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Abstract

Our main results demonstrate that priority queuing is an effective means of controlling
the delay of the users in an integrated services network, and that priority queuing can be
coupled with a flow control mechanism to simultaneously control the rate and the delay of
the users.

We begin by specializing the work of Coffman [Co80| on the characterization of the
delays realizable in a single server queuing system to the case in which the service time of
the users are drawn from a common exponential distribution. In this context we obtain
a simple characterization of the set of realizable delays and we construct a simple time—
invariant queuing strategy via which any realizable delay assignment can be realized. We
then attach a delay cost function to each user and we investigate the problem of finding
realizable delay assignments which minimize the costs. Two formulations are investigated.
In the first formulation the objective is to minimize the sum of the user’s costs. We give a
set of necessary and sufficient optimality conditions for this problem and, based on these
conditions, we construct a simple algorithm for solving the problem. In the second formu-
lation the objective is to find a min-max fair delay assignment. We show that this problem
is intimately related to the preceeding problem and propose a simple algorithm for solving

it.



Equipped with the results obtained in the single server case we investigate how priority
queuing can be used to control the delay of the users in an integrated services network.
Specifically, quantifying the end-to—end delay preferences of the users on an individual basis
through associated delay—cost functions, we consider the problem of selecting the queuing
strategies on the links of the network so as to minimize the overall delay cost. We give a
set of necessary and sufficient optimality conditions for this problem and we propose two
distributed for algorithms solving it. The first algorithm is approximate in the sense that
in general it does not converge to an optimal solution. However by selecting the parameters
of the algorithm appropriately the solution produced can be brought as close to optimality
as desired. Moreover the first algorithm terminates in finite time and works in a completely
uncoordinated manner. The second algorithm always converge to an optimal solution but
requires more coordination than the first algorithm.

Finally we propose a formulation of the flow control problem in which the interactions
between the rates and the delays are fully considered. In the formulation the cost function of
each user depends explicitly on the rate and the end-to—end delay of the user. The objective
is to select the rate of the users and the queuing strategies on the links of the network so as
to minimize the overall cost. We give a set of necessary and sufficient optimality conditions
for this problem. Then, based on these conditions, we construct a distributed algorithm

solving the problem.
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Notation.

General rules:
An arrow over a variable indicates that the variable is a vector. A subscript usually refers
to a virtual circuit (v.c.) attribute while a superscript usually refers to a link attribute.
A superscript enclosed in square brackets refers to an estimated value and a superscript
enclosed in parenthesis denotes a variable indexed by an iteration number.

The variables listed here are only those appearing in the body of the text. Variables

used only locally, for example inside a proof, are omitted.

Notation:
A;: Threshold below which the delay of v.c. { is equal to the delay of v.c. i —1.
(A,): Auxiliary problem in the system—oriented approach.
B: Busy period.
B(¢,w, R): Shorthand notation for the right hand side of the i** feasibility constraint.
B'(i, ", ﬁ): Shorthand notation for the right hand side of the ** feasibility constraint
| on link I.
B"(i,@", R): First derivative of the right hand side of the i** feasibility constraint on
link !.
¢;: Delay cost per unit rate of v.c. ¢ in the linear cost case.
C;(D;): Cost of assigning the end-to—end delay D; to v.c. 1.
Ci(D}): Cost of assigning the delay D! to v.c. i on link I, assuming that the delay
of v.c. ¢ on the other links is fixed.
[C:]71(-): Inverse of the function C;(-).
[C{]7*(-): Inverse of the function C!(-).
(CPP): Convex programming problem.
D: Vector containing all the delays; i.e, D = (Dy1,...,Dy) in the single link
case and D = (D!, I € £;, i =1,...,V) in the multiple link case.

D*: Vector containing the delay on link { of the v.c.’s using link [.

D(7): Destination of node 1.
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Fl.
(FC,):

: End-to—end delay of v.c. 1.

: Delay of the n** packet generated by v.c. 1.

: Reference value of the delay ov v.c. ¢ on link /.

: Estimate of the end-to—end delay of v.c. ¢ maintained by link [.
i+ Delay of v.c. 1 on link !.

: Delay of v.c. 1 on link [ at time k.

: Identity of the link downstream to ! on ¢’s path.

: Estimate maintained by link ! of the overall delay of v.c. { on the links of

i’s path downstream to [.

: Set of links on #’s path downstream to [.

du?]:

Estimate maintained by link ! of the overall delay of v.c. ¢ on the links of

¢’s path upstream to [.

: Priority éroup of v.e. 1.

: Priority group of v.c. ¢ on link .

: Priority group immediately preceeding the priority group e.
: Set containing all the priority groups.

: Set containing all the priority groups on link /.

: Expected load due to the packets of the v.c.’s in g, as seen at a random

instant in steady-state.

: Delay group of v.c. 1 on link /.

: Delay group immediately preceeding the delay group f on the link on which

f is defined.
Set containing all the delay groups on link /.

The flow control problem in the system-oriented approach.

: Subset of the set of indices {1,...,V}.
g(t):

¢ Number of iterations required to determine the zero of G,(-) in the system-

Virtual load due to the packets of the v.c.’s in g at time ¢.

oriented approach or to determine the zero of G,(:) in the user—oriented

approach.
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G,‘(R.,‘, N,'):
G,(-):

Gu(*):

H(s):

i(e):
: V.c. in the priority group e having the lowest position in the ordering.
(f):
i(f):

J,'(.D,'):

Cost of assigning the rate R; and the average number of packets N; to v.c.
1.

Compact representation of the minimum slackness in the equations in step
(3) of Alg_P,.

Compact representation of the minimum slackness in the equations in step

(3) of Alg_P,.

: Set of weakly feasible delay assignments satisfying the ordering D, < -+ <

Dy.
Home of node s.

V.c. in the priority group e having the highest position in the ordering.

V.c. in the delay group f having the highest position in the ordering on
the link on which f is defined.
V.c. in the prioritj group f having the lowest position in the ordering on
the link on which f is defined.
Optimal value of the minimization with respect to the delay of the v.c.’s
1+1,...,V when v.c. 1 is assigned the delay D; in the right hand side of

equation (3.11).

: Time immediately preceeding time k.

Constant.
Number of links in the network.

Number of links in the path of v.c. 1.

: Set of links in the path of v.c. 1.

Number of nodes in the network.
Vector containing all the average number of packets N = (NLteg;, i=

1,...,V).

;: Average number of packets of v.c. 1.

: Vector containing the average number of packets on link / of the v.c.’s using

link {.
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Di:

: Average number of packets of v.c. ¢ on link {.

(NP,):

System-—oriented problem in the multiple link case.
Probability that a packet is assigned the ¢*# priority in the aggregate stream
consisting of the packets of v.c. 1 and of the packets of v.c.’s 1,...,i — 1

which have not been assigned a priority greater than 1.

: System-—oriented problem in the single link case.

: User—oriented problem in the single link case.

: k** problem in the hierarchy.

: Dual functional.

: Queuing strategy.

: Vector containing the rate of the v.c.’s.

: Rate of v.c. 1.

: Optilﬁal value of S(-).

: Total delay cost corresponding to the assignment D.

: Total cost corresponding to the rate assignment R and to the average

number of packets assignment N.

: System—functional priority group whose characteristic number is 4.

: Index used in Alg_P, and Alg_P, to keep track of the v.c.’s whose delay

has already been assigned.

: Identity of the link upstream to / on ¢’s path.

!: Set of links on i’s path upstream to [.

: User—functional priority group whose characteristic number is ~.
: Total number of v.c.’s.

: Number of v.c.’s sharing link /.

: Set of v.c.’s sharing link .

Ordering of the v.c.’s.

;: Position of v.c. 1 in the ordering w.
: Ordering of the v.c.’s on link /.

: Position of v.c. 1 in the ordering w".
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Z5:

€4
@i
Yd:

Vst

Marginal average number of packets cost associated with a variation of the

rate of v.c. ¢.

: Approximation to 2z; used to determine if the rate of v.c. ¢ should be

increased.

: Approximation to z; used to determine if the rate of v.c. ¢ should be

reduced.

: Marginal average number of packets cost on link [ associated with a varia-

tion of the rate of v.c. 1.

: Approximation to z! used to determine if the rate of v.c. ¢ should be

Increased.

: Approximation to z} used to determine if the rate of v.c. ¢ should be

reduced.

: Variation of the average number of packets in an iteration of Alg_NP,_a.

: Parameter of Alg_ NP, a.

: Difference in the marginal delay cost per unit rate of v.c.’s 1 and j.

: Variation of the delay of v.c. ¢ on link [ from its reference value.

ARG,
ALGy

Difference in the marginal average number of packets cost of v.c.’s { and j.
Net marginal cost associated with a variation of the rate of v.c. 1.
Parameter of Alg_NP,_a.

Overall arrival rate of the packets of priority greater than 1.

Parameter of Alg_NP,_a.

Arrival rate of the aggregate stream consisting of the packets of v.c. ¢ and
of the packets of v.c.’s 1,...,1{ — 1 which have not been assigned a priority

greater than 1.

: k** worst delay cost in the optimal solution of the problem (Py)-

: Dual variable associated with the i** feasibility constraint in a problem

(As).
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Al

Ak

E

®

S e x

(2):

Lagrange multiplier associated with the i** feasibility constraint in a prob-
lem (A,) defined based on an ordering valid for the optima.i solution of the
problem (P,).

Lagrange multiplier associated with the 1** feasibility constraint on link /
in a problem (A,) defined on link [ based on an ordering on link [ valid for
the optimal solution of the problem (F:).

Capacity of the link in the single link case.

: Capacity of link [.

Parameter used to define the delay groups.
Dual variable in the dual problem corresponding to the problem (P, ;).

Lagrange multiplier vector in the dual problem corresponding to the prob-

lem (P, ).

: Load on the link in the single link case.
: Load on link I.
: Parameter of Alg_FC,.

Parameter of Alg_N P, e and Alg_FC,.

: Parameter in an update between v.c.’s i and j on link [ in Alg_NP,_e and

Alg FC,.

Lexicographic ordering of the vector Z.
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1 Introduction

1.1 Introduction

The recent breakthrough in very large scale integration technology has resulted in a
substantial decrease in the cost per unit of computation, especially in small to medium-size
computers. This has led to the gradual replacement of the traditional mainframe by less
powerful but more numerous and versatile machines. Also, the reduction in data processing
costs has led to the introduction of a wide variety of new communication services. Typical
examples are video, electronic mail and packetized voice. This evolution relies heavily on
the ability to transmit information. As a consequence considerable developments have been
made in the field of integrated services networks (i.s.n.).

The users of a network do not care about the internal operation of the network. Their
prime interest is the quality of the received service, which, to a great extent, depends on two
parameters: rate and delay. The rate of a user is a measure of the quantity of information
that the'user can input into the network per time unit while the delay is a measure of the
time taken by the network to deliver this information to its destination. Obviously users
prefer high rates and low delays but, equally obviously, these objectives are contradictory.
The rates and the delays are tightly coupled through a set of feasibility conditions which
limits considerably the possible choices.

A fundamental task of a network is to insure that users have acceptable rates and delays.
The most popular approach to this problem consists of determining first an acceptable rate
assignment, but without considering explicitly the delays. This problem is often called
the flow control problem in the literature. In a second step, when the rates are known, a
corresponding set of delays can be determined.

In most networks the constraints linking the rates and the delays are so strong that
the delays are well-defined functions of the rates. In other words in these networks the
knowledge of the rates is sufficient to completely specify the delays. The drawback in this
situation is that, given a rate assignment, there is no possibility of adjusting the delay
assignment. This does not present a problem if delay is of secondary importance. In recent

years however, due to the introduction of several new types of users, delay has become
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a much more sensitive issue. This has motiﬁted several authors to suggest means for
providing more flexibility regarding the choice of the delay assignment. In particular one of
the most promising means for achieving this objective is priority queuing. Priority queuing
allows preferences to be established among users, which, to a certain extent, uncouples the
delay assignment from the rate assignment. In fact the additional flexibility provided by
priority queuing is viewed as increasingly essential in i.5.n.’s as the requirements of the users
become increasingly diversified.

Fully exploiting the flexibility provided by the use of priority queuing to select an
acceptable delay assignment is a problem that has received very little attention in the
literature. Our first major objective in this research is to propose a solution to this problem,
which we will hereafter call the delay assignment problem.

The classical approach to flow control consists of defining a cost function whose role is
to establish an order of preference among the possible rate assignments. Then the problem
is solved by finding a rate assignment that minimizes this function. A major drawback of
this approach is that the impact of the rate on the delay is not considered in the selection
of the rate assignment, so that very poor delay assignments may result from this procedure.
Indeed, this problem has been widely recognized. It is usually overcome by adding extra
constraints in the flow control problem eliminating all the rate assignments leading to
delay assignments not satisfying some a priori specified criterion. Of course although this
approach guarantees a minimum delay performance, it is nowhere near considering the
tradeoff existing between rate and delay.

The second objective of this research is to integrate the flow control and the delay
assignment problems into a formulation that accounts fully for the interaction between rate
and delay. In this formulation the cost function depends explicitly on both the rate and the
delay of each user. The objective is to find simultaneously the rate and the delay assignment

that minimizes this function.
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1.2 Summary of related work

Traditionally one of the most severe constraints in the design of flow control schemes
was the limited nodal storage capacity. The main design challenge was to construct a
scheme robust enough to avoid the possibility of buffer overflow or deadlock in overload
conditions [Ra76,La77,Ir78]. These factors were important because they usually resulted in
an important drop of throughput.

Memory is no longer a scarce resource *, so that its management should not be of
prime concern. Of course buffer overflows and deadlocks should still be avoided. However,
it is now neither difficult nor expensive to equip the nodes with sufficient storage to keep
the probability of occurence of these events very small. In this context buffer overflows
and deadlocks should be handled by a dedicated prevention and/or recovery procedure
independent of the flow control mechanism. In fact buffer overflows and deadlocks should
now not impact the flow control mechanism more than other rare events, such as link or
node failure, maintenance or network start—up.

As a result of the decrease in memory cost the emphasis in flow control has gradually
shifted from the local management of memory to a more global perspective. In particular
end-to—end flow control schemes are becoming increasingly popular. These schemes are
characterized by the fact that their objective is defined directly in terms of the needs of the
users. For example maintaining a certain fairness in the rate of the users [Ro78] or insuring
a minimum throughput and delay performance to each user [Mu86] are typical end-to—end
objectives.

As the performance of a network is always ultimately judged with respect to the quality
of the service given to the users, it is our belief that schemes based on end-to—end criteria
inherently lead to the best performance. In the remainder of this section we concentrate on
a survey of the relevant end-to—end schemes presented in the literature in the context of
this thesis. For a more extensive discussion on the flow control and delay issues the reader

is refered to [Ge80,Gr83,Ta81].

* For example a 256K RAM that did not exist in 1981 was worth $40 in 1983. It is now
sold for $5 [Ti85].
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In the context of integrated voice and data networks Ibe [Ib81] and Gafni [Gaf82] have
proposed flow control schemes where voice traffic is always given priority over data traffic.
The rationale is to provide low end-to-end delay to voice traffic while maintaining high
throughput for data traffic. A fundamental assumption behind these schemes is that a
delay increase is much more damaging to a voice conversation than to a data exchange
session. In practice this assumption is widely accepted. It is motivated by the belief that
once a threshold is reached speech intelligibility degrades rapidly as delay increases (see for
example [We79,Gr81]).

Systematically giving priority to voice traffic may sometimes be questionable. A trivial
example is the case of a voice conversation sharing a link with an interactive data exchange
session. If the delay of a voice conversation is well below threshold, it may be increased
without impairing the quality of the conversation*. However, this may substantially improve
the situation of the data session, thus yielding a better overall performance.

A more serious drawback of the above schemes is the implicit requirement that users
can be ranked according to some label, and that the ranking is independent of the network
state. Indeed, in the Ibe and Gafni schemes, users are labelled as being either “voice” or
“data”. The ranking consists of prescribing that the users labelled “voice” be given higher
priority than the users labelled “data”.

This formulation assumes that the users labelled “data” have relatively similar require-
ments, so that they can meaningfully be considered as an homogeneous group. However,
with the introduction of a wide range of new services, this assumption may be questioned.
For example there are enormous differences in the rate and delay requirements of a data
session depending if it is video signal, electronic mail, file transfer or interactive session.

Of course this problem can be overcome by generalizing the approach. Namely, the label
“data” can be subdivided into several more specific labels, such as “video signal”, “electronic
mail”, etc. This, however, brings two important problems. First, a more detailed ranking

is required. With only two labels; i.e., “voice” and “data”, the ranking “voice in front of

* As long as it is kept below the threshold at which it becomes perceptible the delay of

a voice conversation is unimportant.
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data” is not too restrictive. With many kinds of users the ranking may become much more
restrictive. Second, the ranking must be independent of the network state. With only the
“voice” and “data” labels this requirement is not very restrictive because the ranking “voice
in front of data” should prevail in most circumstances. Otherwise stated, in a voice and
data network, giving priority to data may only be justified in a few exceptional situations.
With many different kinds of users the insensitivity of the ranking to variations of the
network state becomes a problem. This is because the new, more detailed, ranking cannot
be as robust as the old “voice in front of data” ranking. For example a video signal should
in general be given higher priority than an interactive session. However, if an interactive
session is heavily penalized on ore link, it may be desirable to give it a higher priority than
the video signals on the other links, so as to compensate the impact of the heavily loaded
link.

From a conceptl;ﬂ standpoint introducing labels and ranking them is a mean of arti-
ficially constraining the problem. As new labels are introduced the ranking must become
increasingly detailed, and thus increasingly restrictive.

Iﬁ [Th84] Thabit proposes a link scheduling algorithm circumventing the above diffi-
culties. A convex non—decreasing cost function is associated to each user, the precise form
of the function depending on the nature of the user. It translates, on a packet basis, to the
dissatisfaction corresponding to a given end-to—end delay. In the proposed algorithm each
link, knowing each packet delay on the upward links and estimating it on the downward
links, schedules for transmission the packet most likely to incur the highest delay cost. Two
important features of the scheme are its ability of accounting without added complexity for
heterogeneous user requirements and of automatically maintaining packet sequencing.

Transmission scheduling requires that each link estimates the delay of each packet on
the downward links. This is a central difficulty of the scheme. It is extremely difficult
to construct estimators capable of reliably tracking the current state of the network. A
second difficulty is that, even with perfect knowledge of all the parameters, scheduling the

transmissions is a notoriously hard problem, especially in a distributed context (see for
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example [So74,5t74]). Typically, the processors in a network are incapable of solving such
a problem in near-real time.

In [Wo82] Wong et al. suggested a measure of fairness based on the minimization
of the deviations of the individual users’ average delay from the overall average delay.
Relatively to this performance measure two priority schemes are investigated: one where
the non—preemptive priority of a user is set equal to the number of hops on its path (here,
contrary to ordinary usage but in a more logical manner, a higher number corresponds to a
higher priority) and the other being Kleinrock’s linear time dependent priority scheme with
suitably optimized parameters ([K176] chap. 3).

We disagree with this definition of fairness because it involves the users’ end-to—end
delay only through their deviations from the overall average delay. By increasing every-
body’s delay it is possible to reduce the deviations, thereby obtaining a better fairness. The
delays can be increased by using a non work—conserving queuing strategy; for example by
delaying the departure of the packets from their exit node. In [Wo82] the choice of priority
schemes artificially prevented this situation from happening. However, Wong’s formulation
has two very appealing features. First, the objective of the scheme is defined in terms of the
users’ end-to-end average delay. Also, the use of priority queuing provides a considerable
freedom in the choice of the average delay assignment. These two features will be central
to our formulation. |

A question that may be raised concerning Wong’s scheme is the extent to which the
choice of priority scheme limits the performance of the system. Otherwise stated, are there
priority schemes that can result in a better performance than the two particular schemes
considered by Wong et al? Another question concerns the coordination with a flow control
algorithm. This will be required because Wong’s scheme does not update rates and because
of the tight coupling between rate and delay.

Initially proposed by Kleinrock [KI178], the “power” of a network is a concept that has
recently received considerable attention. In its most basic form the power 1s defined as the

ratio of the average rate to the average delay.
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Intuitively, maximizing the power is a very appealing objective for a flow control scheme
[Ba81,Ja80]. Indeed, increasing the power of a network means increasing the rates or
decreasing the delays. Clearly both alternatives are obviously desirable. An important
and novel feature in this approach to flow control is that the selection of the rates depends
explicitly on the resulting delay assignment. In fact in this approach the interaction between
rate and delay is critical as both parameters have a comparable impact on the power.

Although it has some interesting properties and is intuitively appealing, the power
has also several drawbacks. Jaffe has shown in [Ja81] that the power is a non-convex,
non—decentralizable function. This means that it is in general difficult to produce an as-
signment minimizing the power, especially if the computations are to be distributed among
the processors. The power is also an inconsistent and incomplete measure. Given two inde-
pendent networks whose assignments are‘locally optimal (i.e., minimize the power of their
respective network), when these networks are considered as subsets of a 'bigger network
the assignments become non optimal. This is a gross inconsistency: as the networks have
no interactions, considering them independently or as subsets of a bigger network should
be irrelevant. Also, minimizing the power only imposes a set of constraints on the rate

assignment. This set is in general not alone sufficient to determine the rate assignment.
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1.3 Overview.

The main result presented in chapter 2 is a simple characterization of the set of average
delays realizable in a single server queue shared by several competing users. This result
is a specialization of the work of Coffman [Co80] to the case in which the exponential
distribution of the service time of the jobs of each user is the same for all users. A significant
consequence of this result is that the complexity of the problem of determining if a given
delay assignment is realizable is only O(VlogV),V being the number of users. In the more
general case considered in [Co80| the complexity increases exponentially with V.

The proof of this result is based on a “universal” queuing scheme which is in itself a
useful by-product. The scheme is universal because any realizable average delay assignment
can be realized using the scheme. In other words if an average delay assignment is realizable
in some way, it can also be realized by using the scheme. Another important property of the
scheme is its simplicity. Given a realizable average delay assignment it is easy to construct
the particular instance of the scheme that realizes the assignment.

In chapter 3 we exploit the results obtained in chapter 2 to obtain means of achieving
delay assignments that are in some sense desirable. For that purpose each user is assigned
a cost function quantifying its delay preferences. Two formulations are investigated. In the
first formulation the objective is to minimize the sum of the user’s costs. Obviously an aver-
age delay assignment achieving the minimum is desirable for it leads to the greatest overall
users’ satisfaction. We give a set of conditions necessary and sufficient for guaranteeing the
optimality of a delay assignment for this problem. Then, based on these conditions, we
present a simple algorithm that solves the problem.

In the second formulation the objective is to find a min-max fair delay assignment.
The philosophy behind the min-max approach is to insure that, as much as possible, the
users are served equally well by the network, independently of the particular constraints
each user may impose on the network. We show that this problem is intimately related to
the preceeding problem and propose a simple algorithm solving it.

In chapter 4 the attention is focussed on virtual circuit (v.c.) is.n’s. These are

networks in which each user communicates through a “virtual circuit”; namely a fixed
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path, established during the set-up of the communication, and subsequently used for the
whole duration of the communication. As there is a one-to—one corespondence between
the v.c.’s and the users, we will often, in the remainder of this thesis, use the two terms
interchangeably.

The objective in chapter 4 is to develop a means of using priority queuing in an i.s.n.
so as to better control the end-to—end delay of the users. The approach taken is similar
to that of chapter 3. Namely, the users’ end—to—end delay preferences are quantified on
an individual basis through associated end-to—end delay cost functions. The problem is
to select the delay of the users on the links of the network so as to minimize the overall
delay cost. We give a set of necessary and sufficient optimality conditions for this problem
and then present two distributed algorithms solving it. The first algorithm is approximate
in the sense that it does not, in general, converge to an optimal solution. However, via a
suitable choice of the parameters of the algorithm, the assignment produced can be brought
as close to optimality as desired. Moreover, the first algorithm converges in finite time and
works in a completely uncoordinated manner. The second algorithm always converges to
an optimal assignment. It requires however a greater coordination than the first algorithm.

In chapter 5 we propose a formulation of the flow control problem in which the inter-
actions between the rates and the delays are fully considered. In the formulation the cost
functions depend explicitly on the rate and the end-to—end delay of the users. The objective
is to select the rate of each v.c. and the queuing strategy at each link so as to minimize the
overall rate and delay cost. We give a set of necessary and sufficient optimality conditions
for this problem. Then based on these conditions we construct a distributed algorithm
solving the problem.

Finally we conclude this work with a discussion focussing on the possibilities for fu-
ture research. We also comment qualitatively on some of the design issues arising in our

formulation, for example regarding the choice of the cost functions.
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2 Steering Average Delay Through Priority Queuing.

Our objective in this chapter is to investigate how priority queuing can be used to
control the average delay of the users in a single-server queuing system.

The chapter is divided in 3 sections. In the first cection we define the system and intro-
duce the assumptions under which it will be analyzed. In the second section we summarize
some results already available in the literature and derive some new results concerning the
characterization of the average delays realizable in a single—server queuing system satisfy-
ing the framework introduced in section 1. In the last section we comment on the results

presented in the chapter and mention some possible generalizations.

2.1 Modelization of the system.

We consider a system in which several v.c.’s are competing for the transmission capacity
of a link. The link is modelled as a single server whose service rate is u bits/sec. There
are V competing v.c.’s, labelled 1,...,V. These v.c.’s generate packets which, upon arrival
at the link, are queued for transmission. We associate with each v.c. 1 arate R;. R;
represents the rate (in packets per second) at which packets of v.c. 1 are generated. In the
first chapters of this thesis the rates are assumed to be constant. This assumption will be
removed in chapter 5.

We assume that:

(A.2.1.1)  All arrival processes are Poisson processes independent of each

other and of the state of the system.

(A.2.1.2)  All packet lengths are drawn independently from a common

exponential distribution.

(A213) YV R <p

Also, we assume without loss of generality (w.l.o.g.) that the mean packet length is unity.

These assumptions are very common in the literature.
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We define p = ‘1‘2};1 R; as the load on the system. Note that assumption (A.2.1.3)
implies that p < 1. This is a well-known stability condition for queuing systems. It merely
says that the capacity of the system is sufficient for handling the demand.

We define a queuing strategy as a function Q(+,t) indicating the identity of the packet
being transmitted at time ¢, or O if no packet is being transmitted. Equivalently, we may
regard a queuing strategy as a set of rules which completely determine the operation of
the link regarding the scheduling of the packet transmissions. Typical example of queuing
strategies are first in first out (f.i.f.0.), last in first out (1.i.f.0.), and round-robin. We assume

that a queuing strategy Q(-,t) satisfies:

(A.2.2.1)  Q(:,t) = 0if and only if the system is idle.

(A.2.2.2)  Ift falls within busy period B then the value of Q(-,t) depends
only on those arrival times, departure times, execution inter-
vals and class indices which apply to packets waiting, being

served or having received service during B up to time ¢.

(A.2.2.3)  Q(-,t) may be deterministic or may be governed by some prob-
ability law whose parameters are restricted to those of assump-

tion (A.2.2.2).

These assumptions were also made by Coffman in a context similar to ours [Co80]. In
fact we will require some of Coffman’s results in the sequel. In these assumptions some
new notation has been used. This notation is defined as follows. A busy period is a time
interval in which there is always at least one packet present in the system. An idle period
is a time interval in which the system is empty. An execution interval is a time interval in
which the server is devoted to the service of a particular packet. In non-preemptive queuing
each packet has exactly one execution interval; it corresponds to its total service time. In
preemptive queuing a packet may require several execution intervals; this results from the

possibility that the packet be ejected from the server by an higher priority packet.
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Assumption (A.2.2.1) imposes that the server cannot stand idle in front of waiting pack-
ets, which is obviously reasonable. The major limitation imposed by assumption (A.2.2.2)
is that the scheduling decisions must be independent of the service time or of what remains
of the service time of preempted packets. Because the length of a packet is usually known
before its transmission this assumption is more restrictive. It may be justified by practical
considerations. First, the requirement that packets of a given v.c. be delivered in order
puts a severe limitation on schemes allowing service time dependent scheduling. Second,
the packet service times are in practice more clustered than what is predicted by the expo-
nential distribution assumption. This tends to weaken the impact of assumption (A.2.2.2),
espécially if, as is typically the case, interrupted transmissions are lost or if the amount of
preemption is small.

A well-known model via which a common exponential distribution for the packet
lengths can be generated while insuring that assumption (A.2.2.2) holds consists of pre-
tending that in a very small time interval At the probability that a packet departs is pAt if
the server works on the packet during the interval and 0 otherwise. Of course the applica-
bility of this model in the context of a data—communication network is questionable as the
packet length is usually known beforehand. It is, however, consistent with the extremely
popular Kleinrock’s independence assumption (K176].

Finally because preemption is allowed we must specify how the preempted packets
resume their service in order to completely specify the behavior of the system. For this

purpose we assume that:

(A.2.3) A preempted packet resumes its service from the point where

it was left upon the last preemption.

Queuing systems in which assumption (A.2.3) holds are called preemptive-resume sys-
tems. The advantage of such systems is that the work already done on a packet is never

lost.
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Although preemptive-resume systems are not currently widely used in communication
networks, we believe that in general their implementation does not present any serious
conceptual problem. In fact we will later present a very simple scheme via which most
preemptive-resume systems can easily be implemented.

It may be noted that assumption (A.2.3) can be replaced by the assumption that
when a preempted packet resumes its service, it draws a new length from the exponential
distribution independently of its previous length and of the state of the system. Systems
in which this latter assumption is satisfied are called preemptive-repeat with resampling
systems. The equivalence of the two assumptions in our context follows from the memoryless
property of the exponential distribution.

Although we could have generalized assumption (A.2.3) to include preemptive-repeat
with resampling systems, we have preferred not to do so. This is because in practice the

packet lengths are not exponential, so that we have really no firm ground to justify the

generalization.
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2.2 Characterization of the set of realizable delays.

We first introduce some notation and terminology and state some fundamental results
of queuing theory. Following this we define a queuing strategy which will play an important
role in the proof of some of the results to be presented in the section. Next we present some
new results concerning the characterization of the delays realizable in queuing systems
fitting the framework of section 2.1. Finally we conclude the section by introducing some
new notation related to the results which we will subsequently heavily use throughout the

thesis.

2.2.1 Some fundamental results of queuing theory.

Consider a queuing system satisfying assumptions (A.2.1)-(A.2.3). Let D;, be the
total system delay of the n** packet of v.c. ¢ for a particular sample function of the queuing
process in this system. Let: \

D;= lim % > Din (2.1)
n=1
D; is the average system delay of v.c. i. A fundamental fact of queuing theory is that in
systems satisfying assumptions (A.2.1)—(A.2.3) D; is finite and independent of the particular
sample function of the queuing process (K176]. Indeed, this is why our notation for D; does
not depend on the particular sample function. In the remaining of this thesis we call D;
simply the delay of v.c. 1.

Let g be any non-empty subset of the set of indices {1,...,V}. We define F [Ng]
as the virtual load due to the packets of the v.c.’s in g, as seen at a random time in the
steady—state. E'[Ng] represents the expected time that it would take for a server of unit
capacity to serve all the packets of the v.c.’s in g present in the system at a random instant
if, starting from this instant, the server would work uniquely on these packets. We also
define g(t) as the virtual load due to packets of v.c.’s in g at time ¢ for a particular sample
function of the queuing process. g(t) is a function which, at the arrival instant of a packet
of one of the v.c.’s in g, jumps by an amount equal to the service time of the packet. In

between jumps g(t) decreases at a slope of x in the intervals in which the server works on
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- packets of v.c.’s in g and is constant in the intervals in which the server does not work on
packets of v.c.’s in g.
It can be shown that in a queuing system satisfying assumptions (A.2.1)-(A.2.3) any

sample function of the queuing process satisfies [Co80]:

T
B[V = Jim 7 [ o) @ (22)

Another well-known result of queuing theory is that all the queuing strategies that
satisfly assumptions (A.2.1)—(A.2.3) also satisfy a conservation equation. This equation is
usually called Kleinrock’s conservation equation. We state it without proof in the following

lemma. The proof can be found in several references, for example in [Co80].

Lemma 2.1 (Kleinrock’s conservation equation): Let g be any non-empty subset of the
set of indices {1,...,V}. For any queuing system satisfying assumptions (A.2.1)-(A.2.3)

the following relation holds:

ZRiDi:E[Ny]
i€yg
Moreover, if g = {1,...,V}:
_ By+---+Ry
E[Ng] - I‘_Rl_"'_RV

Let g5 and g; be a non-trivial partition of the set of indices {1,...,V}. In a queuing
system satisfying assumptions (A.2.1)-(A.2.3) we say that the v.c.’s in g5 have full priority
over the v.c.’s in g; whenever the queuing strategy does not allow the server to work on a
packet of a v.c. in g; when a packet of a v.c. in g5 is present in the system. In this situation
we also equivalently say that the v.c.’s in g; are of lowest priority as compared to the v.c.’s
in gg.

An immediate consequence of this definition of full priority is that whenever there exist

g5 and g; such that the v.c.’sin g s have full priority over the v.c.’s in g; the delay of the

v.c.’s in g satisfy:

E-‘eg R
Dy = —=9% 2.3
iEZg! & k= Eiey: R (23)
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Indeed, this follows immediately from the fact that lemma 2.1 then applies to the v.c.’s in
g considered in isolation.

Consider a pair of v.c.’s i and . We say that v.c. ¢ has full priority over v.c. j or
equivalently that v.c. j is of lowest priority as compared to v.c. § whenever i € g f and
J € g1 for some gs and g; as defined above. Similarly, we say that v.c.’s { and j are of
comparable priority if neither v.c. has full priority over the other.

We list without proof some well-known results of priority queuing in the next lemma.

The proofs can be found in several references, for example in [J a68|.

Lemma 2.2: In any queuing system satisfying assumptions (A.2.1)-(A.2.3):
1) If v.c. ¢ has full priority over v.c. j and v.c. J has full priority over v.c. k, then v.c. ¢
has full priority over v.c. k.
2) If g5 and g; are such that the v.c.’s in g5 have full priority over the v.c.’s in g;, then

for any v.c’s i € g5 and j € g;:

D; < i[ EPGQJR? _ EPEWRP_R‘ ]
T Rilp- Epew b= Epeg: Ry + Ry
i = [ EPEW B+ Ry EPEQI Ry ]
T Bile- Zpew R, - E; e Epew By

Note that it follows immediately from the proposition 2 of the lemma that if v.c. § has

full priority over v.c. 5, then D; < D;.

2.2.2 The cascade scheme.

We now describe a priority scheme which will be used in the sequel. The scheme,
called the cascade scheme, is depicted in Figure 2.1. The input of the cascade scheme are
the V' v.c.’s. The output consists of V streams, called the priority streams, and labelled
1,...,V. By construction each priority stream,i=1,... ,V, has the properties of having
full priority over the priority streams s+1,...,V and of being of lowest priority as compared
to the priority streams 1,...,5 — 1.

The priority streams are constructed as follows. Upon arrival in the system a packet

of v.c. 1 is given with probability p;, and independently of the state of the system the
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Figure 2.1: The cascade scheme.

highest “1” priority*. The packets of v.c. 1 which are given the highest priority constitute
the priority stream 1. The packets of v.c. 1 which are not given the highest priority
cascade down and are lumped into the stream of packets of v.c. 2. In the aggregate
stream 2 (consisting of the packets of v.c. 2 and of the packets of v.c. 1 rejected from the
top priority) a packet is given with probability p;, and independently of the state of the
system the second highest priority. The packets which are given the second highest priority
constitute the priority stream 2. The packets of the aggregate stream 2 which are not given
the second .priority cascade down and are lumped into the stream of packets of v.c. 3. This
cascading continues until v.c. V is reached, at which point packets are all given the lowest

priority. All priorities are preemptive and, within each priority stream, packets are served

on a f.i.f.o. basis.

* Throughout this work, as in most of the literature, priorities are numbered in their

reverse order of precedence.
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The scheme, as described above, does not necessarily preserve packet sequencing. For
example a packet of v.c. 1 may cascade all the way down to the lowest priority stream
where it is likely to experience a long delay. Another packet of v.c. 1 arriving subsequently
will “pass” the first packet if it is routed to an higher priority stream and if the first packet
is still in the system when the second packet arrives. For this reason we add the following
rule to the cascade scheme: “when a packet of a given v.c. is transmitted it must be the
oldest packet of this v.c. in the system but this packet exchanges its priority and position
in queue with the packet (of the same v.c.) that would otherwise have been transmitted”.
Clearly, this rule does not affect the average delays while it ensures conservation of packet
sequencing.

Let 41 = Ry, ¢1 = 0 and define recursively fori = 2,...,V.

=R+ (1-pio1)via1 (2.4)

$i = di_1 + Pi—17i-1 (2.5)

7 is the arrival rate of the aggregate steam 1; namely the arrival rate of the packets of v.c.
t and of the packets of the v.c.’s 1,...,{ — 1 which have not been assigned one of the first
i+ — 1 priorities (see Figure 2.1). ¢; is the arrival rate of the packets whose priority is greater
than i. Note that it follows from the definition of 7 that the arrival rate of priority stream
t is respectively 4;p; or «; depending if i <V ori = V.

It is not difficult to see that the arrival processes of the priority steams are Poisson
processes independent of each other and independent of the state of the system. Also, it is

readily verified that the cascade scheme satisfies assumptions (A.2.2).

2.2.3 Characterization of the realizable delays.

Let D = (Dy,..., Dv)* be a given delay assignment. In a queuing system satisfying
assumptions (A.2.1) and (A.2.3) we say that D is feasible (or realizable) if there exists =
queuing strategy satisfying assumptions (A.2.2) which, if used to schedule the transmissions,

produces D.

* An arrow over a variable indicates that the variable is a vector.
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Our first result gives a set of necessary and sufficient conditions for gua.ra.nte;eing the
feasibility of a given delay assignment. The result also shows that the cascade scheme is
universal in the sense that whenever a delay assignment is realizable, it can be realized
using the cascade scheme.

In the result it is assumed that the delay assignment satisfies D; < ... < Dy. Clearly
this assumption is not restrictive since it can always be enforced via an appropriate re—

labelling of the v.c.’s.

Theorem 2.1: Let D be a delay assignment satisfying D; < --- < Dy. Then the following
propositions are equivalent:

a) D is realizable.

b) D is realizable using the cascade scheme and the choice of the p;, ¢ = 1,...,V — 1, is

unique.

¢) The following equations are satisfied:

R >
IDI_I‘—Rl

v

Ry+--++ Ry_,
b—Ry—--—Ry_,

Ry +---+ Ry
b—Ry—---—Ry

R1D1 + oo+ RV—IDV—I 2

R\D;++--+ Ry_1Dy_1+ Ry Dy =

Proof:
We show that a = ¢, c = b, b = a.
l)a=c¢

This result has been shown in [Co80]. We repeat the proof here for completeness.
The last equation in the set of equations in proposition (c) is true because it is Kleinrock’s
conservation equation. Consider any other equation in the set, say the it* equation:

Bi+---+ R

RD;{+--- D; > 2.6
1D1+---+ R T (2.6)

Let g; be the set containing the indices {1,...,{}. From lemma 2.1we have
RiD; +---+ R;D; = E[N,,] (2.7)
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We also know from equation (2.2) that for any sample function of the queuing process:

T
B[N, = Jim 7 [ o) a (2.8)

where g;(t) is the virtual load due to packets of v.c.’s in g; at time ¢.

Consider the virtual load function, say gi(t), resulting from the same realization of
arrival instants and service times as in 9:(t) but with a queuing strategy that gives full
preemptive priority to the packets of the v.c.’s in g;. Because g9i(t) and §;(¢) jump by the
same amounts at the same times and because g;(t) cannot decrease faster than gi(t), we

have g;(t) > §;(t) for all t > 0. This means:

T—oo

.1 (T m L [T v
lim T./; 9i(t) dtZTILII;o '1_./; gi(t) dt—E[Nﬂ-‘] (2.9)

where E[f\'f g‘] is the expected virtual load due to the packets of the v.c.’s in g; under the
preemptive queuing strategy. However under the preemptive strategy lemma 2.1 applies to

the v.c.’s in g; in isolation. That is:

Bi+---+ R
B—Ry—---—R;

E[ﬁw] = (2.10)

Combining equations (2.7), (2.8), (2.9) and (2.10) we get equation (2.8).
2)c=>b

Let Dy, be the delay of the i*# priority stream in the cascade scheme. Since the it*
priority stream is of lowest priority as compared to the priority streams 1,...,{— 1 and has

full priority over the priority streams ¢ + 1,...,V, it follows from lemma 2.1 that:

T PTilB—Pevi— b p— ¢ (2.11)

D,, = 1 [ Pivi + s &; ]

Consider a particular v.c. § < V. The delay of v.c. { in the cascade scheme is a
weighted average of two contributions. A proportion p; of the packets of v.c. 1 is routed to
the priority stream . As these packets constitute a Poisson process independent of the state
of the system, it follows that these packets must experience the average delay D,,.. On the

other hand the packets of v.c. 1 which are not given the i** priority are treated exactly as

the packets of v.c. 1+ 1. As these packets constitute a Poisson process independent of the

36



arrival process of the packets of v.c. § + 1, and as the arrival process of the packets of v.c.
¢+ 1 is also Poisson, it follows that the packets of v.c. { which are not given priority ¢ must
experience the average delay D; ;. Similarly, it is not difficult to see that the average delay
of the packets of v.c. V is identical to that of the packets of the V'** priority stream. Using

these facts we can write:

iDpe. + (1 — p;)D; i<V
D;={p pee (1= P)Disa, (2.12)

Dy, , 1=V

To prove the proposition we must show that when the assignment D satisfies the set

of equations in proposition (c) there exists p; € [0, 1],§=1,...,V — 1, such that the above
equations are satisfied. Moreover, we must show that the choice of the pi,t=1,...,V -1,
is unique. We use an induction argument. We first show as the initial step of the induction

that there exists a unique p; € [0, 1]-for which equation (2.12) is satisfied.

Using equation (2.11), equation (2.12) becomes:

D1
Dij=———4(1-p,)D 2.13
'T k- Rip (1=p)D: (2.13)
Define:
p
= 2.14

which for p € [0,1] is strictly convex and non—decreasing. Also f1(0) = 0 and, using the

first equation in the set of equations in proposition (c):

1
b— R

f1(1) = < D, (2.15)

Consider the equation:
Dy +(p—-1)D2 = f1(p) (2.16)

As shown if Figure 2.2 the fact that D; < D, and the properties of the function f;()
guarantee that this equation has at least one root in the interval [0,1]. This proves that
at least one p; € (0, 1] satisfying equation (2.12) exists. To complete the initial step of the
induction we must show that p; is unique.

If strict inequality is achieved in equation (2.15) it is easy to see that p1 must be unique

(this is the case depicted in Figure 2.2). If equality holds in equation (2.15) two cases are
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possible, as shown in Figures 2.3-a and 2.3-b. Case (a) corresponds to the situation in which
equation (2.15) has more than one root in the interval [0, 1] while case (b) corresponds to ’
the situation in which the root is unique. Note that p = 1 must be a root in both cases.

If case (a) prevails we must have:

21

p= > (—;%[Dl + (p - 1)D,)] | (2.17)

p=1

Evaluating the derivatives we obtain:

OT—LR:)_’ > D, (2.18)

On the other hand, it is known that the second equation in the set of equations in

proposition (c) holds; i.e.,

R+ R,

4 > _ Tz
RiD;+ Ry Dy > R - R
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If p =1 is a root of equation (2.16) it follows that Dy = f1(1) = 1/(u — R:). Replacing in

the last equation we obtain:

D, > 1 [ Ri+Ry, R ]
R, B = Ry - R, B = R,
£ (2.20)

2 (= By — Ra)(p— Ry)

Equation (2.20) contradicts equation (2.18). It follows that only case (b) is possible, which
proves that p; is unique. This concludes the proof of the initial step of the induction.

The induction step can be proven using essentially the same argument as the initial
step. However, as the proof of the induction step does not bring much additional insight,
we have relegated it to section 1 of Appendix A.

3b=>a
This follows immediately from the fact that D can be realized using the cascade scheme.
Q.E.D.
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The following corollary provides a quick way of determining the set of p; via which a

given realizable delay assignment can be realized in the cascade scheme.

Corollary 2.1: Assume that D is feasible. Also, assume (w.lo.g.) that D; < ... <

Dy . Then the probabilities p;,.. ., pv—1 which, in the cascade scheme, realize D are given

recursively for k=1,...,V — 1, by:

= Ki — \/Kﬁ — 4D+ 17k(Dgy1 — Di)(p — éx)
2Dk+171k

Dk

where:

Ki= (1 — #x)Dit1 + Vi(Dxs1 — D) —
b= o

and where 7 and ¢y are as in equations (2.4) and (2.5).

This corollary is proven in the section 2 of Appendix A.

Another consequence of theorem 2.1 is the following, intuitively obvious, corollary.
Corollary 2.2: The set of feasible delays is convex.

This corollary is proven in the section 3 of Appendix A.

The proof of this corollary relies on the argument that if two delay assignments are
feasible, any convex combination of these assignments can be realized simply by using the
strategy realizing each assignment during an appropriate proportion of the time. This,
however, does not imply that in order to realize a convex combination of feasible delays one
has to resort to a time-dependent queuing strategy. Indeed since the convex combinations
are feasible it follows that they can be realized using the cascade scheme, which is time—
independent.

It is essential that the rates be constant for the set of realizable delays to be convex:
jointly the set of feasible rates and delays is not a convex set. This may be seen by con-
sidering the set of equations of theorem 2.1-c when both R and D are allowed to vary.
Intuitively, this can be explained from the fact that the rate enters as a weighting factor in
the computation of the average delay. For example suppose that for a rate of 1 the average

delay of a v.c. is 1 but that when the rate is increased to 2 the average delay increases to
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2. If the v.c. is given a rate of 1 and of 2 during equal amounts of time, the overall average
delay is not 1.5 but 1.66 because twice as many packets experience a delay of 2 than a delay
of 1.

The cascade scheme possesses some nice properties; e.g., ease of implementation, time
invariance, conservation of packet sequencing. However, no claims of any sort of optimality
are being made on this scheme. Indeed, it is our belief that many other schemes share some
of these properties.

The result presented next is the specialization of lemma 1, lemma 2 and theorem 1 of
[Co80] to the case in which common service time prevails. We omit the proof of this result
here. The proof may be found in [Co80].

Theorem 2.2: Consider a queuing system satisfying assumptions (A.2.1)-(A.2.3). The
following propositions are equivalent.

a) D is realizable.

b) D belongs to the convex hull of the V! distinct delay assignments corresponding to the

possible permutations of V' distinct preemptive priorities among the V' v.c.’s.

c) Forallgc {1,...,V}:

Ligg B
D> —=f
D e S

and if g = {1,...,V'} equality is achieved in the above equation.

tEg

2.2.4 Some notation.

In this section we introduce some notation related to the results presented in the last
section. We also state some simple results which follow from the results of the last section
and which will be used repeatedly throughout the thesis.

Let & = (wy, ..., wy) be a permutation of the vector (1,...,V). We call ¥ an ordering
of the v.c.’s on the link and we call w;, 1 = 1,...,V, the position of v.c. 1 in the ordering.
We say that v.c. ¢ has an higher (resp. lower) position than v.c. j in the ordering if w; < w;

resp. w; > w;). An ordering w is valid for an assignment D if for all 1,7,1<1¢, j<V:
3

w; <w; = D; < DJ' (2.21)
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The equations in theorem 2.1—c are called the feasibility constraints. The feasibility
constraint whose left hand side contains exactly k terms is called the kt* feasibility con-
straint. We say that v.c. j appears in the k** feasibility constraint if the left hand side of
the feasibility constraints 1,...,k — 1 does not contain the term R;D; but if the left hand
side of the feasibility constraints k, ...,V contains it.

It may be noted that the feasibility constraints are not unique when several v.c.’s have
the same delay. This is due to the fact that the first V — 1 feasibility constraints depend
on the ordering in which the delays of the v.c.’s are ranked, and that this ordering is not
unique when the delays of several v.c.’s are equal. However it is clear that given a valid
ordering these feasibility constraints are unique. Indeed given a valid ordering, say 7, the
k** feasibility constraint, k=1,... ,V — 1 then becomes:

Z: RPD Z EP"‘-’pSk RP

plwp <k k= Ephu,Sk RP

(2.22)

By definition when the feasibility constraints are constructed using the ordering 1 the
v.c. appearing in the k** feasibility constraint, k = 1,...,V, is always the v.c., say ¢,
satisfying w; = k. In the remainder of this work we will always specify the ordering on
which the feasibility constraints are based, so that the feasibility constraints will always be
known unambiguously.

Consider a given delay assignment. Suppose that this assignment is such that for a
given ordering valid for it the k** feasibility constraint is satisfied with equality. Then it
follows from lemma 2.2 that the delay of the v.c.’s involved in this constraint are strictly
smaller than the delay of the other v.c.’s. This implies that in any other ordering valid for
the assignment the positions of the v.c.’s involved in this constraint must be smaller than
the positions of the other v.c.’s, so that this constraint must in fact be the kt* feasibility
constraint in all the ordering valid for the assignment. This shows that the feasibility
constraints satisfied with equality are common to all the orderings valid for the assignment.
Similarly, it is not difficult to see that if for an ordering valid for the assignment the kt*

feasibility constraint is satisfied with strict inequality, then the kt* feasibility constraint is
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satisfied with strict inequality for all the orderings valid for the assignment. Note however
that in this case the constraint may change depending on the ordering.

Let D be a feasible delay assignment and let @ be an ordering valid for this assignment.
Consider a pair of v.c.’s ¢ and j and assume w.l.o.g. that w; < w;. It is not difficult to see
that v.c. ¢ has full priority over v.c. j if and only if at least one of the feasibility constraints
Wy, ..., w; — 1 is satisfied with equality. Similarly v.c.’s { and j are of comparable priority
if and only if the feasibility constraints w;;, ..., w; — 1 are all satisfied with strict inequality.
These facts motivate the following definitions.

Given a feasible delay assignment D we define the priority group of v.c. 1, denoted e;,

as follows:

e = {7 | j is of comparable priority to i} (2.23)

We also define:
E={e,i=1,...,V} o (2.24)

It is easy to see that if e and € are two distinct priority groups, then:

ené=¢ (2.25)
and either:
¢ has full priority over jforallice, j€ & (2.26)
or:
J has full priority over ¢ forallice, j& & (2.27)

Equations (2.26) and (2.27) can be used to order the priority groups. Indeed, we will
say that e < & whenever e and ¢ satisfy equation (2.26) and conversely we will say that e > &
whenever e and & satisfy equation (2.27). It is not difficult to see that this is a well-defined
order relationship.

Let e be a priority group such that e > & for some é € E. We define e — 1 to be
the priority group immediately preceeding e. Namely e — 1 is the priority group satisfying

e—1<eande—-1>éforallé€ E,é<e.
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Let w be an ordering valid for the assignment D and let ¢ be a priority group. Given
the ordering w we denote by 7(e) and i(e) the v.c.’s in e having respectively the highest and

the lowest position in the ordering. Namely i(e) and i(e) satisfy:

wie) Sw; foralljee
(2.28)
wi) 2w; foralljee

Finally given an assignment D and an ordering w valid for this assignment we define

for convenience:

Lpwysi e
B~ Yplu,<i Br

B(i,%,R) = 1Li<V (2-29)
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2.3 Comments.

An immediate consequence of theorem 2.1 is that it allows us to determine in O(V logV)
computations if a given delay assignment is feasible. The major task is the ordering of the
delays which takes O(V logV') comparisons. On the other hand if theorem 2.2 is used
the number of computations grows exponentially. This is because the number of distinct
subsets in theorem 2.2—c grows exponentially. It is interesting to note how the common
service time assumption, which seems to be a modest assumption, reduces the complexity
of the problem.

In this chapter we obviously consider preemptive queuing as acceptable. This is rela-
tively unusual. Indeed almost all queuing strategies mentioned in the data—communication
literature are non—preemptive. Our main reason for allowing preemption is that it leads to
a larger feasible delay set. In other words, it gives more flexibility in the choice of a delay
assignment. However a second important reason for allowing preemption is that it is not as
costly as it may look. In fact we believe that the overhead incurred for allowing preemption
in the context of a v.c. communication network is very small.

A first thing to notice is that even if preemption is allowed one is not forced to resort
to a preemptive queuing strategy to realize a delay assignment. Indeed a large class of
feasible delay assignments can be realized by non—-preemptive queuing strategies. A useful
result in this context is that any delay assignment realizable by a non—preemptive queuing
strategy can also be realized by the non—preemptive version of the cascade scheme. This
version of the cascade scheme is as described in section 2.2.2 except that all priorities are
non-preemptive. More information concerning the non-preemptive version of the cascade
scheme and concerning the characterization of the delay assignments realizable by non-
preemptive queuing strategies is provided in the section 4 of Appendix A.

Another argument in favor of the use of preemptive queuing is that in v.c. communi-
cation networks preemptive queuing can be implemented very easily and efficiently. Indeed
it is possible to imagine simple schemes in which the overhead incurred in a preemption is

much smaller than the pure loss of the transmitted portion of the preempted packet*. For

* This idea has been suggested by Prof. Gallager.
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example the cascade scheme can easily be implemented by serving the preempted packets
in a Li.f.o. manner. To illustrate this point consider the following example, as depicted in
Figure 2.4. Initially the link is transmitting packet A which is the only packet present in
the system. Before A’s transmission terminates a higher priority packet B arrives, causing
an interruption in A’s transmission. However, the transmitted portion of packet A is not
lost. A flag, called INTERRUPT, is placed in front of message B. This flag informs the
destination node that A’s transmission has been interrupted and that the message that
caused the interruption is incoming. When A’s tranmission resumes, after completion of
B’s transmission, another flag, called RESUME, is inserted. Again the role of this flag is
to notify the destination node that A’s transmission is ready to resume. One may see that
the scheme provides enough information to allow the destination node to uniquely decode
the sequence of interleaved packets. It may ;Iso be noted that this scherﬁ: requires only
two flags per preemption, which is a very small transmission overhead. Moreover, as the
packets of each v.c. are transmitted in sequence, only one buffer per v.c. is required at the
receiving node for storing the packets whose ﬁransmission is not yet completed. This is a
very small memory overhead.

Finally, although we believe that the use of preemption may be advantageous, it is worth
noting that allowing preemption is not at all essential. Indeed all the results presented in this
chapter can be re—established in the context of non-preemptive queuing only. Essentialy
only slight modifications are required to account for the new form of the feasible delay
set. Details are omitted here but these modified results are presented in the section 4 of

Appendix A.
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3 Minimization of delay cost — The single link case.

In this chapter we consider the problem of assigning average delays to v.c.’s so as to
achieve a desirable point of operation in queuing systems satisfying the framework devel-
oped in chapter 2. We consider two approaches to this problem. These two approaches,
which have been called the system-oriented approach and the user—oriented approach, differ
essentially in the choice of the objective to be achieved. In the system—oriented approach
the main concern is to maximize the overall wealth while in the user—oriented approach the
emphasis is rather to achieve a certain fairness among the users.

The chapter is divided in five sections. In the first section we formulate the problems in
the system—oriented approach and in the user-oriented approach. In the second section we
state some well-known results of convex programming that will be heavily used in the sequel.
In the third and fourth sections we respectively study the problems in the system—oriented
approach and in the user-oriented approach. Finally in the last section we comment on
the results developped in the chapter and establish a fundamental relationship between the

problems in the system-oriented approach and in the user—oriented approach.

3.1 Introduction.

We associate a delay cost function C;(:) to each v.c. i. Ci(D;) quantifies the dissatis-
faction of v.c. 1 when its average delay is D;.

In the system-oriented approach the objective is to maximize the overall wealth or,
equivalently, to minimize the total dissatisfaction. We call this approach system-—oriented
because the concerns of the users are not treated on an individual basis but are instead only

considered through an aggregate system-wide measure. A queuing strategy is optimal in

the system—oriented approach if the average delay assignment that it produces is a solution
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of the following problem, hereafter referred to as (P,) *:
(P2) D glizble (D)
where: v
S(D)=Y_Ci(D) (3.1)
i=1
The additive form of the objective function justifies the attribute “system” to the approach.
V.c.’s are only considered through their impact on the global performance measure S(-).

In the user—oriented approach the aim is to achieve a fair delay assignment. Unlike the
system—oriented approach the v.c.’s in the user—oriented approach are explicitly considered
on an individual basis.

The user-oriented approach involves the notion of fairness. We will consider fairness
in the min-max sense. The philosophy behind the min-max fairness is to make the system
as transparent to the user as possible. In particular an important objective of the min-max
fairness is to uncouple as much as possible the quality of the service given to the users from
the individual constraints imposed by each user on the network.

In order to define precisely the problem in the user—oriented approach some new nota-
tion is needed. This notation is now introduced. Given an arbitrary vector Z we define the
lexicographic ordering of Z, denoted $(Z), as the non-increasing permutation of Z. For ex-
ample the lexicographic ordering of the vector (4,1,8,2, 7) is the vector (8,7,4,2,1). Also,
given two vectors £ = (z,...,z,) and § = (yy,... »Yn), We say that Z is lexicographically
smaller than § if z; > y; for some ¢ implies that z; < y; for some j < ¢. For example the
vector (7,7,7) is lexicographically smaller than the vector (8,0,0).

Now the problem in the user—oriented approach, hereafter referred to as (Py), can be

defined as follows:

(P.) 5 Zf:?u. 8(C1(D1),...,Cv(Dv))

* By writing “min” in the following problem the existence of a minimum is implicitly
assumed. This is justified because the delay of a v.c. cannot be greater than what it would
be if the v.c. was given alone the lowest priority. This means that the feasible set can be

made compact, insuring the existence of a minimum.
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where the minimization in this problem should be interpreted in the lexicographic sense;
L.e., the objective is to find the delay assignment which leads to the smallest lexicographic
ordering of the cost vector.

We call a delay assignment achieving the minimum in (P,) a min-max fair delay assign-
ment. Compared to arbitrary feasible delay assignments, min-max fair delay assignments
possess a property that justifies why they are considered to be fair [Gaf82, Gal84]. Specif-
ically if D is a min-max fair delay assignment and B is an arbitrary feasible assignment,
if C;(D;) > C,-(ﬁ,-) for some 1 then it must be that for some j # ¢ C;(D;) < C;(D;) and
C;(D;) < C;j(D;). In words this means that if the assignment D provides a better service
to some v.c. ¢ than the min-max assignment D, it must be that the assignment D instead
provides a better service than the assignment 5 to some v.c. 5 not served as well as v.c.
t. Clearly a min-max fair delay assignment is fair in the sense that it provides a service as
equitable as possible to the users. -

It is worth noting that a min-max delay assignment can be obtained by solving a
hierarchy of nested problems. The first problem minimizes the maximum delay cost. This
insures that the most penalized users get as much service from the network as they can
possibly get. Solving this problem tells us what the worst delay cost is and who are the
users experiencing it. However solving this problem is in general not sufficient to determine
the delay of every user. This is because although the delay of the v.c.’s having the worst
delay cost is known, the delay of the v.c.’s not having the worst delay cost is not yet known.
To determine the delay of some of the v.c.’s not having the worst delay cost a second nested
problem is defined. The objective of this second problem consists of minimizing the second
largest delay cost subject to not increasing the delay cost of the v.c.’s having the largest
delay cost. Solving this problem will tell us what the second delay cost is and who are
the v.c.’s experiencing it. Clearly this method can be generalized to determine the delay
of every v.c. This method is described in details in [Ro78] in the context of the routing

problem, and in [Hay81] in the context of the flow control problem.
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3.2 Some well-known results of convex programming.

In this section we state without proof some well-known results of convex programming.
The reader is referred to [Be83] or [Av76] for an extensive treatment of this material.

Define:

min  f(Z)
(CPP)
€ X, gi(%) <0, j=1,....,m

where it is assumed that:

a) The set X is a convex subset of R".
b) The functions f : R* — R and g9; :R®" > R,j=1,...,m, are convex over X.
c) There exists at least one feasible solution to (CPP).

d) The optimal value of (CPP); f*, is finite; i.e.,
fr=iunt{f(z) | ze X, g,—(:E')SO,j=1,...,m}<oo (3.2)

(CPP)is the archetype of a convex programming problem.
Let 1/-; € R™. Define the Lagrangian as:

LED) = (D) + D ¥;9:(2) (3.3)
j=1
and define a Lagrange multiplier vector as a vector +* such that:

f* = inf L(Z,4%) (3.4)

Further, define:
9(¥) = jnf L(Z,9) (3.5)

q(¥) is called the dual functional. The domain of ¢(-), denoted dom ¢, is the set of all
vectors 9 such that ¢(¥) > —oo. That is:

dom ¢ = {J;'e R™ | inf L(Z,¥) > —oo} (3.6)
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Assuming that dom q is non—empty the dual problem is defined as:

sup ¢(¥)
¥v20 (3.7)
¥ € dom q
We have the following results.

Theorem 3.1 (proposition 5.6 of [Be83]): Assume in (CPP) that there exists a vector
Z € X such that 9;(£)<0,5=1,... ym (i.e., assume that the set defined by the constraints
9;(Z) < 0 contains a strict interior point which also belongs to X). Then there exists a

Lagrange multiplier vector and the optimal value f* of (CPP) is equal to the optimal value
of the dual problem.

Theorem 3.2 (proposition 5.2 of [Be83]) : The vectors Z* and " form an optimal solution—
Lagrange multiplier pair for (CPP) if and only if the following Kuhn-Tucker conditions
hold:

z GX, 'Z". 20, 9;(?)50, ¢;gj(f.)=0) j=1:"'1m
L(z*, ¢ )=z_1é1§L(z,¢ )

The condition ¥;9;(2') =0, 7 = 1,...,m, is often referred to as the complementary

slackness condition.
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3.3 The system—oriented approach.

3.3.1 Characterization of the optimal solution.

In this section we of course assume that the assumptions (A.2.1)-(A.2.3) hold. In

addition we also make the following assumption on the cost functions.

(A.3.1) Forallt,i=1,...,V, C;(') is strictly convex, non-decreasing
and twice continuously differentiable over the interval [0, col.

Although in a slightly different context, the convexity assumption has been well justified
in [Th84]. Also, as the users obviously prefer low delays, it is clear that assuming that the
cost functions are non—decreasing is not restrictive. The “strictly” and “twice continuously
differentiable” assumptions are not essentia.l,\ However relaxing them does not provide much
additional insight while it complicates the analysis and the notation. Finally we assume
that the properties hold over the interval [0,00[ to insure the existence of a solution to
the problem (P,) with a finite objective function value. This assumption can be relaxed
whenever it is not necessary to guarantee the preceeding condition.

Suppose that we add in the problem (P,) the constraint that the delay assignment

satisfies D; < -+ < Dy. Using theorem 2.1—c the resulting auxiliary problem, which will

be called (A,), can be written as:
nﬁn S(D)
(4,) DeH
Dy<:--< Dy

where:

_fr Ri+---+ R . .
H—{D I p—Rl—-“—R‘-_RlDl— ««—R;D; <0 t-l,...,V} (3.8)

In (A,) the equality in Kleinrock’s conservation equation has been relaxed. This can be
done w.l.o.g. because the form of H and the assumptions that the cost functions are strictly
convex and non—decreasing guarantee that any optimal solution to (A,) must in fact achieve

equality in Kleinrock’s conservation equation. Indeed this can be seen as follows. Suppose
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that (A,) has an optimal solution 5 in which strict inequality holds in the last feasibility
constraint. As Dy appears only in the last feasibility constraint we must have Dy = Dy_:
for otherwise it would be possible to reduce Dy without violating the feasibility constraints.
This would result in a better solution since Cy (-) is strictly convex and non—decreasing. If
Dy = bV—l it follows that the V' — 1tk feasibility constraint must be satisfied with strict
inequality (indeed if the V — 1** constraint is satisfied with equality v.c. V — 1 must have
full preemptive priority over v.c. V, in which case we cannot have Dy = 5V_1). Now if
both the feasibility constraints V — 1 and V are satisfied with strict inequality, and since
the v.c.’s V' — 1 and V appear only in these feasibility constraints it follows that we can
decrease ﬁV—l and f)v, thus achieving a better solution, unless 1~)V_2 = ﬁv_l = ﬁv.
Continuing this way we eventually obtain that D; = --. = Dy and that all the feasibility
constraints are satisfied with strict inequality. This is clearly a contradiction since then
everybody’s delay can be reduced, achieving a better solution. From a practical point
of view relaxing the equality in Kleinrock’s conservation equation corresponds to relaxing
assumption (A.2.2.1), namely allowing the server to stand idle in front of waiting packets.
Hereafter a delay assignment satisfying the feasibility constraints when the left hand side
in Kleinrock’s conservation equation is allowed to be larger than the right hand side will
be called a weakly feasible delay assignment. Also, to underline the fact that feasible delay
assignments achieve equality in Kleinrock’s conservation equation, we will now say that
these assignments are strictly feasible.

It is not difficult to see that the constraints defining H are convex. Also it is clear in
view of assumption (A.2.1.3) that H contains a strict interior point satisfying the ordering
D, £ --- £ Dy (for example it is readily verified that the point D; = ... = Dy =
2/(p— Ry — -+ — Ry) is such a point). Hence identifying the constraints defining H
with the constraints g; in the formulation of (CPP) and the set defined by the constraint
D, < --- < Dy with the set X in (CPP), it follows that (A,) fits the framework of (CPP),
and that there exists at least one Lagrange multiplier vector for this problem. In addition
it follows from theorem 3.1 that:

_ min S(D) = max ¢(X) (3.9
DeH, D, <--<Dy A20
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where ¢(X), the dual functional, is:

4
1) = ; 5 f_ Bt + R .
1) =, min 5(D) +.-=21A' [p “R - -g " RDi- R,D,J (3.10)
Rearranging the terms 9(X) can be written as:
4
q(A) = p, Jin, ;[C.-(D;) (it /\V)R.'D.'J + K(X) (3.11)
where we have defined for convenience:
N Bi+---+ B )
K(A)=) 3.12
D=2 (T 2 (3.12)

(3.9); is unique. Also, as the function to be minimized in the left hand side of equation (3.9)
is strictly convex, it is clear that the optimal delay assignment is unique.

A considerable insight on the properties of the optimal delay assignment can be gained
by using a dynamic programming argument which we now present.

Equation (3.11) can be written as:

1$+<Dy_,

V-1
q(x\) =D min (Zl [C.‘(D,') -+ + /\V)&DiJ
=
+ Dv!—nxlgvv [Cv(Dv) - z\vRva]) + K(/\) (3.13)
Note that Dy appears only in the second term under square brackets. Define:

Ay = argmin [CV(D) - AVRVD] (3.14)
D

It follows from the definition of Ay that the Dy which achieves the minimum in

equation (3.11) is given by (c.f. Figure 3.1):

Dy = ma.x(Av,Dv_l) (3.15)
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Figure 3.1

Now, define:
JV—I(DV—I) = Dvr—nxigDv [CV (Dv) - AvRva] (3.16)

Using equations (3.14) and (3.15) Jv_1(-) can be written as:

Cv(Av) - AvRVAv, if DV_1 < Ay

3.17
Cy(Dv-1) —AvRyDy_;, if Dy_; > Ay (3:17)

Jv-1(Dv-1) = {

Note that Jy_;(+) is a convex non—decreasing function. Moreover Jv_1(D) is constant for
D < Ay and strictly convex for D > Ay.

Using equation (3.16), equation (3.13) becomes:

a(%) =p. M (VX_—:I [C.-(D.-)'— At r\v)R.'D;] + JV_I(DV_1)> + K(X)

= min ("2_:2 [C.'(D.') - (X,-+---+ /\V)RiDi]

Dy <<Dy_,
+  min [CV—I(DV-I) - (Av=1+Av)Rv_1Dy_;1 + Jv—-1(Dv-1)] )

Dy _3<Dy -,

+ K(N) (3.18)
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Cv-]_(D)

ZC‘V_]_(D) - ('\V—l + /\V)Rv_lD + JV—-1(D)

Figure 3.2

It turns out because of the properties of Jy _;(:) that the argument developed above can

be applied to equation (3.18). Namely, defining:
Ay_; = arggxin[Cv_l(D) —(Av_1+Av)Ry_1D + J'V_I(D)] (3.19)
and:

Jv-2(Dv-;) =  min [Cv_1(Dv-1) = (Av-1+Av)Ry 1Dy _; + JV—I(DV—l)]

v-2<Dv_,
(3.20)
we obtain (c.f. Figure 3.2):
Dy_; = max(AV_l,Dv_z) (3.21)
and:
Jv_2(D) = {CV—I(AV'I) ~(Av—1+Av)Ry_1Av 1 +Jv_1(Av_1), ifD < Ay_;
—2 = i
Cv__l(D) - (Av-1+hv)Rv_1D+Jv_1(D), ifD> Ay_;
(2.22)

Note that similarly as before Jy _z(-) is convex and non-decreasing. Moreover Jy _;(D) is
constant for D < Ay _; and is strictly convex for D > Ay _;.
This discussion can be generalized to obtain Dy, ..., Dy and Jy(-),..., Jy_1(-). This

is formalized in the following lemma.
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Lemma 3.1: The delay assignment D achieving the minimum in the right hand side of

equation (3.11) is unique and is given by:
D.-=ma.x(A‘-,D,-_1) £=1,...,V, D0=0

where:
4; = argmin[Cy(D) ~ (A + -+ + Av)RiD + WD) i=1,...,v
D
and where Jy (D) = K(X), and fori =1,...,V — 1;

Cir1(Ait1) = (Nit1 + -+ Av)Rip1 Aigr + Jig1(Aiga), if D < Aiyy

Ji(D) = .
(D) { Cir1(D) = (Ait1 + -+ Av)Riy1 D + Ji 1 (D), if D> Ay

Moreover the corresponding value of the dual functional is:

g(X) = C1(A1) = (A + -+ + Av) Ry Ay + J1(4,)

Proof:

The validity of the recursion has been established in the preceeding discussion. The
uniqueness follows from the fact that the function to be minimized in the right hand side
of equation (3.11) is strictly convex. Finally the last result of the lemma follows from the
construction of the functions J;(+), f =1,...,V.

Q.E.D.

For a given X the delay assignment prescribed by lemma 3.1 is independent of the right
hand side of the equations defining H. In other words varying the right hand side of the
equations defining H away from O does not affect the assignment generated by lemma 3.1.
This is because varying the right hand side of the constraints affects only the function K (X)
which has no impact on the assignment generated by lemma 3.1. This may seem surprising
at the first glance. Indeed since the optimal assignment is strictly feasible, it is clear that
it must somehow depend on the right hand side of the constraints defining H.

The key words in the preceeding paragraph are “for a given A\”. The precise form of

K (X) influences the optimal delay assignment because of its impact on the optimal X. That
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is if K(X) varies the optimal X in equation (3.9) will vary. This will cause the optimal delay
assignment to vary as it depends on .
From lemma 3.1 we see that if A; > A;; for some ¢ then D; = D;yq1 whileif A; < A;

then A, satisfies:

(i +Ay) = éc{(A,-) (3.23)

In words this means that v.c. 1 impacts v.c.’s ranked behind it as long as its threshold A4; is
higher than theirs while if v.c. { does not impact v.c.’s ranked behind it then its threshold
is independent of these v.c.’s. Also it may be seen that in the former case i’s threshold
depends on the cost function of the v.c.’s ranked behin& it whose thresholds are lower than
1’s. This can be illustrated as follows. Suppose that Air2 > A; > A;41. Suppose also for

simplicity that D;_; < A; ;. From lemma 3.1 A; satisfies:
Ci(A) = (Mi+ -+ Av)Ri + Ji(A) =0 (3.24)

Because it is assumed that D;_; < Ai+1 we have D; = A;. Also because Airy < A; we

have D;;, = D; = A;. Accordingly it follows that:
Ji(A) = Chin(Ad) = Niga + -+ Av) Rigr + JLy (A3) (3.25)

Also as A; < Ay, it follows that J/,,(A;) = 0. Using this fact and equations (3.24) and
(3.25), we obtain:

CilA) +Cla(A) = N+ + Av)Ri = (Aiya + -+ + Ady) Ripy =0 (3.26)

Clearly A; depends on the cost function of v.c. i + 1 which has a lower threshold than v.c.
t but not on v.c. § + 2 which has a higher threshold, as expected.

Suppose that the X achieving the maximum in the right hand side of equation (3.9)
is such that A; > A;,, for some i. Then lemma 3.1 guarantees that D; = D;,;. This
indicates that if we interchange the positions of v.c. 1 and § + 1, thereby obtaining a new
(A,) problem, the optimal value of the new (A,) problem cannot be higher than the optimal
value of the initial (A,) problem. Indeed we may at most again obtain D; = D, which

would indicate that ordering ¢ in front of i + 1 or vice—versa does not matter. However in
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general we may expect that the new assignment will be such that D;,; < D;, in which case
a strict improvement will have been obtained. This intuitively leads one to believe that
the optimal solution D* to the problem (P,) must be such that in an (A,) problem defined
based on an ordering valid for the assignment D* the condition A; < --- < Ay should
be satisfied for the optimal X. This intuition is more accurately described in the following

theorem.

Theorem 3.3: Let D* be a delay assignment satisfying D} < --- < Dy,. D* is the optimal

solution to the problem (P,) if and only if in the problem (4,) defined based on the ordering
Dy <--- < Dy; |

1) X*>o.
2) D* satisfies lemma 3.1 when X = X*.
3) D* is weakly feasible; i.e. D* € H.

4) Complementary slackness is satisfied; i.e.:

5) A < -+ < Ay.

This theorem is proven in the section 1 of Appendix B.

By slight abuse of language we refer to A; as the Lagrange multiplier associated with
the j** feasibility constraint in (P,). It should be understood that in fact A} is the Lagrange
multiplier associated with the j** feasibility constraint in the problem (A,) defined based
on the ordering that D* satisfies (namely in the theorem this ordering is Dy < --- < Dy).

An immediate consequence of theorem 3.3 is the following result.

Corollary 3.1: Let D* and X* satisfy theorem 3.3. Then for all4,i=1,...,V:

1 \4
ZCHDD =%

=

This corollary is proven in the section 2 of Appendix B.
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Based on the proof of theorem 3.3 we see that if for some ordering D; < --- < Dy
we obtain A; > A, for some ¢ in the associated (A,) problem, then interchanging the
positions of v.c.’s ¢ and ¢ + 1 leads to a new (A,) problem whose optimal value is strictly
smaller than that of the initial (A4,) problem. This confirms our earlier intuition. This also
provides a way of solving the problem (P,)*. Indeed after a finite number of iterations an
(A,) problem satisfying A; < -+ < Ay must be found. At this point the problem (Ps)
is solved since theorem 3.3 guarantees that the solution to the (A,) problem is also the
solution to the problem (P,).

An efficient way of solving an (A4,) problem consists of using the dynamic programming
approach (see for example [Be76]). The variables are discretized and the functions J;(-),
t=1,...,V —1 are computed recursively, starting from Jy_; (). This involves a substantial
amount of computation but it is still practical if the number of v.c.’s is not large. It may be
noted that the dynanuc programming problem is particularly nice; perfect state information
prevails, there is no noise and the state contains only one variable.

Solving a (P,) problem via solving a succession of (A,) problems is however not very
attractive. The main drawback of this approach is that the number of (A,) problems
to be solved may grow exponentially with the number of v.c.’s. In fact, since the work
required for solving an (4,) problem is still considerable, this approach would rapidly
become inpractical. It turns out that solving directly a (P,) problem is easier than solving
an (A,) problem. This fact is very surprising. Intuitively we should have expected that
specifying the ordering would simplify the problem. What is happening is that in general
we will specify a wrong ordering, so that we will not obtain A; < .- < Ay. When
A; > Aiy it is more difficult to compute A; than when A; < A;y1 because the term
J{(A;) does not vanish. Potentially if our guess for the ordering is very poor we can obtain
Ap > A2 > --- > Ay, in which case the amount of computation required to determine
Aj,..., Ay can become prohibitive. By solving directly the problem (P,) the computational

burden resulting from a wrong choice of ordering can be eliminated.

* This may be viewed as a simplex-like method where orderings correspond to extreme

points.

61



In the linear cost case: i.e., when C;(D;) = ¢;D;, ¢ = 1,---,V, it has been found
(see for example [Ja68]) that the optimal discrete priority assignment consists of assigning
the priorities in order of decreasing unit cost to rate ratio. That is for some re-labelling of
the v.c’s the sequence of increasing delays Dy < --- < Dy (D; corresponding to the v.c.
having the highest priority, Dy to the v.c. having the lowest) corresponds to the sequence

of decreasing ratios:

Cy cy
_ D e D> —0 2

Ry~ T Ry (3:27)
On the other hand it follows from condition (1) of theorem 3.3 and from corollary 3.1

that the optimal solution to the problem (P,) satisfies:
2CI(D}) > ~cy(D}) 2 > (DY) (3.28)
Rl 1 1/ = }22 2 2] = = RV

It is a well-known result of optimization that if D* mini&ﬁzes S(D*) it must minimize
the linearization of S(D*) around D*. Comparing equations (3.27) and (3.28) we see that,
indeed, D* satisfies this condition.

We now introduce the notion of system—functional i)riority group. A system—functional
priority group, denoted S, is a collection of v.c.’s and is characterized by a number “4”.
A v.c., say 1, belongs to the system—functional priority group ., if R%C:(D.-) = ~. We say
that a system-functional priority group is higher, or of higher priority, than another one
if its characteristic number is greater. System—functional priority groups defined based on
the optimal solution to the problem (P,) have several properties. Some of these properties
are summarized below.

Let D* and X* satisfy theorem 3.3 and consider the system—functional priority groups

defined based on the assignment D*. Then the following holds:

1) All the v.c.’s in a system—functional priority group have full preemptive priority over
the v.c.’s in lower system—functional priority groups and are of lowest priority compared
to the v.c.’s in higher system—functional priority groups.

2) If ¢ and k belong to the same system—functional priority group and j is such that

D; < D; < D, then j also belongs to the group.
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8) If a system—functional priority group is composed of v.c.’s 1,...,l (with, of course,
D; <---<Df)then A\; =---=X;_; =0and A} > 0.
4) Let « be the characteristic number of the system functional priority group of v.c. 1.

then: v = E;-’:‘- Aj

These properties are easily established. We leave this task to the reader.

Note that the property (1) does not imply that within a system-functional priority
group a v.c. cannot have full preemptive priority over another v.c. Indeed this may happen
in a degenerate situation.

The characteristic number is a very useful figure. Ii: indicates the importance that the
v.c.’s in a system-functional priority group attach to their delay. In fact we can view the
characteristic number of a system—functional priority group as the marginal delay cost per

unit rate for the v.c.’s in the group.

3.3.2 An algorithm solving the problem in the system—orient‘ed approach.

Suppose that we guess that the optimal solution to a given problem (Ps) has only one

system-functional priority group. Accordingly it follows that A; =0, 1=1,...,V -1,
Ay > 0 and that the optimal assignment satisfy:

1 ! - L] .

EC‘(D.)=AV |=1,...,V (3.29)

Based on equation (3.29) we can define D;, s =1,...,V, as a function of Ay as follows:
D; = [Cl] 7} (RiAv) (3.30)

where for i = 1,...,V the function [C!|~!(-), the inverse of C!(-), is well-defined because
Ci(-) is strictly convex and non-decreasing. |

Since the optimal solution is strictly feasible we know that it satisfies Kleinrock’s con-
servation equation. This suggests the following method for finding the optimal delay as-
signment. Defining the delay asssignment as a function of Ay as in equation (3.30), and
starting with Ay > 0 sufficiently small to insure that Kleinrock’s conservation is initially

violated, we can simply increase Ay until equality is achieved. Note that the existence of a
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Ay for which equality is achieved is guaranteed by the assumption that the functions Ci(),
1=1,...,V, are strictly convex and non-decreasing over [0,oo[.

Let A}, be the Ay for which equality is achieved in Kleinrock’s conservation equation

that D* satisfies Di<-.-< D} (this assumption can always be enforced by re-labelling
appropriately the v.c.’s) we can define the V — 1 remaining feasibility constraints using the

ordering D; < --. < Dy ; namely these constraints would then be:

R,
RiDy >
! 1_#-R1
> (3.31)
R1+"‘+RV—1
—1Dv_1 >
Ry\Di+--+Ry_1Dy 1.}1_}.{1_.“_1_.&,‘“1

If D* satisfies these constraints we can conclude that our initia] guess was correct and that
D* is the optimal solution to the problem (P,). Indeed this follows from the fact that D*
and X* = (,...,0, Ayr) then satisfy all the conditions of theorem 3.3. This can be easily

checked. Condition (1) is satisfied because Al=0,i=1,...,v - L, and A}, > 0. Condition

of Ay we must have:

C'", (Av) - /\{,RV =0 (3.32)
As Cy(Dy) = Ry Ay, it follows from the Preceeding equation that A, = Dy . Similarly
Ay _; satisfies:

Cvaldv-) ~ (Ay_; + Ay )Ry _; + Tvo1(dvoy) =0 (3-33)

It is easily checked that the Preceeding equation, together with the facts that Ay_1=0and

that J{,_I(Dy_l) = 0 (because Dy_; < Dy), implies that Av_1 = Dy_,. Continuing

this way we get:

Ar=D{<-..< Ay = D3, (3.34)
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It follows immediately from this equation that conditions (2) and (5) of theorem 3.3 are
also satisfied.

In general however D as determined above will not satisfy all the feasibility constraints
in equations (3.31). This will happen when the optimal solution to the problem (P,) contains
more than one system-functional priority group. One possibility of insuring that D satisfies
all the feasibility constraints consists of increasing Ay until all these constraints are satisfied.
In this case equality will be achieved in some constraint i < V' while the V'** constraint will
be satisfied with strict inequality. Of course the snag in this approach is that as Ay > 0,
and as the V** constraint is not satisfied with equality, complementary slackness is not
maintained. Intuitively the solution is, for the re-labelling of the v.c.’s corresponding to
the sequence of increasing delays, to let Dy, ..., D; unchanged but to reduce Dit1,...,Dy
until the V'** constraint is satisfied with equality. This can be done by using \;. Indeed
if'ronly A; and Ay are non-zero it follows from corollary 3.1 that the optimal assignment

satisfies:

Lonpy = JA+HAy, 5<d
ECJ'(DJ') = {A{‘,, i>i (3.35)

Based on this equation we can define similarly as before D;,j=1,...,V, as a function of
A; and Ay as follows:

[Ci Y (Ri(A+ Av), j<i

[CiI~Y(R;Av), i>i (3.35)

Dj(Xi, Av) = {

Clearly by selecting A; such that A4 = A; + Ap*“, Dy, ..., D; are unchanged. However
by selecting APeY < AgH it is possible to achieve equality in the last constraint. Note that
increasing A, is allowed since the §** constraint is satisfied with equality. Also it is not hard
to guess that the highest system-functional priority group is the set containing the v.c.’s
1, ,i.

It may well be that the assignment resulting from the preceeding procedure is still un-
feasible because nothing guarantees that this assignment satisfies the feasibility constraints
t+1,...,V — 1. However one may see that this situation can be handled in a similar way
as before. Namely we can, in a first step, increase Ay until feasibility is achieved while

adjusting A, so that D,,..., D; stay unchanged and then, in a second step, increase ;s and
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decrease Ay until the V'** constraint is satisfied with equality, where ¢/, i < ¢/ < V, is the
index of the highest constraint for which equality was achieved in the first step.
We now present an algorithm solving the problem (P,). This algorithm, called Alg_P,,

is essentially the generalization of the preceeding discussion.

Alg_P,: This algorithm produces the optimal solution to the problem (Ps).
Let T € N be a given number.

1) Initially arbitrarily label the v.c.’s 1,---,V and set T = 1,X=0,D=o0.
2) For i < T let D; stay constant.

For ¢ > T let:
D; = [C{]7"(R:7)

provided that this expression is well-defined. Otherwise if ~ is such that [C~Y(Rin) =
0 for some 7 > 7 we set D; = 0 and if [C!]~!(R;7) = co for some F < v we set D; = co.
3) Find the minimum « such that the following constraints are satisfied, where, for each

7, the labelling of the v.c.’s T, ...,V is defined by the ordering of the delays:

Ry++--+Rp
Dy >
Ri\Di+...+Rr L N
> :
Ri+--+Ry
>
Ri1D, + +RVDV‘p—R1—---—RV

4) Let i’ be the highest constraint satisfied with equality. Set:
a) Ay
b) Ar_y —Ar_; -«
c) D; — [CII7YR) F=T,...,¢
d) T—i+1

5) if T > V stop, else go to step 2.

The proof of correctness of this algorithm is given in the section 3 of Appendix B.
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Since T is initialized at 1 and since it increases by at least 1 each time step (4) is
executed, it follows that the algorithm terminates in at most V steps. In fact it is not
difficult to see that the algorithm requires one iteration for each system—functional priority
group of the assignment that it produces.

Most of the computational burden of the algorithm occurs in step (3). Indeed it is
clear that the work required in the other steps is very small. We now investigate further
the work involved in step (3).

For a given T, 1 < T <V, Define:

ir(7) = argmin [C{]™*(Ri7) (3.37)
i€{T,...,V}
Also define for =T +1,...,V:
() = argmin [CI7 (Bew) (3.38)
ie{Tl"'lv}D ‘#iT (7):---1’.1—1.('7)

and:

1i(1) = BaDut- s+ Ry Dra 4 Big () [l ()| ™ (Rir () N+ -4+ Ry () [Chy )] ™ (Ris )
__Bit-tBrat R+ + Ry
B=By—o=Bro1 = Rip(y) =+ = Riyqy)

(3.39)

In words, equations (3.37) and (3.38) rank the v.c.’s T,...,V in order of increasing
delay, where the delays are given as a function of 7 asin step (2) of Alg_P,. By construction

it follows that for any v, i7(7),..., iy (7) satisfy:
Dip(q) £+ < Dy () (3.40)

The fi(-),{=T,...,V, correspond to the slackness in the equations of step (3). Indeed
it is not difficult to see that for [ = T,...,V, fi(+) is the difference between the left hand

side and the right hand side of the constraint in step (3) whose left hand side contains !

terms.

Using these definitions it follows that we can formulate the objective of step (3) as that

of finding « such that for some l., T<Ii<V:

fit) =0 (3.41)
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while for { £1, T<I<V:
fitv) 20 (3.42)

or in a more compact way defining:

G.(7) = IE{ITI}%.I-I,V} fi(7) (3.43)

step (3) can be stated as: find v such that G o(7) = 0. From this viewpoint step (3) deals
with the classical problem of finding the zeros of a function. Moreover it is not difficult to
see that G,(0) < 0, G,(c0) = co and that Gs() is continuous and increasing. It follows
from these facts that G,(-) has exactly one zero, as must be the case since the 4 achieving
the minimum in step (3) is clearly unique.

The computation of G,(y) for a given 7 requires the evaluation of equations (3.37),
(3.38), (3.39) and (3.43). The ordering task implicit in equations (3.37) and (3.38) can
be accomplished in O(V log(V')) computations. This ordering being done, O(V) compu-
tations are required to evaluate equation (3.39). Also equation (3.43) requires at most V'
comparisons. Hence assuming that the assignment produced by Alg_P, contains p system~
functional priority groups, and that finding the zero of G s(*) requires G evaluations of the
function, it follows that the overall number of computations required by Alg_P, is propor-
tional to VpGlog(V').

This is pleasantly surprising. From chapter 2 we know that the feasible delay set is
the convex hull of V! distinct extreme points. Thus we could have suspected that the
computations would grow exponentially with the size of the problem. This does not seem
to be the case.

The factor G may not always be available. However, this does not infirm the preceed-
ing conclusion. Indeed this can be Justified as follows. Because G,(-) is continuous and
increasing, and because G,(©) = oo it follows that we can always find 4,,,, such that
G ,(7ma,) > 0. Ymaz depends on the rate assignment and on the precise form of the cost
functions but not on the number of v.c.’s. As G +(0) < O this means that the zero of G,(+)
lies in the interval [0, Ymaz)- The zero can be located using for example the well-known

secant method. The rate of convergence of this method is linear but it does not depend
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on the number of v.c.’s. This means that the work required to solve the problem is still
proportional to V pG log(V'), where now G characterizes the number of iterations required
by the secant method to locate with a given accuracy a zero in the interval [0, Ymaz]-

We conclude this section with an example illustrating the functioning of Alg_P,.

Example 3.1: Suppose that there are three v.c.’s, characterized as follows:
C,(D;) =0.1D3, R; =0.1
C3(D;) =0.1exp[10(D; —1)], R;=0.2
Cs(Ds) =0.3Ds(.5++/Ds),  Rs=0.3

The marginal delay cost per unit rate of the v.c.’s for this choice of cost functions are

depicted in Figure 3.3. A little calculus gives:

[Ci~}(R1v) = 0.5

[C4]7 (R2y) = 1 +0.11n(0.27)

-05)\?
e = (1552)

We first assume that 4 = 2 and we go manually through Alg_P,.
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In the first iteration we obtain for v = 1.6504:
D, =0.82522 D, =0.88016 Dj3; = 0.58824 (3.44)

The ordering is D3 < Dy < D; and, correspondingly, the constraints in step (3) are:

Rs
> -
R3D; > PRy (3.45)
R; + Ry
> .
B1D1+ R3D3 > - R - R, (3.46)
R
RyDy+ RyD;+ RyDy > —at Bt B (3.47)

p—Ry—R; —Rg
It is easily checked that for the assignment (3.44) equality is achieved in equation (3.45)

while equations (3.46) and (3.47) are satisfied with strict inequality. Correspondingly in

step (4) we set:

D3 =0.58824
A; = 1.6504 (3.48)
T = 2

In the second iteration only the v.c.’s 1 and 2 are considered. We find for v =1.518T7:
D; =0.75933 D, = 0.88084 (3.49)

The ordering is D; < D;. Accordingly the constraints in step (3) are:

Ry + R;
R Dy> 2t hs _
1D1+ Ry R (3.50)
Ry + Ry + R
RiDy+ RyDy + RyDy > —2 2+ T (3.51)

p— R — R; - R3
where Dj is as obtained in the last iteration. It is easily checked that the assignment (3.49)

satisfies the two preceeding equations and that the last constraint is satisfied with equality.

Consequently we set in step (4):
Dy = 0.75933
D, = 0.88084
A1 =1.8504 — 1.5187 = 0.1317
A3 =1.5187
T=14
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Since T > 3 the algorithm stops.

In summary the optimal assignment is:
D; =0.75933 D, =0.88084 D3 = 0.58824
A; =0.1317 A2 =0 A3 =1.5187

There are two system-functional priority groups. V.c. 3 is the only member of the first
group while the second group contains v.c.’s 1 and 2.

Suppose now that 4 = 1. Going through the same sort of computation we obtain:
D, =1.7857 D, =1.2500 Dj3;=2.2781
A1 =57.3401 X, =0.5893 A3 = 2.9821

Now there are three system-functional priority groups. V.c. 2 has full priority over v.c.’s 1
and 3 while v.c. 1 has full priority over v.c. 3.

When u = 2 the overall average delay is appro;imately 0.7. In this region the marginal
delay cost per unit rate of v.c. 3 is larger than that of v.c.’s 1 and 2. This justifies why in
this case v.c. 3 is given full priority over v.c.’s 1 and 2. When u = 1 the overall average
delay increases to 1.5. In this region the marginal delay cost per unit rate of v.c. 2 becomes
extremely important. This is why this v.c. is then given full priority over v.c.’s 1 and 2.
We may also note that when p = 1 v.c. 3 is given the lowest priority. This results from
the fact that although the marginal delay cost per unit rate of v.c. 3 is relatively high for

modest delays, it does not increase as rapidly as the other ones.
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3.4 The user—oriented approach.

As in the preceeding section we of course assume that assumptions (A.2.1)-(A.2.3) hold.
However we now make different assumptions regarding the cost functions. Specifically we

assume that:

(A3.2) Foralli,i=1,...,V, Ci(-) is non-negative, continuous and

increasing over the interval [0, ool.

The assumptions that the cost functions are continuous and increasing have already
been discussed in the preceeding section. The assumption that the cost functions are non-
negative is not restrictive because it is in practice easy to enforce this usumpti;m. Indeed the
cost functions are usually bounded from below. This implies that by adding a sufficiently
large constant to all the cost functions we can ir;sure that the assumption is satisfied.
Moreover it is not difficult to see that this artifice does not affect the optimal assignment,
so that the problem with the modified cost functions is equivalent to the initial problem.

The main result that we present concerning the user—oriented approach is an algorithm
solving the problem (P,). This algorithm, called Alg_P,, will be presented shortly. A
surprising fact is that this algorithm is very similar to Alg_P,. This is the consequence of
some very fundamental relationships between the problems (P,) and (P,). In fact although
the philosophies on which the problems (P,) and (P.) are based are different, these problems
are very similar.

Our aim in the following discussion is to provide some insight on the relationships
between the problems (P,) and (P,). For this purpose we temporarily assume that the cost
functions are convex. This will allow us to utilize theorem 3.1 and 3.2. This assumption
will be removed later.

The problem (P,) can be solved by solving an hierarchy of nested problems. The first

problem in the hierarchy, which will be called (Py,1), minimizes the maximum cost. It can
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be written as follows.
min 7;
(Pu,1) Ci(Di)<m i=1,...,V
D weakly feasible

Note that we only require in this problem that the delay assignment be weakly feasible.
This is not restrictive because given any weakly feasible delay assignment satisfying the
constraints of (P, ;) for some v; we can always construct a strictly feasible delay assignment

satisfying these constraints for the same ~; simply by decreasing the delay of some of the

v.c.’s.

Because we assume that the cost functions are convex it follows that the set defined
by the constraints C;(D;) < 71,{ =1,...,V, is convex. Indeed for any assignments (D, 7,)

and (B, 41) satisfying these constraints we have for any a € [0,1],and foralli,i =1,...,V:
Ci(aDi+ (1 - a)Dy) < aCy(D;) + (1 - @)Ci(Ds) < ey + (1 — @) (3.53)

Also it is not difficult to see that there exists a weakly feasible delay assignment D and
a 71 such that C;(D;) < v, for all 4, § = 1,...,V (for example it is readily verified that
the assignment D; = -+ = Dy = 1/(u~ Ry — -+ — Ry) and 11 = 2 max;<i<y C;(Dy)
satisfies these conditions). It follows from these facts and from theorem 3.1 that (Py,1) fits
the framework of (CPP) and that there exists at least one Lagrange multiplier vector for
this problem. In addition it also follows from theorem 3.1 that 71 = ¢°, where ~4} is the

optimal value of (P, ;) and ¢* is the optimal value of the problem:

max ¢(¢)
(3.54)
$>0
where ¢(y ), the dual functional, is:
- v
= i iCi( D) —
q(¢) b weakl;nflex;aible, 71 m + ‘z=;¢ [ ( ) 71]
|4 v
- - - i iCi( Dy 5
D weaklylnfle!tluible, 1 71[1 ; 'p ] + ; "b ( ) (3 5)
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From this expression we can obtain a set of optimality conditions for the problem (P, ;)

(see [Be83] p. 4.43). These conditions are listed in the following lemma.

Lemma 3.2: (D*, ;) and §* are respectively an optimal solution to (Pu,1) and a Lagrange

multiplier vector if and only if:

1) ¥* >0.

2) D* is weakly feasible.

3) Ci(D;) <.

4) ¥ =0if Cy(D}) < maxi<j<v C;(D;).

5) D* = argmin; weakly feasible 2ic1 Y1 Ci(D]).

6) Tl ¥ =1

This result is proven in the section 4 of Appendix B.
An immediate consequence of the preceeding lemma is that if D* in an optimal solution
of the problem (Py,;) it must also be an optimal solution of the following (P,) problem:
v

min > ¥iCi(Dy) (3.56)

b weakly feasible i=1

This (P,) problem has the particularity that only the v.c.’s having the worst delay cost
are considered. This is because condition (4) insures that for all ¢, ¢ = 1,... ,Viyifvee. ¢
does not have the worst delay cost then the Lagrange multiplier 1} is zero. Hence we can
conclude that an optimal solution to (P, ;) is also an optimal solution to a (P,) problem in
which only the v.c.’s experiencing the worst delay cost are considered.

Let D* be the optimal assignment for the problem (P,) and let 4} be the worst delay
cost in this assignment (i.e., v = max;<i<cv Ci(D})). We define U,: as the set of v.c.’s
having the worst delay cost in the assignment D*. That is v.c. i ,1=1,...,V,isin Uqg if
Ci(D;) =ni.

It is not difficult to see that the v.c.’s in U,; must have full priority over the other
v.c.’s. Indeed if a v.c. 1 € U.; does not have full priority over a v.c. J & Uy; it follows
that we can decrease D} and increase D; without violating the feasibility constraints. As

the cost functions are increasing this means that for a sufficiently small variation we can
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guarantee that the delay cost of v.c.’s { and j in the resulting assignment are strictly less
than ;. As the other delay costs do not vary this implies that the lexicographic ordering
of the delay costs in the resulting assignment is strictly less than that of D*, contradicting
the optimality of D*. Note also that this argument does not depend on the convexity
assumption.

Now let D* be an optimal solution to the problem (P, ;) and let ¥; be the corresponding
value of the problem. Clearly by definition of the problem (Pu,1) we have §; = 4¢. Also it
is not difficult to see that U,; is the set of v.c.’s i satisfying C;(D;) = 7; and such that it
is not possible to reduce C;(D;) without either violating feasibility or increasing the delay
another v.c. whose delay cost is also ;.

The second problem in the hierarchy, which is called (P, ;), is defined as follows:
min 72
Ci(Di) <72 i¢ Uy
Ci(Di) =7 iely

1

(Pu,2)

D weakly feasible

That is (P, 2) minimizes the second largest delay cost subject to feasibility and subject to
not increasing the delay cost of any v.c. in U,;. Note that because Uy: and 4] are unique
(P.,2) is well-defined.

Clearly the form of problem (P, ) is identical to that of problem (Pu,1). Indeed
the only difference is that the v.c.’s in U.; are not considered anymore in problem (P.,2)
because their delay is known. Accordingly it is not difficult to see that the optimal solutions
of problem (P, ;) satisfy a very similar set of conditions as the optimal solutions of problem
(Pu,1)- Specifically similarly as in lemma 3.2 we find that any optimal assignment for
the problem (P, ;) minimizes Eigu.,; ¥ C;(D;) over the set of delay assignments in which
the v.c.’s not in U.; are of lowest priority as compared to the v.c.’s in U,;, and where
Y, 1 ¢ U;, is non-zero only if i experiences the second worst delay cost. Hence we
can conclude similarly as in the case of the problem (P, ;) that an optimal solution to

the problem (P, ;) is also an optimal solution to a (P,) problem in which only the v.c.’s

75



experiencing the second largest delay cost are considered, and in which the v.c.’s in Zl.,; are
of full priority over the v.c.’s not in U,;.

It should be clear that the preceeding discussion concerning (P, 2) can be generalized
into an inductive step. We leave this exercice to the reader. The important thing to notice
is that the problems in the hierarchy are in fact (P,) problems. The k** problem is a (P,)
problem is which the v.c.’s experiencing the k** worst delay cost are considered and in
which the v.c.’s whose delay was assigned in the previous problems have full priority over
the v.c.’s whose delay has not yet been assigned.

We now present Alg_P,. We define C;” 1(-), t =1,...,V, as the inverse function of
Ci(-). Clearly because by assumption Ci(-), i = 1,...,V, is continuous and increasing

C:1(-) is well-defined.

Alg_P,: This algorithm produces the optimal solution to the problem (P,).
Let T € N be a given number.

1) Initially arbitrarily label the v.c.’s 1,...,V and set T=1,y=0, D =0.
2) For ¢ < T let D; stay constant.
For ¢ > T let:

D;=C'(v)

provided that this expression is well-defined. Otherwise set D; = 0.
3) Find the minimum 7 such that the following constraints are satisfied, where the la-

belling of the v.c.’s T, ...,V is defined by the ordering of the delays.

RyDy+:--+ RpDr > P

RrDr+---+ Ry Dy > m
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4) Let i’ be the highest constraint satisfied with equality. Set:
a) D;=C;'(v), i=T,...,¢
b) T=i+1

5) if T > V stop, else go to step 2.

The proof of correctness of this algorithm is given in the section 5 of Appendix B.

The similarity between Alg_P, and Alg_P, is striking. Intuitively this can be explained
as follows. Consider the k** iteration of Alg_P,. Clearly this iteration solves the kt* problem
in the hierarchy. We know that this problem s a (P,) problem in which only the v.c.’s having
the k** worst delay cost are considered. Step (2) insures that all the v.c.’s whose delay has
not yet been assigned are considered in this (P.) problem because by construction the delay
cost of all the v.c.’s are forced to be equal. Then as in Alg_P, we increase in step (3) the
delay of the v.c.’s until weak feasibility is achieved. However because all the costs are forced
to be equal, some v.c.’s will have a delay needlessly high. These are the v.c.’s which are
only involved in constraints satisfied with strict inequality. Clearly as in Alg_P, the delay
of these v.c.’s should not be determined by the current iteration, which is indeed the case as
these v.c.’s are not considered in step (4). Also because of the form of the equations in step
(3) we are guaranteed that the delays assigned in the k** iteration are of lowest priority as
compared to the delays assigned in previous iterations, as expected.

Similarly as in the case of the system—oriented approach we may define the notion of
user—functional priority group. A user—functional priority group, denoted U.,, is a collection
of v.c.’s and is characterized by a number “y”. A v.c., say 1, belong to the user—functional
priority group U, if Ci(D;) = 7. It is not difficult to see that the user—functional priority
groups defined based on the optimal solution of the problem (P,) share the properties (1)
and (2) of the system—functional priority groups defined based on the optimal solution of
the problem (P,) listed on p. 46. Note also that the set U,; that we have previously defined
is in fact the highest user~functional priority group in the optimal solution of the problem
(P.).

It is easy to see that Alg_P, requires one iteration for each user—functional priority

group in the optimal solution of the problem (Pu). Also from the similarity between Alg P,
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and Alg_P, it is clear that the overall number of computations required by Alg_P, is propor-
tional to V pGlog(V), p being the number of user—functional priority groups in the optimal
solution to the problem (P,) and G being the number of evaluations of the function Gu(-)

required to find its zero. G,(-) is defined in a completely analogous way as G,(-).
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3.5 Comments.

We have seen in the preceeding sections that the problems (P,) and (P,) are intimately
related. We now present a result that underlines a fundamental relationship between these
problems.

Consider the following (P,) and (P,) problems:

min Z C,(D,)

pt (3.59)
D weakly feasible
ol Lo 1
min e(}216‘1(1)1))“'1 RV CV(DV)) (360)

D weakly feasible
We have the following result:
Theorem 3.4: Assume that the functions C;(-), i = 1,...,V, satisfy assumptions (A.3.1)
and that the functions C!(-), i = 1,...,V, satisfy assumptions (A.3.2). Then D* is the
optimal solution of the problem (P,) given in (3.59) if and only if it is the optimal solution
of the problem (P,) given in (3.60).

The proof of this result is immediate in view of the fact that Alg_P, and Alg P,
respectively solve the problems (P,) and (P,) and in view of the similarity between the
algorithms.

Note that it is not difficult to construct the cost functions Ci(-),i1=1,...,V, so that
Ci(") satisfies assumptions (A.3.1) and C!(-) satisfies assumptions (A.3.2). In the remaining
of this work we concentrate on generalizing the problem (P.). Theorem 3.4 can always be
used to adapt the results to a (P,) formulation.

Finally it is worth noting that the results established in this chapter can be re-derived
in the context in which only non-preemptive queuing is allowed. These modified results are
presented without proof in the section 6 of Appendix B. The proofs are almost identical to

those of the results presented in the chapter.
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4 Delay assignment in an integrated services network.

In this chapter we investigate the problem of assigning delays to v.c.’s in an integrated
services network. The chapter is divided in four sections. The goal of the first section is to
define the problem precisely. In the second section we derive a set of conditions necessary
and sufficient to guarantee the optimality of a delay assignment. Based on these conditions
we construct in section 3 two distributed algorithms. The first algorithm is approximate in
the sense that the delay assignment that it produces is not necessarily optimal. However,
via a suitable choice of the parameters, the assignment produced can be brought as close
to optimality as desired. The second algorithm always produces an optimal assignment
but it requires more coordination than the first algorithm. Finally section 4 contains some

comments on possible improvements and generalizations.
4.1 Problem Formulation.

We first introduce some terminology. A network is defined as a directed graph on which
a collection of paths has been defined. The nodes of the network are labelled 1,...,N. They
typically correspond to the switching machines. The links are the transmisssion facilities
permitting the exchange of information between the nodes. The links are labelled 1,...,L.
The network users are the v.c.’s. Each v.c. is an oriented path established between two
different nodes. The first node on the path of a v.c. is called its home and the last node its
destination. The home of v.c. i is abreviated H (i) and its destination D(1). It is assumed
that the network contains V' v.c.’s, labelled 1,...,V. £, is defined as the set of links on
the path of v.c. ¢, and V' is defined as the set of v.c.’s sharing link /. Also, V! is the total

number of v.c.’s on link I/, and L; is the total number of links on the path of v.c. ¢¥*.

* In general a subscript is used to refer to a v.c. attribute while a superscript is used to
refer to a link attribute. For example if z is a given variable z; and z! respectively refer tc

the variable in the context of v.c. ¢ or of link I.
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A quantity of paramount importance in this chapter is the end-to—end delay. The
end-to—end delay of v.c. 1, denoted D;, is defined as follows:

D;= ) D} (4.1)

lel;

where D! is the delay experienced by the v.c. on link /. In this equation the delays can be
interpreted as instantaneous values or as long term averages. As in the preceeding chapters
we will adhere to the latter interpretation.

We also straightforwardly extend the notation introduced in the preceeding chapters
to the multiple link case simply by adding a superscript‘ to the variables indicating to what
link they belong. For example w' denotes an ordering on link I, el denotes the priority
group of v.c. 1 on link [, etc. We also define the functions Bi(-,+,9), I=1,...,L, similarly

as the function B(-,-,-) as follows:

B'(i,w',R) = 1<i<V! (4.2)

Finally we again use the cost function:
v
S(D) =) Ci(D;) (4.3)
=1

where the functions C;(:), ¢ = 1,...,V, are exactly as in the preceeding chapter in the
system-oriented approach. In particular we assume that the cost functions still satisfy the
assumptions (A.3.1).
The problem that will be investigated is the following. We refer to it as (NP,).
min S(D)
(NP,) .
D feasible

This problem is a generalization of (P,). Indeed if the network contains only one link
the problem is clearly a (P,) problem.

In the single link case we know what the set of feasible delays is. However we do not
know what the set of feasible delays is in (NP,). Of course our hope is to be capable of

partitioning the feasible set on a link basis into smaller, mutually independent sets. In fact
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what we expect is to be capable of decomposing the overall feasible set into a cartesian
~product in which each term would represent the set of delays realizable by a particular link;

i.e., obtain a description of the feasible set of the form:
{D feasible} = { D} feasible, i € V1) x - x { DF feasible, i € VE}  (a4)

If equation (4.4) is true it means that, as far as the average delays are concerned, the links
behave as if they were alone. Accordingly the feasible set of each link can be characterized
using the results of the single link case. That is for a given link, say !, the feasibility

constraints are, given a valid ordering on the link w':

> R,D.>B'(G,d,R) i=1,..V! (4.5)

pluwigs

Unfortunately equation (4.4) is false. This is so because when prit;rity queuing is
allowed the output process of a single server queuing system is generally not Poisson. The
consequence is that the input processes at the links which are fed by other links are generally
not Poisson. The Poisson assumption is, however, essential in the derivation of the results
of chapter 2.

Because of the dependency between the links it is extremely difficult to obtain a useful,
yet accurate, characterization of the set of feasible delays in (N P,). In fact even the simpler
problem in which priorities are prohibited is hopeless. To overcome this difficulty we make
the following approximation, which in fact is especially tailored toward allowing the use of

equations (4.4) and (4.5).

(Ap.4.1) The arrival processes at each link are Poisson processes inde-

pendent of each other and independent of the state of the link.

This approximation has also been made by Wong et al. [Wo82]. They have shown by
simulation that, at least in the case of two very dissimilar priority schemes, the impact of
the approximation on the estimation of the delay is minor. We believe that this result is

typical of most priority schemes. Some other results that tend to support this assumption
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have also been recently reported in [Ki83]. However further simulation should be carried
out to verify this approximation more thoroughly in our context.

The preceeding assumption is seldom made in the literature. In general the celebrated
Kleinrock’s independence approximation ([KI76] p. 322) is, for good reasons, much more
popular. This approximation consists of pretending that each time a packet is received by
a link its length is drawn from the exponential distribution independently of the state of
the network and of the lengths that the packet may already have had. Of course this is
absurd as the length of a packet is constant. From a practical point of view, however, this
approximation has proven to be reasonable. The popularity of this approximation is justified
by the fact that, together with the modest additional assumption of Poisson arrival at the
input nodes, it is in general sufficient to obtain a network of quasi-reversible queues [Ke79).
At this point some extremely powerful results can be invoked. In particular, although the
states of the queues are in general correlated, the probability distribution function for the
overall state of the network takes under mild assumptions a particularly simple form.

We have departed from the tradition and not used Kleinrock’s approximation for two
reasons. The first reason is that when the use of priorities is allowed Kleinrock’s approxi-
mation is not sufficient to guarantee the obtention of a network of quasi-reversible queues.
Guaranteeing this still requires that an additional approximation, such as (Ap.4.1), be
made. In fact it seems that in our formulation an approximation such as (Ap.4.1) is un-
avoidable. The second reason is that since our formulation depends only on average values
the knowledge of the overall probability distribution function is anyway not needed. Indeed
given the Poisson approximation the average delays on a link can be computed as if the link
were alone, ignoring the correlation that may exist between the state of the link and the
state of the other links. In this context Kleinrock’s approximation loses much of its appeal.

In the remainder of this work we assume that each link satisfies assumptions (A.2.1)-
(A.2.3), so that as a consequence the feasible set can be decomposed on a link basis, a=
in equations (4.4) and (4.5). Of course, as justifying assumption (A.2.1.1) requires that
approximation (Ap.4.1) be made, it should always be remembered that our description of

the set of feasible delays is only approximate.

83



4.2 Optimality Conditions.

In this section we derive a set of conditions necessary and sufficient to guarantee the
optimality of a delay assignment for (NP,). These conditions follow immediately from a
simple general result which is now presented.

Theorem 4.1: Let X;,i = 1,...,n, be a convex set and let f(Z1,...,%0): Xix XX, —
R be a convex differentiable function. Then (£},...,Z3) is an optimal solution of the

problem:

min f(Zy,...,%Z,)

€X;,,1=1,...,n

if and only if for each i, =1,...,n, Z is an optimal solution of the problem:

m.in f(f;,...,E:_l,fi,i':_'_l,-..,i:‘)

z; € X;

This result is proven in the section 1 of appendix C.

For a given delay assignment, say D, define:

ciiph=ci( > DBY+DY (4.6)
el;, i'#l

C!(D!) represents the cost of assigning the delay D! to v.c. 1 on link / when, on the other
links, the delay assignment is f)f', eV, l'=1,...,L, I #1.
Define, forl=1,...,L:
min ) C}(D})

(P;) eVt
D!, i€ V', feasible

Because of the assumptions on C;(-), { = 1,...,V, we have that for D >0,CiH), I =
1,...,L, i € V!, is strictly convex and non—decreasing. Also because of approximation

(Ap.4.1) the feasibility constraints on link { are the same as if the link was considered in

isolation. These considerations imply that (P!) is in fact a (P,) problem. Indeed it is the
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(Pe) problem that results when we focus our attention on optimizing the delays on link I,
assuming that the delays elsewhere in the network are constant.

Our result ties an overall optimal solution of (NP,), say D*, to the optimal solutions of
the (P,) problems that can be defined using it. The result states that to assess the overall
optimality of an assignment D* we may equivalently look at the (P!) problems that can be
defined using D*. The advantage is that it is simpler to look at several (P!) problems than

to look at the much bigger (N P,) problem. This result can be summarized as follows.

Corollary 4.1: D* is optimal for (NP,) if and only if, for | = L,...,L,D}' i€V isan
optimal solution of the (P!) problem in which the cost functions C!(-), i € V}, are defined

using D* via equation (4.6).

The proof follows immediately from theorem 4.1.

An immediate consequence of corollary 4.1 is the following corollary.

Corollary 4.2: Let D* be an optimal solution of (NP,). Let Aj Lbi=1,...,V! be (as
in theorem 3.3) the Lagrange multiplier associated with the J** feasibility constraint in the

(P;) problem defined on link [ using 5*. Then, fors=1,...,V,and alll € £,:

%c:(p;) =2yl eyt

The proof of this result follows immediately from the fact that, for alll € £;, D; Lje
V!, is the optimal solution of the (P!) problem that can be defined on link ! using D* and
from corollary 3.1.

This corollary underlines the fact that the Lagrange multiplier vectors on different
links are intimately related and, as a consequence, that the priority groups to which a v.c.

belongs on different links are intimately related.
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4.3 A nearly optimal distributed asynchronous algorithm for the problem (NP,).

In this section we present a distributed asynchronous algorithm whose objective is to
solve approximately the problem (N P,). The assignment produced is in general not optimal.
However by choosing the parameters of the algorithm appropriately it can be brought as
close to optimality as desired.

One may immediately ask why distributed? Distributed algorithms typically require
more work than their centralized counterpart. However in distributed algorithms the work
can in general be apportioned intelligently among the processors and be carried out in
parallel, resulting in a faster convergence.

Another advantage of distributed algorithms is that they are often well-adapted to
respond to local perturbations. Typically the situation in a network is not static but
evolves as new v.c.’s are introduced or as old v.c.’s are deleted. Of course we do not
want the algorithm to solve from scratch a new (¥ P,) problem every time a v.c. is added
or deleted. Rather, it is much more efficient to only detect perturbations and just modify
slightly the controls accordingly. Distributed algorithms are especially suited in this context
because the controls are adjusted locally; i.e. where the perturbations are detected.

Another immediate question is why asynchronous? In a communication network the
nodes are physically separated from each other. For this reason coordinating an action
involving several nodes is costly both in terms of speed because of the time required for
setting up the action, and in terms of overhead because of the control messages which
must be communicated by the nodes and which use some transmission capacity that would
otherwise be available for transmitting data. In an asynchronous algorithm the nodes act
independently of each other, which avoids the above problems.

We will assume that the status of the network evolves very slowly as compared to the
speed of convergence of the algorithm. This assumption is called the quasi-static assump-
tion. It insures that the algorithm tracks well the evolution of the network, which must
be the case if the algorithm is to be of any use. It also allows us to analyze the algorithm
assuming a static environment, which is a major simplification. This assumption cannot

in general be guaranteed a priori as the speed of convergence is unknown. Typically, once
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an algorithm is designed, simulation studies should be conducted to establish how well the

assumption holds.

4.3.1 Description of the algorithm.

The computation centers are the links of the network. Each link, say {, has full control
over its local delays; i.e., the D!, ¢ € V¢,

Each link maintains an estimate of the end-to—end delay of its v.c.’s. The estimate of
the end-to—-end delay of v.c. 1, { € V!, maintained by link [ is called dyl. At all times and

for all I, i € V!, it is required that:
1D; - d)| < eq (1 - l) (4.7)
v L

where €4 > 0 is a parameter of the algorithm *. Enforcing equation (4.7) presuppose the
existence of a mechanism via which the dy] can be updated as the D! are updated. We will
describe such a mechanism later, in the discussion concerning the implementation of the
algorithm.

The operation of the algorithm is roughly as follows. Each link, say I, is responsible for
its D!, i € V!, which it updates occasionally. An update always involves exactly two v.c.’s.
Basically the update consists of reducing the delay of the v.c. with the highest marginal
delay cost per unit rate while increasing proportionately the delay of the other v.c., so as to
maintain strict feasibility. Namely if an update between v.c.’s § and J occurs on some link
I, D} is decreased if 2Cl(D;) > RL’,C;.(D,-) while D} is decreased if the inverse condition
holds.

An update between two v.c.’s on a link is only authorized when an associated update
condition is satisfied. However the links are capable, using their estimates of the end-to—end
delays, to locally detect when the update condition holds. Periodically the estimates of the

end-to—end delays are updated to reflect the evolution or the true end-to—end delays.

* The term 1—1/L in the preceeding equation is not required in the arguments developped
in chapter 4. It is included because it is required in Appendix C.4 for generalizing a result

presented in the chapter.

87



The condition for a delay update between v.c.’s 1 and 5 on link [, in the case where D!
is to be reduced, is:
1, Bay 1, o A,
—=C;(d." —eqg — =) - =—C'(d" —) > .
R,-C'(d‘ €4 Ri) E; ' ; teat R,-) d (4.8)
where A,, and 74 are strictly positive parameters of the algorithm *.

When equation (4.8) holds, the delays of v.c.’s { and j are updated as follows:

D} — D!_ﬁ

1 3 1 3 R‘. 49
: . A, (4.9)
DJ- — DJ-+R—J_

where A, is the largest variation satisfying A, € [0,A,] and such that the assignment
resulting from equations (4.9) is strictly feasible.

In the remainder of this discussion we refer to the updating of a delay assignment as
in equations (4.9) with A, > 0 simply as an update and we call equations (4.9) the update

rule.

Now we can define the algorithm, which has been called Alg_NP,_a, as follows. The

“a” in Alg NP, a stands for approximate and is justified by the fact that the algorithm

does not solve exactly (N P,) but only produces an approximate solution.

Alg_NP,_a: Find a link / and a pair of v.c.’s i, j € V! satisfying equation (4.8) and such
that a delay update can be performed between v.c.’s § and J on link [ and perform the delay

update.

This definition is purposely vague. In particular we do not impose any specific rule
regarding the choice of the link and pair of v.c.’s among the potential candidates.

An implicit restriction in the definition of Alg_NP,_a is that only one update can occur
at any given time. This restriction is not essential. Indeed it is not difficult to modify the
definition of Alg_NP,_a so as to avoid it. However this restriction allows us to simplify

considerably the notation, which is in fact the reason behind the particular formulation of

Alg_NP,_a used above.

* Actually, 74 = 0 is also possible. This case is treated in Appendix C.
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We conclude this section with an example illustrating the update rule.

Example 4.1: Let [ be a link of unit capacity supporting three v.c.’s whose initial assignment

is as follows:
R, =01 R;=0.1 Ry =0.2

z l l (4.10)
Di=12 DY=17 Di=19
Also let A,, = 0.02.
We go manually through an update between v.c.’s 1 and 2. First suppose that D! is

to be increased. Trying A, = A,,, we get:
Di=14 Di=15 D =19 (4.11)

It is easily checked that this assignment is strictly feasible so that it is indeed the assignment

that should result from the update.
Now suppose that starting again from the assignment (4.10) we want to reduce Di.

Consider the variation A,, = 8.88 x 10~2, for which we obtain:
Di=1111 Di=1788 D\=19 (4.12)
It is again easily checked that this assignment is strictly feasible. Note that in this case:
R\D} = TR (4.13)

Since D§ < D} < D} this means that v.c. 1 has full priority over v.c.’s 2 and 3. Consequently
it is impossible to further reduce D! while maintaining feasibility, so that A,, = 8.88 x 10—3
is indeed the largest feasible variation. Thus in this case the update should return the

assignment (4.12).

4.3.2 Convergence.

In the analysis of the algorithm we will often add a time dimension to the variables.
For example D}(k) will denote the delay of v.c. § on link { at time k. Also, for convenience,

we assume that the algorithm starts at time k = 0.
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We associate a time index, say k, with each update. By convention the value of the
variables immediately before the update is referred to as their value at time k—. At time k

it is assumed that the variables have taken their new value.

We make the following assumptions. It is not difficult to see that any sensible assign-

ment must satisfy them.
(A.4.1.1) There exist strictly positive constants K; and K, such that:

R;> K, foralli,i=1,...,V

pt - ZRiZKz foralll, I=1,...,L
iev!

(A4.1.2) For each link !, = 1,..., L, the initial asignment D}0), i € Vi, is

strictly feasible.

Let H; = {y |y >0, Ci(y) < 1, Ci(D; (0) + €4)}. I follows from assumptions
(A.4.1) and from the form of the cost functions that there exists K3 such that for all 1 and
Y, g € Ht':

|Ci(y) - Ci(@)| < Ksly - 4 (4.14)

Before presenting the main results of this section we introduce a simple technical lemma.

Lemma 4.1: Let (E, D) be a strictly feasible assignment such that for some v.c’s i, j
and link I, v.c. ¢ has full priority over v.c. J on link /. Assume also that assumption

(A.4.1.1) holds. Then there exists K, > 0 depending only on K, and K, such that, for all
A € [0, K], the assignment:

) A
D{=D}+—
R;
. A
i _ nl
J'—DJ'—E
D, =D} forallk#i, j

is strictly feasible.

The proof of this lemma is given in the section 2 of Appendix C.
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Our first result shows that Alg_NP,_a converges in finite time to a near—optimal solu-

tion.
Theorem 4.2: Let assumptions (A.4.1) hold. Then there exists a finite & £ such that the
sequence of assignments {1—)'(&:)}:’= o generated by the repeated application of Alg_ NP, a
satisfies:

1) Foreach l, I=1,...,L, D}(k), i€ Vis strictly feasible for all k, 0 < k < ky.

2) S(D(k)) is decreasing in k for all k, 0 < k < kj.

3) The algorithm stops at time k f- Moreover the assignment at time k £ is such that

for any link ! and pair of v.c.’s ¢, j € V!, if:

O k) - ea - 52 - O k) + cat —) > 4

then v.c. 1 has full priority over v.c. 5 on all their common links.

Proof: Condition (1) is obvious from the assumption that the initial assignment is strictly
feasible and from the fact that each iteration of Alg_N P, a maintains strict feasibility.

To prove condition (2) consider an arbitrary update, say between v.c.’s § and J on link
[. Assume that the update occurs at time k and that D! decreases. Then we must have:

Ec'(azf‘l(k )—ed——)— c'(df”(k ) +eq +—)>7¢ (4.15)

Using equation (4.7) and the fact that the functions C;(-) and C’(-) are non—decreasing this
implies that for all A € [0,4,,];

1

EC'(D (k™) - —") C' (Dj(k™) + —) > 14 (4.16)
We can also write:
-A,
C(D(R) ~ (D) = [ D) + ) (4.17)
Using the transformation z = — R;y, this gives:
an 1
Ci(Di(k)) — Ci(Dy(k™)) = —/0 —C’(D (k™) - —) dz (4.18)
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Similarly we obtain for 3:
- An 1 , _ z
Ci(Di) - C;(Di:7) = [ Leup,ty+ Dy ()
0 3 3

Adding equations (4.18) and (4.19), and using equation (4.16), we get:
S(D(k)) - S(D(k™)) < —vaAn (4.20)

which proves the second condition.

As S(-) is bounded below equation (4.20) also implies that the sum of all the A, is
finite. Accordingly this means from equations (4.9) that all the D! converge.

Let k; be a time such that for alli,i=1,...,V,l € £; and k > ky;

| Di(k) = Di(ky)| < % min(A,, K,) (4.21)

It is easy to see from equations (4.9) that in any update ii;volving a v.c., say ¢, which
does not result in one v.c. acquiring full priority over the other, the variation of i’s delay is
exactly A, /R;. In view of this fact it follows from equation (4.21) that any update occuring
after k; must result in one v.c. acquiring full priority over the other.

Suppose that the updates never stop. Then there must exist v.c.’s { and J and a link
[ € £iN L; such that at least two updates occur between v.c. § and j on link ! after ki,
and such that in each of these updates v.c. ¢ acquires full priority over v.c. 5 on the link.
It follows from this fact that there must occur at least one update after k; which results in
t losing its full priority over j on link .

There is only one way via which ¢ can lose its full priority over j on link /. It must be
that a v.c. over which ¢ does not have full priority, say p (we may have p = i), and a v.c.
which has not full priority over j, say ¢ (we may have ¢ = j), perform an update together
and that, as a result, D:, increases. This condition implies that p has initially full priority
over ¢ on the link. Thus as D:, increases we may conclude using lemma 4.1 that Df, can
be updated by at least RL' min(A,, K,). However this violates equation (4.21), and thus
produces the required contradiction.

This shows that the algorithm terminates after a finite time, which is called k £ in the

theorem. It follows immediately from this fact that the last condition given in the theorem
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must hold. Indeed if this condition does not hold updates will continue to occur after ky,
which is impossible.

Q.E.D.

Intuitively it is not difficult to see that the assignment at time kj is close to optimality.

Indeed suppose that the assignment is such that for some link ! and v.c.’s § ,JE€E VW ve. 4

does not have full priority over v.c. j on the link. Then we must have:

1 A, 1 A,
J 7

from which it can easily be concluded using equation (4.14) that:

A, 2K3

—-C'(D) C'(D )<'7d+ 2—%(544- R,)

(Ed + —) (4.23)

Suppose also that on some link [ € £; N L; (I is not necessary equal to ! ), 7 does not

have full priority over . Then similarly as above, we get:

2K A.. 2K A,
—C'( D;) - ‘C.‘(D.-) <va+ T_"’(ed + )+ T_“(ed +22) (4.24)
#) 7

Thus whenever two v.c.’s { and j are such that neither v.c. has full priority over the

other on all their common links we have:

I—C'(D ) - c' D )’ < Ks(va+ea+A,) (4.25)

where K5 is some constant depending only on K3 and on the rate assignment. It follows
from this equation that by choosing the parameters v4, €4 and A, appropriately we can
insure that the marginal delay costs per unit rate of v.c.’s of comparable priority are as
close as desired. This is very reminiscent of an important property of the optimal solutions
of (NP,), namely that in any optimal solution to (N Ps) the marginal delay cost per unit
rate of v.c.’s of comparable priority are identical. Basically equation (4.25) insures that
this condition is approximately satisfied. Thus the solution generated by the algorithm is in
some sense “close” to an optimal solution. The purpose of the next theorem is to quantify

more precisely what this “close” means.

Theorem 4.3: For a given v > 0, let D be an assignment satisfying:
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1) Forl=1,...,L, D}, i€ P! is strictly feasible.
2) The set of delays {D| S(D) S(ﬁ)} is bounded *.
3) Forall v.c.’s 4 and 7, if the equation;

1 _,, - ) QS

2 DY - =—CHD;) =

R,-C‘(D') 3 J(D..,) >

holds, v.c. i has full priority over v.c. 7 on all their common links.

Then 5 also satisfies:

s(D) - 5* < Kev

where S* it the optimal value of the problem and Kg is a constant depending only on the

set defined in condition (2).

This is proven in the section 3 of Appendix C.

Consider an assignment, say 15, produced by Alg_N P,.a. Theorem 4.2 guarantees that
Dis strictly feasible. Also in view of the form of the cost functions, assumptions (A.4.1),
and of the fact that Alg NP,.a is non—increasing, it is clear that D satisfies the second

condition of theorem 4.3. Finally, setting:

v = Ks(va+ Bn +54) (4.26)

the third condition is also satisfied. Consequently it follows from theorem 4.3 that 5 also

satisfies:

(D) - §* < KsKa(va+ Bn+€) (4.27)

It is obvious from this equation that by choosing 74, A, and g4 small enough assignments
as close to optimality as desired can be generated.

Sometimes the term KsKg may be very large. In these cases it may be unrealistic to
control the accurary of the solution via equation (4.27) as it could force unacceptably small
values for 44, A,and 4. Ina practical situation some experimentation should be carried

out to determine appropriate values for the parameters. Also it is possible to reduce the

* Note that the bound can be made relatively tight by using the fact that the delays are

strictly feasible.
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magnitude of the term K5 Kg by using a more refined argument in the proof of theorem 4.3.

We leave this possibility to the reader.

4.3.3 Implementation.

In the description and analysis of Alg_NP,_a we have implicitly assumed the existence
of a mechanism for updating the end-to—end delay estimates. In particular we have assumed
that equation (4.7) was maintained at all times. Our purpose in this section is to construct
an update mechanism via which equation (4.7) can be enforced.

Define:
d: Reference delay of v.c. i on link /.

Ad!: Variation of the current delay of v.c. ¢ on link ! from its reference; i.e.,
Ad} = D! - d! (4.28)

duy]: Estimate maintained by link ! of the overall delay of v.c. 1 on the links on #’s path
upstream to .

ddy]: Estimate maintained by link { of the overall delay of v.c. 1 on the links on i’s path
downstream to [.

For any link | € £; except the first link on ’s path we define us! as the link on i’s path
immediately upstream to link /, and U sﬁ as the set of links on ¢’s path upstream to link /.
Similarly for any link ! € £; except the last link on i’s path we define ds:- as the link on ¢’s
path immediately downstream to link /, and Ds! as the set of links on i’s path downstream

to link !.

At all times it is required that:

|ad| < =2

— 1=1,... i .29
<3 foralli=1,...,V, le L (4.29)

Further, the estimates of the end—to—end delays are constructed using the equation:
! = aul" + D} 4 dg" (4.30)
Note that equations (4.29) and (4.30) can be enforced locally by the links.
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To control the updating of the dt, duyl and ddyl a message is associated with each v.c.
The message associated with v.c. { is called update_i. It is responsible for updating the d!,
dull and dd!! for all I € £;.

The updatei message cycles along i’s path, going from H (i) to D(7) and then back
to H(i), etc. As it travels downward from H(:) to D(), the updates message updates
the d! and duy]. The update of a d} consists of setting it equal to the current value of
D! while the update of a duy] consists of setting it equal to Elevaf. df. Clearly, in view
of equation (4.29), Z,GU,: d} is an estimate of i’s delay on the links upstream to ! whose
accuracy can be controlled via the parameter £;. The update_tf message contains a register,
called update_s_est, used to keep track of the current value of Yier o d:. As the update_i
message travels downward along #’s path the reference delay of v.c.  on the links visited
by the message are summed into update_i_est, so that update_i_est always reflects the total
delay on the links upstream to the link at which the message currently is. An identical
mechanism is used when the update{ message travels from D(z) to H(i) except that in
this case, instead of updating the du?], the ddy] are updated. The update mechanism is
illustrated in Figure 4.1.

Using this update mechanism we can formulate a version of Alg_NP,_a that can be

readily implemented.
Alg_ NP, a:

Update of estimates:

Upon reception of update_s from link ust, link / does:
1) d} — D!.
2) duE” «— update._s_est.
3) If link ! is the last link on &’s path then set update_i_est «~ 0 and send update.s

to link ust, otherwise set update_i_est «— updatef_est + d% and send update.i to

link dsf .

Upon reception of update_t from link ds!, link { does:
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& D!
du! «— update.i_est

updatef_est « update_est+ d'

T D m

update_i_est «— Q —,‘/ "”1\
. \
H(x) ¢ O— ———— ~ CPD(i)
\F\ - /” update_i_est + (
~—m—t—— < &
dt — D!

dd: — updatei_est

update_i_est

t

update._i_est + d'

Figure 4.1: Update of the estimates maintained for v.c. 1.

1) d} — DL
2) dd?] «— update_1_est.
3) If link [ is the first link on i’s path then set update_i_est — O and send update_:

to link ds, otherwise set update i_est «— update_i_est -+ d! and send update_: to

link us!.
Delay update:

For all I, I = 1,...,L, and 1, § € V!, whenever the update condition (4.8) holds

update D} and D! as in equations (4.9), and where A, is such that equation (4.29) is

maintained.

Let tg > 0 be such that for all, s =1,...,V, the update_s message has visited all the links
l € L; at least twice in the interval [0,20[. Assume that the update_s message 1s at link [ at

time t > to and that it was received from link usf. It is easy to see that:

dull= S dl foralllevsiul (4.31)
l.GUaE
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[ < &4 (1 - %) for all [ € Ds! (4.32)

4
icUst
M _ | « Sdfq_ 1 [ .
|adf tzrd, <Z2(1-3) foranier, (4.33)
€Ds;

and, obviously, a completely analogous set of equations is obtained when we suppose that
the message is received from ds!.

It follows from equations (4.29), (4.30) and (4.31)-(4.35) that for all ¢t > to and all ¢
and ! :

T U] _ l
|D; —d’| < 54(1 L) (4.34)

as desired.

To guarantee the convergence of the version of Alg_NP,_a that was just described we

need the following assumption.

(A.4.2) For + = 1,...,V, the update.i message cycles infinitely often
along t’s path.

We will also impose that:

- €4
L —_—
Bn < 16 L(max; u')

(4.35)

There is a small difference between the manner in which a delay update was handled in
the version of Alg_N P,_a presented in section 4.3.1 and the manner in which it is handled in
the version of Alg_N P,_a presented in this section. In section 4.3.1 we assumed that unless
one v.c. was acquiring full priority over the other A, could always be increased up to A,,.
This implicitly assumed the existence of some ideal mechanism for updating instantaneously
the dy], so that equation (4.7) would always hold. In the version of Alg_N P,_a presented in
this section insuring that equation (4.7) always holds requires that the additional condition
(4.29) be imposed. This condition may sometimes force A, to be smaller than A,,, even if
the update does not result in one v.c. acquiring full priority over the other.

It is, however, not difficult to see that the convergence results of the last section are still

valid for the version of Alg_N P, a presented in this section. Indeed, because of equation

(4.35), equation (4.29) makes a difference only when the delay of one of the v.c.’s involved
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in the update is more than €4/16L(max; u*) away from its reference value. However if
this is the case the v.c. must have participated recently (i.e., since the last passage of its
update message) to updates, and these updates must have caused the objective function
to be reduced by at least v4e4/16L(max; ') (c.f. equation (4.20)). Clearly since the
objective function is bounded below this must eventually stop. At this point the true delays
will always be close to their reference value, so that the additional condition will never
be binding. Accordingly the situation will be exactly as in the preceeding section, which
implies that the results presented there hold for the version of Alg_NP,_a presented in this
section.

Hereafter, we refer to the version of Alg_NP,.a defined in this section simply as
Alg_NP,_a. When we will want to refer to the version of Alg_N P,_a defined in section 4.3.1,
we shall explicitly indicate it.

4.3.4 Comments on Alg NP,_a.

A, should in general be selected as large as possible. This in view of equation (4.35)
implies that in most cases A,, = €a/ 16L(fnax, p'). The reason is that increasing A,, allows
the links to make bigger, more profitable updates.

74 controls the profitability of the updates. The larger the value of ~4, the larger the
progress that can be guaranteed per update. This implies that v4 influences the speed of
convergence of the algorithm. Indeed it is not difficult to see that increasing <4 increases
the speed of convergence. This is because increasing 74 prevents many marginally profitable
updates to occur. Otherwise these updates would take some of the delay variations allowed
to the links, creating the possibility that a more profitable update be missed because one
of the delay variation would already be as large as permitted.

On the other hand, it is clear from equation (4.27) that v4 impacts the quality of the
solution produced. As the assignments approach optimality the profitability of the updates
decreases. Thus a large 44 will cause the algorithm to stop sooner, in general further away
from optimality, than if a smaller value had been used.

As already mentioned the algorithm also works when 74 = 0. However the proof of

theorem 4.2 does not hold when 44 = 0 because it cannot be concluded from equation (4.20)
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that the delays converge. Essentially the argument in this case relies on the fact that the
quantity:

1,
max 2-C!(Di() (4.36)

is non—increasing. Indeed this is obvious since whenever a v.c. achieves the maximum, an
update involving it must result in a reduction of its delay. If the quantity in (4.36) is non-
increasing it will eventually converge somewhere. It can be shown that this fact guarantees
the convergence of the delay of at least one v.c. In fact, strengthening the argument, we
can show that one of the v.c.’s will eventually stop participaticg to the updates. At this
point we may forget this v.c. and consider a smaller network containing only the V — 1
remaining v.c.’s. Repeating the same argument one of the v.c.’s in this smaller network
must eventually stop participating to the updates. Thus, generalizing the argument, we
will be able to show that all the delays converge. Then we can continue using essentially
the same arguments as those developped in the chapter. The proof that the algorithm works
when 44 = 0 is given in the section 4 of Appendix C.

€4 is probably the most important parameter of the algorithm. Distributed algorithms
in which the updates are based on local information on the cost functions, often most
importantly on their first derivative, are frequent (an excellent example is the routing
problem, see [Ga77] or [Go80]). In general, as the cost functions depend on the overall
situation, the links are only allowed to make small updates. Otherwise, if large updates
were permitted, the local estimates of the cost functions maintained by the links would
become very inaccurate. As a consequence it would not be possible to insure that the
updates are actually profitable. €4 provides a handle for controlling precisely the accuracy
of the estimates of the cost functions. In fact it is obvious to see that the basic idea behind
Alg_NP,_a consists of exploiting this built—in accuracy. €4 also impacts strongly the speed
of convergence of Alg_NP,_a because it directly affects the flexibility given to the links.
This is important from a practical point of view because it essentially allows us to trade-off
accuracy for speed.

It is worth noting that the communication overhead imposed by Alg_ NP, a is very

small. Only one message per v.c. is required. Moreover the length of the messages is small
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as they carry only two numbers. In fact, in view of these facts, piggybacking the update
messages on regular messages seems to be a particularly attractive solution. This would
eliminate the need for a special update message and reduce the processing effort associated
with the scheduling of the transmissions.

In a delay update most of the computational burden arises in determining A,, in equa-
tions (4.9). A little thought reveals that the amount of computation required by a link,
say I, to determine A,, is in the worst case proportional to V. As an update message can
at most cause the link to iterate V! times through equations (4.9) the overall amount of
computation, per update message, is O((V‘)z). This is very reasonable. Moreover it is an
extremely unlikely worst case. It is our belief that in general the amount of computation is
much less; approximately proportional to V!,

It is not difficult to generalize Alg_N P,_a so as to guarantee convergence to an optimal
assignment. For example, one possibility consists of systematically reducing the parameters
Yd; €4 and A, when no further update can be made with the current set of parameters, so
that these parameters all eventually vanish. Although it is clear that algorithms of this sort
converge to an optimal assignment we believe that these algorithms would perform poorly
because to their slow rate of convergence.

The purpose of controlling the accuracy of the delay estimates in Alg_ NP, a is to
insure that the links have accurate estimates of the marginal delay cost of their v.c.’s. This
suggests that, instead of controlling the accuracy of the end-to—end delay estimates, we
could directly control the accuracy of the marginal delay cost of the v.c.’s*. We believe that
this has several advantages. For example it allows a link to make large variations to the
delay of a v.c. when the marginal delay cost of the v.c. does not vary rapidly, but restricts
the magnitude of the variations as the sensitivity increases. This is obviously desirable.
Another advantage is that it would allow us to better control how far from optimality the

assignment produced by the algorithm could be.

* This possibility was brought to my attention by Prof. Tsitsiklis.
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4.4 A distributed algorithm solving the problem (NPF,).

In this section we develop a distributed syschronous algorithm which solves exactly
the problem (N P,). The main idea of the algorithm is to use the partial derivatives of the
cost function to modulate the variation made to the current assignment. This is a very
well-known idea in the literature, especially in the context of centralized algorithms. We
refer the reader to [Av76,Be83] and [Lu84] for extensive discussions on this topic.

Another important idea of the algorithm is to only allow the links to make small
variations to their current delay assignment. The motivation is to insure that the estimates
of the first derivative of the cost functions maintained locally by the links are accurate,
so that a reduction of the objective function can be guaranteed when the links locally
update their delay assignment. Making small variations is typical in algorithms in which
the magnitude of the va.ria.tic;h; depends on the partial derivatives of the cost functions. We
refer the reader to [Gal77,Go80| and [Ts84] for examples of algorithms of this sort.

It is our belief that the algorithm presented in this section is representative of a broad
class. It is, however, not difficult to find improvements to this algorithm. One of the main
concerns in the construction of the algorithm was to keep the proof of convergence and the
notation relatively simple. For this reason the algorithm has been built with a minimum of
complexity. We will comment at the end of this section on the limitations of the algorithm

and on several possibilities for improving it.

4.4.1 Description of the algorithm.

We first state the algorithm and then follow with a discussion motivating the ideas

behind it.

Let ¢ and j be two v.c’s on some link I. For a given delay assignment D, define:

2-CUD:) - %Ci-(Dj) (4.37)

AC; =4

Note that although AC;; depends on D this dependency has been dropped in the notation.

We will explicitly indicate the dependency of AC;; on D only in the cases in which a
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confusion is possible. In general, however, the delay assignment on which AC;; depends

will be obvious from the context.

Let 7}, be the maximum value that r can take in the interval [0,7] such that the

assignment:
D!« D! - éAC,-,-
D' — D'+ L AcC.. (4.38)
J 7 R. it
3

is strictly feasible. Note that T!J- depends on D but, similarly as for AC;;, we will in general
drop this dependency in the notation. 7 is a strictly positive parameter of the algorithm
which will be discussed in more detail later.

In this discussion we refer to the updating of a delay assignment as in equations (4.38)
simply as an update and we call the equations (4.38) the update rule.

The algorithm has been called Alg_NP,_e, where the “e” stands for “exact”. It is

defined as follows.

Alg NP, e: Foralll,l=1,...,L, do:

1) Find a pair of v.c.’s §, j € V!, i # 5, satisfying:
i 2 __ l 2
r;(AC;)" = Jmax, 7,q (AC,,) (4.39)

2) Using r = r};, update D! and D}, as in equations (4.38).
3) Next I.

The update rule of Alg_N P, e is very similar to the update rule of Alg_N P, _a. However
there is one major difference. The fixed parameter A, used in Alg_NP,.a is replaced by
AC;; in the update rule of Alg_N P,_e. This has two main advantages. First the update rule
of Alg_NP,_e always causes the assignment to be modified in a way that reduces the total
cost (this is true only if 7 is sufficiently small, we will make this statement more rigorous
later). For example if 7:C!(D;) is larger than RL’,C_;-(DJ-) it is easy to see that decreasing
D! and correspondingly increasing D;- (so as to maintain strict feasibility) reduces the total

cost. This is precisely what the update rule of Alg_N P, e does in this case.
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The second advantage of using AC;; is that it provides a mean of automatically scaling
down the magnitude of the variations as the assignment approaches optimality. Indeed if
iﬁ‘:C‘f(D.-) ~ RL,_C;(D,-) the assignment of v.c.’s f and j is, as far as ¢ and 7 alone are
concerned, nearly optimal. In this case the update should not result in large variations of
the delay of v.c.’s ¢ and j, which is automatically insured by the fact that AC;; is then very
small.

The main property of the update rule of Alg_NP,_e is that when this rule is used it
is possible to lower bound away from zero the decrease of the objective function resulting
from a given update. Indeed it may be proven that if an update occurs between v.c.’s { and
J on link I, the objective function decreases by at least %r'-'j(AC,-,-)z. This result is the main
motivation behind Alg NP, e. If fact the design of Alg_NP,_e was expressly based on the
exploitation of this result.

Consider an arbitrary link ! and a pair of v.c.’s ¢ »J € V. An immediate consequence of
the preceeding paragraph is that 1',51-(AC,-,-)2 must converge to zero as Alg_N P, _e is repeated.
Accordingly it follows that if AC;; does not converge to zero r'-'j must converge to zero and,
conversely, if rfj does not converge to zero AC;; must converge to zero. These facts basically
guarantee that the assignments generated by Alg_NP,_e become increasingly close to being
optimal as the algorithm is repeated. Indeed in any optimal assignment whenever two v.c.’s,
say ¢ and j, have different marginal costs per unit rate, the v.c. with the highest marginal
cost per unit rate must have full priority over the other v.c. on all their common links. In
other words this means that in any optimal solution if AC;; # 0 for some v.c.’s ¢ and j,
‘then r,-'J- = 0 for all the links l € £; N L;. Clearly the assignments generated by Alg NP, e
become increasingly close to satisfying this condition as the algorithm is repeated. Similarly
if 1'.-’1- # 0 for some v.c.’s ¢,  and link ! in an optimal assignment it must be that v.c.’s ¢ and
7 have the same marginal delay cost per unit rate. Accordingly we then have AC;; = 0.
Clearly the assignments generated by Alg_N P, _e also become increasingly close to satisfying

this condition as the algorithm is repeated.
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4.4.2 Convergence.

We again assume that assumptions (A.4.1) hold. We have the following result.

Theorem 4.4: For each D(0) there exists 7 > 0 (depending only on 5(0)) such that for
this 7 the sequence of assignments {ﬁ(k)}:”:o generated by the repeated application of
Alg_N P, _e satisfies:
1) {D!(k), i € V'} is strictly feasible, for all I = 1,...,L,and k > 0.
2)
Jim. S(D(k)) = s*

where S* is the optimal value of (NP,).

This is proven in the section 5 of Appendix C.

4.4.3 Implementation.

There are two main problems associated with the implementation of Alg_NP,_e. The
first problem is the synchronization required for performing an update of Alg_.NP, e in
a distributed environment. Indeed the links must know the end-to—end delay of their
v.c.’s to determine the AC;;. In a distributed environment this means that before an
iteration of Alg_N P, e can be performed some update mechanism insuring that all the links
know the end-to—end delay of their v.c.’s must first be executed. Also, as an iteration of
Alg_N P,_e may potentially result in an update on every link, the distributed implementation
of Alg_NP,_e requires some sort of supervision mechanism for insuring that all the links
participate when an iteration of Alg_NP,_e is initiated. It is not difficult to design such
mechanisms. However as all the links are involved these mechanisms may well impose a
substantial overhead on the algorithm, especially in terms of time. In fact the essence of the
problem is that Alg_ NP, e is a synchronous algorithm. Implementing it in a distributed
environment requires some mechanism for mimicking the synchronous operation, and whose
overhead can be significant.

We believe that in practice it is not necessary nor desirable to fully respect the syn-
chronization required by Alg_N P, e in the implementation. In particular the links should

be allowed to update their delay assignment independently from each other and should not
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be required to have a perfect knowledge of the end-to—end delay of their v.c.’s for doihg
so. Of course convergence is not guaranteed in this context. However we believe that if the
estimates of the end-to—end delays maintained by the links are updated often as compared
to the frequency at which updates of the assignment are made the lack of synchronization
should not result in a significant difference in the quality of the assignment produced. In
fact relaxing the synchronization requirement of Alg_NP,_e in a quasi-static environment
is likely to improve the performance because the links would then be able to respond much
more quickly to local perturbations.

The implementation of Alg_N P, e becomes very simple when the synchronization re-
quirement is relaxed. Indeed we then only need a simple asynchronous mechanism for
updating the estimates of the end-to—end delays maintained by the links. In this context
an obvious possibility is to use the same scheme as in Alg NP, a; namely to dedicate a
special message to each v.c. responsible for updating the estimates of the end-to—end delay
of the v.c.

One more subtle problem of Alg_NP,_e results from the fact that 7 depends on the
‘initial assignment. In a quasi-static environment the goal of an algorithm is not to solve
one problem starting from some given initial assignment but it is rather to constantly adjust
the assignment so as to solve (or, more accurately, nearly solve) the current problem, which
may often change as new v.c.’s are established or as old ones are deleted. In this context
enforcing the conditions on 7 under which convergence can be guaranteed may be difficult.
We believe that in practice one should not try to enforce these conditions at all times.

However 7 should be sufficiently small to guarantee convergence under most circumstances.

4.4.4 Comments on Alg_NP,_e.

In one iteration of Alg_NP, e a link, say I, updates only the delays of the pair of
v.c.’s for which r};(AC;;)? is maximum. An obvious improvement would be to let the links
update the delay of their other v.c.’s in a similar manner in each iteration. The proof of

convergence can easily be extended to this case. It only requires a simple modification to

lemma C.2.
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Another possible improvement would be to simplify the work done by the links in each
iteration. As most of the computational burden results from finding the pair of v.c.’s with
the maximum r},-(AC,-,-)z, one possibility would be to let the links arbitrarily select one v.c.
and only carry the maximization over the remaining v.c., or even to let the links choose
arbitrarily both v.c.’s. However we have not been able to prove the convergence of these
variations of Alg_N P, e.

In each iteration of Alg_NP,_e a link, say [, must evaluate 74:(AC;;)? for all the pairs
of v.c.’s i, j € V'. Asthere are VI(Vi— 1)/2 pairs of v.c’s on link I, and as the determination
of a 7{;(AC;;)? requires O((V*)?) computations, it follows that the amount of computation
performed by link I, per iteration of Alg_NP,_e, is O ((V')‘) . This, however, is an extremely
unlikely case. In most circumpstances the amount of computations should be much less;

approximately O((V*)?) or O((V*)?) depending on 7.
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4.5 Comments.

Essentially the difference between Alg_NP,_a and Alg_N P, e is a matter of philosophy.
Alg_NP,_a is an approximate algorithm in the sense that it cannot in general produce an
optimal assignment. However the quality of the assignment produced by the algorithm is
fully controllable and the algorithm is designed for working in a completely uncoordinated
manner. On the other hand, provided that the iterations are synchronized and that the
initial assignment is known, Alg_NP,_e is guaranteed to produce an optimal solution. In
practice, however, synchronizing the updates and keeping track of an initial assignment is i
general too costly to be justifiable. In this context Alg_N P, _e also becomes an approximate
algorithm. In fact controlling the accuracy in an uncoordinated and evolving environment
is the major reason that has lead us to Alg NP, a.

We believe that the ideas behind Alg_NP,_a are not specific to our problem but that
they can be used in a more general context. Indeed the fundamental feature of (NP,)
on which Alg_NP,a is based is that (NP,) fits the framework of theorem 4.1. When a
problem fits this framework the feasible set can be decomposed into subsets which, except
for their impact on the objective function, are completely independent. Then associating
one subset with each computation center the problem becomes that of insuring that the
update directions locally perceived as good by the computation centers are actually good.
This is basically what Alg_NP,_a does*.

Consider the following problem.

min $(C1(Dy),...,Cv(Dv))
(NP,) ;
D feasible

Clearly this is the counterpart of problem (N P,) in the user-oriented formulation. Although
it will not be done here, it can be proven that with a trivial modification to their respective
update condition (c.f. theorem 3.4), Alg_NP, a and Alg_NP,_e have the same properties

in the user—oriented formulation as in the system—oriented formulation.

* The possibility of generalizing Alg_NP,_a was suggested by Prof. Humblet.
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Finally it is also worth mentioning that all the algorithms presented in this chapter,
including the generalization to the user—oriented formulation, have a straightforward equiv-

alent in the context in which only non-preemptive queuing is allowed.
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5 An Integrated Approach to Rate and Delay Management.

At the beginning of this thesis we have mentioned the fact that the vast majority of
the flow control schemes do not consider the interactions between rate and delay in the
determination of the rate assignment. Indeed apart from the flow control schemes based
on the notion of power we do not know of any end-to—end flow control scheme in which
the impact of the rate on the delay is considered in the selection of the rate assignment.
In fact the motivation of the delay assignment problem studied in chapter 4 is to partially
compensate this weakness of most flow control schemes by fitting as well as possible the
delays to the rates. However, a posteriori adjusting the delays to the rates can only be a
partial remedy. Indeed the tight coupling between rate and delay may force in all cases a
poor delay assignment when not enough attention is paid to the interactions between rate
and delay in the selection of the rate a.ssignmént. In this chapter we present a means for
overcoming this problem. More specifically we develop a formulation of the flow control
problem in which the interactions between rate and delay are fully considered. In fact
rate and delay are equally important factors in the formulation. They are determined
simultaneously so as to pfoduce the best overall assignment.

We follow an approach similar to that of chapter 4. In the first section we define
precisely the problem. Then in section 2 a set of optimality conditions for the problem is
derived. In section 3 we exploit the optimality conditions for constructing a distributed algo-
rithm solving the problem. Finally in section 4 some comments on possible generalizations

and improvements are made.
5.1 Problem formulation.

Forall4,i =1,...,V, let N; be the average number of packets (a.n.o.p.) of v.c. ¢
present in the network. By abuse of language we will often say that N; is the a.n.o.p. of
v.c. ¢ “stored” in the network. Similarly for all ,1=1,...,V and [ € L;, let N} be the
a.n.0.p. of v.c. 1 stored on link I. Let N be the vector whose components are the N}, for
alls,¢=1,...,V, and | € £;. Also for all I,I=1,...,L, let N! be the vector containing
the N} for all i € V.
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Clearly for allt,1=1,...,V:

N;=>_ N (5.1)

lel;

Also using the well-known Little’s result we have for all¢,1=1,...,V,and [ € £;:
N} = R; D} (5.2)

We straightforwardly extend the definition of weak and strict feasibility as follows. An

assignment (&, N) is weakly feasible on link [ if:
R; >0 forallie V!
Z R < 4t (5.3)

et
and if for some ordering w' on link [ valid for the assignment:

> N> Bk, R) forallk=1,...,V} (5.4)

plwi<k

(R, N) is strictly feasible on link { if, in addition to being weakly feasible, it also satisfies:
V(

> N, =BV}, &, R) (5.5)

p=1
Finally (E, N ) is respectively weakly feasible or strictly feasible if it is weakly feasible or
strictly feasible on all links.
Let (R, N) be a given assignment and, for / = 1,..., L, let & be an ordering on link [
valid for this assignment. For all/, [ =1,..., L, we define:
BY(i, %", R) = u 1<igV? (5.6)

(“l - Ep|w;5.' Rp)z

It is not difficult to see that for alll, I =1,...,L:

aiRiB'(i,tU‘,R') = BY(i,w*,R) forallg, 1<q<i (5.7)

From this equation we see that BY(k, ', R') represents the variation per unit rate (in the

limit of a small rate variation) of the right hand side of the k** feasibility constraint on link

[ as the rate of one of the v.c.’s involved in the constraint is varied.
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As in the preceeding chapters a cost function G;(,) is associated with each v.c. 1,
1=1,...,V. However the cost function of 2 v.c. now depends on two parameters: the rate
and the ;.n.o.p. of the v.c. Indeed G;(R;, N;) quantifies the dissatisfaction of v.c. ¢ when
its rate is R; and its a.n.o.p. is N;. Using Little’s result the cost function of a v.c. can also

be expressed as a function of its rate and delay. Namely;
Gi(Ri)Nt') = Gi(Rl') RlDt) (5'8)
We make the following assumptions.

(A.5.1) For all i, 1 = 1,...,V, Gi(-,+) is a convex, twice continu-
ously differentiable function. Also for every fixed R; > 0,
G;(R;, R;D;) is a strictly convex and non—decreasing function
of D; over the interval [0, oo[. Moreover for every fixed N; > 0,

G;(R;, N;) is a non-increasing function of R; and satisfies:
RI.ITO G.‘(Rg,N,') =0 (5.9)

The motivation behind the assumptions on G;(R;, R;D;) for fixed R; > 0 is to insure
that the cost function fits the framework of the previous chapters. Indeed these assumptions
guarantee that the function G;(R;, R; D;) for fixed R; is exactly as the function C;(D;) used
in the preceeding chapters in the system—oriented approach.

The assumption that G;(R;, N;) for fixed N; is a non-increasing function of R; is
not restrictive. Indeed, for fixed N;, increasing R; implies that D; decreases. Clearly the
dissatisfaction of v.c. 1 cannot increase as its rate is increased and as its delay is reduced.
The second assumption on G;(R;, N;) for fixed N;, namely equation (5.9), is slightly more
restrictive. It is made to insure that no user can be shut off from the network.

One may wonder why we use the a.n.o.p. instead of the delay in the cost functions.
At the first glance using the delay seems to be more consistent with the approach taken in
the previous chapters. The reason is that the set of feasible rates and delays is not convex.
The reader is referred to p. 40 for an explanation of this fact. However the set of weakly

feasible rates and a.n.o.p.’s is convex. This fact is the subject of the following lemma.
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Lemma 5.1: For each [, [ = 1,..., L, the set of weakly feasible rate and a.n.o.p. assign-

ments on link [ is convex.

This is proven in the section 1 of Appendix D.
Our approach to the flow control problem is based on the following problem, which will
be referred to as (FC,).
min S(R, N)
(FC,) ..
(R, N) feasible
where:

S(R,N)= iG.-(R.v, N;) (5.10)

Clearly this problem is the generalization of problem (N P,) to the case in which the rates
are not fixed.

As in chapter 4 we make approximation (Ap.4.1) in order to obtain a simple charac-
terization of the feasible set. Under this approximation, (FC,) can be more conveniently
written as: Lo

min S(&, N)
(5.11)
{Rs, Nl, i€ V! feasible} I=1,...,L
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5.2 Optimality Conditions.

In this section we first give a set of necessary and sufficient conditions that any optimal
solution of (FC,) must satisfy. These conditions are stated in the theorem presented below.
We follow with a discussion motivating the intuition behind these conditions. We believe
this discussion will provide an useful insight in the algorithm to be presented in the next

section.

Theorem 5.1: (R"', N *) is an optimal solution of (FC,) if and only if the following condi-
tions are satisfied.
1) (R*,N*) is strictly feasible.
2) D* is an optimal solution of the (IVP,) problem obtained from (FC,) by setting B =
R*.
3) fori=1,...,V;

a " * —~{ D= a - *
ﬁGi(Ri !Ni ) == z {B“(wf,w‘,R )BWG‘(R' :Ni )
leL;

-l D —~l D a » -
+ > (B“(w:-,w‘,R)—B“(w;-—l,w’,R))-C,WGJ-(RJ-,N_.,-)}

lent ]
le’.>w|.

where, for [ =1,..., L, & is an ordering on link [ valid for the assignment (R"", N ).

This theorem is proven in the section 2 of Appendix D.

Since by definition any solution of (FC,) must be strictly feasible it is clear that
condition (1) must hold. Also, if (E*, N*) is an optimal assignment, any other strictly
feasible assignment having the rate assignment RB* cannot have a lower objective function
value than (R", N *). The second condition follows immediately from this fact.

Essentially condition (3) states that at optimality the marginal rate cost of a v.c. must
equal the marginal cost for adjusting the a.n.o.p. assignment to the rate of the v.c. Clearly,
if some v.c. does not satisfies this condition, then we can adjust the rate of the v.c. and

the a.n.o.p. assignment so as to reduce the objective function value. This is impossible if

the assignment is optimal.
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The equation in condition (3) provides a considerable insight into the rate versus delay
trade—off. We now go through an example which we hope will help in understanding some
of the implications of this equation.

Let (ﬁ, N ) be a given strictly feasible assignment and assume that the a.n.o.p. assign-
ment is optimal for the rate assignment (namely, (R, N) satisfies the first two conditions of
the theorem). Also, for [ = 1,...,L, let @' be an ordering on link / valid for this assign-
ment. Our aim is to evaluate the net cost for increasing the rate of a v.c., assuming that
the assignment is adjusted in the cheapest feasible way that maintains strict feasibility.

Specifically assume that the rate of a given v.c., say t, is increased by a very small
amount AR;. As this causes, on all the links [ € £;, the right hand side of the feasibility
constraints containing s to increase, it is necessary to adjust the a.n.o.p. assignment to
maintain strict fea;ibility.

Consider a particular link on 1’s path, say link {. Assuming that the initial ordering @'
remains valid (we will soon see that this assumption is not restrictive), the increase of R;
causes oniy an increase in the right hand side of the constraints w},..., V. Specifically the

increase in the right hand side of constraint k, k = w!,..., V!, is:
B'(k, &, R+ AR:) - B'(k, &, R) (5.12)

—_—
where AR; denotes the vector whose it* entry is AR; and whose other entries are zero.

For small AR; the last expression is approximately equal to:
BY(k, ', R)AR; (5.13)

We assume that the variations of R; and of the a.n.o.p. assignment are so small that
the constraints initially satisfied with strict inequality stay satisfied with strict inequality
(again, we will soon see that this assumption is not restrictive). In this context we only
have to increase the left hand side of the constraints initially satisfied with equality just
enough to balance the increase of their right hard side to insure that strict feasibility is
maintained. It is easy to see that the most economical way of increasing the left hand side

of a constraint consists of increasing the a.n.o.p. of a v.c. involved in the constraint having
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the lowest marginal a.n.o.p. cost. In view of the fact that the a.n.o.p. assignment is initially
optimal for the rate assignment this means that we can always compensate at the cheapest
cost an increase in the right hand side of a constraint by increasing the a.n.o.p. of the v.c.
involved in the constraint with the lowest (i.e., rightmost) position in the ordering. Indeed
if the a.n.o.p. assignment is optimal for the rate assignment, the v.c.’s must be ranked in
order of decreasing marginal a.n.o.p. cost in the ordering @'. This implies that, in each
constraint, the v.c. involved in the constraint with the lowest position in the ordering is
always among the v.c.’s involved in the constraint with the lowest marginal a.n.o.p. cost,
so that increasing the a.n.o.p. of this v.c. leads to the smallest additional cost. (We
are neglecting here the second order effects of the variation of the assignment on the cost
functions.)

The first constraint on link !/ containing ¢ and satisfied with equality is the constraint

defining the priority group to which ¢ belongs. Namely this is the constraint wj(e,.). From
(5.13) the increase in the right hand side of this constraint is:
T -l 5
B"(w}i1), @', R)AR; (5.14)

As motivated above the v.c. whose a.n.o.p. should be increased to compensate for the

increase of the right hand side is the v.c. in position w! i(el)” Accordingly, this results in an

additional cost of:
BY(wjy, &' AR 3 Cite) (Biet) Nicety) (5.15)
Let e be the priority group on link ! immediately following the priority group containing
i (namely, e — 1 = ¢!). Then by definition the next constraint satisfied with equality after
the constraint wé(e:) is the constraint wi( .)- From equation (5.13) the variation in the right
hand side of this constaint is :

B(wj(,), @', R)AR; (5.16)

As before the v.c. whose delay should be increased to compensate for the increase in the
right hand side is the v.c. in position w".(g). However in this case the a.n.o.p. of this v.c.

only has to be increased by :

(B"(w}, ),w‘, R) - B"(w!,), %" R))AR; (5.17)

116



since the remaining contribution needed to balance (5.16) is already provided by the v.c.
i(e!) (remember that the left hand side of the constraint w‘!( ) contains both the v.c.’s i(e])

and ¢(e)). Thus the additional cost incurred for maintaining equation wf(c) is:

_ 4= 3
(B"(wi(at), ', B) = B"(wj(,), &', B)) ARi 5= Gie) (Bi(e), Nie)) (5.18)

Generalizing this argument it is not difficult to see that the total additional cost incurred
on link { for maintaining strict feasibility is:
BY(w!, 1y, @, ) =G oty (Buguty, N
(wi(,:_)aw ) )ﬁ i(ef)\Rael)s i(=§))
B 15 a
+ X (B"(wig) @, B) - BY(w),_1), 7', R) AR5 Gite) (Bice) Nige)) (5.19)

c€E!, e>ecf

We are going to show that this expression is equal to the term corresponding to link /
in the sum in the right hand side of the equation in condition (3) of the theorem. However
we first make a short pause to verify the validity of the two assumptions that we made
earlier in the discussion.

Let D;(AR.-) denote the delay of v.c. j on link ! for a given variation AR; when the
a.n.o.p. assignment is updated as a function of AR; in the manner described above. Let 7
and k be two v.c’s on link / and assume that D%(0) < D} (0). As the variations of the a.n.o.p.
are continuous functions of AR; it is clear that we can choose AR; > 0 sufficiently small
to insure that D_‘,-(AR,-) < D}(AR;). Accordingly it follows that we can choose AR; > 0
sufficiently small to insure that the initial ordering @' ranks correctly all the v.c.’s whose
delay are initially different. Now assume that D}(0) = D% (0). Assume also w.lo.g. that
w} < wj. Since D’(0) = D}(0) j and k belong initially to the same priority group, which
immediately implies that only k’s a.n.o.p. may be increased. Suppose first that k& # 1.
Then, as Ry is constant, the increase in k’s a.n.o.p. implies a corresponding increase in k’s
delay. As j’s delay is constant this means that we can only obtain D}(AR;) < Di(AR;),
so that the ordering w} < wj}, remains valid. Next suppose that k =i. This case presents

a special difficulty because i’s a.n.o.p. increase tends to increase i’s delay while ¢’s rate
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increase tends to decrease ¢’s delay, so that it is not clear whether the net variation is

positive or negative. It is easy to see that i’s delay as a function of AR; is given by:

D} (AR) = (N! + B'(w!, &', R+ AR;) - B'(w!, &, R)) (5.20)

!
Ri+ AR;

Evaluating the derivative of this expression at AR; = 0 we obtain:

mD‘(o) = (~D}(0) + B"(u}, ', B)) (5.21)

If ©’s a.n.o.p. is increased i must be the v.c. in the priority group e} with the lowest
position in the ordering. By definition of the priority groups this implies that 1 mus: have
full priority over the v.c.’s in position w! +1,...,V’. As{ can be at most of lowest priority
as compared to the v.c.’s in position 1,...,w! — 1, it follows that the initial delay of v.c.i is

upper bounded by:

D}0) < = E (B‘(w‘ ', R) - B'(w} - 1,9, R)) (5.22)
Using equation (5.22) in equation (5.21) we get:
d u! 1 1
_ Df 0) > + 5.23
dAR; ( ) R'.(”'l - Zp|w' <w! R, ) ”’l - Eplw‘ <w! R - Eplw‘ <w! R ( )

This expression is strictly positive, which means that for sufficiently small A R; the delay of
v.c. { increases. As D;- is constant it follows that for sufficiently small AR; > 0 we obtain
Di(AR;) < D}(AR;), so that the initial ordering w} < w} remains valid.

This shows that by choosing AR; > 0 sufficiently small we can insure that the initial
ordering W' remains valid, which was our first assumption. Also as the variations of the
a.n.o.p. are continuous functions of AR; we can always choose AR; sufficiently small to
insure that all the constraints initially satisfied with strict inequality remain satisfied with
strict inequality, which was our second assumption.

Now, having established the validity of our assumptions, we return to equation (5.19).
Since the a.n.o.p. assignment is optimal for the rate assignment, the v.c’s in each priority

group must have the same marginal a.n.o.p. cost. Using this fact it is easy to see that:

/ = 0 , -
B (w1 @' B) 3 Gy(et) (Bagety, Nygty) = B (wh, ‘R)) 53 Cil&, N)

_ 4 50 O
+ > (B“(w,.,w’,R)-B"(w,.-1,w',R))WG,~(R,-,N,-) (5.24)

P § ] {
’l'""<'""s'"i(=5)
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Similarly for any priority group e € E;

s oD
(B"(wi(e), @', B) = B"(wi(o—1), @', B) 35:Gie) (Rig)s Nice))

1 -l D I —~ D 2
= > (B! (w},w‘,R)-B‘(w;—l,w‘,R))aNG( ,N;) (5.25)

P | i
1w (amn) <WiS i)

Using these equations in equation (5.19) the total additional cost on link [ for increasing R;

by AR; is:
{ Bt @, B 2GRN

+ Y (BY"(wh, @', R) - B"(uw} - uT‘,R'))%G,-(R,-,Nj)}AR,- (5.26)
jlwi>w}

To get the total additional cost per unit increase of AR; (in the limit of small AR;) we only

have to sum the last equation over all the links / € £; and divide by AR;. That is this cost

is :

> { 5wk 7 B 6 )

el

+ > (BY(wh, @, R) - BY(w} -1, R)) G(R,,N)} (5.27)

jlw}>w!

But this is precisely equal to the right hand side of the equation in the condition (3) of
theorem 5.1.

It may be shown using a similar argument that (5.27) also represents the savings per
unit decrease of R; that can be realized by adjusting the a.n.o.p. assignment when R; is
decreased. This confirms the interpretation of the condition (3) of theorem 5.1 that we gave
earlier. Namely if the rate assignment is optimal, increasing (resp. reducing) the rate of a
v.c., say 1, is not profitable because the savings (resp. costs) directly resulting from the rate
variation; i.e., — 2 G;(Ri, N:)AR;, are exactly compensated by the additional costs (resp.

savings) incurred for adjusting the a.n.o.p. assignment.
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5.3 A distributed algorithm solving the problem (FC,).

In this section we develop a distributed algorithm solving the problem (FC,). The
algorithm, called Alg_FC,, is based on similar ideas as Alg. NP, e. Asin Alg. NP, e a
major preocupation in the construction of the algorithm is to keep the notation and the
proof of convergence relatively simple. For these reasons the algorithm has been built as
simply as possible. Also some hypotheses regarding the operation of the algorithm that
may in practice be difficult to enforce have been made. We will comment at the end of
this chapter on the implications of these restrictions and on how, in practice, they can be
avoided. ‘

Before concentrating on Alg_FC, we introduce some notation. Let (ﬁ, N ) be a strictly

feasible assignment. For ¢ € V¢, define:
fi={i}u{ilje V', |D}- Di| < v for some k € f!} (5.28)
where v > 0 is a fixed parameter. Also, define:
F'={f}, ieV'} (5.29)

We call f! the delay group of v.c. ¢ on link I. It is easy to see that for any 1, j € V!, if
J € f{ then f] = f1. Moreover for any delay groups f, feF, f#£F

fnf=4 (5.30)
and either:

D! < D;- —v forallie f, j€ f (5.31)
or:

D§-<Df—v forallicf, jef (5.32)

Equations (5.31) and (5.32) can be used to order the delay groups on each link. Indeed we
will say that f < f whenever f and f satify equation (5.31) and conversely we will say that
f> f whenever f and f satisfy equation (5.32). Also if f is a delay group on link / such

that f > f for some delay group f € F!, we define f — 1 to be the delay group on link !
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immediately preceeding f. Namely, f — 1 is the delay group on link [ satisfying f —1 < f
and f—1> fforall fe F!, f < f.

Let ' be an ordering on link { valid for the assignment (R, N) and let f € F be a
delay group on link /. Given the ordering @' we denote by i(f) and #(f) the v.c.’s in f
having respectively the lowest and the highest positions in the ordering. Namely i(f) and
1(f) satifies:

wzl'(f) > w;- forallje f (5.33)
wyp Swiforalje f (5.34)

Clearly the delay groups are similar to the priority groups. It may also be noted that
although the variables defined above depend on B, N, & and v, this dependency has been
dropped in the notation. We will indicate explicitely the dependency only when a confusion
is possible. However the dependency will in general be obvious from the context.

Now for given B, N, & and v we define the following variables which are intimately
related to the right hand side of the equation in condition (3) of theorem 5.1. We will

discuss later the role of these variables.

z} = BY(w!, ', )iGi(Ri;Ni)

+ > (BY(w}, &, R) - B'(w} -1, R)) G;(R;, N;) (5.35)

le >w

i
z; = BY(wy gy, 7, R)aN i (B Ny pny)

) 4 oan @
+ ) (BY(wigy, ', B) - BY(wiy_s), 7, B) 5 Gutn (Rucry, Nign))  (5.36)
FEFY, f>f}

d
z, = B" (w‘(f‘)’ )aN Gty (Basyr Mags)

L oz 9
+ D (BY(wis ', B) - BY(wiiy_y), 5, B) 55:Gatn (Ban), M) (5:37)
fEF, £>f}

We also define:

=Yz (5.38)

lel;
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;= Z; (5.39)

=) 3 (5.40)
leL;

As before although the variables defined above depend on B, N , W and v this dependency is
dropped in the notation. We will indicate explicitly the dependency only when a confusion
is possible.

The z} and z; are fundamental variables. In fact it is easy to see that the condition (3)

of theorem 5.1 can be expressed as:
a ..
-—a—RG.-(R.-,N,-) =z forallt,i=1,...,V (5.41)

2z} and Z: are approximations of 2! having several important properties. First it is not
difficult to see that when the a.n.o.p. assignment is optimal for the rate assi nment, and
P g P g

when v is sufficiently small, we have for all § = 1,...,V,and !l € £;:
E =2z =z (5.42)

A second property of z} and Z! is that they represent the cost per unit variation of R;
for adjusting the a.n.o.p. assignment on link ! when the adjustments are made along two

directions that will play a central role in the algorithm.
5.3.1 Description of the algorithm.

Each iteration of Alg_FC, consists of executing in sequence two algorithms. This can
be summarized as follows.
Alg FC,:
1) Execute A,.
2) Execute A,.
3) End.

An is an algorithm updating only the a.n.o.p. assignment. A, updates both the rate

and the a.n.o.p. assignment but its primary concern is to improve the rate assignment. In
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fact in A, the a.n.o.p. assignment is updated uniquely as a consequence of the update of
the rate assignment, the motivation being to maintain strict feasibility. We first concentrate
on describing A, and then describe A,

The objective of 4, is to improve the a.n.o.p. assignment. This is done in a very similar
way as in Alg_ NP, e. In fact the unique difference between A, and Alg_NP, e is that the
a.n.0.p. are the main variables in A, while the delays are the main variables in Alg NP, e.
Clearly since the rates are constant in both cases the formulations are equivalent.

For a given assignment (&, N) define:
a d

Also let r.-‘j be the maximum value that r can take in the interval [0,7] for which the

assignment:
N{ — Nl -rA,G,;
l l (5.44)
N; « N_,' +7ALG;;
is strictly feasible. 7 is a strictly positive parameter of the algorithm to be specified later.

A, is defined as follows:

An:foralll,l=1,... L, do:
1) Find a pair of v.c.’s L, jeV, i#j satisfying:
1'}-(AHG¢‘,-)2 = max 1! (A,,G,;.q)2
! pqeVt P9
2) Using r = 7}

i7» update N} and N} as in equations (5.44).
3) Next I.

Now we concentrate on describing A,. We first state the algorithm and then follow
with a discussion explaining the motivation behind it.
Define:
0, if 2, < =5 G:(R;, V) < %

AG; = , ] |
ma.x(— arGi( &, N) -z, 7rGi(Ri, N;) + 5.‘) , otherwise

(5.45)
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A.G;

T : > l '
. z, . Z; Z;
—ﬁc‘(RuNi) _%G'(R"N‘)
a)z; <% D &>
Figure 5.1

Figure 5.1 depicts A,G; as a function of ——a%G,-(R‘-,N,-). Two cases are distinguished

depending if z; < Z; of if z; > Z;. Note that A,G; is always non-negative.

A, is defined as follows. Here o is a fixed parameter of the algorithm related to v which

we will discuss later.

A,
1) Find a v.c. ¢ satisfying:
A.G; = maxA,Gj
3

2) If A,G; = 0 then stop.
3) If — 25Gi(Ri, Vi) — Zi > 25Gi(Ry, Ni) + z;, then set:
R — Ri+AR
where AR; = 0A,G;. Alsoforalll € £; and f € F!, f > f!, set:

i l {
Ny < Ny + ANy

where:

y 1

ANy = B'(w} o), &', B+ AR) - B'(wl.(f._.),:b", R)
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and for f € F!, f > f};
— e — - -,
ANy gy = (B (wi(y), 7', B+ AR;) = B (uwy( ), ', R))
- (B (wl(f 1)) R AE) - B‘(w;(f—lﬁu-"l)ﬁ))
4) Otherwise (i.e., when —%G;(R‘-,N;) zZi < aRG (Ri, N;) + 2;) set:
R, « R - AR
where AR; =¢A,G;. Alsofor alll € L; and f € F!, f > f! set:
i l i
Nip — Nynt ANy

where:
AN'U.) = B! (w,u.), o', R - ARJ—B (w‘(f.),w R)
and for f € F, f > fk;
AN sy =(B'(wl ), 7', B - AR)) - B'(wl ), 7, R))

~ (B'(wls-1), @', B— AR:) - B'(w};_y), 5", B))

We now discuss in some details the main ideas behind A,. We concentrate on the case

in which the rate of a v.c. is increased. The case in which the rate of a v.c. is decreased is

similar and can be motivated using essentially the same arguments.

Let (112’, g ) be the assignment produced by A, from the assignment (R, N). Also let

be the v.c. whose rate is increased. Clearly in this context:

R =R; + 0A,G;

R+a[— Gi(R:, V) - 7]

Consider the cost incurred for adjusting the a.n.o.p. assignment on link [ when the

adjustment is made as specified in A,. For small AR; the cost variation is approximately:

9
2. ‘ AN 1) 35 G50 (Bat)s M)
EFY, 21!
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For small AR; we can also use a linear approxirha.tion for estimating the variations of

the a.n.o.p. assignment. This gives:
AN, & B"(w;( f‘,),dil, R)AR; (5.48)
and for 31(f), f > f}:
ANy =~ (BY(w)), &, R) - B“(w;.( 1), @, B))AR; (5.49)

Using equations (5.48) and (5.49) in equation (5.47) we obtain that the cost of adjusting

the a.n.o.p. assignment on link [ is approximately;

L8
AR; {B“(w;-(,;), @', R) 3 Gaum (B, Nagen)

. sy 8
+ 3 (B“(wg(,,,w‘,R)—B"(wﬁ(f_l),w‘,R))WG:U)(R:(J')’Nt(f))}
feFt, f>f}

=ZAR; (5.50)

It follows that the overall cost for adjusting the a.n.o.p. assignment is approximately:

D AR

lel;

=ZAR; (5.51)

On the other hand increasing 1’s rate causes a direct variation of ’s cost approximately
equal to:
g
2GR, N)AR, (5.52)

To get the net cost variation we only have to add (5.51) and (5.52). Namely the net cost

variation is:

d -
ﬁG,‘(R", N‘)AR. + Z.‘AR,'
3
= -0 (35G:(R, V) +7)° (5.53)

where the last step follows immediately from equation (5.46).
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It can be shown using a completely analogous argument that when R; is decreased the

net cost variation is:

a

Gi(Ri, N:) + 2,)° (5.54)

As (5.53) and (5.54) are always negative we may conclude that A, always improves the
assignment. It may also be noted that the improvement increases as the difference between
-'a%ici(R-': N;) and Z; or z; increases.

A second fundamental property of A, is that the a.n.o.p. assignment can be updated
by substantial amounts without violating feasibility. It is this property that allows us to
use a fixed . This was one of the main concerns behind our choice of update directions.
The reason is that it is in general not sufficient to find a direction in which progress can
be made to guarantee the convergence of an algorithm. The direction must be sufficiently
good to insure that substantial progress is made when the current assignment is far from
optimality. For example we believe that A, would not converge if the a.n.o.p. assignment
was updated in the manner described in section 5.2 in the discussion of the third condition
of theorem 5.1. This is because although a strict progress is guaranteed at each iteration, it
cannot be guaranteed that the progress does not become arbitrarily small when the current
assignment is far from optimality.

The fact that the algorithm uses a fixed ¢ simplifies considerably its implementation.
Indeed a fixed o means that the processors responsible for updating the rates know a priori
that when they update the rates the links can adjust their a.n.o.p. assignment in such a way
that strict feasibility is maintained. For example the processor responsible for 1’s rate knows
a priori that if it updates R; by +0A,G;, the links on t’s path can adjust their a.n.o.p.
assignment in such a way that the assignment remains strictly feasible. The advantage in
this situation is that the processors responsible for the rates do not have to probe the links
to determine if a given rate update is feasible.

The fact that a fixed o can be used follows essentially from the following lemma.
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Lemma 5.2: Let (B, N) be a strictly feasible assignment and let @', I = 1,...,L, be
orderings valid for this assignment. Assume that there exists K; > 0 and K3 > 0 such that:
R, >K; forally,1=1,...,V

p = > R >K; foralll, I=1,...,L
eVt

Then, for all » > 0, there exists K3 > 0 depending only on K;, K; and v such that for any
i,1=1,...,V,and AR;, |AR;| < K3, the assignments:

R; — Ri+AR

l

Nipy — Ny + B'(wypy, &', B+

g

R;) - B’(wé(f‘!),ub",R') foralll e £;
_lRtf,,t = B ADY _ Bl o i i .
B(wi(;_1), W, R+ AR) - B (wy;_yy, @, R)| forall fE F', f> f;, l€ L;

and:

R, — R - AR,

|

-,

3 ] L

I

= —_— =
Nip) < Nip+ [3'(w§(f)""'a R- AR) - B'(wjy), @', R)]
- [B‘(wg(,_l),w‘,ﬁ- AR) - B‘(w;(,_l),w‘,ﬁ)] forall fe F', f> fi, 1€ L;

are strictly feasible.
This is proven in the section 3 of Appendix D.

We can motivate the intuition behind this lemma via the following example.

Example 5.1: Consider a link of unit capacity shared by two v.c.’s. Let the initial assignment

be as follows:
R; =0.1 R; =0.1

10 25 : (5.35)
D, = 9 +A D= T A

where A is a very small positive number. It is readily verified that this assignment is strictly

feasible.
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Suppose we want to increase the rate of v.c. 1 and compensate this increase by in-
creasing the a.n.o.p. of v.c. 2. Then it is not difficult to see that the variation of the rate

of v.c. 1 can be at most:
JdA+1/9

For small A this is approximately equal to:

1/9  0.1A
10/ T {10/9)F ~

0.1

_ 81
~ 1000

(5.57)

The critical point to observe is that the maximum rate variation is proportional to A.
Now suppose that instead of compensating the rate increase of v.c. 1 by increasing the

a.n.o.p. of v.c. 2 we compensate by increasing the a.n.o.p. of v.c. 1. Then it is not difficult

to see that we can increase R; up to the point where the total rate equals the capacity of

the link without ever violating the feasibility constraints.

The point of this example is that if we want to compensate an increase in the rate of
a v.c. by increasing the a.n.o.p. of a v.c. whose delay is higher that the delay of the v.c.
whose rate is increased we may be forced to keep the rate variation very small in order to
maintain strict feasibility. This is because in this case the v.c. whose rate is increased may
very quickly acquire full priority over the v.c. whose a.n.o.p. is increased. However if the
rate increase is compensated by increasing the a.n.o.p. of a v.c. whose delay is initially
not larger than the delay of the v.c. whose rate is increased a substantial rate increase can
be guaranteed. This is because in this case the a.n.o.p. can be increased by a substantial
amount before the v.c. whose a.n.o.p. is increased becomes of lowest priority as compared
to the v.c. whose rate is increased. In fact we can guarantee in this case that a minimum
rate variation which depends only on the rate assignment is feasible.

The results presented in lemma 5.2 are a generalization of the preceeding discussion.
Consider for example the case in which the rate of a v.c. is increased. In this case the v.c.
whose a.n.o.p. is increased in each delay group is one of the v.c.’s in the group whose delay is

initially minimum. This insures that the a.n.o.p. of this v.c. can be increased substantially
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before it becomes of lowest priority as compared to the other v.c.’s in its group. Also, as the
delay of v.c.’s in different delay groups differ by at least v, it is easy to see that a minimum
rate increase proportional to v can be achieved before v.c.’s in different delay groups start
interfering. These two facts basically guarantee that a minimum rate increase depending
only on the rate assignment and on v can be achieved, which is what lemma 5.2 asserts.

It is not difficult to see that the sequence of assignments generated by the repeated
application of A,, and A, satisfies the condition of lemma 5.2 for some K; > 0 and K3 > 0.
Indeed if K, does not exist it must be that the rate of some v.c. converges to 0. However in
view of the form of the cost functions this implies that the objective value converges to co.
Clearly, under the mild assumption that the initial assignment has a finite objective value,
this cannot happen as both A,, and A, are non-increasing algorithms. Similarly if K; does
not exist it must be that on some link, say [, Zs‘ev‘ R; converges to u'. This implies that
the a.rl.o.p. of some v.c. on the link converges to co, which again means that the objective
value converges to co. Clearly this cannot happen.

If a.n assignment, say (E, N ), satisfies the conditions of lemma 5.2 it follows from the
form of the cost functions that the assignment must also satisfy A,G; < K4, 1 =1,...,V,
for some constant K4 > 0. It is this fact which, together with lemma 5.2, allows us to use
a fixed . Namely if all the assignments generated by the repeated application of A,, and
A, satisfy the conditions of lemma 5.2 we are guaranteed by the lemma the existence of K3
such that if ¢A,G; < Kj; for all 1 and A,G;, the assignment resulting from updating R; by
+0A,G, is strictly feasible. As A,G; < K, it follows immediately that we can use a fixed
o as long as 0 < K3/Kj.

The last fundamental fact about A, is that when it is used in conjunction with A, it
can be shown that each —%G;(R,-, N;) converges to z;. This means that, eventually, the
assignment produced by Alg FC, satisfies the third condition of theorem 5.1. Also, using
the same arguments as in Alg_N P,_e, it can be shown that the repeated application of A,
insures that the assignment eventually satisfies the first two conditions of theorem 5.1. It
follows from these facts that the assignment produced by Alg_FC, eventually satisfies all

the conditions of theorem 5.1; namely solves the problem (FC,).
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5.3.2 Convergence.

Let (B(0), N(0)) denote the initial assignment. We make the following assumptions.

(A.5.2.1) S(R(0), N(0)) < oo.
(A.5.2.2) (R(0), N(0)) is strictly feasible.

Let (ﬁ(k),ﬁ (k)) denote the assignment resulting after k iterations of Alg_-FC,. We

have the following result.

Theorem 5.2: For every (E(0), N(0)) satisfying assumptions (A.5.2) there exists 7 > 0,
o >0, and v > 0 such that:
1) (B(k), N(k)) is strictly feasible, for all k > 0.
2)
Jim S(R(k),N(k)) =S*
where S* is the optimal value of (FC,).

This is proven in section 4 of Appendix D.

5.3.3 Implementation.

The implementation of Alg_FC,, as described in section 5.3.1, requires a complete
coordination among the links and the processors controlling the rate of the v.c.’s. Such
a coordination is in practice too costly in terms of time and overhead to be justified. In
practice Alg_F'C, should run in an asynchronous manner. Each link should be responsible
for carrying the iteration concerning it in A,, which it should do independently of the
other links and nodes. Similarly the home node of each v.c. should update the rate of
the v.c. independently of the other nodes and of the links, and the links should adjust
asynchronously their a.n.o.p. assignment as a response to a rate update (namely the links
should not try to synchronize the update of their a.n.o.p. assignment but rather they should
independently update their a.n.o.p. assignment as they become aware of the rate update).

Of course convergence is not guaranteed in this context. However we believe that if the
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estimates of the z;, Z; and D; are updated often as compared to the frequency at which
updates are made the convergence properties will be maintained.

From an implementation standpoint the z;, Z; and D; are very similar variables.
Namely, for each ¢, D; is a sum over all the links on #’s path of the individual contri-
bution D! of each link [, exactly as z; and Z; are sums over the links on ¢’s path of the
individual contribution z} and 2! of each link . In this context we can construct the esti-
mates in Alg_FC, in essentially the same manner as in Alg_NP,_a. Namely we can use, for
each ¢, an update_s message cycling along 1’s path. In addition to constructing an estimate
of D; the message would construct estimates of z; and Z; in exactly the same way. Also
the message would carry the current value of R; so that the links would be kept informed
of the rate updates made by the home of node . It may be noted that this implementation

scheme is particularly simple and that it imposes a vefy small overhead.
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5.4 Comments.

Basically all the comments made on Alg N P,_e still apply to Alg_FC,. In particular
because of the dependency of the parameters ¢ and 7 on the initial assignment it is in
general not practical to enforce in a quasi-static environment the conditions on o and 7
under which convergence can be guaranteed. However we believe that by choosing these
parameter sufficiently small the assignments should track well the evolution of the network.
Of course the choice of these parameters depends strongly on the particular application.
Simulation would at this point be indicated to tailor the parameters to the application.

In chapter 4 we were able to construct an approximate but completely asynchronous
algorithm by exploiting the structure of (N P,); namely by exploiting the fact that the
feasible set could be decomposed on a link basis. This, however, does not seem to be
possible in the case of (FC,). The difficulty is that the rate of each v.c., which is now also
variable, ties together the feasible sets on the links on the path of the v.c., thus destroying

the decomposition property.
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6 Discussion.

The purpose of this chapter is to present some issues related to the results developed
in this thesis which we believe are worth investigating. The chapter is divided in several

short sections, each section concentrating on a particular issue.
6.1 Choice of the queuing strategy.

We have seen in chapter 3 that in a queuing system satisfying assumptions (A.3.1)-
(A.3.3) any feasible delay assignment can be realized by using the cascade scheme. It is
however not difficult to see that the cascade scheme is not the only scheme possessing this
property*. Hence a natural question that could be raised is whether or not a better universal
queuing strategy than the cascade scheme can be found. We believe that, at least in the
context of our application, the answer to this question is yes. In particular it would be
useful to have a universal queuing strategy minimizing the variance of the delays as such a
strategy would result in a smoother operation, which is obviously desirable.

A queuing strategy that deserves more attention is the round robin strategy. In a
context similar to our Hahne [Hah86] has shown that round robin scheduling is a particularly
simple means via which a min—max fair rate assignment can be obtained. Moreover as round
robin scheduling inherently attempts to regularize the transmissions it should result in low
variance of the delays. As mentioned in the preceeding paragraph this is clearly desirable.

We do not believe that the classical versions of round robin scheduling (namely the ver-
sions described in [K176] and [Hah86]) are universal. However we believe that the principle
behind round robin scheduling can be generalized to construct a universal queuing strategy

inheriting most of the properties of round robin scheduling.

* For example it is readily verified that the scheme which is identical to the cascade
scheme except for scheduling in each priority stream the packet transmissions in a last-in--

first—out manner is also universal.
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6.2 Simulation.

The algorithms developed in chapters 4 and 5 can only be useful if the assumptions
and approximations on which their development is based are justified. For this reason a
simulation study of the algorithms in a realistic environment should be conducted. Some

important issues that this study should address are:

e How severe are the exogenous Poisson arrival and common exponential packet length
assumptions, and how severe is approximation (Ap.4.1)? In particular if the cascade
scheme and corollary 2.1 are used to convert a target assignment into a queuing strategy
that should ideally realize it, how far from the target assignment can the true resulting
assignment be in a realistic situation?

e Are the algorithms sufficiently fast to track the evolution of the network in a typical
environment?

e How frequently should the local estimates used in Alg N P,_e and Alg_FC, be updated
to maintain good convergence properties, and how does this relate to the choice of the

parameters of the algorithms?
6.3 Choice of the cost functions.

The preferences of some types of users have been well characterized in the literature.
In these cases constructing a cost function reflecting the preferences is relatively straight-
forward. For example we knoﬁ that the quality of a packetized voice conversation decreases
sharply once the delay has reached a certain threshold, and that the quality decreases
smoothly as the rate is reduced. Hence the cost function should, as a function of the delay,
have a sharp knee around the threshold, and should, as a function of the rate, be smoothly
decreasing.

There are however several types of users whose preferences are currently not well-
known. One such type of particular importance is the interactive (or transaction oriented)
user. These users generate transactions sequentially, each transaction being generated only

after the preceeding transaction has been completed. These users account for a substantial
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portion of the traffic in i.s.n. A fundamental characteristic of interactive users is that their
rate can only be controlled through controlling their delay. Indeed at low delay the rate
is essentially a constant depending only on the nature of the user. In this situation the
transactions are processed sufficiently fast so as to not affect the process underlying their
generation. At high delay the rate becomes essentially a function of the delay as the users
then spend much more time waiting for the completion of the current transaction than in
preparing the next transaction once the result of the current transaction is available. Based
on this discussion we can conjecture that the cost function of an interactive user should be
a strong function of the delay and a weak function of the rate. However the precise form of

this function is an open question.
6.4 Generalization of the flow control problem.

In chapter 5 we investigated the flow control problem in the context of the system-—
oriented approach, and we implicitly assumed that preemptive queuing could be used. We
believe that the generalization of the results of chapter 5 to the non-preemptive case is
relatively straightforward. Essentially the manner in which the a.n.o.p.’s are updated in
a rate update should be modified to account for the new form of the feasible set. The
generalization of the results to the user—oriented approach seems, however, more difficult.
In particular we believe that constructing an algorithm similar to Alg_FC, for solving
the problem in the user—oriented approach will require some major modifications to the

conditions under which the rate updates are authorized.
6.5 Enforcing a rate assignment.

The output of the algorithms presented in chapters 4 and 5 is a desired rate, delay and
a.n.o.p. assignment. To be useful-this desired assignment must somehow be converted into
a practical mechanism via which it can be realized. Of course if the desired rate assignment
is realized, then the desired delay and a.n.o.p. assignment can also be realized simply by
using at each link the appropriate queuing strategy. Hence the important question is how

can the desired rate assignment be realized?
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We believe that the well-known end-to—end windowing technique (see for example
[Ta81]) is particularly well suited to realize the desired rate assignment in the context of
the algorithms developed in chapter 4 and 5. Indeed by selecting the window of each
user appropriately we can insure that the desired a.n.o.p. assignment is achieved. In
addition we can also select the queuing strategy on each link to insure that the desired
rate assignment would result in the desired delay assignment. Assuming that the arrivals
can still be considered as Poisson when windows are used, it is not difficult to see that the
above choice of windows and queuing strategies must result in the desired assignment being
realized. Although the Poisson assumption is clearly unrealistic when windows are used, we
believe that the resulting assignment should still be close to the desired assignment. This

should be investigated further, especially via simulation.
6.6' Second derivative of the cost functions.

In Alg_NP, e and Alg_FC, the links can use their local estimates of the rate and
end-to~end delay of their v.c.’s to determine the second derivative of the cost functions.
The second derivative can be used as a means of automatically scaling the step size of
the algorithms. In several related applications this feature has been found to improve

substantially the speed of convergence.

6.7 Measurements.

It is possible to measure the rate and the delay of the v.c.’s. The measurements can
be used in a feedback loop to adjust the window sizes and the parameters of the queuing

strategies so as to better realize the desired assignment.
6.8 Integration of routing and flow control.

An important problem in i.s.n. is to determine the routes over which new v.c.’s should
be established. Handling this problem is the responsibility of the routing algorithm. Mo-
tivated by the fact that routing decisions have a strong impact on the rate and delay of

the users, and by the fact that these measures are also central to the flow control problem,
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some researchers have proposed approaches integrating routing and flow control in a unified
framework [Gaf82,Go80,Ib81]. However these approaches are not very well suited in an i.s.n.
because they are not geared toward handling several classes of users with different rate and
delay considerations. We believe that integrating routing and the approach to flow control
developed in this thesis may be the solution to this problem. In particular we believe that
the information used in the flow control algorithm developed in chapter 5 can also be very

useful to a routing algorithm.

6.9 Conclusion.

Of course the results presented in this thesis are questionable in many respects. We
believe however that they provide some insight on the use of priority queuing in i.s.n. We

- hope that these results.can be useful to stimulate further research.
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Appendix A: Complement to Chapter 2.

A.1 Continuation of the proof of theorem 2.1.

We assume by induction that k < V' and that for i =1,...,k — 1 there exists a unique
p;i € [0, 1] such that:

D; = piDps, + (1 = pi) Dit1 (A1)
Our aim is to show that there exists a unique pi € [0, 1] such that:
Dy = pkDyps, + (1 — pr) Di41 (A.2)

Using equation (2.12) to evaluate D,,, , we obtain:

D, = 1 [ PrYk + Pk Px ]
k——- —
e LB—PrTk— Pk B— ok

+ (1 - Pk)Dk+1 (A.3)

Define:

1[ Pt o ]

fk(p)=; B—pYk— S B— &k

(A4)
It is easily verified that for p € [0,1] fx(p) is strictly convex and non-decreasing. Also,
fx(0) = 0. Since the equations in proposition (c) hold by assumption, we have:

Ri+-+ Ry

RiDy++++ ReDy >
101+ -+ g k—F—Rl—"’—Rk

(A.5)

Using repeatedly equation (A.1) fors = 1,...,k — 1 to eliminate Dy,..., Dx_; in the left

hand side of equation (A.5), we obtain:

P11+ -+ Pr—17k-1 Ry+---+ By
+ 4Dk > A6
T A (48)
Thus:
1 Ri+--+-+R e Ve
D>+ 1ttt By prnit et PE-17k-1 (A7)
Velp—Ri—-—Rx p—pi71—-"— Pr-1Tk-1
Using the following identities which easily follow from conservation:
Ri+- +Re=pim1t-+Pe-17k—1+ 7k (A.8)
Sk =p171+ -+ Pr—17k-1 (A.9)
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equation (A.7) becomes:

L[ v+ bk
Dp > — - — A.10
k—7k[#-7k—¢k K= bk (4.10)
This equation implies that:
Dy > fi(1) (A.11)

Using this equation, the properties of the function fi(-), and the fact that Dy < Dy, we
can show in exactly the same manner as in the case of the initial step that there exists at
least one pi € [0, 1] such that equation (A.2) is satisfied.

If strict inequality is achieved in equation (A.11) it follows for exactly the same reasons
as in the case of the initial step that pj is unique (refer to Figure 2.2). If equality is achieved

in equation (A.11) and if ps is not unique we must have (refer to Figure 2.3-2):

d d
f;_}(’P) bt > d_p [Dk + (pk - l)Dk+1] (A.12)

Evaluating the derivatives we obtain:

p
(4= Ry — -+ — R)?

> Dk+1 (A13)
On the other hand, since the set of equations in proposition (c) is satisfied we have:

Diy1 2
Ri41

1 [ Ry+ -+ R4y

-RyDy,—---— RD Al4
At mi, D (41

For p, = 1 the v.c.’s 1...,k have full preemptive priority over the v.c.s k+ 1,...,V.
Accordingly, Kleinrock’s conservation equation must apply to the group of vie.’s 1,...,k

taken in isolation; namely,

Ri+---+R
RiDy+-+ RyDp = — T T (A.15)
p—Ri—--— R
Replacing in equation (A.14) we get:
i R1+"‘+RI=+1 Rl+"'+Rk
Diyr 2 -
RBeprp—Ri—-+—Rgyn p—Ri—--— Ry (A.16)

> [
“(#—-Ry---—Rep1)(p— Ry — - — Ry)
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This equation contradicts equation (A.13). It follows that px is unique, which concludes
the proof of the induction step.

To complete the proof of the second implication we must show that equation (2.12)
also holds when ¢ = V. Since p; € [0,1],f =1,...,V — 1, the cascade scheme is realizable.

Accordingly it follows from lemma 2.1 that:

\ 4 \4
Zi:l R‘
R;D; = —*= — A.17
,'z=; B Er:l R\ ( )

Using the same argument that lead to equation (A.7) from equation (A.5), and using equa-

tions (A.8) and (A.9), we obtain:

Dy =1 [ MW + ¢v dv
V — — —
Wwlb—w—9¢v u—9¢v
=D,., (4.18)

Q.E.D.
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A.2 Proof of Corollary 2.1.

Multiplying both sides by p — prvx — #x equation (A.3) becomes, for each k, quadratic
in pg. From feasibility the equation admits at least one root in [0,1]. Also, it may easily
be seen that a root cannot be negative. The recursive equations given in corollary 2.1
correspond to the smallest root of each of these equations. Since each pj is unique these

roots must be the solution.

Q.E.D.
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A.3 Proof of corollary 2.2.

Choose two feasible delay assignments 5 and 5 Then theorem 2.1 guarantees that
there exist instances of the cascade scheme which respectively realize 1:5 and 5 Pick any
a€[0,1] and let D = (1—a)D + abD.

Consider the scheme in which at the beginning of each busy period it is decided with
probability a, and independently of the state of the system, to use the cascade scheme
corresﬁonding to 1:5 for the whole busy period, and with probability 1 — « to use the cascade
scheme corresponding to 5 Clearly, this scheme satisfies assumptions (A.2.2). Since p < 1
busy periods (of duration and of number served independent of the cascade scheme used)

occur infinitely often, implying that this scheme realizes D.

Q.E.D.
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A.4 Results of chapter 2 in the non—preemptive case.

In this section we present the results of chapter 2 as adapted to the situation in which
only non-preemptive queuing is allowed. By non-preemptive queuing we mean queuing
strategies in which the server must carry to completion the service on the current packet
before serving another packet. The results are very similar to those of chapter 2. Indeed,
they are obtained using arguments almost indentical to those developped in chapter 2. For
this reason the results are given without proof.

We call “non-preemptive version of the cascade scheme” the queuing strategy that
result if in the cascade scheme non-preemptive priorities are used instead of preemptive
priorities. Apart from allowing only non—preemptive queuing the assumptions made in this
section are identical to those of chapter 2.

We have the following results.

Theorem A.l: Let D be a given delay assignment satisfying D; < --- < Dy. Then the
following propositions are equivalent:
a) D is realizable using a non—preemptive queuing strategy.
b) D is realizable using the non—preemptive version of the cascade scheme and the choice
of the p;, v =1,...,V — 1, is unique.

c) The following equations are satisfied:

R.D; > Ri(u+ Rz +---+ Ry)
#(#—Rl)

(Bi+---+ Rv_1)(s+ Ry)
p(p— Ry -+~ Ry_4)
Ry+---+ Ry

p—Ry—---— Ry

ByDy+---+Ry_1Dy_1 >

RyDy++++Ry_1Dy_1+ RyDy =
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Corollary A.1: Assume that D is realizable using a non—preemptive queuing strategy.
Also, assume (w.l.o.g.) that D; < :-- < Dy. Then the probabilities p;,...,py_; which,
in the non-preemptive version of the cascade scheme, realize D are given recursively for

k=1,...,V -1, by;

Ky - \/Kﬁ - 4(Dk+1 - %)"lk(DkH = Di) (1 — ¢x)

2 (Dk+1 - ,l,)'ne

Pk =

where:

Ke= (8- ¢x)(Drs1 - ;1;) + Yx(Dr+1 — Di) - o _“¢k

and where v and ¢; are as in equations (2.4) and (2.5).

Corollary A.2: The set of delays realizable by non—preemptive queuing strategies is con-

vex.

The only difference between the equations of theorem 2.1-c and of theorem A.l;c is
their right hand sides. If fact it may be noted that the right hand side of each equation in
theorem A.l—c is strictly bigger than the right hand side of the corresponding equation in
theorem 2.1-c. This is a consequence of the fact that by prohibiting preemptive queuing

we are restricting ourselves to a smaller feasible delay set.
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Appendix B: Complement to Chapter 3.
B.1 Proof of theorem 3.3.

1) Forward implication: If D* is optimal for the problem (P,), then conditions (1)-(5) of
theorem 3.3 are satisfied.

We first show that if the assignment D* is optimal for the (P,) problem then whenever
two v.c.’s 7 and j satisfy D} = Dj these v.c.s also satisfy 1-C{(D}) = RL’C;(D;) We use
a contradiction argument.

Assume that D} = D} for some v.c. ¢ and j and assume also w.l.o.g. that RL'C,'(D:) <
R%,C;-(D;). If D; = Dj it is clear that neither v.c. § or 5 has full priority over the other v.c.
It is not difficult to see that this fact implies that there exists AD; > 0 and AD; < 0 such
that the assignment resulting from updating D; by AD; and D; by ADj is strictly feasible.
If fact since Kleinrock’s conservation equation is maintained it follows that for sufficiently
small AD; > 0 and AD; < 0, the resulting assignment is strictly feasible if the variations

are made along the direction:

R;AD; + R;AD; =0 (B.l)

Along this direction the variation of the objective function AS corresponding to a given

small variation AD; is:
AS = AD;C{(D}) + AD_,C;-(D;) + o(AD;) + o(AD;) (B.2)

where o{A) denotes a small order of A.

Using equation (B.1) in equation (B.2) we get:
—_— . . _l_ 1 ) __ L ! - .
AS = RAD;| 7CUDY) ch,.(D,.)] +o(AD;) (B.3)

Since RL'C:(D:) < -RI—JC;(D;) it follows that AS < 0 for sufficiently small AD; > 0, which
contradicts the optimality of D*. Thus we may assume that whenever two v.c.’s § and 7
satisfy D} = Dj they also satisfy #-C}(D;) = RITC;(D;)

Now we can prove the forward implication. If D* is optimal for the problem (P,) it

is certainly optimal for the (A,) problem defined based on the ordering D; < :-- < Dy
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because the ordering constraint is then redundant by construction. As '(A,) is a convex
programming problem this immediately leads to conditions (1)-(4).
It remains to show that condition (5) also holds. We use a contradiction argument.
Suppose that condition (5) does not hold. Then there must be av.c. {,1<i <V -1,

such that:

A; > A."+1 (B4)

W.l.o.g. we assume also that ¢ is such that A,_; < A, for all p < 7 (this is the case if ¢ is
the smallest index satisfying equation (B.4)).
Let 7 > ¢ be the largest index such that the condition A, < Ajholdsforallp,i < p<j.

Because condition (2) holds and because of the choice of { and j we must have:
D, =A; forallp,i<p<j (B.5)
It follows from this equation that:
A, =0 forallp,i<p<j-1 (B.6)

Indeed if A; # O for some p, i < p < j — 1, condition (4) then guarantees that the pt*
constraint is satisfied with equality. Since condition (3) also holds this implies that the v.c.’s
1,...,p have full priority over v.c. p+ 1. But this means that Dy < D, ., contradicting
equation (B.5).

Now, by definition of A; we have:
0=Ci(4:) = (A + -+ Ay) B + J{ (Ai) (B.7)

Using equation (B.6), the fact that A; > A;;, and the definition of J;(-) this equation can

be written as:
0=Ci(A:) + Ciya () = (A + -+ A0)(Ri + Riga) + J/11(A) (B.8)

Repeating this procedure for J;44(-),...,J;-1(-), we eventually obtain:

0=Z’:C;,(A.')—(A;-I-----l'-/\;r)ZJ:Rp'i‘J;-(A") (BQ)
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Because of the choice of j we have A;1; > A;. Accordingly it follows that J ; (4;) =o. Also
in view of equation (B.5) and in view of the preliminary result proven at the beginning of
this proof we have RL’C;(A;) = R%C;(A,-) for all p, q, ¢ < p, ¢ < 7. Using these facts in

the preceeding equation we obtain:
CilA)=(Aj+ -+ Ay)R; (B.10)

so that using equations (B.6), (B.7) and (B.10) we can finally conclude that J!(4;) = 0.
On the other hand we know that J;(D) is strictly convex and non-decreasing for
D > A;4:. Since by assumption A; > A,4; it follows that J!(A;) > 0, contradicting the

preceeding conclusion. Thus the forward implication is proven.

2) Reverse implication: If D* satisfies conditions (1)-(5) of theorem 3.3 then D* is the
optimal solution to the (P,) problem.

Let (D*,X*) satisfy conditions (1)-(5) of theorem 3.3 and assume that D* is not op-
timal. Accordingly let Dbea strictly feasible delay assignment satisfying S(D*) > S(B)
Also, let 5 =(1-a)D*+ aB which in view of the convexity of the set of weakly feasible
delay assignments is weakly feasible for all @ € [0, 1].

Because conditions (1)-(4) are satisfied, it is known that D* is the optimal solution
to the (A,) problem defined based on the ordering D; < :-- < Dy. Also, we know from
conditions (2) and (5) that Dj = A; <--- < Dy, = Ay. Assume first that strict inequality
holds throughout; i.e., D} = A; < +-- < D, = Ay. Then it follows that there exists ¢ > 0
such that for all « € [0, €], the ordering D; < --- < Dy is valid for D. This, together with
the convexity of S(-) and the assumption that S(D*) > S (B), implies that (D* — 5) is a
feasible descent direction at D*, contradicting the optimality of D* for (A,). Consequently
we may assume that for at least one index 1 D} = D; 1 but fj,- > 13.-.,.1 (if f),- < 13,-.,.1 for
all ¢, the same convex combination argument leads again to a contradiction).

If D} = D;,, itisclear that v.c. { does not have full priority over v.c. i+1. Accordingly
it follows that the ** feasibility constraint is satisfied with strict inequality. This in view

of condition (4) implies that A} = 0.

151



Our initial (A4,) problem is:

v
min Z Ci(Dj)
j=1

Ry

R{D{ >
= W R

(B.11)
>

RBy+---+ Ry
p— Ry —--+—Ry
D;<D;<---< Dy

RyDy+---+ Ry Dy 2>

For this problem define the Lagrangian:

v |4
~ = Ri+:---+R;
LB58) =Y CD) + L7t — RaDy - B
=1 =1

V-1
+ E ﬂJ‘(DJ' - DJ‘+1)
v =
=Z (CJ'(DJ') - R;D;(s;+---+ §V))

=1

\ 4 V-1
Ri+-+R;
+ Efs('u "R, —--- —JR,-) + ,Z-; Bi(D;j — Dj41) (B.12)

=1

Consider the assignment:

DJ'=AJ', §j=A;-, j=1,...,V, ﬂ"=0 j=l,...,V—1 (B.13)

It satisfies D; < -+ < Dy, De H,{>0,4 >0 and complementary slackness. Thus to
show that this assignment is optimal it only remains to show that D* achieves the minimum
of L(ﬁ, $ ﬁ) when = X* and g = 0. Since the Lagrangian is a convex function, a sufficient
condition to guarantee that D* achieves the minimum is that all the partial derivatives of
the Lagrangian with respect to D vanish.

Consider the partial derivative of the Lagrangian with respect to D,. Evaluating this

derivative and simplifying using equation (B.13) we obtain for all , j=1,...,V;

3 . o o
aDvL(D.’A.'O) = c;-(D;-) — A+~ +AV)R; (B.14)
2
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However it follows immediately from conditions (2) and (5) that the right hand side of this
equation is zero. Thus we may conclude that the assignment (B.13) is optimal.
Now consider the new (A,) problem, say (A’), in which the positions of v.c. f and i +1

are interchanged. Specifically this problem is:

\4
min Z CJ'(D_,')

Ry

>
Dy 2 p— Ry

> :
Ri+-+ Ry
W= B - Ry

Ry+--+Ri_1+ Ry (B.15)
RiDy+--+Ri_1D;_y+ Ri11D;1 2

Rl—----—R.'_1"'Rs‘-'Ri+1 |
R D e+ RyDi+ Ry 1Dy 2
Dy + R; Rit1Dit p—R -+ —Ri_1- R — Ripy

RiDi+--++Ri_1D;_1 2

> :
Ry+--+Ry

u—Ry—---—Ry

Di<D;<++<D;_1 £ Di41 £ D; < Diy2-+- < Dy

R1D1+"'+RV.DV 2

Similarly as for the initial (A,) problem define the Lagrangian for the new (A,) problem

as:

v
L'(D',¢',f') =) C,(Dj)

I=1

v
Ri+-+R; ) ,
+ g'-( -RyDy—----—R;D’
j=;j¢-'1 R ! 7

+ !( Ri+--+Ri_1+ Ry
*\p—Ry—+-—Ri_1 — Ripy (B.16)

- R\Dy---—Ri1D;_, - R;+1D£+1)

+ B1(Dy — D3) + -+ + Bi_2(Di_, — Di_,)

+ Bi_1(Di_y — Di,;) + Bi(Diyy — D}) + Biy, (D} - Di,.)

+ Bit2(Diys — Diya) + -+ By_1(Dy_, — Dy)
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It is easily checked that again the assignment:
D;=4; ¢=2; j=1,..V, ;=0 j=1,...,V -1 (B.17)

satisfies D{ < --- < Di{_; < D{,, < D! < D!, < --- < D}, D' € H' (H' being now
the set corresponding to the new ordering), g-; >0, ' > 0 and complementary slackness
(because A} = 0). Thus to show that this assignment is optimal for the new problem it only
remains to show that D* achieves the minimum of L'(D’, ¢, 3') when ¢' = X* and §' = 0.

Consider the partial derivative of the Lagrangian with respect to D, where j # i.

Evaluating this derivative and using equation (B.17) we obtain:

ST L(D°,%,0) = CYD}) = (4 + -+ ARy (B.18)
2

-

Clearly the right hand side of the preceeding equation is identical to that of equation (B.14).
Accordingly it follows that the partial derivative of L’ (ﬁ‘ , :\", 6) with respect to D; is zero
for all 5 # 1.

Now consider the partial derivative of the Lagrangian with respect to D;. Evaluating
this derivative we obtain:

d
aD;

L'(D*,X*,0) = Ci(D;) = (Ajya + -+ + AV R (B.19)

However as A] = 0 the right hand side of this equation is also equivalent to that of equation
(B.14). Accordingly it follows that the partial derivative with respect to D; also vanishes.

This shows that in the new (A4,) problem in which the positions of v.c.’s ¢ and 7 + 1
are interchanged, D* is still the optimal solution. If there is another index i’ such that
D} =D}, but Dy > 13;:.,.1,- the above argument can be repeated; the consequence being
that in the new problem where the positions of v.c.’s # and i’ 4+ 1 are interchanged D*
is still optimal. Since there is a finite number of possible interchange (at most V1), we
will eventually obtain that D* is the optimal solution to the (A,) problem defined by the
ordering corresponding to the assignment B This however is a contradiction as we assumed
that S(D*) > (D).

Q.E.D.
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B.2 Proof of corollary 3.1.
Since A; < +-+ < Ay it follows from lemma 3.1 that:
Di=A1<D;=A;Z---< Dy =Ay
By definition A; satisfies:

Ci(A:) = (A + -+ W) Re + JH(A) = 0

(B.20)

(B.21)

Now since A; < A4y for all ¢, ¢ = 1,...,V — 1, it follows that J!(4;) = 0 for all 1,

t=1,...,V — 1. Moreover since Jy(:) is a constant we also have J{,(-) = 0. Using these

facts in the preceeding equation we obtain that for all1,1=1...,V:

CUDI) = (A +++++ Ay Rs = 0

155

(B.22)

Q.E.D.



B.3 Proof of correctness of Alg_P,.

We first show that the minimization in step (3) always has a solution and that this
solution is positive. Consider the first iteration. Since the functions C;(-), t = 1,...,V, are
strictly convex and non—decreasing it follows that for v < 0 we obtain D; =0, { = 1,...,V.
Clearly this assignment does not satisfies the equations in step (3). On the other hand as
we also have that the functions C;(-), ¢ = 1,...,V, are twice continuously differentiable in
the interval [0, oo it follows that D; — 0o, i =1,...,V, as 4y — co. As the right hand side
of the equations in step (3) is bounded this means that there exists a finite 4 for which all
the equations in step (3) are satisfied. Thus we may conclude that ~ solving step (3) in the
first iteration exists and is positive.

Now the existence of a solution in the first iteration guarantees that step (3) has also
a solution 4 > 0 in the second iteration. Indeed using ¥ < 0 in the second iteration we
obtain D;=0,5=14+1,...,V, where 1 is the largest constraint for which equality was
achieved in the first iteration. As the right hand side of the i** constraint in the first
iteration is strictly smaller than the right hand side of the constraints 1 + 1,...,V in the
second iteration it immediately follows that the preceeding assignment cannot satisfies the
constraints of step (3) in the second iteration. This shows that we must still have ¥ > 0 in
the second iteration. Also by increasing 7 in the second iteration until it reaches the value
it had in the first iteration the assignment obtained in the first iteration is reproduced. The
equations of step (3) in the second iteration are satisfied for this assignment because they
are a subset of the equations the assignment had to satisfy in the first iteration. This shows
that v solving step (3) in the second iteration exists and is positive. This argument can
easily be generalized.

Next we show that the algorithm terminates in at most V steps. Initially T starts at 1.
Since in step (4) i > T, it follows that T increases by at least 1 at each passage at step (4).
Thus after at most V iterations the condition in step (5) becomes true and the algorithm

stops.
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It remains to show that the assignment produced by the algorithm solves the problem
(P,). We do this by showing that the assignment (D, X) produced by the algorithm satisfies
the conditions (1)-(5) of theorem 3.3.

First we show that condition (1) holds, namely that X > 0. Let 4(?) denote the value
of 4 in the p* iteration. Also let ¢ be the index of the largest constraint for which equality
is achieved in the first iteration. We have already shown that (1) > 0. Accordingly it
follows that A\; = v(1) > 0. If { = V the proposition is true and if 1 < V' ), is modified
exactly once: in the second iteration. Now in the second iteration it is known because of
the choice of ¢ that for 4(2) = 4(1) the constraints i + 1,...,V are all satisfied with strict
inequality. Accordingly it follows that the 4(?) solving step (3) in the second iteration must
satisfy () < 4(1). This imply that after update A; «— v(!) — 4(2) is still non-negative.
This argument can easily be generalized into an inductive step. -

Next we show that in step 5— the delays are assigned in increasing order. By construc-
tion of step (3) it is clear that the delays assigned in an iteration are in increasing order.
Thus we may concentrate on the case of the delays assigned in different iterations.

Assume that in the first iteration the first ¢« delays are assigned. By construction of
step (3) this implies that the 1** constraint must be satisfied with equality. In addition we
also have by construction of step (3) that the i — 1** constraint is satisfied. Using these
facts it follows that :

D< L[ Bt +R _ Ri+--+Riy
‘“Rls-Ri--R s-Ri---R,

(B.23)

In the second iteration D,y is the smallest delay assigned. Since D;,..., D; do not
change in the second iteration and since the first constraint in step (3) must be satisfied it

follows that:

D 1 [ Bi+--+Riy  Rit+---+R ] (B.24)

i+1 2
Ry \lp—Ri—--Ryy p-B—--—R;

Comparing equations (B.23) and (B.24) it is not difficult to see that D;,; > D;. This
shows that in the first two iterations the delays are assigned in increasing order. This can

straightforwardly be extended.

157



A direct consequence of the last result is that conditions (3) and (4); i.e., feasibility and
complementary slackness, are satisfied. The first iteration produces D,,..., D;. Because
the delays are assigned in increasing order it is known that these delays are the first ¢
smallest delays. Accordingly it follows that we can define the first ¢ feasibility constraints

based on the ordering D; < --- < D;. Namely these constraints are:

R,
>
RIDI—#-Rl
> (B.25)
R1+"'+R"
R\Dy+:--+ R, D; >
1D1 R; P—Ri - _R

Clearly by construction of step (3) the delays D,,...,D; produced by the first iteration

satisfy these constraints. Also we may have A; > 0 but since we also have:

Ri+--+R
P

R\Dy+ -+ R;D; = (B.26)

it follows that complementary slackness is satisfied up to equation (7).
Similarly in the second iteration the delays D;,,,..., D; are assigned, where j is the
index of the largest constraint satisfied with equality in the second iteration. By construction

of step (3) these delays satisfy:

By+---+ Riyy
p—BRy—-— Ry

BiDy++--+ Riy1Diyy >

v

(B.27)

Rl+"°+Rj
p—Rl_..._Rj

R\Dy+--+R;D; >

Since D;y1,...,D; are the smallest delays after Dy, ..., D;, it follows that we can define
the feasibility constraints ¢ + 1,...,7 based on the ordering D; < --- < D;. Clearly
equations (B.27) insure that these feasibility constraints are satisfied. It is also immediate
to see that complementary slackness is now satisfied up to the constraint j as the two
equations corresponding to the non—zero multipliers X; and A, are satisfied with equality.

This argument can easily be generalized.
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Finally we may see from the fact that the assignment (13, X) produced by the algorithm
satisfies X > 0 and D; < --- < Dy that the conditions (2) and (5) of theorem 3.3 hold.
Indeed Ay satisfies by definition:

Av = argmin [CV (D) - RvAvD] (B.28)
D
That is Ay is such that:
Cy(Av) = Ry Ay (B.29)

Assuming that the algorithm took P iterations to complete Dy satisfies:
Ci(Dy) = RyyP (B.30)

As 4(P) = Ay it follows that the solution of equation (B.29) is Ay = Dy.

Similarly Ay _; satisfies by definition:

Ay_, = arglx;nin[Cv_l(D) —Ry_1(Av_1+Av)D + JV_1(D)] (B.31)

or, equivalently, Ay _; is such that:
Cy_1(Av_1) + Iy _1(Av_1) = Ry _1(Av—1 + Av) (B.32)

If Av—; = 0 Dy_; and Dy were both determined during the last iteration. Then Dy _;

satisfies:

Cv_1(Dv-1) = Ry _17F) (B.33)

so that since Dy_; < Dy and Ay = v(P) the solution of equation (B.32)is Ay, = Dy _,.
If Av_1 # 0 Dy_, was determined in the next to last iteration. Then it follows that

Dy _, satisfies:

Cy_1(Dv_1) = Ry_174F~1) (B.34)

As Ay is set to ¥(P) in the last iteration, and as Ay _; is set to v(P=1) in the next to last

iteration and is updated to 4(F~1) — 4(P) i the last iteration it follows from the preceeding

equation that:
Cy_1(Dv-1) = Rv_1(Av_1 + Av) (B.35)
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Using this equation and the fact that Dy _, < Dy we obtain that Ay _; = Dy_; is again
the solution of equation (B.32). Continuing this way we find that A; = D;, i =1,...,V.
Since Dy < --- < Dy it follows that A; £ -+ < Ay which is condition (5). It also follows
from the facts that D; = A;,i =1, ... ,V,and that D; <--. < Dy that D is the assignment

produced by lemma 3.1 when X is used, which is condition (2).

Q.E.D.

160



B.4 Proof of lemma 3.2.

Using theorem 3.2 it follows that (D*,+;) and ¢* are respectively an optimal solution

to (Py,1) and a Lagrange multiplier vector if and only if the folloﬁving conditions are satisfied.

1) ¢* >0.

2) D* is weakly feasible.

3) Ci(D}) <l i=1,...,V.
4) ¥} = 0if C;(D;) < 1.

5) (D*,7}) achieves the minimum in the dual functional when b=t

Clearly the conditions (1), (2) and (3) of lemma 3.2 must hold as they are identical to
the conditions (1), (2) and (3) given above.

Note that 7] < maxicicv Ci(D;) is impossible because of condition (3) and that
71 > maxi<icv Ci(D;) is also impossible for otherwise it would be possible to reduce 1,
contradicting its optimality. It follows that 71 = maxyci<v Ci(D}). Using this fact and
the condition (4) above we obtain the condition (4) of lemma 3.2.

Now we prove that conditions (5) and (6) of lemma 3.2 are equivalent to the condition

(5) given above. We can write the dual functional as:

|4

\ 4
() = min (1- > b )n+ _ min S gc(Ds) (B.36)

weakly feasible i=

Suppose ZK__I ¥; # 1. Then because +, is unconstrained in sign the first term in the right
hand side can be made arbitrarily small. Also because we assume that the cost functions are
increasing over [0, oo| it follows that the second term can always be bounded from above.
Using these facts we obtain that any ¢ satisfying ELI ¥; # 1 also satisfies q(¢) = —co.
Hence as g¢(¢*) = 71 = maxi¢icv C;(D}), and as the cost functions are positive it follows

that 1,[-1" satisfies:
dowi=1 (B.37)
which is condition (6) of lemma 3.2. Also using the preceeding equation in equation (B.36)

we obtain that (5‘,71‘) achieves the minimum in ¢(¥*) when ¢ = ¢* if and only if D*
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minimizes the second term in the right hand side of equation (B.36) when U= J", which

is condition (5) of lemma 3.2.

Q.E.D.
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B.5 Proof of correctness of Alg_P,.

Using the same argument as in the proof of Alg_P, it is not difficult to see that there
always exists a solution in step (3) of Alg_P, and that the algorighm terminates in at most
V iterations.

It remains to show that the assignment produced by the algorithm is the optimal
solution to the problem (P,). We do this by showing that the assignment produced by the
algorithm is identical to the one that would be obtained by solving the hierarchy of nested
problems.

Let D(1) be the assignment produced by the first iteration of Alg P,. Let v(1) be the
value that v takes in the first iteration and let T(1) be the value of the parameter T at the
end of the first iteration. Suppose D(1) is not an optimal solution to the first problem in
the hierarchy. Then there exists D* such that:

3% Ci(D]) < C1(D{Y) = - = Cy (D) = 4O (B.38)

Let 1 be an index such that C;(D}) = max;<,<v C;(D3) and consider the assignment:

-~

D" = D:
] (B.39)
Di=ciCi(D;)] j#i
Since C;'!(-), 5 =1,...,V, is increasing and since Ci(D;) > C;(D3) we have:
C;H[eu(D))] 2 €5 [c;(D;)) = D; (B.40)

That is 5 > D* or, otherwise stated, 1=) is weakly feasible. It follows that 1;5 satisfies the

equations of step (3) since in the first iteration these equations are the feasibility constraints.

Also by construction 5 satisfies:
Cy(Ds) = -+ =Cy(Dy) (B.41)
It follows that:

¥=Ci1(D1) = Ci(D) < €1(D{V) = 4 (B.42)
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solves step (3) in the first iteration of Alg_P,. This however contradicts the fact that ~(1)
1s minimum. Thus the first iteration of Alg_P, solves the first problem in the hierarchy.

We now show that the v.c.’s in Uq: are the v.c’s 1,...,T(1) — 1 (where the labelling
of the v.c.’s is defined by the ordering of the delays as in step (3)) and that these v.c.’s are
correctly assigned their delay in the first iteration.

By definition of T(1) the largest equation satisfied with equality in step (3) in the
first iteration is the equation T1) — 1. As the equations in step (3) in the first iteration
correspond to the feasibility constraints, and as by construction all the v.c.’s have the same
delay cost in the assignment D(1) it follows that it is not possible to reduce the delay of a
ve. 1,1 <1 < T — 1, without either violating feasibility or having to increase the delay
of another v.c. whose delay cost is as high as i’s. Thus the v.c.’s 1,..., 71 1 belong
to U,;. However as the constraint T(}) — 1 is the highest constraint satisfied with equality
and as the constraints in the first iteration are the feasibility constraints it follows that it is
possible to reduce D;, s = T(1), ...V, without violating feasibility. This implies that the
v.c.’s T, ..V are not in U,z , so that we must have Uy ={1,...,TM) — 1}. Since only
the v.c.’s 1,...,T(*) — 1 are assigned their delay in step (4) it follows that the first iteration
correctly assign their delay to the v.c.’s in U.,; .

This shows that the first iteration of Alg_P, solves the first problem in the hierarchy and
correctly assigns their delay to the v.c.’s experiencing the worst delay cost. The argument
developped above can stratghtforwardly be generalized into an induction proof in which the
induction step would show that the k** iteration of Alg_P, solves the kt* problem in the
hierarchy and correctly assigns their delay to the v.c.’s experiencing the k** worst delay

cost. This is left to the reader.

Q.E.D.
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B.6 Results of chapter 3 in the non—preemptive case.

We assume that the system satisfies assumptions (A.2.1)-(A.2.3).
The problem in the system—oriented approach, called (PrP), is defined as follows:
v
(Pre) min ,.;C‘(D‘)
D realizable using a non-preemptive queuing strategy
where we again assume that the cost functions satisfy assumptions (A.3.1).

Similarly as in chapter 3 a familly of auxiliary problem is defined. Each auxiliary
problems is obtained by requiring that the delay assignment in (PrP) satisfy a particular
ordering. The auxiliary problem associated with the ordering D; < --- < Dy, which is
generically called (A%?), is:

(Az?) Zc (D;)

ﬁEH“P D1< <Dy i=1

where:

H™ = {ﬁ‘ (R1+-.-+R‘-)(y+R‘-+1+...+Rv)
Wi-B— - —F)

~RDy—-+— R;D; <0 :’=1,...,V} (B.43)

From duality we have:

EC (D) = max a(X) (B.44)

DeHr, D,< -<Dv {T§

where ¢(X), the dual functional, is:

\ 4
(/\) D1< <Dv Z:[C'(Dl) A+t AV)R.‘.D,'] + K"P(X) (B.45)

=1

and where we have defined for convenience:

Knp(X):.ZV:A‘,[(R1+-..+R.-)(;;+R‘-+1 +"'+Rv)]

Wi- R R) (B.46)

This leads to the following results.
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Lemma B.1: The delay assignment D achieving the minimum in the right hand side of

equation (B.45) is unique and is given by:
D; = max(A;, D;_,) i=1...V, Dy=0
where:
A= a.rglI)nin[C,-(D) =it WRDHI(D)] i=1,..,V
and where Jy (D) = K"?(X), and fori=1,...,V — 1;

Cit1(Ait1) = Aigr + -+ Av) Rip1 iy + Jiga (Ait1), ifD< Ay

Ji(D) =
‘( ) {C,‘.H_(D) - (/\,’+1 + e + /\V)R"+1D + Ji+1(D), lf D 2 A;‘+1

Moreover the corresponding value of the dual functional is:

q(X) = Ci(A1) = (A1 + -+ Av)Ry Ay + J1(4,)

Theorem B.1: Let D* be a delay assignment satisfying D} <..- < Dy. D* is the
optimal solution to the problem (P}*?) if and only if in the problem (A3P) defined based on
the ordering D; < .-+ < Dy;

1) X*>o0.
2) D* satisfies lemma B.1 when X = X*.
3) D* e H™.

4) Complementary slackness is satisfied; i.e.:

A:[(Rl+"‘+Ri)(l‘+-R"+l+"'+RV) —RlD;—"'—R.'D: =0 i=1,...

pp— Ry —---— Ry)
5) A; <. < Ay.

Corollary B.1: Let D* and X* satisfy theorem B.1. Then for all¢,i =1,...

1 \4
RO =32

=t
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Alg_P7'P: This algorithm produces the optimal solution to the problem (Pre).
Let T € N be a given number.

1) Initially arbitrarily label the v.c.’s 1,--- ,Vandset T=1,X=0,0=0.
2) For i < T let D; stay constant.

For 1 > T let:
D; = [C{]7Y(R:v)

provided that this expression is well-defined. Otherwise if v is such that [CI~Y(Rn) =
0 for some ¥ > 7 we set D; = 0 and if [Ci]71(R:7) = oo for some § < 5 we set D; = oc.
3) Find the minimum 4 such that the following constraints are satisfied, where the la-

belling of the v.c.’s T,...,V is defined by the ordering of the delays:

RiDi+--+ RpDp > Fat "+ Rr)(u+ Bry1 +--- + Ry)
- p(p— Ry — -+ - Rr)

2

Ry +---+ Ry_;)(u+ Ry)
B(p—Ryi—---— Ry_,)
Ry+---+ Ry
p—Ry—---—Ry

R\Dy+:-++Ry_1Dy_; > (

RByDij+--+ Ry Dy >

4) Let ¢’ be the highest constraint satisfied with equality. Set:
a) Ay — 9
b) Ar_1 —Ar ;-7
c) D; — CI~Y(Riv) 7=T,...,¢
d) T—i'+1

5) if T > V stop, else go to step 2.

The problem in the user—oriented approach, called (P2?), is defined as follows:

min %(CI(DI),...,CV(DV))
(PZ7)
D realizable using a non-preemptive queuing strategy
where it is now assumed that the cost functions satisfy assumptions (A.3.2).

Similarly as in the case of the problem (P.) in chapter 3 the optimal solution of (Pzr)

can be obtained by solving an hierarchy of nested problems. The first problem minimizes the
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worst delay cost, and in general the k** problem minimizes the k** worst delay cost subject
to not increasing the delay costs assigned in the previous problems. The first problem,

called (PJ), can be written as:
min 7
(PR Ci(D;) <m
D realizable using a non-preemptive queuing strategy

We have the following result:

Lemma B.2: Assume that the cost functions are convex. Then (D*,~;) and ¢* are

respectively an optimal solution to (P:' %) and a Lagrange multiplier vector if and only if:

1) ¢* 20

2) D* is realizable using a non-preemptive queuing strategy.
3) Ci(D;) < 13-

4) ¥} = 0if Ci(D}) < max;<j<v C,;(D3).

5) D* = argming .. ble using a non—preemptive queuing strategy Z.Y=1 %;Cy(D}).

The k** problem in the hierarchy, which is called (PoR), is defined as:
min Tk
Ci(Di) v i¢ I

(Pok)
D; ¢ € Ii as determined in one of the problems (P:";-), J=1,... k-1

D realizable using a non—-preemptive queuing strategy

Iy is the set containing the identity of all the v.c.’s whose delay has been assigned in one
of the problems (P;F), 5 =1,...,k — 1. The delays assigned in the kt* problem are the
delays of the v.c.’s whose cost is equal to the optimal value of the problem and whose delay
cannot be reduced without violating feasibility or having to increase the delay of another

v.c. whose cost is at least as high as the optimal value of the problem.

We have the following facts:
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1) With a trivial modification lemma B.2 is applicable to the problem (P]%). The modifi-
cation is that only the v.c’s whose delay has not yet been assigned are actively consid-
ered. The v.c.’s whose delay has been determined in previous problems only affect the
current problem through their impact on the set of delays realizable by non-preemptive
queuing strategies.

2) The delays are assigned in increasing order. For example the delays assigned in the
k** problem are all larger than the delays assigned in the k—1!* problem but are all
smaller than the delays assigned in the k+41t* problem.

3) The v.c.’s whose delay are assigned in a given problem are of lowest non—preemptive
priority compared to the v.c.’s whose delay was assigned in previous problems but have

full non-preemptive priority over the v.c.’s whose delay will be assigned in subsequent

problems. ’

These results demonstrate that the strong coupling that exists between the problems
(P,) and (P,) in the preemptive case is still present in the non-preemptive case.

The algorithm that solves the problem (P2P) is obtained from Alg_P, by accounting
for the fact that the feasible delay set is slightly different. This algorithm, called alg Pr?,

is given below.

Alg_P2P: This algorithm produces the optimal solution to the problem (P7?).
Let T € N be a given number.

1) Initially arbitrarily label the v.c.’s 1,...,V and set T = 1,vy=0,D=0.
2) For ¢ < T let D; stay constant.

For i« > T let:

D;=C7'(v)

provided that this expression is well-defined. Otherwise set D;=0.
3) Find the minimum 5 such that the following constraints are satisfied, where the la-

belling of the v.c.’s T',...,V is defined by the ordering of the delays.
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R\Dy+---+RpDp > (Ri+---+Rr)(u+ Rry1+---+ Ry)
= R R Rp)

> :
Ry+:--+ Ry_ R
RlD1+'"+RV—1Dv-12( 1+t Ryoy)(w+ Ry)
p(p = Ry~ = Ry _y)
Ry 4.e.
RyDy+:--+ RyDy > 1t + Ry
4— Ry —---— Ry

4) Let 1/ be the highest constraint satisfied with equality. Set:
a) Dy =CJ._1(7), J=7T,...,¢
b) T=1+1

5) if T > V stop, else go to step 2.

Finally from the similarity between Alg_P]? and Alg_PrP it is clear that theorem 3.4
can be extended to the non-preemptive case. N amely we have:
Theorem B.2: Assume that the functions C;(-),i =1, ... ,V, satisfy assumptions (A.3.1)
and that the functions C/(-), { = 1,...,V, satisfy assumptions (A.3.2). Then D* is the
optimal solution of the problem (Pr*?) with cost functions Ci(-)i=1,...,V,if and only if

it is the optimal solution of the problem (P2?) with cost function 7CI()i=1,...,V.
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Appendix C: Complement to Chapter 4.

C.1 Proof of theorem 4.1.

1) Forward implication.

We use a contradiction argument. Let { be one index for which Z; is not optimal.

Accordingly, there exists Z; € X; satisfying:

f(&, - By, 80y By, -, E0) < f(&,...,58 (C.1)

from which it immediately follows that (#3,...,%3) is not optimal, providing the required

contradiction.

2) Reverse implication.
We again use a contradiction argument. Assume * = (3, .. .,Z;,) is not optimal.

Accordingly, there exists Z = (Z,,..., £,) satisfying:
1) > 1(3) (c2)
In view of the convexity of f(-) this means that:
ViE)E-7) <0 (C.3)
From this equation we must have for at least one s:
V(&) (& -2) <0 (C.4)

where V f;(-) stands for the subgradient of f(-) containing only the coordinates in Z;.

It follows immediately from equation (C.4) that z} is not optimal for its subproblem,

which is a contradiction.

Q.E.D.
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C.2 Proof of lemma 4.1.

Let @' be any ordering on link { valid for the assignment D*. By assumption we have

w} < wh. Also, there exists k, w} < wh < w}, such that the feasibility constraint wh,

is satisfled with equality and such that the feasibility constraints wh 1 .,w;-_l are all

satisfied with strict inequality. From this, it is easy to see that initially:

D! < Ri [B‘(wi,u‘;", R) - B'(wl. - 1,13‘,1?)] (C.5)
k
1
Ep | wi<w:,5w;. RP

]
D! >

[B‘(w;.,.z‘, R)- B'(uw}, &, E)] (C.6)

where equality is achieved in the first equation if k = ¢ and if v.c. ¢ is of lowest priority
as compared to the v.c.’s in position 1,... ,wf- ~ 1, and where equality is achieved in the
second equation if D} = D}, for all p, w} < w, < wh, and if v.c. j has full priority over the
v.c’s in position w} +1,...,V*.

It follows imrﬁediately from equations (C.5) and (C.6) that:

P" Ep | wiﬁw},ﬁw} RP

D! -D!> (c.7)
’ ('u‘ - Ep | wl<w} RP) (I‘l - Ep | wli<w} RP) (#l - Zp | W;Sﬂl:- RP)
so that, using assumption (A.4.1.1), we obtain:
!
! ] b Ky
- — D> .
Dj-pi> {5, ©8)

Now, assume that R; > R; (this assumption is not restrictive, as we will soon see) and
consider a cascade scheme in which all the packets of v.c. § are routed to the entry port of
v.c. 7, and in which a proportion % of the packets of v.c. j are routed to the input port
of v.c. 1. This situation is depicted in Figure C.1.

It is easy to see that the rates at the input ports of v.c.’s f and J are still respectively
R; and R;, which implies that the delays of the v.c.’s k # 1, 7 are identical in the two

systems. Denoting by D! and D’ the new delays of v.c. i and j, it is easy to see that:

D! = D! (C.9)

i B ) D (C.10)



v.c. i—e 1 v.e. t )
cascade cascade
scheme scheme
Ri/R;
Ve J e v.e. ] — ]
(Rj = R:)/R;
a) Initially b) Modified
Figure C.1
From equations (C.8), (C.9) and (C.10), it follows that:
Di=D'> _“ilil_
* P - (K2)3
bt pt < BEL o
3 7= R, (K,)?

Using the convexity of the set of strictly feasible delays, this implies that for all A satisfying:

Rip!(K,)?
—_— C.12
acl, R;(K»)* ] (¢12)
the assignment:
Di =D; + %
A (C.13)
DJ' =DJ' - E

is strictly feasible. As RB; < p! forall j € V!, it immediately follows that the proposition
holds for Ky = (K1/Ka)®.

Using a completely analogous argument, it is easy to see that the preceeding result also

holds when it is assumed that R; > R;.

Q.E.D.
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C.3 Proof of Theorem 4.3.

The overall idea of the proof is to modify slightly the cost functions so as to make the
assignment 5 optimal.

Assume that the v.c.’s are labelled in order of decreasing marginal delay cost per unit
rate. That is the v.c. labelled 1 is such that RLIC{ (D1) is not less than R%C{(f),-) for any
other v.c. 1, the v.c. labelled 2 is such that R%Cé (D3) not less than zC! (D) for any other
v.e. £ # 1, etc.

Consider the set of v.c.’s F; = {1,...,q,} defined as follows. V.c. 1 is always in F.
In general, v.c. ¢ is in F if there exists a v.c. i € Fy, T # 1 such that:

ZCHD) 2 2-CUD:) - (€14

It is easy to see that if v.c.’s ¢ and k are in Fy, then all the v.c.’s 7,8 <3<k, arein F;.

By construction if i € F; and i ¢ Fy, then:

Leupy - Los,
7 CHD) - Z-Ci(DD) >~ (C.15)

This means from condition (3) of the theorem that all the v.c.’s in Fy have full priority over

the v.c.’s not in Fy. For ¢ € F; define a new cost function C:"() as follows:

é.'(D,') = C.'(D.') + &3 D; (C.lﬁ)
where:
ei=R, [Rilc;(f)l) - %c;(b.-)] (C.17)

Note that by construction &; > 0 so that the cost function defined in equation (C.16)

satisfies assumptions (A.3.1). Also:

i—1
) 1 ., .
i=R;Y | =-Ci(Dy) - —cC
=R L | U - el (Den)]
SE(i- 1)y
S(m‘axu‘)V'y (C.18)
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Now define F; = {q; +1,...,¢q2} in a completely analogo'us manner as F;. That is v.c.

q1+1is alwaysin F,. V.c. i is in F, if for some other v.c. i Fy:
YDy > —CHDs) - 4 (C.19)
R; R;

For ¢ € F; define the cost functions:

é,'(D,‘) = C,'(D,') +€; D, (C.20)
where:
1 a 1 A
= B =l ea(Dass) - HCHD) (c21)

Similarly as before we find for all § € F,:
0< e < (max YV~ (C.22)

and that the v.c.’s in F, have full priority over the v.c.’s not in Fy or F,.

Repeating this procedure, a sequence of sets Fy,...,F, will be constructed. The
v.c.’s in the k** set Fp = {qx_; +1,... »qk} have full priority over the v.c.’s in the sets
Fry1,... Fm and are of lowest priority as compared to the v.c.’s in the sets Fy,...F,_;.
Each v.c. 1 € Fy has a new cost function é.() defined in a completely analogous manner as
in equations (C.20) and (C.21). Accordingly, it follows that equation (C.22) holds for all 1.

By construction we have for all Fy, k = 1,...,m;

) A 1 = . ,
EC:(D‘) = ﬁc‘;h—l"'l(p‘u—l'*'l) for all ¢ € Fk (C.23)
k-1

It is easy to see in view of equation (C.23), the strict feasibility of B, and the construction
of the Fi, k = 1,...,m, that Dis an optimal solution of the (N P,) problem with cost
functions C;(-), i = 1,... ,V. Thus:
v v
D CiD)+e&:Di= min 3 CiDy)+eD;

i=1 D feasible i=1

< XV:C;‘(D:) + ¢;D; (C.24)

i=1
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where D* is any optimal solution to the initial (N P,) problem. It follows from this equation

and equation (C.22) that:

\ 4
(D)~ §* <3 (D} - D))

< V*(max ') (max | D} — Dil)y (C.25)

From the condition (2) of the theorem, we know that D and D* lie in a bounded set. Let

D be an upper bound for this set. Then, it follows from the preceeding equation that:
S(D) - 8* < 2v? (m‘a.x #') Dy (C.26)

Thus, setting K¢ = 2V %(max; u!) D proves the theorem.

Q.E.D.
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C.4 Generalization of Alg_NP,_a in the case where ¥4 = 0 is allowed.

In this section we show that the convergence properties of Alg_NP,_a established in
section 4.3.2 are maintained when 44 = 0. The only things that need to be modified to
account for the case v4 = 0 are the proof of theorem 4.2 and the discussion of PP. 98-99. on
the convergence of the version of Alg_NP,_a presented in section 4.3.3. It is not difficult to
see that if theorem 4.2 can be extended to the case v4 = 0, it will also be possible to modify
the discussion of pp. 98-99 so as to hold when 4 = 0. For this reason we concentrate in
this section on a new proof for theorem 4.2. We leave the generalization of the discussion
of pp. 98-99 to the reader.

In the proof of theorem 4.2 all the arguments except the argument used to show the
convergence of the delays hold when y4 = 0. Thus, to generalize theorem 4.2, we only need
2 new argument for showing the convergence of the delays which holds when 74 = 0. The
aim of this section in to present such an argument. The basic idea consists of showing first
the convergence of the delay of one v.c. Then, using this result, it will be possible to show
the convergence of the delay of a second v.c. Generalizing the procedure, we will be able to
show that all the delays converge.

We now prove that all the D!, i =1,...,V,l e £;, converge. Apart from the possibility
that 44 = 0 we make the same assumptions as in theorem 4.2. Also, as in theorem 4.2, we
prove the result for the version of Alg_N P,_a defined in section 4.3.1.

Define:
By (k) = max R%_c; (Dj(¥) (C.27)

It is easy to see that B, (k) is a non-increasing function of k.

Let ¢ be a v.c. such that at time k > 0:
7 CHDAY) = Bi(® (C.28)

Assume that there exists a finite k& > k such that:

Di(k) < Di(k) - 2 (C.29)
Assume also that k is the smallest time after k at which equation (C.29) is satisfied.
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We show that when k exists then:
a) All the updates involving v.c. 7 in the interval [k, k] result in D; being reduced.
b) For all k > k, Dy(k) < D;(k) — e4/L.
Proposition (a) holds by definition at times k and k. To see that it holds for all
k € | k, k[, assume by contradiction that it is false. Accordingly, there must be an update in
the interval | k, k[ resulting in and increase of D;. Assume w.l.o.g. that the update occurs
with v.c. 5 on link [ at time k. Since D; increases, we must have:

Lo (@ (k=) — ey — Bny _ L gl i An
R,-Cj(dj (k7)) —eq R,') R,-C' (a; (k™) +ea+ &) > 4 (C.30)
Using equation (4.7) and the facts that 44 > 0 and that the functions Ci(-) and C}(-) are

non—decreasing, this implies:
1 C’ (D -(k')) > L Cf(D-(k') +4 (c.31)
R; 1V R, V¢ L

Since k= € | k, k[, we have D;(k) < D;(k~) + €4/L, so that we get from equation (C.31):

1, (- i (D
7 Ci(Dilk7)) > 2-Ci(Di(k) (C.32)

> By (k)
This implies that By(k~) > B,(k), contradicting the fact that By (-) is non-increasing.
Thus, proposition (a) is proven.
Proposition (b) holds by definition at time k. We show that it also holds for k > k
by contradiction. Indeed, suppose that the proposition is false. Then, there must occur an

update after time k, say at time k, which causes the delay of v.c. 1 to satisfy:
€4
Di(k) > Di(k) - (C.33)

Assume w.l.o.g. that the update is made with v.c. J on link /.
It is clear that the update causes D} to increase. Accordingly equation (C.30) holds.

Also, from the update rule (4.9), we know that:

D

n

D;(k) - Di(k™) <
(C.34)

D ;_ql

D;(k7) - Dj(k) < ==

)

)

178



Starting with equation (C.30) and using successively equations (4.7), (C.34) and (C.33), we
get:

1

, 1,
7;C1(D3()) >2-Ci(Di(k))

> B, (k) (C.35)

which again contradicts the fact that B(-) is non-increasing. Thus proposition (b) also
holds.

It follows from propositions (a) and (b) that the link delays of at least one v.c. must
converge. Indeed, suppose v.c. { satisfies equation (C.28). If there is no k such that
D;(k) < Di(k) — €4/ L, proposition (a) guarantees that all the updates involving v.c 1 after
time k reduce D;. As the total decrease of each D! is bounded below by €4/L (otherwise &
would exist), this implies that all the D!, l € L;, converge.

On the other hand if there exists a finite %, then proposition (b) guarantees that for
all k > k:

D;(k) < D;(k) — e4/L (C.36)

Now we can repeat this argument for k > k& and, in fact, we can continue as long as
finite k£ can be found. If there is always a finite time k such that equation (C.36) holds
for k > k, then, as the number of v.c.’s is finite, there must be at least one v.c. whose
delay converges to ~oco. Clearly this is impossible as we know that strict feasibility is
always maintained. Thus, we must eventually be unable to find a finite k. At this time,
the argument of the preceding paragraph will apply, which guarantees that there is at least
one v.c., say f, whose D!, I € £,, converge.

Let ¢ be the v.c. whose link delays converge, and let ko be a time such that for all
le L; and k > kq:

| Di(k) - Di(ko)| <

(C.37)

Assume also that kg is such that all the updates involving v.c. 1 after kq result in a decrease
of D;. It is easy to see from the preceeding discussion that a kg satisfying these conditions

can always be found.
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Define:
By (k) = max - % 1o 1 (D;(k)) (C.38)

We now show that for any k; > kg and 5 # 1:

By(ky) > R%-C} [D,-(k,) + %(D,—(k,) - D,-(Icl))] for all k; > k, (C.39)

We use induction on the sequence of updates occuring after time k;. Let 7 be the time

of the first update occuring after time k;. Then by definition equation (C.39) holds for all

k2 € [k1,7[. Now we show that it also holds for k; = 7; i.e., that the equation is maintained

after the first update. We distinguish two cases depending if v.c. 1 is involved in the update
or not.

First assume that v.c. ¢ is involved in the update. More specificaly assume w.l.o.g.

that the update is between v.c.’s { and j and occurs on link /. Because strict feasibility is

maintained, we have:
R;(Di(r) - Di(r™)) = —R;(D}(r) - Di(r™)) (C.40)

Using this equation it is easy to see that:

Dj(r) + %(Di(f) = Di(k1)) = Di(r) + }%(Ds(f") — D;(k1)) (C.41)

which implies that equation (C.39) is still satisfied at time r.

Now assume that the update occuring at time r does not involve v.c. . Assume w.l.o.g.
that the v.c.’s involved are j # ¢ and p # 1, that the update occurs on link /, and that Dg-
decreases. Since D;- decreases equation (C.39) stays obviously satisfied for 7. Concerning p
it is known that:

2 1o (@) — e - —) - c' (Al (™) +ea + —) > 74 (C.42)

Also, we have from equation (C.37):

7 1D:0) - Difk)] < 2 (c.3)
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Using this equation we get:

D,y(r) + %(D;(r) ~ Dik)) < dV(rm) 4 eat % (C.44)

Similarly it is easy to see that:

- (C.45)

1, A ¢ p.r)+ B (D) - D
4 (r7) —eq— & < D(r7) + 2 (Di(r~) = Di(ky))
Starting with equation (C.42) and using equations (C.44) and (C.45), we get:

20 [Po) + 2 (0ut7) - Ditk)] < 03[0 + 2 (D7) - Dige)]
< Bz (ki) (C.46)

where the last inequality follows from the fact that equation (C.39) holds at time r-.

The last equation shows that p satisfies equation (C.39)-at time r. Thus, in all cases,

equation (C.39) is maintained after the first update. This argument can straightforwardly
be generalized into an induction argument. We leave this task to the reader.

Let j be a v.c. such that at time k > ko we have:

1
;€1 (Di(k) = Bs(k) (C.47)
Assume that there exists a finite time k > k such that:
(C.48)

D;(k) < D;(8) - 5

Assume also that k is the smallest time after k at which the preceeding equation holds.

We show that if k exists, then:
c) In the interval [k, %] any update between v.c. Jand a ve. p# 4 resultsin D;

being reduced.

d) For all k > k, D,(k) < Dj(k) — eq4/L.
Note that there is an obvious similarity between these propositions and the propositions

(2) and (b) discussed above.
Proposition (c) holds by definition at time k = k and k. To see that it holds for all

times in the interval | k, k[ assume by contradiction that this is not the case. Accordingly,
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assume w.l.o.g. that an update between v.c.’s j and p # 1 occurs on link [ at time k € |k, k|,

and that the update causes D;' to increase. If this is the case we must have:

1 _ 1 A,
Ec,;, (AW (k™) — g — ) - c’ 1@ (k) +ea + R—,) > Y4 (C.49)
From this equation, we easily obtain:
/ / A,
—c * (Dp(k™) - —-—) > c (Dy(k7) + 22 +F) (C.50)
3
Also, since k > ko, we have using equation (C.37):
D(k) - % - 22 < b,k + & (0,(8) - D) (1)
I E R,
and, since k™ € | k, k[;
D;(k™) > Dj(k) - ef (C.52)

Starting with equation (C.50) and using equations (C.51), (C.52) and (C.47), we get:
1, - : -
Z O [Del7) + 2 (06) - Du(w)] > B (C.53)

But this contradicts equation (C.39). Thus proposition (c) is proven.
Proposition (d) holds by definition at time k = k. To show that the proposition holds
for all k > k we assume by contradiction that the proposition is false. Accordingly, assume

w.lo.g. that an update occurs at time k > & between v.c.’s J and p # 1 on link ! and that

y

as a result, we get:
D;(k) > D;(k) - 7 (C.54)

For the same reason as before equations (C.50) and (C.51) still hold. Accordingly, starting
with equation (C.50) and using equations (C.51) and (C.54), we get:

20 (Do) + 7 (D7) - Do) > Ci[pi + 2

>5:C5(0,(®)

> By (k) (C.55)

contradicting equation (C.39). Thus proposition (d) is also proven.
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Now, similarly as in the case of v.c. ¢, we can show using propositions (c) and (d)
that there exists a v.c. 5 # 1 such that all the D:-, l € L;, converge. Indeed, suppose that
equation (C.47) holds. If there is no finite % such that equation (C.48) is satisfied, then
proposition (c) insures that, apart from the updates with v.c. ¢, all the updates involving
v.c. J after time k result in D; being reduced. However, as the Df,l € L; are non-increasing
and converge, we can make the overall impact of the updates with ¢ as small as we wish.
Thus, in this case, all the D%, l € L, converge.

If there is a finite k such that equation (C.48) holds for k > E we can use the exact same
argument as in the case of v.c. ¢ to show that the argument of the preceeding paragraph
must eventually apply.

We have now shown that there exists two distinct v.c.’s f and J whose delays D}, I € £;,
and D_f'-, l € L;, converge. Although the argument used for showing the convergence of the
Dl le L;,is not general, the argument used for j is general, and can straighforwardly be

generalized in an induction argument. This is left to the reader.
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C.5 Proof of theorem 4.4.

Our proof is very similar to a proof first proposed by Gallager [Gal77]. The overall
plan of the proof is the following. By upper bounding the magnitude of the first and second
derivatives of the objective function in the direction in which the update is made, we first
show that each iteration of Alg_NP,_e can only reduce the value of the objective function. |
Following this, we show that whenever the assignment at the beginning of an iteration is not
optimal, the iteration results in a strictly better assignment. Next we show that whenever an
assignment, say D, is sufficiently close to a given non-optimal assignment, the assignment
produced by Alg_NP,_e from D is strictly better than the given non-optimal assignment.
This result is essentially a continuity condition guaranteeing that any converging sequence
of delays converges toward an optimal assignment. Combining these results, we then prove
theorem 4.4.

We establish the results mentioned above through a sequence of several lemmas. Basi-
cally each lemma proves one result. First we introduce some notation and state some trivial
facts.

Let H* be the set of optimal solutions to (N P,). Also, let AP (D) denote the assignment
produced by by executing p iterations of Alg_NP, e, starting with D. For convenience we
also sometimes denote the assignment A(D) by D.

Define:

H={D|D>o0, s(D) < s(D0))} (C.56)

In view of assumption (A.4.1) and of the form of the cost functions, it is clear that H is
compact. It follows from this fact that there must exist strictly positive constants K7, K3

and Ky depending only on D(0) such that for all D € H:

D; < Kq (C.57)
Ci(D:) < Ky (C.58)
C(Di) < Ky (C.59)
Define:
H={D|D>0and for someBEH, ||B—5||$K10} (C.60)
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where Ko > 0 is some constant. Clearly, H is also compact. Accordingly, it follows that

there must exist a constant Ky; > O such that for all D € H:
C{(Di) < Ku (C.61)

Let D be an arbitrary strictly feasible assignment in H. We define U as the set of
updates resulting from one iteration of Alg_NP,_e starting from D. Each element of U is
a 5—tuple (u,ly, 7y, tu, ju) Which defines one particular update. u is a label identifying the
update. [, is the link on which the update occurs. r,, ¢, and j, are respectively the “rfj”,
“” and “5” of step 2) of Alg_NP,_e for the update.

For a given assignment D € H, define:
s(A) = S(D + A(A(D) - D)) (c.62)

Using a Taylor series expansion we easily obtain:

ds(A)
dA

1d2%s())
U
A=0

S(A(D)) - s(D) = (C.63)

A=As
where A* is some number in the interval [0, 1].

We use equation (C.63) to show that Alg_N P, e cannot increase the objective function.
The idea is to show that by choosing 7 small enough we can ensure that the first term in
the right hand side is sufficiently negative to completely dominate the second term. The
next two lemmas respectively provide a suitable bound on each of these terms. Then, in
the third lemma, we combine these results to show that ALg_NP,_e cannot increase the

objective function.

Lemma C.1:

o =- Z Tu (AC*‘-.J'..)2

Proof: Direct differentiation of s()) gives:

v

= =1

v
=§c;(u.-)[— > %AC;,-"+ > %Ac,-u,- (C.64)

ueUli=i, ucUli=j,
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Collecting, for each update, the two terms common to the update, we get:

ds(A) [ , Tu , Tu ]
= =YD ac,;, +ClL(Ds) 2 Ac, .
dA 1=0 “GZU .,( )R‘“ 2 Ju( J )RJ.. 2
=- z re(AC;, ;)2 (C.85)
ucU
Q.E.D.

Lemma C.2: Assume that:

Then for all A € [0,1];
dzs(A)
dA?

Proof: Direct differentiation of s(A) gives:

d%s())
dA?

= iC‘H(D' + A(f), - D|)) (IA), - Di)z (066)

=1
It follows from the construction of & and from the condition imposed on 7 in the lemma
that the assignments AD + (1 - A)B, A €[0,1], are in A. This implies using equation (C.61)

that for all A € [0, 1]:
v

< Ku ) (Di - D;)? (C.67)

=1

d?s())
dA?

Now, for all 1, we have:

1Di-Dif=| Y %“Ac.-,u + ¥ —Ac.,,.
uEU|i.—i UEUIJ“—‘I
<= E IreAC; ;.| (C.68)
uGU

Since there is at most one update per link the sum in the last equation contains at most L

terms. Using this fact and Cauchy’s inequality, we get:

(Di - D;)? < (K)zz(ruAC,u,u)z (C.69)

uelU
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Using this equation in (C.67), we get:

d?s())
dA?

VLKu
— (K )2 Z(T AC‘uJu

Lemma C.3: Assume that:

Then:

5(A(D)) - 5(D) < -5 Z ru(AC,;,)"
uGU

Proof: From equation (C.63) and lemmas C.1 and C.2, we get:

S(A(ﬁ)) -S(D) < - Z r(AC;, ;) + ‘Z/(II}K)I; Z(TuACSuJu 2
uclU
_ VLK11 . .
_ VLKu
s %:,[1 S| Ak
< —% ‘g r(ACy,5,)°

where the last step follows directly from the condition imposed on 7 in the lemma.

(C.70)

Q.E.D.

(c.11)

Q.E.D.

The last result shows that, whatever the current assignment D may be, the assignment

A(D) cannot be worse. However, this result does not guarantee that when D is not optimal

A(ﬁ) actually improves the situation. This, however, is the case, as the next result shows.

Lemama C.4: Let D€ H— H* be a strictly feasible assignment. Then one iteration of

Alg_NP,_e with D results in at least one update.

Proof: We argue by contradiction. If there is no update it must be that whenever a v.c. ¢

does not have full priority over another v.c. J, the condition:

Loy =

R‘ C, (DJ)
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is satified. But, as D is strictly feasible, this implies that D is optimal, contradicting the
fact that D € H — H*.

Q.ED.

The next lemma is a trivial technical result.

Lemma C.5: Let D € H be a strictly feasible assignment. Let 13 € H be any strictly

feasible assignment satisfying:

Qu

ID-Dll<e

Then, for € > 0 sufficiently small, the following conditions hold. For all 1, j:

! ! Al P
1) D; < D; = D; < D;

1, 1, 1, - 1, -
2) EC‘-(D:') < ECJ'(DJ') => EC.'(D-') < 7:Ci(Dj)

J

3) If for some AN;; the assignment:

AN

Dt pi- ANy
R;

AN;;

D‘. -— Dl. + i}
) J R;

is strictly feasible, then the assignment:

- ~, AN,

DiDi- 5!

. - AN

b Dy 274
Dj—D;+ 2R,

is also strictly feasible.

The proof of this result is left to the reader.

The first two conditions guarantee that in a sufficiently small neighbourhood of an
assignment the constraints imposed on the ordering of the delays and on the ordering of
the marginal costs by the assignment prevail everywhere in the neighbourhood. The third
condition guarantees that if an assignment D can be updated in a certain way, then the

assignments in the neighbourhood of D can also, to a substantial extent, be updated in the

same way.
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Our next objective is to establish a continuity condition which will essentially guar-
antees that any converging sequence generated by the repeated application of Alg NP, e

converges toward an optimal solution.

Lemma C.6: Let D€ H— H* be a strictly feasible assignment. Also, let 5 € H be any

strictly feasible assignment satisfying:

Gu

ID- Dl <e (C.73)

Then, for € > 0 sufficiently small, we have:

S(A(D)) < (D)

Proof: First note from equations (C.59) and (C.73) that for all i, 7
|AC:;(in D) — AC;(in D)| < Kyze (C.74)

where K32 > 0 is a constant depending only on Ky and on the rate assignment. (We
explicitly indicate here the dependency of AC;; on D because our shorthand notation
would otherwise be confusing.)

Since D is not optimal, lemma C.4 guarantees that one iteration of Alg NP, e with D
results in at least one update. Accordingly, let u be one of these updates.

Assume that ¢ is sufficiently small to insure that the propositions of lemma C.5 hold

and consider the update:

- - T .=
Dl Df: - -—AC;,;.(in D)

tu
N RT‘ . (C.75)
DJ.: — D,': + EAC,-“J-“ (in D)

If AC;,,.(in D) and AC;,;, (in 5) were strictly equal, it would follow immediately from
proposition 3 of lemma C.5 that the assignment produced by the update (C.75) would be
strictly feasible for r = 17,(in D) (again, we explicitly indicate the dependency of r, on
D because our shorthand notation would otherwise be confusing). We do not have strict

equality between AC;,;, (in D) and AC;, ju(in 13) but, however, equation (C.74) guarantees
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Tu(in 5) > % «(in D) (C.76)
From equations (C.74) and (C.76), we get:

ru(in D)(AC,,,. (in D)?> 1 6 D)(AC;, ;. (in B) - Kyze)?

CO| i QO bt

2 ru(in ﬁ) (AC,"‘J'“ (m ﬁ)) 2 + K13€ + K14€2 (077)

where K3 and K 14 are some strictly positive constants independent of .
We also have:
IS(D) - S(D)| < Kyge (C.18)

where K15 > 0 depends only on Kj.

Now from lemma C.3 and the update rule we have using equations (C.77) and (C.78):

S(4(D)) < —%ru(in D)(AC.,.(in B))? + s(D)

< —ér.,,(in D)(ac.,,, (in B))? 4 (% + Kls)e + %52 +8(D) (c.19)

The first term in the right hand side is independent of ¢ and, by assumption, it is strictly

negative. Thus, for ¢ small enough, we obtain:

S(A(D)) < s(B) (C.80)

Now, we are ready to prove theorem 4.4. The proof is essentially identical to the proof

of lemma 7 of [GaIT‘T]. We provide it here for completeness, Of course we assume that 7



the sequence must have at least one converging subsequence. Let {(A" (ﬁ(O))} o be one

ke
such subsequence and let D* € H be the point to which the subsequence converges.
Since S(:) is continuous:

S(57)=, lim__s (A" (B(0))) (C.81)

which, in view of the fact that S (A"()) in non-increasing in k, imply:

S(B*) = lim .S'(A" (13(0))) (C.82)

k— o0

Namely, the whole sequence converges to S (ﬁ'). To prove the second proposition it is
sufficient to show that D* is an optimal solution. We argue by contradiction. Suppose D*

is not optimal. Take k € © such that:

||4*(D(0)) - B

[<e (C.83)

where ¢ is sufficiently small to insure that lemma C.6 holds. Since the subsequence converges
to D*, it is clear that a k such that equation (C.83) holds can always be found. Accordingly,

lemma C.6 insures that:

S(A""‘l(ﬁ(o))) < S(D*) (C.84)

since S (A"()) is non-increasing in k this implies that equation (C.82) is false, which is a
contradiction.

Q.ED.
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Appendix D: Complement to Chapter 5.
D.1 Proof of lemma 5.1.

Let (I:%, N ) and (}:é, N ) be two weakly feasible assignments on link / and consider the

assignment:

(B, ¥) = o(R, ) + (1~ a)(&, F) (D.1)

We must show that (&, N) is weakly feasible on link  for any a € [0,1]. Clearly, for all
eVt

Ri=aRi+(1-a)R;

>0 (D.2)

and:

D R=a) Rt+(1-a)) A

1€V eVt i€Vt
1 l
Sop +(1-a)u

< (D.3)

To complete the proof it remains to show that (E, N ) satisfies equation (5.4). Let g
be any non-empty subset of V¢. Since (I;i.', N ) and (Izé, N ) are weakly feasible on link {, we

have from theorem 2.2;

d N> M (D.4)

Using these equations and the convexity of the function f (z) = z/(n — z), it follows that

foralla e [0,1]:

ZN}:aZﬁH(l—a)Zﬁ:

i€y i€g i€y
> QZ‘LR"‘_ + (1 - Q)M
W= Ty B W= e, B
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Ligo[oRi +(1-0)R)]
T =i [eR + (1- @)&)]
! gR"

As g is arbitrary it follows that equation (5.4) holds for any ordering w' valid for the
assignment (&, N).

Q.E.D.
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D.2 Proof of theorem 5.1.

In view of the form of the cost functions it is not difficult to see that (FC,) can be
written as: -
min S(R, N)
(D.7)
{Ri, N{, i€ V', weakly feasible} I=1,...,L
Indeed this follows immediately from the fact that any optimal solution to this problem
must in fact be strictly feasible. By definition of weak feasibility and using theorem 2.2 this

means that (FC,) can be written as:
min S(R&, N)

R;>0 i=1,...,V

DRy I=1,...,L (D.8)
€Vt
Y N> ‘E"G"R" forallg' V!, 1=1,...,L

It is easy to see that the set of feasible assignments in (D.8) is convex, and that it contains
a strict interior point. Moreover in view of the form of the cost functions it is also easy to
see from (D.8) that (FC,) has at least one optimal solution.

Define the dual functional:

7(¢) = min{i Gi(R, V) +i S (% -2 N"‘)}

i=1 I=1gcyr KT iegt
R>0 i=1,...,V (D.9)
DR<H I=1,..,L
e

g;, 1s the dual variable associated on link ! with the constraint defined by the set g'!. Be-
cause the set of feasible assignments in (D.8) contains a strict interior point theorem 3.1
guarantees the existence of a Lagrange multiplier vector ¢*. Furthermore we obtain from
theorem 3.2 that (E*,N*) and ¢* are respectively an optimal solution to (FC,) and a
Lagrange multiplier vector if and only if the following conditions hold:

C.D.1.1) (R*, 1\7.‘) is strictly feasible.
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C.D.1.2) ¢* > 0.
C.D.1.3)Foralll=1,...,L, and g* C V};

s;:’(—”e L SN ) =0

169‘ ] |eg

C.D.1.4) (R*, N*) achieves the minimum of q(¢) for &= ¢*.
We are going to show that these conditions are equivalent to the conditions (1)-(3) of
theorem 5.1. First we show that if (R*, N*) satisfies the conditions of theorem 5.1, then it

also satisfies the conditions given above. Following this the reverse implication is shown.

1) (R*, N*) satisfies theorem 5.1 = (R*, N*) satisfies conditions (C.D.1.1)—(C.D.1.4).

Condition (C.D.1.1) is true because it is identical to the condition (1) of theorem 5.1.
Forl =1,...,L, let & be an ordering on link / valid for the assignment (ﬁ‘,ﬁ‘).
Take a particular link {, ! = 1,...,L, and consider the (P!) problem that can be defined on
link [ using the assignment (R*, N' *). Namely this problem is:
min »_ C}(D})
i€Vt (D.10)
D! ieV, strictly feasible

where for all { € V¥:
Ci{DY) =Gi[R;,R}( > D;'+ DY) (D.11)
lec,, i
By assumption D} !, i € V!, is the optimal solution to this problem. Accordingly it follows

from theorem 3.3 that there exist AL !, k=1,..., V¢ satisfying:

At>0 k=1,...,V} (D.12)
.l ] =l Du - ) _ _ {
A (Bk, ' B - Y N =0 k=1,...,V (D.13)
plw!<k

Forl=1,..., L, consider the assignment;

$qt

el el < - t
-l={’\k’ fg={p|lw, <k}, k=1,...,V (D.14)

o, otherwise

From equations (D.12) and (D.14) we get condition (C.D.1.2). Also from equations (D.13)
and (D.14) we get condition (C.D.1.3).
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For the dual variable assignment given by equation (D.14) the dual functional can be

written as:
L v
q(s* )—mln{z Gi(Ri, N:)+ ) > AL (Bl(k, &, B*) - > N ‘)} (D.15)
=1 =1 k=1 p|wlp_<_k

R; >0 i=1,...,V
S R<H I=1,.,L (D16)

eVt
Clearly, (R*, N*) satisfies equations (D.16). Indeed this follows immediately from the fact
that (R*, N*) is strictly feasible.

To complete the proof we must show that (RB*, N *) minimizes the expression in the
right hand side of (D.15). As this function is convex over the set defined by equations
(D.16) a sufficient condition for proving that (R*, N*) minimizes it is that all the partial
derivatives vanish. Evaluating the partial derivative with respect to B;, 1 =1,...,V, we

get the equation:

Vl
a -
spC{(BLN)+ D0 > BU(k,d, B At =0 (D-17)
lel; k:w:
As N* is is optimal for B* it follows that corollary 4.2 applies. Accordingly for any
ve. 1,1 =1,...,V, we have for all { € £;:

i
AP AN
GBI V) = 3 N (D.18)

k=w:.

Using this equation to eliminate the A; ! in equation (D.17) we obtain:

a (P Yy __ e 1 =l pu | P* *
aRG‘(Ri!Ni ) - _,§{B (wi)w B )—Gi(Ri:Ni)

d

+ Z [Bh(wl -l R )—B"(w wl’}i'-]ﬁG,-(R;,N;)} (D.lg)

ilw}>w!

This condition is precisely the condition (3) of theorem 5.1. Thus, by assumption, it holds
foralli,i=1,...,V.
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Similarly, evaluating the partial derivative of the expression to be minimized in the
right hand side of equation (D.15) with respect to Nf, i =1,...,L, | € £;, we obtain the
equation: y

%G‘-(R;, N;) - EZWI At=0 (D-20)
Clearly equation (D.18) guarantees that this equation holds for all i, § = 1,...,V, and
l € £;. This shows that condition (C.D.1.4) alsc holds, which completes the proof of the

first implication.

2) (R*, N*) satisfy conditions (C.D.1.1)~(C.D.1.4) = (R*, N*) satisfy theorem 5.1.

Condition (1) of theorem 5.1 holds because it is identical to condition (C.D.1.1). Con-
dition (2) of theorem 5.1 follows from the fact that if (B*, N*) is an optimal solution to
(FC,), then it is not possible to reduce the objective function value by adjusting N for
the optimal R*, so that N* must be an optimal solution of the (NP,) problem obtained
from (FC,) by setting B = R*. Also condition (C.D.1.4) implies that R* satisfies equation
(D.19), which is condition (3) of theorem 5.1.

Q.E.D.

197



D.3 Proof of lemma 5.2.

Before proving lemma 5.2 we first introduce a simple technical result. The result states
that when in a strictly feasible assignment two v.c.’s have the same delay on a link, the left
hand side of the feasibility constraint containing only one of the two v.c.’s is larger than
the right hand side by a positive amount depending only on the rate assignment. Note that
if two v.c.’s have the same delay on a link the feasibility constraint on the link containing
only one of the two v.c.’s must be satisfied with strict inequality. Indeed if this was not the
case it would follow that one v.c. has full priority over the other, so that their delays would
not be equal. The result of the lemma tightens this fact by lower bounding in terms of the

rate assignment the difference between the left hand side and the right hand side.

Lemma D.1: Let (R, N ) be a strictly feasible assignment and let %' be an ordering on
link { valid for this assignment. Assume that there exist X 1 >0 and K3 > 0 such that:
R>K foralic?’
u - Z R > K,
PEWV!
Assume that D} = Dj for some 1, j € V!, i # J and also assume w.l.o.g. that w! < w;.

Then:

1 3, (K1\?
Z N;ZB'(w,‘-,w‘,R)—f-(F:)

plwl <w!

P—=""4

Proof: First suppose that { is the v.c. with the highest position in the ordering (i.e., suppose

that w! = 1). Then we have:
S M-n ¥ g, (02
plwj <w! plwj<w!}
Also since the assignment is strictly feasible:
Y N> B'(v,d R) (D.22)
p|w;5w.".
From equations (D.21) and (D.22) it follows that;

1

D! >
* /"‘ - Zp[w{,ﬁw;. R.‘f

(D.23)
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Multiplying both sides of this equation by R; and rearranging the right hand side we get:

N> B + R‘.E’""k'"‘pﬁ‘"; B
r = IJ-‘ - Rg (u‘ - R‘)(“l - EPIW;SW; RJ)
. Ki\2
> ;“I—le,' + (F:) (D.24)

where the last step follows immediately from the conditions imposed on the rate assignment
in the lemma. This proves the result when 1 is assumed to have the highest position in the
ordering. As a consequence we can assume for the remaining of the proof that 1 is not the
v.c. with the highest position in the ordering.

Consider the problem:

(R, N ) strictly feasible
@ is valid for (&, &)
We first show that in any optimal solution to this problem the v.c.’s in position 1, ... ywi—1
have full priority over v.c. i. We use a contradiction argument.
Let (R,N*) be an optimal solution to the problem and assume that it is such that
some v.c. ¢ satisfying w; < w! has not full priority over v.c. 1. W.lo.g., assume that q

satisfies:
D; t< D, ! for all p such that w:, < w;

l t ! l l (D-25)
D; " = D; " for all p such that w, < w, < w;

A typical example illustrating the choice of q satisfying these constraints is depicted in

Figure D.1.

Also let r be the v.c. satisfying:

D;'=Dp;!
(D.26)
D;'> D} ! for all p such that w,', > w!

It is easy to see that the constraints of the problem guarantee that r exists, and that

w! > w;..
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Figure D.1

Consider the update:

D; — D; Lo Al ( )
D.27
D:, — D; L4+ A, for all p such that wf < w:, < w,‘,

where A; and A, satisfy:

AR;=8, Y R (D.28)

plw{<wi<w!
It follows immediately from the choice of q and r that there exist A; >0and A; >0
satisfying equation (D.28) such that the assignment resulting from the update (D.27) is
strictly feasible and satisfies the ordering w'.

It is easy to see that the variation of Eplw' <wt Np resulting from the update (D.27) is:
P=""

—A Ry + AR,

=-42 > R,

plwi<wl <w!

< -A;R; (D.29)

where the second step follows from equation (D.28), and the last step from the fact that by
construction of the problem the sum contains at least the v.c. 7
It follows from equation (D.29) that the assignment (R,N *) is not optimal, contradict-

ing our assumption. Thus we may conclude that in any optimal assignment the v.c.’s in
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position 1,...,w! — 1 have full priority over v.c. 1. Namely any optimal assignment (ff, N )

satisfies:

> Ny '=B(wl-1,7,R) (D.30)

plwl <w!
Now since D} ¢ = = D; ! and since the ordering @' is valid for the assignment (R N *) we

have: ,
> N'=Dit Y R (D.31)
plw!<wi<wl plu<w! <wl

Also as strict feasibility is maintained;
> N !> B'(wl, @, R) (D.32)
plw<w}
It follows from equations (D.30), (D.31) and (D.32) that:

!

» ] 7]
D; "2 (W = ot cut Bo) W = Eplw',<w:. ) (D.33)

using equations (D.30) and (D.33) to lower bound ¥ : N °, we obtain:

plwl <w!

s> Bl (w) - #'R;
PIWZEW =2 d Sk R+ (w! EPIW' <w! Rp) (4! - zplw§<wf Ry) (D-34)

rearranging the right hand side the last expression can be written as:

}: N- 4 >Bl(wl -1 ")

plwl <w!
w R Ep|w§<w;5w; R,
MRS ORI 3] 22 SR ] (L= SRS
>B!(w!, &, B) + (}é:) (D.35)

As EPIW},SWQ N, ! lower bounds EPIW}.SW! N,’,, this completes the proof.
Q.E.D.
Now we can prove lemma 5.2. We prove the lemma only in the case of the first
assignment; i.e., when the rate of a v.c. is increased. The proof in the case of the second

assignment is very similar and is left to the reader.
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The plan of the proof is as follows. We first show that the feasibility constraints w! i(f)
where f is an arbitrary delay group on link I, remain satisfied when the assignment is
updated as in lemma 5.2 in the case in which the rate of a v.c. is increased. Following
this we show that for all / € L; the feasibility constraint V! remains satisfied with equality.
Finally, combining these results, we prove lemma 5.2.

Let (R, N ) be a strictly feasible assignment satisfying the conditions of lemma 5.2. Let
t be the v.c. whose rate is increased and denote by AR; the variation of §’s rate. Also,
let (R N ) be the assignment resulting from the update when the update is as specified in
lemma 5.2 in the case in which the rate of a v.c. is increased.

Let f be an arbitrary delay group on some link I € L;. We first show that there exists
K4 > 0 depending only on K;, K, and v such that for all AR;, 0 < AR; < Ky, the
feasibility constraint w! i(1) in the assignment (R,N ) remains the same fea51b1hty constraint
in the assignmert (R i ), and that this constraint is still satisfied.

By deﬁmtlon of the delay groups we have:

Di>Di+y foralljef, kef, f>f 5 fer (D.28)
36
Di<D. -y foralljef, kef, f<f, f fer

It follows from these conditions, from the conditions imposed on the rate assignment in
the lemma and from the form of the update rule used to construct the assignment (R N )
that there must exist K4 > 0 depending only on K;, K, and v such that for all AR;,
0< AR; < K, we have:

;>Di foralljef, kej, f>f, 5 feF

o i . (D.37)
3<Di foralljef kef r<f ¢ fer

where f, f and F* are still defined based on the assignment (B, N ). It is easy to see that the
preceeding equation implies that the feasibility constraint w! i(s) in the asmgnment (R N)

is the same as in the assignment (R, N).
If f is such that w! i < w} it is clear that the constraint w! i(r) 18 still satisfied in the

assignment (R N ) simply because the a.n.o. P- and rate assignment of the v.c.’s in positions
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1,..., w:.( fi-1) do not change, and because by assumption the initial assignment is strictly

feasible. If wf( N w! the feasibility constraint wf( 7) in the assignment (R, N) is:

E A:, Z B,(w;'(f))u-i‘:é"' Z}_Z:) (D38)
1

]
le,Swiu)

Note that by construction of the assignment (R, N ) we have:

o &= ¥ N;+B’(w;(f:),a‘,R+A_R§)—B‘(w!!(f,),w',é)
PlwpSwiy S H
+ ¥ {B’(wj(f),w‘,R+A_RI-)—B‘(wg(f),w‘,ﬁ)
fer, fi<iss i i
it ~ B AD il =l 5
= Bwj_y) 9, R+ AR) + B'(w);_,, ', )] (D.39)

cancelling the common terms in the right hand side we get:

> M= Y Nj+Bl(ul,,d,B+AR)- B, 7 B) (D.40)

] L {
Pl‘”;swi(!) PIW,S'"iU,

Now since the assignment (&, N) is strictly feasible we have:

2. N2 Bl(wj,, ', R) (D41)

PlwpSwigy)

Using equation (D.41) in equation (D.40) it follows immediately that equation (D.38) holds.
This completes the proof that there exists K, > 0 depending only on K;, K3 and v such
that foralli=1,...,L, f€ F', and AR;,0 < AR; < K, the feasibility constraint w;-(f) in
the assignment (R, N) remains the same in the assignment (}:é, N ) and that this constraint
remains satisfied.

Next we show that on all links ! € £;, the feasibility constraint V! remains satisfied
with equality in the assignment (I:é, ﬁ ). Consider a particular link [ € £; and let fnax be
the largest delay group on this link. Namely fna.. satisfies fmax > fforall fe F' Itis

easy to see that the v.c. {(fnax) is the v.c. in position V! in the ordering. It follows from

this fact and equation (D.40) that:

> N,=)" Ni+B(V,@', E+AR) - B\(V!,d", §) (D.42)
peEV! pew
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Also since the assignment (&, N ) is strictly feasible we have:
> N =B & B) (D.43)
peV!

From equations (D.42) and (D.43) we get:

> N =B\, E+AR) (D.44)
peV!

which shows that the feasibility constraint V* on link ! is still satisfied with equality.

Now we use the preceeding results to prove the lemma. Consider a particular link

l € L;. It follows from equations (D.37) that for all AR;, 0 < AR; < K,, the delays

of the v.c.’s in positions 1,...,w!‘.( fio1) remain smaller than the delays of the v.c.’s in

positions "’fu‘s-n +1,...,V! As the rate and a.n.o.p. assignme_nt of the v.c.’s in position

1,... ,w‘.( -1y do not change it follows that the feasibility constraints 1,.

Wi(sioy) iB
the assignment (R, N) remains the same in the assignment (R N ) and that they are still
satisfied.

Now consider the next w!f( M wé( M feasibility constraints, namely the feasibility con-
straints wi’( £y ,w!!( e Of course if f} contains only one v.c.; namely {, equations (D.37)
guarantees that for all AR;, 0 < AR; < K4, the feasibility constraints wf( £y ".( My
which in this case reduces to the constraint w}, are still maintained. Thus we can assume
that f} contains more than one v.c. In this case it follows from equations (D.37) that for all
AR;,0< AR; < K,, thev.c. appearing in each of the feasibility constraint w-( e w!‘.( M
isav.c. in f!. We distinguish two cases depending if 7(f!) = ¢ or not.

First assume that i(f}) #4. In this case among the v.c.’s in f!, only the delay of v.c.
i(f!) and v.c. ¢ vary as AR; increases. The delay of v.c. i(f!) increases because its a.n.o.p.
increases while its rate is constant and the delay of v.c. { decreases because its a.n.o.p.
is constant while its rate increases. If the ordering of the v.c.’s in f} does not change for
all AR;, 0 < AR; < Ky, it is easy to see that the constraints w_(f, .,w;(f'_,) remains

satisfied. Indeed in this case the v.c. i(f]) remains in all these constraints for all AR;,

0 < AR; < Ky, so that the left hand side of these constraints increases by:

—

BY(wj ), 9", B+ AR;) - B'(w} 1), 5", R) (D.45)
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As the right hand side of these constraints do not increase by more than the preceeding
quantity and as the assignment is initially strictly feasible it follows that the constraints
remain satisfied.

Now if the ordering changes, it must be that either the delay of v.c. 1(f}) becomes larger
than the delay of some v.c. 5 € f} initially satisfying w;- > wé( iy OF that the delay of v.c.
t becomes smaller than the delay of some v.c. j € f} initially satisfying w! > w;-. Consider
the first case. Immediately before the delay of v.c. (f}) becomes equal to the delay of v.c.
J, one of the feasibility constraints must be such that it contains v.c. i(f}) but not v.c.
J. However when the delays become equal it is easy to see that this feasibility constraint
can be replaced by the feasibility constraint which contains v.c. J instead of v.c. I(f!) but
which is otherwise identical to the preceeding constraint. In fact when the delays become
equal either constraint can be used. Note that at this point lemma D.1 guarantees that in
both constraints the left hand s:ide is greater than the right hand side by a strictly positive
quantity depending only on the rate assignment. When D:- becomes smaller than Dy ) the
feasibility constraint containing j but not #( f}) replaces the feasibility constraint containing
7(f}) but not 7, and the feasibility constraint containing 7(f}) but not j becomes irrelevant.
In view of the conditions imposed on the rate assignment in lemma 5.2 it follows that there
exists K3 > 0 depending only on K;, K, and v such that for all AR;,0 < AR; < K3, the
new feasibility constraint containing 7 but not i(f}) remains satisfied. In the second case,
namely when the delay of v.c. i becomes smaller that the delay of some v.c. j satisfying
initially w:‘,- > w.‘-, we can use the exact same argument to show that there must exist a
constant K3 > 0 depending only on K;, K, and v such that for all AR;, 0L AR; < K3,
the new feasibility constraint containing i but not J remains satisfied. Clearly this argument
can be generalized to the case where many changes of ordering occur. Thus when (fH#¢
we may conclude that there exists a constant K3 > 0 such that for all AR;,0< AR; < K3,
the feasibility constraints wé( £y w!f( M remain satisfied.

Now suppose #(f}) = i. Then the only v.c. in f! whose delay varies is 7. If D! decreases
as R; increases in the interval [0, K| the ordering of the v.c.’s in f} does not change so that

the feasibility constraints w;‘( iy w".( M remain satisfied. If Df increases it is easy to see
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using an argument identical to the argument made in the preceeding paragraph that there
must exists a constant K3 > 0 depending only on K 1, K2 and v such that for all AR;,
0< AR; < K3, the feasibility constraints w;‘( 1y "“’;( M remain satisfied.

This proves that there exists K3 >0 depending only on K;, K, and v such that in
all case the feasibility constraints wé( Sy wl!( sty Temain satisfied for all AR;, 0 < AR; <
K3. Now using a similar argument it is not difficult to see that this result still hold for
the following wé( fi41) wé( 141 feasibility constraints (namely the feasibility constraints

assoclated with the v.c.’s in the delay group fH+ 1) and, by induction, that the result holds

for all the following feasibility constraints.

Q.E.D.
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D.4 Proof of theorem 5.2.

The proof is similar to that of theorem 4.4. We first prove that A, and A, maintain
strict feasibility. Following this we prove that A, and A, are descent algorithms. Then we
prove a similar continuity condition as that of lemma C.6. Finally, combining these results,

we prove theorem 5.2.

D.4.1 Strict feasibility.

Define:
H= {(E, ) | (B, W) is strictly feasible and S(E, ¥) < S(R(0), Fo)}  (D46)

Also define H* as the set of optimal solutions to (FC,).
By definition of strict feasibility, and in view of the form of the cost functions, it is
clear that H is compact. Also it is easy to see that there exist strictly positive constants

Ki,..., Ko such that for any assignment (R, N) e H;

R; > K,
N{ < K3
_a__G(R‘ N-) < K
aN [ 4 yi¥s) = 3
PY;
WG"(R-',N;') <K,
p - Z R; 2 Ks
5 eVt (D.47)
2 cA(R: N <
aRGi(‘&lN‘) - K6
92
'BFGE(RhNi) < K7
z, < Ks
2t < Ko
i < Ko

Let An(R, N) and A,(R, N) denote respectively the assignment produced by one iter-

ation of A, and A, starting from the assignment (ff, N ). We have the following result.
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Lemma D.2: Let (B, N) be any assignment in H. Then An(R,N) is strictly feasible.
Moreover there exists K;; > O depending only on K;, K5 and Kg such that for all o,
0< o < K11, AR, N) is strictly feasible.

Proof: By conmstruction A, clearly maintains strict feasibility. Concerning A, the result

follows immediately from lemma 5.2 (refer to the discussion of A, in section 5.3.1).

Q.ED.

D.4.2 Descent properties of A,,.

Define:
Ho={(E F)|||N - N|| <7 for some (&, ¥) e H} (D.48)

where 7, is some strictly positive constant.

It is easy to see that H, is compact for any 7. Moreover, for each 7, there exists

K12 > 0 such that for any (R, N) € H,:

a? ..
WG,‘(R.’,N") S Ku for all t, 1= 1 ...,V, (D.49)

In this section we temporarily use for convenience the notation (&, N ) = A.(R, N).
Note that, as must be the case, the assignments (&, l:\;') and (R, N) have the same rate
assignment.

Let:

F< 71
T
2LK3

(D.50)

Then it follows immediately from the form of the update rule in A, and from the definition

of H and H, that:
(R,N)e H = A.(R,N)e®H, (D.51)

Let (R, N ) be an arbitrary assignment in H. Similarly as in the proof of convergence
of Alg_NP, e we define U = {(u,lu,ru,iu,ju)} as the set of updates resulting from one
iteration of A, starting from the assignment (&, N). Each 5-tuple (%04, Tu, %4, Ju) Tepre-

sents one particular update. u is a label identifying the update. I, is the link on which the
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update occurs. 7y, 1, and j, are respectively the “r‘-’j”, “” and “;” of step 2 of A,, for the
update.

The following results summarize the descent properties of A,.
Lemma D.3: Assume that in addition to satisfying equation (D.50) 7 also satisfies:
7< (K]_zVL)—l

Then for all (R, N) € H:

N -

S(An(B, M) - S(B,F) < -3 3 ru(BnCii)’?
uelU

Proof: The proof uses essentially the same arguments as the proofs of lemmas C.1-C.3. For
this reason the development made here is relatively concise.

Define:
s(\) = s[ A(4n (R, N) - (B, )] (D.52)

Differentiating s(-) and expressing the variations of the a.n.o.p. assignment as a function

of the update parameters we get:

ds(A)
25 W SN 'Z;ENG(R' N)(N - M)
- E ORI Y maGiit Y G
ueUli=s, €U |i=7,

d d

= [ aNG‘u (R‘U’N‘u)TuA G‘uJu + WGJu (RJ‘u’ NJ.u)TUAﬂGiuJ.u

uclU
= - ) 1u(AnGi, ;) (D.53)
uclU
Note that for all¢, 1 =1,...,V;
Bi-Ni=| 3 -rBGiit+ Y nAlGi,
ucU|i=s, ueUli=j,

< Y nlAnGi, (D.54)

uclU
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Using Cauchy’s inequality it follows that for all 4, 1 =1,...,V:

(Mi-N)?*<L E(TuAnGi.‘ju)z (D.55)
uclU

The conditions imposed on 7 in the lemma guarantee that the assignment A, (R,N)is
in H,. Since the assignment (&, N) is clearly also in &, it follows that for any A € [0,1]
the assignment (R, N)+A[A.(R, N) - (R, N )] isin H,. Using this fact and the preceeding
equation we get that for all A € [0, 1]:

24 \4 .. A
o)) - ;%G;[(R‘-,R‘-)+A((R,-,N,-) - (B, )| (%: - My)?
< K3 i(ﬁi - N;)?
=1
SVLK1; ) (rulnGi;)? (D.56)
uclU

Now expanding s(-) in Taylor series we can write:

ds(A)
dA

1d%s(})

S(A.(R,N)) - S(R,N) =
(An(R, N)) - S(R, N) o T2

(D.57)

A=A"
where A* is some number in the interval [0, 1].

Using equations (D.53), (D.56) and the conditions imposed on 7 in the lemma we

obtain:

T I 1
S(An(R,N)) - S(B,N) < = > ry(AaGi, ) + SVLK1 D (rAnGi,j)?

uclU uclU
‘,Lﬁazf
<=3 [1- = n(anGi)?
uclU
1
<-3 %r‘,(a,.c;.-u,-“ )? (D.58)

Q.E.D.

Lemma D.4: Let (B, N) € H and assume N is not optimal for R. Then one iteration of

A, with the assignment (R, N) results in at least one update.

The proof of this lemma is identical to that of lemma C.4.
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D.4.3 Descent properties of A,.

In the case of A, there are two possibilities to consider depending if the iteration causes
the rate of a v.c. to increase or to decrease. However, as the arguments are nearly identical
in both cases, we only prove the results in the case in which a rate increase occurs.

Let H, be the set containing the assignments (f?:, N ) satisfying for some assignment

(R,N) e H:

|Ri - Ri| < %min(Kl,Ks) foralli,i=1,...,V (D.59)

e 5o 26 .. '

IN,-—N,-IS-I?— forallé, i=1,...,V, le £, (D.60)
5

It is easy to see that H, is compact and that there exist strictly positive constants

K13,..., K19 such that for any assignment (&, N) € H,:
R; > K3

N/ < K4
iG-(R,- N) <K
aN 1 y4Vs) 15
az

N2
a2
_ﬁci(Rﬁ N;) < Ky7

92
a_ch‘(R"’N") < Kjs
1
1- . Z: R; > Ky

eVt

Gi(Ri,N;) < K16 (D.61)

In this section we temporarily use for convenience the notation (R, N) = A4, (R, N).

Let:
o < min(Kl,Ks)
- 2L(Ke + Kq + Km)

Then it follows from the form of the update rule in A, and from the definition of H and

H, that:

(D.62)

(R,N)e H = A.(R,N)ea8, (D.63)
Indeed suppose that A, (R., N ) results in R; being increased. Namely:
Bi=Rito[- 2GR, N) - )] (D.64)
aR 1 ) t 1
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using equations (D.47) and (D.62) it follows that:

rr1in(K1, Ks)(Ke + LKlo)
2L(Kg + Ko + K1)

min(K,, Ks) (D.65)

|B: ~ Ri| <

<

| =

which proves that equation (D.59) holds.

Also let NV J‘ be any a.n.o.p. increased as the result of i’s rate increase. It is easy to see

that:
|V} - N}| < BY(V', &', B+ AR)AR; (D.68)

where AR; = ¢A,G;. Using equations (D.62) and (D.47) this implies:

[J.‘ min(Kl,Ks)
2(w - Xpevt Bp - 3 min(Ky, Ks))?
< 2[.1‘ min(Kl,Ks)
- (Ks)?
2u!
Ks

|N} - N¥| <

< (D.67)

which proves that equation (D.60) also holds. Thus we may conclude that whenever equation
(D.62) holds, equation (D.63) also holds.

Let (B, N) € H be a given assignment. Assuming that A,(E,N) results in a rate
update we denote by & the v.c. whose rate is updated. Also, for I € L;, we denote by U*

the set of v.c.’s whose a.n.o.p. is updated on link ! as a result of ’s rate update.

Define:
s(A) = S[(B, F) + A(4. (R, N) - (&, )] (D.68)

We have the following results.

Lemma D.5: Assume that o satisfies equation (D.62). Then for all (%, N) € H;

ds(A)
dA

8V LK,
< -0(A,G;) + —2(0A,G;)?
A=0— ( ) (Ks)z ( r )
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Proof: We assume that R; increases. Differentiating s(-) we obtain:

ds(A)

| 3 s LA .
X |,_, = aRC(Ba N (& - B + Z 33 C3(Bi> Nj)(I; = V)
! !
aRG (Ri, Ni)o A, G + E > NG (R, N;) (W} - NY)  (D.69)
IEI:. JEU'
where the last step follows directly from the form of the update rule.

It is easy to see that the functions:

at+z a
f@)=———— - s
b (D.70)
(z):[ at+b+z a+ ] [ a+z a ]
g p—a—-b-—z p—a-—2>b -a—-z p—a
satisfy for alle > 0,5 > 0, > 0, u > 0 such that a+bdb+z<pu:
2
Bz JTE
f(z) L +
(=) (b-a)*  (B-a-2z)3 (D.11)
. .
b B BT
< -
o(=) < [(p—a—b)z (#-a)’]x+ (W—a-b-2z)3
Also, assuming that R; increases, we obtain from equations (D.47) and (D.62):
AR.—O'[— —Gi(Ri, Ny) - ]
< mln(Kl,Ks)(Ke +LK10)
- 2L(K5+K9+K10)
< %min(Kl,Ks) (D.72)

Now using the update rule, equations (D.71), (D.72), and finally equation (D.47) we have
foralll e 2;:

> Gl N,) (T - N

=(B'(wj( ), @', B+ AR) - B'(w} o), & R))aN Gatsty (Bsanys Nasny)

- —
+ > {(Bl(wz"(n"v‘:R*“AR")‘B'(“’s(n’w’R))
FEFL, > f}

-

3
— (B'(w}(;_y), %', R+ AR) - B! (wj(;_q), 7, R))}WG?(J')(RTU):N?U))

5 A,Gy)? 3
<(B“(w‘. 0,9, R)o A, G, + #(oAGs )—G- o (Big 51y, Ny g1y)
= (L) 70 T 3 (ONRGD rh
R N
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t Z { (B“(wg(f)’ 1‘7" R.) - B“(w:;(.f—l) ’ tb’l’ R.))O'ArGt'
fEFY, > f}

! 2
p(cA,G;) } d
7 Gatn (R, M)
3 HAVEN Y5(s)
(W = Eppurcut , Bo —04,Gy)° | ON
SO’EﬂArG,'
Ka[l‘(a’A,-G,')z + Z K3#I(O'A,-G,')2
3 3
(! = Z:Pl'”is"’:(m B, - Ks/2) JEFY, 1> 1! G EPIW}.S“’;"(:) By - Ks/2)
- 8V K3(0A,G;)?
<ozt : )
<0Z;AG; + (Ks)? (D.73)
substituting in equation (D.69) we get:
ds(A) d = 8VK3(¢TA,-G")2
— = =GR, N; i 0A,G;
X |,_,~ arCiFNi)oAG:+ ,g [Z‘a Gt &y
3 - 8V LK3(cA,G;)?
<! =2 c.tp. N ) .
S [aRcl(R‘)Ni)-l-zl]UArGl-*- (K5)2
8V LK3(cA,G;)?
< - )2 _
< -o(A,G)? + (Ky)? (D.74)
Q.ED.

Lemma D.6: Assume that o satisfies equation (D.62). Then for all (R,N) € H and

A € [0,1] we have:

d?s(A)
o |S Kao(0A,G;)?

where:
16L% K¢

Koo = K13+ W

Proof: We assume that R; increases. Differentiating s(-) we obtain:
d*s(A) 82 A A 2
Ve —mci [(R-i; N+ (&, V) - (R,,N,-))](R. - R;)
v 92 -
+) 3n2Ci [(R,-, N;)+ A((R;, Nj) - (R;, N,-))] (N;j - N;)*  (D.75)
i=1
The condition imposed on ¢ in the lemma guarantees that the assignment (I:é,ﬁ' ) is in

H,. As the assignment (B, N ) is clearly also in in H, it follows that for all A € [0,1] the
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assignment (R;, N;) + A[(R;, N;) - (R, N ;)] isin H,. Accordingly we get using equations

(D.61):

d%s(A)
dA?

v
= Kis(R - R)* + K16 y_(; - N;)? (D.78)
=1

It is easy to see that forall j, 7 =1,...,V:

Nj-N;j=> AN}
lel;
< > BYV', @, R+ AR)AR;
lel;
S 4L0’A,-G,;

e (D.17)

Substituting in equation (D.76) we obtain for all A € [0, 1]:

d?s(A

——

dA?

R 16L%2K
< Kig(& - R)* + (T);“(m,c.-)2

16L%Kq

< (K18+W

)(0a,G.)* (D.78)

where the last step follows directly from the form of the update rule.

Q.E.D.
Now we can prove that A, is a descent algorithm. This is summarized in the following

result.

Lemma D.7: Assume that in addition to satisfying equation (D.62) o also satisfies:

1 8VLK3 Kzo -1
< Z <
- 2( (Ks)z + 2 )

Then for all (R, N) € H we have:
S(A,(R,N))-S(&, ) < -5;-(A,c;.-)2

Proof: Using a Taylor series expansion of s(-) we obtain:

ds(A)
dA

+l d?s()
A=0 2 di?

S(A.(R,N))-S(R,N) =

(D.79)

A=)

where A* is some number in the interval [0, 1].
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Using lemmas D.5 and D.6 and the conditions imposed on o in the lemma it follows

from the preceeding equation that:

L Lo v
S (A (B, N))-S(B, §) < ~o(A.Go)? + E‘(K—L)ﬂ}(m,c;.-)2 + 22 (0a,6,)?
5

<- [1 - a(s(‘;{l;ﬁs + %)}a(A,Gi)z
< —%(ArG;)2 (D.80)
Q.E.D.

D.4.4 Continuity condition.

In this section we present the counterpart of lemmas C.5 and C.6 in the context of

Alg FC,.
Lemma D.8: Let (&, N) and (I-.i;, N ) be assignment in H satisfying:
”(E’N) - I.'é,l\:f)“S €

Then, for € > 0 sufficiently small, the following conditions hold. For all 1,7

] ! 3 A

1) D; < D; = D;< D}
2) 9 Gi(Ri, N;) < 9 G,(R,,N;) = ic-(fz.- N) < 9 G,(R;, ;)
ON TP T gy T N TR gN T g

3) If for some AN;; the assignment:

§ - N‘—EAN,,
~ 1

i ]

i = N+ 54N

is also strictly feasible.

The proof of this result is left to the reader.
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Lemma D.9: Assume that 7 satisfies the conditions of Lemma D.3 and that o satisfies the

conditions of lemmas D.2 and D.7. Also assume that:

K,
2(Ks)?

v<
Let (B,N) € H — H*. Also let (E, N ) € H be any assignment satisfying:
(B, 7)) - &, )||< e
Then for € > 0 sufficiently small:
S (4. (4n(R, ﬁ))] < S(R,N)

where A, (A,, (R,N )) denotes the assignment resulting from executing in sequence one it-

eration of A, and A, starting from the assignment (R, N).

Proof: First assume that the a.n.o.p. assignment is not optimal for the rate assignment in
the assignment (E, N )- Then, using an argument completely analogous to the argument
made in the proof of lemma C.6, it is not difficult to show that for € > 0 sufficiently small

all the assignments (13, ﬁ ) satisfying the condition of the lemma also satisfy:
S(An(R, F))< S(&, N) (D.81)

It follows from lemmas D.2 and D.3 that the assignment A, (R, N) isin H. Accordingly we

obtain from the preceeding equation and lemma D.7:
s[4 (4n(&, M)]< 8(&, §) (D.82)

which proves that the result holds in this case.
Thus we may assume that the assignment (R,N ) is such that the a.n.o.p. assignment
is optimal for the rate assignment. Under this assumption it follows from the fact that the

assignment (&, N) is not optimal that for at least one v.c. i;
o}
—EG"(R", N') 75 24 (D83)

217




Let (E,J:\;') = A,,(E, 1:\}) It is easy to see that if the assignment (R, N) is such that the

a.n.0.p. assignment is optimal for the rate assignment we must have:
(&, 5) - (B M)||< Knne (D84

where K3; > 0 depends only on K3 and 7.

Now consider two v.c.’s § and k on some link ! € L;N L. Assume that:

%G,-(R,-,N,-) > %Gk(Rk,Nk) (D.85)
As the a.n.o.p. assignment is optimal for the rate assignment in the assignment (ff, N ) it
follows from this condition that J must have full priority over k on link /.

Let @' be an ordering valid for the assignment (fi, N ) on link I. Also let p be the v.c.
in j’s priority group on link / with the lowest position in the ordering (namely p = § (ej))
Since j has full priority over k it is clear that w;- < w,', < w}. It follows that j’s delay on
link ! can be upper bounded by:
1

4 t ]
EGIW,-SW.SW,

D} < 3 (B'(w}, @, R) - B'(w} - 1,", B)) (D.86)

the equality being achieved if j is of lowest priority as compared to the v.c.’s in positions
1,... ,w;- —1, and if D;- = D}, for all ¢ such that w;- <w < w}. Similarly D} can be lower

bounded by:
1

i
Eq|w},<w:$wh

DL> — (B'(wl, &, B) - B (), ', B)) (D.87)
q

the equality being achieved if v.c. k has full priority over the v.c.’s in positions wh+1,..., V¢,
and if D} = D}, for all ¢ such that wh < w) < wh.
Substracting equation (D.87) from equation (D.86), and using the fact that w;~ <w<

wj, and equation (D.47) we obtain:

K
D' —pl> 21 D.88
k 7= (}rfs)2 ( )

It follows from this equation, the conditions imposed on v in the lemma and equation (D.84)

that for € > 0 sufficiently small whenever two v.c.’s 7 and k satisfy:

|D} - Dy <v (D.89)
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then they also satisfy:
d

)
35 C4(Bs V) = 5=Gu(Rs, Vi) (D.90)

In view of the definition of the delay groups this condition implies that for all Jandle L;:

E;-(in (}:é, 1:\})) - _:-(in (f\‘,ﬁ))' < Kjqe
(D.91)

2(in (&, ) - 2 (in (&, )| € Kaae

where K;; and K,3 depend only on K3, K5 and K.
Now it follows from equations (D.47), (D.83) and (D.91) that we can find ¢ > 0
sufficiently small so that the following equations hold.

G, ) + (in (B, F)| Gi(R:, M) + z(in (B, N)|

5 2 o137

(D.92)
’aRG (B, W) + %(in (B, &) [_ 2|aRG (Ri, N:) + 2 (in (&, N))|

Together with lemma D.7 these equations imply that the iteration of A, must reduce the

objective function by at least:
K
~% L35GB, M) + zi(in (R, N))] (D.93)
Also in view of equations (D.47) and (D.84), we have:
S(R,N) - (&, N) < Kp.¢ (D.94)

where K4 > 0 depends only on K3 and K.
From equations (D.93) and (D.94) we get:

2z S or d .= =2
s[4 (4n(&, M)]|-S(R, F) < Kye - : [ﬁG;(R,-,N,-) +z(in (BM)]  (Dos)
The second term in the right hand side is strictly negative and independent of €. Thus we

can always choose € > 0 sufficiently small to guarantee that the right hand side is strictly

negative, which completes the proof.

Q.E.D.
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D.4.5 Proof of theorem 5.2.

Lemmas D.3-D. 7 guarantee that 4, and A, map H into H. Also lemma D .2 guarantees
that any strictly feasible assignment in ¥ ig mapped by A,, and A, into a strictly feasible
assignment,. Thus, as the initia] assignment is in and is strictly feasible, it follows that the
assignments generated by the repeated application of Ap, and A, are ip H and are strictly

feasible. This pProves the first Proposition of theorem 52 The second Proposition of the
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