atoms that recombines within a

timestep of the code, Δ𝑡,

𝑓HeIII
recomb = 1− 𝑒−𝛼A

HeIII𝑥HeIII𝑛𝑒Δ𝑡 . (B.3.2)
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We convert this fraction to the number of 54.4 eV photons per baryon emitted by

HeIII atoms in this time step

𝑁HeIII
recomb = 𝑓HeIII

recomb𝑛HeIII/𝑛B , (B.3.3)

then add these photons to DarkHistory’s low energy photon spectrum within that

time step.
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Figure B-4: Comparison of ‘conservative’ constraints for decay to electrons, includ-
ing and not including the effects of HeII ionization after HI/HeI reionization. Both
constraints were generated assuming Planck’s earliest Tanh reionization history.

Fig. B-4 shows a comparison of constraints for dark matter decaying to electrons,

where the two curves either allow for a non-zero HeIII fraction (light blue) or do

not (blue). The difference in constraints is always less than 1%, and so is not an

important source of error in our analysis.

B.3.2 Boost factor for 𝑝-wave annihilation

The boost factor due to enhanced density and velocity dispersion in halos depends

on the halo profile chosen. However, in Ref. [130], the boost factor was found to be

highly robust to this choice, since the main contribution to the boost factor comes

from the largest halos, which are fully resolved in 𝑁 -body simulations. We find that

the difference in our constraints made by using the Einasto 𝑝-wave boost factor rather

than the NFW 𝑝-wave boost factor from Ref. [130] is negligibly small, resulting in

a modification of no more than 0.5% to our constraints. Notice that the two boost

factors only vary over the halo mass function and halo profile, and do not include
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uncertainties due to mergers, asphericity, etc.

B.3.3 Optical depth

In this appendix, we discuss the relation between temperature and ionization con-

straints, focusing in particular on the complementarity of these constraints. One

might worry that scenarios excluded by excess heating of the IGM are strictly a sub-

set of those excluded by the ionization history. In some cases, the DM contribution to

the optical depth 𝜏 before reionization, combined with one of the Planck reionization

models, can exceed the Planck limit on 𝜏 . DM energy injection starts to increase

the ionization fraction and temperature immediately after recombination, and so our

computed ionization histories will always be in excess of Planck’s reionization curves

at early enough redshifts.

To some extent, these worries have already been addressed by the fact that the

temperature constraints can sometimes be stronger than the CMB power spectrum

constraints for DM decays as derived in Refs. [59, 67], which account for the effect

of excess ionization on the full multipole structure of the CMB power spectrum.

For simplicity, however, we would like to compare the IGM temperature constraints

derived in the main body with limits on the ionization history coming simply from

the Planck upper limit on 𝜏 .

Given an ionization history 𝑥e(𝑧), the optical depth is

𝜏 = 𝑛H,0𝜎𝑇

∫︁ 𝑧max

0

𝑑𝑧 𝑥e(𝑧)
(1 + 𝑧)2

𝐻(𝑧)
, (B.3.4)

where 𝜎𝑇 is the Thomson cross-section and 𝑧max is set to 50, as is done in Ref. [121].

The 68% upper bound on the optical depth from Planck assuming a tanh function

reionization history is 𝜏 = 0.0549 [121]. To derive a constraint, we compute an

ionization history in the presence of DM energy injection and exclude it if the history’s

optical depth is greater than 0.0549.

Clearly, these optical depth constraints will be highly sensitive to the reionization

curve we choose. For example, if we were to use the earliest Tanh reionization curve

that already saturates the optical depth bound we would rule out all DM models since

they all increase 𝜏 . On the other hand, we saw that our temperature constraints were

very weakly dependent on the choice of reionization curve. For a fair comparison, we

choose a reionization history with the smallest optical depth. While we could choose
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the latest Tanh reionization curve, we instead follow the instantaneous reionization

method described in Ref. [130] so that we can compare to older optical depth con-

straints. We will assume an instantaneous HI/HeI reionization at 𝑧 = 6, then an

instantaneous HeII reionization at 𝑧 = 3, but no other sources of reionization other

than DM for 𝑧 > 6. The optical depth contributed by the range 0 < 𝑧 < 6 is 0.384,1

meaning that DM models that contribute more than 𝛿𝜏 = 0.0165 to the optical depth

within the range 6 < 𝑧 < 50 will be ruled out.
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Figure B-5: Constraints obtained from the IGM temperature (red) and optical depth
(blue, solid), as well as previous bounds derived in Ref. [130] from the optical depth
(pink, dashed). The black line shows the constraints derived using a principal com-
ponent analysis of CMB data [59].

Fig. B-5 shows a comparison of the optical depth constraint in blue to the IGM

temperature constraint in red for a model of DM decay to 𝑒+𝑒−. For reference, we

show the CMB power spectrum constraint in dashed-black [59], and also show an

older optical depth constraint made with Planck intermediate results [102] in dotted-

pink [130]. This latter constraint calculated 𝜏 = 0.058±0.012 by following the method

in Ref. [129] and integrating over the excess ionization fraction over the standard

three-level atom result up to recombination. We see that across most of the mass

range, the two methods of constraining dark matter lifetimes are comparable, but

there is a large range of DM masses over which the temperature constraints do better

than the optical depth limits. Had we considered a model of p-wave annihilation to

𝑒+𝑒− instead, we would find that the heating constraints are generically stronger than
1This is nearly equivalent to using the earliest Tanh reionization history, which has an optical

depth contribution of 0.383 to the same redshift range.
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those from the optical depth since, as compared to the decay case, the power from

p-wave annihilation is enhanced at low redshifts where temperature limits are most

sensitive. To summarize, since the IGM temperature constraints are insensitive to the

exact ionization history during reionization, they probe a different aspect of energy

injection from DM that is distinct from ionization-based constraints like optical depth

and the CMB power spectrum.

B.4 Test Statistics

In this appendix, we derive the distribution of the modified 𝜒2-like test statistic (TS)

that we use in conjunction with the ‘conservative’ treatment of the �̇� ⋆ photoheating

term (i.e. �̇� ⋆ = 0). We are working in a frequentist framework, so we wish to evaluate

the probability distribution for the TS defined in Eq. (3.5), when assuming a certain

pattern of heating due to DM energy injection. We can then say that this scenario

is excluded if the TS observed in the real data is sufficiently unlikely. We make

the assumption that the data points in different redshift bins are independent and

Gaussian distributed.

Suppose that there are 𝑁 redshift bins, and in the 𝑖th bin the temperature value

𝑇𝑖,data is drawn from a Gaussian distribution with mean 𝑇𝑖,pred and standard deviation

𝜎𝑖,data. There is then a 50% chance that 𝑇𝑖,data > 𝑇𝑖,pred, so the probability distribution

for TS𝑖 as defined in Eq. (3.5) is:

𝑓(TS𝑖|𝑇𝑖,pred) =
1

2
𝛿(TS𝑖) + 𝑃 (𝑇𝑖,data)

𝑑(𝑇𝑖,data)

𝑑(TS𝑖)

=
1

2
𝛿(TS𝑖) +

1

2
√
2𝜋

TS−1/2
𝑖 exp(−TS𝑖/2) , (B.4.1)

where 𝛿 is the Dirac delta function. Let the 𝜒2 probability distribution func-

tion with 𝑗 degrees of freedom be denoted by 𝑓𝜒2(TS; 𝑗). Then one can rewrite this

distribution in terms of the 𝜒2 distribution with one degree of freedom:

𝑓(TS𝑖|𝑇𝑖,pred) =
1

2
𝛿(TS𝑖) +

1

2
𝑓𝜒2(TS𝑖; 1) . (B.4.2)

Now we want to know the distribution for the total TS value from combining the

bins (assuming uncorrelated data), TS ≡∑︀𝑖 TS𝑖. We can write:
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𝑓(TS|{𝑇𝑖,pred}) =
[︃

𝑁∏︁
𝑖=1

∫︁ ∞

0

𝑑TS𝑖 𝑓(TS𝑖|𝑇𝑖,pred)

]︃

× 𝛿(TS −
𝑁∑︁
𝑗=1

TS𝑗)

=

[︃
𝑁∏︁
𝑖=1

∫︁ ∞

0

𝑑TS𝑖 [𝛿(TS𝑖) + 𝑓𝜒2(TS𝑖; 1)]

]︃

× 1

2𝑁
𝛿(TS −

𝑁∑︁
𝑗=1

TS𝑗) . (B.4.3)

Expanding the product inside the integrals gives a sum of terms, which each consist

of a product of delta-functions and 𝑓𝜒2 functions. For a term with 𝑛 delta-functions,

the delta-functions can be used to do 𝑛 of the integrals, resulting in a term of the

form: [︃
𝑁∏︁

𝑗=𝑛+1

∫︁ ∞

0

𝑑TS𝑖𝑗𝑓𝜒2(TS𝑖𝑗 ; 1)

]︃
𝛿(TS −

𝑁∑︁
𝑘=𝑛+1

TS𝑖𝑘) , (B.4.4)

where 𝑛 can take on values from 0 to 𝑁 , and 𝑖𝑛+1, 𝑖𝑛+2, · · · , 𝑖𝑁 are a collection of

indices between 1 and 𝑁 for this particular term. However, this is exactly the standard

probability distribution function for the sum of the 𝜒2 test statistic over 𝑁 − 𝑛 bins,

so we can write it as 𝑓𝜒2(TS;𝑁 − 𝑛).

The coefficient of each such term will be the number of ways of choosing which

𝑛 indices correspond to 𝛿-function terms as opposed to the 𝑁 − 𝑛 indices labeling

𝑓𝜒2(TS𝑖; 1) contributions – which is the binomial coefficient
(︀
𝑁
𝑛

)︀
. Since

(︀
𝑁
𝑛

)︀
=
(︀

𝑁
𝑁−𝑛

)︀
,

we can write:

𝑓(TS|{𝑇𝑖,pred}) =
1

2𝑁

𝑁∑︁
𝑛=0

(︂
𝑁

𝑛

)︂
𝑓𝜒2(TS;𝑛) . (B.4.5)

This completes the proof of Eq. (3.6).

Note that this expression integrates correctly to 1, as
∫︀
𝑑TS𝑓𝜒2(TS;𝑛) = 1 and∑︀𝑁

𝑛=0

(︀
𝑁
𝑛

)︀
= 2𝑁 . The largest binomial coefficients

(︀
𝑁
𝑛

)︀
will occur for 𝑛 ≈ 𝑁/2,

and so we may approximate the distribution as a 𝜒2 distribution with 𝑁/2 degrees

of freedom. However, for the actual constraints in the main text we use the full

distribution, rather than this approximation.

We can also understand this distribution by thinking of TS as the standard 𝜒2

test statistic, in the presence of a model for the data where each redshift bin contains

an irreducible (dark matter) contribution plus a non-negative but otherwise arbitrary

176



increase to the temperature from photoheating. If we profile over the nuisance pa-

rameters describing the unknown astrophysics, we see that the minimum 𝜒2 will be

attained when:

∙ in bins where the irreducible contribution from dark matter already exceeds the

measured temperature, extra contributions from photoheating are set to zero;

the contribution to the TS is the usual 𝜒2 computed using the irreducible model

and the data,

∙ in bins where the irreducible contribution from dark matter does not exceed

the measured temperature, the additional photoheating contribution is chosen

to precisely match the data, and consequently the contribution to the TS is

zero.

This is exactly the prescription for our modified TS, Eq. (3.5).

Because this is a standard 𝜒2 test, just with a flexible background model, the

probability distribution for the TS should follow that of a 𝜒2 distribution with 𝑁−𝑚

degrees of freedom, where 𝑚 is the number of floated parameters in the fit. The

number of floated parameters for this signal model is the number of bins where the

data is greater than the irreducible model, which can vary from 0 to 𝑁 ; thus the full

probability distribution is obtained as a linear combination of 𝜒2 distributions with

degrees of freedom varying from 0 to 𝑁 .
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Appendix C

Thermal Squeezeout

C.1 Thermodynamics of a First-order Phase Transi-
tion

In this Appendix we collect results that are helpful for understanding the dynamics of

a first-order phase transition. We also describe a numerical simulation of the confining

phase transition from the main text, which we perform to fix the initial pocket radius

and its contraction rate. The code we used to perform this simulation can be found

at https://github.com/gridgway/ConfiningPT_Bubbles.

C.1.1 Standard thermodynamics

The defining characteristic of a first-order phase transition is that a first derivative

of the free energy, or the free energy density 𝑓 , is discontinuous at a critical point.

In our case, the entropy density, 𝑠 = − 𝜕𝑓
𝜕𝑇

, is discontinuous, corresponding to a non-

zero latent heat release due to phase conversion. In contrast, 𝑓 itself is continuous,

meaning that the free energy of the two phases are the same at the critical point,

𝑓deconf = 𝑓conf.

To better understand the latent heat, first notice that in the absence of chemical

potentials the critical point is specified by a single parameter, the critical temperature

𝑇𝑐, and the free energy density is minus the pressure, 𝑓 = −𝑝. Since the free energy of

both phases are the same at the critical point, their pressures are the same. Using the

Euler relation, 𝜌 = 𝑇𝑠− 𝑝, where 𝜌 is the energy density, one can take the difference

in energy densities of the two phases at the critical temperature to find

Δ𝜌 = 𝑇𝑐Δ𝑠 ≡ 𝑙 , (C.1.1)
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which defines the latent heat density. Whereas the free energy density is continuous,

the energy density is not. Another important quantity that characterizes first-order

phase transitions is the surface tension, 𝜎. The surface tension is the energy cost per

unit area of an interface separating the two phases.

The latent heat density and surface tension are calculable via lattice simulations.

We assume that at temperatures below the quark mass, the thermodynamics of the

system are insensitive to the heavy quark field and we need only consider lattice sim-

ulations of pure 𝑆𝑈(3) Yang-Mills theory. In particular, the authors of [48] calculate

a latent heat density and surface tension in the infinite volume limit (see their tables

7 and 15)

𝑙 = 1.413𝑇 4
𝑐 ,

𝜎 = .02𝑇 3
𝑐 . (C.1.2)

These quantities have been computed elsewhere [49–52], and we find that the uncer-

tainties on 𝑙 and 𝜎 among these different lattice calculations are not large enough to

qualitatively change our results.

As the universe expands, our thermal system, still in the deconfined phase, su-

percools.1 Once the system is supercooled, the free energy of the confined phase is

lower than the free energy of the deconfined phase, meaning that it is energetically

favorable for a phase transition to take place. For any non-zero amount of super-

cooling, there now exists a critical radius, 𝑅𝑐, at which the energy cost of increasing

a spherical bubble’s surface area is exactly compensated by the free-energy decrease

due to phase conversion,

𝜕𝐹

𝜕𝑅

⃒⃒⃒⃒
𝑅𝑐

=
𝜕

𝜕𝑅

(︂
4𝜋𝑅2𝜎 − 4𝜋

3
𝑅3Δ𝑓

)︂⃒⃒⃒⃒
𝑅𝑐

= 0

=⇒ 𝑅𝑐 =
2𝜎

Δ𝑓
, (C.1.3)

where Δ𝑓 is the confined phase free energy density minus that of the deconfined

phase, and so is positive.

To relate Δ𝑓 to the latent heat density, first recall that at 𝑇𝑐 the entropy difference

is given by Δ𝑠 = 𝑙/𝑇𝑐. If we then use the thermodynamic relation 𝜕𝑓
𝜕𝑇

= −𝑠 we find
𝜕Δ𝑓
𝜕𝑇

⃒⃒
𝑇𝑐

= −𝑙/𝑇𝑐. If we assume small supercooling we can use a Taylor expansion,

1 Much of the following discussion can be found in Refs. [265] §162 and [266] §99-100.
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which at leading order gives

Δ𝑓 =
𝜕Δ𝑓

𝜕𝑇
(𝑇 − 𝑇𝑐)

= 𝑙
(𝑇𝑐 − 𝑇 )

𝑇𝑐

. (C.1.4)

We then find

𝑅𝑐 =
2𝜎 𝑇𝑐

𝑙 (𝑇𝑐 − 𝑇 )
. (C.1.5)

The total free energy of a bubble at the critical radius is

𝐹𝑐 = 4𝜋𝑅2
𝑐𝜎 − 4𝜋

3
𝑅3

𝑐Δ𝑓

=
16𝜋

3

𝜎3

Δ𝑓 2

=
16𝜋

3

(︂
𝜎

𝑇 3
𝑐

)︂3(︂
𝑙

𝑇 4
𝑐

)︂−2
𝑇 3
𝑐

(𝑇𝑐 − 𝑇 )2
. (C.1.6)

Thermal fluctuations will randomly convert regions of varying shapes and sizes

from one phase to the other. When the system is supercooled, there is a chance that

a converted region will be large enough that it expands rather than contracts. The

probability per unit time and volume of converting a region with free energy 𝐹 is

determined primarily by the Boltzmann factor 𝑒−𝐹/𝑇 . Using dimensional analysis we

have [267],

Γ = 𝐴𝑇 4𝑒−
𝐹
𝑇𝑐 , (C.1.7)

where 𝐴 is assumed to be some 𝒪(1) number that is roughly constant with respect

to temperature and determined by the microscopic theory. Provided 𝐴 is indeed an

𝒪(1) number, we find that the exponential is by far the more important factor for

determining the behavior of the phase transition, so we set 𝐴 to 1 without qualitatively

changing our results. For an alternative though similar expression for Γ, See [266]

§99.

Let us make the simplifying assumption that all bubbles can be approximated as

spherical. Then bubbles that nucleate with radii below 𝑅𝑐 are ephemeral, quickly

shrinking due to surface tension, while bubbles with radii well above 𝑅𝑐 are expo-

nentially less likely to nucleate than critical bubbles by Eq. (C.1.7). Then to a good

approximation, we can assume that only bubbles at the critical radius nucleate. Com-
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bining Eqs. (C.1.6) and (C.1.7), we find the nucleation rate of these critical bubbles

is

Γ = 𝐴𝑇 4
𝑐 𝑒

− 𝜅𝑇2
𝑐

(𝑇𝑐−𝑇 )2 , (C.1.8)

𝜅 =
16𝜋

3

(︂
𝜎

𝑇 3
𝑐

)︂3(︂
𝑙

𝑇 4
𝑐

)︂−2

,

∼ 7× 10−5 , (C.1.9)

where in the last line we have used the lattice results from Eq. (C.1.2). Because the

latent heat density is an order one number in units of 𝑇𝑐 while the surface tension is

a small number in units of 𝑇𝑐, 𝜅 turns out to be a very small number (which Ref. [48]

indicates is generically true for 𝑆𝑈(𝑁) theories). As a result, very little supercooling

is required before bubble nucleation becomes efficient.

C.1.2 First half of the phase transition: bubble growth

After bubble nucleation begins, the phase transition proceeds via the nucleation of

new bubbles and the expansion of old bubbles. To keep track of the progress of

the phase transition, we define the fraction of the universe that is in the confined

phase [267],

𝑥(𝑡) =

∫︁ 𝑡

𝑡𝑐

𝑑𝑡′Γ(𝑡′)
4𝜋

3
𝑅3(𝑡, 𝑡′)(1− 𝑥(𝑡′)) , (C.1.10)

where 𝑡𝑐 is the time at which the universe first reaches the critical temperature and

𝑅(𝑡, 𝑡′) is the radius at time 𝑡 of a bubble nucleated at time 𝑡′. Applying a time

derivative yields

�̇�(𝑡) = Γ(𝑡)(1− 𝑥(𝑡))
4𝜋

3
𝑅3

𝑐(𝑡) +

∫︁ 𝑡

𝑡𝑐

𝑑𝑡′Γ(𝑡′)4𝜋𝑅2(𝑡, 𝑡′)�̇�(𝑡, 𝑡′)(1− 𝑥(𝑡′)), (C.1.11)

where the first term corresponds to the nucleation of new bubbles while the second

corresponds to the expansion of old bubbles.

The temperature evolution of the early universe plasma includes the usual adia-

batic cooling term due to Hubble expansion, but now it also includes a new heating

term due to the steady release of latent heat as the deconfined phase converts to

the confined phase. By Eq. (C.1.1), converting a fraction 𝑑𝑥 from the deconfined to

the confined phase releases 𝑑𝜌 = 𝑙𝑑𝑥 energy per unit volume. The released energy
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is absorbed in each phase with a temperature increase determined by each phase’s

respective specific heat, 𝑑𝜌/𝑑𝑇 . For now, we will focus on the large scale average

temperature so that we do not have to deal with small scale temperature gradients

between points near and far from the sites of latent heat release. If we assume that

the portal interaction between the SM bath and dark sector leads to frequent enough

interactions between the two sectors per Hubble time, then in each phase the specific

heat is dominated by the many degrees of freedom of the high temperature SM bath.

For example, the deconfined phase of the dark sector is found to contribute about 5%

to the specific heat at the critical temperature [52]. We can then use

𝜌(𝑇 ) ≈ 𝑔*(𝑇 )𝜋
2

30
𝑇 4 , (C.1.12)

for both phases, where 𝑔*(𝑇 ) is the effective number of relativistic degrees of freedom

and is 𝑔*(𝑇 ) ≈ 106.75 for all temperatures of interest in our analysis. We therefore

approximate both phases as having the same specific heats and find

𝑑𝑇 ≈ 𝑙

(︂
𝑑𝜌(𝑥)

𝑑𝑇
(𝑇𝑐)

)︂−1

𝑑𝑥

≈ 10−2𝑇𝑐𝑑𝑥. (C.1.13)

The total temperature evolution of the universe during the phase transition is then

given by

�̇� = −𝐻𝑇 + 10−2 𝑇𝑐�̇� , (C.1.14)

where the first term comes from the adiabatic cooling of relativistic species due to

Hubble expansion. Had we considered a model in which few interactions take place

between the standard model and dark sector baths per Hubble time, then the two

sectors would be thermally decoupled. 𝑇 would refer to the dark sector’s temperature,

which would heat relative to the SM temperature, and we would have divided by the

dark sector’s specific heat, eliminating the factor of 10−2 in Eq. (C.1.14).

There is an important distinction between the temperature evolution of a weakly

first-order phase transition and a strongly first-order phase transition. In a weakly

first-order phase transition the latent heat in units of 𝑇𝑐 is typically small (see [267])

so that the heating term in Eq. (C.1.14) is negligible and the amount of supercooling

does not change much due to the added latent heat. In a strongly first-order phase
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transition the latent heat in units of 𝑇𝑐 can be order one or larger (see Eq. (C.1.2))

so that 𝑇 can be driven back up to 𝑇𝑐 before the phase transition completes. Fur-

thermore, since 𝜅 in Eq. (C.1.9) scales inversely with 𝑙2, the large value of the latent

heat decreases the amount of supercooling needed to achieve efficient bubble nucle-

ation as is seen in Eq. (C.1.8), making it easier for the universe to reheat to a point

where nucleation is negligible. We will show in a simulation below that this reheating

scenario is achieved in our phase transition.

Notice also that 𝑇 cannot ever reheat all the way up to 𝑇𝑐. If it did, the critical

radius would diverge and all bubbles would shrink. The second term in Eq. (C.1.14)

would change sign and become a cooling term since latent heat would be absorbed, and

hence 𝑇 would be driven back below 𝑇𝑐. Instead, |𝑇−𝑇𝑐| decreases from its maximum

to an equilibrium value very close to zero at which the heating and cooling terms in

Eq. (C.1.14) nearly balance one another, as we will show below. This equilibrium

phase coexistence is exactly the regime described by the Maxwell construction for

first-order phase transitions (see [265], §84).

As explained in the previous section, we assume that bubbles nucleated at time

𝑡0 are of size 𝑅𝑐(𝑇 (𝑡0)), giving the initial condition 𝑅(𝑡 = 𝑡0, 𝑡0) = 𝑅𝑐(𝑇 (𝑡0)). To

determine the radius at a future time, we need an expression for the bubble wall

velocity, �̇�(𝑡, 𝑡′). An accurate treatment of the bubble wall velocity, requires full 3+1

dimensional numerical simulations of bubble dynamics during the phase transition.

However, even in simplified settings, various numerical simulations have not converged

on a single, definitive answer [216, 220–222]. Instead, we will use a convenient, basic

model of �̇�(𝑡, 𝑡′). We require that critical bubbles not change their radius, and that

larger bubbles expand while smaller bubbles contract. To capture this behavior, we

use the simple functional form

�̇�(𝑡, 𝑡0) = 𝑣𝑤(𝑡) sign [𝑅(𝑡, 𝑡0)−𝑅𝑐(𝑡)] , (C.1.15)

where we define sign(0) = 0.

To determine 𝑣𝑤(𝑡) would require a better understanding of the underlying strong

dynamics. Instead, we will estimate an upper bound on 𝑣𝑤(𝑡) based on thermody-

namic arguments. As argued in the main text, the larger 𝑣𝑤 is, the less the DM relic

abundance will be suppressed. So we will always set 𝑣𝑤 to its upper bound, assuming

it to be a conservative choice.
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As a bubble expands, it releases latent heat near its wall, locally heating the

plasma at the wall to a temperature 𝑇wall > 𝑇 and reducing the free energy difference

at the interface. Since the free energy density is minus the pressure, this local heating

reduces the net pressure acting on the wall (See Eq. (C.1.4)). Since the degree of

supercooling is so small, the wall could potentially heat up to a temperature at

which the net pressure balances against the surface tension. If the wall reached this

temperature, bubble growth would no longer be thermodynamically favorable, and so

the wall motion would come to a halt. By an argument completely analogous to the

one that lead to Eq. (C.1.3), except we evaluate Eq. (C.1.4) at the wall temperature,

we find this equilibrium wall temperature to be

𝑇 eq
wall = 𝑇𝑐

(︂
1− 2𝜎

𝑙 𝑅

)︂
. (C.1.16)

We assume that as the wall temperature approaches 𝑇 eq
wall its growth slows down

gradually. Before the wall temperature reaches 𝑇 eq
wall it will have slowed down to a

steady state at which the rates of wall heating and cooling cancel one another. By

estimating the rates of wall heating and cooling then setting them equal, we will

determine an approximate expression for 𝑣𝑤(𝑡).

We start with the cooling rate. We will assume that 𝑇wall is very close to 𝑇 eq
wall,

which is in turn very close to 𝑇𝑐 since the second term in Eq. (C.1.16) is very small

compared to 1 for bubbles larger than Λ−1. This assumption will lead to a faster 𝑣𝑤.

The fractional temperature difference between points near and far from the wall is

then (𝑇𝑐 − 𝑇 )/𝑇𝑐. We assume that the heat loss rate is given by a diffusion equation,

�̇�cool ∼ −𝐾∇2𝑇 , and that the transport coefficient at 𝑇𝑐 is of order 𝐾 ∼ Λ−1. If

we further assume that the length scale of the density gradient is Λ−1, then we find

�̇�cool ∼ −Λ2 (𝑇𝑐 − 𝑇 )/𝑇𝑐.

Now we move on to the heating rate. We start with the energy injected per unit

wall area and time, 𝑙 𝑣𝑤. If we assume that this energy is injected within a typical

length Λ−1 of the wall, then the energy injected per unit volume is 𝑙𝑣𝑤Λ. As before,

dividing by the specific heat, 𝑑𝜌/𝑑𝑇 , converts the energy increase into a temperature

increase. Rather than assume that the specific heat is dominated by the SM degrees

of freedom as we did when deriving Eq. (C.1.13), we assume that for this process the

SM degrees of freedom are irrelevant and the specific heat is dominated by the dark

sector degrees of freedom, though this choice will not affect our final result. We do
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so because we anticipate that for most models the portal interaction between the SM

and dark sector will generically take place on timescales much slower than Λ−1, and

so will be inefficient compared to the interactions within the dark sector. Hence, we

assume that the dark degrees of freedom disperse latent heat on a fast timescale of

order Λ−1, and only on much longer timescales does this heat find its way into the

SM degrees of freedom.2 Then we can use 𝑑𝜌DS/𝑑𝑇 ∼ 𝑇 3 [52], which gives a heating

rate of �̇�heat ∼ Λ2𝑣𝑤.3 The wall velocity at which both rates are in balance is then

𝑣𝑤 =

(︂
𝑇𝑐 − 𝑇

𝑇𝑐

)︂
. (C.1.17)

As argued in Ref. [209], we see that 𝑣𝑤 is suppressed by the small degree of

supercooling during the phase transition.

We apply a similar argument to the wall velocity of contracting bubbles, which

are smaller than the critical radius. As bubbles contract, latent heat is absorbed near

the wall, decreasing the wall temperature, increasing the net pressure on the wall,

and thus opposing further contraction. The contraction rate is therefore limited by

the rate at which the cold wall can heat due to heat flow from the hotter surrounding

plasma. Balancing the heating and cooling rates as before leads to a wall velocity

given by Eq. (C.1.17) up to a relative sign, justifying the symmetric functional form

of Eq. (C.1.15).

Again, the above expression for 𝑣𝑤 is in reality an upper bound. An expanding

bubble wall cannot move any faster than Eq. (C.1.17), at least for an extended period,

because then it would locally overheat the wall. There is a similar consideration

that the global rate of increase in temperature from bubble expansion should not

significantly outpace the Hubble cooling, lest the whole universe be heated above

𝑇 = 𝑇𝑐. Consequently, we will see that the value of 𝑣𝑤 derived in Eq. (C.1.17) evolves

so that it always lies below or close to this “global threshold”.

The wall velocity (Eq. (C.1.17)) and global threshold are plotted in Fig. C-1. At
2We assume that the timescale over which interactions between the SM and dark sector baths

exchange energy is much faster than the Hubble rate, justifying why the SM degrees of freedom are
included in the heat capacity in Eq. (C.1.13).

3 If the portal interaction is actually efficient enough to keep the two sectors in equilibrium on
this short timescale, then the heating rate would be suppressed by a factor of 𝑔⋆. However, the
cooling rate would also be suppressed by a factor of 𝑔⋆ since 𝐾 is inversely proportional to the
number density of interacting degrees of freedom, [268] §3.9. These two factors would then cancel
in the expression for 𝑣𝑤. We therefore expect Eq. (C.1.17) to be independent of the specific portal
interaction.
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Figure C-1: The wall velocity (blue) and “global threshold” (black dashed) above
which phase conversion is so fast that the universe experiences net heating. The right
panel displays the same data as the left panel, but zooms in to the very end of the
phase transition when pockets have contracted significantly. The discontinuity in the
middle is an artifact of our modeling. It occurs when the spectrum of bubbles, which
peaks at 𝑅0, discontinuously jumps to a delta function spectrum of pockets centered
at 𝑅1.
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the start of the phase transition, when bubbles are rare and their radii are small,

the global heating from bubble expansion is very small even for 𝑣𝑤 → 𝑐, and so the

global threshold velocity goes to infinity. The same is true at the end of the phase

transition, when there is very little volume available for phase conversion. However,

during the phase transition when the rate of phase conversion is rapid, this threshold

becomes relevant.

Let us consider what happens when bubble coalescence and growth causes 𝑣𝑤 =

(𝑇𝑐 − 𝑇 )/𝑇𝑐 to exceed this global threshold (which depends on the bubble density

and typical bubble radius) for the first time. If 𝑣𝑤 overshoots the threshold, then the

universe will begin to heat up on average, thus reducing 𝑣𝑤. The net effect is for the

degree of supercooling to evolve such that 𝑣𝑤 tracks the global threshold velocity. In

practice, we observe that there is at first an abrupt drop in both 𝑣𝑤 and the global

threshold velocity, associated with a sharp increase in the bubble number density due

to nucleation; in this epoch, 𝑣𝑤 slightly exceeds the global threshold velocity and this

supports a fairly rapid increase in 𝑇 . Once nucleation becomes inefficient due to the

rising temperature, the global threshold velocity evolves more slowly, driven by the

expansion of the largest existing bubbles. In this epoch 𝑣𝑤 tracks the global threshold

closely and �̇� ≈ 0, with a slow adiabatic increase in temperature toward 𝑇𝑐 driven

by the slow decrease in the global threshold velocity (which requires a corresponding
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decrease in 𝑣𝑤 and hence in the degree of supercooling). We can even derive the

scaling of the global threshold (and 𝑣𝑤) with 𝑡 during this period. By Eq. (C.1.14),

�̇� ≈ 0 implies �̇� ≈ 100𝐻. Using the fact that the spectrum of bubbles is strongly

peaked at a single radius 𝑅, and the nucleation of bubbles is so suppressed that the

number density of bubbles is constant, we have 𝑥 = 4𝜋𝑅3𝑛bub/3. Combining the two

equations gives 𝑑𝑅/𝑑𝑡 ∝ 𝑅−2 so that 𝑅 = 3𝐴(𝑡− 𝑡0)
1/3 for some constants A and 𝑡0.

Therefore, 𝑣𝑤 = 𝑑𝑅/𝑑𝑡 = 𝐴(𝑡− 𝑡0)
−2/3. Indeed, we find that the slope of the line in

Fig. C-1 between times .001/𝐻 and .005/𝐻 is precisely −2/3.

The Hubble cooling can be relevant here, even though the phase transition takes

place on timescales much smaller than a Hubble time, because the bubble expansion is

so sensitive to the degree of supercooling; in contrast, we can freely drop e.g. density

dilution terms corresponding to the Hubble expansion, as there is no comparably small

density difference relevant to our calculation (see e.g. Eq. (4.3.2)). After coalescence,

when the heating comes from pockets of shrinking radius rather than bubbles of

expanding radius, the reverse process occurs, with a slow adiabatic decrease in the

equilibrium temperature due to the decreasing size of the pockets. The temperature

evolution eventually switches over to the standard Hubble cooling once 𝑣𝑤 = (𝑇𝑐 −
𝑇 )/𝑇𝑐 can no longer reach the global velocity threshold (and hence �̇� ≈ 0 cannot be

maintained).

With Eqs. (C.1.11) and (C.1.14) through (C.1.17) in hand we are able to simulate

the first half of the phase transition. This system of equations models the initial bub-

ble nucleation and accompanying latent heat release, and the proceeding equilibrium

regime up until percolation when bubbles begin to overlap and new dynamics must

be included. Our initial conditions are that the universe has supercooled a little bit,
𝑇−𝑇𝑐

𝑇𝑐
= −10−4, the universe is fully in the deconfined phase, 𝑥 = 0, and that no bub-

bles have nucleated yet. We evolve forward in small time steps, Δ𝑡 = 10−6/𝐻(𝑇𝑐).

In each time step we nucleate Γ(𝑇 (𝑡))(1− 𝑥(𝑡))Δ𝑡 bubbles per unit volume at radius

𝑅𝑐(𝑇 (𝑡)) and add them to a list. We allow all other bubbles from previous steps

to expand or contract by an amount �̇�(𝑡, 𝑡′)Δ𝑡, which only depends on the bubble

size and temperature within that time step. This procedure produces bubbles with

radii less than or equal to 0, so we set such bubbles’ radii to zero and remove them

from our list. Additionally, many time steps result in an additional number density

of bubbles that is so exponentially small that the computer sets the number density
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to zero. We remove these bubbles from our list, too. Each bubble nucleation and

all bubble expansions increase 𝑥 by �̇�Δ𝑡 and the temperature by �̇�Δ𝑡 according to

Eqs. (C.1.11) and (C.1.14). We finish our evolution once 𝑥 = 1
2
.

Outputs of our simulation are shown in Fig. C-2. The left plot shows the degree

of supercooling before percolation and the middle plot shows the fraction of phase

converted, 𝑥. These plots make clear that the first half of the phase transition can

be divided into three distinct stages. In the first stage, the degree of supercooling is

so small that the bubble nucleation rate is too suppressed to have a significant effect

on the simulation. During this period 𝑥 = 0 and the universe cools through Hubble

expansion. In the second stage, the supercooling reaches a point at which nucleation

becomes efficient. These nucleated bubbles quickly grow and inject heat, correspond-

ing to the sudden jump in the temperature and 𝑥 a little before 𝑡 = 0.001/𝐻. The

temperature reaches a point very close to 𝑇𝑐 at which nucleation of new bubbles

becomes inefficient again, leading to the third stage. This stage is exactly the equi-

librium phase coexistence regime described above. There are a fixed number density

of large bubbles that grow and inject latent heat at such a rate as to cancel Hubble

cooling. The net effect is that �̇� ≈ 0. By Eq. (C.1.14), we have

�̇� ≈ 102𝐻 . (C.1.18)

Since the temperature is constant during this stage, the Hubble rate is as well, mean-

ing that 𝑥 grows linearly in time, which can be seen in our middle plot. This equation

explains why the phase transition occurs over a time scale of 10−2/𝐻. Had we as-

sumed instead that the portal interaction between the SM bath and dark sector was

very weak and led to few scatters per Hubble time, then the dark sector would not

have access to the SM heat capacity and the above factor of 102 would be replaced

by an 𝒪(1) factor instead.

The rightmost plot in Fig. C-2 shows the spectrum of bubble radii at the time

of percolation, 𝑥 = 1/2. The shape of this spectrum is a product of the preceding

stages. The earliest bubbles were nucleated during the first stage. They had the

longest time to grow, but were nucleated at a time of relatively small supercooling,

meaning that their number density was exponentially suppressed. So as 𝑅 increases

away to the right of the peak of the spectrum, 𝑑𝑛bub/𝑑𝑅 decreases. Just as the second

stage begins the universe is maximally supercooled. The bubbles produced at this
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Figure C-2: The degree of supercooling as a function of time (left), the confined
phase fraction as a function of time (middle), and the spectrum of bubble radii at
percolation, when 𝑥 = 1/2 (right).
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point are the most numerous and constitute the peak of the distribution. In the rest

of the second stage, the supercooling quickly diminishes, producing an exponentially

suppressed population of bubbles that are smaller than the peak radius since they

have less time to grow, leading to the sharp decrease of the spectrum to the left of

the peak.

We define the peak in 𝑑𝑛bub/𝑑𝑅 to occur at 𝑅0 and empirically find that it is very

well fit by the function

𝑅0 Λ = 10−6 ×
(︂

Λ

𝑀pl

)︂−0.9

= 6.7× 107 ×
(︂

Λ

TeV

)︂−0.9

. (C.1.19)

𝑅0, however, is not the only relevant length scale for the bubbles. An additional

length scale, 𝑅1, emerges from the dynamics of bubble coalescence.

At percolation, bubbles frequently come into contact with one another and begin

to coalesce. To model the coalescence dynamics, we borrow another argument from

[209]. When two spherical bubbles of radius 𝑅 coalesce into one larger-radius bubble,

they decrease their surface area and therefore reach a more energetically favorable

configuration due to surface tension. The energy difference between the two config-

urations is Δ𝐸 ∼ 4𝜋𝑅2(2 − 2
2
3 )𝜎 = 4𝜋𝑅2(2 − 2

2
3 ) × .02𝑇 3

𝑐 . This change in energy

is achieved by applying a force to the mass 𝑀 in the bubbles over a characteristic

distance 𝑅. So 𝐹 ∼ Δ𝐸/𝑅 ∼ 𝑀𝑎, where 𝑎 is the acceleration of the material in the

bubbles. This acceleration can also be estimated as 𝑎 ∼ 𝑅/𝑡2coalesce, where 𝑡coalesce is

the coalescence timescale. If we then use that the total mass in the two bubbles is

𝑀 = 2 × 4
3
𝜋𝑅3𝜌deconf ≈ 8

3
𝜋𝑅3𝑇 4

𝑐 , where we used that 𝜌deconf(𝑇𝑐) ≈ 𝑇 4
𝑐 [52], then we

189



find

𝑡coalesce ∼
(︂
𝑀𝑅2

Δ𝐸

)︂ 1
2

(C.1.20)

∼ 10𝑇
1
2
𝑐 𝑅

3
2 . (C.1.21)

The above equation shows that small bubbles coalesce quicker than large ones.

Therefore, at percolation small bubbles will quickly coalesce until they reach a size

𝑅1 past which 𝑡coalesce takes longer than the timescale of percolation. From Fig. C-

2 we can estimate the timescale of percolation as the time it takes 𝑥 to change by

a couple percent at around 𝑥 = 1
2
. We find 𝑡perc ∼ 10−3𝐻−1 ∼ 10−3𝑀pl

𝑇 2
𝑐

where

𝑀pl = (8𝜋𝐺)−1/2 ∼ 2.4 × 1018GeV is the reduced Planck mass and 𝐺 is Newton’s

constant. Setting the percolation timescale equal to 𝑡coalesce then yields the critical

bubble size of,

𝑅1 Λ ≈ 10−8/3

(︂
𝑀pl

Λ

)︂2/3

≈ 4× 107
(︂

TeV
Λ

)︂2/3

, (C.1.22)

in units of 𝑇𝑐 = Λ.

In Fig. 4.2.2 we plot 𝑅0 and 𝑅1 as a function of the confinement scale. We find

that for Λ & 1TeV , 𝑅0 is less than or equal to 𝑅1. Therefore, for this range of Λ,

once our simulation finishes at 𝑥 = 1
2

we assume that all bubbles begin coalescing and

quickly grow to radius 𝑅1. Since 𝑥 does not change during this process, we assume

that 𝑇 remains fixed, too. For Λ < 1TeV, we assume that coalescence is inefficient

and bubbles remain at radius 𝑅0.

C.1.3 Second half of the phase transition: pocket contraction

After percolation, most bubbles are in contact with one another. The confined regions

form a web and the deconfined regions form isolated pockets. We assume these pockets

quickly attain spherical symmetry due to surface tension, and also that the typical size

of a bubble before percolation is equal to the typical size of a pocket after percolation,

𝑅1.

Since all pockets are at the same initial radius, we can solve for the initial density

of pockets. The number density of pockets that are all of radius 𝑅 satisfies

1− 𝑥 =
4𝜋

3
𝑅3𝑛pocket . (C.1.23)
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Since 𝑥 = 1
2

at percolation, we have

𝑛pocket =
3

8𝜋𝑅3
1

. (C.1.24)

We will find that the degree of supercooling continues to be so small during pocket

contraction that the nucleation of more bubbles is completely suppressed. Therefore

𝑛pocket remains constant and we find

𝑥 = 1− 𝑅3

2𝑅3
1

. (C.1.25)

As before the contraction rate of the pockets is limited due to the latent heat

release near the pocket wall. However, the wall velocity estimate for pockets is slightly

different than it was for bubbles. Whereas supercooling results in a net pressure

outward for bubbles, supercooling results in a net pressure inward for pockets, since

the two phases are on opposite sides of the wall in either case. With this caveat in

mind we can repeat our argument leading to Eq. (C.1.17).

As before, we argue that as it expands, the wall quickly heats up, approaching a

threshold temperature at which pressure and surface tension are in equilibrium. This

threshold now corresponds to slight superheating at the temperature 𝑇𝑐

(︀
1 + 2𝜎

𝑙𝑅

)︀
.

Before 𝑇wall reaches this threshold it achieves a steady state at which heating from

latent heat injection cancels against cooling from heat diffusion from the wall. Using

the same arguments as before, we find that this steady state corresponds to a velocity

of

𝑑𝑅

𝑑𝑡
= −(𝑇𝑐 − 𝑇 )/𝑇𝑐 . (C.1.26)

Again, we used that 2𝜎
𝑙𝑅

= .03
𝑅Λ

≪ 1, so we approximate the temperature difference

between the wall and its surroundings appearing in the above equation as 𝑇𝑐 − 𝑇 ,

which leads to an overestimate of the wall velocity.

There is another much more important new effect modifying the contraction rate

of a pocket: quark pressure. The density of quarks trapped within pockets increases

as they are forced within ever-shrinking volumes. This pressure opposes contraction,

slowing down the wall velocity relative to Eq. (C.1.26). For now, to build intuition,

we will ignore the effect of quark pressure, and we will consider it in the next section.

With Eqs. (C.1.14), (C.1.25), and (C.1.26) we have all we need to simulate the
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Figure C-3: The degree of supercooling as a function of time (left), the confined
phase fraction as a function of time (middle), and the pocket wall velocity as a
function of bubble radius during the second half of the phase transition (right).
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second half of the phase transition. We use the same method and parameters as

we did for the first half of the phase transition. In Fig. C-3 we show the results of

our simulation. The first instant of the simulation features a discontinuity in the

temperature (and thus 𝑣𝑤). This discontinuity results from our discontinuous change

of the spectrum of bubbles from the smooth form of 𝑑𝑛/𝑑𝑅 in the right panel of

Fig. C-2 to a delta function at 𝑅1. As the pockets get smaller, their heating rate

diminishes. Hubble cooling becomes relatively more important over time leading to

the steady decrease in 𝑇 over time. By the very end of the phase transition, the

temperature evolution is purely determined by Hubble cooling.

The right panel shows the pocket wall velocity as a function of the pocket radius.

As a function of 𝑅, 𝑣𝑤 asymptotes to a well-defined value near 2×10−4 for the choice

of Λ shown in the figure. Naively, this plot seems to be at odds with the left panel,

since the two plots are equivalent up to a minus sign. Whereas the velocity seems

to asymptote to a constant value at late times, the degree of supercooling seems to

vary greatly at late times. The apparent discrepancy is a result of the different x-axis

scales. Whereas the x-axis in the left panel is linearly scaled in 𝑡, the x-axis in the

right panel is log scaled in 𝑅. The majority of the simulation takes place when the

pocket radii are very large. The pocket radii are much smaller than their initial value

only for a very short time at the end of the simulation, at time scales much shorter

than the 1/𝐻. In fact, the small timestep 10−6/𝐻 was chosen to resolve this smaller

timescale. At such small timescales and pocket radii, very little Hubble cooling or

latent heat injection takes place, leading to the plateau in 𝑣𝑤. Since most of the quark

interactions recouple at pocket radii much smaller than 𝑅1 (see e.g. Fig. 4-6), we are
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justified in treating 𝑣𝑤 as constant within the Boltzmann equations of Sec. 4.3.4 The

asymptotic 𝑣𝑤 value as a function of Λ is plotted in Fig. 4.2.2 and is well fit by

𝑣𝑤(𝑅 ≪ 𝑅1) = 0.2

(︂
Λ

𝑀pl

)︂0.2

= 1.7× 10−4 ×
(︂

Λ

TeV

)︂0.2

. (C.1.27)

C.1.4 The effect of quark pressure

Up to this point we have neglected the effect of quark pressure on the phase transition,

𝑝𝑞 = 𝑛𝑞𝑇 . (C.1.28)

For the first half of the phase transition, this approximate treatment was justified.

At the start of the phase transition, 𝑝𝑞 is suppressed compared to the gluon pressure.

During the phase transition 𝑛𝑞 grows, and so the quark pressure could potentially

become large enough to affect the bubble dynamics. During the first half of the phase

transition, however, the quark density, and hence 𝑝𝑞, grows by only a factor of two.

Including this factor of two enhancement, we find that the quark pressure is sub-

dominant compared to the net gluon pressure during the bubble growth stage of the

phase transition, and hence can be neglected.

On the other hand, during the second half of the phase transition, the quarks are

compressed much more. We find that for every point in the DM parameter space

we consider, the quark pressure eventually becomes comparable to the other forces

acting on the wall. Most likely, the increased quark pressure would oppose further

contraction and slow 𝑣𝑤 down. Unfortunately, the process by which 𝑝𝑞 gradually

grows and, in response, 𝑣𝑤 gradually shrinks, is a non-equilibrium, strong physics

problem for which we have no solution. Nevertheless, we can still use thermodynamic

arguments as before to understand the possible limiting behavior of 𝑣𝑤.

Consider the scenario in which the enhanced quark pressure forces the pocket into

a state of mechanical equilibrium. Mechanical equilibrium is achieved when the four

forces on the wall – gluon pressure inside the pocket, glueball pressure outside the

pocket, surface tension, and quark pressure – are in balance. At this equilibrium
4Recall that by “recoupling” we mean the point when the rates of quark interactions become

large compared to the contraction rate of the pocket, so the quark density evolution is dominated
by interactions.
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point, we must have

0 = 𝑑𝐴𝜎 + 𝑑𝑉
(︁∑︁

𝑝
)︁⃒⃒⃒

wall

= 8𝜋𝜎𝑅 + 4𝜋Δ𝑓(𝑇wall)𝑅
2 − 4𝜋𝑝𝑞𝑅

2

= 8𝜋𝜎𝑅 + 4𝜋
(𝑇𝑐 − 𝑇wall)

𝑇𝑐

𝑙 𝑅2 − 3𝑁𝑞𝑇wall𝑅
−1 , (C.1.29)

where Δ𝑓 still refers to the confined phase minus the deconfined phase gluonic pres-

sures. The temperatures are all evaluated at the local wall temperature and we have

used 𝑁𝑞 =
4𝜋
3
𝑅3 𝑛𝑞. If the system ever reached this equilibrium point, it would be a

stable equilibrium: if 𝑅 were to contract the increased quark density would oppose

it; if 𝑅 were to expand the surface tension would increase, the quark pressure would

decrease, and the wall would absorb latent heat and increase the net gluon pressure

difference, all of which oppose further expansion. After achieving mechanical equilib-

rium, the wall would proceed to contract adiabatically as quark annihilation decreases

the quark pressure and wall cooling increases the net gluon pressure compressing the

wall. By differentiating Eq. (C.1.29) with respect to time and defining 𝑣𝑤 = −�̇�, we

find

𝑣𝑤 =
−3�̇�𝑞𝑇wall −

(︁
𝑁𝑞 +

4𝜋𝑙𝑅3

𝑇𝑐

)︁
�̇�wall(︁

8𝜋𝜎𝑅 + 8𝜋 (𝑇𝑐−𝑇wall)
𝑇𝑐

𝑙𝑅2 + 3𝑁𝑞𝑇wall𝑅−1
)︁ . (C.1.30)

Since we do not keep track of 𝑇wall, nor can we calculate 𝑣𝑤 as a function of 𝑇wall

when the wall is out of mechanical equilibrium, we have no way of knowing when or

if mechanical equilibrium is achieved.

However, to develop some intuition for the possible effects of quark pressure,

we can perform a crude approximate calculation. For this calculation, we perform

our pocket contraction simulation while simultaneously keeping track of the quark

abundance within each step using the Boltzmann equations of Sec. 4.3. Since the

quark pressure is sub-dominant initially, we start with 𝑣𝑤 given by Eq. (C.1.26).

Eventually there comes a radius when the quark pressure is so large that it is able to

oppose the combined forces of surface tension and the net gluonic pressure, even when

the latter pressure is at its maximum (which is attained when the wall temperature is

at its minimum, 𝑇wall = 𝑇 ). At this radius, we say that the wall has suddenly attained

mechanical equilibrium. We then switch over to a wall velocity of Eq. (C.1.30) for the
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Figure C-4: The pocket wall velocity (left) and particle abundances (right) within
the pocket using a model that crudely incorporates the effects of quark pressure on
𝑣𝑤. We choose a confinement scale of 1TeV and dark matter mass of 103 TeV. We
begin the simulation neglecting the quark pressure, allowing us to use Eq. (C.1.26) to
determine the contraction rate (red-dotted line). Eventually the quark pressure is so
large that it is able to come into mechanical equilibrium with the other forces acting
on the wall, which happens at the discontinuity near 𝑅Λ = 105. At this point, we
switch over to a contraction rate given by Eq. (C.1.30), leading to the discontinuous
drop in 𝑣𝑤 in the left panel and the sudden depletion of all particle abundances in
the right panel.
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rest of the simulation. We assume that the system maintains mechanical equilibrium

and 𝑇wall = 𝑇 until the end of the simulation.

In Fig. C-4 we plot the velocity and particle abundances within the pocket as func-

tions of 𝑅 for this new simulation. One can see that the velocity discontinuously drops

at a radius of 𝑅 ∼ 105Λ−1 when the pocket abruptly achieves mechanical equilibrium.

When this happens, further contraction is allowed only by subsequent quark annihi-

lations; the quark depletion processes immediately recouple and dominate the density

evolution due to the sharp drop in the contraction rate 𝑣𝑤/𝑅. At this same radius,

the baryon abundance is at a maximum and we find that the DM relic abundance is

set. Afterwards, the pocket slowly contracts and all particle numbers deplete until

the pocket vanishes. Importantly, we find that the pocket asymmetry is saturated in

this simulation (see Eq. (4.2.16)), and is also saturated for every other point in the

DM parameter space that we consider. Of course, this is a crude approximation – a

realistic scenario could have a smoother evolution of 𝑣𝑤, or if the wall velocity falls

sharply, this could induce plasma shock waves which modify the pocket evolution.

However, this explicit example supports our intuition that turning on quark pressure

will drive the system rapidly into the regime where the asymmetry is saturated, and

once in this regime the details of the evolution do not affect the final relic abundance.
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C.2 Cross Sections

For the computation of the baryon survival factor, multiple processes are relevant.

We distinguish between three classes of interactions:

∙ Annihilation process, i.e. a direct annihilation of free quarks into dark gluons:

1 + (−1) → 0 + 0.

∙ Capture processes, where a dark gluon is emitted for momentum conservation,

for example: 1 + 1 → 2 + 0.

∙ Rearrangement processes, where no gluon is emitted and only quark constituents

exchanged, for example: 2 + 2 → 3 + 1.

Similar to Tab. 4.1, in writing these equations we use each relic’s quark number.

For the values of the annihilation and capture cross sections explicit calculations

taking into account group theory factors have been performed in [47, 184, 185]. The

cross sections scale as

⟨𝜎ann./cap.𝑣⟩ = 𝜁
𝜋𝛼2

𝑚2
𝑞

≡ 𝜁 𝜎0 , (C.2.1)

where 𝜁 is a numerical factor that depends on the number of colors and flavors in

the theory, and the coupling strength 𝛼 is evaluated at the scale of the momentum

transferred in the annihilation process, which is 𝑚𝑞. In addition at low interaction

energies the bound state formation and the annihilation process experience enhance-

ment due to non-perturbative Sommerfeld corrections. The cumulative effect of those

non-perturbative effects at finite temperature can be taken into account by the ef-

fective cross section ⟨𝜎eff𝑣rel⟩ defined in [47, 184, 185]. In Fig. C-5 the factor 𝜁 is

shown for different annihilation and capture processes in our full set of Boltzmann

equations.

Thermal masses of the dark gluons prevent bound state formation at large temper-

atures, an effect that has been confirmed by additional investigations of the process

at hand in a non-equilibrium field theory treatment [47, 269, 270].

The rearrangement process is more complex and requires taking into account non-

perturbative effects. Here simulations and comparisons to hydrogen−anti-hydrogen

annihilation have been performed in [184]. The resulting cross section scales with the

area set by the Bohr radius of the colliding bound states and contains a suppression
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Figure C-5: Reproducing the results of [47, 184, 185] for 𝜁 factor in Eq. (C.2.1) for
various annihilation or capture processes entering our full set of Boltzmann equations.

factor which becomes effective once the kinetic energy exceeds the available binding

energy:

𝜎RA =
𝜋𝑅2

Bohr√︀
𝐸kin/𝐸EB

. (C.2.2)

This results in a constant 𝜎𝑣 cross section, which is expected for an exothermic

reaction

⟨𝜎RA𝑣⟩ =
1

𝐶𝑁𝛼

𝜋

𝑚2
𝑞

=
𝜎0

𝐶𝑁𝛼3
, (C.2.3)

with 𝐶𝑁 being the quadratic Casimir of the dark quark representation (𝐶𝑁 = 4/3

for quarks in the fundamental representation of 𝑆𝑈(𝑁)), that controls the interquark

attraction in a non-abelian theory. The overall scaling is thus 𝜎RA𝑣 ∼ 𝜎ann./cap.𝑣/𝛼
3,

in agreement with the numerical results of [271]. This non-perturbative enhancement

results from taking into account the finite size of the colliding bound states.

We summarize all the cross sections entering Eq. (4.3.10) in Tab. C.1. Notice

that in this table some processes involving gluons (denoted by 0) are listed as rear-

rangement. These processes, in fact, have an intermediate step in which the quarks

rearrange and make pions (𝑞𝑞), which can promptly decay into gluons, see Eq. (4.3.1).
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Class Process Cross section
Annihilation 1 + (−1) → 0 + 0

Capture
1 + 1 → 2 + 0 Fig. C-5 & Eq. (C.2.1)
2 + 1 → 3 + 0

(−3) + 1 → (−1) + (−1)

(−3) + 1 → (−2) + 0

(−2) + 1 → (−1) + 0

3 + (−2) → 1 + 0

2 + 2 → 3 + 1

Rearrangement 3 + (−2) → 2 + (−1) Eq. (C.2.3)
3 + (−3) → 2 + (−2)

2 + (−2) → 1 + (−1)

3 + (−3) → 1 + (−1)

3 + (−3) → 0 + 0

2 + (−2) → 0 + 0

Table C.1: The processes and cross section classes involved in the annihilation
and baryon formation. Bound states are donated by their baryon number. Direct
annihilation takes place if multiple gluons need to be emitted in the final state. If
one gluon is radiated, then perturbative capture cross section calculations apply. In
the case that the final states have no gluons that would be needed for momentum
conservation, we use the geometric rearrangement cross sections discussed below.
The 0 in the rearrangement processes denotes a pion 𝑞𝑞 that promptly decays to
gluons. Generally, all processes above have equivalent reactions, where all particles
are replaced by anti-particles. For those we assume the same cross sections, i.e.
assuming CP is conserved.

C.3 Binding Energies

The binding energies of several types of dark states enter the full set of Boltzmann

equations. For the two quark states exact results are available. Since we work in

the limit 𝑚𝑞 ≫ ΛDC the Coulomb potential approximation is valid. For the baryon

binding energy variational methods are needed, and numerical evaluations were per-

formed in [184]. We focus on the case that 𝑁 = 3. The resulting binding energies

are:

∙ Binding energy of a singlet diquark, or meson 𝑞𝑞: 𝐸𝑞𝑞
𝐵 = 1

4
𝛼2𝐶2

𝑁𝑚𝑞.

∙ Binding energy of a bound non-singlet diquark state 𝑞𝑞 in a binding configura-

tion is: 𝐸𝑞𝑞
𝐵 = 1

4
𝐸𝑞𝑞

𝐵 .

∙ Binding energy of a baron 𝑞𝑞𝑞 singlet sate is: 𝐸𝑞𝑞𝑞
𝐵 = 0.26𝛼2𝐶2

𝑁𝑚𝑞.
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Here 𝛼 is the gauge coupling of the confining group given by Eq. (4.2.4). The

relevant scale at which the coupling should be evaluated is the Bohr momentum 𝛼𝑚𝑞,

which can be determined iteratively, starting from the value of 𝛼(𝑚𝑞). It has been

shown that the corrections due to the linear (confining) part of the potential between

quarks has negligible effect on these binding energies (see Eq. (4) of [185]).

Note that the binding energies inside and outside the pockets differ only by the

subdominant contribution of the Cornell potential Λ2𝑟, evaluated at the interquark

spacing 𝑅𝑏 ∼ 1/(𝛼𝑚𝑞). That contribution is suppressed by Λ2/𝑚2
𝑞 ≪ 1 with respect

to the ground state binding energy, which is of the order 𝛼2𝑚𝑞.
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