Applying Rotation-Equivariant Deep Learning to
Cloud and Road Segmentation in Satellite and
Aerial Imagery
by
Alex Meredith
S.B., Massachusetts Institute of Technology (2021)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2023

(©) Massachusetts Institute of Technology 2023. All rights reserved.

Authored by ... ... .
Alex Meredith

Department of Aeronautics and Astronautics
January 31, 2023

Certified by . ...
Kerri L. Cahoy

Associate Professor and Bisplinghoff Faculty Fellow

Thesis Supervisor

Accepted Dy . ..o
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee






Applying Rotation-Equivariant Deep Learning to Cloud and
Road Segmentation in Satellite and Aerial Imagery
by
Alex Meredith

Submitted to the Department of Aeronautics and Astronautics
on January 31, 2023, in partial fulfillment of the
requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Satellite and aerial images have many applications — images of clouds and roads are
of particular relevance to this thesis. Satellite images of clouds are frequently used for
climate monitoring, weather tracking, satellite instrument calibration, and on-orbit
autonomy; satellite and aerial images of roads are frequently used for mapping flooded
areas, predicting illegal logging, traffic monitoring, and route planning.

Cloud detection in satellite imagery is key for autonomously taking and downlink-
ing cloud-free images of a target region as well as studying cloud-climate interactions
and calibrating microwave radiometers. Many existing state-of-the-art cloud detec-
tion algorithms require multispectral inputs and sometimes confuse clouds with snow,
ice, or cold water. We propose deep learning models trained on visible-spectrum,
long-wave infrared (LWIR), and short-wave infrared (SWIR) imagery for on-orbit
cloud detection. Rotation-equivariant deep learning models are equivariant to rota-
tions, meaning that when an input to the model is rotated, the model output will be
equivalently rotated. We compare rotation-equivariant deep learning models to non-
equivariant models, and also present comparisons to rule-based methods for cloud
segmentation. Additionally, we compare models trained on visible-spectrum (VIS),
LWIR, and SWIR imagery to models trained on only VIS and LWIR, on only VIS and
SWIR, and on only VIS imagery and make recommendations for imaging bands to
prioritize during instrument selection for resource-constrained missions. We find that
augmenting VIS imagery with SWIR imagery is most useful for missions where false
positives (non-cloud pixels misidentified as cloud) are extremely costly, and we find
that augmenting with LWIR imagery is most useful for missions where false negatives
(cloud pixels misidentified as non-cloud) are extremely costly.

A secondary focus of this thesis is evaluating rotation-equivariant deep learning
models on the road detection domain. Road detection in satellite and aerial imagery
can map safe evacuation routes from areas affected by natural disaster or predict defor-
estation by identifying roads constructed for the purpose of illegal logging. We present
the results of rotation-equivariant and non-equivariant models on road segmentation
of aerial imagery, and make recommendations for integrating rotation-equivariance



into current state-of-the-art road detection algorithms.

We find that our Cg-equivariant dense U-Net, a rotation-equivariant deep learn-
ing model, outperforms our other deep learning models on both cloud and road seg-
mentation, and also outperforms rule-based algorithms on cloud segmentation. The
Cg-equivariant dense U-Net achieves an F} score of 0.9806 on the cloud segmentation
dataset when evaluated with a 2 pixel buffer at the cloud boundaries, and achieves
an F} score of 0.9342 on the road segmentation dataset when evaluated with a 4 pixel
buffer at the road boundaries.

Thesis Supervisor: Kerri L. Cahoy
Title: Associate Professor and Bisplinghoff Faculty Fellow



Acknowledgments

First and foremost, I'd like to thank Prof. Kerri Cahoy for her incredible mentorship,
support, wisdom, and unbelievably deep technical knowledge. She is truly the most

brilliant, caring, and dedicated advisor I could ask for.

In my time in STAR Lab, I’ve had the great privilege of working on a variety of
interesting projects with incredibly smart and dedicated people. In particular, I'm
extremely grateful to Shreeyam Kacker for his friendship, support, knowledge of deep
learning, and willingness to help me whenever I need it. I'm also extremely grateful
to Patrick McKeen for taking me on as a UROP back in 2020, and for his mentorship

and advice.

Thank you to all of my friends and collaborators, including but certainly not lim-
ited to: Shreeyam Kacker and Georges Labréche for their work on on-orbit machine
learning, Patrick McKeen, Joey Murphy, Prof. Paula do Vale Pereira, Joe Kusters,
and Mason Black for their work on BeaverCube; Joe Kusters, Hannah Tomio, Shree-
yam Kacker, and Violet Felt for their work on BeaverCube-2; and Lucy Halperin,
Amelia Gagnon, Juliana Chew, Endrit Shehaj, Dr. Riley Fitzgerald, and Dr. Stephen
Leroy for their work on GPS radio occultation and gravity waves. All of you have
been so patient, kind, and welcoming to me. Thank you also to my officemates,
past and present: Mary Dahl, Sophia Vlahakis, Juliana Chew, Ilaria Petracca, and
Sammy Hasler, for keeping me company and keeping the Halloween decorations up

year-round.

Last but certainly not least, I'm incredibly thankful to my family for their love
and support, as well as my mom’s powerful advocacy for women in STEM, my dad’s
excellent music taste, and Luke and Isaac’s creative and hilarious sibling hijinks. Most
of all, I'm grateful to Kimmy for her endless love and support, excellent hugs, and
her ability to make me smile even on the worst days. Kimmy — the best, luckiest,

and most important part of my time at MIT has been falling in love with you.

This work was supported by the National Science Foundation under grant GEO-
1850089 and the NSF Graduate Research Fellowship Program under Grant No. 2141064.

5



Any opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.



Contents

1 Introduction 27
1.1 Motivation . . . . . . . . Lo 27
1.2 Background . . . . ... 28

1.21 Deep Learning . . . . . . . . . .. oo 28
1.2.2 Cloud Detection . . . . . . .. .. ... ... 31
1.2.3 Road Detection . . . . ... .. ... 33
1.3 Summary of Literature . . . . . . . . . ... oL 34
1.4 Thesis Outline . . . . . . . . .. .. . 34

2 Approach 37

2.1 Case Studies and Datasets . . . . . . . .. ... ... ... ... 37
2.1.1 Cloud Segmentation . . . . .. ... ... ... .. ...... 37
2.1.2 Road Segmentation . . . . . .. ... ... L. 39

2.2 Models . . . . . . 39
2.2.1 Luminosity Thresholding . . . . . . . ... ... ... .. ... 40
2.2.2 Random Forest . . . . . .. ... ... ... 42
223 U-Net . .. .. e 44
224 Dense U-Net. . . . ... ... 45
2.2.5 Cs-Equivariant U-Net . . . . . . . ... ... . 48
2.2.6 Cs-Equivariant Dense U-Net . . . . . . ... .. ... .. ... 50

2.3 Metrics . . . . . . 53
2.3.1 C(lassification Performance . . . . . . . .. ... ... . .... 53
2.3.2  Resource Consumption and Model Complexity . . . . . . . .. 56

7



2.4  Optimizers, Hyperparameters, and Losses . . . . . . . ... ... ... o7
2.4.1 Optimizers and Hyperparameters . . . . . . .. .. ... ... 57
2.4.2 Loss Functions . . . .. .. ... ... ... ... ... 58

2.5 'Training Facilities and Software Implementation . . . . . . . . .. .. 60
2.5.1 Training Facilities . . . . . . . . . . . ... 60
2.5.2 Software Implementation . . . . . . . ... ... .. ... ... 61

3 Cloud Segmentation Results 63

3.1 Evaluating Model Performance . . . . . ... ... ... .. ..... 63
3.1.1 Luminosity Thresholding . . . . . .. ... ... ... ... .. 64
3.1.2 Random Forest . . . . . . ... .. ... .. ... ... 66
3.1.3 U-Net . . . . . . 69
3.14 Dense U-Net . . . . . .. ... Lo 72
3.1.5 (Cs-Equivariant U-Net . . . . . . . . .. ... ... ... .... 74
3.1.6 Cs-Equivariant Dense U-Net . . . . . . ... .. ... .. ... 7
317 Summary ... ..o 80

3.2 Evaluating Different Combinations of Spectral Bands . . . . . . . .. 89
3.2.1 Visible-Spectrum . . . . . ... ... oL 89
3.2.2 Visible-Spectrum + LWIR . . . . . .. ... ... ... .... 92
3.2.3 Visible-Spectrum + SWIR . . . . .. ... ... ... ..... 95
3.2.4 Visible-Spectrum + LWIR + SWIR . . . . . .. .. ... ... 99
3.25  Summary ... 101

4 Road Segmentation Results 111

4.1 Evaluating Model Performance . . . .. ... ... ... ... .... 111
4.1.1 U-Net . . . . . . 112
412 Dense U-Net . . . . . .. ... L 114
4.1.3 Cg-Equivariant U-Net . . . . . . . . ... ... ... ... ... 117
4.1.4 Cs-Equivariant Dense U-Net . . . . . . ... .. ... .. ... 120
4.1.5  Summary . ... ... 123



5 Discussion

5.1 Cloud Segmentation Results vs. Literature . . . . . . ... ... ...

5.2  Comparison of Road Segmentation Results to Literature . . . . . ..

5.3 Comparison of Road and Cloud Segmentation Results . . . . . . . ..

6 Summary and Future Work
6.1 Summary of Results . . .
6.2 Future Work . . . . . . ..

6.2.1 Architectural Investigations . . . . . .. ... ... ... ...

6.2.2 On-Orbit Considerations . . . . . . . . . . . . . . . ... ...

6.2.3 Future Applications

A (),-equivariant Convolutions

B SoftloU tables

133
133
135
137

141
141
142
143
144
144

147

153



THIS PAGE INTENTIONALLY LEFT BLANK

10



List of Figures

2-1

2-2

2-5

2-6

2-7

2-8

Luminosity thresholding architecture diagram showing trees represent-
ing red, green, blue, LWIR, and SWIR bands voting based on thresh-
olds in each band in a 5-tree random forest. Figure credit: Alex Mered-
ith and Shreeyam Kacker, MIT. . . . . . . ... ... ... ... ...

Random forest architecture diagram showing classification of a single
pixel based on luminosities in the red, green, blue, LWIR, and SWIR
bands of pixels in a k& x k£ window surrounding the pixel of interest,
using a forest with n trees of depth d. Figure credit: Alex Meredith
and Shreeyam Kacker, MIT. . . . . . . ... ... ... ... .....

U-Net model architecture showing classification of an entire five-band
(red, green, blue, LWIR, SWIR) image. See Figure 2-4 for the def-
initions of “ReduceChannels”, “ConvBlock”, and “Activation”. Image
credit: Alex Meredith and Shreeyam Kacker, MIT. . . . . . .. . ..

Details of operations used in the deep learning models described in
§2.2.3-2.2.6. Image credit: Alex Meredith, MIT. . . . . ... ... ..

Architecture of a “dense block”, which is the primary building block of
the dense U-Net, with n = 4 convolution layers and c,,; = ¢;,,/4 output
channels for the convolutional layers. Image credit: Alex Meredith,
MIT. .

Dense U-Net-based model architecture showing classification of an en-
tire five-band (red, green, blue, LWIR, SWIR) image. See Figure 2-4
for the definitions of “ReduceChannels” and “Activation”, and see Fig-
ure 2-5 for the definition of “DenseBlock”. Image credit: Alex Meredith
and Shreeyam Kacker, MIT. . . . . . .. ... .. ... ... .. ...

(a) An input convolution that lifts an input image to R* x Cj, (b) A
Cy-equivariant group convolution, (¢) Orientation pooling to produce
an output map on R2. Image credit: Alex Meredith, MIT. . . . . ..

Cs-equivariant U-Net-based model architecture showing classification
of an entire five-band (red, green, blue, LWIR, SWIR) image. At
each layer, the (x, y, ¢, n) tuple represents the image dimensions (x x
y), number of channels per orientation ¢, and number of orientations
n, with n = 8 representing Cg-equivariance. See Figure 2-4 for the
definitions of “C8ConvBlock”, “C8ReduceChannels”, and “Activation”.
Image credit: Alex Meredith and Shreeyam Kacker, MIT. . . . . . . .

11

41

43

44

45

46

47

49



2-9

2-10

3-4

Architecture of a Cg-equivariant “dense block”, which is the primary
building block of the Cg-equivariant dense U-Net. The Cg-equivariant
“dense block” differs from the “dense block” shown in Figure 2-9 by
the use of Cg-equivariant operations, emphasized here in red. Image
credit: Alex Meredith, MIT. . . . . . . . ... ... ... ... ....

Cs-equivariant dense U-Net-based model architecture showing classifi-
cation of an entire five-band (red, green, blue, LWIR, SWIR) image. At
each layer, the (x, y, ¢, n) tuple represents the image dimensions (z xy),
the number of channels per orientation ¢, and the number of orienta-
tions n. See Figure 2-4 for the definitions of “C8ReduceChannels” and
“Activation”, and see Figure 2-9 for the definition of “C8DenseBlock”.
Image credit: Alex Meredith and Shreeyam Kacker, MIT. . . . . . . .

Luminosity thresholding algorithm evaluated on an “easy” image seg-
mentation example, with an optically thin cloud patch boxed in green.
(a) Visible-spectrum image, (b) LWIR image, (¢) SWIR image, (d)
Difference between “truth” mask and luminosity-generated mask, ex-
cluding pixels within 2 px of a cloud boundary, (e) Difference between
“truth” mask and luminosity-generated mask, (f) Luminosity-generated
mask, (g) “Truth” mask. . . . . ... ... ...

Luminosity thresholding algorithm evaluated on a “hard” image seg-
mentation example, with an optically thin cloud patch boxed in green.
(a) Visible-spectrum image, (b) LWIR image, (c) SWIR image, (d)
Difference between “truth” mask and luminosity-generated mask, ex-
cluding pixels within 2 px of a cloud boundary, (e) Difference between
“truth” mask and luminosity-generated mask, (f) Luminosity-generated
mask, (g) “Truth” mask. . . . . . .. .. ... ... ...

Random forest algorithm evaluated on an “easy” image segmentation
example, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (c) SWIR image, (d) Difference
between “truth” mask and mask generated by the random forest algo-
rithm, excluding pixels within 2 px of a cloud boundary, (e) Difference
between “truth” mask and mask generated by the random forest algo-
rithm, (f) Mask generated by the random forest algorithm, (g) “Truth”
mask. . ..

Random forest algorithm evaluated on a “hard” image segmentation ex-
ample, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (c) SWIR image, (d) Difference
between “truth” mask and mask generated by the random forest algo-
rithm, excluding pixels within 2 px of a cloud boundary, (e) Difference
between “truth” mask and mask generated by the random forest algo-
rithm, (f) Mask generated by the random forest algorithm, (g) “Truth”
mask. ...

51

52

64

65

67



3-5

3-6

3-7

3-8

3-9

3-10

U-Net performance on an “easy” image segmentation example, with an
optically thin cloud patch boxed in green. (a) Visible-spectrum image,
(b) LWIR image, (¢) SWIR image, (d) Difference between “truth” mask
and U-Net-generated mask, excluding pixels within 2 px of a cloud
boundary, (e) Difference between “truth” mask and U-Net-generated
mask, (f) U-Net-generated mask, (g) “Truth” mask. . . . . ... ...

U-Net performance on a “hard” image segmentation example, with an
optically thin cloud patch boxed in green. (a) Visible-spectrum image,
(b) LWIR image, (¢) SWIR image, (d) Difference between “truth” mask
and U-Net-generated mask, excluding pixels within 2 px of a cloud
boundary, (e) Difference between “truth” mask and U-Net-generated
mask, (f) U-Net-generated mask, (g) “Truth” mask. . . . .. ... ..

Dense U-Net evaluated on an “easy” image segmentation example, with
an optically thin cloud patch boxed in green. (a) Visible-spectrum im-
age, (b) LWIR image, (¢) SWIR image, (d) Difference between “truth”
mask and mask generated by the dense U-Net, excluding pixels within
2 px of a cloud boundary, (e) Difference between “truth” mask and
mask generated by the dense U-Net, (f) Mask generated by the dense
U-Net, (g) “Truth” mask. . . . . ... ... ... ... .. .. ... .

Dense U-Net evaluated on a “hard” image segmentation example, with
an optically thin cloud patch boxed in green. (a) Visible-spectrum im-
age, (b) LWIR image, (¢) SWIR image, (d) Difference between “truth”
mask and mask generated by the dense U-Net, excluding pixels within
2 px of a cloud boundary, (e) Difference between “truth” mask and
mask generated by the dense U-Net, (f) Mask generated by the dense
U-Net, (g) “Truth” mask. . . . . . .. ... ... ... .. ... ...

Cs-equivariant U-Net evaluated on an “easy” image segmentation ex-
ample, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (¢) SWIR image, (d) Difference be-
tween “truth” mask and mask generated by the Cys-equivariant U-Net,
excluding pixels within 2 px of a cloud boundary, (e) Difference be-
tween “truth” mask and mask generated by the Cs-equivariant U-Net,
(f) Mask generated by the Cs-equivariant U-Net, (g) “Truth” mask.

Cs-equivariant U-Net evaluated on a “hard” image segmentation ex-
ample, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (¢) SWIR image, (d) Difference be-
tween “truth” mask and mask generated by the Cs-equivariant U-Net,
excluding pixels within 2 px of a cloud boundary, (e) Difference be-
tween “truth” mask and mask generated by the Cs-equivariant U-Net,
(f) Mask generated by the Cg-equivariant U-Net, (g) “Truth” mask.

13

5

76



3-11 Cg-equivariant dense U-Net evaluated on an “easy” image segmentation
example, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (c) SWIR image, (d) Difference
between “truth” mask and mask generated by the Cg-equivariant dense
U-Net, excluding pixels within 2 px of a cloud boundary, (e) Difference
between “truth” mask and mask generated by the Cg-equivariant dense
U-Net, (f) Mask generated by the Cg-equivariant dense U-Net, (g)
“Truth” mask. . . . . . . .. 78

3-12 Cg-equivariant dense U-Net evaluated on a “hard” image segmentation
example, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (c) SWIR image, (d) Difference
between “truth” mask and mask generated by the Cg-equivariant dense
U-Net, excluding pixels within 2 px of a cloud boundary, (e) Difference
between “truth” mask and mask generated by the Cg-equivariant dense
U-Net, (f) Mask generated by the Cs-equivariant dense U-Net, (g)
“Truth” mask. . . . . . . . ... . 78

3-13 Luminosity thresholding algorithm, random forest algorithm, U-Net,
dense U-Net, Cg-equivariant U-Net and Cg-equivariant dense U-Net
evaluated on an “easy” image segmentation sample, with an optically
thin cloud patch boxed in green. (a) Visible-spectrum image input,

(b) LWIR input, (¢) SWIR input, (d) “Truth” mask, (e) Mask gen-
erated by the luminosity thresholding algorithm, (f) Mask generated
by the random forest algorithm, (g) Mask generated by the U-Net,
(h) Mask generated by the dense U-Net, (i) Mask generated by the
Cs-equivariant U-Net, (j) Mask generated by the Cs-equivariant dense
U-Net. . . . . e 81

3-14 Luminosity thresholding algorithm, random forest algorithm, U-Net,
dense U-Net, Cg-equivariant U-Net and Cg-equivariant dense U-Net
evaluated on a “hard” image segmentation sample, with an optically
thin cloud patch boxed in green. (a) Visible-spectrum image input,

(b) LWIR input, (¢) SWIR input, (d) “Truth” mask, (e) Mask gen-
erated by the luminosity thresholding algorithm, (f) Mask generated
by the random forest algorithm, (g) Mask generated by the U-Net,
(h) Mask generated by the dense U-Net, (i) Mask generated by the
Cs-equivariant U-Net, (j) Mask generated by the Cs-equivariant dense
U-Net. . . . 82

3-15 Receiver-operating characteristic (ROC) curves for the luminosity thresh-
olding algorithm, random forest algorithm, U-Net, dense U-Net, Cs-
equivariant U-Net, and Cg-equivariant dense U-Net, evaluated on the
modified SPARCS dataset without using a buffer at cloud boundaries. 84

3-16 Receiver-operating characteristic (ROC) curves for the luminosity thresh-
olding algorithm, random forest algorithm, U-Net, dense U-Net, Cs-
equivariant U-Net, and Cg-equivariant dense U-Net, evaluated on the
modified SPARCS dataset using a 2 px buffer at cloud boundaries. . . 86

14



3-17

3-18

3-19

3-20

Cs-equivariant dense U-Net trained on visible-spectrum input only
evaluated on an “easy” image segmentation example, with an opti-
cally thin cloud patch boxed in green. (a) Visible-spectrum image, (b)
LWIR image, (¢) SWIR image, (d) Difference between “truth” mask
and mask generated by the Cgs-equivariant dense U-Net trained on
visible-spectrum data, excluding pixels within 2 px of a cloud bound-
ary, (e) Difference between “truth” mask and mask generated by the
Cs-equivariant dense U-Net trained on visible-spectrum data, (f) Mask
generated by the Cs-equivariant dense U-Net trained on visible-spectrum
data, (g) “Truth” mask. . . . . . ... ... ... . .

Cg-equivariant dense U-Net trained on visible-spectrum input only
evaluated on a “hard” image segmentation example, with a cloud patch
over snow boxed in green and an optically thin cloud patch boxed in
pink. (a) Visible-spectrum image, (b) LWIR image, (¢) SWIR image,
(d) Difference between “truth” mask and mask generated by the Cg-
equivariant dense U-Net trained on visible-spectrum data, excluding
pixels within 2 px of a cloud boundary, (e) Difference between “truth”
mask and mask generated by the Cs-equivariant dense U-Net trained
on visible-spectrum data, (f) Mask generated by the Cs-equivariant
dense U-Net trained on visible-spectrum data, (g) “Truth” mask. . . .

Cg-equivariant dense U-Net trained on visible-spectrum and LWIR in-
put evaluated on an “easy” image segmentation example, with an opti-
cally thin cloud patch boxed in green. (a) Visible-spectrum image, (b)
LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask
and mask generated by the Cg-equivariant dense U-Net trained on
visible-spectrum and LWIR data, excluding pixels within 2 px of a
cloud boundary, (e) Difference between “truth” mask and mask gen-
erated by the Cs-equivariant dense U-Net trained on visible-spectrum
and LWIR data, (f) Mask generated by the Cg-equivariant dense U-Net
trained on visible-spectrum and LWIR data, (g) “Truth” mask. . . . .

Cs-equivariant dense U-Net trained on visible-spectrum and LWIR in-
put evaluated on a “hard” image segmentation example, with a cloud
patch over snow boxed in green and an optically thin cloud patch boxed
in pink. (a) Visible-spectrum image, (b) LWIR image, (¢) SWIR image,
(d) Difference between “truth” mask and mask generated by the Csg-
equivariant dense U-Net trained on visible-spectrum and LWIR data,
excluding pixels within 2 px of a cloud boundary, (e) Difference be-
tween “truth” mask and mask generated by the Cg-equivariant dense
U-Net trained on visible-spectrum and LWIR data, (f) Mask gener-
ated by the Cg-equivariant dense U-Net trained on visible-spectrum

and LWIR data, (g) “Truth” mask. . . ... ... ... ... .. ...

15

91



3-21

3-22

3-23

3-24

Cs-equivariant dense U-Net trained on visible-spectrum and SWIR in-
put evaluated on an “easy” image segmentation example, with an opti-
cally thin cloud patch boxed in green. (a) Visible-spectrum image, (b)
LWIR image, (¢) SWIR image, (d) Difference between “truth” mask
and mask generated by the Cgs-equivariant dense U-Net trained on
visible-spectrum and SWIR data, excluding pixels within 2 px of a
cloud boundary, (e) Difference between “truth” mask and mask gen-
erated by the Cs-equivariant dense U-Net trained on visible-spectrum
and SWIR data, (f) Mask generated by the Cg-equivariant dense U-Net
trained on visible-spectrum and SWIR data, (g) “Truth” mask. . . . .

Cg-equivariant dense U-Net trained on visible-spectrum and SWIR in-
put evaluated on a “hard” image segmentation example, with a cloud
patch over snow boxed in green and an optically thin cloud patch boxed
in pink. (a) Visible-spectrum image, (b) LWIR image, (¢) SWIR image,
(d) Difference between “truth” mask and mask generated by the Cg-
equivariant dense U-Net trained on visible-spectrum and SWIR data,
excluding pixels within 2 px of a cloud boundary, (e) Difference be-
tween “truth” mask and mask generated by the Cg-equivariant dense
U-Net trained on visible-spectrum and SWIR data, (f) Mask gener-
ated by the Cg-equivariant dense U-Net trained on visible-spectrum
and SWIR data, (g) “Truth” mask. . . .. ... ... ... ... ...

Cs-equivariant dense U-Net trained on visible-spectrum, LWIR and
SWIR input evaluated on an “easy” image segmentation example, with
an optically thin cloud patch boxed in green. (a) Visible-spectrum im-
age, (b) LWIR image, (c) SWIR image, (d) Difference between “truth”
mask and mask generated by the Cs-equivariant dense U-Net trained on
visible-spectrum, LWIR and SWIR data, excluding pixels within 2 px
of a cloud boundary, (e) Difference between “truth” mask and mask gen-
erated by the Cg-equivariant dense U-Net trained on visible-spectrum,
LWIR and SWIR data, (f) Mask generated by the Cs-equivariant dense
U-Net trained on visible-spectrum, LWIR and SWIR data, (g) “Truth”
mask. ...

Cs-equivariant dense U-Net trained on visible-spectrum, LWIR and
SWIR input evaluated on a “hard” image segmentation example, with
a cloud patch over snow boxed in green and an optically thin cloud
patch boxed in pink. (a) Visible-spectrum image, (b) LWIR image, (c)
SWIR image, (d) Difference between “truth” mask and mask generated
by the Cs-equivariant dense U-Net trained on visible-spectrum, LWIR
and SWIR data, excluding pixels within 2 px of a cloud boundary,
(e) Difference between “truth” mask and mask generated by the Cs-
equivariant dense U-Net trained on visible-spectrum, LWIR and SWIR
data, (f) Mask generated by the Cgs-equivariant dense U-Net trained
on visible-spectrum, LWIR and SWIR data, (g) “Truth” mask. . . . .

16

96

100



3-25 (Cs-equivariant dense U-Net trained on visible-spectrum data only, visible-

3-26

spectrum and LWIR data, visible-spectrum and SWIR data, and visible-
spectrum, LWIR, and SWIR data evaluated on an “easy” image seg-
mentation sample, with an optically thin cloud patch boxed in green.
(a) Visible-spectrum input, (b) LWIR input, (¢) SWIR input, (d)
“Truth” mask, (e) Mask generated by Cs-equivariant dense U-Net trained
on visible-spectrum data only, (f) Mask generated by Cs-equivariant
dense U-Net trained on visible-spectrum and LWIR data, (g) Mask
generated by Cg-equivariant dense U-Net trained on visible-spectrum
and SWIR data, (h) Mask generated by Cs-equivariant dense U-Net
trained on visible-spectrum, LWIR, and SWIR data. . . . . . . . . ..

Cs-equivariant dense U-Net trained on visible-spectrum data only, visible-

spectrum and LWIR data, visible-spectrum and SWIR data, and visible-
spectrum, LWIR, and SWIR data evaluated on a “hard” image segmen-
tation sample, with a cloud patch over snow boxed in green and an op-
tically thin cloud patch boxed in pink. (a) Visible-spectrum input, (b)
LWIR input, (¢) SWIR input, (d) “Truth” mask, (e) Mask generated
by Cg-equivariant dense U-Net trained on visible-spectrum data only,
(f) Mask generated by Cs-equivariant dense U-Net trained on visible-
spectrum and LWIR data, (g) Mask generated by Cs-equivariant dense
U-Net trained on visible-spectrum and SWIR data, (h) Mask generated
by Cs-equivariant dense U-Net trained on visible-spectrum, LWIR, and
SWIR data. . . . . .. .. ... . ...

3-27 Receiver-operating characteristic (ROC) curve for the Cs-equivariant
dense U-Net trained on visible-spectrum data (VIS) only, visible-spectrum

3-28

4-1

and LWIR data, visible-spectrum and SWIR data, and visible-spectrum

and LWIR and SWIR data, evaluated on the modified SPARCS dataset
without using a buffer at cloud boundaries. . . . . . . . ... ... ..

Receiver-operating characteristic (ROC) curve for the Cs-equivariant

dense U-Net trained on visible-spectrum data (VIS) only, visible-spectrum

and LWIR data, visible-spectrum and SWIR data, and visible-spectrum
and LWIR and SWIR data, evaluated on the modified SPARCS dataset

with a 2 px buffer at cloud boundaries. . . . . . ... ... ... ...

U-Net evaluated on an “easy” road segmentation example, with par-
tially occluded road segments boxed in white and light blue, and with
a parking lot segment boxed in green. (a) Visible-spectrum image,
(b) “Truth” mask, (c) U-Net-generated mask, (d) Difference between
“truth” mask and U-Net-generated mask, (e) Difference between “truth”
mask and U-Net-generated mask, excluding pixels within 4 px of a road
boundary. . . . . ...

108



4-3

4-4

4-5

4-6

4-7

U-Net evaluated on a “hard” road segmentation example, with nar-
row, partially occluded road segments boxed in white and light blue,
and with a parking lot boxed in green. (a) Visible-spectrum im-
age, (b) “Truth” mask, (c) U-Net-generated mask, (d) Difference be-
tween “truth” mask and U-Net-generated mask, (e) Difference between
“truth” mask and U-Net-generated mask, excluding pixels within 4 px
of aroad boundary. . . . . . ... .. Lo
Dense U-Net evaluated on an “easy” road segmentation example, with
partially occluded road segments boxed in white and light blue, and
with a parking lot segment boxed in green. (a) Visible-spectrum image,
(b) “Truth” mask, (c¢) Mask generated by dense U-Net, (d) Difference
between “truth” mask and mask generated by dense U-Net, (e) Dif-
ference between “truth” mask and mask generated by dense U-Net,
excluding pixels within 4 px of a road boundary. . . . . . . ... ...
Dense U-Net evaluated on a “hard” road segmentation example, with
narrow, partially occluded road segments boxed in white and light
blue, and with a parking lot boxed in green. (a) Visible-spectrum
image, (b) “Truth” mask, (c) Mask generated by dense U-Net, (d)
Difference between “truth” mask and mask generated by dense U-Net,
(e) Difference between “truth” mask and mask generated by dense U-
Net, excluding pixels within 4 px of a road boundary. . . . . . . . ..
Cs-equivariant U-Net evaluated on an “easy” road segmentation exam-
ple, with partially occluded road segments boxed in white and light
blue, and with a parking lot segment boxed in green. (a) Visible-
spectrum image, (b) “Truth” mask, (c) Mask generated by Cs-equivariant
U-Net, (d) Difference between “truth” mask and mask generated by
Cs-equivariant U-Net, (e) Difference between “truth” mask and mask
generated by Cg-equivariant U-Net, excluding pixels within 4 px of a
road boundary. . . . ...
Cs-equivariant U-Net evaluated on a “hard” road segmentation exam-
ple, with narrow, partially occluded road segments boxed in white and
light blue, and with a parking lot boxed in green. (a) Visible-spectrum
image, (b) “Truth” mask, (c¢) Mask generated by Cs-equivariant U-
Net, (d) Difference between “truth” mask and mask generated by Cg-
equivariant U-Net, (e) Difference between “truth” mask and mask gen-
erated by Cs-equivariant U-Net, excluding pixels within 4 px of a road
boundary. . . . . ...
Cs-equivariant dense U-Net evaluated on an “easy” road segmenta-
tion example, with partially occluded road segments boxed in white
and light blue, and with a parking lot segment boxed in green. (a)
Visible-spectrum image, (b) “Truth” mask, (c) Mask generated by
Cs-equivariant dense U-Net, (d) Difference between “truth” mask and
mask generated by Cs-equivariant dense U-Net, (e) Difference between
“truth” mask and mask generated by Cg-equivariant dense U-Net, ex-
cluding pixels within 4 px of a road boundary. . . . . . .. ... ...

18

116

121



4-8

4-9

4-10

4-11

4-12

A-2

A-3

Cs-equivariant dense U-Net evaluated on a “hard” road segmentation
example, with narrow, partially occluded road segments boxed in white
and light blue, and with a parking lot boxed in green. (a) Visible-
spectrum image, (b) “Truth” mask, (c) Mask generated by Cs-equivariant
dense U-Net, (d) Difference between “truth” mask and mask generated
by Cs-equivariant dense U-Net, (e) Difference between “truth” mask
and mask generated by Cg-equivariant dense U-Net, excluding pixels
within 4 px of a road boundary. . . . . . .. .. ...

U-Net, dense U-Net, Cg-equivariant U-Net, and Cg-equivariant dense
U-Net evaluated on an “easy” image segmentation sample, with par-
tially occluded road segments boxed in white and light blue, and with a
parking lot segment boxed in green. (a) Visible-spectrum input image,
(b) “Truth” mask, (c) Mask generated by the U-Net, (d) Mask gen-
erated by the dense U-Net, (e) Mask generated by the Cg-equivariant
U-Net, (f) Mask generated by the Cg-equivariant dense U-Net. . . . .

U-Net, dense U-Net, Cs-equivariant U-Net, and Cg-equivariant dense
U-Net evaluated on a “hard” image segmentation sample, with narrow,
partially occluded road segments boxed in white and light blue, and
with a parking lot boxed in green. (a) Visible-spectrum input image,
(b) “Truth” mask, (c) Mask generated by the U-Net, (d) Mask gen-
erated by the dense U-Net, (e) Mask generated by the Cs-equivariant
U-Net, (f) Mask generated by the Cs-equivariant dense U-Net. . . . .

Receiver-operating characteristic (ROC) curves for the U-Net, dense U-
Net, Cs-equivariant U-Net, and Cg-equivariant dense U-Net, evaluated
on the modified Massachusetts Roads Dataset without using a buffer
at road boundaries. . . . .. .. oo Lo

Receiver-operating characteristic (ROC) curves for the U-Net, dense U-
Net, Cg-equivariant U-Net, and Cs-equivariant dense U-Net, evaluated
on the modified Massachusetts Roads Dataset without a 4 px buffer at
road boundaries. . . . . . ... ..

122

A Cj-equivariant group convolution. Image credit: Alex Meredith, MIT.148

Part of the Cj-equivariant group convolution shown in Figure A-1.
(a) The input function is convolved with a single representation of
a g-filter, (b) A linear combination is performed on the output of the
convolution done in (a), which results in a single orientation map which

is part of the group convolution output (see Figure A-1). Image credit:
Alex Meredith, MIT. . . . . . . . ... ... .. ... .. ... ...

A Cy-equivariant input convolution, which “lifts” an input on R? to
R? x C4. Image credit: Alex Meredith, MIT. . . . . . ... ... ...

An orientation max pooling operation, which generates an output mask
on R% Image credit: Alex Meredith, MIT. . . . ... ... ... ...

19

149

149



A-5

A-6

A simple Cy-equivariant network. (a) An input convolution that lifts
an input image to R? x Cy, (b) A Cy-equivariant group convolution, (c)
Orientation pooling to produce an output map on R2. Image credit:
Alex Meredith, MIT. . . . . .. .. .. ... ... .. ... .....
The same Cy-equivariant network shown in Figure A-5, but applied to
an input image that has been rotated by 90°. (a) An input convolu-
tion that lifts an input image to R? x Cy, (b) A Cy-equivariant group
convolution, (¢) Orientation pooling to produce an output map on R
Image credit: Alex Meredith, MIT. . . . . ... ... ... ... ...

20



List of Tables

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Summary of multispectral data available from Landsat 8; bands we use
(2-4, 6, 10) are bolded. Adapted from [3].. . . . . . ... ... ...

Performance metrics detailed in §2.3.1 for the luminosity thresholding
algorithm on the cloud dataset, evaluated with no buffer and with a 2
px buffer at cloud boundaries. . . . . . .. .. ... ... ... ...

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the luminosity thresholding
algorithm to the frequency of each terrain class among all non-cloud
pixels in the SPARCS dataset, as explained in §2.3.1, evaluated with
no buffer and with a 2 px buffer at cloud boundaries. . . . . . . . ..

Performance metrics detailed in §2.3.1 for the random forest algorithm
on the cloud dataset, evaluated with no buffer and with a 2 px buffer
at cloud boundaries. . . . . .. ..o Lo

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the random forest algorithm
to the frequency of each terrain class among all non-cloud pixels in the
SPARCS dataset, as explained in §2.3.1, evaluated with no buffer and
with a 2 px buffer at cloud boundaries. . . . . . . .. ... ... ...

Performance metrics detailed in §2.3.1 for the U-Net evaluated on the
cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud
boundaries. . . . . . . ...

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the U-Net to the frequency
of each terrain class among all non-cloud pixels in the SPARCS dataset,
as explained in §2.3.1, evaluated with no buffer and with a 2 px buffer
at cloud boundaries. . . . . ... ... Lo

Performance metrics detailed in §2.3.1 for the dense U-Net evaluated
on the cloud dataset, evaluated with no buffer and with a 2 px buffer
at cloud boundaries. . . . . .. ... ... L

66

69



3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the dense U-Net to the fre-
quency of each terrain class among all non-cloud pixels in the SPARCS
dataset, as explained in §2.3.1, evaluated with no buffer and with a 2
px buffer at cloud boundaries. . . . . . . . .. ... ... L. 74

Performance metrics detailed in §2.3.1 for the Cs-equivariant U-Net
evaluated on the cloud dataset, evaluated with no buffer and with a 2
px buffer at cloud boundaries. . . . . . . .. ... 76

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the Cs-equivariant U-Net
to the frequency of each terrain class among all non-cloud pixels in the
SPARCS dataset, as explained in §2.3.1, evaluated with no buffer and
with a 2 px buffer at cloud boundaries. . . . . . . .. ... ... ... 7

Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-
Net evaluated on the cloud dataset, evaluated with no buffer and with
a 2 px buffer at cloud boundaries. . . . . .. .. ... 79

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the Cs-equivariant dense U-
Net to the frequency of each terrain class among all non-cloud pixels in
the SPARCS dataset, as explained in §2.3.1, evaluated with no buffer
and with a 2 px buffer at cloud boundaries. . . . . . .. ... .. ... 79

Performance metrics detailed in §2.3.1 for the luminosity thresholding
algorithm, random forest algorithm, U-Net, dense U-Net, Cs-equivariant
U-Net, and Cg-equivariant dense U-Net evaluated on the modified
SPARCS dataset, evaluated without using a buffer at cloud bound-

Performance metrics detailed in §2.3.1 for the luminosity thresholding
algorithm, random forest algorithm, U-Net, dense U-Net, Cs-equivariant
U-Net, and Cg-equivariant dense U-Net evaluated on the modified
SPARCS dataset, evaluated using a 2 px buffer at cloud boundaries. . 85

Peak memory usage over 100 single-image classifications and average
inference time over 1000 single-image classifications using both a CPU
(Intel Xeon) and GPU (Nvidia K80) backend for the luminosity thresh-
olding algorithm, random forest algorithm, U-Net, dense U-Net, Cs-
equivariant U-Net, and Cg-equivariant dense U-Net on the modified
SPARCS dataset. . . . . . . . . . .. .. ... .. ... 88

Saved model size, total number of parameters, and number of trainable
parameters for the luminosity thresholding algorithm, random forest al-
gorithm, U-Net, dense U-Net, Cs-equivariant U-Net and Cg-equivariant
dense U-Net trained on the modified SPARCS dataset. . . . . . . .. 88

22



3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

Performance metrics detailed in §2.3.1 for the Cg-equivariant dense
U-Net trained on visible-spectrum data only evaluated on the cloud
dataset, evaluated with no buffer and with a 2 px buffer at cloud
boundaries. . . . . ...

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the Cs-equivariant dense
U-Net trained on visible-spectrum data only to the frequency of each
terrain class among all non-cloud pixels in the SPARCS dataset, as
explained in §2.3.1, evaluated with no buffer and with a 2 px buffer at
cloud boundaries. . . . . .. .. oo L oo

Performance metrics detailed in §2.3.1 for the Cg-equivariant dense
U-Net trained on visible-spectrum and LWIR data evaluated on the
cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud
boundaries. . . . . . . ..

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the Cg-equivariant dense
U-Net trained on visible-spectrum and LWIR data to the frequency of
each terrain class among all non-cloud pixels in the SPARCS dataset,
as explained in §2.3.1, evaluated with no buffer and with a 2 px buffer
at cloud boundaries. . . . . . ... ...

Performance metrics detailed in §2.3.1 for the Cg-equivariant dense
U-Net trained on visible-spectrum and SWIR data evaluated on the
cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud
boundaries. . . . . . .. ..

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the Cg-equivariant dense
U-Net trained on visible-spectrum and SWIR data to the frequency of
each terrain class among all non-cloud pixels in the SPARCS dataset,
as explained in §2.3.1, evaluated with no buffer and with a 2 px buffer
at cloud boundaries. . . . . . ... ... Lo

Performance metrics detailed in §2.3.1 for the Cg-equivariant dense U-
Net trained on visible-spectrum, LWIR, and SWIR data evaluated on
the cloud dataset, evaluated with no buffer and with a 2 px buffer at
cloud boundaries. . . . . . .. ...

Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded)
among pixels falsely identified as clouds by the Cgs-equivariant dense
U-Net trained on visible-spectrum, LWIR, and SWIR data to the fre-
quency of each terrain class among all non-cloud pixels in the SPARCS
dataset, as explained in §2.3.1, evaluated with no buffer and with a 2
px buffer at cloud boundaries. . . . . . . .. ..o

23

91

92

94

95

98

98

100

101



3.25

3.26

3.27

3.28

4.1

4.2

4.3

4.4

4.5

4.6

Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-
Net trained on visible-spectrum data (VIS) only, visible-spectrum and
LWIR data, visible-spectrum and SWIR data, and visible-spectrum
and LWIR and SWIR data, evaluated on the modified SPARCS dataset

without using a buffer at cloud boundaries. . . . . . . . .. ... ...

Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-
Net trained on visible-spectrum data (VIS) only, visible-spectrum and
LWIR data, visible-spectrum and SWIR data, and visible-spectrum
and LWIR and SWIR data, evaluated on the modified SPARCS dataset

with a 2 px buffer at cloud boundaries. . . . . . ... ... ... ...

Peak memory usage over 100 single-image classifications and average
inference time over 1000 single-image classifications using both a CPU
(Intel Xeon) and GPU (Nvidia K80) backend for the Cg-equivariant
dense U-Net trained on visible-spectrum data only, on visible-spectrum
and LWIR data, on visible-spectrum and SWIR data, and on visible-
spectrum, LWIR, and SWIR data on the modified SPARCS dataset. .

Saved model size, total number of parameters, and number of train-
able parameters for the Cy-equivariant dense U-Net trained on visible-
spectrum data only, on visible-spectrum and LWIR data, on visible-
spectrum and SWIR data, and on visible-spectrum, LWIR, and SWIR
data, trained on the modified SPARCS dataset. . . . ... ... ...

Performance metrics detailed in §2.3.1 for the U-Net evaluated on the
Massachusetts Roads Dataset with no buffer and with a 4 px buffer at
road boundaries. . . . . .. ..o Lo

Performance metrics detailed in §2.3.1 for the dense U-Net evaluated
on the Massachusetts Roads Dataset with no buffer and with a 4 px
buffer at road boundaries. . . . . ... ... oL

Performance metrics detailed in §2.3.1 for the Cg-equivariant U-Net
evaluated on the Massachusetts Roads Dataset with no buffer and with
a 4 px buffer at road boundaries. . . . ... ... ... ... ... ..

Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-
Net evaluated on the Massachusetts Roads Dataset with no buffer and
with a 4 px buffer at road boundaries. . . . . . ... ... ... ...

Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net,
Cg-equivariant U-Net, and Cg-equivariant dense U-Net evaluated on
the modified Massachusetts Roads Dataset, evaluated without using a
buffer at road boundaries. . . . . ... ..o

Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cs-
equivariant U-Net, and Cg-equivariant dense U-Net evaluated on the
modified Massachusetts Roads Dataset, evaluated with a 4 px buffer
at road boundaries. . . . . . ... ..o

105

107

109

109

114

117

119

122

127



4.7

4.8

5.1

5.2

5.3

B.1

B.2

Peak memory usage over 100 single-image classifications and average
inference time over 1000 single-image classifications using both a CPU
(Intel Xeon) and GPU (Nvidia K80) backend for the U-Net, dense
U-Net, Cg-equivariant U-Net, and Cg-equivariant dense U-Net on the
modified Massachusetts Roads Dataset. . . . . . . .. ... ... ...
Saved model size, total number of parameters, and number of trainable
parameters for the U-Net, dense U-Net, Cs-equivariant U-Net and Cy-
equivariant dense U-Net trained on the modified Massachusetts Roads
Dataset. . . . . . . . . .

Performance metrics calculated for the SPARCS CNN [25] and for the
cloud segmentation models presented in Chapter 3. All results are
calculated on the SPARCS dataset using a 2 px buffer at the cloud
boundaries. . . . . ...
Performance metrics for the models evaluated in [5] and for the road
segmentation models presented in Chapter 4. All metrics are calculated
with a 4 px buffer at road boundaries unless otherwise specified. . . .
Performance metrics for the cloud segmentation models presented in
Chapter 3 and the road segmentation models presented in Chapter 4.
All metrics are calculated with a 2 px buffer at the cloud boundaries
for cloud segmentation models and with a 4 px buffer at the road
boundaries for road segmentation models. . . . . ... ... ... ..

Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cs-
equivariant U-Net, and Cyg-equivariant dense U-Net evaluated on the
modified Massachusetts Roads Dataset using softIOU loss, evaluated
without using a buffer at road boundaries. . . . . . . .. .. ... ..
Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cs-
equivariant U-Net, and Cyg-equivariant dense U-Net evaluated on the
modified Massachusetts Roads Dataset using softIOU loss, evaluated
with a 4 px buffer at road boundaries. . . . . . ... ... ... ...

25

131

131

134

136

138

154



THIS PAGE INTENTIONALLY LEFT BLANK

26



Chapter 1

Introduction

1.1 Motivation

Small satellites are popular tools for Earth observation. Satellite imagery can pro-
vide valuable insights about the Earth; for example, satellite imagery can be used to
track deforestation, which is an application case of interest in this work [47|. Satel-
lite images can be rotated arbitrarily about the camera boresight or telescope bore-
sight. Rotation-equivariant image processing algorithms can leverage this effect to
improve object detection or image segmentation performance. Rotation-equivariant
deep learning models have already been used with some success for object detection
[19] and image segmentation [37] on satellite imagery. This thesis focuses on two par-
ticular classification tasks: cloud detection and road detection, and evaluates several
image processing algorithms, including rotation-equivariant deep learning algorithms,
for each task.

On-orbit cloud detection is a critical enabler of satellite autonomy and high-
throughput imaging pipelines. Identifying cloudy images on-orbit allows satellites to
downlink only cloud-free images, optimizing the useful data throughput of a satellite
[28]. Many satellite instruments require cloud masks for data analysis: microwave ra-
diometers require cloud-free data for instrument calibration [16], and NASA’s Clouds
and the Earth’s Radiant Energy System (CERES) instrument requires cloudy data to

study cloud-climate interactions [36]. Achieving on-orbit cloud detection with a co-
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hosted instrument allows satellites to downlink data with a concurrent and co-located
cloud mask, improving data throughput and thus speeding up instrument calibration
and data analysis.

Route planning is crucial for autonomous driving, and road extraction from satel-
lite imagery can be used to quickly map areas affected by flooding and other natural
disasters, as well as to map evacuation routes [14]. Roads have a distinct topology
where segments are generally connected to form a larger network, often in the form
of a geometrically regular grid, making road detection a good candidate domain on
which the benefits of rotation-equivariant deep learning can be demonstrated. Road
geometry has previously been successfully leveraged to learn the orientation of roads
in order to predict road networks and refine masks with missing road segments [7] [5].
Improving road detection in satellite imagery with rotation-equivariant deep learning
networks can help in applications such as mapping flooded areas in time-critical sit-
uations in order to aid evacuation efforts and tracking road construction to predict

illegal deforestation.

1.2 Background

1.2.1 Deep Learning

Deep learning is a type of machine learning that uses multiple hidden layers in an
artificial neural network to train a model relating an input to an output. Deep
learning models have shown promising gains in a variety of domains, including image
segmentation, and especially segmentation of biomedical imagery. Both biomedical
images and satellite images can be arbitrarily rotated about the camera vector, unlike
many other types of imagery such as from vehicular or marine platforms. This similar
geometry means that many models designed for segmenting biomedical imagery in
theory can easily be adapted to segment satellite imagery.

U-Nets and dense U-Nets are two deep learning architectures which have demon-

strated strong performance on segmenting biomedical imagery [42] [18]. U-Nets are
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convolutional neural network (CNN)-based deep learning models originally designed
for segmenting biomedical imagery [42]. U-Nets downsample an input to create a
high-resolution encoding, then upsample to create an output mask, and include feed-
forward connections between the downsampling and upsampling path to better lo-
calize features [42]. Dense models replace convolutions in CNNs with “dense blocks”,
which contain multiple convolutions connected by feed-forward operations, improving
gradient and feature propagation throughout a network [23|. Dense U-Nets replace
convolution layers in U-Nets with dense blocks, and have successfully outperformed
U-Nets on removing artifacts from biomedical images constructed with 2D sparse

photoacoustic tomography [18].

Transformation-Equivariant Deep Learning

Equivariance is a symmetric form of invariance: when an input to a shift-equivariant
deep learning model is shifted, the output of the model will be equivalently shifted.
Although most operations in CNNs are equivariant to translational shifts, most layers
in traditional CNNs are not rotationally equivariant. Commonly used strided opera-
tions, including max pooling, average pooling, and strided convolutions, are subject
to aliasing and lose translational equivariance [53]. As a result, most CNNs and
CNN-based deep learning models, including basic U-Nets and dense U-Nets, are not
equivariant to translational or rotational shifts in input.

Translational equivariance can be achieved by replacing strided operations with
densely evaluated operations followed by a strided blur, which effectively low-pass
filters a signal before sampling, reducing aliasing and improving translational equiv-
ariance [53]. Using blurs for anti-aliasing improves performance on object detection
and can be easily integrated into almost any deep learning model [53]. A translation-
ally equivariant version of AlexNet, a CNN designed for object detection, showed an
0.39% increase in accuracy and a 5.13% increase in consistency over a non-equivariant
version of AlexNet when evaluated on the ImageNet dataset [53]. Translationally
equivariant U-Nets have also previously demonstrated strong performance on seg-

menting clouds in satellite imagery [28].
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Partial rotational equivariance can be achieved using group equivariant CNNs,
which exploit symmetry by generalizing convolution layers to “group convolutions”.
Group convolutions are equivariant to a specific group of transformations, often Cg
(the group of rotations by integer multiples of 45°) or other cyclic groups. Group
equivariance generally improves performance and reduces the parameter space of deep
learning models. By directly encoding symmetry in the model, the model only has to
learn to detect features of interest in the training phase and does not have to learn
symmetry, speeding up training [12|. Cs-equivariant and other partially rotationally
equivariant models are particularly well-suited to domains where images may be ar-
bitrarily rotated about the camera vector, such as biomedical and satellite imagery

117].

Cie-equivariant CNNs with anti-aliased strided operations for translational equiv-
ariance have demonstrated state-of-the-art performance on identifying handwritten
digits from the popular MNIST dataset [51|. Similarly, Cs-equivariant dense U-Nets
have shown state-of-the-art performance on segmenting biomedical imagery, despite
the fact that the models considered implemented strided operations without anti-
aliasing and thus were not fully translationally equivariant [17]. Other models equiv-
ariant to transformations under Cg but not to translations have been successfully
applied to object detection and segmentation for deforestation detection in satellite

imagery, outperforming non-equivariant models [19] [37].

Weiler et al. experimented with C),-equivariant CNNs for n varying from 1 to 24,
allowing the number of model parameters to increase with the number of orientation
channels [51]. Weiler et al. found that performance generally improves as angular
resolution increases, but that adding more than 12 to 16 orientation channels yields
no extra benefit [51]. Graham et al. experimented with Cjy-, Cs-, and Cis-equivariant
CNNs, with the total number of model parameters held constant, and found that

Cs-equivariant models perform best for most applications [17].
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1.2.2 Cloud Detection

Cloud detection is a critical capability for weather and climate satellite missions and
has historically been performed on the ground using downlinked satellite multispectral
data and physics-driven rule-based methods. Examples of physics-driven rule based
methods still evaluated on the ground include Fmask, which detects clouds, clear land,
clear water, and cloud shadow in Landsat and Sentinel-2 data [55|, the continuity
MODIS-VIIRS cloud mask, which detects clouds in MODIS and VIIRS data [15],
the MODIS cloud mask retrieved for the CERES mission, which detects clouds in
MODIS data [44], and the GOES cloud mask, which detects clouds and probable
clouds in the GOES advanced baseline imager (ABI) data [22]. All of these methods
use physics-derived reflectance and brightness temperature thresholds in different
bands of a multispectral data input to determine whether a pixel is cloudy or clear.
These methods often rely on determining the surface terrain type based on spectral
properties of the inputted data, and have different cloud thresholds depending on the

underlying terrain.

Most satellite instruments that require cloud masks for data processing or instru-
ment calibration use cloud masks derived from physics-driven rule-based methods and
multispectral input. For example, the TROPICS mission requires cloud masks prior
to calibration in order to identify clear-sky pixels used to calibrate radiances of its
microwave instrument, and uses cloud masks from GOES-16 in this pre-calibration
process [16]. Similarly, validation of TEMPEST-D calibration requires extracting
clear-sky data over ocean [8]. Suomi-NPP requires cloud masks to geolocate data
from its ATMS instrument and uses VIIRS cloud masks [54]. MicroMAS-2A, like
TROPICS, required cloud masks for radiance calibration and used cloud masks from

VIIRS onboard Suomi-NPP and VIIR onboard Fengyun-3C for calibration [13].

Other methods for cloud detection include rule-based methods driven by statistics
rather than physics, like random tree and random forest detection. The s2cloudless
algorithm is a gradient-boosted tree-based algorithm for Sentinel-2 imagery that im-

proves upon Fmask by almost 10% — likely in part because Fmask is designed to work
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for Landsat or Sentinel-2, while s2cloudless is optimized for Sentinel-2 [56]. Some
statistics-driven rule-based methods have been tested on-orbit. On EO-1, Bayesian
thresholding (BT') and random forest algorithms were tested for cloud detection, and
a rule-based novelty detection system was also tested on-orbit on EO-1 [48]. The ran-
dom forest algorithm on EO-1 achieved 94.5% accuracy using a 5x5 kernel around each
pixel and three visible-spectrum bands [48]. Rule-based methods have also been used
onboard OPS-SAT for cloud detection [27]. OPS-SAT tested luminosity threshold-
ing, a rule-based method similar to the Bayesian thresholding algorithm used aboard
EO-1, and k-means segmentation onboard, and additionally tested a random forest
algorithm on the OPS-SAT engineering model on the ground [27]. OPS-SAT has no

multispectral sensors, so all methods tested used visible-spectrum imagery only.

Deep learning on visible-spectrum or multispectral data can also be used for cloud
detection. OPS-SAT evaluated a U-Net-based deep learning algorithm on-orbit for
cloud detection trained on visible-spectrum Landsat imagery, in addition to three dif-
ferent rule-based methods [27]. The U-Net outperformed all three rule-based meth-
ods, achieving a balanced accuracy of 77-89% over three test images; the random
forest algorithm was the next-best performing method and achieved a balanced accu-
racy of 66-80% [27]. A similar model achieved 91.7% overall accuracy when trained
and tested on Landsat images, using three visible-spectrum Landsat bands (B2-B4)
and a long-wave infrared (LWIR) band derived from averaging Landsat B10 and
B11 [28]. Improved results can be achieved when multispectral input data is consid-
ered — Spatial Procedures for Automated Removal of Cloud and Shadow (SPARCS),
a convolutional neural network (CNN) trained on all Landsat 8 bands except the
panchromatic band (B8), can discriminate between clear-sky, cloud, cloud shadow,
water, and snow /ice pixels with 97.1% accuracy [25]. However, SPARCS only cate-
gorizes the central region of an image, requiring a 28 px buffer around the classifiable
region, and SPARCS’ performance metrics allow for a 2 px accuracy buffer for cloud
and cloud shadow boundaries [25]. The use of a 2 px accuracy buffer means that
SPARCS’ performance metrics consider pixels that fall within 2 px of a cloud or

cloud shadow boundary to be classified correctly if SPARCS classifies these pixels as
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either of the boundary classes [25].

1.2.3 Road Detection

Road detection is key to autonomous driving and route planning and has been studied
extensively [14]. Current state-of-the-art approaches to road detection use deep learn-
ing and generally rely on CNN-inspired architectures, sometimes with post-processing
to leverage road network geometry to improve performance.

Many road segmentation models use deep learning architectures without post-
processing. Volodymyr Mnih created the Massachusetts Roads Dataset and applied a
CNN without post-processing to road segmentation, inspiring a follow-on movement
of research into applying deep learning to road segmentation in aerial imagery [38]. A
related segmentation model without post-processing is LinkNet, a U-Net-inspired ar-
chitecture which extensively uses feed-forward operations, concatenating the input of
each encoder block in the model to the input of each decoder block in order to retain
spatial information for semantic segmentation [11]. LinkNet slightly outperforms
vanilla U-Nets on road segmentation when evaluated on the Massachusetts Roads
Dataset, achieving an F} score of 0.8393 when a 4 px buffer is taken into account
at road boundaries; in contrast, the U-Net achieves a lower Fj score of 0.8339 [5].
Another approach is using a general adversarial network (GAN), which uses a “dis-
criminator” network to optimize the training of a “generator” network, which outputs
segmentation masks. Abdollahi et al. have demonstrated very strong performance on
road segmentation on a limited subset of the Massachusetts Roads Dataset using a
GAN, achieving an Fj score of 0.9220 |[2].

Some state-of-the-art architectures for road segmentation use post-processing to
improve performance. One such approach annotates ground truth masks with road
orientation labels and uses multi-task learning to jointly learn road orientation and
perform pixel-level road segmentation, then uses a post-processing CNN to refine the
road network [7]. The post-processing CNN is trained on corrupted versions of ground
truth masks to recover missing segments of the road network and to delete singleton

road pixels [7]. This “orientation learning" approach leverages the fact that roads
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can be represented as vectors and that road networks are typically fully connected
to improve performance. Bandara et al. developed an architecture that integrates
“orientation learning” and graph learning in both spatial and interaction space into a
ResNet-inspired deep learning architecture in order to learn road network topologies

and further improve the connectivity and accuracy of road masks [5].

1.3 Summary of Literature

Translation-equivariant [28] and Cys-equivariant [37] deep learning models have sepa-
rately been successfully applied to segmenting satellite imagery. Deep learning models
that are both Cs-equivariant and translationally equivariant have successfully demon-
strated identifying handwritten digits in images, outperforming non-equivariant mod-
els [51]. Many non-equivariant deep learning models exist for both road detection in
aerial imagery and cloud detection in satellite imagery; SPARCS [25] and SPIN Road
Mapper [5] are two such state-of-the-art models for cloud and road detection, respec-
tively.

However, despite the excellent work done on deep learning for satellite and aerial
image segmentation, no Cg- and translation-equivariant models have yet been devel-
oped for or applied to segmenting satellite and aerial imagery, and to the author’s
knowledge, even purely Cg-equivariant models have never been applied to either cloud

detection or road detection.

1.4 Thesis Outline

The core contribution of this thesis is the development of rotationally and transla-
tionally equivariant deep learning models for image segmentation onboard CubeSats.
This thesis primarily focuses on developing deep learning models for cloud detection
in satellite imagery, but also includes models developed for road detection, and draws
comparisons between the cloud detection and road detection problem domains and

the performance of different algorithms across both domains. This thesis is organized

34



as follows:

e Chapter 1 of this thesis introduces the problems of cloud detection and road
detection in satellite and aerial imagery, provides an overview of the field, and

describes current state-of-the-art cloud and road detection algorithms.

e Chapter 2 describes the datasets used for road and cloud detection, outlines the
models applied to cloud and road segmentation, and explains the metrics used

to evaluate the performance and resource consumption of each algorithm.

e Chapter 3 presents the results of the cloud detection experiments and discusses

the segmentation performance and resource consumption of each algorithm.

e Chapter 4 presents the results of the road detection experiments and discusses

the segmentation performance and resource consumption of each algorithm.

e Chapter 5 analyzes the results of the experiments presented in chapters 3 and

4 and makes comparisons to the literature.

e Chapter 6 summarizes our conclusions and recommendations for future work.
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Chapter 2

Approach

This chapter details the cloud and road segmentation case studies and datasets, de-
scribes the two rule-based algorithms applied to cloud segmentation and the four deep
learning algorithms applied to both road and cloud segmentation, and explains the
metrics used to evaluate the segmentation performance and resource consumption of

each algorithm.

2.1 Case Studies and Datasets

2.1.1 Cloud Segmentation

Clouds have varying morphologies; cumulonimbiform, cumuliform, stratiform, stra-
tocumuliform, and cirriform clouds have been visible in Landsat imagery ever since
Landsat 1 and Landsat 2 [6]. The exact shape of clouds in each of these five ma-
jor cloud families can vary significantly; each of these cloud families contains many
subtypes [43]. Unlike other categories on which Cg-equivariant deep learning models
have been demonstrated in the past, clouds as a broad category vary significantly
in morphology. Additionally, with “strong orientation” defined as the property that
human interpreters are able to identify and agree on the orientation of randomly ro-
tated images of a target segmentation class, many cloud types, especially types in the

cumuliform family, do not have a fixed shape or strong orientation [43|. The cloud
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Table 2.1: Summary of multispectral data available from Landsat 8; bands we use
(2-4, 6, 10) are bolded. Adapted from |[3].

Band Name Wavelength (um) Resolution (m)
1 Coastal Aerosol 0.433-0.453 30
2 Red 0.450-0.515 30
3 Green 0.525-0.600 30
4 Blue 0.630-0.680 30
5 Near infrared (NIR) 0.845-0.885 30
6 Short-wave infrared (SWIR) 1 1.560-1.660 30
7 SWIR 2 2.100-2.300 30
8 Panchromatic 0.500-0.680 15
9 Cirrus 1.360-1.390 30
10  Long-wave infrared (LWIR) 1 10.30-11.30 100
11 LWIR 2 11.50-12.50 100

detection case study in this thesis is intended to evaluate the performance of Cs-
equivariant deep learning models on a classical image segmentation problem without

strong feature orientation.

Modified SPARCS Dataset

We evaluate the six different image segmentation models described in §2.2 on a mod-
ified version of the Spatial Procedures for Automated Removal of Cloud and Shadow
(SPARCS) dataset of 80 Landsat 8 images representing 16 different biomes [25]. The
SPARCS dataset contains high-accuracy segmentation masks created by two human
operators, classifying each pixel as cloud, cloud shadow, cloud shadow over water,
water, ice/snow, land, or flooded for each scene [25]. Because this thesis focuses on
cloud detection, we post-process the masks in the SPARCS dataset to re-classify all
non-cloud pixels as “background”, creating binary masks where each pixel is classified
as cloud or background.

Landsat 8 has eleven spectral bands (see Table 2.1), but the SPARCS dataset

includes data from Landsat bands 1-10 only. We chose to focus on visible-spectrum,
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long-wave infrared (LWIR), and short-wave infrared (SWIR) imagery, and so we only
use data from Landsat bands 2-4 (blue, green, and red), band 6 (SWIR 1), and band
10 (LWIR 1).

2.1.2 Road Segmentation

Unlike clouds, roads, especially straight roads in gridlike road networks, have strong
orientation. State-of-the-art road detection models like SPINRoadMapper and Ori-
entation Learning leverage this orientation to better identify road networks, but none
of these models are Cg-equivariant [5] [7]. The road detection case study in this thesis
is intended to evaluate the performance of Cg-equivariant deep learning models on a

satellite image segmentation problem with strong feature orientation.

Modified Massachusetts Roads Dataset

We evaluate the image segmentation models described in §2.2 on a modified version
of the Massachusetts Roads Dataset [38]. The Massachusetts Roads Dataset contains
1171 aerial images of roads in Massachusetts, and the truth masks were generated
by hand-correcting rasterized road centerlines from OpenStreetMap labels [38|. Un-
fortunately, not all images in the Massachusetts Roads Dataset are complete — some
include considerable portions of blank white space. As in [5], we cropped all images
in the Massachusetts Roads Dataset from 1500 x 1500 pixels to multiple 512 x 512
pixel patches, and discarded the resulting crops that contained white space, keeping

only the “complete” crops.

2.2 Models

This thesis focuses primarily on evaluating the performance of the Cg-equivariant
dense U-Net presented in §2.2.6 on segmentation of satellite and aerial imagery. The
luminosity thresholding algorithm, random forest algorithm, and U-Net model de-

scribed in §2.2.1-2.2.3 are included as baseline methods for comparison, and the dense
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U-Net and Cys-equivariant U-Net models described in §2.2.4-2.2.5 are included to help

distinguish the effects of dense blocks and the effects of Cg-equivariance.

2.2.1 Luminosity Thresholding

Luminosity thresholding is a simple cloud detection algorithm which classifies each
pixel individually based on its luminosity in each band of an image. For a multi-
band image, one luminosity threshold is found for each band. Each pixel is classified
based on its luminosity in each band, resulting in a probabilistic cloud mask with the
contribution from each band weighted equally. For an image with four bands, a pixel
that is classified as the target class (e.g. cloud) based on its luminosity in three of the
four bands, but classified as background based on its luminosity in the fourth band,
would receive an 0.75 probability of being the target class in the final probability
mask.

For each band, given n pixels in the training set, the luminosity thresholding algo-
rithm implemented in this thesis solves for the threshold ¢ and directional parameter
d satisfying:

argmax Xt f(td, b ) (2.1)

where the function f(t,d, ¢;, ¢;) represents the binary classification accuracy of a pixel

¢ with luminosity ¢; and true class ¢; given a threshold ¢ and direction d:

( (
f(t,dzl,fz‘,cz‘:]_): f(t,d:]_,él,CZZO):
(2.2)
( (
f(t,d:(),gi,ci:]_): f(t,dzo,&,clz(]):
0 €l>t \O gz_
(2.3)

The directional parameter d essentially represents whether or not luminosity in a cer-
tain band is positively correlated with the target class (d = 1) or negatively correlated

with the target class (d = 0). The threshold ¢ is used to classify a pixel based on
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its luminosity; for example, if the luminosity is positively correlated with the target
class (d = 1) and the pixel luminosity is > ¢, then the pixel is classified as the target
class. The pixel true class ¢; represents whether a pixel belongs to the target class

(¢; =1) or not (¢; = 0).

Luminosity thresholding can be considered to be a special case of the random
forest algorithm presented in subsection 2.2.2, where for an image with b bands, b
depth-2 trees vote on whether each pixel should be classified as the target class or
as background based on its luminosity in each of the b bands. Figure 2-1 shows this
architecture for a luminosity thresholding architecture which classifies pixels based

on luminosity in the red, green, blue, LWIR, and SWIR bands of an image.

5 trees

depth 2

Votes summed from each tree

Figure 2-1: Luminosity thresholding architecture diagram showing trees representing
red, green, blue, LWIR, and SWIR bands voting based on thresholds in each band in
a b-tree random forest. Figure credit: Alex Meredith and Shreeyam Kacker, MIT.

Unlike the kernel-based random forest algorithm presented in section 2.2.2 and
the deep learning algorithms presented in sections 2.2.3-2.2.6, luminosity thresholding
classifies each pixel individually without considering the context of any surrounding
pixels. The luminosity thresholding algorithm is therefore unable to learn or leverage
the morphology of the target class (e.g. clouds, road networks) when classifying

images.
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2.2.2 Random Forest

Random forest classification is an ensemble learning method where n trees of depth
d are trained individually on separate random samples of the training data. Each
depth-d tree makes d decisions to classify a pixel and its associated features, and then
the n final classification decisions made by each of the n trees are aggregated into
a collective decision made by the forest, which typically outperforms any individual

tree as a classifier [41].

During training, each tree solves for the splits that will maximize the decrease in
“impurity”, which is roughly equivalent to the likelihood of eventual misclassification
of a data point, at each of its d levels [34]. In this thesis, we use Gini impurity, which
is the probability of incorrectly classifying a data point if it were randomly labeled
based on the class distribution of the dataset [34]. For a split ¢ and classification
between n classes c;...c,, where p(¢;|t) represents the probability that a data point

belongs to class ¢; conditional on the split ¢, Gini impurity is given by [34]:

ig(t) = Xily p(ailt) (1 — p(eilt)) (2.4)

As in [48], 28], and [27], we use a kernel-based random forest classifier, which
considers pixel luminosities in a k X k kernel centered on the pixel of interest when
classifying a pixel. As shown in Figure 2-2, we use a 3 x 3 kernel around each pixel,
and as such, the random forest we trained uses 9 features per imaging band considered
for each pixel; we use 5 bands, so our random forest uses a total of 3 x 3 x 5 =45
features per pixel. In contrast, the luminosity thresholding algorithm presented in
§2.2.1 only considers 1 feature per band for each pixel (namely, the pixel luminosity),
for a total of 5 features per pixel. The deep learning algorithms explored in §2.2.3-
2.2.6 classify each image as a whole, and thus consider tens of thousands of features
per band during classification. The random forest algorithm therefore represents a
middle ground between the luminosity thresholding algorithm and the deep learning
algorithms explored in §2.2.3-2.2.6 in terms of number of features considered, amount

of spatial context considered, and computational complexity.
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Figure 2-2: Random forest architecture diagram showing classification of a single
pixel based on luminosities in the red, green, blue, LWIR, and SWIR bands of pixels
in a k x k window surrounding the pixel of interest, using a forest with n trees of
depth d. Figure credit: Alex Meredith and Shreeyam Kacker, MIT.
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2.2.3 U-Net

Ronneberger et al. created the U-Net architecture for biomedical image segmentation
[42]. U-Nets are “U-shaped" and consist of a contracting path, where an input is
repeatedly spatially downscaled to capture context, and an expanding path, where
an input is repeatedly spatially upscaled to precisely localize the features in the
final output map [42]. U-Nets also feature concatenations between the contracting
path and the expanding path; feed-forward connections like these smooth the “loss

landscape" of deep learning models, improving model convergence [30].

(144, 144, 64)
(72,72, 128)
(36, 36, 256)
. . _b-_>'(18,18,512)

(144, 144, 5)
RGB+LWIR + SWIR (9,9, 1024)
- "3 /
KM"
i, «— «— 4_'4_’(18,18,1024)

(72, 72, 256) 3% 36:512)

-

(144,144, 1) (144,144, 128)
Grayscale [0, 1]
Legend ReduceChannels . Upsample (2x) <«— No operations
«— ConvBlock (3, 3) ReduceChannels
Upsample (2x) MaxBlurPool (2, 2) ReduceChannels

ReduceChannels ConvBlock (3, 3)
ConvBlock (3,3) ReduceChannels

(@« Concatenation ReduceChannels MaxPoolChannels
ConvBlock (3, 3) Activation

Figure 2-3: U-Net model architecture showing classification of an entire five-band
(red, green, blue, LWIR, SWIR) image. See Figure 2-4 for the definitions of “Re-
duceChannels”, “ConvBlock”, and “Activation”. Image credit: Alex Meredith and
Shreeyam Kacker, MIT.

As shown in Figure 2-3, we adapted the original U-Net architecture [42] to work for
a 144 x 144 pixel image rather than a 512 x 512 pixel image. We kept the same number
of channels in each layer as in the original U-Net, using 64 channels in the input to our

first spatial downsampling operation [42]. We replaced max-pooling operations in the
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BatchNorm2D
ReduceChannels ReLU
Conv2D (1, 1) C8BatchNorm2D
- C8ReduceChannels | C8RelU
C8Conv2D (1, 1)
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RelLU
Conv2D (3, 3)
ConvBlock (3,3) | BatchNorm2D C8BatchNorm2D
C8Conv2D (3, 3)
| Conv2D (3, 3) C8ConvBlock (3,3) | (gRatchNorm2D
C8RelLU
_ C8Conv2D (3, 3)
Conv2D (1, 1)
Activation BatchNorm2D
- LeakyReLU (0.1)
Sigmoid

Figure 2-4: Details of operations used in the deep learning models described in §2.2.3-
2.2.6. Image credit: Alex Meredith, MIT.

original U-Net with max-blur-pooling, which greatly reduces the aliasing caused by
max-pooling and thus improves translational equivariance [53]. We also added batch
normalization prior to each rectified linear unit (ReLU) to reduce internal covariate
shift and speed up training [26].

As defined by loffe & Szegedy, internal covariate shift is “the change in the dis-
tribution of network activations due to the change in network parameters during
training”, and can cause nonlinear activation functions to “saturate”, meaning that
their derivatives trend towards zero, slowing down the convergence of a network [26].
Batch normalization integrates normalization into a model architecture to prevent
activation functions from saturating, and uses mini-batch statistics for normalization

for reasons of computational efficiency and gradient propagation [26].

2.2.4 Dense U-Net

Dense deep learning models replace convolution layers with “dense” blocks, which are

composed of multiple convolution layers with feed-forward operations that connect
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the inputs of each of the convolutions [23]. These feed-forward connections, like the
feed-forward connections used to connect the contracting and expanding paths in U-
Nets, improve gradient propagation and smooth the “loss landscape” of a network,
improving model convergence [30]. Dense U-Nets combine dense blocks with U-Nets,

replacing the convolution layers in a U-Net with dense blocks.

n=4 convolution layers

7N 72NN N
77

L/
N e e

Legend
—» Concatenation  —» BatchNorm + ReLU + Conv2D (1, 1)

BatchNorm + ReLU + Conv2D (3, 3)

Figure 2-5: Architecture of a “dense block”, which is the primary building block of
the dense U-Net, with n = 4 convolution layers and ¢,,; = ¢;,/4 output channels for
the convolutional layers. Image credit: Alex Meredith, MIT.

The four primary design parameters for dense blocks are n, the number of convo-
lution layers per dense block, k1, the size of the kernel used in the first convolution in
each convolution layer, ks, the size of the kernel used in the second convolution in each
convolution layer, and c,,;, the number of output channels of each convolution layer.
The input of each convolution layer is concatenated to its output before undergoing
the next convolution; as a result, the output of a dense block with ¢;, input channels
has ¢;, + ncoy: channels. A typical dense block from our dense U-Net is shown in
Figure 2-5, with n = 4 convolution layers, k1 = 1, ks = 3, Cout = Cin/4, where ¢;, is
the number of channels in the input to the dense block, and 2¢;, channels in the final

dense block output.
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Figure 2-6: Dense U-Net-based model architecture showing classification of an entire
five-band (red, green, blue, LWIR, SWIR) image. See Figure 2-4 for the definitions of
“ReduceChannels” and “Activation”, and see Figure 2-5 for the definition of “Dense-
Block”. Image credit: Alex Meredith and Shreeyam Kacker, MIT.

In this thesis, all dense blocks use n = 4 convolution layers, fewer than the 6 to
24 convolution layers used in each dense block in the original DenseNet [23]. Other
dense deep learning models sometimes vary the number of convolution layers used
in each dense block; Graham et al. use 3 to 6 convolution layers per dense block
in their DSF-CNN for classification and 2 to 4 convolution layers per dense block
for segmentation [17|. However, we exclusively use n = 4 convolution layers per
dense block, which has previously been shown by Cai et al. to outperform a U-Net
on biomedical image segmentation, improving F; score from 0.9002 to 0.9335, when

integrated into a U-Net-based architecture [9].

As in the original DenseNet [23]|, we use a 1 x 1 convolution kernel in the first
convolution and a 3 x 3 convolution kernel in the second convolution of each convo-

lution layer. The 1 x 1 convolution is a “bottleneck” layer used to reduce the number
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of channels of the input into the 3 x 3 convolution, speeding up training [23|. The
3 x 3 convolution extracts spatial context and is computationally lighter than convo-
lutions with larger kernels. Convolutions with larger kernels can be decomposed into
successive 3 x 3 convolutions, making 3 x 3 convolutions useful for computationally

efficient deep learning networks [21].

2.2.5 (s-Equivariant U-Net

The Cg-equivariant U-Net adapts the architecture of the U-Net described in §2.2.3 to
be Cg-equivariant, resulting in a Cg-equivariant steerable filter CNN (SFCNN)[50]. Cy
is the group of 45° rotations, so Cg-equivariance means that any rotation of an integer
multiple of 45° of the model input yields an equivalent rotation of the outputted
feature map. Cg-equivariance proves especially useful for segmenting satellite and
aerial imagery because satellite and aerial images can be rotated arbitrarily about
the camera boresight axis. The rotation equivariance property of Cg-equivariant deep
learning models does not hold for rotations other than integer multiples of 45°, but
Cg-equivariant models have shown good equivariance to other rotations in practice,
especially when the training dataset is augmented with arbitrary rotations [51].

Because the regular representation of Cyg supports pointwise nonlinearities, many
operations, including batch normalization and rectified linear activation unit (ReLU)
operations, can simply be applied to each orientation representation in Cg-equivariant
deep learning models while preserving Cg-equivariance [50]. C,,-equivariant convolu-
tions (where C,, is the group of @ rotations), however, differ fairly significantly from
regular convolutions. C,-equivariant convolutions operate on functions on R? x C),
and use g-filters, which are composed of n different filters [50]. Each g-filter has n
different representations; the different filters are rotated and reordered in each rep-
resentation [50]. An input feature map on R? x C,, is convolved with each of the n
representations of the g-filter, and a linear combination over all n orientations in the
output of each convolution is taken to form a single orientation representation in the
output feature map on R? x C,, [50].

For clarity, a Cj-equivariant convolution is shown in Figure 2-7, along with an
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“Input convolution” that transforms an input image on R? to a function on R? xC, and
an “orientation pooling” layer that takes the orientation-wise maximum to generate
a final output map on R2  See Appendix A for further detail on C,-equivariant

convolutions; Figure 2-7 is also reproduced there.

(1) input image

(3) function output

on R2XC4
(2) R2*> R2XC4

filter of a g-filter, maps

R2XCa+» R?

(a) Input convolution (b) Cs-equivariant group convolution  (c) Orientation pooling

Figure 2-7: (a) An input convolution that lifts an input image to R* x Cy, (b) A
C-equivariant group convolution, (¢) Orientation pooling to produce an output map
on R2. Image credit: Alex Meredith, MIT.

The Cyg-equivariant U-Net is very similar to the U-Net presented in §2.2.3, but with
nearly all operations replaced with Cs-equivariant equivalents, such as Cg-equivariant
convolutions and equivariance-preserving pointwise nonlinearities. The only excep-
tions occur in the first “input” convolution step (shown with the light blue arrow in
Figure 2-8) and the final “output” convolution step (shown with the red arrow in
Figure 2-8).

For the Cs-equivariant U-Net, the input convolution step involves a non-equivariant
batch normalization and rectified linear activation unit (ReLU) followed by a convo-
lution that “lifts” the input from an image on R? to a feature map on R? x Cs. As
shown in Figure 2-7(a), a C,-equivariant “lifting” convolution involves convolving the
input with a single filter rotated into n different orientations. In contrast, the U-Net
performs a normal convolution on R? instead of a “lifting” convolution in its input

block, as shown in Figure 2-3, because the U-Net operates on feature maps on R?

49



rather than R? x Cy at each step.
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Figure 2-8: Cgs-equivariant U-Net-based model architecture showing classification of
an entire five-band (red, green, blue, LWIR, SWIR) image. At each layer, the (x, y, c,
n) tuple represents the image dimensions (z X y), number of channels per orientation ¢,
and number of orientations n, with n = 8 representing Cg-equivariance. See Figure 2-
4 for the definitions of “C8ConvBlock”, “C8ReduceChannels”, and “Activation”. Image
credit: Alex Meredith and Shreeyam Kacker, MIT.

The output convolution step involves “group pooling”, also called “orientation pool-
ing”, which projects a feature map on R? x Cg back to R2, followed by the same
activation block used in the U-Net. Orientation pooling, as shown in Figure 2-7(c),
involves taking the pixel-wise maximum or average across the orientation dimension.
This is the same operation as the channel-wise max pooling performed by the U-Net

in its output block, except over orientations instead of channels.

2.2.6 C(s-Equivariant Dense U-Net

The Cg-equivariant dense U-Net is the most computationally complex model ex-

plored in this thesis. It replaces the Cg-equivariant convolution blocks described
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in §2.2.5 with Cgs-equivariant versions of the dense blocks described in §2.2.4. The
Cs-equivariant dense U-Net is able to both leverage the natural rotational symme-
try of satellite and aerial imagery and benefit from the improved gradient propaga-

tion of dense deep learning networks. Like the dense U-Net detailed in §2.2.4, the

n=4 convolution layers

A T <
77

1
N 7 U

Legend __, C8BatchNorm + C8ReLU + Conv2D ((1, 1), C8, C8)
— Concatenation C8BatchNorm + C8ReLU + Conv2D ((3, 3), C8, C8)

Figure 2-9: Architecture of a Cs-equivariant “dense block”, which is the primary build-
ing block of the Cs-equivariant dense U-Net. The Cs-equivariant “dense block” differs
from the “dense block” shown in Figure 2-9 by the use of Cs-equivariant operations,
emphasized here in red. Image credit: Alex Meredith, MIT.

Cs-equivariant dense U-Net uses k = 4 convolution layers in each dense block, has
Cout = Cin/4 output channels for each convolution layer, and performs a 1 x 1 convo-
lution followed by a 3 x 3 convolution in each convolution layer, as shown in Figure
2-9. However, unlike the convolutions in the dense U-Net, the convolutions in the

dense block used in the Cg-equivariant dense U-Net are, naturally, Cg-equivariant.

As shown in Figure 2-10, the Cg-equivariant dense U-Net has essentially the same
architecture as the Cg-equivariant U-Net (see Figure 2-8), except for the use of Cg-

equivariant dense blocks in place of Cg-equivariant convolution blocks.
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Figure 2-10: Cg-equivariant dense U-Net-based model architecture showing classifi-
cation of an entire five-band (red, green, blue, LWIR, SWIR) image. At each layer,
the (x, y, ¢, n) tuple represents the image dimensions (z X y), the number of channels
per orientation ¢, and the number of orientations n. See Figure 2-4 for the defini-
tions of “C8ReduceChannels” and “Activation”, and see Figure 2-9 for the definition
of “C8DenseBlock”. Image credit: Alex Meredith and Shreeyam Kacker, MIT.
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2.3 Metrics

In this section, we present the quantitative metrics used to evaluate the classification
performance and resource consumption of each algorithm used in our cloud detection

and road detection experiments.

2.3.1 Classification Performance

Each model trained on the road dataset generates a road mask for each image in the
test set, and each model trained on the cloud dataset generates a cloud mask for each
image in the test set. The resulting masks show the probability of a cloud or road at
each pixel, ranging from 0 (no cloud or no road, respectively) to 1 (certain cloud or
certain road, respectively). We convert each probability mask to a binary mask with
a threshold of 0.5 — all pixels with probability > 0.5 of a road or cloud are considered
to be a road or cloud prediction, respectively, and all pixels with probability < 0.5 of

a road or cloud are considered to be a non-cloud or non-road prediction, respectively.

After generating binary masks for each image, we find true positives (model-
generated mask correctly makes a positive prediction for each pixel), true negatives
(model-generated mask correctly makes a negative prediction for each pixel), false
positives (model-generated mask incorrectly makes a positive prediction), and false
negatives (model-generated mask incorrectly makes a negative prediction at each
pixel).

We use these pixel-level classifications to calculate accuracy, sensitivity, specificity,
balanced accuracy, precision, recall, F; score, and intersection over union (IoU) for
each model. For a perfect model, each of these metrics would be 1.0, reflecting
perfect classification at the pixel level that results in zero false positives and zero false
negatives. These metrics are given by the following equations, with T'P representing
the number of true positives, T'N representing the number of true negatives, F'P
representing the number of false positives, and F'N representing the number of false

negatives.
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TP+TN

A = 2.

Y = TP Y TN+ FP+ FN (2:5)
TP

Sensitivity = ———— 2.6

ensitivity = —m—— (2.6)
TN

1

Balanced Accuracy = é(SensitiVity + Specificity) (2.8)
TP

Precision = m—”) (29)

Recall = Sensitivity (2.10)

2 - Precision - Recall
Fi S = 2.11
1 DeoTe Precision + Recall ( )

Precision - Recall
IoU = 2.12
oU Precision + Recall — Precision - Recall ( )

In addition to the binary classification metrics in Equations 2.5-2.12, we plot the
receiver operating characteristic (ROC) curve for each model. The ROC curve cap-
tures the probabilistic nature of the model-generated cloud and road masks, plotting
true positive rate on the y-axis against false positive rate on the x-axis for different
cloud or road prediction thresholds from 0 to 1. We additionally calculate AUC (area
under the curve), a metric which represents the area under the ROC curve. AUC
ranges from 0 to 1, where 1 represents a perfect classifier and 0.5 represents random

guessing. We approximate AUC using midpoint Riemann sums.

Buffered Evaluation

“Buffered evaluation” is a common practice for evaluating segmentation performance
when object boundaries are fuzzy or truth masks are inconsistent in quality. When
buffered evaluation is used, any pixels within a fixed distance (or buffer) of a boundary
between two classes can be classified as either of the classes on the boundary and still
be considered correct [39]. Hughes & Kennedy used a 2 pixel buffer on cloud and
cloud shadow boundaries when evaluating the original SPARCS CNN to capture the
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inherent fuzziness of cloud boundaries [25|. Bandara et al. used a 4 pixel buffer on
road boundaries because the truth masks in the Massachusetts Roads Dataset are
generated using rasterized road centerlines and have uniform-width roads [5] [38].

In this thesis, we evaluate the results of each of our cloud detection experiments
with and without a 2 pixel buffer on cloud boundaries. We evaluate the results of
each of our road detection experiments with and without a 4 pixel buffer on road
boundaries. In our buffered evaluation, any pixel within 2 pixels of a cloud boundary
(or within 4 pixels of a road boundary) is considered correctly classified regardless
of its model-generated class label. We then compute and report each classification

metric both without considering a buffer and for our buffered evaluation.

False Positive Ratios

The SPARCS dataset contains labels for cloud shadows, cloud shadows over water,
water, ice/snow, land, and flooded terrain classes in addition to cloud labels [25]. We
can gain insight into the relative performance of each model on distinguishing clouds
from different types of terrain by analyzing the frequency of each terrain class among
pixels falsely identified as clouds by each model. For each of our cloud experiments,
we present a table of ratios of frequency among false positives to overall frequency
among non-cloud pixels in the SPARCS dataset for each terrain class. These ratios
express whether or not each terrain class is overrepresented or underrepresented in the
set of pixels falsely identified as cloud by the model; a ratio exceeding 1.0 indicates
that a terrain class is overrepresented amongst false positives, and a ratio below 1.0
indicates that a terrain class is underrepresented amongst pixels falsely identified as
cloud by the model.

Importantly, these ratios have certain limitations. First, the ratios only consider
pixels which are falsely identified as cloud by the model, and do not consider pixels
which are falsely identified as non-cloud by the model. For example, if the model
misclassifies many cloud pixels over snow as non-cloud, the ratios do not capture this
trend. Another key limitation is that models vary in specificity, so if one model has a

higher ratio for a specific terrain class when compared to another model, this increase
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in ratio does not necessarily indicate a higher number of false positives belonging to
that terrain class. These ratios can only be used to compare relative performance
on different terrain classes. For example, a model with a ratio of 2.0 for snow/ice
terrain can be said to have a relative disadvantage at distinguishing clouds from ice
and snow versus other terrain types when compared to a model with a ratio of 0.5
for snow /ice terrain, but nothing can be said about which model actually performs
better at distinguishing snow/ice terrain from clouds unless additional information is

considered.

The Massachusetts Roads Dataset only contains road labels; as such, we do not

produce false positive ratio tables for our road detection experiments.

2.3.2 Resource Consumption and Model Complexity

We evaluate the complexity of each model based on the number of trainable model
parameters, the total number of model parameters, and the size of the fully
trained and saved model. In order to evaluate resource consumption, we also
consider the inference time to classify a single image and the peak memory
allocated when classifying a single image, using both a CPU backend and GPU
backend available using Google Colab. The CPU backend uses an Intel Xeon proces-
sor, and the GPU backend uses an Nvidia K80 GPU. We average the inference time
over 1000 classifications and take the maximum of the peak allocated memory over

100 classifications.

The luminosity thresholding and random forest algorithms do not support a GPU
backend, so we only report results for the CPU backend for those algorithms. For
the CPU backend, virtual memory usage is measured using the Python tracemalloc
library with Python 3.8.16, and for the GPU backend, memory usage is measured
using PyTorch 1.13.0 — we use torch.cuda.max_memory_allocated() to measure
the peak memory allocated to tensors on the GPU. Disk usage is not tracked for

either backend.
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2.4 Optimizers, Hyperparameters, and Losses

This section explains the optimizers and loss functions used to train the deep learning
models described in §2.2.3-2.2.6. This section also details the hyperparameters we use
to train our deep learning models, describing batch size, learning rate, and number

of epochs among other hyperparameters.

2.4.1 Optimizers and Hyperparameters
Cloud Detection Experiments

We train our cloud detection models using the Adam optimizer with the default
parameters [29]. We train each model with a learning rate of 0.002 and a total batch
size of 40 — all models use distributed training across 4 GPUs, and use a batch size of
10 images per GPU for a total batch size of 40 images per epoch. We train the dense
U-Net and dense Cg-equivariant U-Net for 500 epochs. In machine learning, one epoch
refers to all of the training data being passed through a model once, so 500 epochs is
equivalent to 500 passes over the training data. The U-Net shows an uncharacteristic
spike in test error at 500 epochs, so we train the U-Net and Cg-equivariant U-Net for

505 epochs in order to make fair performance comparisons between models.

Road Detection Experiments

We train our road detection models with the same optimizer and hyperparameters as
Bandara et al., except for the fact that we trained our road detection models for only
90 epochs to prevent overtraining [5|. Accordingly, we use stochastic gradient descent
(SGD) as our optimizer with a momentum of 0.9 and weight decay of 0.0005. We
train each model for 90 epochs, and use a step-learning rate scheduler with a learning
rate of 0.01 for epochs 1-50, and a learning rate of 0.001 for epochs 51-90. We use a
total batch size of 32 for all models — some models use distributed training across 4
GPUs, and use a batch size of 8 images per GPU for a total batch size of 32 images
per epoch [5].
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2.4.2 Loss Functions

Loss functions describe an objective to minimize when training a deep learning model
— during training, optimizers seek to drive loss on the training dataset to zero, with
the hope that a model that achieves low loss on the training dataset will generalize
well to the test dataset. In this thesis, we train our cloud detection models using
focal loss and train our road detection models using dice loss (detailed in §2.4.2 and
§2.4.2 respectively), but also experiment with softIOU loss for road segmentation (see

§2.4.2).

Focal Loss

We use a-weighted focal loss for our cloud detection experiments. Focal loss is a loss
function based off of cross-entropy loss, which “down-weights” the loss for examples
that are common in the training dataset, weighting the loss from “hard” classifica-
tion examples more heavily instead [32]. A class-weighted variation on focal loss,
a-weighted focal loss, weights examples from sparse classes more heavily in order to
overcome class imbalance in the training dataset [32].

For a-weighted focal loss, there are two parameters: v and a. As 7 increases,
“hard” examples, or examples classified incorrectly by the deep learning model with
a high confidence, are weighted more strongly [32]. The parameter « is a vector of
weights for each class, and as «a. increases for a particular class, examples from that
class are weighted more heavily [32]. We chose v = 2 and ajouq = 0.8 for our cloud
detection experiments.

For a pixel of true class y, assuming a probability vector p containing probabilities
Do, -+ Pn, With p. representing the model’s outputted probability of the pixel belonging

to class ¢, unweighted focal loss is [32]:

FL(p,y) = —(1 — py)” log(py) (2.13)

For a pixel of true class y, assuming a probability vector p and a weights vector

a containing weights «y, ..., a,,, With a. representing the weight given to class ¢, a-
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weighted focal loss is [32]:

FLo (o, p,y) = —a, (1 — py)" log(py) (2.14)

SoftloU Loss

SoftloU loss, or soft intersection-over-union loss, is a modified version of the intersection-
over-union metric often used in image segmentation [24]. We initially used softloU
loss for our road detection experiments in order to match Bandara et al. However, our
models failed to converge with softloU loss (the IoU metric is known to have unfavor-
able gradient properties [45]), so we switched to using dice loss (see §2.4.2), a similar
loss function with better gradient properties, for our road detection experiments. We

present the results of our road experiments with softloU loss in Appendix B.

Intersection-over-union, or IoU, for two sets X and Y is:

_ X0y

IoU(X,Y) = XUT]

(2.15)

For a binary classification problem, given a vector of true classes y and predicted
probabilities p, where for pixel i, y; represents the true class of pixel i (e.g. 0 or 1)
and p; represents the model-predicted probability that pixel ¢ belongs to class 1, IoU

can be approximated as [24]:

2iYipi

IoU(p, y) = SR —

(2.16)

SoftloU loss applies the “softmax” function to the vector of predicted probabilities p
prior to computing the ToU [24]. When applied to a vector p, where p; represents the
model-predicted probability that pixel ¢ belongs to class 1 in a binary classification

problem, the “softmax” function is given by:

o exp(p;)
7o) = exp(pi) + exp(l — p;) (217)
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Finally, softloU loss is given by:

SL(p,y) = —IoU(a(p), ) (2.18)

Dice Loss

For our road detection experiments, we ultimately use dice loss due to its similarity
to softloU loss and its more favorable gradient properties. Dice loss is a loss function
based on of the Sgrensen-Dice coefficient [31]. The Sgrensen-Dice coefficient measures
the “similarity” between two sets X and Y [31]:
21X NY]|
DSC(X,Y) = ——— (2.19)
| X[+ Y]
For a binary classification problem, given a vector of true classes y and predicted
probabilities p, where for pixel i, y; represents the true class of pixel i (e.g. 0 or 1)
and p; represents the model-predicted probability that pixel ¢ belongs to class 1, dice

loss is [31]:
22y:pi

DL(p,y) = 1 —
(p,y) S

(2.20)

2.5 Training Facilities and Software Implementation

We use freely available resources for implementing and training our models, including
the MIT Engaging cluster for training and several different open-source libraries for

implementation.

2.5.1 Training Facilities

We train the deep learning models described in §2.2.3-2.2.6 on the MIT Engaging
cluster [1], a distributed computing cluster shared by MIT researchers and affiliates.
For our road detection experiments, we train the U-Net on a single node with 8 CPUs
and 1 GPU, and train all other deep learning models on four nodes with 8 CPUs and
1 GPU each (for a total of 32 CPUs and 4 GPUs for each model). For our cloud
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detection experiments, we train all deep learning models on four nodes with 8 CPUs
and 1 GPU each (for a total of 32 CPUs and 4 GPUs for each model). All GPUs
used were Nvidia Tesla K20m GPUs.

We train the luminosity thresholding model described in §2.2.1 and the random
forest model described in §2.2.2 on a 2020 Macbook Pro with an M1 processor and
16 GB of RAM.

2.5.2 Software Implementation

We implement our random forest model (see §2.2.2) using scikit-learn [34|. We
implement our deep learning models (see §2.2.3-2.2.6) in Python using the PyTorch
machine learning library. We use PyTorch DistributedDataParallel for multi-GPU
training. We use a modified version of the e2cnn library for the Cs-equivariant lay-
ers in our Cg-equivariant U-Net and our Cg-equivariant dense U-Net [10]. We use
the segmentation_tools_pytorch implementation of dice loss for our road detec-
tion experiments; for softloU loss, we use Bandara et al.’s implementation, and we
implement focal loss ourselves.

All of our code is freely available at https://github.com/alexmeredith8299/

masters-thesis.
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Chapter 3

Cloud Segmentation Results

3.1 Evaluating Model Performance

We analyze the performance of the six algorithms described in §2.2.1-2.2.6 on our
modified version of the SPARCS dataset, with each model trained on Landsat 8 data
from the red, green, blue, SWIR 1, and LWIR 1 bands. We qualitatively evaluate
each model by visually comparing model-generated masks to “truth” masks and mul-
tispectral model input for two different example images. The first example image,
which we refer to as the “easy” image sample, is part of the image with a root filename
of ““LC82210662014229LGN00_18"’ in the SPARCS test set [25]. The second example
image, which we refer to as the “hard” image sample, is also from the SPARCS test
set and is part of the image with root filename ““LC81480352013195LGN00_32"’ [25].
We quantitatively evaluate each model by calculating the metrics described in §2.3.1
and the ratios of the frequency of each terrain class among false positives to the fre-
quency of each terrain class in the dataset as a whole, as described in §2.3.1. Finally,
we measure the number of parameters, saved model size, peak memory usage, and
inference time of each algorithm in order to evaluate model complexity and resource

usage.
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3.1.1 Luminosity Thresholding

In Figure 3-1, the luminosity thresholding algorithm is applied to an “easy” image
sample — that is, an image without snow, water, or bright coastlines or rooftops. Fig-
ure 3-1(a) shows the visible-spectrum image input, Figure 3-1(b) shows the long-wave
infrared (LWIR) image input, Figure 3-1(c) shows the short-wave infrared (SWIR)
image input, Figure 3-1(f) shows the cloud mask generated by the luminosity thresh-
olding algorithm, Figure 3-1(g) shows the “true” cloud mask, Figure 3-1(e) shows
the difference between the luminosity-generated mask and the “truth” mask without
buffering, and Figure 3-1(d) shows the difference between the luminosity-generated
mask and the “truth” mask allowing for a 2 px buffer at the cloud edges. The
luminosity-generated mask (Figure 3-1(f)) looks qualitatively similar to the “truth”
mask, if more conservative at the cloud edges — this conservatism is also demonstrated
by the differences at the cloud edges shown in Figure 3-1(e). The luminosity-generated

mask also misses the optically thin cloud patch boxed in green.

(b)

0 50 100

Figure 3-1: Luminosity thresholding algorithm evaluated on an “easy” image seg-
mentation example, with an optically thin cloud patch boxed in green. (a) Visible-
spectrum image, (b) LWIR image, (¢) SWIR image, (d) Difference between “truth”
mask and luminosity-generated mask, excluding pixels within 2 px of a cloud
boundary, (e) Difference between “truth” mask and luminosity-generated mask, (f)
Luminosity-generated mask, (g) “Truth” mask.

In Figure 3-2, the luminosity thresholding algorithm is applied to a “difficult”

image sample — an image with overlapping clouds and snow. This “difficult” image
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sample also includes an optically thin cloud patch (boxed in green) which is visible
in the Landsat panchromatic and cirrus bands (B8 and B9, respectively), but which
is not visible any of the bands (Landsat B2-4, B6, and B10) used by the luminosity
thresholding algorithm. As shown in Figure 3-2(f), the luminosity-generated cloud
mask misidentifies nearly all the snow pixels in this image as cloud, demonstrating
qualitatively that the luminosity thresholding algorithm struggles to distinguish be-
tween clouds and snow or ice. Also, the luminosity-generated cloud mask misses the

optically thin cloud patch boxed in green.

0 50 100

Figure 3-2: Luminosity thresholding algorithm evaluated on a “hard” image segmenta-
tion example, with an optically thin cloud patch boxed in green. (a) Visible-spectrum
image, (b) LWIR image, (¢) SWIR image, (d) Difference between “truth” mask and
luminosity-generated mask, excluding pixels within 2 px of a cloud boundary, (e)
Difference between “truth” mask and luminosity-generated mask, (f) Luminosity-
generated mask, (g) “Truth” mask.

The performance of the luminosity thresholding across all metrics is shown in
Table 3.1. Although the specificity of the luminosity thresholding algorithm is rel-
atively high (96.71% with no buffer and 97.24% with a 2 px buffer), the sensitivity
of the luminosity thresholding algorithm is very low (31.45% with no buffer and
45.03% with a 2 px buffer). This makes sense, given the qualitative conservatism
of the luminosity thresholding algorithm shown in Figures 3-1 and 3-2 — although
the luminosity-generated cloud masks have a similar “shape” as the “truth” masks

(except for the misidentification of snow pixels as clouds), there are many cloud pix-
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els, especially at the cloud edges, that are classified as non-cloud by the luminosity
thresholding algorithm in both luminosity-generated cloud masks.

Table 3.1: Performance metrics detailed in §2.3.1 for the luminosity thresholding
algorithm on the cloud dataset, evaluated with no buffer and with a 2 px buffer at
cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

0 px 89.19% 64.08% 31.45% 96.71% 55.40% 31.45% 0.4013  0.2510
2 px 92.58% 71.13% 45.03% 97.24% 61.48% 45.03% 0.5199 0.3512

In addition to “cloud”, the SPARCS dataset has six other terrain labels: cloud
shadow over land, cloud shadow over water, water, ice/snow, land, and flooded. We
determined the true terrain class of all non-cloud pixels misidentified by the luminosity
thresholding algorithm as cloud pixels, and for each terrain class, we divided the
frequency of that class amongst false positives by the frequency of that class in the
dataset as a whole. The resulting ratios are shown in Table 3.2. Most notably, pixels
belonging to the ice/snow terrain class are over 14 times more common amongst
pixels misidentified as clouds by the luminosity thresholding algorithm than they
are in the dataset as a whole. This is a quantitative indicator that the luminosity
thresholding algorithm struggles to disambiguate clouds and ice/snow, likely because
the luminosity thresholding algorithm does not take any spatial context into into
account when classifying pixels, and clouds and snow have different spatial textures

but similar spectral characteristics in the available bands.

3.1.2 Random Forest

In Figure 3-3, the random forest algorithm is applied to an “easy” image sample
with no snow, water, or bright non-cloud features. The cloud mask generated by the
random forest algorithm, shown in Figure 3-3(f), looks qualitatively very similar to
the “truth” mask shown in Figure 3-3(g), except for the fact that the random forest
algorithm misses an optically thin patch of cloud in the bottom left of the image

(boxed in green).
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Table 3.2: Ratios representing the frequency of each terrain class (cloud shadow over
land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the luminosity thresholding algorithm to the frequency
of each terrain class among all non-cloud pixels in the SPARCS dataset, as explained
in §2.3.1, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer CI. CL Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
0Opx 0.22 0.00 0.00 14.07 0.03 0.00
2px 0.10 0.00 0.00 14.24 0.03 0.00

25
50
75

100

125

o 0 50 100

100

0 50

Figure 3-3: Random forest algorithm evaluated on an “easy” image segmentation
example, with an optically thin cloud patch boxed in green. (a) Visible-spectrum
image, (b) LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask and
mask generated by the random forest algorithm, excluding pixels within 2 px of a
cloud boundary, (e) Difference between “truth” mask and mask generated by the
random forest algorithm, (f) Mask generated by the random forest algorithm, (g)
“Truth” mask.
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In Figure 3-4, the random forest algorithm is applied to a “hard” image sample
with overlapping snow and cloud pixels. The cloud mask generated by the random
forest algorithm, shown in Figure 3-4(f), looks qualitatively very different from the
“truth” mask shown in Figure 3-4(g). Interestingly, it seems as though the random
forest algorithm is able to successfully classify the snow at the top of the image as
non-cloud, but the random forest algorithm struggles to differentiate some pixels in
the mountain valleys from cloud, perhaps because the random forest algorithm only
examines a 3 X 3 window surrounding a pixel during classification and lacks broader
spatial context. The random forest algorithm also misses the optically thin cloud

patch boxed in green.

0 50 100

Figure 3-4: Random forest algorithm evaluated on a “hard” image segmentation ex-
ample, with an optically thin cloud patch boxed in green. (a) Visible-spectrum image,
(b) LWIR image, (¢) SWIR image, (d) Difference between “truth” mask and mask
generated by the random forest algorithm, excluding pixels within 2 px of a cloud
boundary, (e) Difference between “truth” mask and mask generated by the random
forest algorithm, (f) Mask generated by the random forest algorithm, (g) “Truth”
mask.

Table 3.3 shows the performance of the random forest algorithm across all met-
rics. The random forest algorithm improves significantly on the performance of the
luminosity thresholding algorithm across all metrics, and balances sensitivity and
specificity much better than the luminosity thresholding algorithm.

Table 3.4 gives the ratio of the frequency of each terrain class amongst pixels
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Table 3.3: Performance metrics detailed in §2.3.1 for the random forest algorithm on
the cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 95.60% 90.46% 83.80% 97.13% 79.16% 83.80% 0.8141  0.6865
2 px 98.68% 97.91% 96.91% 98.91% 92.11% 96.91% 0.9445 0.8948

falsely identified as cloud by the random forest method to the frequency of that class
amongst all pixels in the SPARCS dataset. The “land” terrain class is the most
overrepresented amongst random forest false positives for a 2 px buffered evaluation.
This quantitatively demonstrates the qualitative result from Figure 3-4 — that the
random forest algorithm sometimes misidentifies land pixels, likely due to lack of
spatial context, but can distinguish between clouds and snow fairly well.

Table 3.4: Ratios representing the frequency of each terrain class (cloud shadow over
land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the random forest algorithm to the frequency of each

terrain class among all non-cloud pixels in the SPARCS dataset, as explained in
§2.3.1, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Cl. Cl. Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 1.63 0.78 0.14 1.03 1.05 0.00
2px  0.58 0.18 0.04 0.74 1.20 0.00
3.1.3 U-Net

Figure 3-5 shows the application of the U-Net to an “easy” image sample with no
snow. The U-Net-generated cloud mask shown in Figure 3-5(f) looks qualitatively
very similar to the “truth” mask shown in Figure 3-5(g). The similarity is further
borne out by the 2 px buffer difference map shown in Figure 3-5(d), which shows
almost no differences between the two masks. Unlike the luminosity thresholding

algorithm (see Figure 3-1) and the random forest algorithm (see Figure 3-3), the
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U-Net correctly identifies the optically thin cloud patch (boxed in green) as cloud,
although it overestimates the size of the optically thin cloud patch.
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Figure 3-5: U-Net performance on an “easy”’ image segmentation example, with an
optically thin cloud patch boxed in green. (a) Visible-spectrum image, (b) LWIR
image, (c¢) SWIR image, (d) Difference between “truth” mask and U-Net-generated
mask, excluding pixels within 2 px of a cloud boundary, (e) Difference between “truth”
mask and U-Net-generated mask, (f) U-Net-generated mask, (g) “Truth” mask.

Figure 3-6 shows the application of the U-Net to a “hard” image sample with
overlapping clouds and snow. The U-Net-generated cloud mask shown in Figure 3-
6(f) looks qualitatively similar to the “truth” mask shown in Figure 3-6(g), except for
the fact that the U-Net misses the optically thin cloud patch (boxed in green) and
except for another small difference in the bottom right of the image. In the 2 px buffer
difference map shown in Figure 3-6(d), only this difference and a few other scattered
very small differences are visible between the two masks. The U-Net mask shown in
3-6(f) looks much closer to the truth mask than either the luminosity thresholding
mask shown in 3-2(f) or the random forest mask shown in 3-4(f).

The U-Net metrics are given in Table 3.5. Although the U-Net has slightly lower
sensitivity and recall than the random forest algorithm, it beats the random forest
algorithm on every other metric.

The ratios shown in Table 3.6 show that with a 2 px buffer, the most overrepre-
sented class amongst false positives (by far) is cloud shadow over land. This implies

that most differences between U-Net-generated cloud masks and “truth” masks oc-
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Figure 3-6: U-Net performance on a “hard” image segmentation example, with an
optically thin cloud patch boxed in green. (a) Visible-spectrum image, (b) LWIR
image, (c¢) SWIR image, (d) Difference between “truth” mask and U-Net-generated
mask, excluding pixels within 2 px of a cloud boundary, (e) Difference between “truth”
mask and U-Net-generated mask, (f) U-Net-generated mask, (g) “Truth” mask.

Table 3.5: Performance metrics detailed in §2.3.1 for the U-Net evaluated on the
cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

0 px 96.59% 91.82% 85.62% 98.02% 84.88% 85.62% 0.8525  0.7429
2 px 99.41% 98.17% 96.54% 99.80% 98.46% 96.54% 0.9749 0.9511
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cur near cloud boundaries, which fits the narrative told by the strong qualitative

performance of the U-Net-generated cloud masks in Figures 3-5 and 3-6.

Table 3.6: Ratios representing the frequency of each terrain class (cloud shadow over
land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the U-Net to the frequency of each terrain class among
all non-cloud pixels in the SPARCS dataset, as explained in §2.3.1, evaluated with
no buffer and with a 2 px buffer at cloud boundaries.

Buffer Cl. Cl. Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 3.28 0.59 0.15 1.21 0.85 0.00
2px  3.30 0.00 0.11 0.21 1.08 0.00

3.1.4 Dense U-Net

Figure 3-7 evaluates the dense U-Net on an “easy” image sample with no snow. The
cloud mask generated by the dense U-Net (shown in Figure 3-7(f)) looks qualitatively
very similar to the “truth” mask shown in Figure 3-7(g). This similarity is also
demonstrated by the difference map shown in Figure 3-7(e) and the 2 px buffer
difference map shown in Figure 3-7(d) — it is clear that most differences between the
cloud mask generated by the dense U-Net and the “truth” mask occur within 2 px of
a cloud edge and thus disappear in the buffered difference map.

Figure 3-8 evaluates the dense U-Net on a “hard” image sample with overlapping
clouds and snow. As in Figure 3-7, the cloud mask generated by the dense U-Net looks
qualitatively very similar to the “truth mask”, including in the bottom right of the
mask (where the U-Net-generated mask differed from the “truth” mask). However, the
dense U-Net, like the U-Net, random forest algorithm, and luminosity thresholding
algorithm, misidentifies the optically thin cloud patch boxed in green.

All performance metrics for the dense U-Net are given in Table 3.7. The dense
U-Net shows a modest improvement in all metrics except specificity when compared
to the U-Net (but the dense U-Net specificity is only 0.01% lower than the U-Net

specificity).
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Figure 3-7: Dense U-Net evaluated on an “easy” image segmentation example, with
an optically thin cloud patch boxed in green. (a) Visible-spectrum image, (b) LWIR
image, (c) SWIR image, (d) Difference between “truth” mask and mask generated
by the dense U-Net, excluding pixels within 2 px of a cloud boundary, (e) Difference
between “truth” mask and mask generated by the dense U-Net, (f) Mask generated
by the dense U-Net, (g) “Truth” mask.
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Figure 3-8: Dense U-Net evaluated on a “hard” image segmentation example, with
an optically thin cloud patch boxed in green. (a) Visible-spectrum image, (b) LWIR
image, (¢) SWIR image, (d) Difference between “truth” mask and mask generated
by the dense U-Net, excluding pixels within 2 px of a cloud boundary, (e) Difference
between “truth” mask and mask generated by the dense U-Net, (f) Mask generated
by the dense U-Net, (g) “Truth” mask.
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Table 3.7: Performance metrics detailed in §2.3.1 for the dense U-Net evaluated on
the cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 96.77% 93.11% 88.36% 97.86% 84.31% 88.36% 0.8629  0.7588
2 px 99.43% 98.34% 96.89% 99.79% 98.47% 96.89% 0.9768 0.9546

The terrain class ratios for pixels falsely identified as clouds by the dense U-Net
are given in Table 3.8. Cloud shadows over land are heavily overrepresented among
false positives identified by the dense U-Net, implying that most false positives occur
at cloud edges or near clouds.

Table 3.8: Ratios representing the frequency of each terrain class (cloud shadow over
land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the dense U-Net to the frequency of each terrain class

among all non-cloud pixels in the SPARCS dataset, as explained in §2.3.1, evaluated
with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Cl. Cl. Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 3.21 0.62 0.14 1.33 0.85 0.01
2px  3.61 0.00 0.12 0.45 1.04 0.05

Overall, the U-Net and dense U-Net perform very well on cloud segmentation,
especially when a 2 px buffer is taken into account at cloud boundaries. Nevertheless,
the Cs-equivariant models outperform the U-Net and dense U-Net on cloud segmen-
tation, especially within 2 px of the cloud boundaries, and so can provide important

value for missions with very high segmentation accuracy requirements.

3.1.5 C(s-Equivariant U-Net

Figure 3-9 shows the performance of the Cg-equivariant U-Net on an “easy” image
sample. The cloud mask generated by the Cg-equivariant U-Net looks qualitatively

very similar to the “truth” mask, and not many differences can be seen in the 2 px
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buffer difference map.
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Figure 3-9: Cg-equivariant U-Net evaluated on an “easy” image segmentation exam-
ple, with an optically thin cloud patch boxed in green. (a) Visible-spectrum image,
(b) LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask and mask
generated by the Cg-equivariant U-Net, excluding pixels within 2 px of a cloud bound-
ary, (e) Difference between “truth” mask and mask generated by the Cg-equivariant
U-Net, (f) Mask generated by the Cs-equivariant U-Net, (g) “Truth” mask.

Figure 3-10 shows the performance of the Cg-equivariant U-net on a “hard” im-
age sample with clouds overlapping snow. The cloud mask generated by the Cg-
equivariant U-Net misidentifies a few cloud patches as non-cloud, especially near the
cloud boundaries. These false negative patches can be seen in the 2 px buffer dif-
ference map (Figure 3-10(d)). These misidentified patches include the optically thin
cloud patch boxed in green.

The metrics for the Cs-equivariant U-Net are given in Table 3.9. The Cys-equivariant
U-Net improves over the U-Net on all metrics, and also notably improves over the
dense U-Net on all metrics, showing that Cgs-equivariance leads to bigger perfor-
mance gains over adopting a dense architecture. Although the dense U-Net and
the Cs-equivariant U-Net perform similarly when evaluated with no buffer, the Cs-
equivariant U-Net more than doubles the gains of the dense U-Net over the U-Net
when a 2 px buffer is taken into account, achieving an Fj score of 0.9797. The dense
U-Net achieves an F) score of 0.9768 when a 2 px buffer is taken into account, and

the U-Net achieves an F} score of 0.9749 when a 2 px buffer is taken into account.
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Figure 3-10: Cy-equivariant U-Net evaluated on a “hard” image segmentation exam-
ple, with an optically thin cloud patch boxed in green. (a) Visible-spectrum image,
(b) LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask and mask
generated by the Cs-equivariant U-Net, excluding pixels within 2 px of a cloud bound-
ary, (e) Difference between “truth” mask and mask generated by the Cg-equivariant
U-Net, (f) Mask generated by the Cs-equivariant U-Net, (g) “Truth” mask.

Table 3.9: Performance metrics detailed in §2.3.1 for the Cg-equivariant U-Net eval-
uated on the cloud dataset, evaluated with no buffer and with a 2 px buffer at cloud
boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

0 px 96.87% 91.99% 85.64% 98.34% 87.01% 85.64% 0.8632 0.7593
2 px 99.54% 98.51% 97.18% 99.84% 98.78% 97.18% 0.9797 0.9602
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The false positive terrain class ratios for the Cs-equivariant U-Net are given in Ta-
ble 3.10. Cloud shadows over land are clearly overrepresented amongst false positives,

like the U-Net and dense U-Net.

Table 3.10: Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the Cgs-equivariant U-Net to the frequency of each
terrain class among all non-cloud pixels in the SPARCS dataset, as explained in
§2.3.1, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer CI. CL Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 3.05 0.68 0.17 1.52 0.84 0.00
2px 245 0.00 0.10 0.91 1.07 0.00

3.1.6 C(Cs-Equivariant Dense U-Net

Figure 3-11 evaluates the Cg-equivariant dense U-Net on an “easy” image sample, on
which it performs extremely well. False positives at the cloud edges can be seen in
the difference map in Figure 3-11(e), but these disappear in the 2 px buffer difference
map (Figure 3-11(d)), indicating that these false positives are only occur within 1-2
px of cloud boundaries.

Figure 3-12 evaluates the Cyg-equivariant dense U-Net on a “hard” image sample.
False positives at the cloud edges can again be seen in the difference map in Figure
3-12(e). Although these false positives mostly disappear in the 2 px buffer difference
map in Figure 3-12(d), a few pockets of false positives and false negatives remain,
including an optically thin cloud patch (boxed in green) which is misidentified as
non-cloud.

The performance metrics for the Cg-equivariant dense U-Net are given in Table
3.11. The Cg-equivariant dense U-Net improves over the next-best model, the Cs-
equivariant U-Net, on all metrics except for accuracy on specificity, where it ties the

performance of the Cg-equivariant U-Net.
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Figure 3-11: Cg-equivariant dense U-Net evaluated on an “easy” image segmentation
example, with an optically thin cloud patch boxed in green. (a) Visible-spectrum
image, (b) LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask and
mask generated by the Cg-equivariant dense U-Net, excluding pixels within 2 px of
a cloud boundary, (e) Difference between “truth” mask and mask generated by the
Cs-equivariant dense U-Net, (f) Mask generated by the Cg-equivariant dense U-Net,
(g) “Truth” mask.
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Figure 3-12: Cg-equivariant dense U-Net evaluated on a “hard” image segmentation
example, with an optically thin cloud patch boxed in green. (a) Visible-spectrum
image, (b) LWIR image, (¢) SWIR image, (d) Difference between “truth” mask and
mask generated by the Cg-equivariant dense U-Net, excluding pixels within 2 px of
a cloud boundary, (e) Difference between “truth” mask and mask generated by the
Cs-equivariant dense U-Net, (f) Mask generated by the Cg-equivariant dense U-Net,
(g) “Truth” mask.

78



Table 3.11: Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-Net
evaluated on the cloud dataset, evaluated with no buffer and with a 2 px buffer at
cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 97.01% 93.16% 88.17% 98.16% 86.15% 88.17% 0.8715 0.7722
2 px 99.54% 98.58% 97.32% 99.84% 98.82% 97.32% 0.9806 0.9620

The terrain ratios for the Cg-equivariant dense U-Net are given in Table 3.12.
Interestingly, pixels in the ice/snow terrain class are overrepresented among false
positives identified by the Cg-equivariant dense U-Net, and pixels in the land terrain
class are underrepresented. As expected, cloud shadows and ice/snow pixels are both
overrepresented, as these terrain classes should be the hardest to distinguish from
clouds, but it is unclear why the Cg-equivariant dense U-Net has a relative advantage
on land pixels versus snow /ice pixels when compared to the other deep learning
methods. It is possible that this result reflects improved performance distinguishing

optically thin clouds from land when compared to the other deep learning models.

Table 3.12: Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the Cg-equivariant dense U-Net to the frequency of
each terrain class among all non-cloud pixels in the SPARCS dataset, as explained in
§2.3.1, evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Cl. Cl Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 3.23 0.76 0.16 1.60 0.82 0.00
2px  3.30 0.00 0.15 1.36 0.97 0.00
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3.1.7 Summary
Segmentation Performance

We first qualitatively compare the performance of the models presented in §3.1.1-3.1.6
by applying each model to an “easy” cloud segmentation example with no snow, ice,
cold water, or bright land pixels and visually comparing the masks generated by each
model, which are shown in Figure 3-13. The luminosity thresholding algorithm (mask
shown in Figure 3-13(e)) and random forest algorithm (mask shown in Figure 3-13(f))
perform much better on this input than on the “hard” cloud segmentation example
shown in Figure 3-14, highlighting the strengths and limitations of rule-based image

segmentation algorithms that take only limited spatial context into account.

Nevertheless, both the luminosity thresholding and random forest algorithms miss
the optically thin cloud patch boxed in green. This cloud patch is wispy and barely
perceptible in the false-color images used to generate the cloud masks for the SPARCS
dataset, which remap Landsat B6 (SWIR 1) to red, Landsat B5 (near infrared) to
green, and Landsat B4 (red) to blue [25]. In the downsampled images we use for
training, which contain data from Landsat B2-4, B6, and B10, this cloud patch is
difficult to see in B6 (SWIR 1) and completely invisible in B2-4 and B10. In contrast,
all four deep learning algorithms (masks shown in Figure 3-13(g-j)) successfully cap-
ture this optically thin cloud patch to some degree. The Cs-equivariant U-Net (mask
shown in Figure 3-13(i)) and the Cs-equivariant dense U-Net (mask shown in Figure
3-13(j)) qualitatively classify the optically thin cloud boxed in green most accurately;
the U-Net (mask shown in Figure 3-13(g)) and dense U-Net (mask shown in Figure
3-13(h)) overestimate the size of this cloud patch.

Figure 3-14 shows the six models presented in §3.1.1-3.1.6 applied to a “hard”
cloud segmentation example with overlapping snow and cloud. The four cloud masks
generated by the U-Net (Figure 3-14(g)), the dense U-Net (Figure 3-14(h)), the Cs-
equivariant U-Net (Figure 3-14(i)), and the Cs-equivariant dense U-Net (Figure 3-
14(j)) all look qualitatively very similar to the “truth” mask (Figure 3-14(d)), except
for the missing patch of cloud boxed in green. This patch does not appear to be bright
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Figure 3-13: Luminosity thresholding algorithm, random forest algorithm, U-Net,
dense U-Net, Cg-equivariant U-Net and Cg-equivariant dense U-Net evaluated on an
“easy” image segmentation sample, with an optically thin cloud patch boxed in green.
(a) Visible-spectrum image input, (b) LWIR input, (¢) SWIR input, (d) “Truth” mask,
(e) Mask generated by the luminosity thresholding algorithm, (f) Mask generated by
the random forest algorithm, (g) Mask generated by the U-Net, (h) Mask generated by
the dense U-Net, (i) Mask generated by the Cs-equivariant U-Net, (j) Mask generated
by the Cg-equivariant dense U-Net.
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in either the VIS image input (Figure 3-14(a)) or the SWIR image input (Figure 3-
14(c)), nor does it appear to be cold in the LWIR image input (Figure 3-14(b)). As
such, this cloud patch is essentially invisible to the cloud segmentation models. Close
inspection of Landsat data from all bands reveals that this cloud patch is barely
perceptible in the cirrus band (B9) and the high-resolution panchromatic band (BS),

and invisible in all other bands.
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Figure 3-14: Luminosity thresholding algorithm, random forest algorithm, U-Net,
dense U-Net, Cg-equivariant U-Net and Cg-equivariant dense U-Net evaluated on a
“hard” image segmentation sample, with an optically thin cloud patch boxed in green.
(a) Visible-spectrum image input, (b) LWIR input, (¢) SWIR input, (d) “Truth” mask,
(e) Mask generated by the luminosity thresholding algorithm, (f) Mask generated by
the random forest algorithm, (g) Mask generated by the U-Net, (h) Mask generated by
the dense U-Net, (i) Mask generated by the Cs-equivariant U-Net, (j) Mask generated
by the Cg-equivariant dense U-Net.

The performance metrics for the models presented in §3.1.1-3.1.6, evaluated on the
SPARCS dataset without a buffer, are given in Table 3.13, with the best performance
on each metric bolded. The dense U-Net has the best sensitivity and recall, and the
Cs-equivariant U-Net has the best specificity and precision, but the Cg-equivariant
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dense U-Net is nearly as good on each of these metrics, and has the best accuracy,
balanced accuracy, Fj score, and intersection-over-union. This demonstrates the su-
perior performance of the Cyg-equivariant dense U-Net, the Cg-equivariant U-Net’s
bias toward specificity over sensitivity, and the dense U-Net’s bias toward sensitivity

over specificity when the models are evaluated without a buffer.

Table 3.13: Performance metrics detailed in §2.3.1 for the luminosity thresholding
algorithm, random forest algorithm, U-Net, dense U-Net, Cg-equivariant U-Net, and
Cg-equivariant dense U-Net evaluated on the modified SPARCS dataset, evaluated
without using a buffer at cloud boundaries.

Model Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

Luminosity 89.19% 64.08% 31.45% 96.71% 55.40% 31.45% 0.4013 0.2510
Threshold-

ing

Random 95.60% 90.46% 83.80% 97.13% 79.16% 83.80% 0.8141 0.6865
Forest

U-Net 96.59% 91.82% 85.62% 98.02% 84.88% 85.62% 0.8525 0.7429

Dense 96.77% 93.11% 88.36% 97.86% 84.31% 88.36% 0.8629 0.7588
U-Net

Cs- 96.87% 91.99% 85.64% 98.34% 87.01% 85.64% 0.8632 0.7593
Equivariant
U-Net

Cs- 97.01% 93.16% 88.17% 98.16% 86.15% 88.17% 0.8715 0.7722
Equivariant

Dense U-

Net

Figure 3-15 shows the receiver-operating characteristic (ROC) curve for each of the
models presented in §3.1.1-3.1.6, evaluated without a buffer. The curve representing
the Cg-equivariant dense U-Net is consistently closest to the (0, 1) point representing
perfect classification, demonstrating its superior performance. The next closest curve
represents the dense U-Net, then the Cg-equivariant U-Net, then the U-Net, then
the random forest algorithm, and finally the curve furthest from (0, 1) represents the

luminosity thresholding algorithm. This order is consistent with the order of the Fj
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scores presented in Table 3.13, except for the fact that the ROC curve representing
the dense U-Net is closer to (0,1) than the curve representing the Cg-equivariant U-
Net. This means that with a cloud threshold other than 0.5, the dense U-Net might
outperform the Cg-equivariant U-Net.

Also, the gap between the ROC curves representing the deep learning models
presented in §3.1.3-3.1.6 and the curve representing the random forest algorithm is
very large, and the gap between the curve representing the random forest algorithm
and the curve representing the luminosity thresholding algorithm is even larger. This
reflects the large performance gains made by increasing model complexity and taking
larger amounts of spatial context into account during classification, and fits with the

results presented in Tables 3.13 and 3.14.
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Figure 3-15: Receiver-operating characteristic (ROC) curves for the luminosity
thresholding algorithm, random forest algorithm, U-Net, dense U-Net, Cg-equivariant
U-Net, and Cg-equivariant dense U-Net, evaluated on the modified SPARCS dataset

without using a buffer at cloud boundaries.

The performance metrics for all models on the cloud dataset (with a 2 px buffer)
are given in Table 3.14, with the best performance on each metric bolded. The Fj
scores for the four deep learning algorithms are notably closer when a 2 px buffer
is taken into account than when no buffer is used (see Table 3.13). This indicates
that some of the performance gains made by the Cg-equivariant dense U-Net can
be attributed to better discrimination between cloud and non-cloud pixels at cloud

boundaries. These cloud discrimination gains disappear if a 2 px buffer at cloud
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boundaries is used when evaluating performance. Nevertheless, it is clear that the
Cs-equivariant dense U-Net demonstrates the best cloud segmentation performance
even when a 2 px buffer is used, outperforming the U-Net, dense U-Net, and Cy-
equivariant U-Net by 0.0057, 0.0038, and 0.0009, respectively, in terms of I} score.
In fact, the Cs-equivariant dense U-Net performs the best on every quantitative metric

evaluated when a 2 px buffer is used, as shown in Table 3.14.

Table 3.14: Performance metrics detailed in §2.3.1 for the luminosity thresholding
algorithm, random forest algorithm, U-Net, dense U-Net, Cs-equivariant U-Net, and
Cg-equivariant dense U-Net evaluated on the modified SPARCS dataset, evaluated
using a 2 px buffer at cloud boundaries.

Model Acc. Bal Sens. Spec. Prec. Recall F, IoU
Acc.

Luminosity 92.22% 70.16% 43.18% 97.14% 60.20% 43.18% 0.5029 0.3359
Threshold-
ing

Random 98.68% 97.91% 96.91% 98.91% 92.11% 96.91% 0.9445 0.8948

Forest
U-Net 99.41% 98.17% 96.54% 99.80% 98.46% 96.54% 0.9749 0.9511

Dense 99.43% 98.34% 96.89% 99.79% 98.47% 96.89% 0.9768 0.9546
U-Net

Rotationally 99.54% 98.51% 97.18% 99.84% 98.78% 97.18% 0.9797 0.9602
Equivari-
ant U-Net

Rotationally 99.54% 98.58% 97.32% 99.84% 98.82% 97.32% 0.9806 0.9620
Equivari-

ant Dense

U-Net

Figure 3-16 shows the ROC curve for each of the models presented in §3.1.1-3.1.6
when evaluated with a 2 px buffer at the cloud boundaries. The curves representing
the deep learning models presented in §3.1.3-3.1.6 are clustered much more closely
than when no buffer is considered (see Figure 3-15). This reflects the fact that some
of the performance gains made by the Cg-equivariant and dense models come from

better classification at the cloud boundaries, and these gains are not reflected when
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a 2 px buffer is considered at the cloud boundaries. Nevertheless, the Cg-equivariant
dense U-Net and the dense U-Net have the highest area under the ROC curve (AUC),
followed by the Cg-equivariant U-Net, reflecting the order of the curves visible in
Figure 3-15.

Although the Cg-equivariant dense U-Net and the dense U-Net are tied for the
highest AUC, the Cg-equivariant dense U-Net outperforms the dense U-Net except for
a small region where sensitivity is high and specificity is low, and the Cs-equivariant
dense U-Net gets visibly closer to (0, 1) than any other classifier, reflecting its superior
performance. Finally, the curves representing the deep learning models presented in
§3.1.3-3.1.6 continue to significantly outperform the curve representing the random
forest classifier, which in turn significantly outperforms the curve representing the
luminosity thresholding classifier, regardless of whether a 2 px buffer at the cloud

boundaries is used.
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Figure 3-16: Receiver-operating characteristic (ROC) curves for the luminosity
thresholding algorithm, random forest algorithm, U-Net, dense U-Net, Cg-equivariant
U-Net, and Cs-equivariant dense U-Net, evaluated on the modified SPARCS dataset

using a 2 px buffer at cloud boundaries.

Resource Utilization

Table 3.15 shows the resource utilization of all models when classifying a single image
using both a CPU backend and GPU backend. Our luminosity thresholding and

random forest algorithms do not support a GPU backend, so only results for a CPU

86



backend are reported. As expected, the luminosity thresholding algorithm has the
fastest inference time with a CPU backend due to its simplicity, and the random
forest algorithm has the second fastest inference time with a CPU backend. The
U-Net and Cg-equivariant U-Net require less memory and have faster inference time
than the dense U-Net and Cg-equivariant dense U-Net, respectively, when using a
GPU backend. This is likely because the increased number of concatenations in the

dense models reduces the number of opportunities to combine tensor operations when

using a GPU backend.

However, the dense U-Net and Cg-equivariant dense U-Net classify images more
quickly than the U-Net and Cg-equivariant U-Net, respectively, when using a CPU
backend, likely because the dense models use fewer parameters overall, as shown in
Table 3.16. Finally, the Cs-equivariant models classify images more slowly than their
non-equivariant equivalents regardless of backend, despite using less GPU memory
and having fewer parameters overall. The Cg-equivariant models are 2 to 3 times
slower than their non-equivariant equivalents with a GPU backend, but are only
1.1-1.3 times slower with a CPU backend. It seems likely that this is because of
overhead added by the e2cnn library related to checking group representations, and
it is possible that exporting the fully trained Cg-equivariant models to pure PyTorch

equivalents would speed up inference.

Table 3.16 shows the size of the saved model for all algorithms, and also shows the
number of parameters and the number of trainable parameters for the deep learning
models. Notably, the random forest algorithm requires the most storage by far — this is
one typical and major drawback of data-driven methods. Also notable is the fact that
the Cg-equivariant dense U-Net has fewer parameters and a smaller total model size
than all the other deep learning models. This demonstrates that the Cg-equivariant
dense U-Net is able to outperform other models despite its lower model complexity
and fewer total parameters by encoding rotation equivariance into its layers and by

using dense blocks to improve gradient propagation and trainability.
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Table 3.15: Peak memory usage over 100 single-image classifications and average
inference time over 1000 single-image classifications using both a CPU (Intel Xeon)
and GPU (Nvidia K80) backend for the luminosity thresholding algorithm, random
forest algorithm, U-Net, dense U-Net, Cg-equivariant U-Net, and Cs-equivariant dense
U-Net on the modified SPARCS dataset.

Model GPU Mem. CPU Mem. GPU Inf. CPU Inf
(MiB) (KiB) Time (s) Time (s)

Luminosity - 344.9 - 0.0003

Thresholding

Random Forest - 1445.8 - 0.1136

U-Net 464.9 127.0 0.0092 0.3698

Dense U-Net 517.4 103.6 0.0150 0.1801

Cs-Equivariant U-  448.3 101.2 0.0185 0.3926

Net

Cs-Equivariant 503.5 144.8 0.0484 0.2281

Dense U-Net

Table 3.16: Saved model size, total number of parameters, and number of trainable
parameters for the luminosity thresholding algorithm, random forest algorithm, U-
Net, dense U-Net, Cs-equivariant U-Net and Cg-equivariant dense U-Net trained on
the modified SPARCS dataset.

Model Model Size Total Parameters Trainable Parameters
Luminosity 4 KB - -
Thresholding

Random Forest 1.3 GB — -

U-Net 295.9 MB 2.46 x 107 2.46 x 107

Dense U-Net 32.2 MB 2.64 x 10° 2.64 x 108
Cs-Equivariant U-  123.9 MB 2.10 x 10° 2.10 x 10°

Net

Cs-Equivariant 14.6 MB 2.93 x 10° 2.90 x 10°

Dense U-Net
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3.2 Evaluating Different Combinations of Spectral
Bands

On our modified version of the SPARCS dataset, we analyze the performance of the
Cs-equivariant dense U-Net described in §2.2.6 trained on visible-spectrum Landsat
8 data only, visible-spectrum data augmented with data from the LWIR 1 band,
visible-spectrum data augmented with data from the SWIR 1 band, and visible-
spectrum data augmented with data from the LWIR 1 and SWIR 1 bands. We
make comparisons between the models trained on these four training sets and make
recommendations for bands to prioritize when designing or selecting instruments for
resource-constrained missions.

Qualitatively, we evaluate each model by visually comparing model-generated
masks to “truth” masks and multispectral model input for two different example
images. The first example image, which we refer to as the “easy” image sample,
is part of the image with a root filename of ‘LC82210662014229LGN0O0_18"’ in the
SPARCS test set [25]. The second example image, which we refer to as the “hard”
image sample, is also from the SPARCS test set and is part of the image with root
filename ““L.C81480352013195LGN00_32"’ [25]. We quantitatively evaluate each model
by calculating the metrics described in §2.3.1 and the ratios of the frequency of each
terrain class among false positives to the frequency of each terrain class in the dataset
as a whole, as described in §2.3.1. Finally, we measure the number of parameters,
saved model size, peak memory usage, and inference time of each algorithm in order

to evaluate model complexity and resource usage.

3.2.1 Visible-Spectrum

In Figure 3-17, we evaluate the Cg-equivariant U-Net trained on visible-spectrum data
only on an “easy” image segmentation example. The model-generated mask shown in
Figure 3-17(f) looks similar to the “truth” mask shown in Figure 3-17(g), except for
the fact that it is missing a cloud patch in the bottom left (boxed in green). This
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cloud patch appears cold in the LWIR band (as shown in Figure 3-17(b), but does
not appear visually distinct from the other land pixels in the visible-spectrum band

(shown in Figure 3-17(a)). The model appears to miss this optically thin cloud patch.

o 50

Figure 3-17: Cg-equivariant dense U-Net trained on visible-spectrum input only
evaluated on an “easy” image segmentation example, with an optically thin cloud
patch boxed in green. (a) Visible-spectrum image, (b) LWIR image, (¢) SWIR im-
age, (d) Difference between “truth” mask and mask generated by the Cg-equivariant
dense U-Net trained on visible-spectrum data, excluding pixels within 2 px of a
cloud boundary, (e) Difference between “truth” mask and mask generated by the
Cs-equivariant dense U-Net trained on visible-spectrum data, (f) Mask generated by
the Cs-equivariant dense U-Net trained on visible-spectrum data, (g) “Truth” mask.

Figure 3-18 evaluates the Cg-equivariant U-Net trained on visible-spectrum data
only on a “hard” image segmentation example, with a cloud patch over snow boxed
in green and an optically thin cloud patch boxed in pink. The model-generated mask
shown in Figure 3-17(f) clearly has some extra cloud patches, one of which (on top)
appears to really be snow, and one of which (on left) appears to really be land. This
is indicative of the Cg-equivariant U-Net’s difficulty distinguishing between cloud and
snow pixels when trained only on visible-spectrum data.

Table 3.17 presents the overall performance of the Cyg-equivariant U-Net trained
on visible-spectrum data only. Notably, this model performs worse than all of the
deep learning models presented in §3.1.3-3.1.6, but outperforms the random forest

algorithm trained on visible-spectrum, LWIR, and SWIR data in terms of Fj score.
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Figure 3-18: Cs-equivariant dense U-Net trained on visible-spectrum input only eval-
uated on a “hard” image segmentation example, with a cloud patch over snow boxed in
green and an optically thin cloud patch boxed in pink. (a) Visible-spectrum image, (b)
LWIR image, (¢) SWIR image, (d) Difference between “truth” mask and mask gener-
ated by the Cg-equivariant dense U-Net trained on visible-spectrum data, excluding
pixels within 2 px of a cloud boundary, (e) Difference between “truth” mask and
mask generated by the Cs-equivariant dense U-Net trained on visible-spectrum data,
(f) Mask generated by the Cg-equivariant dense U-Net trained on visible-spectrum
data, (g) “Truth” mask.

Table 3.17: Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-Net
trained on visible-spectrum data only evaluated on the cloud dataset, evaluated with
no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 96.53% 90.34% 82.29% 98.38% 86.86% 82.29% 0.8451 0.7318
2 px 99.11% 96.69% 93.54% 99.84% 98.70% 93.54% 0.9605 0.9240
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Table 3.18 presents the false positive terrain class ratios for the Cys-equivariant
U-Net trained on visible-spectrum data only. Ice and snow pixels are clearly over-
represented amongst false positives found by this model, and interestingly make up
a larger share of the false positives when the cloud edges are excluded using a 2 px
buffer. This indicates that this model has real trouble distinguishing clouds from ice
and snow, and that many of the ice and snow pixels misidentified as clouds are not
simply misidentified at cloud boundaries, but rather represent patches of snow and

ice misidentified as clouds despite not being anywhere near clouds in the image.

Table 3.18: Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the Cg-equivariant dense U-Net trained on visible-
spectrum data only to the frequency of each terrain class among all non-cloud pixels
in the SPARCS dataset, as explained in §2.3.1, evaluated with no buffer and with a
2 px buffer at cloud boundaries.

Buffer Cl. Cl. Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
0px  2.68 0.54 0.26 1.29 0.89 0.07
2px 1.1 0.00 0.28 3.15 0.89 0.55

3.2.2 Visible-Spectrum + LWIR

Figure 3-19 evaluates the Cg-equivariant dense U-Net trained on visible-spectrum and
LWIR data on an “easy” cloud segmentation example. Like the Cg-equivariant dense
U-Net trained only on visible-spectrum data, it appears to mostly miss the optically
thin cloud in the bottom left of the image (boxed in green) — however, it identifies
some pixels in the bottom left of the image as cloud, whereas the model trained on
visible-spectrum data misses that cloud patch altogether.

Figure 3-20 evaluates the Cg-equivariant dense U-Net trained on visible-spectrum
and LWIR data on a “hard” cloud segmentation example with overlapping clouds and
snow. Like the Cg-equivariant dense U-Net trained only on visible-spectrum data, it

identifies two extra cloud patches, one of which (top) appears to be snow, and one of
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Figure 3-19: Cs-equivariant dense U-Net trained on visible-spectrum and LWIR input
evaluated on an “easy” image segmentation example, with an optically thin cloud
patch boxed in green. (a) Visible-spectrum image, (b) LWIR image, (¢) SWIR image,
(d) Difference between “truth” mask and mask generated by the Cs-equivariant dense
U-Net trained on visible-spectrum and LWIR data, excluding pixels within 2 px of
a cloud boundary, (e) Difference between “truth” mask and mask generated by the
Cs-equivariant dense U-Net trained on visible-spectrum and LWIR data, (f) Mask
generated by the Cs-equivariant dense U-Net trained on visible-spectrum and LWIR
data, (g) “Truth” mask.
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which (left) appears to be land. However, these false cloud patches are smaller than

the false cloud patches found by the model trained only on visible-spectrum data.
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Figure 3-20: Cgs-equivariant dense U-Net trained on visible-spectrum and LWIR in-
put evaluated on a “hard” image segmentation example, with a cloud patch over snow
boxed in green and an optically thin cloud patch boxed in pink. (a) Visible-spectrum
image, (b) LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask and
mask generated by the Cg-equivariant dense U-Net trained on visible-spectrum and
LWIR data, excluding pixels within 2 px of a cloud boundary, (e) Difference be-
tween “truth” mask and mask generated by the Cg-equivariant dense U-Net trained
on visible-spectrum and LWIR data, (f) Mask generated by the Cg-equivariant dense
U-Net trained on visible-spectrum and LWIR data, (g) “Truth” mask.

Table 3.19 presents the overall performance of the Cg-equivariant dense U-Net
trained on visible-spectrum and LWIR data. Notably, like the Cg-equivariant dense
U-Net trained only on visible-spectrum data, this model performs worse than all of
the deep learning models presented in §3.1.3-3.1.6, but outperforms the random forest
algorithm presented in §3.1.2.

Table 3.19: Performance metrics detailed in §2.3.1 for the Cg-equivariant dense U-Net

trained on visible-spectrum and LWIR data evaluated on the cloud dataset, evaluated
with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 96.76% 91.61% 84.91% 98.30% 86.65% 84.91% 0.8577  0.7509
2 px 99.29% 97.85% 95.98% 99.72% 97.78% 95.98% 0.9687 0.9393
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Table 3.20 presents the false positive terrain class ratios for the Cys-equivariant
dense U-Net trained on visible-spectrum and LWIR data. Ice and snow pixels and
water pixels are clearly overrepresented amongst the false positives found by this
model. Interestingly, ice and snow pixels are more overrepresented amongst the false
positives found by this model than amongst the false positives found by the model
trained on only visible-spectrum input. This may be because ice, snow, and cold water
pixels look similar to clouds in LWIR data, while bright land pixels look similar to
clouds only in visible-spectrum data — so this change can be understood as a relative
improvement on classes other than ice/snow and water for the model trained on
visible-spectrum and LWIR data rather than a performance regression on ice/snow
and water classes, because overall, this model outperforms the model trained only on

visible-spectrum data.

Table 3.20: Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the Cg-equivariant dense U-Net trained on visible-
spectrum and LWIR data to the frequency of each terrain class among all non-cloud
pixels in the SPARCS dataset, as explained in §2.3.1, evaluated with no buffer and
with a 2 px buffer at cloud boundaries.

Buffer Cl. Cl Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
0px 247 0.48 0.52 2.24 0.79 0.00
2px 095 0.00 1.93 4.47 0.56 0.00

3.2.3 Visible-Spectrum + SWIR

Figure 3-21 evaluates the performance of the Cs-equivariant dense U-Net trained on
visible-spectrum and SWIR data on an “easy” image segmentation example. Unlike
the masks generated by the Cs-equivariant dense U-Net trained on visible-spectrum
data (shown in Figure 3-17(f)) and the Cs-equivariant dense U-Net trained on visible-
spectrum and LWIR data (shown in Figure 3-19(f)), the model-generated mask shown
in Figure 3-21(f) correctly identifies the optically thin cloud patch in the bottom left
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(boxed in green).
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Figure 3-21: Cs-equivariant dense U-Net trained on visible-spectrum and SWIR input
evaluated on an “easy” image segmentation example, with an optically thin cloud
patch boxed in green. (a) Visible-spectrum image, (b) LWIR image, (¢) SWIR image,
(d) Difference between “truth” mask and mask generated by the Cs-equivariant dense
U-Net trained on visible-spectrum and SWIR data, excluding pixels within 2 px of
a cloud boundary, (e) Difference between “truth” mask and mask generated by the
Cgs-equivariant dense U-Net trained on visible-spectrum and SWIR data, (f) Mask
generated by the Cg-equivariant dense U-Net trained on visible-spectrum and SWIR
data, (g) “Truth” mask.

Figure 3-22 evaluates the performance of the Cg-equivariant dense U-Net trained
on visible-spectrum and SWIR data on a “hard” image segmentation example with
overlapping snow and cloud. Unlike the masks generated by the Cg-equivariant
dense U-Net trained on visible-spectrum data (shown in Figure 3-18(f)) and the
Cs-equivariant dense U-Net trained on visible-spectrum and LWIR data (shown in
Figure 3-20(f)), the model-generated mask shown in Figure 3-22(f) does not mistake
any snow patches for clouds, despite missing a few cloud patches over land, especially
in the pink-boxed region containing an optically thin cloud patch.

The performance metrics for the Cs-equivariant dense U-Net trained on visible-
spectrum and SWIR data are given in Table 3.21. Notably, this model improves on
specificity and precision, but does worse on sensitivity and recall, when compared to
the Cy-equivariant dense U-Net trained on visible-spectrum and LWIR data. This
may point to a difficulty in detecting optically thin clouds without LWIR data, or
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Figure 3-22: Cg-equivariant dense U-Net trained on visible-spectrum and SWIR in-
put evaluated on a “hard” image segmentation example, with a cloud patch over snow
boxed in green and an optically thin cloud patch boxed in pink. (a) Visible-spectrum
image, (b) LWIR image, (c¢) SWIR image, (d) Difference between “truth” mask and
mask generated by the Cg-equivariant dense U-Net trained on visible-spectrum and
SWIR data, excluding pixels within 2 px of a cloud boundary, (e) Difference be-
tween “truth” mask and mask generated by the Cg-equivariant dense U-Net trained
on visible-spectrum and SWIR data, (f) Mask generated by the Cg-equivariant dense
U-Net trained on visible-spectrum and SWIR data, (g) “Truth” mask.
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data from other bands not used in this thesis.

Table 3.21: Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-Net
trained on visible-spectrum and SWIR data evaluated on the cloud dataset, evaluated
with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

0 px 96.89% 90.43% 82.04% 98.83% 90.10% 82.04% 0.8588  0.7526
2 px 99.21% 96.67% 93.39% 99.94% 99.50% 93.39% 0.9635 0.9296

The false positive terrain class ratios for the Cg-equivariant dense U-Net trained
on visible-spectrum and SWIR data are given in Table 3.22. This model shows a
significant relative improvement on distinguishing clouds from ice, snow, and water
when compared to the model trained on visible-spectrum and LWIR data, and does
relatively worse on distinguishing clouds from cloud shadow and land. This is likely
because ice, snow, and water are moderately absorptive in the SWIR band [49], while
ice particles and water droplets in clouds are small enough to scatter radiation in the
SWIR band, so clouds look brighter than snow, ice, and water on the ground in the
SWIR band, while cold water, ice, and snow look similar to clouds in the LWIR band.

Table 3.22: Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the Cg-equivariant dense U-Net trained on visible-
spectrum and SWIR data to the frequency of each terrain class among all non-cloud
pixels in the SPARCS dataset, as explained in §2.3.1, evaluated with no buffer and
with a 2 px buffer at cloud boundaries.

Buffer CI. ClL Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 3.32 0.97 0.20 1.62 0.80 0.00
2px 344 0.00 0.14 0.85 1.01 0.00
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3.2.4 Visible-Spectrum + LWIR + SWIR

Figure 3-23 reproduces Figure 3-11, demonstrating the performance of the Cs-equivariant
dense U-Net trained on visible-spectrum, LWIR, and SWIR data on an “easy” image
segmentation example. The model-generated mask (shown in Figure 3-23(f)) barely
differs from the “truth” mask, except for at the cloud edges, as illustrated by the 2
px buffer “difference” map shown in Figure 3-23(d).
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Figure 3-23: Cg-equivariant dense U-Net trained on visible-spectrum, LWIR and
SWIR input evaluated on an “easy” image segmentation example, with an optically
thin cloud patch boxed in green. (a) Visible-spectrum image, (b) LWIR image, (c)
SWIR image, (d) Difference between “truth” mask and mask generated by the Cg-
equivariant dense U-Net trained on visible-spectrum, LWIR and SWIR data, exclud-
ing pixels within 2 px of a cloud boundary, (e) Difference between “truth” mask and
mask generated by the Cg-equivariant dense U-Net trained on visible-spectrum, LWIR
and SWIR data, (f) Mask generated by the Cs-equivariant dense U-Net trained on
visible-spectrum, LWIR and SWIR data, (g) “Truth” mask.

Figure 3-24 reproduces Figure 3-12, demonstrating the performance of the Cs-
equivariant dense U-Net trained on visible-spectrum, LWIR, and SWIR data on a
“hard” image segmentation example. The model-generated mask (shown in Figure
3-24(f)) misses a few cloud pixels, and has a few extra cloud pixels, but these mostly
occur at the cloud borders, and no major missing or extra cloud patches are visible
in the 2 px buffer “difference” map shown in Figure 3-24(d). The model-generated

mask generally correctly discriminates between cloud and snow in the green-boxed

region containing overlapping snow and cloud, and correctly identifies the optically
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thin cloud in the pink-boxed region.
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Figure 3-24: Cg-equivariant dense U-Net trained on visible-spectrum, LWIR and
SWIR input evaluated on a “hard” image segmentation example, with a cloud patch
over snow boxed in green and an optically thin cloud patch boxed in pink. (a) Visible-
spectrum image, (b) LWIR image, (¢) SWIR image, (d) Difference between “truth”
mask and mask generated by the Cg-equivariant dense U-Net trained on visible-
spectrum, LWIR and SWIR data, excluding pixels within 2 px of a cloud boundary,
(e) Difference between “truth” mask and mask generated by the Cg-equivariant dense
U-Net trained on visible-spectrum, LWIR and SWIR data, (f) Mask generated by the
Cs-equivariant dense U-Net trained on visible-spectrum, LWIR and SWIR data, (g)
“Truth” mask.

Table 3.23 reproduces Table 3.11 and shows the performance metrics for the Cs-
equivariant dense U-Net trained on visible-spectrum, LWIR, and SWIR data. This
model outperforms the Cg-equivariant dense U-Net trained on visible-spectrum data,
the model trained on visible-spectrum and LWIR data, and the model trained on
visible-spectrum and SWIR data.

Table 3.23: Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-Net

trained on visible-spectrum, LWIR, and SWIR data evaluated on the cloud dataset,
evaluated with no buffer and with a 2 px buffer at cloud boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 97.01% 93.16% 88.17% 98.16% 86.15% 88.17% 0.8715 0.7722
2 px 99.54% 98.58% 97.32% 99.84% 98.82% 97.32% 0.9806 0.9620
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Table 3.24 reproduces Table 3.12 and shows the false positive terrain class ratios
for the Cg-equivariant dense U-Net trained on visible-spectrum, LWIR, and SWIR
data. These ratios fall in between the ratios for the model trained on visible-spectrum
and LWIR data and the model trained on visible-spectrum and SWIR data. This
is expected because the model trained on visible-spectrum, LWIR, and SWIR data
retains the benefits of the SWIR band for distinguishing between clouds and ice, snow,
and water and the benefits of the LWIR band for distinguishing between optically
thin clouds and land, and as such does not have a relative advantage on either of

these types of identification.

Table 3.24: Ratios representing the frequency of each terrain class (cloud shadow
over land, cloud shadow over water, water, ice/snow, land, and flooded) among pixels
falsely identified as clouds by the Cg-equivariant dense U-Net trained on visible-
spectrum, LWIR, and SWIR data to the frequency of each terrain class among all
non-cloud pixels in the SPARCS dataset, as explained in §2.3.1, evaluated with no
buffer and with a 2 px buffer at cloud boundaries.

Buffer CI. CL Water Ice/Snow Land Flood.
Shad. Shad.
(Land) (Water)
Opx 3.23 0.76 0.16 1.60 0.82 0.00
2px 330 0.00 0.15 1.36 0.97 0.00

3.2.5 Summary

We evaluate the performance of the Cg-equivariant dense U-Net trained on four dif-
ferent combinations of bands, and find that the model trained on visible-spectrum,
LWIR, and SWIR data performs the best qualitatively and quantitatively, with neg-

ligible additional computational cost over the other models.

Segmentation Performance

First, we qualitatively compare the performance of the Cg-equivariant dense U-Net
trained on four different combinations of bands by evaluating each model on an “easy”

image segmentation example with no snow, ice, cold water, or bright land pixels and
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on a “hard” image segmentation example with overlapping clouds and snow and then
visually comparing the resulting model-generated masks to each other and to the
“truth” mask. Figure 3-25 evaluates the Cg-equivariant dense U-Net trained on four
different combinations of Landsat 8 bands on the “easy” image segmentation example
with no snow, cold water, or bright non-cloud pixels. All four model-generated masks
look very similar to the “truth” mask shown in Figure 3-25(d), except for slight
differences identifying the optically thin clouds in the bottom left of the image (boxed
in green).

Unexpectedly, the model trained on visible-spectrum and SWIR data (mask shown
in Figure 3-25(g)) performs better than the model trained on visible-spectrum and
LWIR data (mask shown in Figure 3-25(f)) on classifying the optically thin cloud.
This optically thin cloud is not visible in the visible-spectrum or SWIR data, and
is significantly dimmer than the rest of the clouds in the image in the LWIR data,
so it is likely that the models classifying it correctly are successfully extrapolating
from the rest of the image rather than depending on the spectral properties of the
optically thin cloud patch. The overall improvement of the model trained on visible-
spectrum data only, the model trained on visible-spectrum and LWIR data, and the
model trained on visible-spectrum and SWIR data on this sample when compared to
the “hard” example shown in Figure 3-26 illustrates the fact that augmenting visible-
spectrum data with LWIR and SWIR data helps the most when classifying “tricky”

cloud patches that are optically thin or overlap with snow and ice terrain.

Figure 3-26 evaluates the Cg-equivariant dense U-Net trained on four different
combinations of Landsat 8 bands on a “hard” image segmentation sample with over-
lapping snow and cloud. The model trained on only visible-spectrum imagery (mask
shown in Figure 3-26(e)) and the model trained on visible-spectrum and LWIR im-
agery (mask shown in Figure 3-26(f)) have difficulty distinguishing snow and cloud in
the top left of the image, in the region boxed in green. The model trained on visible-
spectrum imagery only also has trouble correctly classifying optically thin cloud on
the left of the image, as does the model trained on visible-spectrum and SWIR data
(mask shown in Figure 3-26(h)). This region is boxed in pink. The model trained on
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Figure 3-25: Cg-equivariant dense U-Net trained on visible-spectrum data only,
visible-spectrum and LWIR data, visible-spectrum and SWIR data, and visible-
spectrum, LWIR, and SWIR data evaluated on an “easy” image segmentation sam-
ple, with an optically thin cloud patch boxed in green. (a) Visible-spectrum in-
put, (b) LWIR input, (c) SWIR input, (d) “Truth” mask, (e) Mask generated by
Cs-equivariant dense U-Net trained on visible-spectrum data only, (f) Mask gener-
ated by Cs-equivariant dense U-Net trained on visible-spectrum and LWIR data, (g)
Mask generated by Cs-equivariant dense U-Net trained on visible-spectrum and SWIR
data, (h) Mask generated by Cg-equivariant dense U-Net trained on visible-spectrum,
LWIR, and SWIR data.
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visible-spectrum, LWIR, and SWIR data (mask shown in 3-26(h)) is able to correctly
classify clouds in both the green-boxed region and the pink-boxed region. These
results qualitatively demonstrate the challenges distinguishing snow and clouds with-
out SWIR data, and the difficulty identifying optically thin clouds without LWIR, or

cirrus-band data.

a 50 100 a 50 100

Figure 3-26: Cg-equivariant dense U-Net trained on visible-spectrum data only,
visible-spectrum and LWIR data, visible-spectrum and SWIR data, and visible-
spectrum, LWIR, and SWIR data evaluated on a “hard” image segmentation sam-
ple, with a cloud patch over snow boxed in green and an optically thin cloud patch
boxed in pink. (a) Visible-spectrum input, (b) LWIR input, (¢) SWIR input, (d)
“Truth” mask, (e) Mask generated by Cs-equivariant dense U-Net trained on visible-
spectrum data only, (f) Mask generated by Cg-equivariant dense U-Net trained on
visible-spectrum and LWIR data, (g) Mask generated by Cg-equivariant dense U-Net
trained on visible-spectrum and SWIR data, (h) Mask generated by Cs-equivariant
dense U-Net trained on visible-spectrum, LWIR, and SWIR data.

Next, we quantitatively compare the Cg-equivariant dense U-Net trained on four
different combinations of bands. Table 3.25 summarizes the results of the Cg-equivariant
dense U-Net trained on four different combinations of bands when evaluated on the
SPARCS dataset with no buffer. The model trained on visible-spectrum and SWIR
bands has the highest specificity and precision, but the model trained on the visible-
spectrum, LWIR, and SWIR bands has the best performance on every other metric.
Also, the model trained on visible-spectrum and SWIR bands outperforms the model

trained on visible-spectrum and LWIR bands on accuracy and F; score, but both
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models are extremely similar in performance.

Table 3.25: Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-Net
trained on visible-spectrum data (VIS) only, visible-spectrum and LWIR data, visible-
spectrum and SWIR data, and visible-spectrum and LWIR and SWIR data, evaluated
on the modified SPARCS dataset without using a buffer at cloud boundaries.

Model Acc. Bal Sens. Spec. Prec. Recall F, IoU
Acc.
VIS 96.53% 90.34% 82.29% 98.38% 86.86% 82.29% 0.8451 0.7318

VIS 4+ 96.76% 91.61% 84.91% 98.30% 86.65% 84.91% 0.8577 0.7509
LWIR

VIS + 96.89% 90.43% 82.04% 98.83% 90.10% 82.04% 0.8588 0.7526
SWIR

VIS + 97.01% 93.16% 88.17% 98.16% 86.15% 88.17% 0.8715 0.7722
LWIR  +
SWIR

Figure 3-27 plots the receiver-operating characteristic (ROC) curve for the Csg-
equivariant dense U-Net trained on four different combinations of bands. The ROC
curve for the model trained on visible-spectrum, LWIR, and SWIR bands is con-
sistently the closest to the (0,1) point indicating a perfect classifier, and has both
a lower false positive rate than the other three models with the true positive rate
held constant and a higher true positive rate than the other three models with the
false positive rate held constant. Similarly, the curve representing model trained
on visible-spectrum and LWIR data consistently stays closer to (0, 1) than either the
curve representing the model trained on visible-spectrum and SWIR data or the curve
representing the model trained on visible-spectrum data only. This indicates that the
fact that the model trained on visible-spectrum and SWIR data has a slightly bet-
ter F} score than the model trained on visible-spectrum and LWIR data (see Table
3.25) is likely specific to the cloud threshold of 0.5 — with some thresholds, the model
trained on visible-spectrum and LWIR data would outperform the model trained on
visible-spectrum and SWIR data.

Additionally, the curve representing the model trained on visible-spectrum and

SWIR data consistently stays closer to the (0,1) point than the model trained on
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visible-spectrum data only. Finally, the gap between the curve representing the
model trained on visible-spectrum and LWIR data and the curve representing the
model trained on visible-spectrum and SWIR data is much smaller than the other
performance gaps between models. This demonstrates that adding more bands to the
image input improves the performance of the Cg-equivariant dense U-Net, and that
adding a LWIR band helps more than adding a SWIR band, but the difference is
relatively small — this fits with the results presented in Table 3.26.
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Figure 3-27: Receiver-operating characteristic (ROC) curve for the Cs-equivariant
dense U-Net trained on visible-spectrum data (VIS) only, visible-spectrum and LWIR
data, visible-spectrum and SWIR data, and visible-spectrum and LWIR and SWIR
data, evaluated on the modified SPARCS dataset without using a buffer at cloud
boundaries.

Table 3.26 summarizes the results of the Cs-equivariant dense U-Net trained on
four different combinations of bands, evaluated with a 2 px buffer at the cloud bound-
aries. Although the model trained on the visible-spectrum and SWIR bands only
has the highest specificity and precision, the model trained on the visible-spectrum,
LWIR, and SWIR bands has the best performance on every other metric. Also, the
model trained on visible-spectrum and LWIR data has a higher F} score than the
model trained on visible-spectrum and SWIR data when a 2 px buffer at the cloud
edges is taken into account. This likely indicates that the model trained on visible-
spectrum and LWIR data is better-optimized for a cloud threshold of 0.5 when a 2
px buffer is taken into account at the cloud boundaries rather than when no buffer is

taken into account.
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Table 3.26: Performance metrics detailed in §2.3.1 for the Cs-equivariant dense U-
Net trained on visible-spectrum data (VIS) only, visible-spectrum and LWIR data,
visible-spectrum and SWIR data, and visible-spectrum and LWIR and SWIR data,
evaluated on the modified SPARCS dataset with a 2 px buffer at cloud boundaries.

Model Acc. Bal Sens. Spec. Prec. Recall F, IoU
Acc.
VIS 99.11% 96.69% 93.54% 99.84% 98.70% 93.54% 0.9605 0.9240

VIS +99.29% 97.85% 95.98% 99.72% 97.78% 95.98% 0.9687 0.9393
LWIR

VIS + 99.21% 96.67% 93.39% 99.94% 99.50% 93.39% 0.9635 0.9296
SWIR

VIS +  99.54% 98.58% 97.32% 99.84% 98.82% 97.32% 0.9806 0.9620
LWIR  +
SWIR

Figure 3-28 plots the receiver-operating characteristic (ROC) curve for the Cs-
equivariant dense U-Net trained on four different combinations of bands when each
model is evaluated with a 2 px buffer at the cloud boundaries. As in Figure 3-27,
the curve representing the model trained on visible-spectrum, LWIR, and SWIR data
consistently stays the closest to (0,1), and the curve representing the model trained
on visible-spectrum data only is consistently the furthest from (0, 1). However, when
a 2 px buffer at the cloud boundaries is introduced, the curves representing the model
trained on visible-spectrum and LWIR data and the model trained on visible-spectrum
and SWIR data cross, reflecting different sensitivity /specificity tradeoffs between the
two models. The curve representing the model trained on visible-spectrum and LWIR
data appears to be shifted upwards and to the right when compared to the curve
representing the model trained on visible-spectrum and SWIR data. This shift reflects
the fact that the model trained on visible-spectrum and LWIR data performs better
in the regime where the false positive rate is greater than about 0.01%, but the model
trained on visible-spectrum and SWIR data performs better in the regime where the
false positive rate is below 0.01%.

This means that the model trained on visible-spectrum and SWIR data is a better

choice for applications where high specificity is extremely important, and the model
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trained on visible-spectrum and LWIR data is a better choice for applications where
sensitivity is more important than specificity, if a 2 px buffer is used for evalua-
tion. This fits with the result that the model trained on visible-spectrum and SWIR
data has much higher specificity than sensitivity, while the model trained on visible-
spectrum and LWIR data better balances sensitivity and specificity, resulting in a

higher Fi score when evaluated with a 2 px buffer, as shown in Table 3.26.
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Figure 3-28: Receiver-operating characteristic (ROC) curve for the Cg-equivariant
dense U-Net trained on visible-spectrum data (VIS) only, visible-spectrum and LWIR
data, visible-spectrum and SWIR data, and visible-spectrum and LWIR and SWIR
data, evaluated on the modified SPARCS dataset with a 2 px buffer at cloud bound-
aries.

Resource Utilization

Table 3.27 presents the resource utilization of the Cs-equivariant dense U-Net when
trained on different combinations of bands. The peak memory utilization and in-
ference time is very similar for all four models, because all models share the same
underlying architecture and differ only in the number of input channels used in the
first convolution layer. This demonstrates that the marginal computational cost of
adding an additional band to an input into the Cg-equivariant dense U-Net is very
low.

Table 3.28 presents the model complexity of the Cg-equivariant dense U-Net when

trained on different combinations of bands. The model size is the same for all four
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Table 3.27: Peak memory usage over 100 single-image classifications and average in-
ference time over 1000 single-image classifications using both a CPU (Intel Xeon)
and GPU (Nvidia K80) backend for the Cs-equivariant dense U-Net trained on
visible-spectrum data only, on visible-spectrum and LWIR data, on visible-spectrum
and SWIR data, and on visible-spectrum, LWIR, and SWIR data on the modified
SPARCS dataset.

Model GPU Mem. CPU Mem. GPU Inf. CPU Inf.
(MiB) (KiB) Time (s) Time (s)

VIS 203.7 129.0 0.0496 0.2281

VIS + LWIR 503.3 164.9 0.0522 0.2278

VIS + SWIR 503.3 129.5 0.0498 0.2278

VIS + LWIR + 503.5 144.8 0.0484 0.2281

SWIR

models, and the number of parameters is very similar for all four models — adding a
band to the input image results in a gain of only six trainable parameters out of hun-
dreds of thousands. This again highlights the fact that the marginal computational
cost of adding an additional band to an input into the Cg-equivariant dense U-Net is
very low.

Table 3.28: Saved model size, total number of parameters, and number of trainable
parameters for the Cg-equivariant dense U-Net trained on visible-spectrum data only,

on visible-spectrum and LWIR data, on visible-spectrum and SWIR data, and on
visible-spectrum, LWIR, and SWIR data, trained on the modified SPARCS dataset.

Model Model Size Total Parameters Trainable Parameters
VIS 14.6 MB 293775 290271

VIS + LWIR 14.6 MB 293783 290277

VIS + SWIR 14.6 MB 293783 290277

VIS + LWIR + 14.6 MB 293791 290283

SWIR
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Chapter 4

Road Segmentation Results

4.1 Evaluating Model Performance

We analyze the performance of the four deep learning algorithms described in §2.2.3-
2.2.6 on the Massachusetts Roads Dataset, which can be downloaded from Kaggle at
https://www.kaggle.com/datasets/insaff/massachusetts-roads-dataset. We
qualitatively evaluate each model by visually comparing model-generated masks to
“truth” masks and model input for two different example images. The first example
image, which we refer to as the “easy” image sample, comes from the image labeled
as ‘“‘img-8 in the Kaggle-hosted version of the Massachusetts Roads Dataset test
set. The second example image, which we refer to as the “hard” image sample, comes
from the image labeled as ¢‘img-4’’ in the Kaggle-hosted version of the Massachusetts
Roads Dataset test set. We quantitatively evaluate each model by calculating the
metrics described in §2.3.1. Finally, we measure the number of parameters, saved
model size, peak memory usage, and inference time of each algorithm in order to
evaluate model complexity and resource usage.

In addition to the four deep learning algorithms evaluated in this chapter, we
evaluated the luminosity thresholding algorithm described in §2.2.1 and the random
forest algorithm described in §2.2.2 on the Massachusetts Roads Dataset. In both
cases, the algorithm converged to a point with perfect specificity but zero sensitivity

— that is, the algorithm labeled all pixels as non-road. This indicates that visible-
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spectrum pixel luminosity in a 3 X 3 window is insufficient for distinguishing road and
non-road pixels; either more spatial context or more spectral information is necessary
for road segmentation.

Finally, recall that in our road segmentation experiments, our U-Net used 16 input
channels in the first convolution block, and our Cs-equivariant U-Net used 2 channels
per orientation in the first convolution block. In contrast, the U-Net used in our cloud
segmentation experiments and the dense U-Net used in both sets of experiments used
64 input channels in the first convolution block, and the Cg-equivariant U-Net used in
our cloud segmentation experiments and the Cs-equivariant dense U-Net used in both
sets of experiments used 8 channels per orientation in the first convolution block (see
§2.4.1). We restricted the number of input channels in the road segmentation U-Net
and the road segmentation Cg-equivariant U-Net to 16 channels and 2 channels per

orientation, respectively, in order to fit the models on the GPU used for training.

4.1.1 U-Net

Figure 4-1 shows the application of the U-Net to an “easy” image sample with only
one small parking lot segment (boxed in green), a gridlike road network, and very
few occluded road segments (boxed in white and light blue). The road labels in the
“truth” mask (shown in Figure 4-1(b)) are narrower than the roads in the U-Net-
generated mask (shown in Figure 4-1(c)), and as a result, the U-Net-generated mask
has a significant number of false positives that fall within 4 px of a road boundary, as
seen in the difference map in Figure 4-1(d). The U-Net-generated mask also includes
a few extra segments, and labels some segments as longer than those in the “truth”
mask — these segments are apparent in the difference map generated using a 4 px
buffer at road boundaries, shown in Figure 4-1(e).

Figure 4-2 shows the application of the U-Net to a “hard” image containing a
parking lot (boxed in green), narrow and partially occluded roads (boxed in white
and light blue), and curved roads in a variety of orientations. Roads pictured in the
Massachusetts Roads Dataset vary in width, but most of the roads in the dataset are

comparable in width to the road segments in the “easy” image example (see Figure 4-
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Figure 4-1: U-Net evaluated on an “easy” road segmentation example, with partially
occluded road segments boxed in white and light blue, and with a parking lot segment
boxed in green. (a) Visible-spectrum image, (b) “Truth” mask, (c) U-Net-generated
mask, (d) Difference between “truth” mask and U-Net-generated mask, (e) Difference
between “truth” mask and U-Net-generated mask, excluding pixels within 4 px of a
road boundary.

1), and the narrow roads in this image are fairly atypical for the dataset. The relative
lack of narrow roads in the Massachusetts Roads Dataset likely makes it more difficult

for deep learning models to correctly identify narrow road segments.

As in Figure 4-1, the road segments in the U-Net generated mask (Figure 4-2(c))
are wider than those in the “truth” mask (Figure 4-2(b)). Interestingly, this trend
holds even for the narrower roads in this image sample — although the U-Net misses
most of the narrow roads entirely, as seen in the 4 px difference map (Figure 4-2(e)),
the ones it does label are wider in the U-Net generated mask than in the “truth”
mask or in the original input image. The U-Net also struggles to label the parking
lot in the bottom left of the image, labeling several parts of the parking lot (which
looks like a road, except for its shape) as disconnected roads. The “truth” mask, in

contrast, does not label any part of the parking lot as a road.

Performance metrics for the U-Net are given in Table 4.1. Most notably, the
U-Net has significantly higher recall than precision when evaluated with or without

a 4 px buffer at the road boundaries, indicating a high number of false positives.
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Figure 4-2: U-Net evaluated on a “hard” road segmentation example, with narrow,
partially occluded road segments boxed in white and light blue, and with a parking lot
boxed in green. (a) Visible-spectrum image, (b) “Truth” mask, (c) U-Net-generated
mask, (d) Difference between “truth” mask and U-Net-generated mask, (e) Difference
between “truth” mask and U-Net-generated mask, excluding pixels within 4 px of a
road boundary.

This fits with the qualitative results shown in Figures 4-1 and 4-2— when no buffer is
considered, the U-Net has a high number of false positives related to the width of its
labeled road segments, and even when a 4 px buffer is considered, the U-Net falsely
identifies road segments as longer than their true length (see Figure 4-1) and falsely

identifies parking lots as roads (see Figure 4-2).

Table 4.1: Performance metrics detailed in §2.3.1 for the U-Net evaluated on the Mas-
sachusetts Roads Dataset with no buffer and with a 4 px buffer at road boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

0 px 80.22% 78.71% T77.02% 80.39% 17.83% 77.02% 0.2895  0.1693
4 px 96.22% 96.46% 96.85% 96.06% 86.08% 96.85% 0.9115 0.8374

4.1.2 Dense U-Net

Figure 4-3 evaluates the dense U-Net on an “easy” image sample with only one small

parking lot segment, a gridlike road network, and few partially occluded road seg-
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ments. Like the U-Net (see Figure 4-1), the mask generated by the dense U-Net
(shown in Figure 4-3(c)) includes wider road segments than those in the “truth” mask
(shown in Figure 4-3(b)). As a result, the mask generated by the dense U-Net in-
cludes a large number of false positives within 4 px of the road edges, as shown in
the difference map in Figure 4-3(d). The mask generated by the dense U-Net also
includes some road segments that are elongated from the true segments shown in
the “truth” mask. The length differences between segments are most apparent in the
difference map with a 4 px buffer (see Figure 4-3(e). Notably, the dense U-Net has

fewer elongated segments than the U-Net does (see Figure 4-1).

T T
o 100 200 o 100 200 0 100 200

Figure 4-3: Dense U-Net evaluated on an “easy” road segmentation example, with

partially occluded road segments boxed in white and light blue, and with a parking
lot segment boxed in green. (a) Visible-spectrum image, (b) “Truth” mask, (c) Mask
generated by dense U-Net, (d) Difference between “truth” mask and mask generated
by dense U-Net, (e) Difference between “truth” mask and mask generated by dense
U-Net, excluding pixels within 4 px of a road boundary.

Figure 4-4 evaluates the dense U-Net on a “hard” image sample with a parking
lot, narrow and partially occluded road segments, and curved roads. Like the U-Net
(see Figure 4-2), the dense U-Net misses nearly all of the narrow road segments, as
seen in the mask generated by the dense U-Net (Figure 4-4(c)) and in the 4 px buffer
difference map (Figure 4-4(e)). The dense U-Net also misclassifies certain parts of

the parking lot in the bottom left of the image (boxed in green in Figure 4-4) as

115



road segments. The misclassified segments appear to match up with the edge of
the parking lot and some of the gaps between rows of parked cars, as seen in the
image input (Figure 4-4(a)), indicating that the dense U-Net struggles to distinguish

between roads and areas of parking lots where driving is possible.

o 0

50 50 4
100 100

150 150 4

B 2 ~UE

o 100 200 o 100 200 0 100 200

200

250

Figure 4-4: Dense U-Net evaluated on a “hard” road segmentation example, with
narrow, partially occluded road segments boxed in white and light blue, and with a
parking lot boxed in green. (a) Visible-spectrum image, (b) “Truth” mask, (c¢) Mask
generated by dense U-Net, (d) Difference between “truth” mask and mask generated
by dense U-Net, (e) Difference between “truth” mask and mask generated by dense
U-Net, excluding pixels within 4 px of a road boundary.

The performance metrics for the dense U-Net are given in Table 4.2. When no
buffer is used during evaluation, the U-Net outperforms the dense U-Net in terms
of F score, likely because the dense U-Net has more false positives close to the
road boundaries, as evidenced by the poor precision of the dense U-Net when no
buffer is used for evaluation. However, when a 4 px buffer is used to evaluate model
performance, the dense U-Net outperforms the U-Net in terms of F} score and shows
higher precision than the U-Net. This fits with the qualitative result that the dense
U-Net is better at capturing the correct length of road segments than the U-Net, and

so has fewer false positives than the U-Net when a 4 px buffer is used for evaluation.
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Table 4.2: Performance metrics detailed in §2.3.1 for the dense U-Net evaluated on
the Massachusetts Roads Dataset with no buffer and with a 4 px buffer at road
boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 79.75% 18.7T% T7.67% 79.86% 17.47% T7.67% 0.2853 0.1664
4 px 96.19% 96.45% 96.90% 96.01% 86.29% 96.90% 0.9129 0.8397

4.1.3 C(Cs-Equivariant U-Net

Figure 4-5 shows the performance of the Cg-equivariant U-Net on an “easy” image
input with only one small parking lot segment, a gridlike road network, and very few
partially occluded roads. Like the prior two models presented in §4.1.1-4.1.2, the Cs-
equivariant U-Net generates a mask (see Figure 4-5(c)) with wider road segments than
the road segments in the “truth” mask shown in Figure 4-5(b). The Cg-equivariant U-
Net-generated mask includes some road segments which are longer than in the “truth”
mask, and includes more of these segments than the dense U-Net-generated mask (see
Figure 4-3) but fewer of these segments than the U-Net-generated mask (see Figure
4-1). Also, the mask generated by the Cg-equivariant U-Net looks relatively “noisy”
— that is, the road segments in the mask are generally not straight and many of the
road segments in the mask have small protrusions.

Figure 4-6 shows the performance of the Cs-equivariant U-Net on a “hard” image
input with a parking lot, narrow and partially occluded road segments, and many
curved road segments. The mask generated by the Cg-equivariant U-Net (shown
in Figure 4-6) again looks relatively “noisy”, in that it includes small road patches
adjacent to or attached to road segments and that many of the road segments in
the mask waver in width. Also, like the two models presented in §4.1.1-4.1.2, the
Cg-equivariant U-Net generates a mask that misses most of the narrow and partially
occluded roads, but misclassifies part of the parking lot as a road. Like the U-Net
(see Figure 4-2), the Cg-equivariant U-Net generates a mask where disparate parts
of the parking lot are identified as road segments, in contrast to the dense U-Net,

which labels the parking lot edge and some of the gaps between rows of parked cars
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Figure 4-5: Cs-equivariant U-Net evaluated on an “easy” road segmentation example,
with partially occluded road segments boxed in white and light blue, and with a
parking lot segment boxed in green. (a) Visible-spectrum image, (b) “Truth” mask,
(c) Mask generated by Cg-equivariant U-Net, (d) Difference between “truth” mask
and mask generated by Cg-equivariant U-Net, (e) Difference between “truth” mask
and mask generated by Cg-equivariant U-Net, excluding pixels within 4 px of a road
boundary.

as smooth road segments (see Figure 4-4).

The performance metrics for the Cg-equivariant U-Net are given in Table 4.3.
Interestingly, the Cs-equivariant U-Net outperforms the dense U-Net when no buffer
is used during evaluation, but performs worse than the dense U-Net when a 4 px buffer
is used for evaluation. This likely relates to the fact that the Cs-equivariant U-Net has
higher precision but lower recall than the dense U-Net, indicating that it has fewer
false positives and more false negatives than the dense U-Net — an advantage that
becomes much less meaningful when a 4 px buffer is taken into account, eliminating
many of the false positives found by the dense U-Net. The Cg-equivariant U-Net has
a slightly lower F} score than the U-Net regardless of whether or not a 4 px buffer
is used for evaluation, likely because the first group convolution done by the Cg-
equivariant U-Net has only two channels per orientation, and compressing the input

to two channels results in loss of information and limits the model’s performance.
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Figure 4-6: Cs-equivariant U-Net evaluated on a “hard” road segmentation example,
with narrow, partially occluded road segments boxed in white and light blue, and
with a parking lot boxed in green. (a) Visible-spectrum image, (b) “Truth” mask,
(c) Mask generated by Cg-equivariant U-Net, (d) Difference between “truth” mask
and mask generated by Cs-equivariant U-Net, (e) Difference between “truth” mask
and mask generated by Cgs-equivariant U-Net, excluding pixels within 4 px of a road
boundary.

Table 4.3: Performance metrics detailed in §2.3.1 for the Cs-equivariant U-Net eval-
uated on the Massachusetts Roads Dataset with no buffer and with a 4 px buffer at
road boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 80.51% 77.74% 74.63% 80.84% 17.93% 74.63% 0.2891  0.1690
4 px 96.29% 96.35% 96.46% 96.25% 86.38% 96.46% 0.9114 0.8372
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4.1.4 C(Cs-Equivariant Dense U-Net

Figure 4-7 demonstrates the performance of the Cg-equivariant dense U-Net on an
“easy” road segmentation example with gridlike roads, only one small parking lot
segment, and very few partially occluded road segments. Qualitatively, the mask
generated by the Cg-equivariant dense U-Net (shown in Figure 4-7(c)) looks very
“smooth”; the road segments in the mask are mostly straight and intersect at right
angles where appropriate. However, the mask generated by the Cg-equivariant dense
U-Net, like the masks generated by the models presented in §4.1.1-4.1.3, includes some
elongated road segments. Interestingly, the mask generated by the Cs-equivariant
dense U-Net has more false positives relating to elongated road segments than the
mask generated by the dense U-Net (see Figure 4-3), but this is because the “smooth”
mask generated by the Cg-equivariant dense U-Net has no gaps in the elongated
segments. Finally, the mask generated by the Cg-equivariant dense U-Net misses two
partially occluded road segments (boxed in white and light blue in Figure 4-7), while
other models only miss at most one — this highlights that the Cg-equivariant U-Net

generally has more false negatives than other models.

Figure 4-8 demonstrates the performance of the Cs-equivariant dense U-Net on a
“hard” road segmentation example with a parking lot, narrow and partially occluded
roads, and curved roads. The mask generated by the Cs-equivariant dense U-Net
(shown in Figure 4-8(c)) qualitatively looks very smooth, but misses a lot of the
detail of the narrow and partially occluded road segments. As shown in the 4 px
buffer difference map (Figure 4-8(e)), the Cs-equivariant dense U-Net also identifies
two major false positive road segments, in the bottom left of the image and in the
top center-left of the image. The false segment in the bottom left corresponds to the
boundary of the parking lot (boxed in green in Figure 4-8), and looks qualitatively
smoother than the false parking lot segments generated by the other three models.
The false segment in the top center-left corresponds to a road segment not labeled
in the “truth” mask, likely because it is a private road or part of a parking lot.

The presence of these false positive segments demonstrates that the Cs-equivariant
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Figure 4-7: Cgs-equivariant dense U-Net evaluated on an “easy” road segmentation
example, with partially occluded road segments boxed in white and light blue, and
with a parking lot segment boxed in green. (a) Visible-spectrum image, (b) “Truth”
mask, (c¢) Mask generated by Cg-equivariant dense U-Net, (d) Difference between
“truth” mask and mask generated by Cs-equivariant dense U-Net, (e) Difference be-
tween “truth” mask and mask generated by Cg-equivariant dense U-Net, excluding
pixels within 4 px of a road boundary.

dense U-Net does sometimes generate false positives, but these false positives often

correspond to areas where vehicular travel is possible.

Table 4.4 presents the performance metrics of the Cs-equivariant dense U-Net
evaluated both with and without a 4 px buffer at the road boundaries. In both
cases, the Cyg-equivariant dense U-Net outperforms the three models presented in
§4.1.1-4.1.3 in terms of F} score and precision, but has a lower recall than the three
previously presented models. This fits with the result that masks generated by the
Cg-equivariant dense U-Net look qualitatively “smoother” than the masks generated
by other models, and typically have more false negatives but fewer false positives than

other models, as seen in Figures 4-7 and 4-8.
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Figure 4-8: Cgs-equivariant dense U-Net evaluated on a “hard” road segmentation
example, with narrow, partially occluded road segments boxed in white and light blue,
and with a parking lot boxed in green. (a) Visible-spectrum image, (b) “Truth” mask,
(c) Mask generated by Cs-equivariant dense U-Net, (d) Difference between “truth”
mask and mask generated by Cs-equivariant dense U-Net, (e) Difference between
“truth” mask and mask generated by Cs-equivariant dense U-Net, excluding pixels
within 4 px of a road boundary.

Table 4.4: Performance metrics detailed in §2.3.1 for the Cy-equivariant dense U-Net
evaluated on the Massachusetts Roads Dataset with no buffer and with a 4 px buffer
at road boundaries.

Buffer Acc. Bal. Sens. Spec. Prec. Recall F, IoU
Acc.

0 px 83.52% 76.85% 69.35% 84.35% 20.49% 69.35% 0.3163  0.1878
4 px 97.58% 96.33% 94.37% 98.29% 92.49% 94.37% 0.9342 0.8765
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4.1.5 Summary
Segmentation Performance

We first qualitatively evaluate the performance of each of the models presented in
§4.1.1-4.1.4 by applying each model to an “easy” road segmentation example where
roads are gridlike, there is only one small parking lot segment, and there are only
two partially occluded road segments. We visually compare the masks generated by
each model, which are shown in Figure 4-9. All four models (model-generated masks
shown in Figure 4-9(c-f)) generate masks that mostly match the “truth” mask shown
in Figure 4-9(b), except for the fact that all four model-generated masks contain an
extra road segment not present in the “truth” mask, which is boxed in green. Careful
inspection of the input image shows that the green-boxed region does actually contain
a road segment, but this segment is missing from the “truth” mask because it appears

to be part of a private parking area.

The mask generated by the Cs-equivariant dense U-Net (shown in Figure 4-9(f))
looks to have the qualitatively “smoothest” road segments of the model-generated
masks; most segments in the mask generated by the Cg-equivariant dense U-Net are
straight, continuous, and intersect at appropriate angles. However, the Cg-equivariant
dense U-Net misses both partially occluded road segments, which are boxed in white
and light blue. This illustrates the fact that the Cg-equivariant dense U-Net has the
highest specificity and lowest sensitivity of the four methods — the Cgs-equivariant
dense U-Net can provide smooth road masks without the discontinuities and noisy-
looking artifacts seen in the masks generated by the other models, but this comes
at the cost of missing some partially occluded road segments. Missing segments can
affect route planning, but so can discontinuous segments like those seen in the masks
generated by the models other than the Cg-equivariant dense U-Net [46].

The mask generated by the U-Net (shown in Figure 4-9(c)) is the only model-
generated mask to identify both partially occluded road segments (boxed in white
and light blue), but it also falsely identifies some non-road pixels at the left edge of
the image as roads, highlighting its high recall but low precision. As shown in Table
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4.6, when a 4 px buffer is taken into account when evaluating image masks, the U-Net

has the lowest precision of all four models.
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Figure 4-9: U-Net, dense U-Net, Cs-equivariant U-Net, and Cs-equivariant dense U-
Net evaluated on an “easy” image segmentation sample, with partially occluded road
segments boxed in white and light blue, and with a parking lot segment boxed in
green. (a) Visible-spectrum input image, (b) “Truth” mask, (c) Mask generated by
the U-Net, (d) Mask generated by the dense U-Net, (e) Mask generated by the Cs-
equivariant U-Net, (f) Mask generated by the Cg-equivariant dense U-Net.

Next, we qualitatively evaluate the performance of each model presented in §4.1.1-
4.1.4 by applying each model to a “hard” road segmentation example with a parking
lot, several visually occluded road segments, and twisty roads in a variety of ori-
entations, and visually compare the resulting masks, as shown in Figure 4-10. All
four model-generated masks, shown in Figure 4-10(c-f), look qualitatively fairly dif-
ferent from the “truth” mask shown in Figure 4-10(b). First off, all model-generated
masks contain thicker roads than the “truth” mask, likely because the road labels in
the “truth” masks in the Massachusetts Roads Dataset are generated from rasterized
road centerlines and are thus uniform in width, while road labels in model-generated
masks tend to match the road width in the input image [38] [5]. This width difference

between model-generated and “truth” masks also appears in Figure 4-9.
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Second, all four model-generated masks miss the narrow, partially occluded road
segments in the center of the image (boxed in white) and in the bottom right of the
image (boxed in light blue), but label an additional road segment in the top center-left
of the image just above the white-boxed region. Careful inspection of the input image
shows that the road segments in the “truth” mask in the white-boxed and blue-boxed
regions appear to be real roads, but some are less than 1 pixel in width, and these
roads appear to mostly be driveways or narrow access roads, which are not always
labeled in the “truth” masks in the Massachusetts Roads Dataset. The mislabeled
road segment above the white box also appears to be a real road segment missing
from the “truth” mask — this segment may be unlabeled because it is part of a parking

lot or private road, or may represent an error in the “truth” mask.

Finally, the parking lot in the bottom left of the image (boxed in green) is not
labeled as a road in the “truth” mask, but parking lots are difficult to visually dis-
tinguish from roads, and some parking lots may provide “through access”, serving
the same purpose as a road. All four model-generated masks struggle to distinguish
the parking lot from a road, and all masks label at least part of the parking lot as
a road. The Cg-equivariant dense U-Net (mask shown in Figure 4-10(f)) labels the
parking lot boundary, but no other part of the parking lot, as a road, and generally
boasts the visually “smoothest” mask on this example. In contrast, the other three
models (masks shown in Figure 4-10(c-¢e)) all label at least part of the interior of the
parking lot as a road, and have visually “noisier” masks, qualitatively demonstrating
poorer performance than the Cg-equivariant dense U-Net at interpreting a complex

road network and distinguishing between parking lots and roads.

The performance metrics for the models presented in §4.1.1-4.1.4, evaluated on the
Massachusetts Roads Dataset without a buffer, are given in Table 4.5, with the best
performance on each metric bolded. The Cg-equivariant dense U-Net performs the
best on all metrics except for balanced accuracy, sensitivity, and recall, on which the
dense U-Net performs the best. Both Cs-equivariant models have higher specificity
and precision but lower sensitivity and recall than their non-equivariant equivalents.

This fits with the qualitative results seen in Figures 4-9 and 4-10; the Cs-equivariant
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Figure 4-10: U-Net, dense U-Net, Cs-equivariant U-Net, and Cg-equivariant dense U-
Net evaluated on a “hard” image segmentation sample, with narrow, partially occluded
road segments boxed in white and light blue, and with a parking lot boxed in green.
(a) Visible-spectrum input image, (b) “Truth” mask, (¢) Mask generated by the U-Net,
(d) Mask generated by the dense U-Net, (e) Mask generated by the Cg-equivariant
U-Net, (f) Mask generated by the Cg-equivariant dense U-Net.
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dense U-Net has “smoother” masks than the dense U-Net, and the Cg-equivariant
U-Net misses some partially occluded road segments identified by the U-Net.
Table 4.5: Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cs-

equivariant U-Net, and Cyg-equivariant dense U-Net evaluated on the modified Mas-
sachusetts Roads Dataset, evaluated without using a buffer at road boundaries.

Model Acc. Bal Sens. Spec. Prec. Recall F, IoU
Acc.

U-Net 80.22% 78.71% 77.02% 80.39% 17.83% 77.02% 0.2895 0.1693

Dense 79.75% T78.77% T7.67% 79.86% 17.47% T77.67% 0.2853 0.1664

U-Net

Cs- 80.51% 77.74% 74.63% 80.84% 17.93% 74.63% 0.2891 0.1690

Equivariant

U-Net

Cs- 83.52% 76.85% 69.35% 84.35% 20.49% 69.35% 0.3163 0.1878

Equivariant

Dense U-

Net

Figure 4-11 shows the receiver-operating characteristic (ROC) curve for each of
the models presented in §4.1.1-4.1.4, evaluated without a buffer. Interestingly, the
dense U-Net gets the closest to the (0,1) point, even though it has the worst F}
score of the four models. This is likely because the Massachusetts Roads Dataset
is highly imbalanced — under 10% of pixels are roads, so models achieve the best
precision /recall tradeoff when specificity is high and sensitivity is low, and the Cs-
equivariant models perform better in this high-specificity and low-sensitivity regime.
This class imbalance explains how the Cg-equivariant dense U-Net has the best Fj
score by over (0.025 without having the highest balanced accuracy.

The performance metrics for the models presented in §4.1.1-4.1.4 when evaluated
on the Massachusetts Roads Dataset with a 4 px buffer are given in Table 4.6, with
the best performance on each metric bolded. The Cg-equivariant dense U-Net does
best on all metrics other than balanced accuracy, sensitivity, and recall, just as when
the models are evaluated without a buffer at road edges (see Table 4.5). This again

highlights the Cg-equivariant dense U-Net’s advantage on specificity and precision
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Figure 4-11: Receiver-operating characteristic (ROC) curves for the U-Net, dense U-
Net, Cs-equivariant U-Net, and Cg-equivariant dense U-Net, evaluated on the modi-
fied Massachusetts Roads Dataset without using a buffer at road boundaries.

over sensitivity and recall, as demonstrated by its “smooth” masks which eliminate
noisy false positives at the expense of sometimes missing partially occluded road

segments, as seen in Figures 4-9 and 4-10.

Notably, the dense U-Net has the second-highest F; score when a 4 px buffer is
taken into account, even though it has the lowest I} score when no buffer is taken into
account. This likely relates to the dense U-Net’s low specificity — the dense U-Net
is biased towards false positives over false negatives, and many false positives occur
due to differences in road width between masks, so including a 4 px buffer at road
boundaries eliminates some of these false positives and improves the dense U-Net’s
performance.

Also, the U-Net slightly outperforms the Cg-equivariant U-Net both without a
buffer (see Table 4.6) and with a 4 px buffer at the road boundaries. This is likely
because the low number of channels per orientation used in the Cg-equivariant U-Net
limits its performance; we expect that if the U-Net used the same number of total
channels as the channels per orientation used by the Cs-equivariant U-Net, the Cs-
equivariant U-Net would significantly outperform the U-Net. Our dense models have
fewer parameters per channel than the U-Net and Cyg-equivariant U-Net; as a result,
we are able to use more channels in the dense models, and the Cg-equivariant dense U-

Net clearly outperforms the dense U-Net, demonstrating that with a sufficient number
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of channels, Cs-equivariant models can outperform non-equivariant models. In the
future, we plan to test the U-Net and Cg-equivariant U-Net with 64 input channels
and 8 channels per orientation, respectively — see §6.2 for a full description of our
planned future work.

Table 4.6: Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cg-

equivariant U-Net, and Cg-equivariant dense U-Net evaluated on the modified Mas-
sachusetts Roads Dataset, evaluated with a 4 px buffer at road boundaries.

Model Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

U-Net 96.22% 96.46% 96.85% 96.06% 86.08% 96.85% 0.9115 0.8374

Dense 96.19% 96.45% 96.90% 96.01% 86.29% 96.90% 0.9129 0.8397

U-Net

Cs- 96.29% 96.35% 96.46% 96.25% 86.38% 96.46% 0.9114 0.8372

Equivariant

U-Net

Cs- 97.58% 96.33% 94.37% 98.29% 92.49% 94.37% 0.9342 0.8765

Equivariant

Dense U-

Net

Figure 4-12 shows the ROC curves representing the models presented in §4.1.1-
4.1.4 evaluated on the Massachusetts Roads Dataset with a 4 px buffer. The Cs-
equivariant dense U-Net gets closest to the (0, 1) point indicating perfect classification,
followed by the dense U-Net, then by the U-Net, then finally by the Cg-equivariant
U-Net. This is the same order as the order of the F} scores given in Table 4.6.
However, the curves representing the dense U-Net and U-Net are extremely close,
closer than indicated by the F} scores in Table 4.6. This likely indicates that with a
road detection threshold other than 0.5, the U-Net would perform better.

Resource Utilization

Table 4.7 presents the resource utilization of the models presented in §4.1.1-4.1.4.
The peak memory allocation using a GPU backend is much higher for the dense

models, and is lower for the Cg-equivariant models than it is for their non-equivariant
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Figure 4-12: Receiver-operating characteristic (ROC) curves for the U-Net, dense U-
Net, Cs-equivariant U-Net, and Cg-equivariant dense U-Net, evaluated on the modi-
fied Massachusetts Roads Dataset without a 4 px buffer at road boundaries.

equivalents; as a result, the dense U-Net has the highest peak memory allocation
using a GPU backend. The dense models have more channels than their non-dense
equivalents, which contributes to their consumption of GPU memory, and the Cs-
equivariant models have fewer parameters than their non-equivariant equivalents,
slightly reducing the amount of GPU memory they consume.

The dense models have slower inference time than their non-dense equivalents
using both a CPU and GPU backend, and the Cs-equivariant models also have slower
inference time than their non-equivariant equivalents using both backends. As a
result, the Cg-equivariant dense U-Net has the slowest inference time regardless of
backend. This is unsurprising — the dense models have 4x more channels than the
non-dense models, so should have slower inference time, and as seen in §3.1.7, Cs-
equivariant models generally take longer to classify each image, likely because of
overhead introduced by the e2cnn library related to checking group representations
and differences in speed optimization between PyTorch and the e2cnn library.

Table 4.8 shows the size of the saved model, number of parameters, and number
of trainable parameters for the models presented in §4.1.1-4.1.4. The dense models,
which have more channels than the non-dense models, have more parameters and
require more storage than their non-dense equivalents. The Cg-equivariant models

have fewer parameters and require less storage than their non-equivariant equivalents.
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Table 4.7: Peak memory usage over 100 single-image classifications and average infer-
ence time over 1000 single-image classifications using both a CPU (Intel Xeon) and
GPU (Nvidia K80) backend for the U-Net, dense U-Net, Cs-equivariant U-Net, and
Cs-equivariant dense U-Net on the modified Massachusetts Roads Dataset.

Model GPU Mem. CPU Mem. GPU Inf. CPU Inf.
(GiB) (KiB) Time (s) Time (s)

U-Net 0.286 83.7 0.0054 0.1506

Dense U-Net 1.532 111.3 0.0146 0.5673

Cs-Equivariant U- 0.272 131.5 0.0147 0.1735

Net

Cs-Equivariant 1.486 83.7 0.0557 0.6673

Dense U-Net

This highlights that Cs-equivariance reduces the parameter space and thus the number
of parameters per model when the number of channels is held equal, and also that an
increase in channels increases the number of model parameters and model size.

Table 4.8: Saved model size, total number of parameters, and number of trainable

parameters for the U-Net, dense U-Net, Cg-equivariant U-Net and Cg-equivariant
dense U-Net trained on the modified Massachusetts Roads Dataset.

Model Model Size Total Parameters Trainable Parameters
U-Net 12.5 MB 1.54 x 106 1.54 x 106

Dense U-Net 21.6 MB 2.64 x 10° 2.64 x 109
Cs-Equivariant  U- 7.4 MB 1.32 x 10° 1.32 x 10°

Net

Cs-Equivariant 13.3 MB 2.94 x 10° 2.90 x 10°

Dense U-Net
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Chapter 5

Discussion

In this chapter, we quantitatively compare our cloud segmentation and road segmen-
tation results to the literature, and also quantitatively compare our cloud segmenta-
tion results to our road segmentation results. We use these comparisons to motivate
qualitative discussion of the differences between the road and cloud domains, and to

motivate promising areas of future work.

5.1 Cloud Segmentation Results vs. Literature

We designed our cloud detection experiments to use the SPARCS dataset, which was
originally created for the SPARCS CNN [25]. Our cloud detection models, unlike the
SPARCS CNN, use only a limited selection of Landsat 8 bands, and predict clouds
only rather than predicting several different terrain classes. Additionally, our cloud
detection models classify 144 x 144 pixel patches of input images by default rather
than classifying 256 x 256 pixel patches like the SPARCS CNN [25]. Nevertheless,
we use the same training and test data, and make comparisons between the different
models. Table 5.1 summarizes our results alongside the results found by Hughes
and Kennedy in [25]. Note that only metrics calculated with a 2 px buffer at cloud
boundaries are available for the SPARCS CNN;, so we present all metrics using a 2
px buffer at cloud boundaries.

As shown in Table 5.1, the SPARCS CNN, which is trained on Landsat 8 data
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Table 5.1: Performance metrics calculated for the SPARCS CNN [25] and for the
cloud segmentation models presented in Chapter 3. All results are calculated on the
SPARCS dataset using a 2 px buffer at the cloud boundaries.

Model Precision Recall F, IoU Trainable
Parameters

SPARCS CNN |[25] 95.73% 96.42% 0.9607 0.9244 2.05 x107

Luminosity Thresholding 60.20% 43.18% 0.5029 0.3359 -

Random Forest 92.11% 96.91% 0.9445 0.8948 -

U-Net 98.46% 96.54% 0.9749 0.9511 2.46 x107

Dense U-Net 98.47% 96.89% 0.9768 0.9546 2.64 x10°

Cs-Equivariant U-Net 98.78% 97.18% 0.9797 0.9602 2.10 x10°

Cs-Equivariant Dense U- 98.82% 97.32% 0.9806 0.9620 2.90 x10°

Net

Cs-Equivariant Dense U- 98.70% 93.54% 0.9605 0.9240 2.90 x10°

Net (VIS-only)

Cs-Equivariant Dense U- 97.78% 95.98% 0.9687 0.9393 2.90 x10°

Net (VIS + LWIR)

Cs-Equivariant Dense U- 99.50% 93.39% 0.9635 0.9296 2.90 x10°

Net (VIS + SWIR)

from 10 different bands, outperforms our luminosity thresholding algorithm, random
forest algorithm, and Cg-equivariant dense U-Net trained on visible-spectrum data
only in terms of F} score, but underperforms all of our other models in terms of F}
score. One possible reason for this difference in performance is that the SPARCS
CNN is designed to distinguish clear-sky, water, snow /ice, and cloud shadow classes
in addition to identifying clouds, while our models are fully optimized for cloud seg-
mentation. However, the SPARCS CNN has significantly more parameters than any
of our models other than the U-Net, so it should have enough parameters to segment
images into five different classes.

It is more likely that most of our deep learning models outperform the SPARCS
CNN because of a combination of translation equivariance, dense blocks, and rotation
equivariance. The SPARCS CNN uses max pooling operators, which lead to aliasing
and inhibit translation equivariance — meaning that the SPARCS CNN may classify
input images differently based on small translational shifts in cloud locations [53|

[25]. Our models use blur convolutions before max pooling and thus are less suscep-
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tible to this type of aliasing [53]. Additionally, our Cg-equivariant and dense models
make further performance gains over the SPARCS CNN and our U-Net by leveraging
rotational equivariance and the improved gradient flow through dense networks [30]

[50].

5.2 Comparison of Road Segmentation Results to

Literature

Bandara et al. developed the spatial and interaction space graph reasoning (SPIN)
module, which uses graph reasoning over spatial space to learn associations between
different spatial regions in an input image, and uses graph reasoning over a projected
interaction space to improve discrimination between roads and other features [5].
Bandara et al. then tested their SPIN Road Mapper architecture against six other

model architectures on the Massachusetts Roads Dataset [5].

We designed our road segmentation experiments to use the same experimental
setup and parameters as Bandara et al., with two exceptions: we used dice loss (see
§2.4.2) rather than a combination of softlOU and orientation loss, and we trained
our models for 90 epochs instead of 120 epochs because we saw an empirical increase
in training and validation error after 90 epochs during training. Dice loss is known
to have better gradient properties than softIOU loss [45], so it makes sense that our
models, which were trained using dice loss, would converge more quickly and require
fewer training epochs than the models in [5], which were trained with a combination
of softIOU and orientation loss. Table 5.2 summarizes our results and the results
found by Bandara et al. [5].

Our four deep learning methods significantly outperform all seven of the methods
examined in [5] when a 4 px buffer at road boundaries is used during evaluation,
but our methods significantly underperform those in [5] when no buffer is used for
evaluation. This difference likely has to do with the width of the road segments in

model-generated masks; each of our four algorithms generated masks with signifi-
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Table 5.2: Performance metrics for the models evaluated in [5] and for the road
segmentation models presented in Chapter 4. All metrics are calculated with a 4 px
buffer at road boundaries unless otherwise specified.

Model Precision Recall F, IoU IoU (no
buffer)
Seg-Net [5][4] 77.34% 79.84% 0.7857 0.6471 0.5859
U-Net [5]]42] 82.46% 84.34% 0.8339 0.7151 0.6097
LinkNet [5][11] 83.25% 84.63% 0.8393 0.7232 0.6312
HourGlass [5][40] 81.26% 81.86% 0.8156 0.6886 0.6137
Stack-HourGlass [5][40] 80.12% 83.87% 0.8196 0.6943 0.6221
Batra et al. [5][7] 83.34% 84.61% 0.8397 0.7237 0.6444
SPIN RoadMapper [5] 83.90% 85.06% 0.8447 0.7312 0.6524
U-Net 86.08% 96.85% 0.9115 0.8374 0.1693
Dense U-Net 86.29% 96.90% 0.9129 0.8397 0.1664
Cs-Equivariant U-Net 86.38% 96.46% 0.9114 0.8372 0.1690

Cgs-Equivariant Dense U-Net 92.49% 94.37% 0.9342 0.8765 0.1878

cantly wider road segments than the “truth” masks, but the masks generated by the
models examined in [5] include road segments of the same width as the segments in
the “truth” masks. Using a 4 px buffer eliminates nearly all of the false positives
related to road segment width, and allows a fairer comparison between the two sets

of models.

The U-Net examined in [5] uses the original U-Net architecture from [42], while our
U-Net uses an adjusted architecture (see 2.2.3) which adds batch-normalizations and
replaces max-pooling operations with max-blur-pooling in order to reduce aliasing.
Nevertheless, these architectural adjustments do not fully explain the large gap in
performance between the two models. It is likely that the difference in loss functions
is the primary cause of the performance gap — it seems that the models from [5]
are optimized to generate masks with narrow road segments, at the cost of slightly
reduced accuracy. We believe that orientation loss is a key contributor to the tendency
to generate masks with narrow road segments, because we have found that the U-
Net and our other model architectures did not converge using softIOU loss and thus
believe that the loss function in [5] must be dominated by orientation loss. In the

future, we plan to reproduce the results of [5] in order to better investigate the impact
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of orientation loss; see §6.2 for further discussion of our planned future work.

Even with the differences in architecture, we believe that the two U-Nets provide
an important baseline for interpreting each set of experiments. In the experiments
performed by Bandara et al., the SPIN RoadMapper is the best-performing model on
all metrics and it outperforms the U-Net by 0.0108 in terms of Fj score [5]. In our
experiments, the Cg-equivariant dense U-Net has the best F} score and outperforms
the U-Net by 0.0227 in terms of Fj score — the gap between the U-Net and the best-
performing model is twice as large. We believe that our Cs-equivariant dense U-Net
shows a great deal of promise, and that combining the Cs-equivariant dense U-Net

with the SPIN module developed in [5] is an important area of future work.

5.3 Comparison of Road and Cloud Segmentation

Results

We can improve our understanding of the benefits and challenges of applying rotation-
equivariant models to different domains by comparing the cloud segmentation results
presented in Chapter 3 to the road segmentation results presented in Chapter 4.
Table 5.3 summarizes the results of our U-Net, dense U-Net, Cs-equivariant U-Net,
and Cg-equivariant dense U-Net when applied to both the SPARCS dataset for cloud
segmentation, using a 2 px buffer at cloud boundaries and the Massachusetts Roads
Dataset for road segmentation, using a 4 px buffer at road boundaries.

Even though the buffer at road boundaries (4 pixels) is larger than the buffer used
at cloud boundaries (2 pixels), the cloud models significantly outperform the road
models in terms of Fj score. This is likely related to differences between the SPARCS
and Massachusetts Roads Dataset; in general, the labels available for the SPARCS
dataset seem to be much more accurate than those available for the Massachusetts
Roads Dataset.

More interestingly, the Cs-equivariant U-Net modestly outperforms the U-Net on
the SPARCS dataset, but performs worse than the U-Net on the Massachusetts Roads
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Table 5.3: Performance metrics for the cloud segmentation models presented in Chap-
ter 3 and the road segmentation models presented in Chapter 4. All metrics are
calculated with a 2 px buffer at the cloud boundaries for cloud segmentation models
and with a 4 px buffer at the road boundaries for road segmentation models.

Model Precision Recall F, IoU Trainable
Parameters

U-Net (Cloud) 98.46% 96.54% 0.9749 0.9511 2.46 x107
Dense U-Net (Cloud) 98.47% 96.89% 0.9768 0.9546 2.64 x10°
Cs-Equivariant U-Net 98.78% 97.18% 0.9797 0.9602 2.10 x10°
(Cloud)

Cs-Equivariant Dense U- 98.82% 97.32% 0.9806 0.9620 2.90 x10°
Net (Cloud)

U-Net (Road) 86.08% 96.85% 0.9115 0.8374 1.54 x10°
Dense U-Net (Road) 86.29% 96.90% 0.9129 0.8397 2.64 x10°
Cs-Equivariant U-Net 86.38% 96.46% 0.9114 0.8372 1.32 x10°
(Road)

Cs-Equivariant Dense U- 92.49% 94.37% 0.9342 0.8765 2.90 x10°
Net (Road)

Dataset. The poor performance of the Cg-equivariant U-Net on the Massachusetts
Roads Dataset can be partially attributed to the fact that it only uses 2 input channels
in its first convolution block, and has 4x fewer channels than both the Cg-equivariant
dense U-Net and the Cg-equivariant U-Net used on the SPARCS dataset. This is
also reflected in the number of trainable parameters of each model. Because the Cs-
equivariant U-Net uses 4x fewer channels on the Massachusetts Roads Dataset than
on the SPARCS dataset, it has roughly 16x fewer parameters — for a model with ¢
channels, the number of parameters scales with ¢2, as the number of parameters in
each convolution scales with the number of channels in the input and the number of
channels in the output.

Compared with the Cs-equivariant U-Net, the Cg-equivariant dense U-Net shows
large gains over the dense U-Net on the Massachusetts Roads Dataset, improving
Fy score by 0.0213 when a buffer is used and by 0.0310 when no buffer is used for
evaluation. However, the Cs-equivariant dense U-Net demonstrates only a small im-
provement over the dense U-Net on the SPARCS dataset, improving F; score by
0.0038 when a buffer is used and by 0.0086 when no buffer is used for evaluation. We
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believe that this difference in the level of improvement shown by the Cg-equivariant
dense U-Net across the cloud segmentation and road segmentation domains is re-
lated to differences in topology between road networks and clouds. As shown in
§2.2.2, the random forest algorithm performs fairly well on cloud segmentation on the
SPARCS dataset despite only considering a 3x3 patch of pixels during classification.
In contrast, the random forest algorithm achieves an F; score of zero when applied
to the Massachusetts Roads Dataset, demonstrating that large-scale spatial context
is necessary to accurately extract road networks.

It follows that rotation-equivariance is relatively more helpful on the road seg-
mentation domain than on the cloud segmentation domain. It also seems that spatial
information is relatively more important (and spectral information less important) for
road segmentation than for cloud segmentation. However, the Massachusetts Roads
Dataset only includes visible-spectrum imagery, which is insufficient to fully study
the spectral characteristics of road networks. A more comprehensive investigation of
road segmentation using multispectral data is needed before final conclusions can be

drawn about the importance of spectral information for road segmentation.
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Chapter 6

Summary and Future Work

6.1 Summary of Results

In this thesis, we present four different machine learning algorithms, including two
Cg-equivariant machine learning models, for segmenting satellite and aerial imagery.
We evaluate these algorithms on both the cloud and road segmentation domains and
we compare these algorithms to two rule-based algorithms on the cloud segmentation
domain. We evaluate the performance of the Cs-equivariant dense U-Net on cloud
segmentation when trained on visible-spectrum data only, visible-spectrum data aug-
mented with LWIR data, visible-spectrum data augmented with SWIR data, and
visible-spectrum data augmented with LWIR and SWIR data.

We demonstrate that the Cg-equivariant dense U-Net produces the most accurate
segmentation maps on both the cloud segmentation domain and road segmentation
domain, achieving an F; score of 0.9806 on the cloud segmentation dataset when
evaluated with a 2 px buffer at the cloud boundaries, and achieving an Fj score of
0.9342 on the road segmentation dataset when evaluated with a 4 px buffer at the road
boundaries. Human interpreters show self-consistency of around 96% on the SPARCS
cloud segmentation dataset when evaluated with a 2 px buffer at the cloud boundaries
[25]; in contrast, the Cg-equivariant dense U-Net showed an accuracy of 99.54% when
evaluated on the SPARCS dataset with a 2 px buffer at the cloud boundaries. The Cs-

equivariant dense U-Net has only around 290,000 trainable parameters — the fewest of
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all deep learning models evaluated on the cloud segmentation dataset and the second-
fewest of all deep learning models evaluated on the road segmentation dataset.

On the road segmentation domain, the Cs-equivariant U-Net uses the least mem-
ory, taking only 0.28 GiB on a Google Colab GPU, and the U-Net classifies images
the most quickly, taking only 0.0054 seconds to classify an image using a Google
Colab GPU and 0.1506 seconds to classify an image using a CPU backend. On the
cloud segmentation domain, the Cg-equivariant U-Net again uses the least memory,
taking only 448.3 MiB on a Google Colab GPU, the U-Net classifies images the most
quickly when using a GPU backend (taking only 0.0092 seconds), and the dense U-
Net classifies images the most quickly when using a CPU backend, taking only 0.1801
seconds.

Nevertheless, the Cg-equivariant dense U-Net is a strong fit for deployment on
resource-constrained platforms. On the cloud segmentation domain, it takes only
0.2281 seconds to classify an image using a CPU backend, and requires under 15
MB of memory, making it a good fit for missions without onboard GPUs. On the
road segmentation domain, it takes 0.6673 seconds to classify an image using a CPU
backend, and requires under 13.5 MB of memory. The Cs-equivariant dense U-Net
maintains strong performance when trained on input images for cloud segmentation
with only three or four bands; when trained on visible-spectrum data only it has an
F score of 0.9605, when trained on visible-spectrum and LWIR data it achieves an
Fi score of 0.9687, and when trained on visible-spectrum and SWIR data it achieves
an F) score of 0.9635. This makes the Cg-equivariant dense U-Net a good fit for
resource-constrained missions like CubeSats, which may not be able to host instru-

ments capable of resolving visible-spectrum, LWIR, and SWIR imagery.

6.2 Future Work

In this thesis, we explore the use of rotation-equivariant machine learning on satel-
lite and aerial imagery. We find many promising areas of future inquiry related to

this topic. We will group these avenues of future research into three major areas:
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architectural investigations, on-orbit considerations, and future applications.

6.2.1 Architectural Investigations

In §5.2, we evaluate Cg-equivariant machine learning algorithms on segmenting the
Massachusetts Roads Dataset, and compare our results to the state-of-the-art in the
literature. Current state-of-the-art approaches for road detection and road network
extraction combine segmentation and orientation learning [7| [5]. It would be in-
teresting to replace the segmentation layers in a state-of-the-art model like SPIN

RoadMapper with Cg-equivariant layers and evaluate how this affects performance.

As a first step towards combining Cg-equivariant segmentation layers with ori-
entation learning, we plan to replicate Bandara et al’s implementation of SPIN
RoadMapper in order to investigate the impact of orientation loss on road segmenta-
tion, especially on the width of road segments in the output maps generated by SPIN
RoadMapper [5].

More generally, researchers are publishing new and promising image segmentation
and object detection architectures each day; ConvNext [33| and ConvUNext [20] are
two new such state-of-the-art models. One potential area of future inquiry involves de-
veloping a Cs-equivariant version of these models and analyzing the resulting changes

in performance across different image segmentation and object detection domains.

Finally, as explained in Chapter 4, we have not yet been able to test our U-Net
and Cg-equivariant U-Net on segmenting the Massachusetts Roads Dataset with 64
input channels and 8 channels per orientation, respectively. We plan to train these
models in order to better understand the costs and benefits of Cg-equivariance for
road segmentation. However, these models will not fit on the GPU we have been
using for training, so we will need to train these models using only CPUs, or use

different computational infrastructure.
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6.2.2 On-Orbit Considerations

Our models were trained on a high-performance computing cluster and were evalu-
ated on a laptop; these models are not yet ready to be deployed to real-time operating
systems (RTOS) and flight hardware. In the future, we plan to adjust our models
to be more easily deployed on-orbit. In particular, we plan to implement function-
ality to export our Cs-equivariant models to have a pure PyTorch backend with no
other dependencies, and then use existing PyTorch tooling to translate our models
to TorchScript, which can be run directly from C++ on embedded hardware with no
Python dependencies.

Our models are trained on Landsat and aerial data rather than on a mission-
specific dataset. Before deploying our models on-orbit, it will likely be useful to
create a new dataset with images collected directly from target regions and to retrain
the models on the mission-specific dataset. This will help optimize model performance
and is especially important for on-orbit applications like identifying clouds over water;
our cloud segmentation models are trained on Landsat data and as such all training

images were taken over land.

6.2.3 Future Applications

We believe that there are a number of promising applications for on-orbit rotation-
equivariant machine learning. For example, on-orbit rotation-equivariant machine
learning could be used to learn and identify road morphologies associated with devel-
opment, construction, and natural disaster. This would be useful for tracking road
construction, which can be correlated with illegal logging [52], and for mapping areas
affected by natural disasters to aid relief efforts [14].

Another application of rotation-equivariant machine learning is learning on time-
series data in order to track the movement of clouds over time. Another cloud-related
application is learning cloud morphology. If these two applications are combined, the
ability to identify the movement of and morphology of clouds would be useful for

near-term weather prediction. Finally, learning to identify cloud shadows in addition
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to clouds, generating a three-class segmentation map, would be useful for identifying
regions free of cloud and cloud shadow — for many remote sensing applications, regions
shadowed by clouds are undesirable [35]. We plan to leverage the SPARCS dataset,
which has existing cloud shadow labels, to train models that can identify both clouds

and cloud shadows.
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Appendix A

Ch-equivariant Convolutions

In §2.2.5, we describe our Cgs-equivariant U-Net architecture; in this appendix, we
illustrate the properties of C),-equivariant deep learning models, which are described
and rigorously proved in [51]. For simplicity of illustration, we illustrate a Cj-
equivariant CNN with one channel per orientation, which consists solely of an input
convolution, group convolution, and orientation pooling layer. Nevertheless, the prop-
erties of this network generalize to models equivariant to an arbitrary cyclic group
C,, with an arbitrary depth and arbitrary number of channels per orientation.

First, Figure A-1 shows a C-equivariant group convolution. The input and output

feature maps of this convolution are functions on the semidirect product group R? x

Cy < SE(2) [51], meaning that Cy (the cyclic group of rotations of k?’ioo, where k is
an integer) is acting on R? (in this case representing 2D images), to form the group
over which the input and output feature maps are functions. This group is in turn
a subgroup of SE(2), the special Euclidean group, which represents “rigid motions”
(rotations and translations) in the 2D plane. In contrast, in traditional CNNs, the
inputs and outputs of convolutions are functions on R?, and rotational symmetry is
not necessarily preserved.

For the group convolution shown in Figure A-1, there are 4 steerable filters (be-
cause |Cy| = 4) which make up a single group filter, or g-filter. These filters are

360°

rotated by =~ and reordered to create 4 different filter representations. Each of

these filter representations is convolved with the input feature map, and then the
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resulting layers are linearly combined to create a single representation in the output
feature map. This process is shown in further detail in Figure A-2.

In Figure A-2, part of the group convolution from Figure A-1 is shown. The input
feature map is convolved with a single representation of the group filter, and the out-
put is shown. Then, the layers of the output are “flattened”, or linearly combined, to
create the first representation in the output feature map. The other three represen-
tations in the output feature map are generated by convolution with the other three

filter representations.
Figure A-1: A Cj-equivariant group convolution. Image credit: Alex Meredith, MIT.

[ filters are rotated

and reordered for

different orientations
*
* L
(3) g-conv output
on R2X4C,
(1) function
on R2XC,
* (2) single rep.
of a g-filter, maps
R2>4Cs» R2

Cas-equivariant group convolution

In Figure A-3, we show an input convolution that “lifts” a 2D image on R? to the
group R? x C4 by convolving it with a single steerable filter that has been repeatedly
rotated to become a filter on C;. The output of this convolution is a feature map on
R? x Oy that can be used as an input for a group convolution.

In Figure A-4, we show an “orientation pooling” operation, which pools a feature
map on R? x C, back to a 2D image on R? in order to create an output mask. “Orien-
tation pooling” simply evaluates a pooling operation orientation-wise — for example,
in “max orientation pooling”, the maximum over n orientations is taken for each pixel,

which is equivalent to channel-wise max pooling in a typical CNN if the orientation
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Figure A-2: Part of the Cy-equivariant group convolution shown in Figure A-1. (a)
The input function is convolved with a single representation of a g-filter, (b) A linear
combination is performed on the output of the convolution done in (a), which results
in a single orientation map which is part of the group convolution output (see Figure
A-1). Image credit: Alex Meredith, MIT.

(1) function
on R*»Ca (4) linear combination
of (3); function on R?

* +
(2) single rep.
of a g-filter, map .
R2>4Ca + R2 (3) output of partial

g-conv on R2XCa

(a) Partial convolution (b) Linear combination

Figure A-3: A Cj-equivariant input convolution, which “lifts” an input on R? to
R? x C4. Image credit: Alex Meredith, MIT.

(1) input image
on R?

(3) function

on R2X4C4

(2) R2*> R2X4C4
filter

Input convolution
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maps are taken to be channels.

Figure A-4: An orientation max pooling operation, which generates an output mask
on R2. Image credit: Alex Meredith, MIT.

(1) g-conv output

2 f
on R Ca (2) output feature

map on R?

Orientation max pooling

Figure A-5, which reproduces Figure 2-7, combines the input convolution from
A-3, the group convolution from A-1, and the orientation pooling orientation from
A-4, showing a simple Cj-equivariant CNN.

Figure A-5: A simple Cy-equivariant network. (a) An input convolution that lifts

an input image to R? x Cj, (b) A Cj-equivariant group convolution, (c) Orientation
pooling to produce an output map on R?. Image credit: Alex Meredith, MIT.

(1) input image
on R? (5) g-conv output

on R2XC4

(3) function output

on R2X4C4 ‘n' map
2 2
@ ?ilt:rR G A 17 (4) single rep. on R?
.V of a g-filter, maps
R2X4Cas» R?

(a) Input convolution (b) Cs-equivariant group convolution  (c) Orientation pooling

In Figure A-6, we show what happens when the Cy-equivariant network from Fig-
ure A-5 is applied to an input image that has been rotated by 90°. The intermediate
feature map outputted by the input convolution shows the same features as the inter-
mediate feature map in Figure A-5; however, the features are rotated and reordered.

The rotation and reordering is preserved by the group convolution — the output fea-
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ture maps from Figures A-5 and A-6 also share the same features, just rotated and
reordered in the same way as the intermediate feature maps.

Finally, the output of the max pooling operation in Figure A-6 is the same as
the output of the max pooling operation in Figure A-5, but rotated by 90° like
the input image. Because orientation-wise average and max pooling are ordering-
agnostic, the rotation by 90° of the intermediate feature maps is preserved by the
max-pooling operation, but the ordering of the feature maps is discarded by the
orientation pooling layer. From input to output, the network shown in Figures A-5
and A-6 is Cj-equivariant.

Figure A-6: The same Cjy-equivariant network shown in Figure A-5, but applied to
an input image that has been rotated by 90°. (a) An input convolution that lifts

an input image to R? x Cy, (b) A Cj-equivariant group convolution, (c) Orientation
pooling to produce an output map on R?. Image credit: Alex Meredith, MIT.

(1) input image
on R? (5) g-conv output

on R?XC4

(3) function output

on R2XCs ‘HV map
25 R2
@ ?ilterR G 17 (4) single rep. on R?
P of a g-filter, maps
R2XCs+ R?

(a) Input convolution (b) Cs-equivariant group convolution  (c) Orientation pooling
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Appendix B

SoftloU tables

This appendix presents the segmentation performance metrics for the deep learning
models presented in §2.2.3-2.2.6, applied to the Massachusetts Roads Dataset and
trained with Bandara et al.’s implementation of softlIOU loss [5]. Notably, the U-
Net and dense U-Net used to generate results for this section were trained with 8x
fewer channels than the models presented in Chapter 4; the U-Net was trained with
2 input channels and the dense U-Net was trained with 16 input channels. The Cs-
equivariant U-Net and Cg-equivariant dense U-Net were trained with 2 input channels
per orientation and 16 input channels per orientation, respectively.

As demonstrated in Tables B.1 and B.2, none of the four models trained using
softIOU loss achieved an accuracy better than 60% with no buffer or 80% when using
a 4 pixel buffer at road boundaries, even after 90 epochs; none of the models demon-
strated good convergence, meaning all four models had similar levels of training,

validation, and test error at the beginning of training and after 90 epochs.
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Table B.1: Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cs-
equivariant U-Net, and Cg-equivariant dense U-Net evaluated on the modified Mas-
sachusetts Roads Dataset using softIOU loss, evaluated without using a buffer at road
boundaries.

Model Acc. Bal. Sens. Spec. Prec. Recall F; IoU

Acc.
U-Net 31.13% 41.24% 52.77% 29.72% 4.66% 52.77% 0.0856 0.0447
Dense 56.13% 45.12% 32.30% 57.94% 5.52% 32.30% 0.0942 0.0494
U-Net
Cs- 45.23% 38.76% 31.21% 46.31% 4.31% 31.21% 0.0757 0.0393
Equivariant
U-Net
Cs- 38.79% 37.91% 36.89% 38.93% 4.29% 36.89% 0.0768 0.0399
Equivariant
Dense U-
Net

Table B.2: Performance metrics detailed in §2.3.1 for the U-Net, dense U-Net, Cs-
equivariant U-Net, and Cg-equivariant dense U-Net evaluated on the modified Mas-
sachusetts Roads Dataset using softIOU loss, evaluated with a 4 px buffer at road
boundaries.

Model Acc. Bal. Sens. Spec. Prec. Recall F; IoU
Acc.

U-Net 54.52% 70.19% 100.00% 40.37% 34.29% 100.00% 0.5107 0.3429

Dense 76.37% 85.60% 99.92% 71.28% 42.90% 99.92% 0.6003 0.4289

U-Net

Cs- 65.15% 78.95% 100.00% 57.90% 33.07% 100.00% 0.4970 0.3307

Equivariant

U-Net,

Cs- 57.42% 72.73% 96.67% 48.79% 29.33% 96.67% 0.4500 0.2904

Equivariant

Dense U-

Net
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