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Abstract

With the recent advancement of modern machine learning methods, there are now
many exciting opportunities to use machine learning in scientific research, including
for modeling and data analysis. Machine learning has the potential to become an
indispensable tool for scientific discovery, but it is often difficult to directly apply
to scientific problems. Especially in the case of deep learning approaches, machine
learning methods are often lacking in interpretability, robustness, out-of-distribution
generalization, and data efficiency—all qualities that are necessary for many scientific
and engineering applications. In this thesis, we will illustrate several approaches for
addressing these issues using a variety of applications. First, we develop a physics-
informed framework for partially observed system identification, showing how com-
bining an encoder with a sparse symbolic model allows us to reconstruct unobserved
hidden states as well as the exact governing equations. Then, we design a physics-
informed deep representation learning architecture for analyzing spatiotemporal sys-
tems and demonstrate its ability to extract interpretable physical parameters, corre-
sponding to uncontrolled variables, from time-series data. Finally, we use tools from
optimal transport theory and manifold learning to develop a robust non-parametric
method for discovering conservation laws, showing the advantage of using geometric
machine learning methods to solve scientific problems. By designing physics-informed
architectures and adapting representation learning methods for scientific applications,
we can overcome many of the difficulties that are currently preventing machine learn-
ing from playing a more important role in scientific discovery and create more useful
computational tools for scientists and engineers trying to analyze, understand, and
model their data.

Thesis Supervisor: Marin Soljačić
Title: Professor of Physics
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Chapter 1

Overview

In recent years, there has been a growing interest in the physics community for using

modern machine learning approaches to tackle difficult problems in experimental data

analysis as well as address important open questions in theoretical physics. However,

despite the significant advances in machine learning over the past decade, we are still

in the process of learning how to apply these methods to solve scientific problems.

Deep learning, in particular, is often seen as a black box method that only provides

predictions without interpretability, fails in unexpected ways, performs poorly outside

of a training distribution, and requires vast amounts of available data. These issues

are not disjoint and usually stem from the lack of a proper physics-informed prior

to guide the design and training of machine learning models on physical systems.

Thus, to solve hard problems in physics and other scientific fields, it is critical that

we improve the interpretability, robustness, generalization performance, and data

efficiency of current machine learning methods by creating new approaches that are

specifically adapted for scientific applications.

Rather than simply providing black box predictions, interpretable physics-informed

machine learning methods are designed to incorporate known physical laws, symme-

tries, and constraints, as well as provide interpretable results (e.g. learned inter-

pretable representations) that characterize the underlying physical systems and lead

to new scientific insights and discoveries. My current research [2, 72, 73, 89, 90] and

this thesis focus on both:
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1) designing physics-informed architectures to efficiently analyze, understand, and

model complex physical systems—e.g. chaotic nonlinear dynamics—and

2) discovering interpretable physical features or representations in order to extract

relevant information—e.g. uncontrolled variables or conserved quantities—from

unknown or poorly understood physical systems.

In Chapter 2, we present a physics-informed machine learning framework for par-

tially observed system identification (published as [90]). Determining the governing

equations of a nonlinear dynamical system is key to both understanding the physi-

cal features of the system and constructing an accurate model of the dynamics that

generalizes well beyond the available data. Achieving this kind of interpretable sys-

tem identification is even more difficult for partially observed systems. We proposed a

method that combines an encoder, for reconstructing hidden states from partial obser-

vations, with a sparse symbolic model, for learning the explicit governing equations.

Unlike pure neural network architectures, using a sparse symbolic model provides a

powerful inductive bias on the form of the governing equations and generalizes well

on many physical systems [17]. Our tests show that this method can successfully

reconstruct the full system state and identify the governing equations for a variety

of ODE and PDE systems. This new approach not only helps us better understand

incomplete real-world data, but also demonstrates the power of using an interpretable

physics-informed symbolic model.

In Chapter 3, we design an unsupervised representation learning method for ex-

tracting interpretable physical parameters that correspond to uncontrolled variables

(published as [89]). Experimental data is often affected by uncontrolled variables that

make analysis and interpretation difficult. For spatiotemporal systems, this problem

is further exacerbated by intricate and high dimensional dynamics. Using a varia-

tional autoencoder [53, 75] with a physics-informed architecture, our method is able

to extract a latent space corresponding to the uncontrolled variables and, simultane-

ously, learn a tunable predictive model for the underlying system. We test our method

on simulated data from a variety of spatiotemporal systems and show that we can

16



accurately identify the relevant parameters and extract them from raw and even noisy

spatiotemporal data. This work is an example of how physics-informed unsupervised

representation learning can help analyze messy data from complex physical systems

and identify new physics hiding within the data.

In Chapter 4, we introduce a robust non-parametric method for identifying con-

servation laws from trajectory data, using tools from optimal transport theory and

manifold learning. Conservation laws are key theoretical and practical tools for un-

derstanding, characterizing, and modeling nonlinear dynamical systems. However,

for many complex dynamical systems, the corresponding conserved quantities are dif-

ficult to identify, making it hard to analyze their dynamics and build efficient, stable

predictive models. Current approaches for discovering conservation laws often depend

on detailed dynamical information [66, 83], such as the equation of motion or fine-

grained time measurements, with many recent proposals also relying on black box

parametric deep learning methods [47, 83, 133]. We instead reformulate this task as

a manifold learning problem and propose a non-parametric approach, combining the

Wasserstein metric from optimal transport with diffusion maps, to discover conserved

quantities that vary across trajectories sampled from a dynamical system. We test

this new approach on a variety of physical systems—including conservative Hamil-

tonian systems, dissipative systems, and spatiotemporal systems—and demonstrate

that our manifold learning method is able to both identify the number of conserved

quantities and extract their values. Our proposed method provides a direct geomet-

ric approach to identifying conservation laws that is both robust and interpretable

without requiring an explicit model of the system nor accurate time information.

In Chapter 5, we reflect on these proposed approaches and discuss future directions

for building better physics-informed machine learning methods to aid in scientific

modeling, data analysis, and discovery.

17
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Chapter 2

Discovering Sparse Interpretable

Dynamics from Partial Observations

2.1 Introduction

Analyzing data from a nonlinear dynamical system to understand its qualitative be-

havior and accurately predict future states is a ubiquitous problem in science and

engineering. In many instances, this problem is further compounded by a lack of

available data and only partial observations of the system state, e.g. forecasting fluid

flow driven by unknown sources or predicting optical signal propagation without

phase measurements. This means that, in addition to identifying and modeling the

underlying dynamics, we must also reconstruct the hidden or unobserved variables

of the system state. While traditional approaches to system identification have had

significant success with linear systems, nonlinear system identification and state re-

construction is a much more difficult and open problem [84]. Moreover, modeling

nonlinear dynamics in a way that provides interpretability and physical insight is

also a major challenge.

Modern machine learning approaches have made significant strides in black box

predictive performance on many tasks [45], such as data-driven prediction of non-

linear dynamics [12, 107, 108] including methods that only use partial observations

[8, 24, 101, 115]. However, because deep learning models often fail to take into account
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Figure 2.1: A machine learning framework for simultaneous system identification and state
reconstruction. With only a visible portion of the full state available x𝑣 = g(x), an encoder
is first used to reconstruct the hidden states. The fully reconstructed state x̂, including the
visible and hidden states, is then passed into a symbolic model of the governing equations.
Using automatic differentiation, multiple symbolic time derivatives 𝑑𝑝g(x̂)/𝑑𝑡𝑝 of the visible
states are generated from the symbolic model and compared with finite difference derivatives
Δ𝑝g(x)/Δ𝑡𝑝 computed directly from the sequence of visible states. The entire architecture
is trained end-to-end using the mean squared error (MSE) loss between the symbolic and
finite difference derivatives.

known physics, they require vast quantities of data to train and tend to generalize

poorly outside of their training distribution. Standard deep learning models also

lack the interpretability necessary for developing a detailed physical understanding

of the system, although new approaches incorporating intrinsic dimensionality esti-

mation [23] and recent unsupervised learning methods [89] can help mitigate this

issue. Introducing physical priors and building physics-informed inductive biases,

such as symmetries, into neural network architectures can significantly improve the

performance of deep learning models and provide a greater degree of interpretability

[16, 89, 106, 140].

Recent data-driven nonlinear system identification methods based on Koopman

operator theory offer a compelling alternative to deep learning approaches as well as

a theoretical framework for incorporating neural networks into system identification

methods [19, 41, 95, 122]. However, these approaches still encounter barriers when

dealing with certain types of nonlinear dynamics, such as chaos, which lead to a prob-

lematic continuous spectrum for the Koopman operator that cannot be modeled by a

finite-dimensional linear system, although some progress has been made in addressing

these limitations [18, 19, 91].
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In this work, we choose to directly learn the symbolic governing equations of

motion, which are often sparse and provide a highly interpretable representation of

the dynamical system that also generalizes well. By fitting a symbolic model, we

can capture the exact dynamics of the many physical systems in nature governed

by symbolic equations. Previous work has shown that, by imposing a sparsity prior

on the governing equations, it is possible to obtain interpretable and parsimonious

models of nonlinear dynamics [17, 28, 64]. This sparsity prior, in combination with

an autoencoder architecture, can also aid in extracting interpretable state variables

from high dimensional data [22].

We propose a machine learning framework for solving the common problem of par-

tially observed system identification, where a portion of the system state is observed

but the remaining hidden states as well as the underlying dynamics are unknown. Un-

like in the generic high dimensional setting, this is a much more structured problem,

and we take full advantage of this additional structure when designing our archi-

tecture. To deal with having only partial state information, our method combines

an encoder, for reconstructing the full system state, and a sparse symbolic model,

which learns the system dynamics, providing a flexible framework for both system

identification and state reconstruction (Fig. 2.1). The full architecture is trained by

matching the higher order time derivatives of the symbolic model with finite difference

estimates from the data. As illustrated in our numerical experiments, this approach

can be easily adapted for specific applications by incorporating known constraints

into the architecture of the encoder and the design of the symbolic model.

2.2 Problem Formulation

Consider a nonlinear dynamical system defined by the first order ODE

𝑑x

𝑑𝑡
= F(x). (2.1)

21



The visible or observed state is given by a known “projection” function x𝑣 = g(x)

while the hidden states xℎ must be reconstructed such that a(x𝑣,xℎ) = x, where a

is a known aggregation function. The goal is to determine the governing equations

defined by F(x) while simultaneously reconstructing the hidden state xℎ.

Without prior knowledge detailing the structure of the dynamical system, we

can generically choose the visible state x𝑣 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) to be a subset of the

full state x = (𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑥𝑘+1, . . . , 𝑥𝑛), i.e. g is a simple projection of x onto

the subset x𝑣. The remaining components would then form the hidden state xℎ =

(𝑥𝑘+1, 𝑥𝑘+2, . . . , 𝑥𝑛), and the aggregation function a just concatenates of the two states

x𝑣,xℎ. When additional information about the dynamical system is available, g and

a can be chosen appropriately to reflect the structure of the dynamics (e.g. see our

nonlinear Schrödinger phase reconstruction example).

2.3 Proposed Machine Learning Framework

Our proposed framework consists of an encoder, which uses the visible states to

reconstruct the corresponding hidden states, and an interpretable symbolic model,

which represents the governing equations of the dynamical system. The encoder e𝜂,

typically a neural network architecture with learnable parameters 𝜂, takes as input

the sequence of visible states {x𝑣(𝑡0),x𝑣(𝑡0 + ∆𝑡), . . . ,x𝑣(𝑡𝑁)} and reconstructs the

hidden states {x̂ℎ(𝑡0), x̂ℎ(𝑡0 + ∆𝑡), . . . , x̂ℎ(𝑡𝑁)}. This should, in general, be possible

for hidden states that are sufficiently coupled to the visible states due to Takens’

embedding theorem [123]. We can then obtain a reconstruction of the full state by

applying the aggregation function x̂ = a(x𝑣, x̂ℎ). The fully reconstructed state x̂

allows us to compute symbolic time derivatives defined by a symbolic model of the

governing equations

𝑑x̂

𝑑𝑡
= F̂𝜃(x̂) := 𝜃1f1(x̂) + 𝜃2f2(x̂) + · · ·+ 𝜃𝑚f𝑚(x̂), (2.2)
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where 𝜃1, 𝜃2, . . . , 𝜃𝑚 are learnable coefficients and f1, f2, . . . , f𝑚 are predefined terms,

such as monomial expressions or linear combinations representing spatial derivatives

(for PDE systems). If the dimensionality of the system state x is unknown, we can

treat it as a hyperparameter, tuned to achieve an optimal trade off between high

accuracy (e.g. low loss) and parsimony (e.g. fewer hidden states and model sparsity),

or use recently suggested intrinsic dimensionality estimation methods [23].

To jointly train the encoder and symbolic model using only partial observations, we

match higher order time derivatives of the visible states with finite difference estimates

from the data. These time derivatives are implicitly defined by the symbolic model

(Eq. 2.2), so we develop and use an algorithmic trick that allows standard automatic

differentiation methods [10] to compute higher order symbolic time derivatives of the

reconstructed visible states g(x̂) (see Appendix 2.A). These symbolic derivatives can

then be compared with finite difference time derivatives ∆𝑝g(x)/∆𝑡𝑝 = ∆𝑝x𝑣/∆𝑡
𝑝

computed directly from the visible states x𝑣.

We train the entire architecture in an end-to-end fashion by optimizing the mean

squared error (MSE) loss

ℒ(𝜂, 𝜃) = 1

𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑝=1

𝛼𝑝

𝜎2
𝑝

(︂
𝑑𝑝g(x̂(𝑡𝑖))

𝑑𝑡𝑝
− ∆𝑝x𝑣(𝑡𝑖)

∆𝑡𝑝

)︂2

, (2.3)

where 𝜎2
𝑝 is the empirical variance of the 𝑝th order finite difference derivative ∆𝑝x𝑣(𝑡𝑖)/∆𝑡

𝑝,

and the 𝛼𝑝 are hyperparameters that determine the importance of each derivative or-

der in the loss function. This loss implicitly depends on the encoder e𝜂 through

the reconstructed state x̂ and the symbolic model F̂𝜃 through the symbolic time

derivatives. To achieve sparsity in the symbolic model, we use a simple thresholding

approach—commonly used in sparse linear regression applications [17]—which sets

a coefficient 𝜃𝑖 to zero if its absolute value falls below a chosen threshold 𝜃thres. We

implement this sparsification at regular intervals during training. While developing

our approach, we also experimented with 𝐿1 regularization but found that it tends

to strongly degrade the performance of the learned model when applied with enough

strength to achieve sparsity. See Appendix 2.B for additional architecture and train-
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ing details.

The code for implementing our framework and reproducing our results is available

at https://github.com/peterparity/symder.

2.4 Results

2.4.1 ODE Experiments

To demonstrate our method, we use data from two standard examples of chaotic

nonlinear dynamics: the Rössler system (Fig. 2.2a) and the Lorenz system (Fig.

2.2b). Both systems have a three-dimensional phase space (𝑢, 𝑣, 𝑤), and we take the

first two dimensions (𝑢, 𝑣) to be the visible state with the remaining dimension 𝑤

as the hidden state. In both cases, we are able to accurately identify the governing

equations—via the learned symbolic model—and reconstruct the hidden state 𝑤 (Fig.

2.2). We achieve a hidden state reconstruction error of 4.6 × 10−4 (relative to the

range of the hidden state) for the Rössler system and 1.7×10−3 for the Lorenz system.

Note that the hidden states discovered by our approach often differ from the

ground truth hidden states by an affine transformation (e.g. 𝑤′ = 𝑎𝑤 + 𝑏). In order

to make a direct comparison, we fit the discovered hidden states to the true hidden

states using linear regression and show the transformed result as the reconstructed

governing equations and hidden states (Fig. 2.2).

2.4.2 PDE Experiments

To test our method in a more challenging setting, we use data from two PDE sys-

tems: a 2D diffusion system with an exponentially decaying source term (Fig. 2.3a)

and a 2D diffusive Lokta–Volterra predator–prey system (Fig. 2.3b)—commonly used

for ecological modeling [33, 39, 76]. For the diffusion system, we observe a diffusing

visible state 𝑢(𝑥, 𝑦, 𝑡) and must reconstruct the hidden dynamic source term 𝑣(𝑥, 𝑦, 𝑡).

Similarly, for the diffusive Lokta–Volterra system, one of the two components is visi-

ble 𝑢(𝑥, 𝑦, 𝑡) while the other is hidden 𝑣(𝑥, 𝑦, 𝑡). We accurately identify the governing
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Figure 2.2: System identification and hidden state reconstruction for the (a) Rössler and (b)
Lorenz systems. In both numerical experiments, the 𝑢 and 𝑣 components are visible while
the 𝑤 component is hidden. The true and reconstructed hidden states 𝑤 are shown as a
function of time and also plotted directly against each other for comparison. Note that the
reconstructed hidden states shown here are directly reconstructed by the encoder from the
corresponding visible states at nearby times and are not based on an autonomous prediction
of the learned model.

equations and reconstruct the hidden component for both systems (Fig. 2.3), achiev-

ing a relative error of 1.4×10−4 for the diffusion system and 1.0×10−3 for the diffusive

Lokta–Volterra system. The neural network encoder has more difficulty with the more

complex and nonlinear diffusive Lokta–Volterra system, resulting in a slightly blurry

reconstruction.
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Figure 2.3: System identification and hidden state reconstruction for the (a) diffusion system
with a decaying source term 𝑣 and (b) diffusive Lokta–Volterra system. In both numerical
experiments, the 𝑢 component is visible while the 𝑣 component is hidden. The true and
reconstructed hidden states 𝑣 are shown at time 𝑡 = 0 and are also plotted directly against
each other for comparison.

2.4.3 Phase Reconstruction

As a final example, we consider the phase reconstruction problem for the 1D nonlinear

Schrödinger equation—a model for light propagation through a nonlinear fiber [1]—to

demonstrate the breadth of our approach and its ability to handle a more difficult and

structured problem. Using only visible amplitude data |𝜓(𝑥, 𝑡)|, we aim to identify

the underlying dynamics and reconstruct the hidden phase 𝜙(𝑥, 𝑡) = arg(𝜓(𝑥, 𝑡)). For

this system, we also assume we have some prior knowledge about the structure of the

dynamics: a complex wave equation with a global phase shift symmetry and only odd

nonlinearities to model an optical material with inversion symmetry [1]. This allows

us to limit the library of predefined terms used by our symbolic model. Our prior

26



True
Governing
Equations

Reconstructed
Governing
Equations

(a)

(b)

(c)

(d)

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

Visible State | |

0
1
2
3

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

True Phase 

0

2

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

Reconstructed Phase 

0

2

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

True / x

0.25
0.00
0.25

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

Reconstructed / x

0.25
0.00
0.25

Figure 2.4: System identification (a) and phase reconstruction (c,d) for the nonlinear
Schrödinger system. The magnitude |𝜓| of the wave is visible (b) while the phase 𝜙 = arg(𝜓)
is hidden (c) and must be reconstructed. The spatial derivative of the phase 𝜕𝜙/𝜕𝑥 (d) and
its reconstruction are also shown.

knowledge also informs our choice of projection g(𝜓) = |𝜓| and aggregation functions

a(|𝜓|, 𝜙) = |𝜓|𝑒𝑖𝜙.

Our method successfully identifies the governing equation for the nonlinear Schrödinger

data and roughly captures the correct phase profile. Although the overall phase re-

construction seems somewhat poor, with a relative error of 0.35, this also includes an

accumulated drift of the phase over time. The spatial derivative of the phase 𝜕𝜙/𝜕𝑥

has a much more reasonable relative error of 0.057. Furthermore, given the governing

equations extracted by our method, other more specialized algorithms for nonlinear

phase retrieval can be used as a post-processing step to significantly improve the

quality of the phase reconstruction [88].
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2.5 Conclusion

On a wide variety of dynamical systems, we have demonstrated that our proposed

machine learning framework can successfully identify sparse interpretable dynamics

and reconstruct hidden states using only partial observations. By fitting symbolic

models, we are able to discover the exact form of the symbolic equations governing the

underlying physical systems, resulting in highly interpretable models and predictions

(see Appendix 2.C). Our method is also straightforward to implement and use, easily

adapting to differing levels of prior knowledge about the unknown hidden states and

dynamics.

Compared with methods that require explicit integration [8, 24], our approach

can be significantly more computationally efficient since we only need to compute

symbolic and finite difference derivatives. Methods that rely on explicit integration

may also need to deal with stiffness and other issues that are relevant to choosing

an appropriate integration scheme [106]. However, methods using explicit integration

also have the advantage of being much more robust to noise. Because we require

higher order finite difference time derivative estimates from data, our approach—

like other derivative-based methods—is generally more susceptible to noise. Data

smoothing techniques and careful tuning of our sparsity method help mitigate this

to some extent (see Appendix 2.D.1) in a similar fashion to methods like SINDy

[17, 64], and promising new methods for identifying the noise distribution alongside

the dynamics [65] could be incorporated into our framework in the future.

Our framework offers a strong foundation for designing interpretable machine

learning methods to deal with partial observations and solve the combined system

identification and state reconstruction task. We hope to continue developing more

robust encoders and more flexible symbolic models that will work within our proposed

framework. For example, the encoder (see Appendix 2.B) used in our final experiment

on phase reconstruction has similarities with variational approaches used for equation

discovery [28, 107, 109], and we believe that these variational methods can be incor-

porated into our framework to provide a smoother encoding and improve robustness
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to noise. In future work, we will also study symbolic models that have multiple layers

of composable units designed for symbolic regression tasks [35, 73, 125]. These alter-

native symbolic architectures provide more powerful and flexible models with a sparse

symbolic prior, potentially addressing some current limitations of our implementation

(see Appendix 2.E) and allowing our framework to handle a wider range of governing

equations—such as the Hill equations used in modeling gene expression [4]—without

requiring large libraries of predefined terms.

2.A Automatic Computation of Symbolic Derivatives

The time derivatives can be derived by repeated differentiation of the symbolic model

(Eq. 2.2) substituting back in previously computed derivatives to obtain expressions

only in terms of the reconstructed state x̂. For example, the first and second time

derivatives can be written in index notation as

𝑑𝑔𝑖
𝑑𝑡

=
∑︁
𝑗

𝑑𝑔𝑖
𝑑𝑥̂𝑗

𝑑𝑥̂𝑗
𝑑𝑡

=
∑︁
𝑗

𝑑𝑔𝑖
𝑑𝑥̂𝑗

𝐹𝜃𝑗 (2.4)

𝑑2𝑔𝑖
𝑑𝑡2

=
∑︁
𝑗,𝑘

𝑑2𝑔𝑖
𝑑𝑥̂𝑗𝑑𝑥̂𝑘

𝐹𝜃𝑗𝐹𝜃𝑘 +
𝑑𝑔𝑖
𝑑𝑥̂𝑗

𝑑𝐹𝜃𝑗

𝑑𝑥̂𝑘
𝐹𝜃𝑘. (2.5)

The expressions for the symbolic time derivatives (Eqs. 2.4 & 2.5) quickly grow

more and more unwieldy for higher order derivatives. Implementing these expressions

by hand is likely to be both time-consuming and error-prone, especially for more

complex symbolic models such as those used in our PDE experiments. To address this

issue, we develop an automated approach that takes advantage of powerful modern

automatic differentiation software (in our case, the JAX library [15]).

Automatic differentiation is the algorithmic backbone of modern deep learning

[10], and a new generation of source-to-source automatic differentiation libraries are

quickly becoming available [15, 57]. Automatic differentiation uses a library of custom

derivative rules defined on a set of primitive functions which can then be arbitrarily

composed to form more complex expressions. The algorithm normally requires a
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forward evaluation of a function that sets up a backward pass which computes the

gradient of the function. In our case, the appropriate forward step is integrating the

symbolic model (Eq. 2.2) using an ODE solver, which makes the time variable and its

derivatives explicit rather than being implicitly defined by the governing equations.

This, however, would introduce significant overhead and would not produce the exact

expressions that we derived earlier. In fact, integration should not be necessary at

all for efficiently implementing symbolic differentiation. Instead, we propose a simple

algorithmic trick that allows standard automatic differentiation to compute symbolic

time derivatives without explicit integration.

Consider a function ℐ(x̂, 𝜖) that propagates the state x̂ forward by a time 𝜖 ac-

cording to the governing equations (Eq. 2.2), i.e.

ℐ(x̂(𝑡), 𝜖) = x̂(𝑡+ 𝜖). (2.6)

As 𝜖 → 0, ℐ(x̂(𝑡), 0) = x̂(𝑡) reduces to the identity. Taking a derivative with respect

to 𝜖, we find that

𝜕ℐ(x̂(𝑡), 𝜖)
𝜕𝜖

=
𝑑x̂(𝑡+ 𝜖)

𝑑𝜖

= F̂𝜃(x̂(𝑡+ 𝜖))

= F̂𝜃(ℐ(x̂(𝑡), 𝜖)),

(2.7)

which reduces to 𝜕ℐ(x̂, 𝜖)/𝜕𝜖|𝜖=0 = 𝑑x̂/𝑑𝑡 = F̂𝜃(x̂) as 𝜖 → 0. This generalizes to

higher order derivatives, allowing us to compute time derivatives of x̂ as

𝑑𝑝x̂

𝑑𝑡𝑝
=
𝜕𝑝ℐ(x̂, 𝜖)
𝜕𝜖𝑝

⃒⃒⃒⃒
𝜖=0

. (2.8)

Since we only ever evaluate at 𝜖 = 0, this formulation makes the time variable explicit

without having to integrate the governing equations. To implement this trick using

an automatic differentiation algorithm, we define a wrapper function ℐ0(x̂, 𝜖) := x̂
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that acts as the identity on the state x̂ but has a custom derivative rule

𝜕ℐ0(x̂, 𝜖)

𝜕𝜖
:= F̂𝜃(ℐ0(x̂, 𝜖)). (2.9)

This allows standard automatic differentiation to correctly compute exact symbolic

time derivatives of our governing equations, including higher order derivatives. Our

code for implementing this algorithmic trick and for reproducing the rest of our results

is available at https://github.com/peterparity/symder.

The proposed algorithmic trick for computing higher order time derivatives, which

exploits modern automatic differentiation, further simplifies the implementation of

our method and allows the user to focus on designing an appropriate encoder and

choosing a reasonable library of predefined terms for the sparse symbolic model.

2.B Dataset, Architecture, and Training Details

The data and architecture requirements for using our approach are dependent on

the properties of the dynamical system, the fraction of visible states, and the chosen

symbolic model. For example, a more constrained symbolic model with a smaller

library of terms will likely be more data efficient due to having a stronger inductive

bias on the model. A smaller library also makes it easier for the sparse optimization

to discover the correct sparsity pattern and thus accurate governing equations, so it is

often better to start with a more constrained library of terms and then slowly expand

it if model performance remains poor. In general, the trajectories from the data need

to be long and varied enough in order to differentiate among the terms provided by the

symbolic model, although we have found that a single trajectory is often sufficient for

accurate state reconstruction and system identification. For the encoder architecture,

we generally use small and relatively shallow neural networks, which already provide

good hidden state reconstruction performance. This also means that our approach

trains reasonably quickly, taking ∼ 2.5 minutes for the ODE systems on a single

consumer GPU (GeForce RTX 2080 Ti) and ∼ 2 hours for the much larger PDE
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systems on four GPUs. However, it is certainly possible that more structured encoders

may help in certain cases requiring more complex reconstructions. In addition, we

are able to obtain accurate results in our tests by matching the first and second order

time derivatives, although higher order derivatives will be necessary for datasets with

a larger fraction of hidden states.

2.B.1 ODE Systems

Each system is sampled for 10000 time steps of size ∆𝑡 = 10−2, and the resulting

time series data is normalized to unit variance.

The encoder takes a set of nine visible states {x𝑣(𝑡−4∆𝑡),x𝑣(𝑡−3∆𝑡), . . . ,x𝑣(𝑡+

4∆𝑡)} as input to reconstruct each hidden state x̂ℎ(𝑡) and is implemented as a se-

quence of three 1D time-wise convolutional layers with kernel sizes 9–1–1 and layer

sizes 128–128–1. This architecture enforces locality in time, allowing the neural net-

work to learn a simpler and more interpretable mapping. The predefined terms of

the symbolic model consist of constant, linear, and quadratic monomial terms, i.e. 1,

𝑢, 𝑣, 𝑤, 𝑢2, 𝑣2, 𝑤2, 𝑢𝑣, 𝑢𝑤, and 𝑣𝑤, for each governing equation.

We also scale the effective time step of the symbolic model by a factor of 10

to improve training by preconditioning the model coefficients. We then train for

50000 steps using the AdaBelief optimizer [145] with learning rate 10−3 and with

hyperparameters 𝛼1 = 𝛼2 = 1 to equally weight the first two time derivative terms

in the loss function (𝛼𝑝 = 0 for 𝑝 > 2). Every 5000 training steps, we sparsify the

symbolic model, setting coefficients to zero if their absolute value is below 𝜃thres =

10−3.

2.B.2 PDE Systems

Each system is sampled on a 64×64 spatial mesh with grid spacing ∆𝑥 = ∆𝑦 = 1 for

1000 time steps of size ∆𝑡 = 5 × 10−2, and the resulting data is normalized to unit

variance.

The encoder is a sequence of three 3D spatiotemporal convolutional layers with
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kernel sizes 5–1–1 and layer sizes 64–64–1, which enforces locality in both time and

space. The predefined terms of the symbolic model consist of constant, linear, and

quadratic terms as well as up to second order spatial derivative terms, e.g. 𝜕𝑥𝑢, 𝜕𝑦𝑢,

𝜕𝑥𝑥𝑢, 𝜕𝑦𝑦𝑢, 𝜕𝑥𝑦𝑢, and similarly for 𝑣.

We scale the effective time step and spatial grid spacing of the symbolic model by

a factor of 10 and
√
10, respectively, to precondition the model coefficients. For the

diffusion system, we train for 50000 steps with learning rate 10−4 and hyperparameters

𝛼1 = 1 and 𝛼2 = 10, and we sparsify the symbolic model every 1000 training steps

with 𝜃thres = 5 × 10−3. For the diffusive Lokta–Volterra system, we train for 100000

steps with learning rate 10−3 and hyperparameters 𝛼1 = 𝛼2 = 1, and we sparsify the

symbolic model every 1000 training steps with 𝜃thres = 2× 10−3.

2.B.3 Phase Reconstruction

The system is sampled on a size 64 mesh with spacing ∆𝑥 = 2𝜋/64 for 500 time steps

of size ∆𝑡 = 10−3.

Using the available prior knowledge, we allow the symbolic model to use spa-

tial derivative terms 𝜕𝑝𝑥𝜓 for 𝑝 ∈ {1, 2, 3, 4} and nonlinearity terms |𝜓|𝑞𝜓 for 𝑞 =

{2, 4, 6, 8}. We scale the effective time step by a factor of 10 to precondition the

model coefficients and train for 100000 time steps with learning rate 10−4 and hyper-

parameters 𝛼1 = 𝛼2 = 1 and 𝛽 = 103. We sparsify the symbolic model every 10000

training steps with 𝜃thres = 10−3.

Unlike the previous examples, reconstructing the phase is a much trickier problem

that cannot be done using a local spatiotemporal encoder. Instead of using a neural

network mapping, we use a direct embedding of the phase as function of time, i.e. for

each point in the spatiotemporal grid of the original data, we learn a parameter for

the phase 𝜙(𝑥, 𝑡). This simple approach has the advantage of being incredibly flexible

but also more difficult to train, requiring an additional encoder regularization term

ℛenc = 𝛽

(︃
𝜕𝜓

𝜕𝑡
− ∆𝜓

∆𝑡

)︃2

(2.10)
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Figure 2.5: Three examples of prediction on test trajectories from the model trained on the
Lorenz system with two visible states 𝑢, 𝑣. The time is given in units of the Lyapunov time
𝜏 , the characteristic time for two nearby trajectories to exponentially diverge in a chaotic
system.

that ensures the symbolic time derivatives match the finite difference time derivatives

of the reconstructed state 𝜓 = a(|𝜓|, 𝜙). Unlike the compact neural network encoders

from the previous experiments, this encoder also must scale with the dataset size

and does not provide a useful mapping that can be used for future hidden state

reconstruction.

2.C Prediction Examples

Because we are able to capture the true dynamics of each system using a symbolic

model, our models exhibit excellent generalization performance beyond the training

data. The expected accuracy of the predictions from the model is also highly inter-

pretable, with prediction performance depending on the accuracy of the fitted coeffi-

cients of the symbolic model and the hidden state reconstruction of the initial state.

Thus, for the purposes of method validation, it is often more instructive to directly
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Figure 2.6: (a) Snapshots of the predicted vs. ground truth visible state 𝑢(𝑥, 𝑦, 𝑡) from
the model trained on the diffusive Lokta–Volterra system with a single visible state. (b)
Predicted vs. ground truth spatial average of the visible state 𝑢 as a function of time.

examine the coefficients of the symbolic model and the quality of the hidden state

reconstruction when judging the success of our method, both of which are discussed

in the main text. However, prediction performance still represents an important met-

ric to judge the quality of the resulting model when applying our approach to a new

unknown dynamical system. Here, we show prediction examples from the Lorenz

system (Fig. 2.5) and the diffusive Lokta–Volterra system (Fig. 2.6), demonstrating

the quality and interpretability of the prediction performance that is expected from

well-trained symbolic models.

Because the Lorenz system is chaotic, long-term prediction performance has a

theoretically limit characterized by the Lyapunov time 𝜏 of the system. Despite this,

we are still able to predict well up to ∼ 4𝜏 and capture the correct behavior of the

system using our symbolic model (Fig. 2.5). Prediction performance on the diffusive

Lokta–Volterra system is also very good (Fig. 2.6) with the slight deviations at long
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times resulting from imperfections in the initial hidden state reconstruction and small

errors in the learned coefficients of the symbolic model. These are highly interpretable

sources of error that are easy to analyze and iteratively refine.

2.D Additional Experiments: Lorenz System

2.D.1 Noise Robustness

Because our approach relies on empirically estimated time derivatives, it inherits the

noise susceptibility of derivative estimation methods such as finite differences. To

examine this issue, we perform a simple test of our method on the Lorenz system

with added Gaussian noise (𝜎 = 10−3, 10−2, 10−1) using the same setup and hy-

perparameters as described in Section 2.4.1 and Appendix 2.B.1. Without any data

smoothing, our method is able to discover the correct governing equations with added

𝜎 = 10−3 noise, but is unable to do so for 𝜎 = 10−2, 10−1. With some simple data

smoothing (quadratic Savitzky–Golay filter with window size 5), our method is also

able to discover the correct governing equations for 𝜎 = 10−2 but continues to fail for

𝜎 = 10−1 (Table 2.1).

2.D.2 Alternative Visible Variables

For completeness, we also test variations on the chosen visible states for the Lorenz

system, taking the visible states to be (𝑣, 𝑤) and (𝑢,𝑤). We use the same hyperpa-

rameters as described in Appendix 2.B.1 with the exception of increasing the sparsity

threshold to 𝜃thres = 5 × 10−3. In both cases, we are able to identify the correct

governing equations and reconstruct the missing hidden state (Table 2.1). One quirk

of the (𝑢,𝑤) case is that the discovered hidden state is not simply an affine transfor-

mation of the true hidden state 𝑣 but is instead a linear combination of 𝑢 and 𝑣, i.e.

𝑣′ = 𝑎𝑣 + 𝑏𝑢+ 𝑐.

We also test using a single visible state 𝑢, which requires fitting third order time

derivatives, and found that our current implementation is unsuccessful due to a failure
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Table 2.1: Reconstructed governing equations (after an affine transformation of the hidden
states) and relative hidden state reconstruction errors for the additional experiments using
the Lorenz system. In order, we have: 3 experiments with added noise, 3 experiments with
added noise and data smoothing, 2 experiments with alternative pairs of visible states, and
2 experiments with a single visible state 𝑢 (with and without a fixed sparsity pattern). The
added noise experiments use the default two visible states (𝑢, 𝑣). “–” indicates an experiment
that failed to recover the correct governing equations.

Recon. Governing Equations Hidden State Recon. Error

Ground Truth
𝑑𝑢/𝑑𝑡 = −10𝑢+ 10𝑣

𝑑𝑣/𝑑𝑡 = 28𝑢− 𝑣 − 𝑢𝑤

𝑑𝑤/𝑑𝑡 = −8/3𝑤 + 𝑢𝑣

N/A

𝜎 = 10−3

𝑑𝑢/𝑑𝑡 = −9.99𝑢+ 9.99𝑣

𝑑𝑣/𝑑𝑡 = 27.75𝑢− 0.91𝑣 − 0.99𝑢𝑤

𝑑𝑤/𝑑𝑡 = 0.03− 2.73𝑤 + 0.99𝑢𝑣

2.1× 10−3

𝜎 = 10−2 – –

𝜎 = 10−1 – –

𝜎 = 10−3 (smoothed)
𝑑𝑢/𝑑𝑡 = −9.99𝑢+ 9.99𝑣

𝑑𝑣/𝑑𝑡 = 27.73𝑢− 0.91𝑣 − 0.99𝑢𝑤

𝑑𝑤/𝑑𝑡 = 0.03− 2.72𝑤 + 0.99𝑢𝑣

2.0× 10−3

𝜎 = 10−2 (smoothed)
𝑑𝑢/𝑑𝑡 = −10.00𝑢+ 10.00𝑣

𝑑𝑣/𝑑𝑡 = 28.22𝑢− 0.86𝑣 − 1.02𝑢𝑤

𝑑𝑤/𝑑𝑡 = 0.05− 2.75𝑤 + 0.97𝑢𝑣

1.5× 10−2

𝜎 = 10−1 (smoothed) – –

Visible (𝑣, 𝑤)

𝑑𝑢/𝑑𝑡 = −9.88𝑢+ 9.88𝑣

𝑑𝑣/𝑑𝑡 = −0.22 + 27.67𝑢− 0.95𝑣 − 0.99𝑢𝑤

𝑑𝑤/𝑑𝑡 = −0.61− 2.65𝑤 + 1.00𝑢𝑣

1.5× 10−3

Visible (𝑢,𝑤)

𝑑𝑢/𝑑𝑡 = −9.98𝑢+ 9.98𝑣

𝑑𝑣/𝑑𝑡 = 27.88𝑢− 1.00𝑣 − 0.99𝑢𝑤

𝑑𝑤/𝑑𝑡 = 0.88− 2.71𝑤 + 0.99𝑢𝑣

2.8× 10−4

Visible 𝑢 – –

Visible 𝑢, fixed sparsity
𝑑𝑢/𝑑𝑡 = −9.85𝑢+ 9.87𝑣

𝑑𝑣/𝑑𝑡 = 28.06𝑢− 1.02𝑣 − 1.00𝑢𝑤

𝑑𝑤/𝑑𝑡 = 1.30− 2.70𝑤 + 1.00𝑢𝑣

1.1× 10−3 (𝑣), 4.6× 10−3 (𝑤)
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to identify the correct sparsity pattern. However, given the right sparsity pattern,

our method quickly converges to the correct governing equations (Table 2.1). This

result is discussed further in Appendix 2.E.1.

2.E Limitations

2.E.1 Reconstructing Hidden States

While we have demonstrated that our approach performs well over a wide range

of tasks, there are still limitations to its ability to reconstruction hidden states and

therefore identify the correct symbolic models. General theoretical limitations include

the degree of interaction between the visible and hidden states as well as measurement

noise. If a hidden state does not significantly affect the dynamics of the available

visible states, it will be very difficult or impossible for any method to reconstruct. In

fact, the degree to which different states are coupled can be tested using convergent

cross mapping [120]. Furthermore, for data with a smaller fraction of visible states

and thus more hidden states, the reconstruction task becomes harder. This manifests

itself in our framework as requiring higher and higher order time derivative matching

in order to fully reconstruct the hidden states, resulting in more sensitivity to noise.

For example, if we want to use no more than second order time derivatives in our loss

function, we require at least 𝑁/2 visible states for an 𝑁 -dimensional system.

There are also more subtle issues with sparse optimization that causes problems

for our current implementation. For example, if we attempt to reconstruct the Rossler

or Lorenz system using only a single visible state, our symbolic model tends to get

stuck in local minima and fails to find the correct sparsity pattern, i.e. the right

sparse combination of terms. However, if we provide the correct sparsity pattern

to the symbolic model, we obtain very accurate results on par with what we have

shown for the case of two visible states. That is, given the right sparsity pattern, our

method is able to learn an accurate reconstruction of the hidden states and also fit

the coefficients of the symbolic model using only a single visible state. On the one
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hand, this highlights the advantages of having strong inductive biases, which can help

avoid some of these bad local minima. On the other hand, there is a clear need for a

more sophisticated approach to sparsity and symbolic regression [35, 73, 125] as well

as potential for better physics-informed model initialization schemes, which we hope

to explore further in the future.

2.E.2 Uncertainty Quantification

Like other sparse identification approaches [17], our method does not currently provide

explicit uncertainty quantification. For uncertainty due to noisy data, one reasonable

approach would be to assume a noise model for the data and use Bayesian inference

methods to estimate uncertainty in the symbolic model coefficients [54]. However, be-

cause our framework also involves an encoder that is often a neural network, there is

additional model uncertainty that is generally difficult to quantify. Estimating uncer-

tainty for neural network models is an active area of research with promising options

including ensemble methods [42] and other Bayesian neural network approaches [128].
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Chapter 3

Extracting Interpretable Physical

Parameters from Spatiotemporal

Systems using Unsupervised Learning

3.1 Introduction

Physics has traditionally relied upon human ingenuity to identify key variables, dis-

cover physical laws, and model dynamical systems. With the recent explosion of

available data coupled with advances in machine learning, fundamentally new meth-

ods of discovery are now possible. However, a major issue with applying these novel

techniques to scientific and industrial applications is their interpretability: neural

networks and deep learning are often seen as inherently black box methods. To make

progress, we must incorporate scientific domain knowledge into our network architec-

ture design and algorithms without sacrificing the flexibility provided by deep learning

models [69, 70, 127]. In this work, we show that we can leverage unsupervised learn-

ing techniques in a physics-informed architecture to build models that learn to both

identify relevant interpretable parameters and perform prediction. Because relevant

parameters are necessary for predictive success, the two tasks of extracting parame-

ters and creating a predictive model are closely linked, and we exploit this relationship
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to do both using a single architecture.

We focus our attention on spatiotemporal systems with dynamics governed by

partial differential equations (PDEs). These systems are ubiquitous in nature and

include physical phenomena in fluid dynamics and electromagnetism. Recently, there

has been significant interest in the data-driven analysis and discovery of PDEs: e.g.

explicitly identifying PDEs using sparse linear regression with a library of possible

terms [113], using a convolutional architecture with symbolic regression to identify

PDEs [86, 87], and representing PDE solutions as neural networks to solve and iden-

tify PDEs [12, 107, 108]. However, previous works on PDE discovery and parameter

extraction often assume the entire dataset is governed by the same dynamics and also

explicitly provide the key dynamical parameters (with potentially unknown values).

In more complex scenarios, we may have limited control over the systems that we are

studying and yet still want to model them and extract relevant physical features from

their dynamics. If we attempt to study such systems by naïvely training a predictive

model, we are likely to fail in one of two ways: first, a single explicit PDE model will

be unable to capture the variations in the dynamics caused by uncontrolled variables

in the data, and second, a generic deep learning method for time-series prediction such

as long short-term memory (LSTM)-based models [44, 55] will not be interpretable

or provide any physical insight and may also result in unphysical solutions at later

times due to overfitting. To avoid these problems and gain a better understanding

of the physical system, we must first identify important parameters or variables that

are uncontrolled and that change in the raw data, producing varying dynamics. Re-

cent work on learning parametric PDEs has taken steps toward addressing this issue

[112]. We will use an unsupervised learning method to automate the process of deter-

mining the relevant parameters that control the system dynamics and constructing

a predictive model—all without requiring information on the form of the governing

PDE.

We propose a model architecture (Fig. 3.1(a)) based on variational autoencoders

(VAEs) [75]. VAEs are widely used for dimensionality reduction and unsupervised

learning tasks [45] and have been shown to be effective for studying a wide variety
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of physical phenomena, e.g. discovering simple representations of systems in classi-

cal and quantum mechanics [58], modeling protein folding and molecular dynamics

[52, 130], and identifying condensed matter phase transitions [36, 132]. In terms of

interpretability, the VAE architecture and its derivatives have also been shown to

disentangle independent factors of variation [20, 25, 53]. The choice of a VAE-based

architecture is motivated both by their prior success in extracting useful representa-

tions and by their strong theoretical foundation (Appendix 3.D). Prior works have

also applied other methods of parameter identification, such as using principal com-

ponent analysis (PCA) as a post-processing step with a standard autoencoder [144].

This, however, relies heavily on the poorly understood implicit regularization of the

neural network architecture rather than the explicit regularization of a VAE, and, in

our experience, VAEs produce more consistent and interpretable results.

Our architecture consists of an encoder (Fig. 3.1(b)) that extracts physical pa-

rameters characterizing the system dynamics and a decoder (Fig. 3.1(c)) that acts as

a predictive model and propagates an initial condition forward in time given the ex-

tracted parameters. This differs from a traditional VAE due to the additional initial

condition provided to the decoder, allowing the encoder to focus on extracting latent

parameters that parameterize the dynamics of the system rather than the physical

state. Our architecture can be thought of as a conditional VAE [119], although only

the decoder is conditional. While similar architectures have been recently proposed

for physical systems such as interacting particles [144] and moving objects [137], our

model is specifically designed to study spatiotemporal phenomena, which have a con-

tinuous set of degrees of freedom.

To take advantage of the spatiotemporal structure of PDE-governed systems, we

use convolutional layers—commonly employed in image recognition tasks [50, 78] to

efficiently represent local features—in both the encoder and decoder portions of our

architecture. The translation invariance of the convolutions allows us to train on

small patches of data and then evaluate on larger systems with arbitrary boundary

conditions. In the decoder, the convolutional layers are placed in a recurrent ar-

chitecture to represent time propagation—analogous to a PDE solver with a finite
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difference approximation [86]. In addition, our architecture efficiently parameterizes

PDE propagation by dynamically generating the convolutional kernels and biases of

the decoder using the extracted latent parameters from the encoder. In this way, the

latent parameters directly control the local propagation of the physical states in the

decoder, resulting in more stable model predictions and a more physical encoding of

the dynamics. These architecture choices provide the key physics-informed inductive

biases that enhance the interpretability of the extracted parameters and ensure a

physically reasonable predictive model.

To demonstrate the capabilities of this approach, we test our method on simulated

data from PDE models for chaotic wave dynamics, optical nonlinearities, and con-

vection and diffusion (Sec. 3.3). These numerical experiments show that our method

can accurately identify and extract relevant physical parameters that characterize

variations in the observed dynamics of a spatiotemporal system (Sec. 3.4.1), while at

the same time construct a flexible and transferable predictive model (Sec. 3.4.2). We

further show that the parameter extraction is robust to noisy data and can still be

effective for chaotic systems where accurate prediction is difficult. Finally, we apply

this method to nonlinear optical fiber propagation using data generated from an ab-

initio electromagnetic simulation to test the model on a more realistic dataset (Sec.

3.5). The goal of our approach is to provide an additional tool for studying complex

spatiotemporal systems when there are unknown and uncontrolled variables present.

3.2 Model Architecture

Our model (Fig. 3.1) has an encoder–decoder architecture based on a variational

autoencoder (VAE) [53, 75]. Given a dataset of time-series from a spatiotemporal

system, the dynamics encoder (DE) extracts latent parameters which parameterize

the varying dynamics in the dataset. These latent parameters are then used by

the propagating decoder (PD) to simulate the system given an initial condition and

boundary conditions. During training, the model is optimized to match the output of

the PD to a time-series example from the dataset. The goal of the VAE architecture is
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(a) Architecture Overview

(b) Dynamics Encoder
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Figure 3.1: VAE-based model architecture. (a) The architecture consists of the dynamics
encoder (DE) and the propagating decoder (PD) with kernels and biases given by a latent-
to-kernel network. (b) The DE extracts the latent distribution parameters 𝜇𝑧 and 𝜎𝑧 from
the input series {x𝑡}𝑇𝑥

𝑡=0 using dilated convolutions and inverse-variance weighted (IVW) av-
eraging. During training, the latent parameters are sampled from the extracted distribution
𝑧 ∼ 𝒩 (𝜇𝑧, 𝜎

2
𝑧). (c) The PD then uses a fully-connected latent-to-kernel network to map the

latent parameters 𝑧 to the kernels and biases of the dynamic convolutional layers, which are
used in a recurrent fashion to predict the propagation of the system {ŷ𝑡}

𝑇𝑦

𝑡=1 starting from
the initial condition ŷ0 = y0. The model is trained end-to-end using the mean squared error
(MSE) loss between the predicted propagation series {ŷ𝑡}

𝑇𝑦

𝑡=1 and target series {y𝑡}
𝑇𝑦

𝑡=1 along
with VAE regularization. Time-series limits are dropped in the figure labels for conciseness.
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to allow the PD to push the DE to extract useful and informative latent parameters.

For training, the network requires time-series data that are grouped in pairs: the

input series {x𝑡}𝑇𝑥
𝑡=0 is the input to the DE, and the target series {y𝑡}𝑇𝑦

𝑡=0 provides

the initial condition y0 and the training targets {y𝑡}𝑇𝑦

𝑡=1 for the PD. Each pair of

time-series ({x𝑡}𝑇𝑥
𝑡=0, {y𝑡}𝑇𝑦

𝑡=0) must follow the same dynamics and thus correspond to

the same latent parameters. We can construct such a dataset from the raw data

by cropping each original time-series to produce a pair of smaller time-series. This

cropping can be performed randomly in both the time and space dimensions, which

allows the network to train on a reduced system size while still making use of all the

available data. In our examples, we also choose to crop dynamically during training,

akin to data augmentation methods used in image recognition [50].

In detail, the DE network takes the full input series {x𝑡}𝑇𝑥
𝑡=0 and outputs a mean

𝜇𝑧|x and a variance 𝜎2
𝑧|x, which we will henceforth refer to as 𝜇𝑧 and 𝜎2

𝑧 for compact-

ness, representing a normal distribution for each latent parameter 𝑧. During training,

each 𝑧 is sampled from its corresponding distribution 𝒩 (𝜇𝑧, 𝜎
2
𝑧) using the VAE repa-

rameterization trick: 𝑧 = 𝜇𝑧 + 𝜎𝑧𝜖, where 𝜖 ∼ 𝒩 (0, 1) is independently sampled for

every training example during each training step. During evaluation, we simply take

𝑧 = 𝜇𝑧. These parameters 𝑧 along with an initial condition—the first state y0 in the

target series—are then used by the PD network to predict the future propagation of

the system. The predicted propagation series {ŷ𝑡}𝑇𝑡=1 produced by the PD can be

computed up to an arbitrary future time 𝑇 , where 𝑇 = 𝑇𝑦 during training to match

the target series. By providing the PD with an initial condition, we allow the DE

to focus on encoding parameters that characterize the dynamics of the data rather

than encoding a particular state of the system. This is further reinforced by training

on randomly cropped pairs of time-series as well as by the VAE regularization term

(Appendix 3.D).

The full architecture is trained end-to-end using a mean-squared error loss between

the predicted propagation series {ŷ𝑡}𝑇𝑦

𝑡=1 from the PD and the target series {y𝑡}𝑇𝑦

𝑡=1. We

also add the VAE regularization loss—the KL divergence term𝐷KL(𝒩 (𝜇𝑧, 𝜎
2
𝑧) ‖ 𝒩 (0, 1))—

which encourages each latent parameter distribution 𝒩 (𝜇𝑧, 𝜎
2
𝑧) generated by the DE
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to approach the standard normal prior distribution 𝒩 (0, 1). The total loss function

is given by

ℒ =
1

𝑇𝑦

𝑇𝑦∑︁
𝑡=1

(y𝑡 − ŷ𝑡)
2 + 𝛽

∑︁
𝑧

𝐷KL(𝒩 (𝜇𝑧, 𝜎
2
𝑧) ‖ 𝒩 (0, 1)), (3.1)

where 𝑇𝑦 is the length of the target series without the initial y0, and 𝛽 is a regular-

ization hyperparameter which we tune for each dataset. The 𝛽 parameter is key to

learning disentangled representations [20, 53]. By using the VAE sampling method

and regularizer, we compel the model to learn independent and interpretable latent

parameters (Appendix 3.D). For additional training details, see Appendix 3.B.

The source code for our implementation is available at https://github.com/p

eterparity/PDE-VAE-pytorch.

3.2.1 Dynamics Encoder (DE)

The dynamics encoder (DE) network is designed to take advantage of existing sym-

metry or structure in the time-series data. We implement the DE as a deep con-

volutional network in both the time and space dimensions to allow the network to

efficiently extract relevant features. To ensure the DE can handle arbitrary system

sizes and time-series lengths, the architecture only contains convolutional layers with

a weighted average applied at the output to obtain the latent parameters. The weights

for the final averaging are also learned by the network and interpreted as variances

so that the overall variance can also be computed. In this way, the network is able to

focus on areas of the input series that are most important for estimating the latent

parameters, akin to a visual attention mechanism [136].

Explicitly, we first compute local quantities

𝜇(𝑡, r) = 𝑓DE,𝜇({x𝑡′}𝑇𝑥

𝑡′=0) (3.2)

log 𝜎2(𝑡, r) = 𝑓DE,𝜎2({x𝑡′}𝑇𝑥

𝑡′=0), (3.3)

where 𝑓DE,𝜇 and 𝑓DE,𝜎2 are multilayer convolutional networks in space and time (see
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Appendix 3.A for details). Then, instead of using a fully-connected layer to compute

the final mean 𝜇𝑧 and variance 𝜎2
𝑧 for each latent parameter, we combine the local

quantities by performing an inverse-variance weighted average using weights given by

𝑤(𝑡, r) = 𝜎−2(𝑡, r)/
∑︁
𝑡,r

𝜎−2(𝑡, r) (3.4)

to obtain

𝜇𝑧 =
∑︁
𝑡,r

𝑤(𝑡, r)𝜇(𝑡, r) (3.5)

𝜎2
𝑧 = 𝐶𝑑/

∑︁
𝑡,r

𝜎−2(𝑡, r), (3.6)

where 𝐶 is a constant chosen to correct for the correlations between nearby points and

𝑑 is the total number of time and space dimensions of the input. This averaging serves

two purposes: it allows the DE to scale to arbitrary system sizes and geometries, and

it improves the parameter extraction by placing greater emphasis on regions of high

confidence. Assuming that non-overlapping patches should be treated as independent

while overlapping patches are increasingly correlated, we take 𝐶 = 31 to be the linear

size of the receptive field of the convolutional networks 𝑓DE,𝜇 and 𝑓DE,𝜎2 .

3.2.2 Propagating Decoder (PD)

The propagating decoder (PD) network is designed as a predictive model for spa-

tiotemporal systems. We structure the PD as a multilayered convolutional network

𝑓PD (see Appendix 3.A for details) with a residual skip connection that maps a state

ŷ𝑡 to the next state in the time-series ŷ𝑡+1. Thus, each propagation step is given by

ŷ𝑡+1 = ŷ𝑡 + 𝑓PD(ŷ𝑡). (3.7)

To generate the predicted propagation series {ŷ𝑡}𝑇𝑦

𝑡=1 for comparison with the target

series {y𝑡}𝑇𝑦

𝑡=1, we begin with the initial condition ŷ0 = y0 and then recursively apply

the PD to propagate ŷ𝑡 → ŷ𝑡+1, forming a recurrent network. The PD acts as a
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physics simulator or, in this case, a PDE integrator with explicit time stepping. This

architecture reflects both the spatial and temporal structure of PDE-governed systems

and incorporates boundary conditions by properly padding ŷ𝑡 at each time step before

applying the convolutional layers. For example, to use periodic boundary conditions

during evaluation, we apply periodic padding at each time step. During training,

we treat the edges of the target series—cropped from a full training example—as a

boundary condition by using the spatial boundary of each y𝑡 in the target series to

pad the corresponding state ŷ𝑡 before propagation.

Unlike the convolutional layers of the DE, the kernels and biases for 𝑓PD are not

directly trained. Instead, the kernel weights and biases are a function of the latent

parameters 𝑧. This type of layer is known as a dynamic convolution [60] or a cross-

convolution [137]. Each convolutional kernel and corresponding bias is constructed by

a separate fully-connected latent-to-kernel network that maps the latent parameters

to each kernel or bias, forming a multiplicative connection in the PD. Thus, we can

interpret the PD convolutional kernels and biases as encoding the dynamics of the

system parameterized by 𝑧.

3.3 Simulated PDE Datasets

To study the ability of our architecture to perform parameter extraction, we gener-

ate simulated datasets of spatiotemporal systems that have spatially uniform, time-

independent local dynamics in a box with periodic boundary conditions, i.e. we con-

sider PDEs of the form

𝜕u(𝑡, r)

𝜕𝑡
= 𝐹 (u,∇u,u2, (u · ∇)u, . . .), (3.8)

where 𝐹 is a general space- and time-independent, nonlinear local operator acting

on u. This allows us to design an optimized, physics-informed model architecture.

We test our model on a variety of spatiotemporal systems by creating the following

three datasets that cover linear, nonlinear, and chaotic dynamics as well as giving
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both 1D and 2D examples. For details on the generation of the simulated datasets,

see Appendix 3.C.

3.3.1 1D Kuramoto–Sivashinsky

The Kuramoto–Sivashinsky equation

𝜕𝑢

𝜕𝑡
= −𝛾 𝜕4𝑥𝑢− 𝜕2𝑥𝑢− 𝑢 𝜕𝑥𝑢 (3.9)

is nonlinear scalar wave equation with a viscosity damping parameter 𝛾. This is a key

example of a chaotic PDE [94] due to the instability caused by the negative second

derivative term and was originally derived to model laminar flame fronts [79, 118].

The 1D Kuramoto–Sivashinsky dataset has a training set with 5,000 examples and a

test set with 10,000 examples.

3.3.2 1D Nonlinear Schrödinger

The nonlinear Schrödinger equation

𝑖
𝜕𝜓

𝜕𝑡
= −1

2
𝜕2𝑥𝜓 + 𝜅 |𝜓|2 𝜓 (3.10)

is a complex scalar wave equation with a cubic nonlinearity controlled by the coef-

ficient 𝜅. In our data, we represent 𝜓 = 𝑢1 + 𝑖𝑢2 as a real two-component vector

u = (𝑢1, 𝑢2). This equation can be used to model the evolution of wave-packets

in nonlinear optics and is known to exhibit soliton solutions [1]. The 1D nonlinear

Schrödinger dataset has a training set with 5,000 examples and a test set with 10,000

examples.

3.3.3 2D Convection–Diffusion

The 2D convection–diffusion equation

𝜕𝑢

𝜕𝑡
= 𝐷∇2𝑢− v · ∇𝑢 (3.11)
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Table 3.1: 𝑅2 correlation coefficients from linear fits of the relevant latent parameters (Fig.
3.2) with the ground truth physical parameters for each dataset—both with and without
added noise. For the three-parameter convection–diffusion dataset, the diffusion constant 𝐷
is fit with a corresponding extracted latent parameter, while the drift velocity components
𝑣𝑥, 𝑣𝑦 are fit with a corresponding two-dimensional subspace of the latent parameters due
to the inherent rotational symmetry.

Dataset Param. No Noise 𝜎 = 0.1 Noise

Kuramoto–Sivashinsky 𝛾 0.993 0.995
Nonlinear Schrödinger 𝜅 0.997 0.998
Convection–Diffusion 𝐷 0.963 0.959
Convection–Diffusion 𝑣𝑥 0.997 0.994
Convection–Diffusion 𝑣𝑦 0.998 0.996

is a linear scalar wave equation consisting of a diffusion term with constant 𝐷 and

a velocity-dependent convection term with velocity field v. The equation describes

a diffusing quantity that is also affected by the flow or drift of the system, e.g. dye

diffusing in a moving fluid. We consider the case of a constant velocity field. The

2D convection–diffusion dataset has a training set with 1,000 examples and a test set

with 1,000 examples.

3.4 Numerical Experiments

We perform numerical experiments by training the model on both the original noise-

less datasets and the datasets with added 𝜎 = 0.1 Gaussian noise—corresponding to

10% noise relative to the initial conditions. Then, we evaluate the trained models

on the full size noiseless test set examples (no cropping). By also training on noisy

datasets, we test the robustness of our method and show the effect of noise on the

extracted parameters and prediction performance.

3.4.1 Parameter Extraction

During training, the model will only use a minimal set of latent parameters to encode

the variation in the dynamics and will align each latent parameter in this subspace
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(a) KS, No Noise (b) KS, σ = 0.1 Noise

(c) NS, No Noise (d) NS, σ = 0.1 Noise

(e) CD, No Noise (f) CD, σ = 0.1 Noise

Figure 3.2: Identification of relevant latent parameters: the variance of 𝜇𝑧 (blue) and mean
of 𝜎2𝑧 (red) for the five latent parameters in the models trained on the (a), (b) 1D Kuramoto–
Sivashinsky (KS), (c), (d) 1D nonlinear Schrödinger (NS), and (e), (f) 2D convection–
diffusion (CD) datasets both with and without added noise. In each case, the model has
correctly identified the number of relevant parameters (one for the Kuramoto–Sivashinsky
and nonlinear Schrödinger datasets, and three for the convection–diffusion dataset), which
are characterized by high variance in 𝜇𝑧 and a low mean 𝜎2𝑧 . These relevant latent parame-
ters correspond to interpretable physical parameters that parameterize the dynamics of the
system. The other latent parameters with near zero variance in 𝜇𝑧 and high mean 𝜎2𝑧 have
collapsed to the prior and are non-informative. Note that while one would expect these col-
lapsed parameters to have 𝜎2𝑧 = 1, the actual extracted 𝜎2𝑧 for the collapsed non-informative
parameters is less than one. This is an artifact of evaluating the model on a larger system
size and longer time-series than the cropped patches used during training (see Appendix 3.E
for details).
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(a) KS, No Noise (b) KS, σ = 0.1 Noise (c) NS, No Noise (d) NS, σ = 0.1 Noise

(e) CD, No Noise

(f) CD, σ = 0.1 Noise

Figure 3.3: Predicted physical parameters from a linear fit with the relevant latent parame-
ter (Fig. 3.2) vs. the ground truth physical parameters from the (a), (b) 1D Kuramoto–
Sivashinsky (KS), (c), (d) 1D nonlinear Schrödinger (NS), and (e), (f) 2D convection–
diffusion (CD) datasets. Because the drift velocity v from the CD dataset has an inherent
rotational symmetry, they are encoded in a two-dimensional latent subspace (Table 3.2), so
we instead show the predicted drift velocity components 𝑣𝑥, 𝑣𝑦 from a multivariate linear
regression in the subspace of two relevant latent parameters, which extracts the linear com-
bination of latent parameters that correspond to 𝑣𝑥 and 𝑣𝑦. The light blue shaded bars are
the 95% confidence intervals produced by the models. Results are shown for models trained
on (a), (c), (e) the original noiseless datasets as well as (b), (d), (f) the datasets with added
𝜎 = 0.1 Gaussian noise.
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Table 3.2: 𝑅2 correlation coefficients from individual linear fits of the 2D convection–
diffusion dataset parameters with each relevant latent parameter (LP). High correlations
are bolded, emphasizing the interpretability of the learned latent parameters as either cor-
responding to the diffusion constant 𝐷 or the drift velocity components 𝑣𝑥, 𝑣𝑦. The drift
velocity is matched with two latent parameters that form a two-dimensional latent subspace
corresponding to the velocity vector.

No Noise 𝜎 = 0.1 Noise

Param. LP 1 LP 2 LP 5 LP 1 LP 2 LP 3

𝐷 0.963 0.000 0.003 0.003 0.959 0.001
𝑣𝑥 0.000 0.205 0.766 0.395 0.006 0.554
𝑣𝑦 0.001 0.818 0.205 0.568 0.000 0.473

with an independent factor of variation due to the VAE regularization [20, 53]. Intu-

itively, the regularization encourages each latent parameter to independently collapse

to a non-informative prior 𝒩 (0, 1), and so the model prefers to minimize its use of

the latent parameters and maintain their independence (Appendix 3.D). Therefore,

the number of latent parameters provided to the model is not critical as long as it is

greater than the number of independent factors of variation. In our experiments, we

allow the model to use five latent parameters. Because the 1D datasets have only one

varying physical parameter and the 2D dataset has three varying physical parameters,

the trained model will only make use of one or three latent parameters, respectively,

and the rest will collapse to the prior.

We can determine the number of relevant latent parameters and empirically verify

this claim by examining the statistics of the extracted distribution parameters 𝜇𝑧 and

𝜎2
𝑧 from the dynamics encoder (DE) for each dataset. A latent parameter that is

useful to the propagating decoder (PD) for predicting the target series will have high

variance in 𝜇𝑧 and a low mean 𝜎2
𝑧 , implying that the extracted parameter is precise

and informative. A parameter which has collapsed to the prior and is non-informative

will have low variance in 𝜇𝑧 and high mean 𝜎2
𝑧 . These statistics indeed show that our

model can correctly determine the number of relevant parameters for each dataset

(Fig. 3.2). In real applications, we will not have access to the ground truth physical
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parameters, so we must rely on these metrics to identify the relevant parameters

extracted by the model.

To evaluate the performance of our parameter extraction method, we compare the

extracted latent parameters from the model with the true physical parameters used

to generate our simulated datasets: the viscosity damping parameter 𝛾 for the 1D

Kuramoto–Sivashinsky dataset, the nonlinearity parameter 𝜅 for the 1D nonlinear

Schrödinger dataset, and the diffusion constant 𝐷 and drift velocity components 𝑣𝑥,

𝑣𝑦 for the 2D convection–diffusion dataset. Because these simulated physical param-

eters are drawn from normal distributions (Appendix 3.C), we expect the relevant

latent parameters—which have prior distribution 𝒩 (0, 1)—to be linearly related to

the true parameters (Appendix 3.D). For real experimental systems, this is also a

reasonable assumption for uncontrolled variables because natural parameters tend to

be normally distributed due to the central limit theorem. We assess the quality of

the extracted parameters by linearly fitting the relevant latent parameters with the

ground truth physical parameters to obtain parameter predictions and 𝑅2 correla-

tion coefficients. Our numerical experiments show excellent parameter extraction on

all three datasets (Fig. 3.3) with 𝑅2 > 0.95 for all parameters (Table 3.1) and no

degradation in performance with added Gaussian 𝜎 = 0.1 noise. However, we do

observe some nonlinear behavior at the edges of the parameter range likely due to

data sparsity in those regions.

Looking more closely at the results for the three-parameter convection–diffusion

dataset, we see that the trained model correctly extracts three relevant latent param-

eters: one latent parameter corresponds to the diffusion constant and the remaining

two-dimensional latent subspace corresponds to the drift velocity vector (Table 3.2).

In particular, the model learns a rotated representation of the drift velocity vector as

a two-dimensional latent subspace due to the inherent rotational symmetry of the dy-

namics (Appendix 3.E), so we can recover the 𝑣𝑥, 𝑣𝑦 components of the drift velocity

by performing a multivariate linear fit (Figs. 3.3(e), 3.3(f)). The successful separation

of diffusion from drift velocity in the extracted parameters demonstrates our model’s

ability to distinguish distinct and interpretable factors of variation in the dynamics
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of the system.

3.4.2 Prediction Performance

In addition to testing parameter extraction, we evaluate the prediction performance of

the trained models on their corresponding test sets. Due to training speed and stabil-

ity considerations, our models are initially trained with a PD architecture containing

only 16 hidden channels (Appendix 3.A). To show the potential for further model

refinement, we fix the weights of the DEs trained on the original noiseless datasets

and then train additional PDs, each with an expanded 64 hidden channels. These

refined predictive models perform better than the original predictive models used

during end-to-end training. For comparison, the datasets are also evaluated with a

stiff exponential integrator for semilinear differential equations (ETDRK4 [71]) using

a second order finite difference discretization on the same time and space meshes pro-

vided in the datasets. Although this integrator is the same one used during dataset

generation, the time step and mesh size are set to match the available data to provide

a reasonable baseline. During dataset generation, the solution is obtained starting

with the exact form of the initial condition and converged using much finer mesh

sizes (Appendix 3.C). Also, note that using a non-stiff integrator fails on many of the

examples in the datasets, so a stiff integrator is required.

The models trained on the 1D Kuramoto–Sivashinsky and 1D nonlinear Schrödinger

datasets both perform reasonably when compared with the traditional finite difference

method (Figs. 3.5(a), 3.5(b)), with the model trained on the Kuramoto–Sivashinsky

dataset maintaining a higher accuracy than its traditional counterpart. The predic-

tion error of the 2D convection–diffusion model is dominated by the uncertainty in

the parameter extraction, so the prediction performance is comparable to a finite dif-

ference exponential integrator with similar noise in the PDE parameters (Fig. 3.5(c)).

For the models trained on datasets with added 𝜎 = 0.1 noise, we see some negative

impact on prediction performance (Fig. 3.5) but no effect on the parameter extraction

quality (Tables 3.1, 3.2).

The refined models, trained on the noiseless datasets, demonstrate that the PD—
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(a) KS, Test Example

(g) CD, Test Example

(b) KS, Model Prediction (c) KS, Model Error

(d) NS, Test Example (e) NS, Model Prediction

(h) CD, Model Prediction

(f) NS, Model Error

(i) CD, Model Error

Figure 3.4: Time evolution of (a), (d), (g) examples from the 1D Kuramoto–Sivashinsky
(KS), 1D nonlinear Schrödinger (NS), and 2D convection–diffusion (CD) test sets with
periodic boundary conditions, (b), (e), (h) the predicted propagation of the refined model
given the initial condition at time 𝑡 = 0, and (c), (f), (i) the model prediction error. The
black vertical dotted line denotes the maximum amount of time propagated by the model
during training, corresponding to the length of the target series. For the CD dataset, the
maximum amount of time propagated by model during training is 𝑡 = 𝜋.
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(a) Kuramoto–Sivashinsky (b) Nonlinear Schrödinger (c) Convection–Diffusion

Figure 3.5: The root mean square prediction error (RMSE) during evaluation at each prop-
agation time step, averaged over the corresponding test set, for models trained without
noise (blue), trained with 𝜎 = 0.1 Gaussian noise (orange), and refined by fixing the DE
and training with 64 hidden channels in the PD network on the noiseless datasets (green).
Shown for comparison is an evaluation by a second order finite difference discretization inte-
grated with the ETDRK4 method [71] (dashed red), which reduces to an exact exponential
integrator for the 2D convection–diffusion system. Also, since the prediction accuracy on
2D convection–diffusion is dominated by parameter extraction uncertainty, we include for
comparison the solver with additional parameter noise: 𝜎 = 0.005 for 𝐷, 𝜎 = 0.01 for 𝑣𝑥,
𝑣𝑦 (dashed purple). The black vertical dotted line denotes the length of the target series 𝑇𝑦
used for training each set of models, i.e. the maximum number of time steps propagated by
the model during training.

the predictive network—can be improved independently of the DE—the parameter

extraction network. Moreover, the solutions generated by these models remain stable

and physically reasonable well beyond the number of time steps propagated during

training, suggesting that the models have indeed learned physically meaningful prop-

agators of the PDE-governed systems (Fig. 3.4).

3.5 Application to Nonlinear Fiber Propagation

To demonstrate our method applied on a more complex and realistic dataset, we use

Meep [100], a finite difference time-domain electromagnetic simulator, to model pulse

propagation through an optical fiber with a Kerr nonlinearity. These simulations

model Maxwell’s equations exactly, with no approximation apart from the discretiza-

tion, and often reproduce real experiments point-by-point [121]. The simulated fiber

consists of a two-layer core and the surrounding cladding with (relative) permittivity

𝜀 = 1 (cross section shown in Fig. 3.6a). We generate a dataset with 200 differ-

58



(a) SystemGeometry

⊙ x ̂

ro
εo

ε = 1

εi

ri

(b) Parameter Identification (c) Parameter Extraction

(e) RMSE Prediction Error(d) Predicted Gaussian pulse propagation with varying spurious latent parameter (z)
z = −1 z = +1

Figure 3.6: Analysis of the model trained on the nonlinear fiber propagation dataset. (a)
The cross section of the fiber shows the cladding with (relative) permittivity 𝜀 = 1, the inner
core with radius 𝑟𝑖 and permittivity 𝜀𝑖, and the outer core with radius 𝑟𝑜 and permittivity
𝜀𝑜. (b) Three relevant latent parameters are identified by the trained model. (c) A linear
fit of the latent parameters predicts the true 𝑘1 with 𝑅2 = 0.966 and 𝑘2 with 𝑅2 = 0.863,
corresponding to group velocity and second-order dispersion. (d) Varying the remaining
spurious latent parameter 𝑧 while propagating a Gaussian pulse using the trained propagat-
ing decoder (PD), we observe that the spurious parameter represents a phase velocity. The
plot of Arg(𝐴) shows the phase of the pulse mapped to the color hue while the amplitude is
mapped to lightness. (e) The root mean squared prediction error (RMSE) at each propaga-
tion step of the originally trained PD (blue) and a further refined PD (green) are comparable
to an explicit solution (second order finite difference, adaptive fourth order Runge–Kutta)
of the effective equation (3.12) with fitted parameters (up to fourth-order dispersion) for
each individual test set example (dashed red).
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ent geometries by varying the size of the two-layer core through 𝑟𝑖 and 𝑟𝑜 as well

as the corresponding permittivities 𝜀𝑖 and 𝜀𝑜, representing uncontrolled experimental

variables related to fabrication (see Appendix 3.C for details). Then, we excite a

randomly generated pulse in each fiber and train our model on the flux-normalized

amplitude 𝐴(𝑥, 𝑡) of the resulting pulse propagation.

There is no exact first-order PDE describing the evolution of this amplitude.

However, in the slowly varying envelope approximation, 𝐴(𝑥, 𝑡) is governed by an

effective nonlinear Schrödinger equation 1

𝜕𝐴

𝜕𝑥
= 𝑖

∞∑︁
𝑛=1

𝑖𝑛𝑘𝑛
𝑛!

𝜕𝑛𝑡 𝐴+ 𝑖𝛾 |𝐴|2𝐴, (3.12)

where the dispersion coefficients 𝑘𝑛 = 𝜕𝑛𝜔𝑘(𝜔)|𝜔=𝜔0 can be computed from the dis-

persion relation 𝜔(𝑘) at a carrier frequency 2𝜋𝜔0, and the nonlinearity parameter 𝛾

is related to the Kerr nonlinearity (Appendix 3.C) and the shape of the propagat-

ing mode in the fiber [14]. Due to the form of this effective equation, we choose

our propagation variable to be the distance 𝑥 rather than the time 𝑡, i.e. our model

will predict 𝐴(𝑥, 𝑡) given an initial pulse 𝐴0(𝑥 = 0, 𝑡) by propagating forward in the

𝑥-direction. We obtain the ground truth dispersion coefficients using MPB [63], a fre-

quency domain electromagnetic eigenmode solver, for comparison with the extracted

parameters from the model.

The trained model identified and extracted three relevant latent parameters (Fig.

3.6b). Two independent directions in the latent parameter space (primarily, latent

parameters 2 and 3) correspond to the group velocity 𝑘1 = 1/𝑣𝑔 with 𝑅2 = 0.966

and second-order dispersion 𝑘2 with 𝑅2 = 0.863 (Fig. 3.6c). Note that the extracted

parameters are not the geometry parameters used to generate the dataset, but rather

parameters relevant to the effective propagation of the pulse. These two latent pa-

rameters also capture variations in higher order dispersion terms, which are correlated

1This effective equation is usually transformed to a co-moving time coordinate 𝜏 = 𝑡 − 𝑥/𝑣𝑔,
where 𝑣𝑔 is the group velocity [14]. However, since the group velocity varies among of the dataset
examples and because we want to use minimal preprocessing, we keep the original time coordinate
𝑡. We also include higher order dispersion terms which are relevant for our dataset.
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with the group velocity and second-order dispersion in the dataset. As a result, al-

though important and present in the effective equation (3.12), the higher order terms

are already well correlated with the existing latent parameters, so no additional pa-

rameters are required to characterize the dynamics. See Appendix 3.H for more

parameter analysis details.

In addition to the parameters corresponding to 𝑘1 and 𝑘2, the model extracted

another relevant latent direction (primarily, latent parameter 1), which is indepen-

dent and orthogonal to the previous two. This seemingly spurious latent parameter

does not correspond to a term in the effective equation (3.12); instead, it represents

a spurious phase velocity, which is the result of imperfect preprocessing (Appendix

3.C). We discovered this correspondence by varying the spurious parameter, while

leaving all other latent parameters fixed, and observing the effect on the model predic-

tions (Fig. 3.6d). This uncontrolled variable was successfully extracted by the model

and subsequently identified, demonstrating the process by which unknown extracted

parameters can be understood and interpreted.

We evaluate the prediction performance of the trained propagating decoder (PD)

as well as a refined version of the PD (with an expanded 64 hidden channels) by

comparing the prediction error of our models with an explicit solution to the effective

equation (3.12) as a baseline. The effective equation parameters are determined by

a linear fit of the finite difference derivatives computed from the dataset. For each

example in the test set, we fit the dispersion parameters 𝑘1, 𝑘2, 𝑘3, 𝑘4 (i.e. up to

fourth order dispersion) and the nonlinearity parameter 𝛾. The effective equation is

then integrated using a fourth order Runge–Kutta method with adaptive step size

and second order finite difference discretization. This approach is a simplified version

(with the terms pre-identified) of explicit PDE identification methods, such as SINDy

[113]. Our predictive models achieve similar prediction performance when compared

with this explicit effective equation baseline (Fig. 3.6e).
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3.6 Discussion

We have developed a general unsupervised learning method for extracting unknown

dynamical parameters from noisy spatiotemporal data without detailed knowledge of

the underlying system or the exact form of the governing PDE. While we do not

explicitly extract the governing PDE, our method provides a set of tunable relevant

parameters, which characterize the system dynamics in independent and physically

interpretable ways, coupled with a highly transferable predictive model. This is often

enough to provide significant insight into the physics of the system: for example, by

examining the effect of varying an unidentified relevant parameter on the predictions

of the model, we can disentangle the parameter from other effects (parameterized by

the other relevant parameters) and interpret it independently. This is precisely how

we identified the spurious phase velocity parameter extracted by the model trained

on nonlinear fiber propagation (Fig. 3.6d). One potential complication of interpreting

the parameters extracted using our method is that each parameter must represent

an independent factor of variation in the dynamics of the dataset. This means that

if features of the dynamics are highly correlated in the underlying dataset, they will

be parameterized by the same parameter, e.g. the parameters extracted from the

nonlinear fiber propagation dataset corresponding to group velocity and second order

dispersion also capture higher order dispersion terms (Appendix 3.H).

The flexibility and robustness of our model comes from using a generic physics-

informed neural network model for nonlinear PDEs. The interpretability of the result-

ing extracted parameters is a result of the variational autoencoder (VAE) training

and regularization (Appendix 3.D) as well as the inductive biases imposed by our

physics-informed network design. By using appropriate spatial averaging in the dy-

namics encoder (DE) and dynamic convolutions in the propagating decoder (PD),

we ensure that both the parameter extraction and the propagation prediction from

our model are physically motivated and generalizable to arbitrary system sizes and

geometries. The dynamic convolutions, in particular, are an important physical in-

ductive bias for encouraging the model to learn latent parameters which govern the
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propagation dynamics. As a result, the learned parameter-to-kernel mappings in the

trained predictive model are fully transferable, which we can demonstrate by evaluat-

ing the predictive model without retraining on a different set of boundary conditions

(see Appendix 3.G).

Our strategy for modeling spatiotemporal systems is to retain the expressive-

ness of a neural network model while imposing general constraints—such as locality

through using convolutional layers—to help the network learn more efficiently. For

particular applications, this could also include spatial symmetries [29, 30, 131], e.g.

properly transforming fluid flow vectors, as well as additional symmetries of the inter-

nal degrees of freedom, e.g. the global phase of the nonlinear Schrödinger equation.

These architecture-based constraints encourage the model to learn physically relevant

representations and can be tailored to individual applications, allowing us to incorpo-

rate domain knowledge into the model. This also lets us use datasets that are much

smaller than is traditionally required by deep learning methods. The model trained

on nonlinear fiber propagation used only 200 examples (Sec. 3.5), and we have been

able to successfully train models on the Kuramoto–Sivashinsky dataset with as few as

10 examples (Appendix 3.F). Additionally, the model’s robustness to noise is a pow-

erful feature of deep learning methods and provides a promising avenue for studying

dynamical systems in a data-driven fashion [114].

The primary challenges associated with applying our current implementation in-

volve setting hyperparameters to improve training stability (see Appendix 3.B.1 for

more details) and choosing the 𝛽 regularization hyperparameter, which controls pa-

rameter extraction (Appendix 3.D). The choice of 𝛽 can be somewhat ambiguous,

with very high values resulting in no relevant parameters and very low values failing

to enforce independence (for our choices, see Appendix 3.B). This trade-off and other

related issues are a very active area of research, and parameter extraction methods

will continue to improve following the rapid advances in unsupervised learning and

disentangling representations, e.g. through a deeper theoretical understanding of the

𝛽-VAE [3, 20, 142] and alternative formulations [25, 143]. Physics-informed inductive

biases, however, will remain the key ingredient for ensuring the representations are
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interpretable [85].

The predictive model will also likely achieve better accuracies by using more so-

phisticated architectures, such as echo state networks which have been shown to

perform extremely well on even chaotic PDEs [103], or by explicitly incorporating

differentiable PDE solvers with gradients computed by the adjoint method [26]. An

echo state network or other alternative decoder architecture would have to be adapted

to retain the transferability of our current PD. Using a differentiable PDE solver would

allow the PD network to focus on encoding the PDE rather than also learning a stable

integration method, and thus may improve the interpretability of the model.

Our unsupervised learning method is also highly complementary with the signifi-

cant body of work applying machine learning methods for more accurate predictions

of specific physical systems, such as multi-scale hydrodynamic systems [49] and tur-

bulence modeling [81, 93, 135, 138]. These methods often combine a known physics

model with a machine learned correction or parameterize an unknown part of the

physics model using neural networks. Such machine learning–physics hybrid mod-

els can be adapted into decoders for our unsupervised learning method, with the

extracted relevant parameters representing independent variations of and providing

insight into the machine learned portions of the model. Our current method can

also be adapted in the future for a more general class of spatiotemporal systems by

incorporating spatially inhomogeneous latent parameters and will also be able to use

data with incomplete physical state observations by inferring missing information.

The ultimate goal of this work is to provide additional insight into complex spa-

tiotemporal dynamics using a data-driven approach. Our method is an example of a

new machine learning tool for studying the physics of spatiotemporal systems with

an emphasis on interpretability.

3.A Model Implementation Details

For the 1D datasets, the dynamics encoder (DE) uses 2D convolutions with out-

put channel sizes (4, 16, 64, 64, 5), linear kernel sizes (3, 3, 3, 3, 1), and dilation factors
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(1, 2, 4, 8, 1). For the 2D dataset, the DE uses 3D convolutions with output channel

sizes (8, 64, 64, 64, 5) with the same kernel sizes and dilation factors. The 𝑓DE,𝜇 and

𝑓DE,𝜎2 networks share the same convolution weights for the first four layers and have

distinct final layers to produce 𝜇 and log 𝜎2. The final output channel size is deter-

mined by the number of latent parameters; in our tests, we use five latent parameters.

For the 1D datasets, the propagating decoder (PD) architecture uses three 1D

dynamic convolutional layers with output channel sizes (16, 16, data channel size),

linear kernel size 5, and periodic padding. For the 2D datasets, the PD uses three

2D dynamic convolutional layers with the same output channel sizes, kernels, and

padding. The refined models increase the number of hidden channels in the PD from

16 to 64, resulting in output channel sizes (64, 64, data channel size).

The latent-to-kernel network, which maps the latent parameters to each kernel or

bias in the PD, consists of two fully-connected layers, i.e. one hidden layer. For the 1D

datasets, the hidden layers have size (4× input channel size×output channel size) for

kernels and (4× output channel size) for biases, where the input and output channel

sizes refer to the corresponding dynamic convolution in the PD. For the 2D dataset,

the hidden layers have size (16× input channel size×output channel size) for kernels

and (4× output channel size) for biases.

Our architecture uses ReLU activations throughout except for the unactivated

output layers of the DE, PD, and latent-to-kernel networks. The output of the PD

convolutional network 𝑓PD uses a tanh activation with a learnable scaling parameter

(𝑥 ↦→ 𝜆 tanh(𝑥/𝜆) with learnable parameter 𝜆 initialized to 1) to stabilize the re-

current architecture. The network 𝑓PD also has a fixed multiplicative pre-factor set

to 10−6 to improve the initial training stability. For the nonlinear fiber propagation

dataset, we add Gaussian noise with 𝜎 = 10−2 between propagation steps in the PD

network for improved prediction stability.

Our model is implemented using PyTorch v1.1 [102], and the source code is avail-

able at https://github.com/peterparity/PDE-VAE-pytorch.
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3.B Training Details

All models are trained using batch size 50 and the Adam optimizer [74] with learning

rate 10−3. Models for the 1D datasets and the noisy 2D convection–diffusion dataset

were trained for 2,000 epochs; the model for the noiseless 2D convection–diffusion

dataset was trained for 4,000 epochs; and the corresponding refined models were

trained for 2,000 epochs. The VAE regularization hyperparameter is set to 𝛽 = 0.02

for the 1D datasets and 𝛽 = 10−4 for the 2D convection–diffusion dataset. The model

for the nonlinear fiber propagation application was trained for 40,000 epochs due to

small size of the dataset and significant data augmentation; the corresponding refined

model was trained for 20,000 epochs; and the VAE regularization hyperparameter was

set to 𝛽 = 7×10−4. During validation, we choose 𝛽 such that we obtain the maximum

number of relevant latent parameters while still maintaining statistical independence

among the parameters as well as a clean separation between the relevant and irrelevant

(i.e. collapsed to the prior) parameters. All hyperparameter tuning is done using the

training set for validation.

For the 1D Kuramoto–Sivashinsky dataset, we train the model using a random

64×94 crop—in the time and space dimensions, respectively—for the input series and

another random 64× 76 crop for the target series. For the 1D nonlinear Schrödinger

dataset, we train using a 64× 94 crop for the input series and a 32× 76 crop for the

target series. For the 2D convection–diffusion dataset, we train using a 45× 62× 62

crop—in the one time and two space dimensions, respectively—for the input series

and a 16 × 44 × 44 crop for the target series. For the nonlinear fiber propagation

dataset, we train using a 128 × 158 crop for the input series and a 32 × 76 crop for

the target series. During evaluation, we always use the full size time-series from the

test set for both the input and target series.

3.B.1 Notes on Training Stability

We find our model to be particularly sensitive to the architecture of the propagating

decoder (PD): with larger, more complex networks and more propagation steps during
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training resulting in increasing instability. The dynamics encoder (DE) does influence

stability, but the effect is more indirect through its interaction with the PD and

is not very architecture sensitive. This instability is likely related to the problem

of vanishing and exploding gradients seen often in recurrent architectures, which is

mitigated using gating mechanisms like in LSTM networks [44, 55] or by explicitly

using unitary norm-preserving matrices [62]. Importantly, this is only a significant

problem when training the model end-to-end using both the DE and PD; when we

fix the DE weights, we are able to further refine a more complex PD model without

instability (Sec. 3.4.2). This also does not affect the prediction performance and

stability of the model during evaluation, which generalizes well past the number of

time steps propagated during training (Fig. 3.5). We currently implement a learnable

gating mechanism (Appendix 3.A) that significantly stabilizes the network but further

work is required to fully address this issue.

3.C Dataset Generation Details

For each time-series example in the 1D Kuramoto–Sivashinsky dataset, we sample

the viscosity damping parameter 𝛾 from a truncated normal distribution (𝜇 = 1, 𝜎 =

0.125, and truncation interval [0.5, 1.5]). We then use the ETDRK4 integrator [71]

to generate each time-series to within a local relative error of 10−3. Each time-series

consists of a uniform time mesh with 256 points for a total time 𝑇 = 32𝜋 and a space

mesh with 𝑀 = 256 points for an 𝐿 = 64𝜋 unit cell. These are produced by solving on

a finer time and space mesh to ensure convergence and then resampling to the dataset

mesh sizes. Each initial state is generated from independently sampled, normally

distributed Fourier components with a Gaussian band-limiting envelope of varying

widths (uniformly sampled in the interval [8𝜋/𝐿,𝑀𝜋/4𝐿]) and then normalized to

unit variance.

For each time-series example in the 1D nonlinear Schrödinger, we sample the

nonlinearity coefficient 𝜅 from a truncated normal distribution (𝜇 = −1, 𝜎 = 0.25,

and truncation interval [−2, 0]). We then use the ETDRK4 integrator [71] to generate
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each time-series to within a local relative error of 10−3. Each time-series consists of

a uniform time mesh with 256 points for a total time 𝑇 = 𝜋 and a space mesh with

𝑀 = 256 points for an 𝐿 = 8𝜋 unit cell. These are produced by solving on a finer time

and space mesh to ensure convergence and then resampling to the dataset mesh sizes.

The initial states are generated in an analogous manner to the Kuramoto–Sivashinsky

dataset.

For each time-series example in the 2D convection–diffusion dataset, we vary the

parameters by sampling the diffusion constant𝐷 from a truncated normal distribution

(𝜇 = 0.1, 𝜎 = 0.025, and truncation interval [0, 0.2]), and each velocity component

𝑣𝑥, 𝑣𝑦 from a normal distribution (𝜇 = 0, 𝜎 = 0.2). Because the convection–diffusion

equation is linear, we use the exact solution to generate the dataset. Each time-series

consists of a uniform time mesh with 64 points for a total time 𝑇 = 4𝜋 and an

𝑀 ×𝑀 = 256×256 space mesh for an 𝐿×𝐿 = 16𝜋×16𝜋 unit cell. Each initial state

is generated from independently sampled, normally distributed Fourier components

with a Gaussian band-limiting envelope of varying widths (uniformly sampled in the

interval [16𝜋/𝐿,𝑀𝜋/2𝐿]) and then normalized to unit variance.

The nonlinear fiber propagation dataset aims to roughly model a set of highly dis-

persive nonlinear optical fibers with variations in geometry due to fabrication. Each of

the 200 examples in the nonlinear fiber propagation dataset corresponds to a randomly

generated fiber geometry excited with a randomly generated pulse. Specifically, each

fiber geometry (Fig. 3.6a) corresponds to a set of geometry parameters sampled from

normal distributions: inner core radius 𝑟𝑖 (𝜇 = 75 nm, 𝜎 = 3nm), outer core radius 𝑟𝑜

(𝜇 = 150 nm, 𝜎 = 7.5 nm), inner core (relative) permittivity 𝜀𝑖 (𝜇 = 30, 𝜎 = 2), and

outer core permittivity 𝜀𝑜 (𝜇 = 8, 𝜎 = 1). There is an overall fixed Kerr nonlinear-

ity that corresponds to a nonlinear refractive index 𝑛2 = (3.375× 10−4 µm2W−1)/𝜀,

where 𝜀 is the material permittivity. The excited pulse is generated from indepen-

dently sampled, normally distributed frequency components with a Gaussian band-

limiting envelope centered on a carrier frequency 𝑓 = 200THz (𝜆 = 1.5 µm) and with

a width of 𝑓/20. This pulse is slowly turned on with a sigmoid of width 20/𝑓 , and,

for the test set, the pulse is also turned off at half the total simulation time, allowing

68



the pulse to fully propagate through the fiber. During the simulation, the amplitude

𝐴(𝑥, 𝑡) of the electric field at the center of fiber is recorded and later normalized to

the total flux passing through the fiber. The space and time Fourier components of

each resulting dataset example 𝐴(𝑥, 𝑡) are shifted to remove the carrier frequency and

the peak wavenumber, resulting in a slowly varying envelope. Then, the final dataset

is normalized again so that the amplitude at the initial point 𝑥 = 0 has, on average,

unit variance over the whole dataset. Each example consists of an 𝑥-direction mesh

with 500 points for a propagation length of 75 µm and a uniform 𝑡-direction mesh

with 800 points for a total time 4.00 ps (training set) or 1000 points for a total time

5.00 ps (test set).

The dataset generation scripts are available at https://github.com/peterpari

ty/PDE-VAE-pytorch.

3.D Understanding the Effects of VAE Regulariza-

tion

Using VAE [75] or 𝛽-VAE [53] regularization in our model provides three main benefits

for learning physically interpretable representations: the regularization encourages the

model to minimize use of the latent parameters, enforces independence among the

learned latent parameters, and matches the marginal latent distribution to a standard

normal prior. We can explicitly see these effects by decomposing the data-averaged

VAE regularization term in the following way [25, 56]:

E𝑝𝐷(x)[𝐷KL(𝑞(z|x) ‖ 𝑝(z))] =

𝐷KL(𝑞(z,x) ‖ 𝑞(z) 𝑝𝐷(x)) (3.13)

+𝐷KL(𝑞(z) ‖
∏︁
𝑖

𝑞(𝑧𝑖)) (3.14)

+
∑︁
𝑖

𝐷KL(𝑞(𝑧𝑖) ‖ 𝑝(𝑧𝑖)), (3.15)
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where 𝑝𝐷(x) is the data distribution, 𝑝(z) =
∏︀

𝑖 𝑝(𝑧𝑖) are the standard normal pri-

ors for the latent parameters z = (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . .), 𝑞(z|x) is the output distribu-

tion of the dynamics encoder, 𝑞(z,x) = 𝑞(z|x) 𝑝𝐷(x) is the joint distribution of

the encoded latent parameters and the data, and 𝑞(z) =
∫︀
𝑑x 𝑞(z,x) and 𝑞(𝑧𝑖) =∫︀

𝑑x
∏︀

𝑗 ̸=𝑖 𝑑𝑧𝑗 𝑞(z,x) are the marginal distributions of the latent parameters z or a

single latent parameter 𝑧𝑖, respectively. The three terms in this decomposition cor-

respond directly to the three effects: the first term (3.13) represents the mutual

information between the latent parameters and the data; the second term (3.14) rep-

resents the total correlation between the latent parameters; and the third term (3.15)

consists of KL divergences between the marginal distribution for individual latent

parameters and the standard normal prior.

By minimizing the mutual information between the latent space and the data

(3.13) as well as correlations among the latent parameters (3.14), the model is com-

pelled to learn a latent space with minimal information and independent parameters,

i.e. the model will use a minimal set of independent relevant latent parameters to

capture only the necessary information for better prediction performance. The rest

of the unused latent parameters will collapse to the prior. Furthermore, by matching

the marginal latent parameter distributions 𝑞(𝑧𝑖) to the standard normal priors 𝑝(𝑧𝑖)

(3.15), the VAE regularizer encourages a linear relationship between the relevant

learned latent parameters and the true physical parameters if the physical param-

eters are normally distributed in the data. Even if a physical parameter 𝑧phys is

non-normally distributed, the VAE regularization will still compel the model to learn

a monotonic relationship between 𝑧phys and a corresponding latent parameter 𝑧 given

by

𝑧phys = ±CDF𝑝(𝑧phys) ∘ CDF
−1
𝑝(𝑧)(𝑧), (3.16)

where CDF𝑝(·) is the cumulative distribution function for the probability distribution

𝑝(·). One caveat—in addition to ambiguities introduced by symmetries of the physical

parameters—is that the relationship may not be monotonic for physical parameter

distributions which have support on a topologically distinct space from the real line,
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e.g. a uniformly distributed periodic angle parameter. However, the result may still be

interpretable, e.g. an angle parameter may be encoded as a ring in a two-dimensional

latent subspace.

Although this decomposition is suggestive of the effects of VAE regularization, the

study of the performance of VAE-based models and the relative importance and model

dependence of each of these effects is still very much ongoing [3, 20, 25, 111, 142, 143].

While training our model, we empirically observe that the latent parameters retain

their independence and that their marginal distributions match the standard normal

priors, so only an increase in information stored in the latent space is traded for better

prediction performance. We believe we can attribute this to the physics-informed

inductive biases present in our architecture, which allows our model to achieve its

best performance using a minimal set of independent latent parameters.

3.E Raw Parameter Extraction Results

We can explicitly see the relevant and collapsed latent parameters in the raw data

by plotting the latent parameters versus the true physical parameters (Fig. 3.7). The

latent parameters that show a correlation with the true physical parameters also have

small variances 𝜎2
𝑧 and correspond to the identified relevant latent parameters (Fig.

3.2), while the remaining latent parameters have collapsed to the prior. Note that

for the collapsed parameters, we see variances 𝜎2
𝑧 that are less than one—the value

expected for parameters which have collapsed to the prior distribution 𝒩 (0, 1). This is

because, to average over systems of different sizes, the model makes the assumption

that patches separated far in space or time provide independent estimates of the

extracted parameters and computes the total variance accordingly. This assumption

is reasonable for relevant parameters but will artificially lower the extracted variances

for collapsed parameters. During testing, we choose to evaluate on the full system

size resulting in this artifact. If we were to evaluate on smaller patches that match

the size of the crops used during training, we would indeed see that the collapsed

parameters have 𝜎2
𝑧 = 1.
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(a) KS, No Noise (b) KS, σ = 0.1 Noise (c) NS, No Noise (d) NS, σ = 0.1 Noise

(e) CD, No Noise (f) CD, σ = 0.1 Noise

Figure 3.7: The five latent parameters in the models trained on the (a), (b) 1D Kuramoto–
Sivashinsky (KS), (c), (d) 1D nonlinear Schrödinger (NS), and (e), (f) 2D convection–
diffusion (CD) datasets both with and without added noise vs. the ground truth physical
parameters used to generate the datasets. In these plots of the raw extracted latent param-
eters, we see the direct correspondence between the identified relevant latent parameters
in Fig. 3.2 and the true physical parameters as well as the collapse of the unused latent
parameters. Note that the relevant latent parameters corresponding the drift velocity v in
the convection–diffusion model are not precisely aligned with the two components 𝑣𝑥, 𝑣𝑦 due
to the inherent rotational symmetry. The gray shaded bars are the 95% confidence intervals
(±1.96𝜎𝑧) produced by the model.

We also note that, for the model trained on the 2D convection–diffusion dataset,

the latent parameters associated with the drift velocity v are not aligned with the

𝑣𝑥, 𝑣𝑦 velocity components. This is an expected result due to the inherent ambiguity

of choosing a coordinate basis—introduced by the rotational symmetry of the veloc-

ity vector—and makes judging the extraction performance more difficult. Instead

of examining one latent parameter at a time, we must consider the two-dimensional

latent subspace associated with the velocity vector. Taking the two relevant latent

parameters that are correlated with the drift velocity (Table 3.2), we can perform a

multivariate linear regression of the velocity components 𝑣𝑥, 𝑣𝑦 in this two-dimensional

latent subspace to verify that the model has indeed learned a simple rotated repre-

sentation of the velocity vector (Figs. 3.3(e), 3.3(f)).
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(a) Identification:
50 Examples

(b) Identification:
25 Examples

(c) Identification:
10 Examples

(d) Extraction:
50 Examples

(e) Extraction:
25 Examples

(f) Extraction:
10 Examples

(g) Model Prediction

Figure 3.8: Parameter extraction and prediction performance for models trained on noiseless
1D Kuramoto–Sivashinsky datasets with 50, 25, and 10 examples to show the effect of dataset
size. The (a), (b), (c) parameter identification and (d), (e), (f) extraction plots demonstrate
the ability of the model to identify and extract a relevant latent parameter using very few
examples. In the extraction plots, the small black points show the evaluation on the test
set, the large red points show the training examples used for each model, and the light
blue shaded bars are the 95% confidence intervals produced by the model. There is also
a subtle decrease in prediction performance seen in (g) the root mean square prediction
errors (RMSE) averaged over the 10,000 example test set. The parameter identification
and extraction plots for the 5,000 example dataset are shown in Figs. 3.2(a) and 3.3(a),
respectively.

3.F Performance Scaling with Dataset Size

Due to the significant physics-informed inductive biases in our architecture, our model

still achieves usable results even when trained on very small datasets. We test the

dataset size dependence of our method using the 1D Kuramoto–Sivashinsky system

and find that the model is still able to identify the relevant latent parameter even

with a dataset of just 10 examples (Fig. 3.8). The accuracy and precision of the

extracted parameter and the prediction performance do begin to suffer when using

such extremely small datasets, but the model is still able to provide some insight into

the dynamics of the spatiotemporal system represented by the data.
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(a) Test Example (b) Model Prediction (c) Model Error

Figure 3.9: Time evolution of (a) a 1D Kuramoto–Sivashinsky example with Dirichlet bound-
ary conditions, (b) the predicted propagation using transferred kernels from the refined pre-
dictive model given the initial condition at time 𝑡 = 0, and (c) the prediction error of the
model. The refined predictive model for the 1D Kuramoto–Sivashinsky was originally trained
on data with periodic boundaries and is adapted—without retraining—to use Dirichlet hard
wall boundaries instead by adjusting the padding at each propagation time step. The black
vertical dotted line denotes the maximum amount of time propagated by the model during
the original training, corresponding to the length of the target series.

3.G Alternative Boundary Conditions

The fully convolutional structure of the propagating decoder (PD) means that we

are able to evaluate our model on arbitrary geometries and boundary conditions. By

training on small crops and evaluating on the full size examples in the test set (Sec.

3.4), we have already shown the trained model can be directly evaluated on larger sys-

tem sizes. To show direct evaluation on an alternative boundary condition, we test

the refined predictive model—originally trained on the 1D Kuramoto–Sivashinsky

dataset with periodic boundaries—on a new test example generated with Dirichlet

hard wall boundary conditions (Fig. 3.9). In general, we can apply alternative bound-

ary conditions by adjusting the padding scheme of each propagation step in the PD.

For Dirichlet boundaries, this corresponds to applying anti-reflection padding at each

propagation step. This preliminary test suggests that we can achieve similar pre-

diction performance using an alternative boundary condition, which the model has

never previously seen, and demonstrates the transferability of the learned convolu-

tional kernels.
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3.H Nonlinear Fiber Parameter Analysis

In the three-dimensional relevant latent space (𝑧1, 𝑧2, 𝑧3) extracted by the model

trained on the nonlinear fiber propagation dataset (Fig. 3.6b), we determine two

independent and interpretable directions by a linear fit: (−0.101, 0.971, 0.218) and

(0.477,−0.0303,−0.878), which correspond to the group velocity 𝑘1 = 1/𝑣𝑔 and

second-order dispersion 𝑘2, respectively (Fig. 3.6c). The final direction (0.882,−0.107, 0.459)

in the latent space—orthogonal to the previous two—is a seemingly spurious relevant

parameter unrelated to the parameters of the effective equation (3.12) and represents

a spurious phase velocity (Fig. 3.6d).

For the examples in the nonlinear fiber propagation dataset, higher order disper-

sion terms 𝑘𝑛 are still significant. However, because these terms are correlated with

𝑘1 and 𝑘2 in the data, the model does not require additional latent parameters to

capture their effect. Instead, the existing latent parameters also adjust the higher

order dispersion terms; in other words, the latent parameters each correspond to a

dispersion operator that includes higher order dispersion along with 𝑘1 and 𝑘2.
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Chapter 4

Discovering Conservation Laws using

Optimal Transport and Manifold

Learning

4.1 Introduction

Conservation laws are powerful constraints on the dynamics of many physical systems

in nature, and the corresponding conserved quantities are essential features for char-

acterizing the behavior of these systems. Through Noether’s theorem, conservation

laws are closely tied with the symmetries of a physical system and play a key role

in our understanding of physics. Conservation laws also help stabilize and enhance

the performance of predictive models for complex nonlinear dynamics, e.g. symplectic

integrators for Hamiltonian systems [48] and pressure projection for incompressible

fluid flow [46]. In fact, for chaotic dynamical systems, conserved quantities are often

the only features that can be successfully predicted far into the future. Discovering

conservation laws helps us characterize the long term behavior of complex dynamical

systems and understand the underlying physics.

While the conservation laws of many physical systems are well-known and often

derived from known symmetries, there are still many instances where it is difficult
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to even determine the number of conservation laws, let alone explicitly extract the

conserved quantities. As a historical example, consider the Korteweg–De Vries (KdV)

equation modeling shallow water waves. The KdV equation, despite its apparent com-

plexity, has infinitely many conserved quantities [97] and is, in fact, fully solvable via

an inverse scattering transform [43]—a discovery made after significant theoretical

and computational effort. Developing better general methods for identifying con-

served quantities will allow us to improve our understanding of new or understudied

physical systems and build more efficient and stable predictive models.

In real-world applications, an accurate model for the underlying physical system

is often unavailable, forcing us to identify conservation laws using only sample tra-

jectories of the system dynamics. One broad approach is to use modern data-driven

methods based on the Koopman operator formulation of dynamical systems, which

lifts the dynamics into an infinite dimensional operator space [95]. In the Koopman

formalism, conserved quantities are just one type of Koopman eigenfunction with

eigenvalue zero. Thus, one approach is to first apply a system identification method,

such as dynamic mode decomposition [116, 134], sparse identification with a library of

basis functions [17], or even deep learning-based approaches [22, 90, 91], to model the

system dynamics and then set up and solve the Koopman eigenvalue problem. Alter-

natively, previous work has also proposed directly setting up the eigenvalue problem

by estimating time derivatives from data and then fitting the conserved quantities

using a library of possible terms [66] or a neural network [83]. These methods can

work quite well but require that the measured trajectories have sufficiently high time

resolution in order to accurately estimate time derivatives.

Constructing a model for a dynamical system provides much more information

than just the conservation laws. In fact, even estimating time derivatives is usually not

necessary if we are only interested in identifying conserved quantities. In this work, we

will instead focus on an alternative approach that does not require an explicit model

or detailed time information but rather takes advantage of the geometric constraints

imposed by conservation laws. Specifically, the presence of conservation laws restricts

each trajectory in phase space to lie solely on a lower dimensional isosurface of the
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conserved quantities. The dimensionality of these isosurfaces can provide information

about the number of conserved quantities or constraints [82]. Furthermore, since each

isosurface corresponds to a particular set of conserved quantities, the variations in

shape of the isosurfaces directly correspond to variations in the conserved quantities.

In other words, we can identify and extract conserved quantities by examining the

varying shapes of the isosurfaces sampled by the trajectories.

In contrast with recent work using black box deep learning methods to fit con-

served quantities that are consistent with the sampled isosurfaces [47, 133], we propose

and demonstrate a non-parametric manifold learning approach that directly charac-

terizes the variations in the sampled isosurfaces, producing an embedding of the space

of conserved quantities. Our method first uses the Wasserstein metric from optimal

transport [126] to compute distances in shape space between pairs of sampled isosur-

faces and then extracts a low dimensional embedding for the manifold of isosurfaces

using diffusion maps [11, 32]. Each point in this embedding corresponds to a distinct

isosurface and therefore to a distinct set of conserved quantities, i.e. the embedding

explicitly parameterizes the space of varying conserved quantities. Related methods

have been recently suggested for characterizing molecular conformations using the

1-Wasserstein distance together with diffusion maps [141] as well as performing sys-

tem identification by comparing invariant measures using the 2-Wasserstein distance

[139].

We provide an analytic analysis of our approach for a simple harmonic oscillator

system and numerically test our method on several physical systems: the single and

double pendulum, planar gravitational dynamics, the KdV equation for shallow water

waves, and a nonlinear reaction–diffusion equation that generates an oscillating Turing

pattern. We also investigate the robustness of our approach to noise in the measured

trajectories as well as missing information in the form of a partially observed phase

space.
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(a) Collect & normalize raw data

(b) Construct pairwise distance matrix using Wasserstein metric

(c) Apply diffusion maps to extract embedding components

(d) Compute scores to select relevant components
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Figure 4.1: Proposed non-parametric method for discovering conservation laws illustrated
using a simple pendulum example (analyzed further in Sec. 4.4.2). (a) First, we collect
and normalize the trajectory data from the dynamical system. Two example trajectories
are highlighted in red and blue. (b) Then, we use the Wasserstein metric to compute the
distance between each pair of trajectories and construct a distance matrix. For the two
example trajectories, the optimal transport plan is shown, and the computed distance is
marked on the distance matrix plot. (c) An embedding of the shape space manifold 𝒞 is
extracted from the distance matrix using diffusion maps. The embedding plot is colored by
the energy of the pendulum 𝐸. The points corresponding to the two example trajectories
are marked in red and blue. (d) Finally, a heuristic score (Appendix 4.B) is used to select
relevant components. In this case, only component 1 is relevant, corresponding to a single
conserved quantity—the energy 𝐸.
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4.2 Proposed Manifold Learning Approach

Our proposed approach uses manifold learning to identify and embed the manifold of

phase space isosurfaces sampled by the trajectories of a dynamical system. In partic-

ular, we compute a diffusion map (Fig. 4.1c) over a set of trajectories, each of which

samples a particular phase space isosurface (Fig. 4.1a). The pairwise distances be-

tween these trajectories are given by the 2-Wasserstein distance (Fig. 4.1b), providing

the metric structure necessary for applying diffusion maps. The manifold embedding

extracted by the diffusion map corresponds directly to the space of conserved quan-

tities (Fig. 4.1d). Note that this type of analysis does not require knowledge of the

equations of motion (Eq. 4.1) and makes no direct reference to time.

4.2.1 Dynamical Systems

Consider a dynamical system with states x ∈ ℳ that live a in 𝑑-dimensional phase

space ℳ and evolve in time according to a system of first order ODEs

𝑑x

𝑑𝑡
= F(x) (4.1)

with 𝑛 conserved quantities 𝐺1(x), . . . , 𝐺𝑛(x).

Conserved Quantities and Phase Space Isosurfaces

Along a particular trajectory x(𝑡), the 𝑛 conserved quantities form a set of constraints

𝐺𝑖(x) = 𝑐𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛} (4.2)

which depend on the values of the conserved quantities c = {𝑐1, 𝑐2, . . . , 𝑐𝑛}. This

set of constraint equations restricts the trajectory to lie in a phase space isosurface

𝒳c ⊆ ℳ with dimension 𝑑 − 𝑛. In fact, if any point of a trajectory lies on the

isosurface 𝒳c, then all other points from the trajectory will lie on the same isosurface.

By studying the variations in shape of these isosurfaces, we are able to directly

characterize the space of conserved quantities. In particular, consider the manifold 𝒞
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formed by the isosurfaces 𝒳c in shape space. This manifold 𝒞 is parameterized by the

conserved quantities c. Therefore, by analyzing 𝒞 using manifold learning, we can

extract the conservation laws of the underlying dynamical system.

Ergodicity and Physical Measures

To uniquely identify the isosurface associated with each trajectory, we must make

several additional assumptions that will allow us to treat the set of points making

up each trajectory as samples from an ergodic invariant measure on the correspond-

ing isosurface. Specifically, we assume that, for each trajectory x(𝑡) with conserved

quantities c, the dynamical system (Eq. 4.1) admits a physical measure [96] that is

ergodic on the isosurface 𝒳c and is defined by

𝜇c = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝛿x(𝑡) 𝑑𝑡, (4.3)

where 𝛿x(𝑡) is the Dirac measure centered on x(𝑡). This ensures that trajectories

with the same conserved quantities will sample the same distribution on the same

isosurface, allowing us to use the distribution sampled by each trajectory as a proxy

for the corresponding isosurface.

In practice, the sampled distribution may be lower dimensional than the corre-

sponding isosurface if some of the conserved quantities do not vary in the dataset

and instead correspond to fixed constraints, or if the dynamical system is dissipative.

In the former case, this does not affect our ability to uniquely identify a distribution

with an isosurface and its corresponding set of conserved quantities, meaning that we

are able to apply this approach even if the provided phase space is much larger than

the intrinsic phase space of the dynamical system. In the latter case, the dissipative

nature of the system may cause information about conservation laws relevant during

the transient portion of the dynamics to be lost, but we are still able to use our

approach to identify conserved quantities relevant for the long term behavior of the

system.
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4.2.2 Wasserstein Metric

To analyze the isosurface shape space manifold 𝒞—i.e. the manifold of conserved

quantities—using manifold learning methods, we need to place some structure on the

points 𝒳c ∈ 𝒞. Having associated each isosurface 𝒳c with a corresponding distribution

defined by an ergodic physical measure 𝜇c, we choose to lift the Euclidean metric on

the phase space into the space of distributions using the 2-Wasserstein metric from

optimal transport

𝑊2(𝜇c, 𝜇c′) =

(︂
inf

𝜋∈Π(𝜇c,𝜇c′ )

∫︁
𝑐(x,y) 𝑑𝜋(x,y)

)︂1/2

, (4.4)

where the cost function 𝑐(x,y) = ‖x − y‖2 is the squared Euclidean distance, and

𝜋 ∈ Π(𝜇c, 𝜇c′) is a valid transport map between 𝜇c and 𝜇c′ [126].

For discrete samples, the 2-Wasserstein distance between two sets of sample points

{x1,x2, . . . ,x𝑘} and {y1,y2, . . . ,y𝑙} is defined as

𝑊2 =

(︂
min
𝑇

∑︁
𝑖,𝑗

𝑇𝑖𝑗𝐶𝑖𝑗

)︂1/2

(4.5)

such that

𝑇 ≥ 0∑︁
𝑗

𝑇𝑖𝑗 = 1

∑︁
𝑖

𝑇𝑖𝑗 = 1,

(4.6)

where the cost matrix 𝐶𝑖𝑗 = ‖x𝑖−y𝑗‖2. To efficiently compute an entropy regularized

form of this optimization problem, we use the Sinkhorn algorithm [37] and estimate

the Wasserstein distance as a debiased Sinkhorn divergence [59].

One important subtlety in this construction is the choice of the ground metric

for optimal transport. As previously mentioned, we use a Euclidean metric on the

phase space, which implicitly imposes a choice of units to make the phase space
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dimensionless. In fact, there is no canonical choice for the ground metric, and different

choices result in different Wasserstein metrics on the shape space. For example, when

multiple conserved quantities are present, the relative effect of each on the computed

Wasserstein distances will determine how prominent each conserved quantity is and

how easily it is identified using manifold learning. To partially mitigate this issue and

improve consistency, we normalize each component of our data to have a maximum

absolute value of 1 before computing the pairwise Wasserstein distances.

4.2.3 Diffusion Maps

Using the structure provided by the Wasserstein metric, we then use diffusion maps

to generate an embedding for 𝒞. The diffusion map manifold learning method uses

a spectral embedding algorithm applied to an affinity matrix to construct a low di-

mensional embedding of the data manifold [11, 32]. Using the computed pairwise

Wasserstein distances, we first construct a kernel matrix using a Gaussian kernel

𝐾𝑖𝑗 = exp(−𝑊2(𝜇𝑖, 𝜇𝑗)
2/𝜖) (4.7)

and then scale it to form an affinity matrix for our spectral embedding

𝑀𝑖𝑗 = 𝐾𝑖𝑗/(𝐷𝑖𝐷𝑗)
𝛼, (4.8)

where 𝐷𝑖 =
∑︀

𝑘𝐾𝑖𝑘, and 𝛼 is a hyperparameter. The spectral embedding algorithm

then takes this affinity matrix and constructs a normalized graph Laplacian

𝐿𝑖𝑗 = 𝐼𝑖𝑗 −𝑀𝑖𝑗/
∑︁
𝑘

𝑀𝑖𝑘, (4.9)

where 𝐼 is the identity matrix. The eigenvectors v𝑖 corresponding to the smallest

eigenvalues 𝜆𝑖 ≥ 0 (excluding 𝜆0 = 0) of the Laplacian then provide an approximate

low dimensional embedding of the manifold of conserved quantities 𝒞. In our exper-

iments, we set 𝛼 = 1 so that the Laplacian computed by the spectral embedding
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algorithm approximates the Laplace–Beltrami operator [11].

To estimate the dimensionality of 𝒞 and choose the eigenvectors v𝑖 to include in

our embedding, we use a heuristic score that combines a measure of relevance, given by

a length scale computed from the Laplacian eigenvalues, with a previously suggested

measure of “unpredictability” for minimizing redundancy [104]. To construct our

embedding, we only include the Laplacian eigenvectors with score above a chosen

cutoff value and discard the rest as either noise or redundant embedding components.

In all of our experiments, we take the cutoff to be 0.6 and find that this value works

well across a wide variety of datasets and systems. See Appendix 4.B for more details.

4.3 Analytic Result for the Simple Harmonic Oscil-

lator

In the case of a simple harmonic oscillator (SHO) without measurement noise and

in the infinite sample limit, we are able to explicitly derive an analytic result for

our proposed procedure. We first compute the pairwise distances provided by the

Wasserstein metric and then derive the embedding produced by a diffusion map,

which corresponds to the conserved energy of the SHO.

4.3.1 Wasserstein Metric: Constructing the Isosurface Shape

Space

Consider a SHO with Hamiltonian

𝐻(𝑞, 𝑝) =
1

2𝑚
𝑝2 +

1

2
𝑚𝜔2𝑞2 (4.10)

given in terms of position 𝑞 and momentum 𝑝. The SHO energy isosurfaces form

concentric ellipses in a 2D phase space. Choosing units such that 𝑚 = 1 and 𝜔 = 1,

we obtain concentric circles with uniformly distributed samples (assuming a uniform

sampling in time). The 2-Wasserstein distance between a pair of uniformly distributed
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circular isosurfaces is simply given by the difference in radii |𝑟1− 𝑟2|. This is because,

due to the rotational symmetry of the two distributions, the optimal transport plan

for an isotropic cost function is to simply move each point on isosurface 1 radially

outward (or inward) to the point on isosurface 2 with the same angle 𝜃.

This result does not meaningfully change with a different choice of units, which is

equivalent to rescaling the phase space coordinates 𝑞, 𝑝. If we rescale 𝑞, 𝑝 by factors

𝑘𝑞, 𝑘𝑝, our cost function simply becomes

𝑐(𝜃𝑖, 𝜃𝑗) = 𝑘2𝑞(𝑟1 cos 𝜃𝑖 − 𝑟2 cos 𝜃𝑗)
2

+ 𝑘2𝑝(𝑟1 sin 𝜃𝑖 − 𝑟2 sin 𝜃𝑗)
2,

(4.11)

where we label points on the isosurfaces by their angle 𝜃 on the original circular

isosurfaces. The SHO optimal transport plan Π takes 𝜃 on isosurface 1 to the point

with the same angle 𝜃 on isosurface 2, and Π for the SHO is invariant to coordinate

rescaling (Appendix 4.F). Therefore, the total transport cost is

𝐶 =
1

2𝜋

∫︁ 2𝜋

0

𝑐(𝜃, 𝜃) 𝑑𝜃 =
𝑘2𝑞 + 𝑘2𝑝

2
(𝑟1 − 𝑟2)

2, (4.12)

so the 2-Wasserstein distance is

√
𝐶 =

√︁
(𝑘2𝑞 + 𝑘2𝑝)/2 |𝑟1 − 𝑟2| ∝ |𝑟1 − 𝑟2|, (4.13)

i.e. the same result modulo a constant factor. While this is not a general result, we

find that our approach is often fairly robust to such changes, including the extreme

case of scaling some phase space coordinates all the way down to zero resulting in a

partially observed phase space (Appendix 4.C).

4.3.2 Diffusion Maps: Extracting the Conserved Energy

Once we have pairwise distances in the isosurface shape space, we can use diffusion

maps to study the resulting manifold of isosurface shapes. With sufficient samples, the

operator constructed by the diffusion map should converge to the Laplace–Beltrami
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operator on the manifold. For the SHO, the isosurface shape space is isomorphic

to R+ with each circular isosurface mapped to its radius. If we sample trajectories

with radii 𝑟 ∈ (0,
√
2𝐸0) for some maximum energy 𝐸0, then the manifold is a real

line segment, and the resulting Laplacian operator (with open boundary conditions)

has eigenvalues 𝜆𝑛 = 𝜋2𝑛2/2𝐸0 and corresponding eigenvectors 𝑣𝑛(𝑟) = cos(
√
𝜆𝑛 𝑟).

Therefore, the first eigenvector or embedding component

𝑣1(𝐸) = cos(𝜋
√︀
𝐸/𝐸0) (4.14)

successfully encodes the conserved energy and is, in fact, a monotonic function of the

energy.

4.4 Numerical Experiments

To demonstrate the ability of our approach to discover conservation laws, we generate

and test our proposed method on datasets from wide range of dynamical systems,

each consisting of randomly sampled trajectories with different initial conditions and

corresponding conserved quantities. Note that we use the dimensionless form of each

dynamical system to generate our datasets. All of the code necessary for reproducing

our results is available at https://github.com/peterparity/conservation-laws

-manifold-learning.

4.4.1 Simple Harmonic Oscillator

We first numerically test our analytic result for the SHO and obtain good agreement

(Fig. 4.2) using both the default scaling 𝑘𝑞 = 𝑘𝑝 = 1 (Figs. 4.2a–d) as well as the

position only scaling 𝑘𝑞 = 1, 𝑘𝑝 = 0 (Figs. 4.2e–h), which effectively reduces the

dimension of the phase space. A linear fit of the first embedding component from

the diffusion map with the analytically predicted component (Eq. 4.14) achieves a

correlation coefficient of 𝑅2 = 0.9995 for the default scaling and 𝑅2 = 0.9961 for

the position only scaling. We also verify that the heuristic score (Appendix 4.B)
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Figure 4.2: Identifying the conserved energy for (a) the simple harmonic oscillator (SHO). (b)
Sample trajectories from the SHO dataset show sample points plotted in the 2D phase space
(𝑞, 𝑝). (c) The heuristic score (with cutoff 0.6) correctly identifies that the first embedding
component extracted by the diffusion map is the only relevant component. (d) The extracted
first component closely matches the analytically predicted first component (Eq. 4.14) for the
SHO (𝑅2 = 0.9995). (e) Next, consider the SHO dataset with a partially observed phase
space containing position only. (f) For each sample trajectory, the sample points are shown
as a histogram. (g) The heuristic score is still able to identify the first component as relevant,
and (h) this first component matches the analytic prediction (𝑅2 = 0.9961).
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accurately determines that there is only one relevant embedding component (Figs.

4.2c, 4.2g), which corresponds to the conserved energy.

4.4.2 Simple Pendulum

To demonstrate our method on a simple nonlinear dynamical system, we analyze a

simple pendulum that has a 2D phase space consisting of the angle 𝜃 and angular

momentum 𝜔 (Fig. 4.3a). The equations of motion are

𝑑𝜔

𝑑𝑡
= − sin 𝜃

𝑑𝜃

𝑑𝑡
= 𝜔.

(4.15)

This system has a single scalar conserved quantity

𝐸 =
1

2
𝜔2 + (1− cos 𝜃) (4.16)

corresponding to the total energy of the pendulum, so the trajectories form 1D orbits

in phase space (Fig. 4.3b).

Our method is able to correctly determine that there is only a single conserved

quantity (Fig. 4.3c) corresponding to the energy of the pendulum (Fig. 4.3d). The

single extracted embedding component is monotonically related to the energy with

Spearman’s rank correlation coefficient 𝜌 = 0.9997. We are also able to achieve

similar results (𝜌 = 0.9978) with a high level (𝜎 = 0.5) of added Gaussian noise (Figs.

4.3e–h), showing that our approach is quite robust to measurement noise.

4.4.3 Planar Gravitational Dynamics

To test our method on a system with multiple conserved quantities, we simulate the

gravitational system of a planet orbiting a star (Fig. 4.4a). We fix the orbits to all

lie in a 2D plane, giving us an effectively 4D phase space. The resulting equations of
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motion are

𝑑r

𝑑𝑡
= p

𝑑p

𝑑𝑡
= − r̂

|r|2
.

(4.17)

This system has one scalar and two vector conserved quantities

𝐸 =
p2

2
− 1

|r|

L = r× p

A = p× L− r̂,

(4.18)

which, in our 4D phase space, reduces to three scalar conserved quantities: the total

energy 𝐸 (or equivalently, the semi-major axis 𝑎 = −1/2𝐸), the angular momentum

𝐿 = |L|, and the orbital orientation angle 𝜑, which is the angle of the LRL vector A

relative to the 𝑥-axis. As a result, the trajectories also form 1D orbits in the phase

space (Fig. 4.4b).

Our approach accurately identifies the three conserved quantities (Fig. 4.4c), and

the extracted embedding corresponds most directly to the geometric features of the

orbits (Figs. 4.4d–f). The first two components embed the semi-major axis vector

a = (𝑎 cos𝜑, 𝑎 sin𝜑) with magnitude given by the semi-major axis 𝑎 = −1/2𝐸, which

is related to the energy 𝐸, and orientation given by the orientation angle 𝜑 of the

elliptical orbit (Figs. 4.4d, 4.4e). The third relevant component (component 6) embeds

the angular momentum 𝐿 (Fig. 4.4f). A linear fit of the identified relevant embedding

components with 𝑎 cos𝜑 (𝑎 sin𝜑) has 𝑅2 = 0.987 (𝑅2 = 0.986) and rank correlation

𝜌 = 0.994 (𝜌 = 0.992). A similar linear fit with 𝐿 has 𝑅2 = 0.927 and 𝜌 = 0.970.

This example demonstrates that, for a system with multiple conserved quantities,

the ground metric for optimal transport controls the relative scale of each conserved

quantity in the extracted embedding. In this case, the geometry of the shape space

𝒞 is dominated by changes in the semi-major axis 𝑎 and orientation angle 𝜑, whereas

changes in the angular momentum 𝐿, which controls the eccentricity of the orbit,
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play a more minor role and thus appear in a later embedding component with a lower

score (Fig. 4.4c).

4.4.4 Double Pendulum

To test our approach on a non-integrable system with higher dimensional isosurfaces,

we study the classic double pendulum system (Fig. 4.5a) with unit masses and unit

length pendulum arms. This system has a 4D phase space, consisting of the angles

𝜃1, 𝜃2 and the angular velocities 𝜔1, 𝜔2 of the two pendulums (Fig. 4.5b), and only has

a single scalar conserved quantity

𝐸 = 𝜔2
1 +

1

2
𝜔2
2 + 𝜔1𝜔2 cos(𝜃1 − 𝜃2)− 2 cos 𝜃1 − cos 𝜃2 (4.19)

corresponding to the total energy. However, the double pendulum system has both

chaotic and non-chaotic phases. In particular, at high energies, the system is chaotic

and only conserves the total energy, while at low energies, the system behaves more

like two coupled harmonic oscillators with two independent conserved energies

𝐸± =
1

8

[︁
4𝜃21 + 2𝜃22 ±

√
2 𝜃1𝜃2

+
(︁
2±

√
2
)︁ (︀

2𝜔2
1 + 𝜔2

2

)︀
+ 4

(︁
1±

√
2
)︁
𝜔1𝜔2

]︁ (4.20)

corresponding to the two modes of the coupled oscillator system. Therefore, we expect

to see two distinct phases in our extracted embedding: one with a single conserved

quantity 𝐸 at high energy and another with two approximately conserved quantities

𝐸± at low energy, which approximately sum to 𝐸 ≈ 𝐸+ + 𝐸−.

At first glance, it appears as though our method has only identified a single rel-

evant component corresponding to the conserved total energy 𝐸 (Figs. 4.5c, 4.5e)

with rank correlation 𝜌 = 0.996. However, if we restrict ourselves to low energy tra-

jectories with first embedding component 𝑣1 < −1, we find that there is a region of

the shape space which is two-dimensional, corresponding to the two independently

conserved energies 𝐸± of the low energy non-chaotic phase where the double pendu-
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Figure 4.5: Identifying conserved quantities for (a) the double pendulum. (b) Sample tra-
jectories show sample points plotted in 2D slices of the 4D phase space consisting of the
pendulum angles 𝜃1, 𝜃2 and angular velocities 𝜔1, 𝜔2. (c) The heuristic score (with cutoff
0.6) identifies one relevant embedding component corresponding to (e) the total energy 𝐸.
(d) However, if we restrict the embedding to trajectories with first component 𝑣1 > −1
(i.e. low energy trajectories) and renormalize the embedding, we find (f–h) two conserved
quantities corresponding to the energies 𝐸± of the two decoupled low energy modes. The
gray points in Figures 4.5f–h correspond to the high energy trajectories (first component
𝑣1 < −1) which are not relevant when considering the low energy non-chaotic phase of the
double pendulum.
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Figure 4.6: Identifying the conserved spatial phase for the oscillating Turing pattern system.
(a) An example trajectory, with randomly sampled states 𝑢(𝑥) and 𝑣(𝑥) plotted, illustrates
the high dimensional nature of the problem. (b) The heuristic score (with cutoff 0.6) iden-
tifies two relevant components, but on further examination, (c) we see that there is just
a single conserved angle, corresponding to the spatial phase 𝜂 of the Turing pattern, that
needs to be embedded in two dimensions due to its topology.

lum behaves like a coupled oscillator system with two distinct modes. For the low

energy trajectories, a linear fit of the now two relevant components with 𝐸+ (𝐸−)

has rank correlation 𝜌 = 0.836 (𝜌 = 0.937). If we restrict ourselves to even lower

energy trajectories with 𝑣1 < −2, a similar linear fit for 𝐸+ (𝐸−) has rank correlation

𝜌 = 0.934 (𝜌 = 0.989).

This analysis of the double pendulum shows that our method can still provide

significant insight into complex dynamical systems with multiple phases involving

varying numbers of conserved quantities. This manifests itself as manifolds of different

dimensions in shape space that are stitched together at phase transitions, presenting

a significant challenge for most manifold learning methods. In this example, this

difficulty is reflected in the performance of the heuristic score, which is designed to

identify relevant embedding components for a single manifold.
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4.4.5 Oscillating Turing Patterns

Next, we consider an oscillating Turing pattern system that is both dissipative and

has a much higher dimensional phase space than our previous examples. In particular,

we study the Barrio–Varea–Aragón–Maini (BVAM) model [7, 9]

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
+ 𝑢− 𝑣 − 𝐶𝑢𝑣 − 𝑢𝑣2

𝜕𝑣

𝜕𝑡
=
𝜕2𝑣

𝜕𝑥2
− 3

2
𝑣 +𝐻𝑢+ 𝐶𝑢𝑣 + 𝑢𝑣2

(4.21)

with 𝐷 = 0.08, 𝐶 = −1.5, and 𝐻 = 3, following Aragón et al. [7] who showed that

this set of parameters results in a spatial Turing pattern that also exhibits chaotic

oscillating temporal dynamics, on a periodic domain with size 8. The phase space

of the BVAM system consists of the two functions 𝑢(𝑥) and 𝑣(𝑥) which we discretize

on a mesh of size 50, giving us an effective phase space dimension of 100. Because

this system is dissipative, we will focus on characterizing the long term behavior of

the dynamics, i.e. the oscillating Turing pattern, which appears to have a conserved

spatial phase 𝜂 for our chosen set of parameters corresponding to the spatial position

of the Turing pattern.

Our method successfully identifies the spatial phase 𝜂 but embeds the angle as a

circle in a 2D embedding space (Fig. 4.6)—a result of the periodic topology of 𝜂. While

this shows that the number of relevant components determined by our heuristic score

may not always match the true manifold dimensionality, such cases are often easily

identified by examining the components directly (Fig. 4.6c) or by cross checking with

an intrinsic dimensionality estimator [13]. A linear fit of the two relevant components

with cos 𝜂 (sin 𝜂) has 𝑅2 = 0.9991 (𝑅2 = 0.9997) and 𝜌 = 0.9993 (𝜌 = 0.9992). This

example both tests our method on a high dimensional phase space and demonstrates

how our approach can be applied to dissipative systems to study long term behavior.
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Figure 4.7: Identifying three local conserved quantities of the Korteweg–De Vries (KdV)
equation. (a) An example trajectory from the KdV dataset shows the high dimensional raw
sampled states 𝑢(𝑥). (b) To focus on local conserved quantities, we extract a distribution of
the local features 𝑢(𝑥),Δ𝑢(𝑥) from the raw states, removing the explicit spatial label. The
plot shows the local feature distributions for a few sample states. (c) The heuristic score
(with cutoff 0.6) correctly identifies three relevant components corresponding to (d–f) the
three local conserved quantities (Eq. 4.23).

4.4.6 Korteweg–De Vries Equation

For many spatiotemporal dynamical systems, the conservation laws are local in na-

ture. Locality can significantly simplify the analysis of the conserved quantities and

suggests a way to restrict the type of conserved quantities identified by our method.

Specifically, we can adapt our approach to focus on local conserved quantities by

replacing the raw states (Fig. 4.7a) by a distribution of local features (Fig. 4.7b),

removing the explicit spatial label and providing a fully translation invariant repre-

sentation of the state. Then, instead of using the Euclidean metric in the original
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phase space, we use the energy distance [40, 110] between the distributions of local

features as the ground metric for optimal transport.

To demonstrate this method for identifying local conserved quantities, we consider

the Korteweg–De Vries (KdV) equation

𝜕𝑢

𝜕𝑡
= −𝜕

3𝑢

𝜕𝑥3
− 6𝑢

𝜕𝑢

𝜕𝑥
. (4.22)

The KdV equation is fully integrable [43] and has infinitely many conserved quantities

[97], the most robust of which are the most local conserved quantities expressible in

terms of low order spatial derivatives. To focus on these robust local conserved

quantities, we use finite differences (i.e. 𝑢(𝑥),∆𝑢(𝑥) = 𝑢(𝑥+∆𝑥)−𝑢(𝑥),∆2𝑢(𝑥), . . .)

as our local features, allowing us to restrict the spatial derivative order of the identified

conserved quantities. In this experiment, we only take 𝑢(𝑥) and ∆𝑢(𝑥), meaning that

the identified local conserved quantities will only contain up to first order spatial

derivatives. For the KdV equation, there are three such local conserved quantities:

𝑐1 =

∫︁ 𝑙

0

𝑢 𝑑𝑥

𝑐2 =

∫︁ 𝑙

0

𝑢2 𝑑𝑥

𝑐3 =

∫︁ 𝑙

0

[︃
𝑢3 − 1

2

(︂
𝜕𝑢

𝜕𝑡

)︂2
]︃
𝑑𝑥,

(4.23)

which also have direct analogues in generalized KdV-type equations [5].

Our method successfully identifies three relevant components (Fig. 4.7c) corre-

sponding to (d–f) the three local conserved quantities (Eq. 4.23). Linear fits of these

components to 𝑐1, 𝑐2, and 𝑐3 have rank correlations 𝜌 = 0.995, 0.994, and 0.985, re-

spectively. This result shows how our approach can be adapted to incorporate known

structure, such as locality and translation symmetry, in applications to complex high

dimensional dynamical systems.
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4.5 Conclusion

We have proposed a non-parametric manifold learning method for discovering con-

servation laws, tested our method on a wide variety of dynamical systems—including

complex chaotic systems with multiple phases and high dimensional spatiotempo-

ral dynamics—and also shown how to adapt our approach to incorporate additional

structure such as locality and translation symmetry. Our method does not assume or

construct an explicit model for the system nor require accurate time information like

previous approaches [66, 83], only relying on the ergodicity of the dynamics modulo

the conservation laws (Sec. 4.2.1). As a result, our method is also quite robust to

measurement noise and can often deal with missing information such as a partially

observed phase space (Figs. 4.2e–h, Figs. 4.3e–h, Appendix 4.C).

Compared with recently proposed deep learning-based methods [47, 133], our ap-

proach is much more interpretable since it relies on explicit geometric constructions

and well-studied manifold learning methods that directly determine the geometry of

the shape space 𝒞 and, therefore, the identified conserved quantities. This is reflected

in our ability to explicitly derive the expected result for the simple harmonic oscillator

(Sec. 4.3), as well as in the identified conserved quantities in many of our experiments.

For example, the embedding of the semi-major axis vector in the planar gravitational

dynamics experiment (Sec. 4.4.3) stems directly from the elliptical geometry of the

orbits and their orientation in phase space, which is captured by the Euclidean ground

metric and lifted into shape space by optimal transport. Our method also correctly

captures the subtleties of the double pendulum system (Sec. 4.4.4) by providing an

embedding that shows both a 1D manifold at high energies and a 2D manifold at low

energies—a difficult prospect for deep learning approaches that try to explicitly fit

conserved quantities.

Our manifold learning approach to identifying conserved quantities provides a new

way to analyze data from complex dynamical systems and uncover useful conservation

laws that will ultimately improve our understanding of these systems as well as aid

in developing predictive models that accurately capture long term behavior. Our
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method also serves as a strong non-parametric baseline for future methods that aim

to discover conservation laws from data. We also believe that similar combinations of

optimal transport and manifold learning have the potential to be applied to a wide

variety of other problems that also rely on geometrically characterizing families of

distributions and hope to investigate such applications in the near future.

4.A Dataset Details

The SHO dataset contains 200 sample trajectories, each with 200 uniformly sampled

states in time.

The simple pendulum dataset contains 200 trajectories with uniformly sampled

energies 𝐸 ∈ [0, 2]. Each trajectory has 200 sampled states at uniformly sampled

times 𝑡 ∈ [0, 2000].

The planar gravitational dynamics dataset contains 400 trajectories with uni-

formly sampled energies 𝐸 ∈ [−0.15,−0.5], angular momenta 𝐿 ∈ [0, 1], and orbital

orientation angles 𝜑 ∈ [0, 2𝜋). Each trajectory has 200 sampled states at uniformly

sampled times 𝑡 ∈ [0, 2000].

The double pendulum dataset contains 1000 trajectories with initial angles 𝜃1, 𝜃2 ∼

Unif(−0.75𝜋, 0.75𝜋) and initial angular velocities 𝜔1, 𝜔2 ∼ 𝑁(0, 0.52). Each trajectory

contains 500 points uniformly sampled in time 𝑡 ∈ [0, 50000]. One additional subtlety

of applying our approach to the double pendulum comes from the periodicity of the

angles 𝜃1, 𝜃2 describing the positions of the two pendulums. The Euclidean ground

metric used for optimal transport must take into account this periodicity, so we choose

to leave the data unnormalized and use the shortest Euclidean distance between pairs

of points in the periodic phase space.

The oscillating Turing pattern dataset contains 400 trajectories, where we initialize

our states 𝑢(𝑥) and 𝑣(𝑥) with unit Gaussian noise in Fourier space and take 200 states

with uniformly sampled times 𝑡 ∈ [300, 1300]. By allowing for a transient time of 300,

we focus our study on the long term behavior of the oscillating Turing pattern.

Finally, we study the KdV equation on a periodic domain of size 𝑙 = 20 and with
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mesh size 200 (downsampled from a mesh size of 1000 used during data generation).

The dataset contains 400 trajectories each with 200 states at uniformly sampled times

𝑡 ∈ [0, 10]. To produce a reasonable variety of initial conditions, each trajectory is

initialized with normally distributed Fourier components scaled by a Gaussian band-

limiting envelope with width uniformly sampled in the interval [10𝜋/𝑙, 20𝜋/𝑙].

4.B Heuristic Score for a Minimal Diffusion Maps

Embedding

Traditionally, diffusion maps [32] and Laplacian eigenmaps [11] leave the embedding

dimension 𝑛 as a hyperparameter and simply use the eigenvectors corresponding to

the 𝑛 smallest eigenvalues to construct the embedding. In practice, the embedding

dimension 𝑛 is often chosen for convenience (e.g. in visualization applications) or by

examining the eigenvalues 𝜆𝑖 and looking for a sharp increase in the magnitude of

the eigenvalues that would separate the signal from the noise. Because identifying

the number of conservation laws is an important step in our approach, we refine this

heuristic by directly computing an approximate length scale

𝑙𝑖 =
√︀
−𝜖/ log(1− 𝜆𝑖), (4.24)

where 𝜖 is the scale factor from the Gaussian kernel used to construct the Laplacian

matrix 𝐿 (Eq. 4.7). We derive this length scale by considering the normalized kernel

𝐼 − 𝐿 to be an approximation of the heat kernel exp(𝜖∆), implying that the length

scales 𝑙𝑖 associated with the Laplace–Beltrami operator ∆ are given by

exp(𝜖∆) = 𝐼 − 𝐿 =⇒ exp(−𝜖/𝑙2𝑖 ) = 1− 𝜆𝑖. (4.25)

We then divide by 𝑙1 to obtain the relative length scale

𝑙𝑖
𝑙1

=

√︃
log(1− 𝜆1)

log(1− 𝜆𝑖)
, (4.26)
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Figure 4.8: Breakdown of the heuristic score and illustration of redundant embedding com-
ponents from the planar gravitational dynamics experiment. (a) The relative length scale
𝑙𝑖/𝑙1 for each embedding component is computed from the corresponding eigenvalue 𝜆𝑖 of
the Laplacian matrix (Eq. 4.24). (b) The unpredictability measure 𝑚𝑖 for each component
is computing using a nearest neighbor estimator [104]. (c) The combined score 𝑚𝑖𝑙𝑖/𝑙1 is the
product of the relative length scale and the unpredictability measure. (d–f) The components
3, 4, and 5 are identified by the unpredictability measure as redundant. If we examine these
three components, we find that they together embed a second order angular mode of com-
ponents 1 and 2 (Figs. 4.4d, 4.4e). In particular, the embedding is shaped like the surface
of a cone with the height (or radial distance) roughly corresponding to the semi-major axis
𝑎 and the angle around the cone corresponding to 𝜑 mod 𝜋, a second order mode of the
orientation angle 𝜑.
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which can be used as a heuristic measure of relevance—components with a small

relative length scale are more likely to be noise. Compared with directly using the

eigenvalues 𝜆𝑖, we find this heuristic to be less sensitive to the choice of 𝜖 in the kernel.

In addition to noise, there is the common problem of redundant embedding com-

ponents that stem from the structure of the Laplacian operator: higher order modes of

previous eigenvectors often appear before more informative eigenvectors correspond-

ing to new manifold directions. This problem is clearly illustrated in the planar

gravitational dynamics experiment (Sec. 4.4.3), where components 3, 4, and 5 are all

redundant with components 1 and 2 but component 6 is a new and relevant conserved

quantity (Figs. 4.8d–f). To address this issue, the key observation is that, while all

components of the diffusion map are linearly independent, redundant components

are still predictable (via a nonlinear function) from previous components. Therefore,

we require a measure of “unpredictablility” that allows us to identify redundancies.

We choose the heuristic 𝑚𝑖 proposed by Pfau and Burgess [104] that uses a nearest

neighbor estimator (using 5 nearest neighbors) to determine whether a new embed-

ding component is too predictable and therefore redundant.

To compute our final heurstic score (Fig. 4.8c), we take the product of the relative

length scale 𝑙𝑖/𝑙1 (Fig. 4.8a) with the unpredictability measure 𝑚𝑖 (Fig. 4.8b). We

find this simple combined score performs well for identifying relevant embedding

components by removing both noise components as well as redundant components.

4.B.1 Choosing a Score Cutoff

To use the heuristic score to identify the number of conserved quantities and construct

a minimal embedding, we require a score cutoff to separate relevant components that

we keep in our embedding from irrelevant components that we discard. To choose this

cutoff, we sweep cutoff values in the interval [0, 1], compute the embedding size (i.e.

the number of relevant components) based on the chosen cutoff, and then examine

the result to identify a robust value for the cutoff (Fig. 4.9).
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Figure 4.9: Example from the planar gravitational dynamics experiment of identifying the
number of conserved quantities (i.e. the embedding size). (a) Sweeping the cutoff value from
0 to 1, we find plateaus indicating robustness at embedding size 2 and 3. Note that there is
a spurious plateau at the maximum embedding size 20. (b) A histogram of the embedding
sizes confirms that the number of conserved quantities is likely to be 3.

Table 4.1: Rank correlations 𝜌 of linear fits with ground truth conserved quantities for the
additional experiments.

Dataset Conserved Quantity 𝜌

Simple Pendulum: Position Only 𝐸 0.998
Simple Pendulum: Position Only + Noise 𝐸 0.996

Planar Gravitational Dynamics:
Position Only

𝑎 cos𝜑 0.994
𝑎 sin𝜑 0.993
𝐿 0.968

Planar Gravitational Dynamics:
Noise

𝑎 cos𝜑 0.994
𝑎 sin𝜑 0.992
𝐿 0.945

4.C Additional Experiments

To further demonstrate the robustness of our approach, we show several additional

experiments on the simple pendulum and planar gravitational dynamics datasets.

For the simple pendulum, our method still performs well when using only angle 𝜃

measurements, i.e. a partially observed phase space (Fig. 4.10a). In fact, even if we

add Gaussian noise (𝜎 = 0.5) on top of the partially observed phase space, we still

obtain a similar result (Fig. 4.10b). Similarly, for planar gravitational dynamics with

only position r data or with added Gaussian noise (𝜎 = 0.5), our method is still able
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Figure 4.10: Additional experiments illustrating the robustness of our approach. (a) For
the simple pendulum system, even when provided only angle 𝜃 measurement data (without
angular velocity 𝜔), our method is able to identify a single relevant component corresponding
to the energy the pendulum (𝜌 = 0.998). (b) If we then also add 𝜎 = 0.5 Gaussian noise,
we can still achieve a similar result (𝜌 = 0.996). For planar gravitational dynamics, our
method also performs well given (c) only position r data or (d) with 𝜎 = 0.5 Gaussian noise,
correctly identifying the three conserved quantities.
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Figure 4.11: Nonlinear periodic orbit of the double pendulum. (a) The four red highlighted
points in the extracted embedding correspond to (b, c) a periodic orbit of the double pen-
dulum that is connected to but well outside of the linear coupled oscillator regime.

to identify the three conserved quantities (Figs. 4.10c, 4.10d). The corresponding

rank correlations with the ground truth conserved quantities are given in Table 4.1.

4.D Nonlinear Periodic Orbit of the Double Pendu-

lum

In addition to the chaotic and linear non-chaotic phases, the double pendulum can also

exhibit other kinds of complex behavior, including highly nonlinear periodic orbits. In

our extracted embedding (Fig. 4.11a), we see an example of such a nonlinear periodic

orbit (Figs. 4.11b, 4.11c). The placement of this periodic orbit in the embedding also

meaningfully connects it with the low energy in-phase mode from the linear coupled

oscillator regime (Fig. 4.5g), i.e. this periodic orbit can be thought of as a nonlinear

high energy extension of the low energy in-phase mode.

4.E Additional Method Details

All of the code necessary for generating our datasets, applying our method, and

reproducing our results is available at https://github.com/peterparity/conserv

ation-laws-manifold-learning.
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4.E.1 Sinkhorn Algorithm

To estimate the 2-Wasserstein distance using the Sinkhorn algorithm [37], we use

a convergence threshold of 0.01 and a decaying entropy regularization parameter

that starts at 10.0 and decays by 0.995 at each step until it reaches a target of

0.1. This computation of pairwise Wasserstein distances between the trajectories is

currently the performance bottleneck of our approach but is easily parallelized over

multiple GPUs using the OTT-JAX library [38]. One option to speed up convergence,

which we hope to investigate in the future, is to allow for a significantly larger target

regularization parameter. The result would remain a valid distance metric that, in

fact, interpolates between the Wasserstein metric and a maximum mean discrepancy

(MMD) metric [40].

4.E.2 Diffusion Maps

To improve the noise robustness of our diffusion map, we follow Karoui and Wu [68]

and replace the diagonal of the affinity matrix 𝑀 (Eq. 4.8) with zeros, i.e.

𝑀*
𝑖𝑗 =𝑀𝑖𝑗 −𝑀𝑖𝑖𝐼𝑖𝑗, (4.27)

before constructing the Laplacian matrix 𝐿. Because this induces an overall shift in

the eigenvalues of the Laplacian that interacts poorly with our length scale heuristic

(Eq. 4.24), we correct for this by subtracting off the normalized mean shift

𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

(︃
𝑀𝑖𝑖/

∑︁
𝑗

𝑀𝑖𝑗

)︃
(4.28)

from the Laplacian matrix 𝐿 to obtain the corrected Laplacian

𝐿*
𝑖𝑗 = 𝐿𝑖𝑗 − 𝑠𝐼𝑖𝑗, (4.29)

which we use to generate our embeddings.
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4.F Proof of Optimal Transport for the Simple Har-

monic Oscillator

Let the transport cost between a pair of points (𝜃𝑖, 𝜃𝑗) ∈ 𝑆1 × 𝑆1 be

𝑐(𝜃𝑖, 𝜃𝑗) = 𝑘2𝑞(𝑟1 cos 𝜃𝑖 − 𝑟2 cos 𝜃𝑗)
2 + 𝑘2𝑝(𝑟1 sin 𝜃𝑖 − 𝑟2 sin 𝜃𝑗)

2. (4.30)

Then, for the proposed optimal transport plan Π with support Γ containing all points

(𝜃, 𝜃) ∈ 𝑆1 × 𝑆1, we will show that Γ is 𝑐-cyclically monotone, and therefore Π is

optimal. See Medio and Lines [96] for further details.

To demonstrate this fact, consider a finite set of pairs {(𝜃1, 𝜃1), (𝜃2, 𝜃2), . . . , (𝜃𝑛, 𝜃𝑛)} ⊂

Γ. Restricted to this finite set, the total cost given the transport plan Π is

𝐶 =
1

𝑛

𝑛∑︁
𝑖=1

𝑐(𝜃𝑖, 𝜃𝑖) (4.31)

=
𝑟21 + 𝑟22
𝑛

𝑛∑︁
𝑖=1

(𝑘2𝑞 cos
2 𝜃𝑖 + 𝑘2𝑝 sin

2 𝜃𝑖)−
2𝑟1𝑟2
𝑛

𝑛∑︁
𝑖=1

(𝑘2𝑞 cos
2 𝜃𝑖 + 𝑘2𝑝 sin

2 𝜃𝑖). (4.32)

Now, consider an alternative transport plan Π′ with support {(𝜃1, 𝜃2), (𝜃2, 𝜃3), . . . , (𝜃𝑛, 𝜃1)}

forming a cycle. The total cost is given by

𝐶 ′ =
1

𝑛

𝑛∑︁
𝑖=1

𝑐(𝜃𝑖, 𝜃𝑖+1) (4.33)

=
𝑟21 + 𝑟22
𝑛

𝑛∑︁
𝑖=1

(𝑘2𝑞 cos
2 𝜃𝑖 + 𝑘2𝑝 sin

2 𝜃𝑖)−
2𝑟1𝑟2
𝑛

𝑛∑︁
𝑖=1

(𝑘2𝑞 cos 𝜃𝑖 cos 𝜃𝑖+1 + 𝑘2𝑝 sin 𝜃𝑖 sin 𝜃𝑖+1),

(4.34)
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where we let 𝜃𝑛+1 = 𝜃1. Then, the difference

𝐶 ′ − 𝐶 =
2𝑟1𝑟2𝑘

2
𝑞

𝑛

𝑛∑︁
𝑖=1

[︂
cos2 𝜃𝑖 + cos2 𝜃𝑖+1

2
− cos 𝜃𝑖 cos 𝜃𝑖+1

]︂
+

2𝑟1𝑟2𝑘
2
𝑝

𝑛

𝑛∑︁
𝑖=1

[︂
sin2 𝜃𝑖 + sin2 𝜃𝑖+1

2
− sin 𝜃𝑖 sin 𝜃𝑖+1

]︂
≥ 0,

(4.35)

since

cos2 𝜃𝑖 + cos2 𝜃𝑖+1

2
≥ cos 𝜃𝑖 cos 𝜃𝑖+1 (4.36)

sin2 𝜃𝑖 + sin2 𝜃𝑖+1

2
≥ sin 𝜃𝑖 sin 𝜃𝑖+1 (4.37)

by the AM–GM inequality (and trivially true if the right hand side is negative). There-

fore, any such cycle will result in an equal or higher transport cost (strictly higher if

at least one pair 𝜃𝑖, 𝜃𝑖+1 are distinct), implying that Γ is 𝑐-cyclically monotone.
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Chapter 5

Conclusion and Future Work

In this thesis, we have proposed and demonstrated three machine learning approaches

designed specifically for scientific applications. While much of this current work is

aimed at analyzing data from nonlinear dynamical systems, the same concepts and

methods can be applied across a broad range of problems in physics as well as other

scientific or engineering disciplines. The underlying barriers to using machine learning

in these scientific domains are the same: namely, the lack of interpretability and

insight into the learned model and the need for physical priors or inductive biases in

the design of machine learning architectures and algorithms. To address these issues

moving forward, we propose the following broad research directions:

1) design and optimize physics-informed machine learning architectures that in-

corporate physical laws, symmetries, and constraints to take advantage of the

inductive biases provided by known physical structures;

2) integrate these physics-informed architectures with existing computational meth-

ods to combine the flexibility of neural networks with the theoretical guarantees

of traditional algorithms; and

3) develop new methods for learning interpretable physical representations from

raw data in order to provide new insights into the underlying physics and aid

in the process of scientific discovery.
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5.1 Physics-Informed Architectures

In Chapter 2, we demonstrated the power of symbolic models to improve general-

ization performance and impose physics priors, but we often give up expressivity in

the process due to the need to select a predefined library of terms. My collaborators

and I have also examined how to enhance the expressivity of differentiable symbolic

models to allow arbitrary function compositions [73]. Our proposed symbolic model

is designed for sparse symbolic regression tasks but is also easily incorporated into

machine learning architectures, combining interpretable symbolic physics with the

flexibility and power of deep learning. One of the primary difficulties with train-

ing such models is the question of how to effectively impose sparsity while retaining

differentiability. Standard 𝐿1 regularization often results in degraded model perfor-

mance, so recent works that take a probabilistic sampling approach to selecting sparse

symbolic expressions offer an intriguing alternative [34].

In Chapter 3, our use of an equivariant physics-informed architecture allowed us

to extract relevant parameters even with very small datasets (Appendix 3.F) and

to adapt, without retraining, our learned predictive model to work with a differ-

ent set of boundary conditions (Appendix 3.G). The significant body of work on

equivariant architectures [6, 31, 67, 77, 124] and other physics-informed neural net-

work architectures—e.g. for solving PDEs [80] or for simulating quantum chemistry

[51, 105]—promises to make deep learning methods more data efficient and better

suited for learning from structured scientific data. Optimizing expressive symbolic

models and equivariant architectures as well as developing new physics-informed ar-

chitectures will be important steps toward improving interpretability and creating

effective machine learning methods for scientific applications.

5.2 Enhancing Existing Computational Methods

In addition to designing more efficient and expressive physics-informed architectures,

great gains in performance and interpretability can come from combining such archi-
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tectures with traditional theoretically-motivated models as well as integrating them

into existing computational methods. Our framework in Chapter 2 augments a sym-

bolic model with an encoder, enabling partially observed system identification. In

Chapter 3, we showed how a predictive model that is structured like a physics sim-

ulator imposes a strong inductive bias on the learned latent space, resulting in in-

terpretable latent parameters and high quality predictions. My collaborators and

I have also demonstrated this concept when we examined the performance of us-

ing physics-informed Bayesian neural network architectures as surrogate models for

Bayesian optimization on scientific problems [72]. We found that using appropriately

structured architectures alongside relevant auxiliary information about the physical

system often significantly outperforms alternative methods, such as Gaussian pro-

cesses with handcrafted kernels.

The same theme is playing out across many research areas, including recent work

on phase retrieval [129], differentiable physics simulators [117], inverse design for

photonics [61], Koopman operator-based methods for modeling dynamical systems

[91], flow-based sampling for statistical many-body systems [99] and lattice gauge

theory [67], and neural network quantum states for variational Monte Carlo [21]. By

combining machine learning architectures with existing models and computational

methods, it is possible to obtain interpretable and highly generalizable models, and,

in some cases, theoretical bounds or guarantees of correctness that would otherwise

be absent when naively applying deep learning to scientific problems.

5.3 Learning Interpretable Representations

As we demonstrated in Chapter 3, unsupervised representation learning methods can

provide a novel way to gain additional insight into unknown physical systems and dis-

cover new physics. In addition to autoencoder-based methods, we introduced an al-

ternative geometric approach in Chapter 4 that relies on manifold learning to uncover

the underlying structure of an existing high-dimensional representation. My collabo-

rators and I have also used manifold learning in combination with reservoir computing
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methods to study variations in chaotic dynamical systems [2]. Manifold learning is

currently being used in a variety of scientific applications, from identifying phase

transitions in condensed matter physics [92] to visualizing complex high-dimensional

data in computational biology [98]. The related field of contrastive representation

learning is also becoming increasingly popular, especially for computer vision tasks

[27], and we believe there are significant opportunities to apply these new methods

to scientific domains.

We plan to further investigate how unsupervised representation learning, includ-

ing manifold learning and contrastive learning methods, can be used to discover new

physical laws and constraints as well as extract interpretable physical features—such

as low-dimensional intrinsic coordinates and order parameters. Combined with effi-

cient and expressive physics-informed architectures, these machine learning methods

may soon become essential tools for scientists looking to understand and discover

something new in their complex datasets.

5.4 Final Thoughts

Interpretable physics-informed machine learning methods should be designed to ex-

tract key factors of variation, intrinsic coordinates, and physically-meaningful repre-

sentations from experimental data that not only help us make better predictions but

also enhance our theoretical understanding of complex physical systems. To achieve

this, machine learning algorithms and neural network architectures originally devel-

oped for other data science applications must be adapted to take advantage of known

physical laws, symmetries, and constraints. These physics-informed architectures can

then be combined with known physical models and incorporated into existing com-

putational methods to further bridge the gap between powerful black box models like

neural networks and well-understood theoretical physics.

As a physicist who sees machine learning as a serious tool for doing science, I am

excited by the new insights that can be extracted from experimental data and the-

oretical models by carefully applying these new techniques. We are quickly learning
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that interpretable physics-informed machine learning is both a necessary development

to make machine learning useful for science and an incredibly powerful tool that will

undoubtedly lead to new discoveries. As a machine learning researcher, I also ex-

pect that the interpretable machine learning methods and design principles that our

community is developing will have applications far beyond problems in physics.
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