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Abstract

Along with the Landau paradigm of phase transitions, topology has been recognized
as an important metric of classifying condensed matter systems, offering successful de-
scriptions for systems with nontrivial energy gaps or protected band degeneracies. As
much as topology has risen in significance, the study of correlation has also provided
crucial insights for a number of may-body phenomena realized when the inter-particle
interactions dominate the kinetic energies of individual constituents. The kagome lat-
tice is a generalized lattice model whose characteristic atomic arrangement produces
both topological Dirac bands and correlated flat bands. In search of its material
realizations, kagome metals, a class of intermetallics containing the two-dimensional
kagome networks of transition metal atoms, have shown promise in faithfully mani-
festing the original lattice model in their bulk electronic structures.

In this thesis, we present our works on engineering topology and correlation in
two representative kagome metals, FeSn and Ni3In, stabilized in epitaxial thin film
form. We characterize via transport, thermodynamic, and spectroscopic probes the
emergent quantum phenomena arising from the key band structure singularities and
further exploit various thin film tuning parameters to manipulate them. With system-
atic control of chemical potential and spin structure, we elucidate the pivotal roles
of the lattice-driven Dirac and flat bands in generating magnetic instabilities and
topological edge modes. We also demonstrate how the kagome spectrum reconstructs
upon intense inter-kagome hybridization or broken crystallographic symmetry, even-
tually giving rise to new types of flat bands and their derived anomalies. To track
the origins of these, we incorporate films into spintronic or ion-battery devices and
monitor their responses under different conditions. These results will construct an
important framework in designing topological and correlated electronic states and
further driving them towards the regime suitable for functional device applications.

Thesis Supervisor: Joseph G. Checkelsky
Title: Associate Professor of Physics

3



4



Acknowledgments

This thesis research would not have been possible without invaluable supports from

many people. First and foremost, I would like to express my deepest gratitude to my

advisor Prof. Joe Checkelsky. I am extremely blessed to have been educated under his

scientific guidance that encompasses the entire process of identifying intellectually-

inspiring problems, designing experimental protocols, performing the experiments

the right way, and finally communicating the results in a way that engages the most

effectively with the audience. The approach that Joe taught me will be one of the

most powerful assets for my life, not restricted to the research in condensed matter

physics. I also appreciate him for his moral support that helped me survive through a

tide after another in the past six years. In both scientific and non-scientific contexts,

he has kept me up with caring advice at times or playful conversations at other times.

I also wish to thank Prof. Riccardo Comin and Prof. Vladan Vuletic for serving as

my thesis committee members.

I thank the former and current members of the Checkelsky group as well as some

of my closest collaborators. Among all, I am most deeply indebted to Hisashi Inoue

for his mentorship during the early stage of my PhD journey. For most of my first

experiments in the group − the first film growth, the first transport measurement, the

first Maglab trip, and many more − he was always there with me patiently helping

a young graduate student learn every necessary step the proper way. His presence

during the formative phase of my career will have an everlasting impact on my life. I

am grateful to Takehito Suzuki, Linda Ye, and Aravind Devarakonda for passing down

their profound knowledge and experience on material growth and characterization

when I first joined the lab. I thank Linda Ye in particular for pioneering some of

the foundational works that motivated my experiments. I appreciate Caolan John for

sharing with me all the up and down moments in the latter part of my PhD journey. In

hindsight, I truly cherish the memories of us as a duo going through day-to-day grinds

of research, continuously discussing over data and brainstorming new ideas. The

works presented here are made possible thanks to active theory inputs from Shiang

5



Fang (within the group), Madhav Ghimire (from Tribhuvan Univ.), Manuel Richter

(from IFW Dresden), and Junwei Liu (from HKUST). As well as their immense

supports on the subject matters of research, their profound expertise and whole-

hearted mindset to science in general have always been inspiring to me. I enjoyed all

the scientific discussions and casual coffee-talks I had with Takashi Kurumaji, Mallika

Randeira, Alejandro Ruiz, Jingxu Kent Zheng, Shu Yang Frank Zhao, Junbo Zhu,

Paul Neves, Joshua Wakefield, Yuki Tatsumi, Pheona Williams, Max Debbas, Boris

Tsang, Alan Chen, and Ryan McTigue.

I wish to acknowledge contributions from external supports. I would like to thank

Mun Chan and Dave Graf from the National High Magnetic Field Laboratory for

their technical assistances on high field experiments. I thank Charlie Settens, Alan

Schwartzman, and Kevin Woller for managing shared characterization facilities. I

appreciate SVTA for their product development and instrument maintenance for the

MBE chamber in 13-2080, the bread and butter of my thesis research. I am glad that

the chamber sustained till I make it to the finish line without any catastrophic crash.

I thank ACE for their prompt and high quality TEM measurements. I wish to express

my gratitude to Prof. Philip Kim at Harvard for letting me use the heterostructure

fabrication setup for one of my projects (and also for inspiring me to study condensed

matter physics in the early days).

I would like to thank people in the CMX community. I appreciate Prof. Nuh Gedik

for providing me appropriate guidance as an academic advisor. I thank Monica Wolf

and Gerry Miller for their administrative and mental supports. Among all colleagues

in CMX, special thanks go to Heunmo Yoo an Dongsung Choi for sharing many

difficult moments with me in the past six year.

Finally, I would like to thank my parents, grandmother, and brother for their love

and support. I would like to appreciate my wife Eunice for being on my side thus far

and forever. This has been a long journey and I would not have reached at this point

without helps from these people.

6



Contents

1 Introduction 17

1.1 Topology as a metric of phase classification . . . . . . . . . . . . . . . 17

1.2 Correlation at the origin of emergent phenomena . . . . . . . . . . . 21

1.3 Lattice-driven topology and correlation in the kagome lattice . . . . . 23

1.3.1 Symmetry-enforced band structure singularities . . . . . . . . 24

1.3.2 Topological phases in the kagome lattice . . . . . . . . . . . . 27

1.3.3 Correlated phases in the kagome lattice . . . . . . . . . . . . . 30

1.3.4 The kagome metals . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Thin film engineering of quantum materials . . . . . . . . . . . . . . 34

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Experimental methods 39

2.1 Molecular Beam Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Structural characterizations . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Electrical transport measurements . . . . . . . . . . . . . . . . . . . . 43

2.4 Thermoelectric measurements . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Shubnikov-de Haas oscillation . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Capacitive torque magnetometry . . . . . . . . . . . . . . . . . . . . 48

2.7 Planar tunneling spectroscopy . . . . . . . . . . . . . . . . . . . . . . 50

3 Engineering the kagome band structure in FeSn 53

3.1 Properties of TSn (T = Fe, Co) . . . . . . . . . . . . . . . . . . . . . 53

3.2 Synthesis and characterization of FeSn epitaxial thin films . . . . . . 56

7



3.2.1 Epitaxial thin film synthesis of FeSn . . . . . . . . . . . . . . 56

3.2.2 Structural characterizations . . . . . . . . . . . . . . . . . . . 59

3.2.3 Magnetic characterizations . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Electrical characterizations . . . . . . . . . . . . . . . . . . . . 62

3.2.5 Quantum oscillations . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Complete control of the kagome spectrum in FeSn . . . . . . . . . . . 68

3.3.1 Complete coverage of doping in (Fe1−x−yMnxNiy)(Sn1−z) . . . 68

3.3.2 Magnetotransport properties of (Fe1−x−yMnxNiy)Sn . . . . . . 76

3.3.3 Chemical potential tuning in (Fe1−x−yMnxNiy)Sn . . . . . . . 81

3.3.4 TN tuning in (Fe1−x−yMnxNiy)Sn . . . . . . . . . . . . . . . . 85

3.3.5 Spin structure tuning in Fe(Sn1−z) . . . . . . . . . . . . . . . 90

3.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Surface electronic structure of FeSn 97

4.1 Interfacial atomic arrangement . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Tunneling spectroscopy across Schottky heterojunctions . . . . . . . . 100

4.2.1 Temperature dependent tunnel conductance . . . . . . . . . . 103

4.2.2 Barrier width dependent tunnel conductance . . . . . . . . . . 105

4.2.3 Schottky junction simulations . . . . . . . . . . . . . . . . . . 107

4.2.4 Slab band structure calculations . . . . . . . . . . . . . . . . . 112

4.3 Origin of the surface band reconstruction . . . . . . . . . . . . . . . . 116

4.3.1 Comparison with kagome−stanene bilayers . . . . . . . . . . . 116

4.3.2 Continuous tuning of kagome−stanene interactions . . . . . . 119

4.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Anisotropic flat band and non-Fermi-liquid state in Ni3In 125

5.1 Electronic structure evolution from TM to T3M

(T = 3d transition metal ; M = Ge, Sn, In) . . . . . . . . . . . . . . 125

5.2 Synthesis and characterization of Ni3In epitaxial thin films . . . . . . 130

5.2.1 Epitaxial thin film synthesis of Ni3In . . . . . . . . . . . . . . 130

5.2.2 Structural characterizations . . . . . . . . . . . . . . . . . . . 132

8



5.2.3 Electrical characterizations . . . . . . . . . . . . . . . . . . . . 135

5.2.4 Magnetic characterization . . . . . . . . . . . . . . . . . . . . 140

5.2.5 Thermoelectric characterization . . . . . . . . . . . . . . . . . 142

5.2.6 Discussion: anisotropic non-Fermi-liquid state . . . . . . . . . 143

5.3 Tuning non-Fermi-liquid behaviors in Ni3In . . . . . . . . . . . . . . . 145

5.3.1 Heterointerfacial spin injection . . . . . . . . . . . . . . . . . . 145

5.3.2 Alkali metal intercalation . . . . . . . . . . . . . . . . . . . . 148

5.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Band engineering of antiferromagnetic semimetal GdBi 155

6.1 Properties of (La:Gd)Bi . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Synthesis and characterization of GdBi epitaxial thin films . . . . . . 158

6.2.1 Epitaxial thin film synthesis of GdBi . . . . . . . . . . . . . . 158

6.2.2 Structural characterizations . . . . . . . . . . . . . . . . . . . 160

6.2.3 Magnetic characterizations . . . . . . . . . . . . . . . . . . . . 161

6.3 Confinement-driven metal-insulator crossover . . . . . . . . . . . . . . 164

6.3.1 Degradation-free transport sample preparation . . . . . . . . . 165

6.3.2 Thickness-tuned electrical transport . . . . . . . . . . . . . . . 166

6.3.3 Discussion: metallicity and topology of monolayer GdBi . . . 171

6.3.4 Discussion: symmetry analysis on the C = 2 state . . . . . . . 174

6.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Concluding remarks 179

A Magnetic transitions in doped FeSn films 185

A.1 Seebeck coefficients in (Fe1−yNiy)Sn films . . . . . . . . . . . . . . . . 185

A.2 Canting-induced hysteresis onset temperatures in (Fe1−yNiy)Sn films . 186

9



10



List of Figures

1-1 Topological classification of electronic states . . . . . . . . . . . 18

1-2 Topological phases on the honeycomb lattice . . . . . . . . . . 19

1-3 Topological phase transition via band inversion . . . . . . . . . 21

1-4 Emergent phases from electronic correlations . . . . . . . . . . 22

1-5 Dirac electrons in the kagome lattice and the honeycomb lattice 24

1-6 Flat band wavefunctions in the kagome lattice . . . . . . . . . 26

1-7 Nontrivial gap openings on the ferromagnetic kagome lattice 28

1-8 Trivial gap openings on the distorted kagome lattice . . . . . 29

1-9 Two-dimensional building block layers for kagome metals . . 32

1-10 Manipulating properties of thin film quantum materials . . . 35

1-11 Heterostructure engineering of thin film quantum materials . 37

2-1 Molecular beam epitaxy . . . . . . . . . . . . . . . . . . . . . . . 40

2-2 Structural characterizations on thin film samples . . . . . . . 42

2-3 Schematic of transport measurement on thin film samples . . 44

2-4 Thermoelectric characterizations on thin film samples . . . . 46

2-5 Landau quantization and Shubnikov-de Haas oscillation . . . 47

2-6 Schematic of torque measurement on thin film samples . . . . 49

2-7 Representative torque measurements on thin film samples . . 50

2-8 Measurement configuration for planar tunneling spectroscopy 51

3-1 Antiferromagnetic kagome metal FeSn . . . . . . . . . . . . . . 54

3-2 Paramagnetic kagome metal CoSn . . . . . . . . . . . . . . . . . 55

3-3 Optimization of FeSn thin film synthesis . . . . . . . . . . . . . 57

11



3-4 Structural characterizations of FeSn films . . . . . . . . . . . . 59

3-5 Magnetic torque of an FeSn film . . . . . . . . . . . . . . . . . . 61

3-6 Electrical transport of FeSn films . . . . . . . . . . . . . . . . . 63

3-7 High magnetic field transport of an FeSn film . . . . . . . . . 65

3-8 Field angle dependent Shubnikov-de Haas oscillations . . . . 67

3-9 Band structures of nonmagnetic and antiferromagnetic FeSn 69

3-10 Epitaxial stabilization of (Fe1−x−yMnxNiy)(Sn1−z) films . . . . 71

3-11 X-ray diffraction spectra of (Fe1−x−yMnxNiy)(Sn1−z) films . . . 73

3-12 X-ray reflectivity spectra of (Fe1−x−yMnxNiy)(Sn1−z) films . . 74

3-13 Wetting layer assisted synthesis for heavily doped films . . . 75

3-14 Surface morphologies of (Fe1−x−yMnxNiy)(Sn1−z) films . . . . . 76

3-15 Magnetoresistance of (Fe1−xMnx)Sn . . . . . . . . . . . . . . . . 77

3-16 Magnetoresistance of (Fe1−yNiy)Sn . . . . . . . . . . . . . . . . . 78

3-17 Hall effect of (Fe1−x−yMnxNiy)Sn within 2 K ≤ T ≤ 300 K . . 79

3-18 Density of states of FeSn with varying MFe . . . . . . . . . . . . 80

3-19 Hall effect of (Fe1−x−yMnxNiy)Sn at T = 2 K . . . . . . . . . . 82

3-20 Chemical potential tuning in (Fe1−x−yMnxNiy)Sn . . . . . . . . 83

3-21 Magnetic phase diagram of (Fe1−x−yMnxNiy)Sn . . . . . . . . . 86

3-22 Extracting TN from ρxx(T ) of (Fe1−x−yMnxNiy)Sn . . . . . . . . 87

3-23 Density of states of nonmagnetic FeSn at different band fillings 88

3-24 Flat band driven nature of magnetism in FeSn . . . . . . . . . 90

3-25 Antiferromagnet-to-ferromagnet crossover in Fe(Sn1−z) . . . . 92

3-26 Structural stability analysis of Sn-vacancies in FeSn0.66 . . . . 93

3-27 Magnetoresistance of Fe(Sn1−z) . . . . . . . . . . . . . . . . . . . 94

3-28 σAH vs. σ2
xx scaling in (Fe1−x−yMnxNiy)(Sn1−z) . . . . . . . . . . 95

4-1 Interface characterizations of FeSn/SrTiO3 . . . . . . . . . . . 98

4-2 Tunneling across FeSn/Nb:SrTiO3 heteterointerfaces . . . . . 102

4-3 Temperature dependent tunneling in a x = 0.5 wt.% junction 104

4-4 Tunneling in x = 0.2, 0.7 wt.% junctions . . . . . . . . . . . . . . 106

12



4-5 I-V characteristics of FeSn/Nb:SrTiO3 junctions . . . . . . . . 107

4-6 Tunneling spectroscopy across a Schottky barrier . . . . . . . 108

4-7 Model Schottky junction simulations . . . . . . . . . . . . . . . 111

4-8 Comparison of experimental and simulated tunnel spectra . . 112

4-9 Slab band structure calculation of FeSn . . . . . . . . . . . . . 114

4-10 Bulk vs. surface band structure of FeSn . . . . . . . . . . . . . 115

4-11 Band structure of the ferromagnetic kagome−stanene bilayer 117

4-12 Kagome layers in inversion symmetric environments . . . . . 118

4-13 MFe-dependent band structure of the bilayer . . . . . . . . . . 119

4-14 Continuous tuning of the kagome−stanene interaction . . . . 120

4-15 Evolution of the Dirac-like crossing within the bilayer flat band121

4-16 Berry curvature analysis of the bilayer flat band . . . . . . . . 123

5-1 AB-stacked kagome bilayer in T3M . . . . . . . . . . . . . . . . . 126

5-2 Breathing distortion in T3M . . . . . . . . . . . . . . . . . . . . . 128

5-3 Destructive phase interference of hopping pathways in T3M . 129

5-4 Optimization of Ni3In thin film synthesis . . . . . . . . . . . . . 131

5-5 X-ray measurements on Ni3In films . . . . . . . . . . . . . . . . 132

5-6 Cross-section structural analysis of a Ni3In film . . . . . . . . 134

5-7 Temperature dependent electrical transport of a Ni3In film . 136

5-8 Magnetoresistance of a Ni3In film . . . . . . . . . . . . . . . . . 138

5-9 Magnetic torque of a Ni3In film . . . . . . . . . . . . . . . . . . 141

5-10 Thermoelectric response of a Ni3In film . . . . . . . . . . . . . 142

5-11 Kadowaki-Woods ratio of Ni3In . . . . . . . . . . . . . . . . . . . 144

5-12 Fabrication of NiO/Ni3In heterostructure . . . . . . . . . . . . 146

5-13 NiO/Ni3In under thermal gradient . . . . . . . . . . . . . . . . . 147

5-14 Other heterostructures under thermal gradient . . . . . . . . . 148

5-15 Schematic experimental sequence for alkali intercalation . . . 149

5-16 X-ray diffraction of alkali intercalated Ni3In films . . . . . . . 150

5-17 Electrical transport of alkali intercalated Ni3In films . . . . . 151

13



6-1 Properties of LaBi and GdBi . . . . . . . . . . . . . . . . . . . . 156

6-2 Optimization of GdBi thin film synthesis . . . . . . . . . . . . . 158

6-3 Structural characterizations of GdBi films . . . . . . . . . . . . 160

6-4 Magnetic characterizations of GdBi films . . . . . . . . . . . . . 162

6-5 Origin of the magnetic torque response . . . . . . . . . . . . . . 163

6-6 Degradation-free sample preparation . . . . . . . . . . . . . . . 164

6-7 Thickness-tuned longitudinal resistivity in GdBi films . . . . 166

6-8 Multi-band analysis of magnetotransport . . . . . . . . . . . . 168

6-9 Thickness-tuned Hall effect in GdBi films . . . . . . . . . . . . 169

6-10 Thickness-tuned magnetoresistance in GdBi films . . . . . . . 171

6-11 Band structures of bulk and monolayer GdBi . . . . . . . . . . 172

6-12 Topological phase diagram of monolayer GdBi (111) . . . . . 173

A-1 Temperature dependent Seebeck coefficient in (Fe1−yNiy)Sn . 186

A-2 Canting-induced coercive fields in (Fe1−yNiy)Sn . . . . . . . . . 187

14



List of Tables

1.1 Layer-by-layer arrangements in kagome metals . . . . . . . . . 33

3.1 Band parameters of bulk and thin film FeSn . . . . . . . . . . 66

4.1 Band parameters from simulations and experiments . . . . . . 113

15



16



Chapter 1

Introduction

1.1 Topology as a metric of phase classification

The traditional paradigm of phase transition in condensed matter systems is based

on the symmetries of the order parameters. A solid−liquid phase boundary can be

delineated by the presence or absence of lattice translational symmetry, whereas a

ferromagnet−paramagnet transition is accompanied by the change in time-reversal

symmetry. Within this framework, two systems with the identical symmetry parame-

ters are assumed to be adiabatically connected to each other with no phase transition

between them. In a broader context, however, symmetry is not the unique criterion

for classifying different objects. In mathematics, topology characterizes the properties

of a geometric object robust against various deformations. For instance, any closed

surface can be assigned a genus g = 0, 1, 2, ... , corresponding to the number of holes

in the structure, which cannot be changed unless by creating or removing a hole (Fig.

1-1(a)). This idea has been formalized in the Gauss−Bonnet theorem such that 1 - g

= 1
4π

∫
KGds, where KG is the Gaussian curvature at the surface (Fig. 1-1(b)) [3].

In recent decades, the concept of topology has been introduced as a new metric

of classifying electronic phases of matter. One of the central ideas was that one can

define a set of mathematical invariants in the electronic structure of a solid associ-

ated with the Berry curvature of the underlying wavefunction. The invariants and

the Berry curvature can be understood as momentum space analogs of g and KG. In
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Figure 1-1: Topological classification of electronic states

(a) Geometric objects with genus g = 0, 1, 2. (b) Schematic description of the Gauss-
Bonnet theorem. (c) The quantum Hall effect in a two-dimensional electronic system.
(b) Schematic of the density of states in the Landau level spectrum (bottom) and the
real space charge distributions at corresponding energies (top). The features that are
correlated between (c) and (d) are marked with the color-coded arrows. (c),(d) are
adapted from [1, 2].

this paradigm, two states with distinct topological invariants are assumed to have a

well-defined phase boundary between them even when they have the identical sym-

metry properties. This mathematical concept provided key insights in interpreting

the quantum Hall effect, in which each Hall plateau with the quantized conductance

σxy = i(e2/h) is associated with the topological index of the Landau level (LL) wave-

function (Fig. 1-1(c),(d)) [4, 5]. Furthermore, it was discovered that the quantization

of σxy originates from a series of chiral edge modes circulating around an insulating

bulk when the chemical potential crosses the energy gap between two consecutive

LLs. This realization constituted an important insight that in general an energy gap

separating two or more topologically distinct states generate topologically protected

surface/edge modes via bulk−boundary correspondence.
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Figure 1-2: Topological phases on the honeycomb lattice

(a) Cascade of topological phase transitions in the honeycomb lattice triggered by lat-
tice distortion (left), spin-orbit coupling (middle), or time-reversal symmetry breaking
(right). (b) The Dirac band in the honeycomb lattice [6]. (c) The quantum spin Hall
phase and the helical edge modes predicted from the Kane-Mele model [7]. (d) The
honeycomb lattice with a staggered flux pattern studied in the Haldane model [8].
This model predicted a phase conceptually equivalent to the quantum anomalous Hall
phase.

With the quantum Hall effect being a pioneering example, a great amount of work

has been done towards predicting and stabilizing other topological electronic states

realized under zero magnetic field. One of the leading candidate platforms has been

the honeycomb lattice. With the symmetry-protected Dirac crossing in the band

structure (Fig. 1-2(b)) [6], the honeycomb lattice was shown to be a candidate to

generate nontrivial energy gaps. Along this line, it was predicted from the Kane-

Mele model that a sizable spin-orbit coupling (SOC) can in fact open a topologically

nontrivial gap at the Dirac point in the honeycomb lattice, giving rise to the quan-

tum spin Hall (QSH) phase with two helical modes counter-propagating around the

edge of the insulating bulk (Fig. 1-2(a),(c)) [7]. This phase is characterized by the

topological index Z2 = 1, distinguished from the ordinary Z2 = 0 state realized when

the Dirac crossing is gapped trivially via e.g. broken sublattice symmetry. Extending
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this further, with additional breaking of time-reversal symmetry, the QSH phase is

anticipated to give way to a different type of topological phase called the quantum

anomalous Hall (QAH) phase characterized by the Chern index C = 1 and a chiral

edge mode − the process considered earlier in the Haldane model by assuming a stag-

gered flux pattern in the honeycomb lattice (Fig. 1-2(a),(d)) [8]. Inspired by these

predictions, there have been active efforts to experimentally realize the QSH and QAH

phase in graphene, the two-dimensional honeycomb network of carbon. One of the

major challenges, however, was the small SOC strength of carbon (∼40 μeV); this has

been overcome in part in certain van der Waals heterostructures [9]. While graphene

in its isolated form may not harbor the required material parameters, the extensive

studies on the honeycomb lattice and its related platforms have established a critical

insight that in general an inclusion of large SOC to a system with a Dirac-like band

degeneracy has a potential to drive the system into a topological phase.

Though studied initially in the honeycomb lattice platform, the first experimental

realization of the zero-field topological phase appeared in narrow gap semiconductors

containing heavy mass elements more likely to generate large SOC. It was identified in

certain Bi-based semiconductors that some of the energy gaps therein originate from

the SOC-driven band mixings and as a result show inverted band orderings in vicinity

of the gap (Fig. 1-3(a), right) [13]. This realizes a situation where the eigenstates of

the conduction band minimum (or the valence band maximum) manifest a dominant

orbital character of what originally accounts for the valence band (or the conduction

band) far away from the gap − the energy hierarchy that cannot be realized in other

ordinary semiconductors (Fig. 1-3(a), left). This process of band inversion involves a

gradual closure of an ordinary gap and a subsequent reopening of an inverted gap as

SOC strength is increased in the system. The zero-gap state dividing the two regimes

(Fig. 1-3(a), middle) is conceptually equivalent to the Dirac state in the honeycomb

lattice. Furthermore, the regime of an inverted gap is found to harbor a non-zero

Z2 index, also similar to the honeycomb lattice with strong SOC. This scheme of

generating nontrivial topology has led to the discovery of a Dirac surface state in a

three-dimensional topological insulator Bi2(Se:Te)3 (Fig. 1-3(b)) [11, 14] and helical
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Figure 1-3: Topological phase transition via band inversion

(a) Top: Schematic of topological phase transition via band inversion driven by the
spin-orbit coupling (adapted from [10]). Bottom: Schematic depiction for the presence
(or absence) of helical surface/edge modes in the Z2 = 1 (or Z2 = 0) state in three-
and two-dimensional systems. Up/down spin directions are locked with the mode
propagation directions and color-coded red/blue. (b) Photoemission spectra of a
three-dimensional topological insulator Bi2Se3 [11]. (c) Schematic of band orderings
in a CdTe/HgTe/CdTe quantum well with different HgTe thicknesses d (adapted from
[12]). A band inversion is expected for d above the critical thickness dc.

edge modes in quantum wells of CdTe/HgTe/CdTe (Fig. 1-3(c)) [12, 15]. We note

that the band inversion in the latter is assisted by the characteristic band alignment

of the three constituent layers.

1.2 Correlation at the origin of emergent phenomena

As much as topology has risen to great importance in the past decades, the study

of correlation has developed with a longer history, providing foundational insights

for various emergent phases arising from different inter-particle interactions. These

include the Stoner ferromagnetism from the Coulomb repulsion between itinerant elec-
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Figure 1-4: Emergent phases from electronic correlations

Schematic depictions of real space charge/spin arrangements for (a) the Stoner fer-
romagnet, (b) the Mott insulator, and (c) the Kondo singlet. Bottom insets in (a)
(adapted from [17]) and (b),(c) (from [18]) are schematic band structures that give
rise to the respective phenomena. (d) The fractional quantum Hall effect in a two-
dimensional electronic system [19]. (e) Schematic of the magic angle twisted bilayer
graphene (adapted from [20]).

trons, the Mott transition from the on-site energy of localized d-electrons (Uon−site),

and the Kondo hybridization from the virtual exchange interaction between localized

f -electrons and itinerant d-electrons (Ud−f ) [16].

Whereas each phenomenon concerns a distinct type of interaction, a general con-

sensus is that these effects are enhanced when the interaction energy of an ensemble

of electrons (parametrized by the generic interaction parameter U) dominates the ki-

netic energy of individual electrons (parameterized by the generic hopping parameter

t) − the condition likely to be satisfied in a flat band with suppressed dispersion in

momentum space and localized wavefunction in real space. For example, the Mott

transition is preceded by the Hubbard splitting of the flat d-band with Uon−site > t

enforcing the single occupancy of electrons per atomic site. The generation of the
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Kondo hybridization gap is also aided by the extreme flatness of the f -band. Once

the itinerant electrons (with Ud−f < t originally) bind to localized f -moments, the

effective t of the many-body Kondo singlet becomes dramatically suppressed and the

system eventually satisfies Ud−f > t. In addition, Stoner ferromagnetism, though

itinerant in nature, can still be projected onto this paradigm in that the magnetic

instability is most enhanced when the Fermi level (EF) crosses the density of states

(DOS) peak, typically expected at the energy the band is relatively flat. Under such

conditions, the net exchange energy gain tends to be bigger than the net kinetic en-

ergy loss. Aside from the flat bands originating from the d- or f -orbital degrees of

freedom, there exist a variety of methods to realize flat bands. For example, a cascade

of interaction-driven fractional quantum Hall states can be realized when electrons

are first confined to the Landau levels, a type of a flat band generated by magnetic

field [19]. More recently, a number of correlated phases have been discovered in magic

angle twisted bilayer graphene, in which a flat band from the Moire localization is

anticipated [20, 21]. Furthermore, there has been a growing interest in constructing a

generalized lattice model that can universally produce flat bands and their associated

correlated phenomena, even in the absence of compact atomic orbitals, high magnetic

field, or inter-layer twist angle [22–27].

1.3 Lattice-driven topology and correlation in the

kagome lattice

In this thesis, we explore one example of a two-dimensional lattice model whose

characteristic atomic arrangement deterministically generates Dirac and flat bands

in the electronic structure. We examine the implications of these symmetry-enforced

band singularities in giving rise to different types of topological and correlated phases.
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Figure 1-5: Dirac electrons in the kagome lattice and the honeycomb lattice

Schematic (a) lattice structure and (b) electronic band structure of the kagome lattice.
Schematic (c) lattice structure and (d) electronic band structure of the honeycomb
lattice. Phase arrangements of the degenerate eigenstates at Dirac point in (e) the
kagome lattice and (f) the honeycomb lattice.

1.3.1 Symmetry-enforced band structure singularities

The kagome lattice is a two-dimensional hexagonal network of corner-sharing triangles

(Fig. 1-5(a)). This lattice structure can be viewed equivalently as three interpenetrat-

ing triangular sublattices originating from the three atoms in the unit cell; we define

this as A, B, C sublattice degrees of freedom in the kagome lattice. Many structural

similarities can be identified between the kagome lattice and the honeycomb lattice.

In a similar fashion as in the kagome lattice, the honeycomb lattice can be constructed

with two interpenetrating triangular sublattices from its two basis atoms; we define

this as A, B sublattice degrees of freedom in the honecomb lattice (Fig. 1-5(c)). In

both lattice systems, the atoms within the basis are indistinguishable (enclosed in the

dashed lines in Fig. 1-5(a),(c)) and the sublattices can be mapped onto each other via

various rotation and mirror symmetry operations belonging to the D6h point group.
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The band structure of the kagome lattice can be obtained from a simple tight-

binding Hamiltonian:

H[i,j] =
∑

tij(c
†
icj + h.c.) (1.1)

where t is the nearest neighbor hopping integral, c† (c) is the creation (annihilation)

operator, and h.c. denotes the Hermitian conjugate of c†icj. i and j are indices for

the sites involved in the hopping process. As shown in the schematic band structure

in Fig. 1-5(b), the kagome lattice contains three bands originating from its three

sublattices, two of them forming Dirac branches with a degeneracy at the K-point

and the other one forming a flat band. The flat band is energetically isolated from

the Dirac band except at the quadratic band touching at the Γ-point. The energy of

the flat band is higher or lower than the Dirac band depending on the sign of t, which

in real materials is determined by the detailed orientation and phase arrangement of

the orbitals in the lattice. By comparison, the honeycomb lattice harbors a Dirac

band, accounted for by its two sublattice degrees of freedom, and no other band is

expected (Fig. 1-5(c)).

Fig. 1-5(e) displays schematic real space phase arrangements of the two degener-

ate eigenstates at the Dirac point in the kagome band structure (ψ1 and ψ2), with the

phase φ = 0, 2π/3, and 4π/3 color-coded with red, green, and blue, respectively [28].

Focusing first on the local phase arrangement within the basis, the three basis atoms

in ψ1 and ψ2 (dashed circles in Fig. 1-5(e)) are in-phase and out-of-phase, respec-

tively, thus forming bonding- or anti-bonding-type molecular orbital states depending

on the sign of t. Disregarding the kinetic energy contribution from the crystal mo-

mentum, the energies of the isolated eigenbases will be different. When they are tiled

periodically with �k = �K phase oscillations, however, ψ1 and ψ2 eventually harbor the

same energy; the overall phase arrangements in the two states become indistinguish-

able from each other by a combination of inversion symmetry (P ) and translation

symmetry (T ). Expressed differently, the A vs. B vs. C sublattice symmetry of the

kagome lattice protects the combined PT symmetry and guarantees the Dirac cross-
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Figure 1-6: Flat band wavefunctions in the kagome lattice

Schematic of localized eigenstates for the flat band electrons in the kagome lattice.
Destructive phase interference of hopping pathways localize charge clusters containing
1, 2, ..., N kagome hexagons (or plaquettes).

ing in the band structure. We compare this to the equivalent momentum eigenstates

of the Dirac electrons in the honeycomb lattice (Fig. 1-5(f)). There, ψ1 and ψ2 show

A- and B-sublattice polarization, respectively, and the degeneracy of the two states

are guaranteed by the A vs. B sublattice symmetry, analogous to the case of the

kagome lattice manifesting the three-atom-basis version of this [28].

In addition to the Dirac band, the kagome lattice hosts a flat band in the band

structure. The flat band in the kagome lattice is generated by the destructive inter-

ference of electronic hopping pathways in the frustrated lattice geometry, as will be

described below. The absence of dispersion in the momentum space leads to a wave-

function localization in real space and a sharp peak in DOS in the energy spectrum.

The momentum eigenstates at each �k extracted from the tight-binding calculations

do not intuitively represent the manner in which the electrons are localized; �k, by

definition, generates a non-zero phase oscillation in the real space. However, one can

construct a linear combination of multiple momentum eigenstates each weighted by

respective phase factor and construct real space representations of the flat band [29].

This process can also be viewed as a calculation of the localized Wannier state from

the Fourier transform of the Bloch states.

In Fig. 1-6, we present schematics of some of the localized eigenstates. The

most fundamental form is the 1-plaquette state with the phase factor alternating
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between ±1 within the kagome hexagon. An intriguing observation can be made at

the nearest neighbor site outside the kagome hexagon (red dashed circle in Fig. 1-6).

There, the wavefunction amplitude is effectively cancelled (i.e. |ψ2| = 0) by the two

frustrated hopping pathways from the kagome hexagons with +1 phase and -1 phase.

The same phenomenon occurs at all six equivalent sites and this as a result traps

the charge clusters within the kagome hexagons. We note that the 1-plaquette state

is not the unique eigenstate of the flat band electrons. There exist other possible

plaquette states with n = 2, 3, ... , N kagome hexagons enclosed within a localized

charge cluster, which can be constructed by formulating the Wannier state from the

momentum eigenstates differently.

The Dirac and flat bands in the kagome lattice, generated from the lattice symme-

try, are expected to be robust against external perturbations (e.g. disorder, thermal

fluctuation, and atomic degrees of freedom). Such robustness makes the kagome lat-

tice a promising platform to explore various topological and correlated states born of

these band singularities.

1.3.2 Topological phases in the kagome lattice

As described in section 1.1, the Dirac crossing, a symmertry-protected zero-gap state,

situates the honeycomb lattice on the verge of various topological gap openings. The

Dirac band in the kagome lattice, analogous to that in the honeycomb lattice, also

has a potential to produce different gapped states at the Dirac point with distinct

topological characters. In this section, we introduce two types of low energy phases

in the kagome lattice, one nontrivial phase arising from the interplay of magnetism

and SOC and the other trivial phase arising from a lattice distortion.

We first consider the case of ferromagnetic kagome lattice with SOC (Fig. 1-7(a))

using the modified tight-binding Hamiltonian:

H[i,j] =
∑

(tij + iλνij)(c
†
i,↑cj,↑ + h.c.) (1.2)

where λ is the intrinsic SOC strength and νij = +1 (-1) for counter-clockwise (clock-
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Figure 1-7: Nontrivial gap openings on the ferromagnetic kagome lattice

(a) Schematic of the ferromagnetic kagome lattice with spin-orbit coupling. Effective
magnetic flux φ (or -2φ) threads through the kagome triangles (or hexagons). The
band structure of the (b) nonmagnetic and (c) ferromagnetic kagome lattices calcu-
lated with and without spin-orbit coupling. (d) One-dimensional projection of the
band structure in (c), manifesting a chiral edge mode. (b)-(d) are adapted from [30].

wise) hopping direction assuming the magnetization ( �M) is along the +z. The chi-

rality of νij is set by the relative orientation of the local crystal field (�E) and �M . A

relativistic electron hopping along the bonds in the kagome lattice experiences dis-

tinct crystal environments on the hexagon side and the triangle side. Such imbalance

results in the non-zero �E acting as a spin-dependent magnetic field in the relativistic

regime and the overall the sign of the interaction is determined by (�k × �E) · �M .

The SOC term in the Hamiltonian (iλνij), being an imaginary quantity, gives rise to

the phase accumulation equivalent to the effective magnetic flux Φ = 3tan−1(λ/t) (or

-2Φ) threading through the triangles (or hexagons). The spatial variation of flux is

related to the bond-dependent �E direction in the lattice. Such staggered flux pattern

(with the net flux across the unit cell summing up to 0) is conceptually similar to

that assumed in the Haldane model.

Fig. 1-7(b) shows an example tight-binding band structure of a M = 0 state with

(λ = 0.1 eV; red) and without (λ =0; blue) SOC and t = 0.25 eV [30, 31]. We find that

gaps are created at the Dirac point and the Dirac−flat quadratic band touching point.

The low energy band structure near the gapped Dirac point is expected to resemble

that in the QSH phase from the Kane−Mele model. We now consider a M �= 0 state.
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Figure 1-8: Trivial gap openings on the distorted kagome lattice

(a) Band structure of the kagome lattice with breathing distortion. Inset: schematic
of the breathing distortion (adapted from [28]). (b) A generic topological phase
diagram in the presence of two energy scales that generate a trivial gap (blue) and a
nontrivial gap (red) (adapted from [8])

Focusing on the low energy dispersions (Fig. 1-7(c), inset), the spin-polarized Dirac

electrons acquire mass with non-zero SOC, similar to the phenomenology of the QAH

phase. From the one-dimensional projection of this bands structure, we identify a

chiral edge state reflecting the non-trivial topology of the Dirac mass gap with Chern

number C = 1.

While the Z2 = 1 or C = 1 gap can be generated at the Dirac point with λ �= 0 or
�M // z, a different type of gap can also be created with a symmetry-breaking lattice

distortion. Fig. 1-8(a) shows a band structure of a distorted kagome network with

three of the triangles expanded and the other three compressed − the form known as

the breathing kagome lattice (see the inset) [28]. In this state, the PT symmetry is

broken (it maps the large triangles onto the small triangles) and the degeneracy is no

longer protected at the Dirac point. Unlike in case described in Fig. 1-7, the process

here drives the system to become a trivial band insulator.

Having explored two distinct pathways to Dirac mass gap generation, we map them

onto the phenomenologically similar phase diagram proposed in the Haldane model

[8]. The topological character of the gap is determined by the relative strengths of

the asymmetric lattice potential (giving rise to the trivial gap) and the SOC (giving
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rise to the effective flux through the lattice). In the regime the latter is stronger than

the former, the C = 1 state can be realized. This suggests a key message that larger

SOC strength can make the nontrivial topology of a system even more robust against

lattice deformations or other perturbations.

1.3.3 Correlated phases in the kagome lattice

In the previous section, we have examined the topological characters of different

gapped Dirac states in the kagome lattice. In this section, we survey theoretical

predictions on how different parts of the kagome band structure can incur correlated

phenomena. We split the discussion into four representative categories each based on

a different assumption.

• (i) Mapping the flat band to the frustrated Hubbard band

The real space eigenstates of the flat band electrons can be viewed as triangular

networks of localized charge clusters. Based on this insight, many authors

have mapped the inter-cluster hopping in the kagome flat band to the inter-

site hopping on a triangular lattice with U/t � 1. This is phenomenologically

equivalent to the Hubbard model, which in the case of square lattice gives

rise to the Mott insulating phase with an antiferromagnetic spin structure. In

the triangular lattice Hubbard model, the magnetic frustration complicates a

simple antiferromagnetic spin arrangement. Adopting the approaches taken for

frustrated Heisenberg antiferromagnets (with an assumption that each atomic

site contains one spin), the prospects of spin liquid and its related phases have

been raised [32–35].

• (ii) Mapping the flat band to quantum Hall states

In the presence of SOC, the quadratic band touching between the Dirac and

flat bands gaps out. Given that the nontrivial topology of the Dirac band is

intermixed to the flat band, E. Tang et al. proposed that the kagome flat

band may act as a zero-field analog of the LL [36]. When further enriched with
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interaction effects, inherently relevant for a flat band with U/t � 1, the LL-like

flat band may generate a high temperature fractional quantum Hall effect.

• (iii) The flat band stabilizing an extreme limit of the Stoner ferromagnetism

Aside from the implications of wavefunction localization (critical to the Hubbard

physics and the quantum Hall physics), one can also consider the impacts of

the concentrated DOS within an extremely narrow energy range. Many authors

have proposed that the flat band may realize an extreme limit of the Stoner

ferromagnetism. This treatment was also found to be analogous to the special

case of the Hubbard model on a partially flat band with non-singular Uon−site

and DOS peak [37–40].

• (iv) Imposing strong interactions to other parts in the band structure

While the flat band may act as a hot spot of electronic correlations, other

parts in the band structure (e.g. Dirac point, van Hove singularity), if strong

interactions are imposed, may also generate exotic phases. By enforcing an

interaction-driven gap opening at these key band singularities, many authors

have predicted exotic orders such as unconventional superconductivity or chiral

density waves [41–43].

In general, a precise a priori prediction of correlation effects requires a delicate

balance of multiple competing interactions, which without any knowledge of actual

material parameters may encounter an immense challenge. This calls for material

realizations of the kagome lattice and further experimental verifications of these pre-

dicted phases.

1.3.4 The kagome metals

As an ideal material platform to explore the kagome physics, we focus on a class of

intermetallics that contains the kagome network of transition metal elements as one

of its constituent layers − the compounds henceforth referred to as “kagome metals.”

Several known kagome metals are realized in a hexagonal crystal structure with a

formula unit XmYnZk (m, n = 1, 2, 3, 5, 6; k= 0, 1) and contain the two-dimensional
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Figure 1-9: Two-dimensional building block layers for kagome metals

(a) Two-dimensional kagome and honeycomb layers of X- and Y -atoms. (b) Three
types of stacking configurations for the kagome and honeycomb layers.

kagome networks of X-atoms. The left column in Fig. 1-9(a) displays examples of the

X-kagome networks: the X3Y -layer and the X3-layer with and without the Y -atoms

at the center of the kagome hexagons, respectively. The other non-kagome building

block layers are the honeycomb networks of X- or Y -atoms, which in certain kagome

metals function as spacer layers that suppress hybridizations between consecutive

kagome layers (the right column in Fig. 1-9(a)). Some of the examples are the X2-

layer, the Y2-layer, and the Y2Z-layer (≡ the Y2-layer with the Z-atoms at the center

of the honeycomb hexagons).

These fundamental building block layers can be assembled to formulate a variety of

crystal structures. There exist three possible configurations for stacking these layers.

To demonstrate this, we set an arbitrary reference coordinate and define configuration

A to have the reference point at the center of the kagome/honeycomb hexagon (Fig.

1-9(b), the first row). When the X3Y -layer and the Y2-layer are AA-stacked, for

example, their hexagons will be concentric. Other configurations can be defined by

displacing the center of kagome/honeycomb hexagon from the reference point by a

fraction of unit cell vectors. Such acquired configuration B and configuration C are
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Formula
unit

# of layers
/ unit cell Unit cell Stacking

Sequence Examples

X1Y1 2 X3Y - Y2 AA FeSn, CoSn, RhPb
X5Y1 2 X3Y - X2 AA YCo5, CaPd5

X3Y2Z1 3 X3 - Y2Z AA LaRu3Si2
X6Y6Z1 4 X3Y - Y2 - X3Y - Y2Z A′AA′′A TbMn6Sn6,
X3Y5Z1 4 Y2 - X3Y - Y2 - Z1 AAAA KV3Sb5

X3Y2 9
(X3Y - Y2 - X3Y )

- (X3Y - Y2 - X3Y )
- (X3Y - Y2 - X3Y )

(AAA)
- (BBB)
- (CCC)

Fe3Sn2, V3Sb2

X3Y1 2 X3Y - X3Y AB Mn3Sn, Ni3In

X3Y2Z2 6
(X3Y - Z2Y )

- (X3Y - Z2Y )
- (X3Y - Z2Y )

(AC)
-(BA)
-(CB)

Co3Sn2S2

Rh3Pb2S2

Table 1.1: Layer-by-layer arrangements in kagome metals

shown in the second and third rows of Fig. 1-9(b), respectively. When two X3Y -layers

are AB-stacked, for example, the kagome hexagon in one layer will sit on top of the

kagome triangle in the other layer.

XmYnZk with different m : n : k stoichiometry can be generated from various per-

mutations of constituent layers and their stacking sequences. Table 1.3.4 lists some of

the prototype structures. X1Y1, X5Y1, X3Y2Z1 consist of alternating AA-stacks of the

kagome layers and the honeycomb spacer layers. Such a crystal structure is predicted

to generate a quasi-two-dimensional electronic structure with the key features of the

original two-dimensional lattice model manifested intact. This prediction has been

verified experimentally in some of the model compounds (Co:Fe)Sn (X = Co, Fe; m

= 1; n = 1) [44–46] and YCo5 (X = Co; m= 5; n = 1) [47].

X3Y5Z1 is conceptually similar to the above three, but with two additional spacer

layers per unit cell with respect to X1Y1. The increased kagome-to-kagome separa-

tion is expected to enhance the electronic/structural two-dimensionality. Potentially

related to this, one of the model compounds (K:Cs)V3Sb5 (X = V; m = 3; n = 5;

k = 1) has shown a relatively stronger tendency to be exfoliated than most X1Y1

compounds [48, 49].

X6Y6Z1 also has a similar stacking sequence to X1Y1. The unit cell, however,
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contains two kagome layers, one with the Y -atoms buckled upwards (configuration

A
′) and the other with the Y -atoms buckled downwards (configuration A

′′). Given

that the the degree of buckling is small, the overall electronic structure is nearly

analogous to that of X1Y1 as confirmed from a model compound TbMn6Sn6 (X =

Mn; m = 6; n = 6; k = 1) [50].

X3Y2 is known to stabilize in a complex stacking sequence. Its unit cell consists of

nine layers, which can be split into three sets of kagome−spacer−kagome trilayer. The

identical stacking configuration is maintained within each trilayer, but the three con-

secutive trilayer bundles are ABC-stacked; this stacking pattern gives the nine-layer

arrangement of AAABBBCCC. The consequence of this peculiar stacking sequence

has been studied by S. Fang et al. [51]; the presence of the spacer layers in this crystal

structure still preserves the electronic two-dimensionality as experimentally verified

in a model compound Fe3Sn2 (X = Fe; m = 3; n = 2) [52–55].

Lastly, we examine X3Y1 and X3Y2X2. X3Y1 consists of AB-stacked kagome layers

with no spacer layer in the structure and is expected give rise to a three-dimensional

electronic structure. X3Y2X2 also harbors a three-dimensional electronic structure as

the Y -atoms in the Z2Y spacer layers buckle significantly out-of-plane and mediate

strong hybridizations between the X3Y1-layers. In Table 1.3.4, we distinguish these

buckled Z2Y -layers from other planar layers by denoting their configurations as A,

B, or C. It has been identified in a number of X3Y1 or X3Y2X2 compounds that their

three-dimensional electronic structures support new types of band features including

Weyl nodes (e.g. Mn3Sn, Co3Sn2S2) [56–59]) or anisotropic flat bands (e.g. Ni3In)

[60].

1.4 Thin film engineering of quantum materials

Thin films offer a unique platform to manipulate physical properties of quantum ma-

terials in a highly controlled fashion. Such versatility comes from their reduced sample

dimensions, strong film−substrate epitaxial interaction, as well as ultra-precise and

ultra-clean synthesis processes associated with thin film synthesis. In this thesis, we
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Figure 1-10: Manipulating properties of thin film quantum materials

(a) Two-dimensional subband splittings in Cd3As2 thin films via quantum confinement
[61]. (b) Gate control [62] and (c) doping control [63] of the chemical potential in
Bi2Te3 thin films. (d) Manipulation of Fermi surface morphology with epitaxial strain
in (Sr:Ba)2RuO4 thin films [64]. (e) Topotactic transition of (Nd:Sr)NiO3 thin films
into (Nd:Sr)NiO2 via reduction chemistry [65].

stabilize some of the representative kagome metals in epitaxial thin film form and

engineer the topological and correlated electronic states therein with different exper-

imental tuning knobs.

One of the consequences of confining electrons within a thin slab is the quanti-

zation of crystal momentum along the thickness direction (kz) and the subsequent

subband splittings. In the thickness regimes where the splitting exceeds the Fermi

energy in original band structure, electrons collapse to the lowest subband with a

single-valued kz and the system can be treated as a two-dimensional system. Re-

cently, thin films of a three-dimensional Dirac semimetal Cd3As2 have been driven

into such regime, where non-canonical quantum Hall behaviors were observed. These

anomalies have been ascribed to the characteristic cyclotron orbits of Dirac and Weyl

fermions (Fig. 1-10(a)) [61, 66].

In addition to the changes in the band structure, thinning down a film to below
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the Thomas-Fermi screening length, in conjunction with simultaneous reduction of

sheet carrier density, dramatically enhances the gate-tunability. For decades, field

effect transistors have offered a key working principle for binary logic gates: small vs.

large electrical conductivity when EF is inside vs. outside the gap. With a goal of

deciphering the topological nature of the gap, the identical electrostatic gating exper-

iments have been performed on three-dimensional topological insulator thin films. By

continuously sweeping EF within the gap, anomalous in-gap states were observed and

further identified as the topological Dirac surface states (Fig. 1-10(b)) [62, 67–69].

A similar EF-tuning can also be performed via chemical doping. Thin film syn-

thesis involves ultra-fine calibration of element-specific concentration, allowing sub-%

control of stoichiometry. Furthermore, owing to the epitaxial stabilization energy, the

synthesis may take place at a temperature significantly lower than that used for bulk

synthesis. Such non-thermodynamic growth mode facilitates stabilization of heavily

doped compounds despite their inherent instabilities. Taking advantage of these as-

pects, EF of Bi2−xSbxTe3 thin films has been engineered across an energy range larger

than what is available with gating alone (Fig. 1-10(c)) [63].

The choice of substrate offers another important axis along which the film prop-

erties can change. For reliable epitaxy, the substrates are generally chosen to have

the same in-plane crystallographic symmetry and similar lattice constants with the

films. Given a small but finite lattice mismatch, the films experience coherent ten-

sile/compressive strains within the plane due to the film−substrate interactions. For

instance, the epitaxial strain has proven effective in manipulating the Fermi surface

morphology of a strongly correlated oxide (Sr:Ba)2RuO4 (Fig. 1-10(d)) [64].

More recently, phase changing phenomena in thin films have also been highlighted.

One of the pioneering works concerns converting a thin film correlated oxide RENiO3

(RE = rare-earth) into RENiO2 via reduction chemistry (Fig. 1-10(e)) [65]. The

samples were found to maintain homogeneity and single-crystallinity due to reduced

thickness and film−substrate bonding energy, respectively. After this topotactic tran-

sition, the system revealed superconductivity unattained in its original structure.

Finally, we comment on the heterostructure engineering of thin film quantum ma-
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Figure 1-11: Heterostructure engineering of thin film quantum materials

(a) Two-dimensional electron gas at the polar interface of LaAlO3/SrTiO3 [70]. (b)
Skyrmionic spin texture stabilized in a magnetic multi-layer [71]. (c) Magnetic prox-
imity effect in a topological insulator heterostructure [72].

terials. Abrupt changes in dielectric, magnetic, and symmetry environments across

thin film heterointerfaces have given rise to peculiar states confined at the interfa-

cial layer. Two-dimensional electron gas at the LaAlO3/SrTiO3 polar interface (Fig.

1-11(a)) [70] and skyrmionic spin textures in magnetic multi-layers (Fig. 1-11(b))

[71] both belong to this category. Furthermore, when the constituent layers in the

heterostructure are sufficiently thin, the influence of one layer may proximitize the

entirety of the neighboring layer, not restricted to the two-dimensional interface.

An example of the proximity effect can be found in CrGeTe3/(Bi:Sb)2Te3/ CrGeTe3

heterostructure, in which the encapsulated topological insulator layer manifested a

magnetism-induced gap opening upon influence of the neighboring ferromagnetic lay-

ers (Fig. 1-11(c)) [72].

1.5 Thesis outline

In this thesis, we present our approaches in engineering the topological and correlated

electronic states in certain intermetallic compounds containing the two-dimensional

kagome networks of transition metal elements as one of its constituent layers − the

class of materials referred to as kagome metals. For versatile control of their mate-

rial parameters, we first stabilize these compounds in epitaxial thin film form and

track their physical properties as a function of different experimental tuning knobs.
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The viewpoints proposed herein are expected to (i) shed light onto the physics of the

kagome lattice placed under various symmetry conditions and electromagnetic envi-

ronment as well as (ii) drive the candidate kagome metals towards the regime more

suitable for electronic/spintronic device incoporation.

In chapter 2, we discuss the experimental techniques employed in this thesis. In

chapter 3, we present our extensive works on synthesis and characterization of epi-

taxial thin film FeSn, an antiferromagnetic kagome metal with quasi-two-dimensional

electronic structure. In this chapter, we present a systematic doping control of the

chemical potential and spin structure in FeSn, through which we elucidate the roles

of the lattice-driven Dirac and flat bands in shaping the electromagnetic properties of

this system. In chapter 4, we describe the characteristic atomic arrangement of FeSn

realized at the film−substrate heterointerface and probe its local electronic structure

with planar tunneling spectroscopy. A significant portion of the discussions in chapter

3 and 4 are based on [73–75]. In chapter 5, we describe the emergence of a new type

of flat band and the associated non-Fermi-liquid behaviors in a paramagnetic kagome

metal Ni3In stabilized in epitaxial thin film form. We discuss the relevance of the flat

band in generating the observed Fermi surface breakdown. In chapter 6, we introduce

an alternative non-kagome-originated approach in commingling topology and correla-

tion in a single material platfom by the spatial coexistence of different atomic degrees

of freedom [76]. In chapter 7, we summarize the frameworks of understandings on

various kagome metals and comment on the future prospects for more advanced thin

film engineering in this family of compounds and beyond.

38



Chapter 2

Experimental methods

2.1 Molecular Beam Epitaxy

Thin films of intermetallic compounds are synthesized here with molecular beam epi-

taxy (MBE). MBE is a physical vapor deposition technique for growing a crystalline

overlayer on a substrate in an epitaxially registered fashion. The process takes place

in an ultra high vacuum chamber in order to provide ultraclean and highly controlled

synthesis environment. The MBE system used for this thesis research has a typical

base pressure of ∼10−10 torr and consists of three compartments: the load-lock cham-

ber, the preparation chamber, and the growth chamber. The former two are typically

used for sample exchange, storage, and pre-annealing, whereas the latter is where the

film deposition takes place. Fig. 2-1(a) illustrates a schematic diagram of the growth

chamber.

For film growth, a substrate is mechanically clamped onto an Inconel sample holder

and loaded into the system. After appropriate pre-annealing treatments, the sample

holder is transferred to the growth chamber with the substrate facing downward.

At the bottom of the growth chamber are inserted solid source effusion cells. Each

effusion cell contains a crucible made from alumina or boron nitride and is heated

by resistive coils up to the temperature that allows vaporization of the raw material

therein. The cell temperatures are controlled with power supplies and PID control

units, a set of two assigned to every cell. The beam equivalent pressures (BEPs) of the
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Figure 2-1: Molecular beam epitaxy

(a),(b) Schematic of thin film deposition process in a molecular epitaxy beam (MBE)
system. (c) Pictures describing the direct sample transfer from the MBE to an Argon-
filled glovebox (left) and from the glovebox to a cryogenic probe (right).

evaporated elements are calibrated before every film growth with a flux monitor to

ensure the correct deposition rate and stoichiometry. The raw materials evaporated

in this chamber for this thesis research include BaF2, Bi, Fe, Gd, In, Mg, Mn, Ni,

and Sn.

To initiate/terminate the film deposition, pneumatically controlled shutters for the

relevant effusion cells are opened/closed. The sample holder is fixed at an optimized

temperature for the growth (also PID-controlled) as the beam fluxes are irradiated

onto the substrate (Fig. 2-1(b)). The deposition temperature ranges from as low

as the room temperature to as high as 700 ◦C, depending on the detailed growth

dynamics of the target compound. During the deposition, the sample holder is rotated

at a rate 0 - 5 rotations per minute using an ex-situ stepper motor mechanically

connected to an in-situ rotation unit. The rotation is critical in producing a film

with uniform stoichiometry across a macroscopic length scale. The rate of deposition

and the process of crystallization are monitored in real time with a quartz crystal

monitor (QCM) and reflection high energy electron diffraction (RHEED). Most of
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the components involved in the MBE operation are continuously water-cooled to

maintain normal operation parameters. After the deposition, the sample holder is

cooled down to the room temperature and the effusion cells down to the standby

temperature of 400 ◦C, at which all of the elements have negligible vapor pressures.

To avoid any risk of crucible deformation or damage during solidification/melting,

the standby temperature is chosen to be sufficiently higher than the melting points

of some of the low melting point elements (e.g. Bi, Sn, In). The sample holder is

transferred from the growth chamber to the load-lock chamber so that the films can

be taken out of the MBE.

The compounds studied in chapter 3 - 5 of this thesis are relatively stable in air.

The one studied in chapter 6, however, is extremely air-sensitive; thin films of this

compound degrade in air within a few seconds. To preserve the sample quality, we

transfer those films directly from the load-lock chamber to an Argon-filled glovebox

without any air exposure. They are processed inside the glovebox for different types

of measurements and finally loaded onto cryogenic probes, which themselves are also

inserted into the glovebox in an air-free manner. The pictures in Fig. 2-1(c) show the

experimental protocols for glovebox transfer, sample preparation, and probe loading

in our MBE-glovebox-cryostat assembly system.

2.2 Structural characterizations

In this thesis, we employ different experiment techniques to characterize various struc-

tural aspects of our thin film samples. Symmetric X-ray diffraction (XRD) offers the

highest throughput metric to examine the film quality. The symmetric scattering

geometry entails the following constraints: kplane,in = kplane,in and kperp,in = -kperp,in,

where kplane,in and kperp,in (or kplane,out and kperp,out) denote the in-plane and out-of-

plane momentums of the X-ray beam projecting into (or scattering out of) the sample.

An example of the symmetric XRD measurement can be found in Fig. 2-2(a) where

a pronounced Bi (003) diffraction peak is identified from a Bi film deposited on a

BaF2 substrate, reflecting both the hexagonal orientation of the film as well as its
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Figure 2-2: Structural characterizations on thin film samples

Schematic sample structure (center) and measurement schemes for various charac-
terization techniques. (a) Symmetric and (b) asymmetric X-ray diffractions. (c)
Cross-sectional transmission electron microscopy. (d) Atomic force microscopy. (e)
Rutherford backscattering. The data and pictures in (a)-(e) are described in the main
text.

high crystalline quality. To complement this information, we perform X-ray reflec-

tivity (XRR) measurements under the same scattering geometry but with grazing

incident beam angles (0 < 2θ < 5◦). The oscillations in XRR can be used to extract

the film thickness. In addition, some of the high quality films are characterized with

asymmetric XRD measurements. The asymmetric scattering geometry entails a dif-

ferent set of constraints: |kplane,in| �= |kplane,in|, |kperp,in| �= |kperp,in|, and φ �= 0, where

φ is the azimuthal angle. Fig. 2-2(b) shows the asymmetric XRD peaks for FeSn

(201) and SrTiO3 (101) at the same φ, manifesting an epitaxial alignment of in-plane

orientations between the materials.

As well as diffraction mediated approaches, more direct real space imaging tech-

niques are employed. Cross-section images of the films are acquired by cross-sectional

transmission electron microscopy (TEM) using keV electrons. Fig. 2-2(c) shows a
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TEM image of an island-segregated FeSn film deposited on a SrTiO3 substrate, re-

vealing the sharp film−substrate interface. Typically, TEM tools are equipped with

an in-situ electron energy loss spectroscopy (EELS) capability. After every TEM

measurement, samples are also characterized with EELS for chemical identification.

Surface morphologies of the films are probed with atomic force microscopy (AFM).

Fig. 2-2(d) shows an AFM image of a Bi film deposited on a BaF2 substrate. AFM is

helpful in optimizing films for electrical transport measurements; for example, films

with disconnected morphologies are not suitable and further optimization is required.

The information from the above are corroborated with Rutherford backscattering

(RBS) measurements taken in the class 1.7 MV tandem ion accelerator at Cambridge

Laboratory for Accelerator Surface Science at Massachusetts Institute of technology

(CLASS at MIT) (Fig. 2-2(e)). The measurements are conducted by projecting

MeV He2+ or O4+ ion beams towards the sample along the film normal direction and

detecting the energy loss from the reflected beams. The beam flux and energy are

calibrated separately using a Au film on a Ge substrate. The experimental spectra

are compared with the simulated spectra using the SIMNRA software, developed

by the Max Planck Institute for Plasma Physics [77]. For the simulation, we use

the scattering cross-section database from Ion Beam Analysis Nuclear Data Library

(IBANDL) [78]. RBS offers information about film thickness, chemical contents, and

their relative stoichiometry.

2.3 Electrical transport measurements

Electrical transport properties of thin film samples are characterized in a typical

Hall bar geometry. As-grown samples with 5 × 5 mm2 lateral dimensions are cut

into smaller pieces with rectangular shapes. In most occasions, we define the Hall

bar shape by scratching off other areas of the film using a diamond scribe. In case

more precise sample geometry is required, we pattern a device shape with a standard

photolithography, followed by either acid dip or Argon ion milling to etch other areas

of the film. The samples are mounted on sapphire pads using GE varnish. Prior
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Figure 2-3: Schematic of transport measurement on thin film samples

Schematic diagram of the five-terminal electrical transport measurement using a stan-
dard lock-in technique.

to sample mounting, several Au wires are mechanically fixed on the sapphire pads

with a two-part epoxy (Epotek). Electrical contacts are made by applying Ag paint

(DuPont 4922N) to the joints between the film contact areas and the Au wires. For

certain measurements that require more stable electrical contacts, Ti (5 - 10 nm

thick) and Au (20 - 100 nm thick) are evaporated sequentially onto the contact areas

with electron beam evaporation. The contact patterns are defined with custom-made

shadow masks from Al foils or teflon tape (or with another step of patterning for

lithographically-defined devices).

A standard lock-in technique is used for transport measurements. An excitation

current with the frequency 5 Hz < f < 50 Hz was supplied along the elongated

direction of the sample using Keithey K6221 or Stanford Research System CS580

current source. The current amplitude is determined for each measurement depend-

ing on the sample resistance. The voltage drops along the longitudinal (Vxx) and

transverse (Vyx) directions are amplified with Ithaco DL1201 voltage pre-amplifiers.

Then the amplified signals are measured with Stanford Research System SR860 (or

SR830) lock-in amplifiers synchronized to the current source. Longitudinal resistivity
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(ρxx) and transverse resistivity (ρxx) are obtained by normalizing Vxx and Vyx, respec-

tively, with the excitation current and the sample dimensions. The schematic of this

measurement configuration can also be found in Fig. 2-3. In some cases, the iden-

tical measurement scheme is conducted by the built-in functionalities of a Physical

Properties Measurement System (PPMS) (Quantum Design, Inc.).

For magnetotransport measurements, a field-symmetric (field-asymmetric) response

is assumed for ρxx (ρyx). To subtract off background signals, the raw ρxx (ρyx) data

are symmetrized (anti-symmetrized) with respect to the magnetic field. When rele-

vant, longitudinal conductivity (σxx) and transverse conductivity (σxy) are extracted

from ρxx and ρyx using the following relation:

σxx =
ρxx

ρ2xx + ρ2yx
(2.1)

σxy =
ρyx

ρ2xx + ρ2yx
(2.2)

Based on the measured (ρxx, ρyx, σxx, σxy) under various temperature and magnetic

field conditions, we extract different transport parameters representing either the

electronic structure of the sample or the scattering processes therein.

2.4 Thermoelectric measurements

To complement the electrical transport measurements, we perform thermoelectric

measurements. Fig. 2-4(a) is a schematic diagram of a typical measurement setup

and Fig. 2-4(b) is an optical micrograph of a setup prepared for a Bi thin film sample.

A thermal gradient is generated by heating up one end of the sample to Thot with

a resistive heater while the other end is clamped to a Cu block fixed at Tcold. The

heater has a typical resistance of 1 kΩ and is attached to the sample with stycast (ES-

2-20, Lakeshore cryotronics). Additional thermal joint compound (type 120 silicone,

Wakefield solution) is applied onto the sample−heater junction and the sample−Cu

block junction to ensure efficient thermalization. DC electrical current is applied

across the resistive heater with Keithley K6221 current source. The sample is kept in
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Figure 2-4: Thermoelectric characterizations on thin film samples

Schematic diagram of a measurement setup. The thermal gradient is generated with
a resistive heater and measured with thermocouples connected in a differential mea-
surement configuration. (b) An optical micrograph of the setup in (a) prepared for a
Bi thin film sample.

a high vacuum environment and electrical connection is made with a Phosphor-Bronze

wire to suppress unintended heat leaks. The thermal gradient is measured with two

type-E thermocouples (TC), one attached near the hot end and the other near the

cold end. The negative leads of the TCs are electrically shorted and the voltage

difference between the positive leads is measured with Keithley K2182 voltmeter (i.e.

differential measurement configuration). The thermal joint compound is applied at

the TC−sample junctions. The Seebeck voltage (Sxx) and the Nernst voltage (Sxy)

are measured with Keithley K2182 voltmeters across the longitudinal and transverse

directions of the sample, respectively. Electrical connections between the contact

areas in the film and the Phosphor-Bronze wires are made with Ag paint.

In this thesis, we measure the thermoelectric coefficients of our films under various

temperature and magnetic field conditions. In chapter 3, we detect from the temper-

ature dependence of Sxx the magnetic transition in FeSn. In chapter 5, we identify

from the field dependence of Sxx the interplay of magnetic field and local moments

in Ni3In.
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2.5 Shubnikov-de Haas oscillation

Figure 2-5: Landau quantization and Shubnikov-de Haas oscillation

(a) Schematic of the Landau quantization in a spherical Fermi surface. (b) Schematic

of resistivity oscillation as the Fermi surface crosses a cascade of Landau levels. (a),(b)

are from [79].

When a metallic system is placed under a high magnetic field B, electronic cyclotron

orbit perpendicular to the field direction becomes quantized and the Fermi surface

(FS) splits into Landau levels (LL). Fig. 2-5(a) shows a schematic of the Landau

quantization in a spherical FS. Its energy spectrum is known to follow the quantum

harmonic oscillator spectrum and the energy of the nth LL can be expressed as En =

h̄ωc(n + 1/2), where ωc = eB/m� is the cyclotron frequency for electrons with the

effective mass m�.

As B increases, the energy spacing between the consecutive LLs increases and FS

crosses a cascade of LLs with decreasing n. As a result, the density of states (DOS)

at FS oscillates periodically, manifesting a peak when FS crosses the LL and a valley

when it is within the gap. This periodic modulation in DOS manifests as modulations

in various physical observables and that for resistivity is called the Shubnikov-de Haas

(SdH) oscillation (schematic illustration in Fig. 2-5(b)). An equivalent modulation in

magnetic susceptibility is called the de Haas-van Alphen effect. Given a characteristic

quantum lifetime τQ, SdH oscillations are likely to be observed in the regime ωcτQ > 1.
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Within a semi-classical picture, this criterion can be understood as a requirement for

electrons to complete at least one cyclotron orbit before losing their coherence. For

this criterion to be met, one generally needs high sample quality and low temperature

(to raise τQ) as well as high magnetic field (to raise ωc). The SdH oscillation is known

to be periodic in 1/B. Based on the Onsager relation, the cross-section area of the

original FS perpendicular to B (Ak) can be extracted from the frequency of the

oscillation f = (h/2πe)Ak. In chapter 3, we resolve the SdH oscillations in FeSn thin

films and extract from their temperature, field, and angle dependence the morphology

and the scattering lifetime of the associated Fermi pocket. The details of the analyses

will be provided in the corresponding chapter.

2.6 Capacitive torque magnetometry

In this thesis, we utilize capacitive torque magnetometry to detect magnetic responses

of our thin film samples. The schematic measurement configuration is shown in Fig.

2-6(a). A sample is attached at the end of a cantilever using Ag paint and a magnetic

field H is applied at an angle θ slightly tilted from the film normal direction. The

cantilever is custom-made from a Au or BeCu foil and is positioned in parallel to a

rigidly fixed Au pad. The magnetic torque �τ = V ( �M × �B) exerted to the sample (with

volume V ) bends the cantilever towards or away from the Au pad and the resultant

change in capacitance (ΔC) is measured by Andeen-Hagerling 2500A capacitance

bridge. τ is calculated from ΔC using mechanical conversion factors (e.g. Young’s

modulus of the cantilever material, cantilever shape, and dimensions).

When the sample has an isotropic magnetic susceptibility χx = χy (here, x //

film in-plane and y // film normal), �M // �H and τ = 0 is expected (Fig. 2-6(b)).

For χx �= χy, however, the imbalance between χx and χy displaces �M away from �H

as tan−1(Mx

My
) > θ for χx > χy (Fig. 2-6(c)) and tan−1(Mx

My
) < θ for χx < χy (Fig.

2-6(d)). Here, Hx and Mx = χxHx (Hy and My = χyHy) are the components of �H

and �M along the x direction (y direction). As a result, τ > 0 (τ < 0) is expected for

χx > χy (χx < χy) and the capacitance increases (decreases). Given the above, τ and
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Figure 2-6: Schematic of torque measurement on thin film samples

(a) Schematic diagram of a capacitive torque magnetometry on thin film samples.
Schematic description of torque responses for (b) χx = χy, (c) χx > χy, and (d) χx <
χy, where χx and χy are magnetic susceptibilities along the x and y directions. The
coordinate system here is defined in (a).

relates to the torque susceptibility χτ ∝ χx - χy and the torque magnetization Mτ ∝
χτH rather than the absolute values of χ and M . In the case of field independent χτ ,

τ shows a quadratic field dependence.

A typical measurement setup is presented in the picture in Fig. 2-7(a). Fig. 2-

7(b),(c) are representative magnetic field dependent torque data (τ(H)) from a Gd

film deposited on a BaF2 substrate measured at T = 2 K (red) and 100 K (black).

τ(H) reveals a sharp increase near 0 T and flattens out to a nearly constant value

above ∼ 2 T (Fig. 2-6(b)). Mτ manifests a consistent response with an abruptly

changing signal in the low field regime giving way to a diminishing signal entering

the high field regime (Fig. 2-6(c)). These observations can be understood as a

competition of shape anisotropy dominating at H < 2 T and field-polarization of

ferromagnetic moments dominating at H > 2 T. The former generates an easy-plane

anisotropy in samples with reduced thickness (i.e. χx > χy in the low field) until the

latter enforces the alignment of �M and �H (i.e. χx ∼ χy in the high field). In addition,
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Figure 2-7: Representative torque measurements on thin film samples

(a) An optical micrograph of an FeSn thin film sample attached to a Au cantilever.
(b),(c) Magnetic torque response of a Gd thin film sample. (b) and (c) are torque τ
and torque magnetization Mτ at T = 2 K (red) and 100 K (black).

hysteretic responses are observed in both τ and Mτ , consistent with the expectation

that the film is ferromagnetic. As indicated from this representative example, torque

magnetometry offers an extremely sensitive probe of anisotropic magnetic response,

particularly useful in extracting the sample signal from a large but relatively isotropic

background signal.

2.7 Planar tunneling spectroscopy

We probe the electronic structure of some of the thin film samples via planar tunneling

spectroscopy. For this purpose, we characterize the tunnel conductance of electrons

traveling between the target layer and the electrode layer across an insulating barrier.

The net conductance (I) of a tunnel junction is given by:

I(VJ) ∝
∫ EF,target

EF,target−eVJ

TbarrierDtarget(ε)electrode(ε)dε (2.3)

where VJ, EF,target, Tbarrier are the junction voltage, the Fermi energy of the target

layer, and the tunneling efficiency of the barrier, respectively. In a typical tunnel

junctions, (EF,target - eVJ) = EF,electrode, where EF,electrode is the Fermi energy of the

electrode layer. Dtarget(ε) and Delectrode(ε) are the DOS at E = ε of the target layer
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Figure 2-8: Measurement configuration for planar tunneling spectroscopy

(a) Schematic diagram of the three-terminal tunneling measurement configuration.
(b) Circuit diagram of the resistor-capacitor (RC) network.

and the electrode layer, respectively. While I entails the net contribution from all

electronic states within EF,electrode ≤ E ≤ EF,target, the energy-resolved DOS can be

inferred from the differential conductance dI/dV :

dI

dV
(VJ) ∝ Dtarget(EF,target − eVJ) (2.4)

Fig. 2-8(a) shows a schematic diagram of a three-terminal tunneling measurement

configuration used to extract I and dI/dV in our tunnel junctions. In order to probe

the differential current dI in response to the differential voltage dV at a given VJ, we

mix a small AC bias voltage (dUAC) to a DC bias voltage (UDC) with a custom-made

resistor-capacitor (RC) network consisting of voltage dividers, a low pass filter, and

a high pass filter (Fig. 2-8(b)). UDC and dUAC are generated from Yokogawa 7651

DC voltage source and Stanford Research Systems SR860 lock-in amplifier equipped

with an AC voltage source, respectively. Typically |dUAC| 	 |UDC| to ensure reliable

difference conductance characterization.

As the net bias voltage of (UDC + dUAC) is applied onto the tunnel layer, the actual

I and VJ across the junction are measured simultaneously (note that |UDC| > |VJ| due

to non-junction-related voltage drops). I is first converted to an equivalent voltage
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signal with a current amplifier Ithaco DL1211 and VJ is also passed through a voltage

pre-amplifier Ithaco DL1201. The DC components, IDC and VDC, are extracted with

Keithley K2182 voltmeters and the AC components, dIAC and dVAC, are extracted

with an SR860 (or SR830). By taking the numerical ratio of dIAC and dVAC, we

extract the dI/dV spectrum, closely correlated with the intrinsic DOS at the target

layer.
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Chapter 3

Engineering the kagome band

structure in FeSn

In this chapter, we investigate the roles of the kagome band structure in shaping the

electrical and magnetic properties of FeSn. The recent experimental observations of

the lattice-driven Dirac and flat bands in TSn (T = Fe, Co) revealed the effectiveness

of its quasi-layered crystal structure in preserving the physics of the two-dimensional

kagome lattice model. In the first part, we provide comprehensive descriptions of the

synthesis and characterization of high quality epitaxial thin film FeSn. In the second

part, we demonstrate systematic control of the chemical potential and spin structure

of FeSn in a highly controlled fashion, thereby elucidating the impacts of the Dirac

and flat band electrons in generating magnetic instability and anomalous transport

responses in this system.

3.1 Properties of TSn (T = Fe, Co)

FeSn is a quasi-layered transition metal stannide consisting of an alternating stack

of Fe3Sn kagome layers and Sn2 honeycomb layers (Fig. 3-1(a)-(c)). The consecutive

kagome layers in FeSn are AA-stacked, distinguished from those in its Sn-deficient

cousin compounds Fe3Sn2 (AAABBBCCC-stacking) and Fe3Sn (AB-stacking). This

crystal structure is a prototype of a wider class of kagome metals XY (X = transition
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Figure 3-1: Antiferromagnetic kagome metal FeSn

(a) Crystal structure of FeSn. Schematic atomic arrangements of (b) the Fe3Sn
kagome layer and (c) the Sn2 honeycomb layer. (d) DFT electronic structure of
FeSn in the antiferromagnetic state. (e,f) Fermi surface of FeSn at the kagome ter-
mination measured by photoemission experiments. The kagome-derived Dirac points
can be identified at the K-point. (d)-(f) are from [44].

metal; Y = group III, IV elements).

Below TN = 365 K, FeSn becomes a type-II antiferromagnet, in which the Fe spin

moments align ferromagnetically within a single kagome plane but antiferromagnet-

ically from those in the neighboring planes [80–84]. While FeSn has shown limited

exfoliation capability potentially owing to the three-dimensional bonding network of

Sn therein, the hybridization between the consecutive kagome layers is expected to be

strongly suppressed by the stanene spacer layers, giving rise to a bulk band structure

with the kagome-derived Dirac crossings and flat bands clearly visible. Corroborating

this insight, density-functional theory (DFT) band structure calculations of FeSn in

the antiferomagnetic state manifest near the Fermi level (EF) quasi-two-dimensional

Dirac and flat bands with the associated Dirac points and the density of state (DOS)

peak at E ∼ -0.4 eV and E ∼ 0.6 eV, respectively (Fig. 3-1(d)). In recent pho-
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Figure 3-2: Paramagnetic kagome metal CoSn

(a) DFT electronic structure of CoSn in the nonmagnetic state. The kagome-derived
flat bands of different d-orbital origins are enclosed in colored boxes. (b) Fermi surface
of CoSn measured by photoemission experiments. (c) DOS peak from the flat bands.
(d) Direct visualization of the flat bands from different momentum cuts in (b). (a)-(d)
are all from [45].

toemission experiments on bulk single crystal FeSn, the predicted Dirac bands have

been observed, confirming the validity of the long-sought conceptual model in a real

material (Fig. 3-1(e),(f)) [44]. The access to the flat bands, however, has been limited

as they are expected above EF of FeSn. Paramagnetic kagome metal CoSn, an iso-

structural compound to FeSn, was then proposed as an alternative testbed material

to detect the flat bands. Containing one extra electron per formula unit with respect

to FeSn, CoSn’s EF was predicted to be above the energies of the flat bands (Fig. 3-

2(a)). Another set of photoemission experiments have been performed on bulk single

crystal CoSn and in fact the lattice-driven flat bands were directly visualized (Fig.

3-2(b)-(d)) [45].

The faithful representation of the original kagome lattice model reveals that TSn

offers an ideal material platform to explore the topology and correlation originating

from the Dirac and flat band electrons. In either FeSn or CoSn, however, the im-
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plications of the key band features to the macroscopic physical properties have not

been discussed thus far, largely owing to their energies being deviated from EF. In

the following sections, we present our approaches in stabilizing FeSn in epitaxial thin

film form (section 3.2), the morphology compatible with various experimental con-

trol parameters, and bringing the kagome-derived band singularities to EF (section

3.3). Based on the results, we discuss their relevance to different types of emergent

phenomena in this system.

3.2 Synthesis and characterization of FeSn epitaxial

thin films

To engineer the kagome band structure, we first synthesize epitaxial thin films of

FeSn using molecular beam epitaxy (MBE). This section provides a description of

the synthesis and characterization of high quality FeSn thin films.

3.2.1 Epitaxial thin film synthesis of FeSn

For reliable epitaxy to take place, FeSn with hexagonal symmetry is deposited on

(111) facet of cubic perovskite SrTiO3. Inter-atom distance of the Sr network on

(111) planes of SrTiO3 was 5.5 Å, 3.9% larger than the in-plane lattice parameter

of FeSn (aFeSn = 5.3 Å). The reasonable match between the two length scales make

SrTiO3 (111) a lattice-matched substrate platform for FeSn (Fig. 3-3(a)).

Prior to film synthesis, SrTiO3 (111) substrates (Shinkosha Co.) are dipped into

Buffered Oxide Etch for 8 min and then rinsed with deionized water. This chemical

etching procedure is followed by 1 h annealing in air at 1300 ◦C. The substrates pre-

pared this way has flat and step-terraced surface morphologies suitable for subsequent

film deposition (Fig. 3-3(b)). After loading to the growth chamber, the substrates

are pre-annealed at 600 ◦C for 1 h to remove any residual moisture and adsorbate.

Then, the substrate temperature is changed to the deposition temperature (Td), at

which Fe and Sn are co-deposited with the optimal beam equivalent pressure (BEP)
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Figure 3-3: Optimization of FeSn thin film synthesis

(a) Schematic atomic arrangements on the FeSn (001) plane (left) and the SrTiO3

(111) plane (right). (b) Atomic force microscopy (AFM) image of an annealed SrTiO3

(111) substrate. (c) X-ray diffraction spectra of FeSn films synthesized with different
BEP ratios. (d) AFM images of FeSn films deposited at Td = 200 ◦C (left) and 500
◦C (right). (e) Schematic growth phase diagram of FeSn thin films. An optimized
film has high crystallinity (above the blue boundary), connected in-plane morphology
(below the red boundary), and 1:1 stoichiometry (along the black dashed line). The
region that satisfies these conditions is shaded yellow.
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ratio PSn : PFe, where PSn and PFe are BEPs for Sn and Fe, respectively. After the

deposition, some of the films are additionally capped with BaF2 and post-annealed

at Ta = 500 ◦C to enhance crystalline quality.

The growth optimization requires precise calibrations of Td and PSn : PFe. Fig.

3-3(c) shows the X-ray diffraction (XRD) spectra of a series of samples synthesized

with different PSn : PFe (Td = 500 ◦C fixed). The wavelength of the incident X-ray

beam is λ = 0.154 nm. All of the traces show SrTiO3 (222) XRD peaks at 2θ =

39.98◦. In vicinity of the substrate peaks are observed film peaks, including those

associated with the desired FeSn (002) orientation (2θ = 40.52◦). When films are

synthesized under Sn-rich conditions, the (002) peak intensity becomes significantly

suppressed. This is accompanied by the emergence of other undesired peaks from

FeSn (201) (2θ = 44.70◦) and FeSn (100) (2θ = 38.90◦). By comparison, when films

are synthesized under Fe-rich conditions, all of the peak intensities diminish and the

films manifest nearly non-crystalline characters. At a given Td, the optimal PSn : PFe

is obtained by maximizing the (002) peak intensity and minimizing the parasite peak

intensities.

Turning to the optimization of Td, Fig. 3-3(d) shows the atomic force microscopy

(AFM) images of two films deposited at Td = 200 ◦C < TSn,melt (left) and Td = 500 ◦C

> TSn,melt (right), where TSn,melt = 231 ◦C is the melting point of Sn. The formation

of FeSn is driven by the kinetic energies of impinged Fe and Sn atoms − the reason

why higher Td in general produces a film with higher crystallinity. This, however, is

also accompanied by the impetus of surface tension tending to segregate the film into

disconnected islands. This tendency becomes pronounced when the kinetic energy

of the constituent atoms is large e.g. when Sn becomes a liquid at Td > TSn,melt

(see Fig. 3-3(d), right). To attain high crystallinity and connected film morphology

simultaneously, 120 ◦C ≤ Td < TSn,melt is used. This is the Td range between the blue

boundary and the red boundary in Fig. 3-3(e), the former dividing the crystalline

vs. non-crystalline phases and the latter dividing the connected vs. disconnected

phases. The optimal PSn : PFe is different for each Td, mainly due to temperature

dependent sticking coefficient of Fe and Sn to SrTiO3 surface (see the black dashed
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Figure 3-4: Structural characterizations of FeSn films

(a) X-ray diffraction spectra of FeSn films with and without the post-annealing treat-
ment. Inset: optical micrograph of an FeSn film (scale bar: 1 mm). (b) X-ray
reflectivity oscillation measured on the annealed FeSn film in (a). The best fit to the
data is shown as the red dashed curve. Inset: schematic sample structure. (c) Pole
figure of an FeSn film, showing the in-plane crystallographic orientation of the film
with respect to that of the SrTiO3 substrate. (d) Rutherford backscattering spectra
of an FeSn film measured with 8.9 MeV O4+ beam.

line in Fig. 3-3(e)). The PSn : PFe is optimized to be ∼ 3:1 within the chosen Td

range. The optimum growth parameters need to be periodically recalibrated to keep

track of time-varying chamber conditions.

3.2.2 Structural characterizations

Figure 3-4(a) shows XRD spectra of optimized FeSn films synthesized with and with-

out the BaF2 cap and post-annealing. Both of these samples were synthesized at Td

= 150 ◦C with an optimal BEP ratio. The pronounced film peaks are identified at

2θ = 40.60◦ for both samples, ∼ 0.2% deviated from the (002) diffraction peak po-
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sition of bulk FeSn. The film peaks show Laue interference fringes, indicating sharp

interfaces. In a symmetric scattering configuration, peaks other than SrTiO3 (lll) and

FeSn (00l) are not observed, indicating these films are singly oriented. Fig. 3-4(b)

shows the X-ray reflectivity (XRR) measurements on the annealed FeSn film. The

spectrum shows a clear oscillation due to the interference of reflected X-ray beams,

indicating the flat film morphology. By comparing the data to a simulated curve us-

ing the model structure (Fig. 3-4(b), inset), we determine the thicknesses of the FeSn

layer and the BaF2 layer to be tFeSn = 25.5 nm and tBaF2 = 34.8 nm, respectively.

The in-plane orientation of FeSn with respect to the SrTiO3 is determined by

asymmetric XRD measurements. As shown in the pole figure in Fig. 3-4(c), the

(201) diffraction peaks of FeSn exhibit a six-fold rotation symmetry while the (101)

diffraction peaks of SrTiO3 show a three-fold rotation symmetry as expected from

their crystal structures. The in-plane angles of the FeSn (201) peaks match with those

of the SrTiO3 (101) peaks, indicating the epitaxial alignment of in-plane crystallo-

graphic orientations between the two layers. We observe small but finite intensities

between the consecutive FeSn (201) peaks, likely originating from a minor domain

rotated by 30◦ with respect to the major domain.

To further confirm the sample structure, we perform a Rutherford backscattering

(RBS) measurement. Fig. 3-4(d) shows RBS spectra from 8.9 MeV O4+ experiments,

manifesting pronounced peaks from Fe, Sn, and Ba, as well as Sr and Ti continua from

the substrate contributions. By comparing the experimental traces to the simulated

curves, we find the expected 1:1 stoichiometry between Fe and Sn as well as the

thickness value consistent with the XRR fitting result.

3.2.3 Magnetic characterizations

Having characterized structural aspects of our FeSn films, we now investigate their

magnetic properties. FeSn in its antiferromagnetic phase is reported to have an

extremely high saturation field μ0Hsat ∼ 300 T. Kakihana et al. have confirmed from

magnetization (M) measurements of bulk single crystal FeSn that M < 0.1 μB/Fe at

μ0H = 10 T and M < 0.35 μB/Fe at μ0H = 50 T with field along any high symmetry
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Figure 3-5: Magnetic torque of an FeSn film

(a) Magnetic torque τ of an FeSn film. Inset: schematic of the measurement setup.
(b) Temperature dependence of τ at μ0H = 6 T. Dashed lines show linear fits for
T ≤ 330 K and T ≥ 360 K, whose intersection gives an estimate for TN.

direction [85]. This is much smaller than the saturation magnetization Msat = 1.8

μB/Fe observed in ferromagnetic Fe3Sn2 at μ0H ≥ 1 T. Additionally, the small sample

volume (e.g. 6.5 × 10−8 mol for a film with tFeSn = 25 nm and 5 mm × 5 mm area)

imposes additional practical challenge in detecting M of FeSn films.

In order to probe signatures of magnetic phase transition in our films, we utilize

magnetic torque τ . In the current measurement configuration, τ ∝ χτH
2 = (χab -

χc)H2, where χab and χc are magnetic susceptibilities along the film in-plane and

the film normal direction, respectively (Fig. 3-5(a), inset). In Fig. 3-5(a), we plot

magnetic field dependent torque τ(H) of an annealed FeSn film with tFeSn = 25.5

nm. Disregarding the cusp-like anomaly within |μ0H| < 1.5 T (which we attribute to

a mechanical instability of the cantilever), τ(H) exhibits a quadratic response with

nearly temperature independent positive curvature above T = 360 K. This reflects a

weak χτ > 0 (or χab > χc) component in the high temperature regime.

Below T = 360 K, τ(H) starts to deviate from a simple parabola and at 100 K

it develops a negative dip around μ0H = 6 T. This non-quadratic τ(H) below 360 K

can be understood as an emergence of a χτ < 0 (or χab < χc) component in the low

field regime, which eventually gives way to the net χτ > 0 response in the high field
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regime. This behavior can also be seen from the temperature dependent torque τ(T )

at a fixed magnetic field μ0H = 6 T (Fig. 3-5(b)). τ(T ) shows a kink-like anomaly

around 360 K, suggesting an onset of a distinct magnetic response. We attribute this

to the appearance of an antiferromagnetic order. By linearly extrapolating the slopes

of τ(T ) below and above 360 K and identifying their intercepts, we find that the Neel

temperature of the film is TN,film ∼ 353 K, close to TN = 365 K in bulk FeSn.

3.2.4 Electrical characterizations

Electrical transport properties of FeSn films are characterized within 2 K ≤ T ≤ 390

K and 0 T ≤ |μ0H| ≤ 9 T. Figure 3-6 shows the temperature dependent electrical

resistivity ρxx(T ) of three different samples: a lithographically defined Hall-bar device

(blue), a bare annealed film (red), and a bare unannelaed film (green). The film

thicknesses in all three samples are 25.5 nm. All samples show metallic behavior with

ρxx monotonically decreasing as temperature decreases (dρxx/dT < 0). ρxx at 300 K

(2 K) of the annealed and unannealed films are 194 μΩ cm (8.1 μΩ cm) and 102 μΩ

cm (9.5 μΩ cm), respectively. This gives residual resistivity ratio RRR (≡ ρxx(300

K)/ρxx(2 K)) of 24 for the annealed film and 10.7 for the unannealed film. The

factor of ∼ 2 increase in RRR signifies the improved quality after the post-annealing

treatment. The resistivity of the Hall-bar device at 300 K (2 K) is 328 μΩ cm (13.7

μΩ cm). It exhibits RRR = 24, identical to that of the bare annealed film, indicating

the sample quality is unaffected by the device fabrication procedures.

A close inspection of ρxx(T ) of the Hall-bar device reveals a kink around T = 358

K. To illustrate this more clearly, the derivative of ρxx(T ) as a function of temperature

is shown in Fig 3-6(b). dρxx/dT shows a clear feature at T = 358 K, close to TN,film =

353 K detected from the magnetic torque. A similar kink-like drop in ρxx(T ) has been

observed in bulk FeSn as it enters the antiferromagnetic phase [84]. It was understood

that the formation of a long-range order diminishes the spin fluctuations in the system

and leads to the decrease in scattering cross-section for conduction electrons.

Figure 3-6(c) shows the magnetoresistance (MR ≡ Δρxx
ρxx(H=0)

= ρxx(H)−ρxx(H=0)
ρxx(H=0)

) of

the annealed FeSn film with magnetic field along the film normal direction. At T
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Figure 3-6: Electrical transport of FeSn films

(a) Temperature dependent electrical resistivity ρxx(T ) of a Hall-bar device (blue), a
bare annealed film (red), and a bare unannealed film (green). Inset: magnified view
of ρxx(T ) at low temperature. (b) Derivative of ρxx(T ) with respect to T of the Hall-
bar device. Inset: optical micrograph of the Hall-bar device (scale bar: 300 μm). (c)
Magnetoresistance and (d) Hall effect of the annealed film at selected temperatures.

= 300 K, we see a small quadratic negative MR with -0.09% amplitude at μ0H =

9 T. This negative MR suppresses as temperature decreases and becomes positive

below T = 100 K. Below 100 K, the positive MR monotonically grows and reaches

up to +1.84% amplitude at μ0H = 9 T. The quadratic negative MR response in the

high temperature regime is suspected to arises from the field-suppression of magnetic

fluctuations and the resultant modulation of ρxx [86]. Once the temperature drops

far below TN, the negative MR component is sufficiently suppressed and the Lorentz-

force-induced positive MR component dominates.

Fig. 3-6(d) shows the Hall curves of the annealed film. The Hall coefficient RH

(≡ dρyx/dH), extracted from the linear slope near μ0H = 9 T, changes sign from
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positive to negative as temperature decreases below T = 200 K. Within a single band

approximation, the Hall carrier density at T = 2 K is estimated to be NH = 9.9

× 1021 cm−3 (electron-like) with the corresponding mobility μ = 78 cm2 V−1 s−1.

The observed temperature dependence of RH can be attributed to the temperature

dependent evolution of the sublattice magnetization (MFe) in antiferromagnetic FeSn,

combined with complex mobility contributions from multiple bands. We discuss the

former effect in detail in section 3.3.2.

3.2.5 Quantum oscillations

To investigate the Fermi surface morphology, some of the highest quality FeSn films

are characterized at the National High Magnetic Field Laboratories (NHMFL). Figure

3-7(a) shows the high field MR of an annealed film with tFeSn = 25.5 nm. The overall

response is quadratic in magnetic field with growing magnitude from T = 40 K to T =

0.58 K, originating from an enhanced mobility at lower temperatures. Shubnikov-de

Haas (SdH) oscillations are also observed with an onset field of μ0H ∼ 30 T. Figure

3-7(b) shows the extracted SdH oscillations at different temperatures, from which the

effective mass of m� = 0.38 m0 can be extracted using the Lifshitz-Kosevich (LK)

formula (Fig. 3-7(c), inset):

A (T ) = A0
2π2m�kBT

eh̄μ0H
sinh−1

(
2π2m�kBT

eh̄μ0H

)
(3.1)

where A is the SdH oscillation amplitude, A0 is a temperature independent pre-

factor, m0 is the electron rest mass, kB is the Boltzmann constant, and h̄ is the

reduced Planck constant. The oscillation frequency, extracted by the Fast Fourier

Transformation (FFT), was f = 145 T (Fig. 3-7(c)). The oscillation frequency

and the quantum lifetime (τQ) of the detected Fermi surface can also be estimated

by fitting the field-dependent SdH amplitudes to the Dingle formula: A (T,H) =

A1RTRD sin
(

2πf
μ0H

+ γ
)
, where A1 is a temperature and field independent pre-factor,

RT is the thermal damping factor, RD is the Dingle damping factor, and γ is the
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Figure 3-7: High magnetic field transport of an FeSn film

(a) High field magnetoresistance of an FeSn film at different temperatures. (b)
Shubnikov-de Haas (SdH) oscillations at different temperatures, extracted from (a).
(c) Fast Fourier Transform (FFT) of the SdH oscillations in (b). The inset shows
the temperature dependent SdH oscillation amplitudes (marker) and their fit to the
Lifshitz-Kosevich (LK) formula (dashed line). (d) The SdH oscillation at T = 0.58 K
(red) and their fit to the Dingle formula (blue).

phase of the oscillation. RT and RD are defined as:

RT =
2π2m�kBT

eh̄μ0H

(
sinh

(
2π2m�kBT

eh̄μ0H

))−1

(3.2)

RD = exp

(
−2π2m�kBTD

eh̄μ0H

)
(3.3)

where TD is the Dingle temperature. Fig. 3-7(d) shows the SdH oscillation at T =

0.58 K and their best fit to the Dingle formula. The fit results give TD = 34 K and

f = 153 T, the latter close to the value extracted from the FFT analysis. From the
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fFFT m�
LK (m0) fDingle TDingle Reference

Bulk α1-pocket 1310 5.4 [44]
Bulk α2-pocket 3641.5 3.1 4 [44]
Bulk α3-pocket 6755.3 4.3 [44]
Bulk δ-pocket 132 0.26 30 [44]

Film#1 145 0.38 153 34 this work
Film#3 145 0.37 this work
Film#4 143 0.33 157 28 this work

Table 3.1: Band parameters of bulk and thin film FeSn

(Row 1−4): band parameters of bulk FeSn reported in [44]. The parameters undis-
closed in [44] are left as blanks. (Row 5−7): band parameters of thin film FeSn.
fDingle and TDingle for Film#3 are not available due to insufficient signal-to-noise ratio
in the experimental data. Film#4 is a lithographically defined device.

extracted TD, we infer τQ = h̄
2πkBTD

= 3.6 × 10−14 s.

The band parameters extracted from all measured samples are summarized in

Table 3.2.5 (Film#1 corresponding to the one shown in Fig. 3-7). For comparison,

we also include some of the reported band parameters from a de Haas-van Alphen

(dHvA) experiment on bulk FeSn [44]. f and m� extracted from all measured films are

in good agreement with those of the δ-pocket observed in bulk, indicating comparable

electronic structure and Fermi level position. The higher frequency α-pockets are not

detected in our films. In the dHvA study, the α2-pocket was identified as one of the

kagome-derived Dirac bands.

To investigate the geometry of the observed Fermi surface, we perform field angle

dependent SdH measurements at T = 0.35 - 0.55 K. Figure 3-8(a),(b) shows SdH

oscillations of FeSn films at different magnetic field angles θ with respect to the c-axis

(i.e. H // c corresponds to θ = 0, 180 ◦). Fig. 3-8(a) is the data acquired from Film

#2 in the 45 T DC magnet system at T = 0.35 K, whereas Fig. 3-8(b) is the one

acquired from Film#1b in the 65 T pulsed magnet system at T = 0.55 K (Film#1b

is prepared by rewiring Film#1). Considering TD = 34 K, two orders of magnitude

higher than T = 0.35 - 0.55 K, the 0.2 K variation between the two measurement

temperatures is not expected to generate a significant difference in ΔRxx/Rxx.

As magnetic field is tilted away from the c-axis, the oscillation frequency grad-
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Figure 3-8: Field angle dependent Shubnikov-de Haas oscillations

SdH oscillations with different magnetic field angles (θ) measured (a) from Film#2
in the 45 T DC magnet system and (b) from Film#1b in the 65 T pulsed magnet
system (vertical offsets are added for clarity). Dashed lines indicate the trajectories
of peaks and dips. (c) θ dependent SdH oscillation frequencies. The overlaid dashed
lines denote expected Fermi surface cross sections assuming different ellipticities. a
and b respectively are minor and major axis of the ellipse.
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ually increases, while its amplitude becomes suppressed. The change in the oscil-

lation frequency is seen clearly from the gradual shift in the peak/dip positions of

the oscillations. Each peak/dip position follows an elliptical trajectory (grey dashed

lines), reflecting an anisotropic Fermi surface elongated along the c-axis. Figure 3-

8(c) shows a scatter plot of the oscillation frequencies at different θ extracted from

Fig. 3-8(a),(b). As well as the FFT (red) and the Dingle fitting (blue), the peak/dip

indexing method (black) is applied by identifying the number of peaks/dips within a

certain interval of the inverse magnetic field: findex =
(

Number of oscillations
(1/μ0H)max−(1/μ0H)min

)
, where

(1/μ0H)max and (1/μ0H)min respectively denote the maximum and minimum inverse

magnetic field values at which peak/dip occurs. The overall trend is consistent with

an elongated pocket with b ∼ 3a, where a and b are minor and major axis of the el-

lipse, respectively (see the schematic in Fig. 3-8(c), right). This reflects the electronic

hopping anisotropy in FeSn originating from its quasi-layered crystal structure.

3.3 Complete control of the kagome spectrum in FeSn

In the previous section, we have presented extensive discussions on synthesis and

characterization of FeSn films. In this section we demonstrate a systematic doping

control of FeSn films, which enables versatile tuning of the chemical potential and the

spin structure in this system.

3.3.1 Complete coverage of doping in (Fe1−x−yMnxNiy)(Sn1−z)

While the quasi-layered crystal structure of FeSn (or CoSn) has proven effective in

preserving the lattice-driven Dirac and flat bands in its bulk electronic structure,

its chemical potentials is deviated from the key band features. With an objective

of stabilizing a system with the lattice-borne band singularities at EF and further

exploring their impacts on electrical and thermodynamic properties, we incorporate

a wide range of chemical doping into the parent FeSn matrix.

As the effects of chemical doping include the enhancement/suppression of mag-

netic order as well as the change in band filling, it is instructive to first consider the
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Spin  Spin  

Figure 3-9: Band structures of nonmagnetic and antiferromagnetic FeSn

(a) Schematic stacking sequence in FeSn crystal structure, consisting of an alternating
stack of the Fe3Sn kagome layers (K, red) and the Sn2 honeycomb layers (S, grey).
(b) The kz = 0 plane band structure of FeSn in the nonmagnetic state. The right
column is DOS. (c) Schematic spin arrangement and (d) the kz = 0 plane band
structure of FeSn in the antiferromagnetic state with fully saturated Fe moments.
The right columns in (d) are total and spin-/layer-resolved DOS. The Dirac points
and flat bands in (b),(d) are marked with yellow arrows and orange shaded boxes,
respectively. The kz = π plane band structures are qualitatively similar to those in
(b),(d). The calculations for (b),(d) are performed by S. Fang in [75].
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electronic structures of undoped FeSn in both the high temperature paramagnetic

phase (T > TN; Fig. 3-9(a)) and the low temperature antiferromagnetic phase (T

	 TN; Fig. 3-9(c)) − the former harboring MFe = 0 and the latter harboring MFe

= Msat. In the nonmagnetic state of FeSn, DFT band structure calculations predict

that EF is located within the DOS peak arising from the flat band complex (Fig.

3-9(b)). This flat band complex was identified in previous bulk single crystal studies

to be a combination of two distinct kagome-derived flat bands with the dxz/dyz- and

dxy/dx2−y2-orbital origins [44–46]. Also originating from multiple d-orbitals in the sys-

tem, two copies of nearly iso-energy Dirac points are expected at the K-point around

E � -700 meV. Both of these band features are quasi-two-dimensional owing to the

layer-decoupled crystal structure and show qualitatively similar morphologies at the

kz �= 0 planes. In the antiferromagnetic state of FeSn (Fig. 3-9(c)), exchange energy

generates a spin-split band structure at each spin-polarized kagome layer, while the

majority/minority spin direction is flipped between the A (KA) and B (KB) sublat-

tices (Fig. 3-9(d), right). There, most of the majority spin bands shift far below EF,

leaving the flat bands and the Dirac points with minority spin at E � 600 meV and E

� -400 meV, respectively (Fig. 3-9(d), left). Focusing on the antiferromagnetic band

structure, we aim to bring the Dirac points (or the flat bands) to EF with an appro-

priate hole-doping (or electron-doping), accomplished by substituting the Fe-site in

FeSn with heterogeneous 3d transition metal elements.

Epitaxial thin films of (Fe1−x−yMnxNiy)(Sn1−z) with varying doping concentra-

tions x, y, and z are deposited on SrTiO3 substrates by MBE. High degree of stoi-

chiometric control involved in MBE synthesis facilitates the ultra-precise doping on

the lattice. The films used for the doping experiments are deposited at Td = 140 -

210 ◦C but are not post-annealed. Bringing thermodynamically unstable doped films

(especially those with high doping concentrations) to elevated temperatures tend to

segregate the dopants from the parent matrix. Fig. 3-10(a) shows the XRD peak

positions of (Fe1−x−yMnxNiy)(Sn1−z) films at different doping concentrations. At (x,

y, z) = (0, 0, 0), the FeSn (002) diffraction peak is observed at 2θ = 40.60◦ (black

trace in Fig. 3-10(a), inset). Upon chemical doping, the position of the FeSn (002)
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Figure 3-10: Epitaxial stabilization of (Fe1−x−yMnxNiy)(Sn1−z) films

(a) Doping dependent (002) X-ray diffraction (XRD) peak positions of
(Fe1−x−yMnxNiy)(Sn1−z) films. The inset shows the XRD spectra of samples with
x = 0.7 (purple), y = 0.3 (green), z = 0.35 (amber), and (x, y, z) = (0, 0, 0) (black).
(b) ρxx(T ) of an undoped FeSn film. The top inset shows doping dependent residual
resistivity ratio of Mn-doped (purple), Ni-doped (green), and Sn-deficient (amber)
samples. The bottom inset shows magnetic field dependent Hall resistivity of the
undoped FeSn at T = 2 K.

diffraction peak shifts linearly, reflecting a gradual expansion or compression of the

c-axis lattice constant. With Mn-substitution (0 ≤ x ≤ 0.9) (Fig. 3-10(a), purple

markers), the peak position moves from 2θ = 40.60◦ at x = 0 to 2θ = 40.09◦ at x = 0.9

as the inter-layer spacing expands (Δ(2θ)/Δx = -0.0057◦/%). Conversely, with Ni-

substitution (0 ≤ y ≤ 0.45) (Fig. 3-10(a), green markers), it moves from 2θ = 40.60◦

at y = 0 to 2θ = 41.39◦ at y = 0.45 as the inter-layer spacing compresses (Δ(2θ)/Δy

= 0.0175◦/%), similar to what was observed previously in Co-doped FeSn bulk sin-

gle crystal studies [87]. The systematic compression or expansion of the inter-layer

spacing as a function of Mn- or Ni-substitution is in accordance with the atomic radii

trend of Mn, Fe, and Ni. In addition to the Fe-site substitution, we also introduce

Sn-site vacancies into the system (0 ≤ z ≤ 0.5) (Fig. 3-10(a), amber markers) and

observe a peak shift from 2θ = 40.60◦ at z = 0 to 2θ = 41.97◦ at z = 0.5 (Δ(2θ)/Δz =

0.0074◦/%). This is consistent with the decrease of the inter-layer spacing when bulk

single crystal FeSn (c/2 = 2.24 ) becomes Sn-deficient by 33% and 66% in Fe3Sn2

(c/9 = 2.21 ) and Fe3Sn (c/2 = 2.18 ), respectively, as the kagome−stanene stacking

71



sequence is altered in the latter two compounds. Complete sets of XRD and XRR

spectra for all measured (Fe1−x−yMnxNiy)(Sn1−z) samples can be found in Fig. 3-11

and Fig. 3-12, respectively.

Fig. 3-10(b) shows the electrical transport properties of the undoped FeSn; these

are the initial conditions prior to doping and are qualitatively similar to those from

the annealed film presented in section 3.2.4. ρxx(T) reveals a metallic character with

RRR = 14 (Fig. 3-10(b)). The RRR decreases as a function of doping concentration,

likely due to an increased number of scattering centers in doped films. We note that

RRR decreases more rapidly in Mn- and Ni-substituted samples (purple and green

traces in Fig. 3-10(b), top inset) than in Sn-deficient samples (amber trace in Fig.

3-10(b), top inset). This is consistent with the expectation that the Fe3Sn kagome

layers are the active conduction channels in this system with the majority of carrier

density concentrated therein. Contrary to modulation doping effect in semiconductor

heterostructures, placing dopants directly at the channel layer has a more detrimental

effect on the electronic mobility of the sample [88]. A kink in ρxx(T ) was observed

at T = 364 K, suggestive of the antiferromagnetic order setting in. Across the entire

range of x and y, the antiferromagnetic order was preserved though with modified TN.

In section 3.3.4, we present the doping dependence of TN and interpret it in relation

to the flat band driven magnetic instability. The Hall effect of FeSn measured at T

= 2 K was linear up to μ0H = 9 T with the Hall coefficient RH = -3.0 × 10−8 Ω

cm T−1 and the single band Hall carrier density NH = 2 × 1022 cm−3 (electron-like).

In section 3.3.3, we utilize RH in the linear Hall regime as an indicator for doping

dependent EF positions and other signatures of band singularities.

Before investigating the doping dependent electrical transport (section 3.3.2 -

3.3.4), we wish to conclude this section by commenting from a synthesis-oriented per-

spective on how such a wide range of doping has been made possible. Unlike FeSn,

MnSn and NiSn are thermodynamically unstable compounds and therefore do not

exist in bulk single crystal form. Such instability typically obstructs reliable incorpo-

ration of Mn and Ni dopants into the FeSn matrix. When (Fe1−x−yMnxNiy)Sn is sta-

bilized in thin film form, however, epitaxial stabilization energy from film−substrate
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Figure 3-11: X-ray diffraction spectra of (Fe1−x−yMnxNiy)(Sn1−z) films

X-ray diffraction spectra of (a) (Fe1−xMnx)Sn, (b) (Fe1−yNiy)Sn, and (c) Fe(Sn1−z)
films. All of the films are grown on SrTiO3 (111) substrates except for the two films
with x = 0.8 and 0.9 grown on Al2O3 (001) substrates (ninth and tenth rows in (a)).
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Figure 3-12: X-ray reflectivity spectra of (Fe1−x−yMnxNiy)(Sn1−z) films

X-ray reflectivity (XRR) oscillations of (a) (Fe1−xMnx)Sn, (b) (Fe1−yNiy)Sn, and (c)
Fe(Sn1−z) films. Intended film thicknesses for 0 ≤ x ≤ 0.7 and 0 ≤ y ≤ 0.25 are
25.5 nm, while those for 0.8 ≤ x ≤ 0.9 and 0.3 ≤ y ≤ 0.45 (marked with yellow
stars) are 31 nm. Film deposition times for Fe(Sn1−z) (marked with lime stars) are
identical as those for (Fe1−x−yMnxNiy)Sn samples with 31 nm thickness, but their
resultant thicknesses are smaller due to Sn-deficiency. Pronounced XRR oscillation
is not observed for x = 0.9.
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Figure 3-13: Wetting layer assisted synthesis for heavily doped films

(a) XRD peak positions of (Fe1−yNiy)Sn films. Results from y ≤ 0.2, y ≥ 0.2 with
wetting layer, and y ≥ 0.2 without wetting layer are color-coded as lime, green, and
grey, respectively. Their schematic sample structures are shown in the insets. (b)
AFM image of a y = 0.35 sample without the wetting layer.

interaction, together with limited kinetic energy of the impinged atoms given a low

substrate temperature (i.e. 140−210◦C in the present case), realizes a highly non-

thermodynamic growth process. In such a regime, energy constraints in bulk synthe-

sis can be overcome and in some cases unstable dopants can be embedded into the

parent matrix with high doping efficiency (lime markers in Fig. 3-13(a)).

Even aided by the epitaxial stabilization energy, we encountered a finite solubility

limit for certain dopants. Beyond y ≥ 0.2, for instance, the XRD peak ceased to shift

at the same rate as it did within y ≤ 0.2 (grey markers in Fig. 3-13(a)). Accompanied

by this behavior, a dramatic increase in film’s 2-probe resistivity is observed. As can

be seen from the AFM image of a nominally Ni 35%-substituted FeSn film (Fig.

3-13(b)), y ≥ 0.2 typically results in a mixed phase film consisting of segregated

islands of (Fe0.8Ni0.2)Sn and elemental Ni (which gives rise to high apparent 2-probe

resistivities). To go beyond the natural solubility limit, we have employed a wetting

layer assisted growth. We first coated the substrate with a less than 2 nm thick

undoped FeSn. Then, using the ultrathin undoped FeSn as a wetting/seed layer,

we deposited (Fe1−yNiy)Sn with y ≥ 0.2. This restored the linear XRD peak shift

as well as connected film morphologies (green markers in Fig. 3-13(a)). Given that
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Figure 3-14: Surface morphologies of (Fe1−x−yMnxNiy)(Sn1−z) films

AFM images of (a) (Fe1−xMnx)Sn, (b) (Fe1−yNiy)Sn, and (c) Fe(Sn1−z) films.

the wetting layer is much thinner than the doped layer above, electrical transport is

always dominated by the latter. A set of AFM images for (Fe1−x−yMnxNiy)(Sn1−z)

samples is shown in Fig. 3-14.

3.3.2 Magnetotransport properties of (Fe1−x−yMnxNiy)Sn

Having acquired a series of doped FeSn films, we now characterize their electrical

transport properties. In this section, we present the complex magnetotransport prop-

erties of (Fe1−x−yMnxNiy)Sn films across the entire range of temperature, field, and

doping.

Fig. 3-15 shows the MR responses of (Fe1−xMnx)Sn films. As x increases, the

76



Figure 3-15: Magnetoresistance of (Fe1−xMnx)Sn

Magnetoresistiance of (Fe1−xMnx)Sn films at T = 2 K (red) and T = 300 K (blue).

positive quadratic MR at T = 2 K at x = 0 rapidly suppresses in magnitude until it

gives way to the negative quadratic MR at x = 0.2. This observed trend reflects the

suppression of positive MR component due to decreased electronic mobility and the

concurrent onset of negative MR component arising from field-suppression of fluctu-

ating spin disorders [86]. Beyond x = 0.2, another cusp-like positive MR component

appears in the low field in addition to the negative MR component, giving rise to

an inflection point at an intermediate field range. As x → 0.7, the negative MR

component grows more rapidly than the cusp-like component, resulting in the net

negative response at μ0H = 9 T. We note that a similar MR response was observed

in YMn6Sn6, a structurally similar compound to MnSn, and was ascribed to field-

induced spin flop phenomena [89]. In both FeSn and YMn6Sn6, T = 300 K MR was

reported to be negative. Consistent with those observations, the MR responses of

all the (Fe1−xMnx)Sn films at T = 300 K are negative with increasing magnitude at

higher x. The gradual disappearance of the characteristic MR response of FeSn and
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Figure 3-16: Magnetoresistance of (Fe1−yNiy)Sn

Magnetoresistiance of (Fe1−yNiy)Sn films at T = 2 K (red) and T = 300 K (blue).
For y = 0.3, 260 K data (light blue) are shown instead of 300 K data.

the emergence of a new type of response reminiscent of YMn6Sn6 indicate that our

(Fe1−xMnx)Sn films realize a stable solid solution of FeSn and MnSn.

Fig. 3-16 shows the MR responses in (Fe1−yNiy)Sn films (Fig. 3-16). At T =

2 K, the positive quadratic MR at y = 0 gradually suppresses until it gives way to

the negative quadratic MR beyond y = 0.2. At T = 300 K, the negative quadratic

response mildly increases in magnitude as y increases. In both temperature regimes,

the tendency of the negative MR component to enhance at higher doping concentra-

tion is analogous to that observed in (Fe1−xMnx)Sn, except no signature of potential

spin flop is observed in Ni-doping series. Overall, the doping dependence of MR in

(Fe1−x−yMnxNiy)Sn represents the systematic evolution of electrons’ scattering pro-

cesses as FeSn is continuously transformed to MnSn or NiSn.

Next, we investigate the Hall responses of (Fe1−x−yMnxNiy)Sn films (Fig. 3-17).

Across a wide temperature and doping range, extremely rich behaviors are observed.

At T = 2 K, the negative Hall slope at (x, y) = (0, 0) changes its magnitude and sign
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Figure 3-17: Hall effect of (Fe1−x−yMnxNiy)Sn within 2 K ≤ T ≤ 300 K

Hall resistivity ρyx of (Fe1−x−yMnxNiy)Sn films across the full doping range. Mea-
surements are taken between T = 2 K and T = 300 K and representative data at 2
K (red), 100 K (yellow), 200 K (green), and 300 K (navy) are shown. For y = 0.3,
280 K data (light blue) are shown instead of 300 K data.
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Figure 3-18: Density of states of FeSn with varying MFe

(a) MFe-dependent density of states of FeSn. MFe is in the unit of Msat. (b) Line cut
of (a) at certain MFe. The calculations here are performed by S. Fang in [75].

in a highly nonmonotonic fashion as x and y are varied, suggesting nontrivial changes

in the Fermi surface morphology and carrier polarity. At T = 300 K, the Hall slope

is consistently positive throughout the entire range of x and y, though with different

magnitude at each (x, y). The Hall response within 2 K < T < 300 K represents

a gradual evolution between the T = 2 K response and the T = 300 K response at

respective doping concentration.

The intricate temperature dependence of the Hall response can be ascribed to the

strong temperature dependence of the electronic structure of FeSn; as temperature

decreases below TN, MFe at each spin-polarized kagome layer begins to increase and

the layer-resolved band structure gradually spin-splits. To illustrate this, we perform

DFT calculations of the DOS of FeSn as MFe is varied from 0 (T > TN) to Msat (T 	
TN). Upon increasing MFe, the spin degenerate flat band complex, located at EF for

MFe = 0, splits into the majority and minority spin species. The splitting between the

two increases as a function of MFe until they settle at E ∼ -1.6 eV (majority) and E

∼ +0.6 eV (minority) as MFe → Msat at T 	 TN (Fig. 3-18(a)). The Dirac bands also

undergo a similar spin splitting. As shown in Fig. 3-18(b), the DOS dip associated

with the Dirac points shift significantly as a function of MFe. Given the strong MFe-

dependence (thus temperature dependence) of the band structure, electrical transport
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of (Fe1−x−yMnxNiy)Sn is expected to be highly temperature dependent, consistent

with the observed Hall response (Fig. 3-17).

A challenge in tracking EF vs. (x, y) arises from doping-dependent variation of

TN. At an arbitrary T = T0 in the intermediate temperature range, MFe (correlated

with T0/TN) and the resultant exchange splitting will be different for each doping

concentration. This accounts for the seemingly non-systematic doping-dependence of

the Hall slopes within 100 K ≤ T ≤ 300 K. Despite the complication in the intermedi-

ate temperature range, however, a reliable comparison can be made between different

doping concentrations in the T 	 TN regime, where MFe is sufficiently converged to

Msat regardless of TN at each (x, y). In the following section, we probe the systematic

shift in the chemical potential in (Fe1−x−yMnxNiy)Sn by limiting the analysis to T 	
TN − the regime where the chemical potential of the antiferromagnetic band structure

can be shifted upward or downward as a function of doping without any significant

change in the exchange splitting.

3.3.3 Chemical potential tuning in (Fe1−x−yMnxNiy)Sn

To explore the chemical potential shift of (Fe1−x−yMnxNiy)Sn in the antiferromagnetic

phase, we investigate the doping dependence of RH in the linear Hall regime, focusing

primarily on the T = 2 K 	 TN behaviors. Fig. 3-19 shows ρyx of (Fe1−x−yMnxNiy)Sn

samples measured at T = 2 K across the entire Fe-site doping range (0 ≤ x ≤ 0.9,

0 ≤ y ≤ 0.45). In the low doping concentration regime (x, y ≤ 0.1), ρyx is linear up

to μ0H = 9 T. At higher doping concentrations, a small hysteresis appears at |μ0H|
≤ 1 T. The anomalous Hall conductivity associated with this anomaly (σAH < 5 S

cm−1) is significantly smaller than that of ferromagnetic kagome metal Fe3Sn2 (σAH

> 1000 S cm−1 at T = 2 K) [52]. We identify this as arising from weak spin canting

as is frequently observed in antiferromagnets [90], and thus extract the linear slope

of ρyx at |μ0H| ≥ 3 T for RH.

Overall, RH reveals a nonmonotonic doping dependence with a few notable singu-

lar behaviors. On the hole-doping side (i.e. (Fe1−xMnx)Sn) (along the purple arrow

in Fig. 3-19), we observe a negative RH which increases in magnitude from RH = -3.0
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Figure 3-19: Hall effect of (Fe1−x−yMnxNiy)Sn at T = 2 K

Magnetic field dependent ρyx of (Fe1−x−yMnxNiy)Sn films across the entire range of
(x, y) measured at T = 2 K. Magenta and blue stars mark the doping concentrations
around which ρyx changes sign.

× 10−8 Ω cm T−1 at x = 0 to RH = -2.01 × 10−7 Ω cm T−1 at x = 0.5, reflecting

the decrease in the effective electron-like carrier density in this regime. With further

increase in x, the negative RH abruptly reverses sign from RH = -2.01 × 10−7 Ω cm

T−1 at x = 0.5 to RH = 2.11 × 10−7 Ω cm T−1 at x = 0.7, beyond which the mag-

nitude of positive RH starts to decrease. This indicates the presence of an effective

electron-hole compensation point beyond which hole-like carrier density increases in

size with further Mn-doping. Between the two large but sign-reversed RH values at x

= 0.5 and 0.7, we observe a near-zero RH value of -9.3 × 10−9 Ω cm T−1 at x = 0.6

(magenta star in Fig. 3-19). The behavior of RH and 1/RH on the hole-doping side

of FeSn is plotted in Fig. 3-20(a) and Fig. 3-20(b), respectively, in which RH reverses

sign in a singular fashion and 1/RH crosses zero smoothly around 0.6 hole-doping per

formula unit (f.u.) (x = 0.6; magenta star and dashed line in Fig. 3-20). We note

that the observed trend for RH recalls a semimetallic ambipolar Hall signal with two

oppositely signed peaks appearing on either side of RH = 0 Ω cm T−1 as the chem-

ical potential is swept across a charge neutral point via electrostatic gating [91–93],

as observed for graphene, topological insulator Bi2Te3 [68, 69], and Dirac semimetal

Cd3As2 [94].
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Figure 3-20: Chemical potential tuning in (Fe1−x−yMnxNiy)Sn

Band filling dependent (a) Hall coefficient RH, (b) 1/RH (black), and its absolute value
|1/RH| (grey) extracted from Fig. 3-19 within the linear Hall regime. As the Hall
carrier density is ill-defined when EF is at the charge neutral point, a discontinuity
in 1/RH is expected at x = 0.6 as RH crosses 0 within 0.5 < x < 0.7. Singularities in
(a),(b) are marked with magenta and blue stars and dashed lines. Band structures
of (Fe1−x−yMnxNiy)Sn with different (c) hole- and (d) electron-doping concentrations
per formula unit. The Dirac points at the K-point are marked with the yellow arrows
in (a). The flat band complex at Ne = 0.5 per f.u. is enclosed in the orange shaded
box in (b). (e) Energy dependent density of states (DOS) of undoped FeSn (black).
The grey trace in Fig. 3-20(b) is overlaid here. The inset depicts schematic chemical
potential shift across the Dirac points. The calculations for (c),(d) are performed by
M. P. Ghimire and M. Richter in [75]. The calculations for (e) are performed by S.
Fang in [75].
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A different type of nonmonotonic doping dependence is observed on the electron-

doping side (i.e. (Fe1−yNiy)Sn) (along the green arrow in Fig. 3-19). As y increases

up to 0.1, negative RH at y = 0 increases in magnitude from RH = -3.0 × 10−8 Ω cm

T−1 to RH = -1.09 × 10−7 Ω cm T−1. This trend, however, is reversed beyond y > 0.1

and RH monotonically changes to 4.51 × 10−8 Ω cm T−1 with sign reversal occurring

between y = 0.25 and y = 0.3 (blue star in Fig. 3-19). When converted to 1/RH, one

can identify a signature consistent with an increase in carrier density as RH changes

sign. This behavior is also plotted in Fig. 3-20, with RH smoothly crossing zero and

1/RH sharply peaking around 0.55 electron-doping per f.u. (y = 0.275; blue star and

dashed line in Fig. 3-20). This singularly spiked 1/RH (or smoothly changing RH) at

y = 0.275 is contrasted with the singularly spiked RH (or smoothly changing 1/RH)

at x = 0.6.

To correlate the features identified from RH and 1/RH to the band structure

of FeSn, we performed DFT electronic structure calculations of (Fe1−x−yMnxNiy)Sn

based on the virtual crystal approximation (VCA). The antiferromagnetic band struc-

tures of (Fe1−x−yMnxNiy)Sn on the hole-doping and electron-doping sides are shown

in Fig. 3-20(c) and Fig. 3-20(d), respectively. With hole-doping, the band features

originally located below EF of FeSn, including the Dirac points at the K-point close to

E � -400 meV, move upward (Fig. 3-20(c)). Consistent with the Hall data, the band

structure at EF is dominantly electron-like for < 0.5 hole-doping per f.u. and hole-

like for > 0.5 hole-doping per f.u.. One of the key contributing factors to this is that

the Dirac points cross EF between 0.5 and 0.7 hole-doping per f.u. (at all kz planes;

see Fig. 3-20(c)). As the Dirac bands with high Fermi velocity likely dominate the

transport in the low field regime, the carrier polarity switching across the Dirac points

may give rise to the Hall sign reversal at x = 0.6. We note that contributions from

other bands may generate a finite mismatch between the energies of the Dirac points

and the actual electron-hole carrier compensation; in the present case, however, the

mismatch was found to be smaller than the minimum resolution of 0.1 hole-doping per

f.u.. Throughout the entire Mn-doping range, these Dirac electrons are expected to

be nearly massless considering the collinear easy-plane antiferromagnetism and large
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saturation field (i.e. estimated to be μ0Hsat ∼ 300 T based on previous single crystal

studies), which enforce the preservation of combined symmetry ΘT1/2 within |μ0H|
≤ 9 T where Θ is time reversal symmetry and T1/2 is fractional translation symmetry

[95]. By comparison, electron-doping shifts downward the band features originally

located above EF of FeSn (Fig. 3-20(d)). Around 0.5 electron-doping per f.u., the

bottom edge of the flat band complex at the K-point (at ∼ 0.3 eV in undoped FeSn)

moves to below EF, potentially correlated with the surge in 1/RH around 0.25 ≤ y

≤ 0.3 from the Hall data. With further electron-doping, the flattest part of the flat

band complex between the Γ-point and the M -point (at ∼ 0.6 eV in undoped FeSn)

is expected to cross EF.

The electronic properties of doped FeSn are subject to both the electron count

and the details of its microscopic structure. Since VCA does not capture the latter,

the obtained band dispersion stays qualitatively the same for all doping levels (Fig.

3-20(c),(d)). Within this simplified rigid band shift picture, the band filling depen-

dent DOS of (Fe1−x−yMnxNiy)Sn at EF is expected to follow the energy dependent

DOS of undoped FeSn. In fact, the absolute value of 1/RH at different band fillings

(grey trace in Fig. 3-20(b) replotted in Fig. 3-20(e)) qualitatively tracks the energy

dependent DOS of undoped FeSn, including the dip near the Dirac points and the

peak at the flat band complex. These altogether show that (Fe1−x−yMnxNiy)Sn in

the antiferromagnetic phase allows extensive EF tuning, covering the salient band

features expected from a single kagome layer.

3.3.4 TN tuning in (Fe1−x−yMnxNiy)Sn

Despite versatile tuning of EF across the energies of the Dirac points, Dirac electrons

therein are expected to stay massless as indicated by the negligible anomalous Hall

response. To address the electronic structure features supporting the persistence of

type-II antiferromagnetism and associated ΘT1/2 symmetry in (Fe1−x−yMnxNiy)Sn,

we investigate the doping dependence of TN. Fig. 3-21 shows magnetic transition

temperatures at different band fillings extracted from anomalies (kinks or inflections)

observed in various physical quantities as well as theoretical magnetic stabilization
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Figure 3-21: Magnetic phase diagram of (Fe1−x−yMnxNiy)Sn

Magnetic transition temperatures at different band fillings inferred from exper-
iments (squares) and calculations (black triangles; by M. Richter in [75]) on
(Fe1−x−yMnxNiy)Sn. Neel temperatures of bulk single crystal FeSn [44], CoSn [45],
and YMn6Sn6 [89, 96] are also plotted at their corresponding band fillings (purple di-
amonds). Experimental transition temperatures are extracted from the anomalies in
electrical resistivity ρxx (red) and Seebeck coefficient Sxx (yellow) as well as the onset
of canting-induced hysteresis (blue). The transition temperatures are correlated with
the calculated magnetic stabilization energies (Estab), defined by the energy differ-
ence between the nonmagnetic state and the antiferromagnetic state per formula unit
(f.u.). Hypothesized paramagnetic and antiferromagnetic regions are shaded with
green and orange, respectively.

energies (Estab). Estab is defined as the energy difference of nonmagnetic FeSn and

antiferromagnetic FeSn and is acquired from VCA. As magnetic phase sets in when

there is a significant energy gain, Estab was assumed to be correlated with TN within

a simplified Stoner-like picture. A complete set of ρxx(T ) traces used for identifying

TN in all measured (Fe1−x−yMnxNiy)Sn samples can be found in Fig. 3-22. Other

experimental means of extracting TN can be found in appendix A.

The collection of experimental TN and calculated Estab delineate a phase boundary

between the high temperature paramagnetic phase and the low temperature antifer-

romagnetic phase. Upon Ni-doping (along the green arrow in Fig. 3-21), TN mono-

tonically decreases from T = 364 K at (x, y) = (0, 0) to T � 140 K at (x, y) = (0,
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Figure 3-22: Extracting TN from ρxx(T ) of (Fe1−x−yMnxNiy)Sn

Temperature dependent electrical resistivities of (Fe1−x−yMnxNiy)Sn films across the
entire doping range. Extracted magnetic transition temperatures are marked with
the red arrows. Dashed lines are guides to the eye that denote asymptotic linear
slopes above and below the suspected transition temperatures.

0.45). This trend is consistent with gradually diminishing Estab upon electron doping.

We ascribe the deviation between the experimental TN values and the trend of Estab

to inability of VCA to take into account distinct local moments for different atoms in

the alloy, combined with imperfect doping efficiencies in real samples. We note that a

similar collapse of type-II antiferromagnetism was also observed in previous Co-doped

FeSn bulk single crystal studies [87]. Upon Mn-doping (along the purple arrow in Fig.

3-21), we encounter experimental difficulties in extracting the precise phase bound-

ary potentially occurring near or above T = 400 K (instrument limits). However,

the projected phase boundary approaching (x, y) = (0, 0) from the Ni-doping side
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Figure 3-23: Density of states of nonmagnetic FeSn at different band fillings

The shift in the density of states near EF in nonmagnetic (Fe1−xMnx)Sn. The cal-
culation is perfomed with the virtual crystal approximation (by M. Richter in [75]).
Note that the apex of the flat band DOS peak crosses EF around x = 0.3.

shows a tendency of TN to continuously increase as FeSn is hole-doped, resembling

the behavior of Estab upon hole-doping. The persistence of canting-induced hysteresis

up to T = 300 K (Fig. 3-17), together with the inflection in ρxx(T ) observed for

0.5 ≤ x ≤ 0.9 around T � 200 K reminiscent of spin reorientation transition (Fig.

3-22), provides consistent evidence of magnetic phase setting in near or above T =

400 K. Additionally, we find that Estab shows an apex around x = 0.5. This indicates

a broad dome-like magnetic phase boundary formed around the TN maximum on the

hole-doping side of FeSn, though the exact band filling at which TN is maximized may

deviate from x = 0.5 (e.g. insufficiency of Estab in fully accounting for doping depen-

dent magnetic interactions). Regarding the spin structure, the absence of significant

σAH throughout the entire x and y reveals that the observed magnetic phase can be

adiabatically connected to the antiferromagnetic phase of undoped FeSn, rather than

a ferromagnetic or ferrimagnetic phase.

In order to understand the doping dependence of TN and the persistence of the an-

tiferromagnetic spin structure, we recall that the magnetic transition is determined by

the instabilities in the high temperature paramagnetic phase. From VCA on nonmag-

netic FeSn, we find that the apex of the flat band DOS peak crosses EF of nonmagnetic
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FeSn with appropriate hole-doping (Fig. 3-23), close to the band filling at which the

TN maximum is anticipated. Based on these findings, we hypothesize the following

nature of magnetism in FeSn. An isolated nonmagnetic unit cell of FeSn, consisting of

an Fe3Sn−Sn2 bilayer, hosts the kagome-derived flat bands and the associated DOS

peak at EF (Fig. 3-24(a)). This as a result provides a sufficient condition to incur an

instability within each kagome layer. When a number of unit cells stack to constitute

bulk FeSn, the Sn2 layers mediate interactions between consecutive kagome layers,

each of which harboring the flat band at EF. Previous neutron scattering measure-

ments, magnetization measurements, and dynamic mean field theory calculations on

bulk single crystal FeSn have all corroborated the presence of an in-plane ferromag-

netic exchange (Jab > 0) and an out-of-plane antiferromagnetic exchange (Jc < 0)

[97, 98]. In the current framework, the former can be related to the instability driven

by the flat band in each layer and the latter can be related to the manner in which the

Sn2 layers mediate the kagome−kagome exchange (Fig. 3-24(b)). TN, as determined

by the convolution of Jab (driving the intra-layer ferromagnetic spin arrangement)

and Jc (driving the inter-layer antiferromangetic spin arrangement), may decrease as

EF is shifted away from the flat band DOS peak, but the global spin structure stays

nearly identical as long as Sn2 layers stay intact. Conversely, when EF is shifted

towards it, as in hole-doped FeSn, TN may become maximized.

This interpretation can account for magnetism in a number of related quasi-layered

kagome metals as well as that in (Fe1−x−yMnxNiy)Sn films. For instance, CoSn is

reported to be paramagnetic, which can be attributed to its EF being deviated from

the flat band DOS peak, thus failing to satisfy the Stoner criterion [45]. YMn6Sn6,

a structurally similar compound to hypothetical MnSn with paramagnetic Y atoms

intercalated every four atomic layers, is reported to host a qualitatively similar spin

structure with FeSn below T = 358 K [89, 96]. The difference in TN may originate

from distinct Estab, while the global spin structure (as mediated by Sn2 layers) stays

nearly identical. The realization that FeSn is an antiferromagnetic stack of quasi-two-

dimensional flat band ferromagnets formulates a design principle that fine engineering

of kagome−kagome exchange with different choice of spacer layer can generate a global
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Figure 3-24: Flat band driven nature of magnetism in FeSn

(a) Band structure (left) and density of states (right) of a nonmagnetic
Fe3Sn(K)−Sn2(S) bilayer (by S. Fang in [75]). (b) Schematic depiction of long-
range order formation in FeSn. Nonmagnetic K−S bilayers (left) stack vertically to
constitute nonmagnetic FeSn at T > TN (middle). A cooperation of the intra-layer
ferromagnetic exchange Jab (driven by the flat band within each kagome layer) and
the inter-layer antiferromagnetic exchange Jc (via the S layer) stabilizes the type-II
antiferromagnetism at T < TN (right).

spin structure of desire.

3.3.5 Spin structure tuning in Fe(Sn1−z)

Having identified the role of stanene layers in determining the global spin arrange-

ment, we now explore how magnetism evolves as we introduce Sn-deficiency into the

system (i.e. Fe(Sn1−z)). For this, we tune the number of Sn-atoms in the film, while

keeping the number of Fe-atoms constant. The percentage change in the c-axis lattice

constant, inferred from the XRD peak position (amber markers in Fig. 3-10(a)), is

plotted in Fig. 3-25(a) (black trace). As z increases, the c-axis lattice constant grad-

ually decreases and crosses the value expected for bulk single crystal Fe3Sn2 (green

marker in Fig. 3-25(a)) around z = 0.35. Whereas the atomic inter-layer spacing di-

minishes by ∼ 1-2%, the film thickness, inferred from the XRR oscillations, decreases

by ∼ 30% (Fig. 3-25(a), blue trace) . This stark discrepancy can be understood if

the original kagome−stanene stacking sequence in FeSn becomes altered and certain

stanene layers are skipped in Fe(Sn1−z), forcing kagome layers to neighbor another
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kagome layer on one side and a stanene layer on the other side.

To complement this interpretation, we perform a structural stability analysis of

several possible configurations of FeSn0.66. To simplify the comparison, we only con-

sider limiting cases where all of the Sn-vacancies form on the identical Sn-site in

each configuration. In configuration 1 (Fig. 3-26(a),(e)), all of the Sn vacancies are

formed at the Fe3Sn kagome layers. The system as a result consists of an alternating

stack of Fe3 layers (with void at the center of each kagome hexagon) and Sn2 layers.

In configuration 2 (Fig. 3-26(b),(f)), all of the Sn vacancies are formed at the Sn2

honeycomb layers. Therefore, the system consists of an alternating stack of Fe3Sn

layers and Sn1 layers (with half of the atoms missing). Configuration 1 and 2 main-

tain the original stacking sequence of FeSn, despite a high density of voids in each

layer. Unlike configuration 1 and 2, configuration 3 (Fig. 3-26(c),(g)) assumes no

atomic defects in either Fe3Sn layers or Sn2 layers. Instead, every other Sn2 layers

are skipped and a −Fe3Sn−Fe3Sn−Sn2− stacking sequence is realized. Configuration

4 (Fig. 3-26(d),(h)) is the stacking sequence of bulk Fe3Sn2. It is nearly identical to

configuration 3, but has an ABC-type in-plane staggering; see section 1.3.4 for the

characteristic stacking sequence of X3Y2.

The structural energy of each configuration, normalized by three Fe atoms and

two Sn atoms (i.e. Fe3Sn2), with respect to that of configuration 3 is plotted in Fig.

3-26(i). We find that configuration 1 and 2 are less stable than the configuration

3 by 2.31 eV and 1.40 eV per Fe3Sn2, respectively. This prediction is consistent

with our inference from the X-ray experiments that for FeSn0.67 it is energetically

more favorable to eliminate every other stanene layers, rather than to create voids at

33% of Sn-sites. With the original stacking sequence becoming naturally modified,

Sn-deficient film synthesis offers a unique method to manipulate the nature of the

kagome−kagome exchange interaction through layer order control. Our calculations

suggest that configuration 4 is more stable than configuration 3. It remains unclear

whether the kagome layers in our FeSn0.66 films stack in a staggered fashion as in bulk

Fe3Sn2 and further studies are required to elucidate their in-plane arrangements.

Fig. 3-25(b) shows T = 2 K Hall conductivity σxy for Fe(Sn1−z) samples. σxy is
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Figure 3-25: Antiferromagnet-to-ferromagnet crossover in Fe(Sn1−z)

(a) z-dependent percentage change in the c-axis lattice constant (black) and the film
thickness (blue) of Fe(Sn1−z) samples. The relative size of the c-axis lattice spacing
in Fe3Sn2 with respect to that in FeSn is also indicated as green marker.(b) Magnetic
field dependent Hall conductivity of Fe(Sn1−z) samples measured at T = 2 K. (c)
σAH vs. σ2

xx scaling relations of Fe(Sn1−z) samples. Each color-coded dashed lines are
guides to the eye for linear scaling curves. The black dashed line marks the scaling
curve observed from bulk single crystal Fe3Sn2 in [52]. (d) σint

AH at different z values
extracted from the intercepts in (c). σint

AH observed from Fe3Sn2 [52] and FeSn [44, 73]
are indicated as green and red markers, respectively. Inset is a schematic depiction
of spin orientations for z ∼ 0 (left) and z ∼ 0.33 (right) in the presence of small
magnetic field along the c-axis.
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Figure 3-26: Structural stability analysis of Sn-vacancies in FeSn0.66

Possible configurations of Sn-vacancies in FeSn0.66. (a)-(d) are side views and (e)-
(h) are top views of each configuration. In configuration 1 and 2, Sn-vacancies are
formed at Fe3Sn layers and Sn2 layers, respectively. In configuration 3 and 4, every
other Sn2 layers are skipped, with no atomic defect at each constituent layer. Fe3Sn
layers in configuration 4 are stacked in a staggered fashion. (i) Structural energies of
configuration 1-4 compared to that of configuration 3. These energies are normalized
with respect to three Fe atoms and two Sn atoms (i.e. Fe3Sn2). The calculations for
(i) are performed by S. Fang in [75].
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Figure 3-27: Magnetoresistance of Fe(Sn1−z)

Magnetoresistiance of Fe(Sn1−z) films measured at T = 2 K (red) and T = 300 K
(blue). For z = 0.35, T = 220 K data is shown instead of T = 300 K data.

B-linear at z = 0, but pronounced step-like responses within μ0Hsat ∼ 2 T emerges

at z ≥ 0.2. σAH, defined by the size of the step, increases up to 250 S cm−1 at

z = 0.35 and tends to saturate beyond that. This evidences a crossover from a

strong easy-plane type-II antiferromagnet at z = 0 to a soft ferromagnet as z →
0.35. The same conclusion can drawn from the MR responses in Fe(Sn1−z) (Fig.

3-27). As z increases, the positive quadratic MR at T = 2 K at z = 0 rapidly

transforms into the negative linear MR at z ≥ 0.2 with increasing magnitude at

larger z. Such negative linear MR is commonly observed in ferromagnets upon field-

suppression of spin fluctuation and is distinguished from the quadratic negative MR

in antiferromagnetic (Fe1−x−yMnxNiy)Sn [99]. As spin fluctuations are sufficiently

suppressed at higher magnetic field, it eventually gives way to nonlinear responses.

A closer examination of σAH in Fe(Sn1−z) reveals a gradual topological gap opening

as z increases. The net σAH consists of contributions from extrinsic (σext
AH) and intrinsic

(σint
AH) origin [100]. The former, being a scattering-originated quantity, is known to

scale linearly with σ2
xx. Fig. 3-25(c) shows the scaling behaviors for samples with

different z. The slope of σAH vs. σ2
xx is steeper at higher z, indicating increased

saturation magnetization Msat and the associated anomalous Hall response. σint
AH,

however, is a scattering-independent quantity originating from the Berry curvature

in the electronic structure. For a system with significant Berry curvature, the σAH vs.

σ2
xx scaling curve terminates at an intercept of size σint

AH as σxx → 0. As z increases,

94



Figure 3-28: σAH vs. σ2
xx scaling in (Fe1−x−yMnxNiy)(Sn1−z)

(a) σAH vs. σ2
xx scaling curves for (Fe1−x−yMnxNiy)Sn films. (b) Comparison of (a)

with σint
AH for Fe(Sn1−z) films (black) and Fe3Sn2 (bulk, blue [52]; film, red [101]).

the intercept also grows in magnitude to 185 S cm−1 (= 0.31 e2/h) at z = 0.35

(Fig. 3-25(c),(d)). This is close to 158 S cm−1 (= 0.27 e2/h) observed in bulk single

crystal Fe3Sn2 [52] and 178 S cm−1 (= 0.30 e2/h) observed in thin film Fe3Sn2 [101].

There, the observed σint
AH were associated with the Berry curvature generated from

the Chern gap at the Dirac point below EF of Fe3Sn2. Given the similar magnetism

and stoichiometry with Fe3Sn2, we hypothesize that σint
AH in FeSn0.65 may share the

same topological origin.

Within the perspective that the Chern gap is generated in Fe(Sn1−z), we compare

the massless Dirac fermions in antiferromagnetic (Fe1−x−yMnxNiy)Sn and massive

Dirac fermions in ferromagnetic Fe(Sn1−z). In (Fe1−x−yMnxNiy)Sn, σint
AH ∼ 0 is ob-

served across the entire doping range despite MFe = Msat within each spin-polarized

kagome layer (Fig. 3-28(a)). As the effective spin-orbit gap at the Dirac point is de-

termined by (�k × �E) · �M (see section 1.3.2), the in-plane ferromagnetic moments (Mz

∼ 0) cannot generate a gap and the Dirac electrons stay massless. In ferromagnetic

Fe(Sn1−z), a small B // Bz polarizes spins along the z-direction (M = Mz) and (�k ×
�E) · �M acquires a non-zero value. This gives rise to a sizable σint

AH determined by the

relative distance between EF and the Chern gap (Fig. 3-28(b)). If EF of Fe(Sn1−z) is

tuned to the gap, we anticipate that σint
AH will approach the quantized value.
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3.4 Conclusions and outlook

In this chapter, we presented a comprehensive study on engineering the kagome band

structure in antiferromagnetic FeSn. To facilitate systematic tuning of materials

parameter, we synthesized epitaxial thin films of FeSn using MBE and confirmed

their high quality with various experimental probes. Further, we demonstrated the

full control of the band filling and magnetism of FeSn via site-selective chemical

doping. With a wide range of Mn-/Ni-substitution, the chemical potential crossed

a large energy range while maintaining the antiferromagnetic spin structure, thus

allowing EF to be precisely positioned at the Dirac point or at the flat band. On the

other hand, Sn-deficiency gradually altered the original kagome−stanene stacking

sequence of FeSn, thereby triggering the antiferromagnet-to-ferromagnet crossover

as well as the onset of intrinsic anomalous Hall response. These findings altogether

construct a framework of understanding that the spin structure in FeSn originates

from the cooperation of flat band induced instability within each kagome layer and

kagome−kagome exchange couplings mediated by the stanene layers.

A promising future direction would be to induce global ferromagnetic spin struc-

ture with simultaneous EF tuning to the Dirac mass gap, so that quantized anomalous

Hall response can be observed. We anticipate that a combination of Sn-deficiency

and Mn-substitution can accomplish this, with the former inducing the ferromagnetic

order and the latter tuning EF without perturbing the global spin structure. In at-

taining purely edge-mode-dominated quantum transport, driving the system towards

the extreme two-dimensional limit, for example by stabilizing ultrathin films, will be

helpful in restricting contributions from trivial bulk bands. In a broader context, the

viewpoint presented herein on long-range order formation in a quasi-layered kagome

metal can be generalized as a design principle to create complex order parameters

with exotic symmetries/periodicities in a wider class of kagome-based compounds.

Additionally, the capability to manipulate band filling and spin structure in kagome

metals will facilitate systematic evaluation of spin-orbit torque generation efficiency

of the lattice-borne Dirac and flat bands under various electromagnetic environments.
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Chapter 4

Surface electronic structure of FeSn

In chapter 3, we have investigated the lattice-driven Dirac and flat bands in FeSn,

wherein the quasi-layered crystal structure preserves the original lattice model in its

bulk electronic structure. In this chapter, we study the effects of broken inversion

symmetry on the kagome band structure. From transmission electron microscopy, we

identify an atomic arrangement at the heterointerface of FeSn and SrTiO3 satisfying

such a symmetry condition. Employing a Schottky heterojunction made from FeSn

and Nb-doped SrTiO3, we probe via planar tunneling spectroscopy the local density

of states at the interfacial layer. We observe an anomalous enhancement in tunneling

conductance within a narrow energy range and analyze the results in conjunction

with first-principles calculations to reveal the presence of a two-dimensional flat band

and other band reconstructions at the surface/interface of FeSn.

4.1 Interfacial atomic arrangement

Thin film heterointerface has frequently been a venue of exotic electronic states un-

expected from either of the constituent layers, including Rashba spin splitting [102],

two-dimensional electron gas at oxide heterointerfaces [70, 103], and complex spin

texture [71]. At the origin of these interface-localized phenomena are abrupt changes

in symmetry conditions, crystal environments, and electromagnetic properties across

the boundary of two distinct materials. We have synthesized FeSn thin films on
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Figure 4-1: Interface characterizations of FeSn/SrTiO3

(a) Cross-sectional transmission electron microscopy (TEM) image of a FeSn/SrTiO3

(scale bar: 2 nm). Higher magnification TEM images of bulk parts of (b) the FeSn
film and (c) the SrTiO3 substrate (scale bars: 0.5 nm). The schematics on the right
depict model atomic arrangements of (b) and (c). (d) Fast Fourier Transform (FFT)
intensity color map of the selected region in (a) (marked with the red bracket). (e)
Magnified view of the selected region in (a) (enclosed with the red dashed line).
Horizontal color-coded lines in (d) and (e) mark Fe3Sn layers (orange) and Sn2 layers
(yellow) in FeSn and Ti-rich layers (blue) and Sr-rich layers (green) in SrTiO3 near
the interface. (f) Element-specific mapping of the region near the interface, acquired
from a electron energy loss spectroscopy (EELS) measurement (scale bars: 1 nm).
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SrTiO3 substrates (abbreviated as FeSn/SrTiO3 hereon) and confirmed that the in-

plane crystallographic orientations of the two materials are epitaxially locked (see

section 3.2.2). This provides a sufficient condition to form a coherent film−substrate

heterointerface with a well-defined symmetry conditions. To understand the detailed

interface morphology of FeSn/SrTiO3, we conduct cross-sectional transmission elec-

tron microscopy (TEM) measurements. The films used for this measurement are

deposited at Td = 500 ◦C in order to maximize the crystalline quality in the atomic

scale. Fig. 4-1(a) is a high-angle annular dark-field TEM image of a region near

the interface. It confirms that FeSn film is highly crystalline down to the interface

without a polycrystalline or amorphous buffer layer. The cross-sectional views in the

bulk part of FeSn and SrTiO3 are shown in Fig. 4-1(b) and (c), respectively. The ob-

served atomic arrangements are consistent with the film−substrate epitaxial relation

indicated from the pole figure in section 3.2.2.

The Fe3Sn kagome layer is found to be the preferred first-formed layer of FeSn

immediately above the Ti-rich surface of SrTiO3 (111). Fig. 4-1(e) is a magnified

view of the selected area in Fig. 4-1(a) (enclosed with a red dashed line). From

the magnified view, it is evident that the bottom-most Fe3Sn layer has formed above

the Ti-rich layer of SrTiO3 and below the Sn2 layer of FeSn. Unlike the bottom-

most layer, the top-most layer of the film shows a mixture of the Fe3Sn-termination

and the Sn2-termination. The strong tendency of the Fe-containing layer to be the

first-formed layer may be related to starkly different sticking coefficients of Fe and

Sn on SrTiO3 at Td = 500 ◦C. We anticipate that the observed interfacial atomic

configuration will become less prominent at Td 	 500 ◦C.

Fig. 4-1(a),(e) show that the lattice strain is completely relaxed in FeSn. The

inter-atom distance of the triangular network of Ti on SrTiO3’s (111) surface is +3.9%

bigger than the hexagonal lattice constant of FeSn, while the observed lattice spacing

in FeSn is identical to that of a strain-free bulk FeSn. To investigate more thoroughly

the exact manner through which the lattice strain is relaxed, we perform a Fast Fourier

Transform (FFT) analysis for each horizontal linecut in Fig. 4-1(a) and construct a

two-dimensional color map of FFT intensities (Fig. 4-1(d)). The extracted peak
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frequency from the FFT analysis is expected to represent the crystal periodicity of

each atomic layer. The color map shows that the lattice strain is relaxed from the

interface, manifested as a discontinuity in the FFT peak frequency with a ∼ 4% jump

between the bottom-most Fe3Sn layer in FeSn (orange linecut) and the top-most Sr-

rich layer in SrTiO3 (green linecut). From the FFT peak frequencies, we extract the

corresponding inter-atom distances of 0.465 nm in FeSn and 0.482 nm in SrTiO3, both

approximately matched with those of bulk values (Fig. 4-1(b),(c)). The Ti-rich layer

at the interface (blue linecut), sandwiched between the two layers with distinct lattice

spacings, shows broadened intensities between two FFT frequencies, suggesting they

retain crystallinity with distortions to accommodate chemical bonding between Sn

and Sr, typical of lattice strains relaxed at the epitaxial interface.

To complement the structural analysis from TEM, we perform electron energy

loss spectroscopy (EELS) measurements. The element-specific mapping in Fig. 4-

1(f) shows the existence of a Ti-rich region at the interface protruding above the

upper boundary of the Sr-rich region and terminating below the onset of the Sn-

rich region. This is in agreement with the layer-by-layer arrangement of constituent

layers revealed from TEM. The interfacial Fe3Sn layer in FeSn/SrTiO3 offer a unique

platform to study the local electronic structure of the kagome layer placed under

broken inversion symmetry. In the following, we demonstrate our approach in probing

selectively a single atomic layer buried at the interface.

4.2 Tunneling spectroscopy across Schottky hetero-

junctions

In order to study the interfacial electronic structure, we synthesize another set of

FeSn films on degenerate semiconductor SrTi1−xNbxO3 (Nb:SrTiO3) with varying Nb

concentrations (x = 0.05, 0.2, 0.5, 0.7 wt.%). Unlike insulating SrTiO3, Nb:SrTiO3 is

conductive as the Fermi level (EF,STO) is located above the conduction band edge.

Nb:SrTiO3 substrates (Shinkosha Co.) are prepared the same way as described in
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section 3.2.1 and a complete set of structural characterizations are performed to

confirm that FeSn/Nb:SrTiO3 have comparable qualities to FeSn/SrTiO3. When the

two materials come in contact, a depletion layer is formed at the Schottky interface,

creating an insulating barrier useful for tunneling measurements [104–108]. Utilizing

this barrier, we perform a planar tunneling spectroscopy with Nb:SrTiO3, FeSn, and

the Schottky barrier each serving the role of tip, sample, and vacuum in scanning

tunneling microscopy. In the present case, the strain-relaxed interface (Fig. 4-1) is

expected to eliminate the momentum preservation constraint for electrons tunneling

across the Schottky barrier. This facilitates the energy-resolved density of states

(DOS) spectroscopy of FeSn; for a strained interface, in contrast, resonant tunneling

occurs only between the identical momentum states, which limits the region in the

Brillouin zone accessible via tunneling spectroscopy.

Figure 4-2(a) shows a schematic of the measurement setup in a three-terminal

configuration, consisting of tunnel (middle), current (right), and reference (left) elec-

trodes. For the current and reference electrodes (or the tunnel electrode), we evap-

orate 10 nm thick Ti onto the Nb:SrTiO3 substrate (or the FeSn film) and cap it

with 100 nm thick Au. Ti is chosen as it is known to form an ohmic contact with

Nb:SrTiO3 owing to its low work function [109]. Upon applying a voltage on the

tunnel electrode, a tunnel current flows between the tunnel and current electrodes

across the Schottky barrier. Simultaneously, the reference potential with respect to

the reference electrode is measured in order to precisely estimate the junction volt-

age VJ. As the tunnel current is determined by the total number of electronic states

which electrons can tunnel into, the differential tunnel conductance dI/dV encodes

the energy-resolved DOS of FeSn overlaid onto a monotonic background signal arising

from e.g. energy-dependent DOS of the tunnel electrode [110]. As will be described

below, the background contribution is expected to negligible in the VJ regime or

interest in this study.

Figure 4-2(b) shows the current-voltage (I-V ) characteristics of FeSn/Nb:SrTiO3

junctions with different Nb concentrations, all acquired at temperature T = 2 K. All

of the I-V traces show nonlinear behavior, reflecting the tunneling transport process
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Figure 4-2: Tunneling across FeSn/Nb:SrTiO3 heteterointerfaces

(a) Schematic of the three-terminal tunneling measurement configuration. (b)
Current-voltage (I-V ) characteristics of FeSn/Nb:SrTiO3 junctions with different Nb
concentrations. (c) Nb concentration dependent zero bias differential tunnel con-
ductance (dI/dV (VJ = 0 V)) (d) Schematic of the two-terminal contact resistance
measurement configuration. (b) I-V curve of the Ti/Nb:SrTiO3 junctions. The red
arrows in (a),(b) denote schematic conduction pathways of electrons. The measure-
ments in (b),(c),(e) are taken at T = 2 K.

across these junctions. Typical tunnel resistance of a FeSn/Nb:SrTiO3 (x = 0.5 wt.%)

junction at T = 2 K and VJ = 0 V is > 1 MΩ with minor variance between different

devices. These suggest the presence of a depletion layer at the FeSn/Nb:SrTiO3 in-

terface. Contrary to the nonlinear tunnel conductance, 7 Ω two-terminal resistance is

observed across the current and the reference electrodes (Fig. 4-2(d),(e)). Subtracting

the pre-calibrated series resistance of Nb:SrTiO3 and the measurement electronics, we

infer the contact resistance of each Ti/Nb:SrTiO3 junction to be ∼ 2−3 Ω, several

orders of magnitude more conductive than typical FeSn/Nb:SrTiO3 tunnel contacts.

This ensures reliable operation of the three-terminal measurement scheme.
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Figure 4-2(c) shows the exponential growth of the zero bias differential tunnel

conductance at T = 2 K for Nb concentration from x = 0.05 wt.% to x = 0.7

wt.%. We ascribe this to the cooperative action of increased carrier density (Nd)

and suppressed dielectric permittivity (ε) in highly doped Nb:SrTiO3 dramatically

shortening the depletion layer width Wd =
√

2εΔΨWF

qNd
at the Schottky interface, where

q is elementary charge and ΔΨWF is work function difference between FeSn and

Nb:SrTiO3 [111, 112]. Consistent with our observation, recent studies have shown that

Wd ∼ 5 nm in Pt/Nb:SrTiO3 (x = 0.7 wt.%) Schottky junctions [113], in contrast with

Wd > 100 nm in metal/Nb:SrTiO3 Schottky junctions with lower Nb concentrations

[114–116].

4.2.1 Temperature dependent tunnel conductance

Figure 4-3(a) and 4-3(b) show I-V curves and dI/dV spectra, respectively, at dif-

ferent temperatures for the FeSn/Nb:SrTiO3 (x = 0.5 wt.%) junction (the device

micrograph is shown in Fig. 4-3(a) inset). The overall tunnel conductance, as re-

vealed from both I and dI/dV , gradually increases as T increases, owing to the

exponential growth of thermionic emission (TE) and thermionic field emission (TFE)

contributions (Fig. 4-3(e)). This resembles the behavior of a conventional Schot-

tky junction in which enhanced thermal activation probability of electrons at high

temperature boosts the junction current [117]. We note that TE and TFE are non-

resonant processes (Einitial �= Efinal, where Einitial and Efinal are the energy of electrons

before and after the tunneling, respectively) and therefore the resulting broadened

dI/dV spectra at high temperatures obscure fine DOS features of FeSn.

When TE and TFE are sufficiently suppressed at low T , the dI/dV spectra re-

veal an anomalous behavior beyond that expected for conventional Schottky barriers.

Figure 4-3(c),(d) show the temperature dependent dI/dV for negative and positive

VJ, respectively. While dI/dV over the entire range of VJ decreases exponentially as

T decreases, within the finite range -400 mV < VJ < -100 mV, the exponential sup-

pression of dI/dV at T > 100 K gives way to an upturn in dI/dV at T < 100 K. This

feature is also manifested as a broad peak in the dI/dV spectra at T = 2 K (VJ,peak
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Figure 4-3: Temperature dependent tunneling in a x = 0.5 wt.% junction

(a) I-V characteristics and (b) dI/dV spectra at different temperatures for a
FeSn/Nb:SrTiO3 junction with x = 0.5 wt.%. The measurements are taken at T =
2, 25, 50, 75, 100, 125, 150, 200 K. The inset is an optical micrograph of the mea-
sured device. The red arrow in (b) marks VJ,peak, the position of the broad peak at
low temperature. (c),(d) Temperature dependent dI/dV for negative and positive
VJ. The green-shaded area denotes the region in which dI/dV increases as temper-
ature decreases. Schematic of the tunneling mechanisms across the Schottky barrier
at (e) high and (f) low temperatures. Non-resonant thermionic emission (TE) and
thermionic field emission (TFE) processes dominate in the high temperature regime,
whereas resonant field emission (FE) process through the barrier dominates in the
low temperature regime.

= -250 mV) that eventually broadens and diminishes at higher T . Qualitatively, this

feature can be understood as combination of an anomalous enhancement of dI/dV in

the negative bias range with the conventional rectifying behavior of Schottky diodes

in the positive bias range. The enhancement in dI/dV in the low T regime suggests a

dominant field emission (FE) contribution to the tunneling conductance for T < 100

K (Fig. 4-3(f)). FE is a resonant process (Einitial = Efinal) that becomes more pro-

nounced at lower T when thermal band broadening in FeSn and inelastic scattering

events within the tunnel barrier both diminish. The upturn in dI/dV around VJ,peak

= -250 mV for T < 100 K suggests high DOS concentrated at this energy in FeSn,
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manifested more clearly as the FE dominates the tunneling process.

4.2.2 Barrier width dependent tunnel conductance

To elucidate the origin of the anomaly in dI/dV seen in Fig. 4-3, we investigate the

tunneling characteristics of two junctions with different Nb concentrations: dI/dV

spectra for x = 0.2 wt.% and x = 0.7 wt.% are shown in Fig. 4-4(a) and Fig. 4-4(b),

respectively (I-V curves consistent with these dI/dV spectra can be found in Fig.

4-5). The prominent peak in dI/dV is resolved around VJ,peak = -180 mV at T = 2 K

for x = 0.7 wt.%, whilst for x = 0.2 wt.% the feature is absent. We hypothesize that

the 20-fold enhancement of the overall tunneling conductance from x = 0.2 wt.% to

x = 0.7 wt.% originates from the difference in the depletion layer widths. The peak in

dI/dV at T = 2 K for the x = 0.7 wt.% junction occurs at a similar energy range as

the broad peak in dI/dV for the x = 0.5 wt.% junction (VJ,peak = -250 mV, Fig. 4-3),

indicating a common origin of the two conductance anomalies. If originating from a

peak in the DOS of FeSn, it would be expected that the associated peak feature in

dI/dV would become less prominent for junctions with lower Nb concentrations, as

electron tunneling across the thicker depletion layer involves more inelastic scattering

events (Fig. 4-4(d),(e)). This is in fact what is observed as the Nb concentration

is changed from x = 0.7 wt.% to x = 0.2 wt.%. Therefore, we conclude that the

enhancement in dI/dV at VJ,peak = -180 mV originates from a large, narrowly peaked

DOS at this energy in FeSn.

Figure 4-4(c) shows the temperature dependence of dI/dV peak positions and

full widths at half maximum of the x = 0.7 wt.% junction. In addition to the peak

broadening from TE and TFE contributions, the peak position gradually shifts from

VJ,peak = -180 mV at T = 2 K to VJ,peak = -560 mV at T = 200 K. Though the

triangular shape of the tunnel barrier and nonlinear dielectric properties of SrTiO3

in metal/Nb:SrTiO3 Schottky junctions are known to displace the energy axis of the

tunneling spectra from the actual DOS spectra by ∼10 mV at high temperature, this

is insufficient to explain the large shift of |ΔVJ,peak| = 380 mV. We instead explain this

shift in relation to the modulation of the surface band structure by considering spin
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Figure 4-4: Tunneling in x = 0.2, 0.7 wt.% junctions

dI/dV spectra at different temperatures for FeSn/Nb:SrTiO3 junctions with (a) x =
0.2 wt.% and (b) x = 0.7 wt.%. The measurements are taken at T = 2, 25, 50, 75, 100,
125, 150, 200 K. Each curve is offset vertically by equal amount with respect to the
T = 2 K trace for clarity. The peaks of interest in (b) are marked with diamonds. (c)
Temperature dependent dI/dV peak positions (Epeak) (circles) and corresponding full
widths at half maximum (vertical bar), extracted from (b). Schematic of the tunneling
mechanisms across the Schottky barrier with (d) short and (e) long depletion layers.
Inelastic scattering events within the long depletion layer obstruct the field emission
(FE) process.

106



0.05 wt % 0.5 wt %
0.7 wt %

Junction #20.2 wt %
0.7 wt %

Junction #1

50

100

125

25

75

150

175

50

100

125

25

75

150

200

50

100

125

25

75

150

200

50

100

200

50

100

125

25

75

150

Figure 4-5: I-V characteristics of FeSn/Nb:SrTiO3 junctions

I-V curves of FeSn/Nb:SrTiO3 junctions with different Nb doping concentrations.
Vertical offsets are added with respect to the T = 2 K trace for clarity.

polarization-dependent band reconstruction. In the following sections, we examine

this assumption with model junction simulations (section 4.2.3) and correlate the

observed spectra to the electronic structure of FeSn (section 4.2.4).

4.2.3 Schottky junction simulations

We have thus far presented the tunneling anomalies in FeSn/Nb:SrTiO3 Schottky het-

erojunctions. Before directly correlating the tunneling spectra to the intrinsic DOS

of FeSn, we first examine the validity of this analysis by establishing both qualitative

and quantitative understanding on tunneling spectroscopy in Schottky junctions. The

usage of a semiconducting electrode distinguishes the present case from conventional

tunneling spectroscopy that uses a metallic electrode and an attention must be taken

in determining which (VJ, EF,STO) regime allows reliable comparison between dI/dV

and DOS. Fig. 4-6 depicts schematic tunneling processes and the relation between

the DOS of FeSn and the tunneling spectra is summarized as follows:

If EF,STO � |VJ| (i.e. metallic electrode) :
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Figure 4-6: Tunneling spectroscopy across a Schottky barrier

(a-c) describe spectroscopy for the case of a metallic electrode at (b) negative bias
VJ < 0 and (c) positive bias VJ > 0. (d-f) describe spectroscopy for the case of a
semiconducting electrode at (e) negative bias VJ < 0 and for (f) positive bias VJ > 0.

• VJ < 0 (tunneling from FeSn to Nb:SrTiO3):

DOS of FeSn corresponds to dI/dV ,

• VJ > 0 (tunneling from Nb:SrTiO3 to FeSn):

DOS of FeSn corresponds to dI/dV .

If EF,STO 	 |VJ| (i.e. semiconducting electrode) :

• VJ < 0 (tunneling from FeSn to Nb:SrTiO3):

DOS of FeSn corresponds to dI/dV + smooth background,

• VJ > 0 (tunneling from Nb:SrTiO3 to FeSn):

DOS of FeSn corresponds to I.
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First, we consider the case of Nb:SrTiO3 being in the metallic regime, where EF,STO

is much larger than |VJ| and the DOS of Nb:SrTiO3 is nearly constant in energy (Fig.

4-6(a)). Under VJ < 0 applied to FeSn (Fig. 4-6(b)), electrons tunnel from E < EF

of FeSn to the empty states in the conduction band continuum of Nb:SrTiO3 above

EF,STO (grey boxes in Fig. 4-6(b)). Similarly for VJ > 0, electrons tunnel from

E < EF,STO of Nb:SrTiO3 to the empty states at E > EF of FeSn (grey boxes in

Fig. 4-6(c)). Increasing or decreasing the bias voltage by ΔV induces additional

tunnel current ΔI to flow from FeSn (Nb:SrTiO3) to Nb:SrTiO3 (FeSn). Since each

ΔI is determined by the number of states participating additionally to the tunneling

process in response to ΔV , DOS is approximately proportional to dI/dV for any VJ.

We now consider the case of Nb:SrTiO3 being in the semiconducting regime, where

the EF,STO is much smaller than |VJ| (Fig. 4-6(d)). Under VJ < 0 applied to FeSn (Fig.

4-6(e)), the situation is still equivalent to the case described in Fig. 4-6(b) − electrons

flow from E < EF of FeSn to the empty states in the conduction band continuum

of Nb:SrTiO3, except the DOS of Nb:SrTiO3 now has a finite energy dependence.

The net tunnel conductance is determined by the convolution of Nb:SrTiO3’s DOS

and FeSn’s DOS, the former generating a smooth and nearly featureless background

signal and the latter generating a variety of sharp features. We therefore expect that

the tunneling process still resembles the metallic electrode case and dI/dV captures

most of the key signatures in FeSn’s DOS. A caution must be taken for VJ > 0 in

this regime (Fig. 4-6(f)). Electrons at E < EF of Nb:SrTiO3 flow into FeSn, but the

maximum number of electrons that can tunnel is bounded by the total number of

electrons present in Nb:SrTiO3’s conduction band (i.e. no electronic states below the

conduction band edge EC). Given that EF,STO 	 VJ, tunneling occurs only within

a narrow energy region EC ≤ E ≤ EF,STO, making I, rather than dI/dV , to be

proportional to the DOS of FeSn.

EF,STO ∼ 75 meV (for x = 0.7 wt.%) situates our FeSn/Nb:SrTiO3 in the interme-

diate regime between the two limits described above. This makes the interpretation

of either dI/dV or I in the VJ > 0 range challenging and we refrain from correlating

the spectral features in the VJ > 0 range to the DOS of FeSn. Regardless of EF,STO,
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however, dI/dV in the VJ < 0 regime can always be connected to the DOS of a target

material. Given that the tunneling anomalies are observed around VJ = −180 meV

< 0, they can be connected to the DOS of FeSn.

Focusing primarily on the VJ < 0 range, we now verify with model junction sim-

ulations that the background contributions to dI/dV are in fact negligible compared

to the major spectral features. For the simulations, we use the Wentzel-Kramers-

Brillouin (WKB) approximation [118]. The shape of the Schottky barrier φ(z) is

modeled by the self-consistent Poisson equations with the nonlinear dielectric con-

stant

d

dz

(
ε(F )

d

dz
φ(z)

)
= −e(ne(z)− nd),

ne(z) =

∫
D1(E + eφ(z))f1(E)dE,

(1)

where ne and nd are the electron and donor densities, respectively, and D1 and f1

are the DOS and Fermi distribution functions of SrTiO3, respectively. The electric

field dependent permittivity has the form ε(F ) = (1 + a/
√
b+ F 2)ε0, where F is the

electric field, ε0 is the electric permittivity of vacuum, and a and b are the temperature

dependent coefficients [112]. A parabolic dispersion is assumed for SrTiO3’s band

structure. Tunnel current is given by

I(V ) ∼
∫∫

vz1(Ez)T1→2(Ez)g(D1(E), D2(E + eV ))f1(E)f2(E + eV )dE

−
∫∫

vz2(Ez)T2→1(Ez)g(D1(E − eV ), D2(E))f1(E − eV )f2(E)dE,

(2)

where D2 and f2 are the DOS and Fermi distribution function of FeSn, respectively,

vz1 and vz2 are the velocities of electrons in SrTiO3 and FeSn, respectively, and T1→2

and T2→1 are the tunneling probabilities from SrTiO3 to FeSn and FeSn to SrTiO3,

respectively. g(D1, D2) is a function that satisfies g(D1, D2) → D1 for D2 → ∞
and g(D1, D2) → D2 for D1 → ∞. Here we use a functional form g(D1, D2) =

D1D2/(D1 +D2).

Examples of simulated I-V and dI/dV are shown in Fig. 4-7(a) and Fig. 4-7(b),

110



Figure 4-7: Model Schottky junction simulations

Simulated (a) I-V curves and (b) dI/dV spectra for different temperatures and ESTO.
The calculations assume a DOS peak 0.2 eV below EF of FeSn. The shape of the
barrier is determined by self-consistent Poisson equations.

respectively, assuming different EF,STO: 37.5 meV (dotted line; x < 0.7 wt.%) and 75

meV (solid line; x = 0.7 wt.%). In these calculations, we create a truncated parabolic

band with the bandwidth of 0.1 eV and the top edge at 0.2 eV below EF of FeSn. This

band generates a peak in DOS, which manifests as pronounced peaks (or humps) in

the simulated dI/dV (or I-V ) curves. This feature becomes absent when the peak is

removed from DOS, suggesting the electric field dependence of ε alone cannot account

for the observed spectral feature, though it may generate a small mismatch between

the peak positions in DOS and dI/dV .

The mismatch between the two increases in magnitude at elevated temperatures,

owing to the temperature dependence of ε. Whereas the peak in DOS is fixed in

energy, the apparent peak in dI/dV shifts to more negative energy by ∼ 0.050 eV

for EF,STO = 75 meV and by ∼ 0.038 eV for EF,STO =37.5 meV, respectively, as

temperature increases from T = 10 K to T = 200 K. The shift, however, is an order

of magnitude smaller than the observed shift in the dI/dV peak |ΔVJ| = 0.38 eV

(Fig. 4-4(c)). This provides an additional evidence that dielectric effects of SrTiO3

cannot solely explain the major aspects of the tunneling spectra.

Finally, we use the above methodology to consider small but finite junction effects

and further refine the actual position of the DOS peak at each temperature. We focus
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Figure 4-8: Comparison of experimental and simulated tunnel spectra

(a) Simulated dI/dV spectrum at each temperature for the x = 0.7 wt.% junction.
The DOS peak positions in the simulation are adjusted so as to match the experi-
mental dI/dV peak positions. (b) Top/bottom edges of the simulated DOS peaks
(red horizontal bars) overlaid onto the experimental data in Fig. 4-4(c).

on the x = 0.7 wt.% junction with EF,STO = 75 meV. Iterative processes are taken

at each temperature: (i) simulate a dI/dV spectrum at a given temperature with

the DOS peak at an arbitrary energy, (ii) compare it with the experimental dI/dV

spectrum at that temperature, and (iii) simulate again with a modified DOS peak

position. This process is repeated until a reasonable match is attained between the

simulation and the experiment (Fig. 4-8(a)). As presented in Fig. 4-8 and Table 4.1,

the correction factors are found to be small at all temperatures and the experimental

dI/dV peaks always appear within the simulated bandwidth of the DOS peak. This

indicates that the experimental dI/dV is consistently a good indicator of the actual

DOS of FeSn across the entire temperature range.

4.2.4 Slab band structure calculations

The previous sections have laid solid experimental, conceptual, and computational

foundations on which we can analyze the tunneling spectra in close comparison with

the intrinsic electronic structure of FeSn. For this, we perform first-principles elec-

tronic structure calculations of a slab containing eight crystallographic unit cells of
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EdI/dV EFB,top EFB,bottom

(meV) (meV) (meV)
experiment simulation simulation

25K -185 -160 -260
50K -239 -212 -312
75K -275 -243 -343
100K -363 -323 -423
125K -416 -372 -472
150K -503 -450 -550
200K -560 -468 -568

Table 4.1: Band parameters from simulations and experiments

Top (middle column) and bottom (right column) edges of the simulated DOS peaks
in comparison with the experimental dI/dV peak positions (left column).

FeSn (1 ≤ L ≤ 8), where L denotes the layer index (Fig. 4-9(a)). The slab has the

Fe3Sn kagome layers at layer index sites with the Sn2 honeycomb (stanene) layers

inserted between. This structure terminates with the Fe-kagome layer on one surface

(L = 1) and the stanene layer on the other surface (L = 8). The slab calculations

presented in this section are performed by S. Fang in [74].

The dI/dV spectrum for the x = 0.7 wt.% junction at T = 2 K (Fig. 4-9(c)) is

compared with the calculated DOS spectra at the kagome-terminated surface (L =

1; Fig. 4-9(d)), the Sn-terminated surface (L = 8; Fig. 4-9(e)), and the bulk part of

the slab (L = 4, 5; Fig. 4-9(f)). Within the energy range of the dI/dV peak (green-

shaded box across Fig. 4-9(c)-(f)), the kagome-terminated surface hosts a clear peak

in DOS at E = -125 meV (diamonds in Fig. 4-9(c),(d)) whereas the other two do

not manifest any pronounced feature. The layer-resolved DOS color map in Fig. 4-

9(b) also shows a surface-localized band at L = 1 containing high DOS concentrated

within a narrow energy around E = -125 meV. In addition, a shoulder-like feature in

dI/dV is observed at VJ = -560 mV nearby the satellite peak in DOS at the kagome-

terminated surface at E = -525 meV, reinforcing the correlation between the traces

in (c) and (d) (asterisks in Fig. 4-9(c),(d)). These suggest that the major features

in the tunneling spectra including the peak at VJ,peak = -180 mV originate from the

electronic states at the kagome-terminated surface of FeSn; this is also consistent with
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Figure 4-9: Slab band structure calculation of FeSn

(a) Schematic of the eight-layer slab of antiferromagnetic FeSn. (b) Layer-resolved
density of states (DOS) color map in the eight-layer slab. (c) dI/dV spectrum for
the x = 0.7 wt.% junction at T = 2 K. Energy dependent DOS at (d) the kagome-
terminated surface, (e) the Sn-terminated surface, and (f) the bulk of the eight-layer
slab. The green-shaded box across (c-f) denotes the energy window in which the
peak feature in dI/dV is observed. Diamonds and asterisks mark the positions of
noticeable features that correlate between (c) and (d).
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Figure 4-10: Bulk vs. surface band structure of FeSn

Band structure and DOS of (a) bulk FeSn in the antiferromagnetic state and (b) the
kagome-terminated surface of the eight-layer slab. Insets in (a),(b) are schematics of
the corresponding Brillouin zones. Spin down/up bands are color-coded blue/red in
(a). The DOS peak and the flat band in (b) are marked with the green-shaded box
and the dashed line, respectively. (c) Orbital projected band structure of (b). The
intensity denotes d-orbital projection weights.

the inference from TEM that the Fe-kagome layer is the preferred first-formed layer

at the film−substrate interface immediately above the depletion layer in Nb:SrTiO3

(see section 4.1).

To understand the origin of the DOS peak at the surface, it is instructive to

compare the bulk and surface electronic structures of FeSn. Figure 4-10(a) shows the

bulk band structure of FeSn in the antiferromagnetic state; this is identical to the

band structure we investigated in chapter 3. To underscore some of the highlights, it

harbors the Dirac points at the K-point near E ∼ -400 meV and the flat band complex

centered around E ∼ 600 meV. As discussed in section 3.3.1, the latter originates from

the dxz/dyz- and dxy/dx2−y2-orbitals and is responsible for the prominent peak in DOS

around E ∼ 600 meV in Fig. 4-9(e) [44]. Around E = -125 meV, we do not find any

band with suppressed dispersion.

Turning to the kagome-terminated surface band structure in Fig. 4-10(b), near the

energy at which the DOS peak is expected, a highly non-dispersive band is observed

(enclosed with the dashed line). The orbital projection analysis reveals that the major

contribution to this surface flat band comes from the dz2-orbital, distinct from the
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orbital character of the bulk flat band (Fig. 4-10(c)). Considering the vertically

elongated shape of dz2-orbital and its hybridization with Sn p-orbitals in neighboring

stanene layers, it is expected to gain a sizable dispersion along z when placed inside

the bulk, resulting in a dilution of the spectral weight in energy. However, at the

surface the translational invariance is broken and kz-dispersion is quenched, thereby

allowing a surface state non-dispersive within the ab-plane as well as along the c-axis.

4.3 Origin of the surface band reconstruction

4.3.1 Comparison with kagome−stanene bilayers

To gain further insight into the surface flat band, we consider an isolated ferromagnetic

kagome−stanene bilayer, which constitutes half of the magnetic unit cell of FeSn.

The band structure of the ferromagnetic kagome−stanene bilayer is shown in Fig. 4-

11(a), showing a reasonably match with that of the kagome-terminated surface band

structure in Fig. 4-10(b). It also exhibits a non-dispersive band (enclosed with the

dashed line in Fig. 4-11(a)) that nearly coincides in shape and energy with the surface

flat band. A more direct connection between the flat band and the DOS peak can be

made here. In Fig. 4-11(b),(c), we show the DOS distributions across the Brillouin

zone at E = -170meV and E = -105 meV, both of which are located within the DOS

peak. Notably, a significant fraction of DOS at E = -170 meV (or E = -105 meV) is

concentrated near the K-point (or the M -point), indicating a section of the flat band

near the K-point (or the M -point) is responsible for the DOS peak.

The resemblance between 4-10(b) and 4-11(a) reflects the layered crystal structure

of FeSn in which hybridization between the consecutive kagome layers is suppressed

by the stanene layers. This as a result allows FeSn band structure to be well described

by the minimal constituent of kagome−stanene bilayer. Furthermore, we note that

the intrinsically inversion asymmetric kagome−stanene bilayer is most precisely rep-

resented by the kagome layer at the surface (or Schottky heterointerface) that neigh-

bors a stanene on one side and vacuum (or Nb:SrTiO3) on the other side. However,
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λ ≠ 0

Figure 4-11: Band structure of the ferromagnetic kagome−stanene bilayer

(a) Band structure and DOS of a ferromagnetic kagome−stanene bilayer with spins
along the c-axis (purple) and within the ab-plane (green). Spin-orbit coupling is
included here. The flat band and the DOS peak are enclosed in green-shaded boxes.
DOS distribution across the Brillouin zone at (b) E = -170 meV and (c) E = -105
meV for the band structure in (a). The intensities in (b),(c) correspond to spectral
function amplitudes. The calculations here are performed by S. Fang in [74].

kagome layers in the bulk, being sandwiched by two stanene layers, are situated in

an inversion symmetric environment and therefore give rise to the band structure

deviated from that of the kagome−stanene bilayer. Rather, their environment can be

approximated more precisely by that of an isolated kagome monolayer or an isolated

stanene−kagome−stanene trilayer. The band structures of the Sn-terminated surface

of FeSn (Fig. 4-12(a),(b)) and the ferromagnetic stanene−kagome−stanene trilayer

(Fig. 4-12(c)), both consisting of a kagome layer encapsulated by two stanene layers

in a symmetric fashion, resemble each other and in fact capture many features of

the bulk band structure in Fig. 4-10(a) projected onto the two-dimensional Brillouin

zone. The striking distinction between the bilayer dispersion (or analogously, the L

= 1 dispersion) and the trilayer dispersion (or analogously, the bulk and the L = 8

dispersions) suggests that the kagome−stanene interaction under an inversion asym-

metric environment has an important influence in generating the surface/interface-

localized flat band in FeSn.

In addition to the peculiar chemical environment created by Sn and Nb:SrTiO3,
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Figure 4-12: Kagome layers in inversion symmetric environments

(a) Schematic depiction and (b) band structure of the Sn-terminated surface of the
slab in Fig. 4-9(a). (c) Band structure of a ferromagnetic stanene−kagome−stanene
trilayer. Spin down/up bands are color-coded blue/red and spin-orbit coupling is
not included here for the spin-resolved calculation. The calculations for (b),(c) are
performed by S. Fang in [74].

the characteristic spin arrangement of FeSn generates a spin-split band structure at

the surface. Such magnetic environment gives an opportunity to investigate how the

two-dimensional band structure of the kagome−stanene bilayer changes as a function

of the sublattice magnetization (MFe). To examine this, we perform spin-resolved

band structure calculations of the kagome−stanene bilayers with varying MFe. When

MFe is equal to the saturation magnetization (Msat) (i.e. T 	 TN), we find that

the flat band is fully spin-polarized (enclosed with the green-shaded box in Fig. 4-

13(a)). When MFe = 0 (i.e. T > TN), however, a spin-degenerate flat with similar

but deformed morphology can be identified at E = -875 meV (enclosed with the

green-shaded box in Fig. 4-13(b)). We show in Fig. 4-13(c) that the position of the

DOS peak associated with the flat band shifts to higher binding energy from E =

-110 meV to E = -480 meV as MFe reduces from Msat to 0.5 Msat. We attribute this

as a potential origin of the temperature dependent shift in the dI/dV peak position

observed in the tunneling experiment (Fig. 4-9(c)). Gradual depolarization of MFe

at the interface upon thermal fluctuation and the consequent reduction of the local

exchange field may explain the shift from VJ,peak = -180 mV at T = 2 K to VJ,peak =
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Figure 4-13: MFe-dependent band structure of the bilayer

Band structures and DOS of (a) ferromagnetic and (b) nonmagnetic kagome−stanene
bilayers. Spin down/up bands are color-coded blue/red in (a). Spin-orbit coupling
is not included here for the spin-resolved calculation. The flat bands and the DOS
peak in (a),(b) are enclosed in green-shaded boxes. (c) MFe-dependent DOS of the
kagome−stanene bilayer. The DOS peak associated with the flat band shifts to higher
binding energy as MFe depolarizes. The calculations here are performed by S. Fang
in [74].

-560 mV at T = 200 K. By estimating MFe at each temperature from VJ,peak, we find

that the magnetic transition at the surface kagome layer effectively occurs around 316

K, reduced from the TN of FeSn extracted from bulk-sensitive measurements on bulk

single crystals [44] and thin films (see chapter 3).

4.3.2 Continuous tuning of kagome−stanene interactions

We now investigate the manner through which the kagome−stanene interaction gives

rise to the peculiar bilayer dispersion based on the calculations performed by S. Fang

in [74]. Fig. 4-14(a) shows the evolution of the ferromagnetic kagome−stanene bi-

layer band structure with variable kagome−stanene interaction strength (only the

minority spin bands presented here for clarity). The interaction strength is controlled

parametrically by the inter-layer spacing zK−S that tunes the orbital overlap between

the two layers. Fig. 4-14(b)-(e) show the orbital compositions of the band structures

at different zK−S and Fig. 4-15 summarizes the zK−S-dependent band parameters ex-

tracted from Fig. 4-14. When zK−S is large (Fig. 4-14, zK−S = 6.0 Å), the inter-layer
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Figure 4-14: Continuous tuning of the kagome−stanene interaction

(a) Electronic structures of ferromagnetic kagome−stanene bilayers with different
inter-layer spacings zK−S (only the minority spin bands are shown). Increasing zK−S

reduces the kagome−stanene interaction and the bilayer band structure continuously
evolves into the isolated monolayer band structure. The red arrows mark the positions
of the band crossing that is relevant to the flat band observed in the experiment. (b)-
(e) Orbital decomposed kagome−stanene bilayer band structures with different zK−S.
The white arrows mark the dominant orbital components of the flat band at each
zK−S.

120



λSOC = 0

A

AA

λSOC = 0

A A

λSOC ≠ 0

Figure 4-15: Evolution of the Dirac-like crossing within the bilayer flat band

zK−S-dependent (a) energy position, (b) normalized Fermi velocity vF (along the M -K
direction), (c) orbital composition, and (d) spin-orbit gap size ESO of the Dirac-like
crossing within the bilayer flat band.

interaction is weak and the band structure asymptotically converges to that of an

isolated kagome monolayer. In contrast, as zK−S approaches the actual inter-layer

spacing in FeSn (Fig. 4-14(a), zK−S = 2.24 Å), it restores the band structure of a re-

alistic bilayer that represents the kagome-terminated surface band structure detected

in FeSn/Nb:SrTiO3.

When zK−S = 6.0 Å, the band structure reveals several Dirac crossings at the

K-point originating from different d-orbitals in the Fe3Sn kagome network, including

dxy/dx2−y2, dxz/dyz, and dz2 orbitals (Fig. 4-14(a),(b)). Here we focus specifically on

one of the Dirac crossings located around E ∼ 300 meV at zK−S = 6.0 Å. As zK−S

reduces from 6.0 Å to 2.24 Å, the position of the crossing gradually shifts down to E

= -110 meV, the energy around which the DOS peak was observed in the tunneling

experiments (red arrows in Fig. 4-14(a)). Fig. 4-15(a) shows the continuous shift of its

position as a function of zK−S. Simultaneously, the bandwidth shrinks and the Fermi
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velocity vF near the K-point decreases by more than five-fold (Fig. 4-15(b)). After

the energy shift and band flattening, the Dirac band of interest eventually transforms

into the bilayer flat band discussed thus far. This suggests that the bilayer flat band

(or equivalently the kagome-terminated surface flat band) can be viewed as a flattened

Dirac band.

While the crossing stays robust at all zK−S (in the absence of spin-orbit coupling

λSOC), a significant amount of its orbital spectral weight originally concentrated in

the dxz/dyz-orbital sector in the zK−S � 2.24 Å limit transfers to the dz2-orbital sector

as zK−S → 2.24 Å (white arrows in Fig. 4-14(b)-(e)). This demonstrates that the

complex kagome−stanene interaction and the consequent orbital hybridization are

critical factors in generating the bilayer flat band. In the presence of λSOC and the

magnetization vector along the z, a spin-orbit gap (ESO) opens at the crossing point,

reminiscent of the Dirac mass gap openings in graphene and other systems. This gap

opening further enhances the local band flatness near the K-point. ESO in the bilayer

limit (zK−S → 2.24 Å) is larger than that in the monolayer limit (zK−S � 2.24 Å), as

the relatively large atomic number of Sn yields a stronger λSOC in the former case.

While ESO is in general larger at smaller zK−S, the zK−S-dependence of ESO shows

a non-monotonic trend (Fig. 4-15(d)). We note that ESO closes and reopens when-

ever the orbital spectral weight at the crossing point redistributes between dxz/dyz,

dxy/dx2−y2, and dz2 and Sn sectors. In particular, such behavior is most pronounced

around zK−S = 2.7 Å, the critical inter-layer spacing across which the dominant or-

bital character of the band crossing changes from dxz/dyz to dz2 and Sn (Fig. 4-15(c)).

We hypothesize that the sign (or complex phase) of λSOC is different between these

orbitals, whose competition determines the size of positive, real-valued ESO in the

resultant band structure.

Finally, we comment on the merger of topology and correlation. It is noteworthy

that while vF is significantly quenched in the bilayer flat band, ESO is still compa-

rable to that of dispersive Dirac bands in ferromagnetic kagome metal Fe3Sn2 (∼ 30

meV) [52]. A preliminary calculation suggests that a significant Berry curvature is

concentrated within the gap, potentially endowing a nontrivial topology to the flat
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Figure 4-16: Berry curvature analysis of the bilayer flat band

Berry curvature (BC) distribution in the ferromagnetic kagome−stanene bilayer band
structure (M // z here). With spin-orbit coupling, the band crossing within the flat
band (enclosed with the dashed line) gaps out and BC emerges within the gap.

band electrons (Fig. 4-16). In general, the regime of high spin-orbit interaction and

strong electronic correlation has been pointed out as a promising parameter space to

blend nontrivial band topology and interaction-driven quantum phases into a single

material [119]. The kagome−stanene interaction under inversion asymmetric environ-

ment proposes a potential pathway to flatten a highly spin-orbit coupled Dirac-like

band and eventually drive it towards the strong correlation regime. With the key

ingredients naturally built-in, the surface/interface of FeSn, as well as the isolated

kagome−stanene bilayer, offers a unique physical platform to realize novel types of

edge modes and correlated flat bands.

4.4 Conclusions and outlook

In this chapter, we probed the local DOS of FeSn at the Schottky heterointerface

with an n-type semiconductor Nb:SrTiO3. Using planar tunneling spectroscopy, we

detected an anomalous enhancement of the tunnel conductance ∼ 180 meV below the
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Fermi level of FeSn, which in conjunction with the slab band structure calculations

revealed an evidence for a two-dimensional flat band residing at the bottom-most

kagome layer of FeSn at the interface − consistent with the interface atomic arrange-

ment identified from the TEM measurements. Our numerical calculations suggested

that the observed surface flat band corresponds to a dz2 orbital derived spin-polarized

flat band expected in the ferromagnetic kagome−stanene bilayer.

While our findings constitute consistent signatures of the proposed surface flat

band, a critical future direction would be to directly probe the spin texture and

electronics structure of the interfacial layer via space-, spin-, and layer-resolved high

resolution spectroscopy techniques. Furthermore, it is of significant interest to stabi-

lize an isolated kagome−stanene bilayer, which would most readily facilitate the direct

investigation of the surface flat band discussed herein. In connection with the degree

of band flattening, the two-dimensional surface localization of a vertically elongated

orbital suggests a new design principle towards flat bands with nearly zero dispersion

along all directions. Viewed more broadly, these observations suggest that the surface

of a magnetic flat band material, being situated in an electromagnetic environment

distinct from that of the bulk, has a potential to host a flat band with unique orbital

and spin characters. In addition, given the surface-localized nature of this flat band,

it is expected to have pronounced effect when embedded into heterostructure-based

devices for spintronic applications.
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Chapter 5

Anisotropic flat band and

non-Fermi-liquid state in Ni3In

One of the key design principles in material realization of the kagome lattice model

is the physical separation between the consecutive kagome layers by an insertion of

spacer layers. In this chapter, we focus on a different class of kagome metals with

no spacer layer between them. We describe a gradual collapse of the kagome-derived

band features and a concurrent emergence of a new type of anisotropic flat band

upon increased inter-kagome hybridization. Ni3In is a model compound that harbors

such a band structure with the flat band at the Fermi level. We stabilize thin films

of Ni3In and identify physical properties which deviate from the canonical Fermi

liquid expectations. By tracking the key energy scales of the non-Fermi-liquid state

in response to various control parameters, we reveal the relevance of the flat band

and the associated quantum fluctuations to the observed anomalies.

5.1 Electronic structure evolution from TM to T3M

(T = 3d transition metal ; M = Ge, Sn, In)

Ni3In belongs to a broad family of kagome metals T3M (T = 3d transition metal; M

= Ge, Sn, In), consisting of AB-stacked two-dimensional networks of T3M kagome
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Figure 5-1: AB-stacked kagome bilayer in T3M

(a) Schematic crystal structure and (b) the top view of T3M . (c) Schematic of a T3 - T3

kagome bilayer. M atoms are not yet included here. The red arrows denote hopping
pathways for a, a1, and a2. (d)-(f) Tight binding band structures with different values
of a (a1 = a2 = 0.5 fixed). The bands of interest are orange-shaded.

layers (Fig. 5-1(a),(b)). Among this family exists a recently highlighted non-collinear

antiferromagnet Mn3(Ga:Ge:Sn), a time reversal symmetry broken Weyl semimetal

[56, 57]. In terms of structure, the T3M has three prominent distinctions from TM

(e.g. FeSn). (i) The M2 spacer layer is absent in T3M , putting the consecutive kagome

layers in direct contact with each other and giving rise to inter-kagome hybridization.

(ii) The characteristic atomic distribution within the unit cell of T3M , pertaining to

its AB-stacking sequence, accompanies a breathing distortion in which certain clusters

of T atoms expand/compress with respect to others. (iii) The orbital-specific hopping

anisotropy of d-electrons creates a phase interference between the intra-kagome and

inter-kagome hopping pathways − such a phenomenon is less relevant in TM where

the inter-kagome hopping itself is reduced. Below, we track the systematic electronic
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structure evolution from TM to T3M by incorporating the three key structural traits

of T3M to a tight binding Hamiltonian of the kagome lattice.

Fig. 5-1(c) shows the schematic of an AB-stacked T3 kagome bilayer, the most

fundamental building block of our tight binding model with M atoms not yet included.

The A and B layers in the AB-stack are color-coded dark and light green, respectively.

The three simplest nearest neighbor (NN) hopping parameters are: a1 = a2 = (intra-

layer NN hopping) and a = (inter-layer NN hopping). The simplest case of a1 = a2 =

0.5 and a = 0 realizes the single layer kagome band structure (Fig. 5-1(d)) as the two

layers within the unit cell do not hybridize. Each dispersion is four-fold degenerate

due to spin and layer degrees of freedom.

As the inter-layer hybridization increases (|a| > 0), the layer degeneracy becomes

lifted and the bands split along kz (see the bifurcating branches along the Γ-A line

in Fig. 5-1(d)-(g)). This splitting can be viewed as an energy difference between the

bonding and anti-bonding phase configurations within the bilayer unit cell (and also

analogous to the zone folding effect from unit cell doubling). In the a → 1 limit, the

band structure is significantly deformed from its original morphology. Hereon, we

focus primarily on the orange-shaded band in Fig. 5-1(d)-(g), originating from the

Dirac branch in the a = 0 state.

The model becomes more realistic when M atoms are inserted into the lattice.

From the top view of the structure (Fig. 5-2(a)), we identify two sets of T3 trimers

placed under distinct chemical environments: one with M atoms at the center and

the other with voids. The former experiences a negative chemical pressure from the

M atoms and expand in size, whereas the latter shrinks. This generate a mismatch

between the two NN bond lengths within the T3M kagome layer. In Ni3In, for ex-

ample, the bond lengths for the expanded trimer and the compressed trimer are 0.28

nm and 0.25 nm, respectively. This phenomenon is referred to as a breathing distor-

tion and is reflected in the tight binding model as a1 �= a2. By varying a2 from 0.5

to 0.3 (a1 = 0.5 and a=1 fixed), we find that the band of interest becomes flatter

(Fig. 5-2(b),(c)). This evidences that the Wannier function of this band resides pre-

dominantly on the compressed trimers with enhanced degree of localization from the
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Figure 5-2: Breathing distortion in T3M

(a) Schematic of a T3M - T3M kagome bilayer. The red arrows denote hopping
pathways for a, a1, and a2. The orange arrows denote the directions of chemical
pressure. (b),(c) Tight binding band structures with different values of a2 (a1 = 0.5,
a = 1 fixed). The bands of interest are orange-shaded.

breathing distortion.

In incorporating higher order hoppings, it is important to consider the character-

istic hopping anisotropy of each d-orbital; see Fig. 5-3(a) for the relevant hopping

parameters a3 = (inter-layer NNN hopping) and a4 = (inter-layer NNNN hopping),

where NNN and NNNN denote next and next-next nearest neighbors. In previous

studies on Ni3In, the orbital origin of its valence electrons have been identified as the

dxz-orbital with an X-shaped lobes protruding out-of-plane along the direction tilted

from the z (Fig. 5-3(b),(c)) [60]. Such lobe orientation makes a3 and a2 to have

comparable amplitudes, reflected in the model in a simplified fashion as a3 = a2 =

0.3. Additionally, taking into account the phase relation of each lobe, a4 is expected

to have an opposite sign and a reduced amplitude with respect to a2 or a3. Fig.

5-3(e)-(g) plot the band structures as a4 is varied from -0.1 to -0.2. An intriguing

observation is made in Fig. 5-3(f) when a4 = -0.15 and a2 + 2a4 = 0 condition is

satisfied: the band of interest attains a zero bandwidth within the plane, indicat-

ing the perfect destructive interference of relevant hopping pathways. Given that

its localization site is the compressed trimer, the interference involves one intra-layer

hopping and two inter-layer hoppings, thus constituting a2 + 2a4 = 0 (Fig. 5-2(d)).
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Figure 5-3: Destructive phase interference of hopping pathways in T3M

(a) Schematic of a T3M - T3M kagome bilayer with higher order hoppings included.
The red arrows denote hopping pathways for a, a1, a2, a3, and a4. (b)-(d) Schematic
orientation and hopping pathways for the dxz-orbital in T3M . (e)-(g) Tight binding
band structures with different values of a4 (a1 = 0.5, a2 = 0.3, a = 1, a3 = 0.3 fixed).
(h) Density functional theory (DFT) band structure and density of states (DOS) of
Ni3In. The bands of interest are orange-shaded in (e)-(h). (i) Orbital-projected DOS
of Ni3In. (j) Photoemission measurements on bulk single crystal Ni3In and (k) a DFT
calculation for comparison with (j). (b-d) and (i-k) are from [60]. The calculations
for (h) are performed by S. Fang.
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The band is perfectly flat within the plane, but still maintains dispersiveness along

kz. We therefore call this band an anisotropic flat band.

While our tight binding approach is purely phenomenological, it captures key

aspects of the actual electronic structure of T3M . For example, density functional

theory (DFT) band structure of Ni3In in Fig. 5-3(h) reveals at the Fermi level (EF)

an anisotropic flat band of the identical origin as the one we constructed (a recent

photoemission measurement of bulk single crystal Ni3In has experimentally confirmed

the validity of this calculation; see Fig. 5-3(i)-(k) from [60]). The Dirac and flat bands

in FeSn (TM ; T = Fe; M = Sn) are born out of the kagome lattice geometry within

the Fe-kagome layers; the anisotropic flat band in Ni3In (T3M ; T = Ni; M = In) can

be ascribed to its characteristic lattice structure harboring the three key elements

discussed above. Being lattice-driven in nature, it can be identified in a variety of

T3M compounds such as Fe3Sn or Cu3Sn. Among them, Ni3In is special in that its

EF crosses the flattest part of the flat band (i.e. at the kz = 0 plane near its top

band edge) from which a mini-peak is generated in the dxz-orbital projection of the

density of states (DOS) (Fig. 5-3(i)). A critical question is the influence of these

flat band electrons in driving correlated phenomena. In the following sections, we

demonstrate our works on synthesis and characterization of Ni3In thin films, from

which we uncover anomalous transport and thermodynamic properties.

5.2 Synthesis and characterization of Ni3In epitaxial

thin films

5.2.1 Epitaxial thin film synthesis of Ni3In

This section provides descriptions of synthesizing high quality Ni3In thin films with

molecular beam epitaxy (MBE). Ni3In thin films are grown on lattice-matched SrTiO3

(111) substrates (+2.8% mismatch). The substrates are prepared and preannealed

the same way as explained in section 3.2.1. During film deposition, the substrate

temperature is fixed at Td and Ni and In are evaporated from solid source effusion
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Figure 5-4: Optimization of Ni3In thin film synthesis

Schematic growth phase diagrams of (a) as-deposited and (b) post-annealed Ni3In thin
films. An optimized film has high crystallinity (above the blue boundary), connected
in-plane morphology (below the red boundary), and 3:1 stoichiometry (along the black
dashed line). The region that satisfies these conditions is yellow-shaded.

cells. The ratio of beam-equivalent pressures (BEPs) for Ni (PNi) and In (PIn) are

calibrated before each growth. After the deposition, most of the films are post-

annealed at Ta for 1 h.

The synthesis of high quality Ni3In requires precise calibrations of Td, PIn : PNi,

and Ta. Each of these growth parameters is optimized following the same methodology

presented in section 3.2.1; the growth phase diagrams with and without the post-

annealing treatment are summarized in Fig. 5-4(a) and (b), respectively. Similar to

the case of FeSn above the Sn melting point, Ni3In films tend to manifest enhanced

crystallinity as well as island-segregated morphology when deposited above the In

melting point Tm,In = 156.6 ◦C. The case of Ni3In is distinguished from FeSn, however,

in that there does not exist an available growth phase space within which sufficient

crystallinity and connected morphology are simultaneously attained in as-deposited

films; note that the red boundary (connected vs. disconnected) and the blue boundary

(crystalline vs. non-crystalline) in Fig. 5-4(a) do not intersect.
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Figure 5-5: X-ray measurements on Ni3In films

(a) X-ray diffraction spectra of Ni3In films with (red) and without (black, blue) the
post-annealing treatment. Inset: optical micrograph of a Ni3In film (scale bar: 1 mm).
(b) Pole figure of a Ni3In film, showing the in-plane crystallographic orientation of
the film with respect to that of the SrTiO3 substrate.

When the films are post-annealed at 350 ◦C ≤ Ta ≤ 450 ◦C, a relatively large

growth phase space becomes available; see the yellow region between the red and

blue boundaries in Fig. 5-4(b). We first deposit films with connected morphology

(but low quality) at 70 ◦C ≤ Ta ≤ 140 ◦C. After post-annealing, they eventually

manifest high crystallinity while preserving the original connected morphology. Ta 	
350 ◦C does not give sufficient crystallinity and Ta � 450 ◦C segregates the films into

islands. Within this allowed growth phase space, PIn : PNi is optimized to ensure the

correct 3:1 stoichiometry (see the grey dashed line in Fig. 5-4(b)).

5.2.2 Structural characterizations

Figure 5-5(a) shows the X-ray diffraction (XRD) spectra of samples with (red; opti-

mized) and without (black, blue; unoptimized) the post-annealing treatments. The

samples have 20 nm film thickness (tNi3In) and the wavelength of the incident X-ray

beam is λ = 0.154 nm. In vicinity of SrTiO3 (222) XRD peak at 2θ = 39.98◦, film

XRD peaks are observed. The film deposited at Td = 140 ◦C shows a broad and

low-intensity peak around 2θ = 42.70◦, the (002) XRD peak position for bulk Ni3In
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(Fig. 5-5(a), black). This indicates the formation of a c-axis oriented low quality

Ni3In film. On the other hand, the film deposited at Td = 300 ◦C show a well-defined

and high-intensity peak at 2θ = 42.70◦ together with another satellite peak at 2θ =

44.70◦ (Fig. 5-5(a), blue). The position of the latter is the (201) XRD peak position

of bulk Ni3In, suggesting the formation of a high crystalline but less singly oriented

Ni3In film. The film deposited with an optimized growth condition of (Td, Ta) = (100
◦C, 420 ◦C) shows a well-defined peak at 2θ = 42.65◦ (0.1% deviated from 2θbulk,(002))

and a suppressed intensity at 2θbulk,(201) = 44.70◦ (Fig. 1(d), red). Laue interference

fringes are observed on both sides of the film peak, indicating sharp interfaces.

The epitaxial relation between Ni3In and SrTiO3 is characterized by asymmetric

XRD measurements. A collection of Ni3In (201) diffraction peaks and SrTiO3 (101)

diffraction peaks are shown in the pole figure in Fig. 5-5(b). The Ni3In (201) peaks

(black arrows in Fig. 5-5(b)) manifest six-fold rotation symmetry as expected from

the hexagonal crystal symmetry, whereas the SrTiO3 (101) peaks (grey arrows in

Fig. 5-5(b)) manifest three-fold rotation symmetry as expected from the trigonal

symmetry of the (111) facet of a cubic crystal. The in-plane angles of the Ni3In

(201) peaks are matched with those of the SrTiO3 (101) peaks, indicating epitaxial

alignment of in-plane crystallographic orientations between the two layers.

Figure 5-6(a),(b) are cross-section transmission electron microscopy (TEM) images

of a tNi3In = 16 nm sample. The low magnification image (Fig. 5-6(a)) reveals a

conformally coated film morphology and the actual tNi3In is estimated to be 15.3 nm,

∼ 4% deviated from the calibrated tNi3In. The higher magnification image (Fig. 5-

6(b)) visualizes more clearly the atomic arrangements in both Ni3In film and SrTiO3

substrate. In agreement with the X-ray measurements, Ni3In c-axis is aligned with

the film normal direction and the inter-kagome distance is found to be dc,TEM = 2.03

Å. This is close to the inter-kagome distance in bulk Ni3In (dc,bulk = 2.10 Å).

Additionally, we conduct electron energy loss spectroscopy (EELS) measurements

for an element-specific chemical identification. Each element is color-coded in Fig.

5-6(d)-(e) and Fig. 5-6(c) is their superposition. Across the sharp film−substrate

interface, Ni and In are present only in the top layer (Fig. 5-6(d),(e)), whereas Sr,
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Figure 5-6: Cross-section structural analysis of a Ni3In film

Cross-sectional transmission electron microscopy (TEM) image of a Ni3In film with
(a) high and (b) low magnifications. (c) Electron energy loss Spectroscopy (EELS)
measurement and (d-h) element-specific mappings of Ni, In, Sr, Ti, O.
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Ti, and O can be found only in the bottom layer (Fig. 5-6(f)-(h)). As expected from

the 3:1 stoichiometry, the intensity from Ni is stronger than that from In. At the top

surface of Ni3In film is observed a finite intensity from O, which we hypothesize to

be a thin layer of surface oxidation from air exposure.

5.2.3 Electrical characterizations

Electrical transport properties of Ni3In films are characterized down to 1.8 K in a He-4

cryostat and down to 0.3 K in a He-3 cryostat. Figure 5-7(a) shows the temperature

dependent electrical resistivity ρxx(T ) of a tfilm = 15 nm sample grown with (Td, Ta)

= (90 ◦C, 400 ◦C) (sample S#1 henceforth). The overall temperature dependence

at μ0H = 0 T reveals a metallic character with decreasing ρxx as T decreases. The

resistivity at T = 300 K and 0.3 K are 82.8 μΩ cm and 41.2 μΩ cm, respectively,

giving the residual resistivity ratio of RRR = 2.01.

Within 100 K ≤ T ≤ 300 K, ρxx(T ) shows a nonlinear temperature dependence

with larger dρxx/dT at lower temperature (i.e. d2ρxx/dT 2 < 0). This tendency can

also be extracted from the resistivity exponent α, assuming ρxx ∝ T α (Fig. 5-7(c),

red). α is inferred from the relation α = T (dρxx/dT )/(ρxx − ρxx,0), where ρxx,0 is

the projected ρxx value at T = 0 K. The sublinear exponent (α < 1) at T ≥ 100 K

is consistent with d2ρxx/dT 2 < 0 within this T range. At T < 100 K, T -linearity

is approximately restored and it persists down to T ∼ 1 K, much lower than the

temperature below which T 2-dependence is observed in conventional metals. With

ρxx(T ) deviated significantly from the canonical Fermi liquid (FL) expectation, we

identify this 1K < T 	 100 K regime to stabilize a non-Fermi-liquid (NFL) state in

Ni3In. A closer inspection of the NFL state reveals another inflection-like feature in

ρxx(T ). As T drops below 20 K, dρxx/dT increases additionally by a small amount

(Fig. 5-7(b), red). This behavior is also manifested as a small dip in α within a

narrow T range around 20 K: α < 1 within the dip and α ∼ 1 above and below

that, reflecting two distinct linear slopes. As will be described further below, the

feature at 20 K reflects a crucial energy scale of the NFL state. Entering the T ≤ 1 K

regime, ρxx(T ) eventually recovers a FL-like T 2 rollover, which can also be seen from
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Figure 5-7: Temperature dependent electrical transport of a Ni3In film

(a) Temperature dependent electrical resistivity ρxx(T ) of a Ni3In film (S#1). (b)
Magnified view of (a) in the low temperature regime under 0 T (red) and 9 T (black).
(c) Temperature dependent resistivity exponent α under 0 T (red) and 9 T (black).
(d) Color plot of α in temperature−field phase space. Dashed lines are guide to
the eye for boundaries across which α changes above or below 1. (e) Magnetic field
dependent A-coefficient and the NFL-to-FL transition temperature (TFL). (f) Hall
effect at selected temperatures.

the abrupt increase in α around 1 K (Fig. 5-7(b),(c), red). This crossover signifies a

NFL-to-FL transition across TFL = 1 K. Within the framework of quantum criticality,

quantum fluctuations and their derived NFL behaviors are believed to be enhanced

when a system is situated near a quantum critical point (QCP), the zero temperature

phase boundary between an ordered phase and a disordered phase [120–123]. The

observation of NFL behaviors down to anomalously low temperature evidences that

Ni3In may be positioned in close proximity to a suspected QCP.

We find that the NFL-to-FL transition can be tuned with magnetic field. Both

ρxx(T ) and α at μ0H = 9 T (H // c) indicate TFL ∼ 3 K, increased from that for μ0H

= 0 T (Fig. 5-7(b),(c), black). The overall behavior of α in (T , μ0H) phase space is
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depicted in Fig. 5-7(d), manifesting the increase in TFL (blue arrow) as well as the

dilution of the feature at 20 K (green arrow) under magnetic field. The field-tuning

of TFL suggests that fluctuating magnetic moments may be related to the quantum

fluctuations that give rise to the Fermi surface breakdown. To examine the framework

of field-tuned quantum criticality, we extract the A-coefficient of resistivity, acquired

by fitting ρxx(T ) to AT 2 + B′ at T < TFL. A number of quantum critical systems

have manifested divergence of the A-coefficient at the QCP. In the case of Ni3In,

the A-coefficient systematically decreases as the NFL state becomes suppressed with

increasing magnetic field (Fig. 5-7(e)). This supports a consistent scenario that Ni3In

shifts away from the suspected QCP as magnetic field suppresses the spinful quantum

fluctuations in the system.

The electrical transport responses in Fig. 5-7(a)-(e) qualitatively agree with those

observed in bulk single crystal Ni3In, even matching the key temperature scales of

the NFL state [60]. In bulk, the Hall response was found to be linear within 9 T with

hole-like Hall coefficients (RH) monotonically increasing as T decreases. There, one

of the interpretations was that an anomalous Hall contribution to RH, arising from

the field-polarized magnetic moments in the system (those also responsible for the

quantum fluctuations in the zero-field state), increases at lower T as moments grow

in size − this is phenomenologically similar to the Hall responses in heavy fermion

Kondo systems [124–126]. In our films, a qualitatively similar response is observed

(Fig. 5-7(f)). Given the multi-band nature of the system, however, further studies

are required to confirm this argument.

In addition to the NFL-to-FL transition, other features in ρxx(T ) across the

extended temperature range can be explained in relation to the spin fluctuations.

For this purpose, we characterize magnetoresistance (MR ≡ (ρxx(H) − ρxx(H =

0))/ρxx(H = 0)) of another tNi3In = 20 nm sample grown with (Td, Ta) = (95 ◦C,

420 ◦C) (sample S#2 henceforth). S#2 manifests a similar ρxx(T ) to S#1 though

with different ρxx and RRR values (Fig. 5-8(a)). Figure 5-8(b) shows the MR of S#2

within 2 K ≤ T ≤ 300 K (H // c). At T = 300 K, we see a small positive MR with

0.002% amplitude at μ0H = 9 T, likely originating from the Lorentz-force deflection

137



Figure 5-8: Magnetoresistance of a Ni3In film

(a) Temperature dependent electrical resistivity ρxx(T ) of a Ni3In film (S#2). Inset:
magnified view of (a) in the low temperature regime. (b) Magnetoresistance (MR) at
selected temperatures with H // c. (c) 9 T MR at different temperatures with H //
c (black) and H // ab (grey). Red arrows in (a),(c) mark the features at T = 20 K.
The MR traces in (b) plotted against μ0H/(T+Tcoh) for (d) T ≥ 20 K and (e) T ≤
20 K. Tcoh = 20 K is used for this analysis.

of electrons’ trajectory. As T decreases, it gives way to a small negative MR with

-0.002% amplitude at μ0H = 9 T at T = 250 K. The onset of negative MR at T < 300

K can be ascribed to the formation of localized magnetic moments and subsequent

field-suppression of their fluctuations. This may also account for the nonlinear ρxx(T )

in the 100 K ≤ T ≤ 300 K regime, within which the local moments become increas-

ingly well-defined at lower T and generate a nonmonotonic temperature dependence

of scattering cross-sections for conduction electrons.

The quadratic negative MR enhances as T decreases, reaching up to -0.42% at μ0H
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= 9 T at T = 20 K. At T < 20 K, however, the MR begins to manifest a non-quadratic

field dependence. This non-quadraticity likely originates from the superposition of the

positive MR component (diverging due to higher electronic mobility at lower T ) and

the negative MR component (diverging due to higher moment size at lower T ). As a

result of the two competing contributions, the net MR response below 20 K changes

from negative (i.e. dρxx/dH < 0) in the low field regime to positive (i.e. dρxx/dH

> 0) in the high field regime. The positive MR component tends to dominate more

strongly at lower T and the 9 T MR at 2 K becomes positive with 0.35% amplitude.

Figure 5-8(c) summarizes the 9 T MR at different T for H // c (black) and H // ab

(grey). Qualitatively similar trends are observed for both field orientations, but the

H // c trace is consistently more negative than the H // ab trace. In bulk Ni3In,

χc and χab showed a Curie-Weiss-type temperature dependence with χc > χab within

2 K ≤ T ≤ 300 K, where χc (or χab) denote magnetic susceptibility under H // c

(or H // ab) [60]. The former observation is consistent with the presence of local

magnetic moments in Ni3In and the latter suggests more effective field-suppression of

magnetic fluctuations when H // c, consistent with our observation that the negative

MR component is larger for H // c.

The gradual crossover from the net negative MR response (T > 20 K) to the

net positive MR response (T < 20 K) can be understood as an emergence of spin-

spin coherence − the possibility also raised in the bulk study of Ni3In [60]. To

examine this hypothesis, we scale the MR with respect to μ0H/(T+Tcoh) akin to the

incoherent spin fluctuation model frequently applied in analyzing the MR responses

of heavy fermion systems, where Tcoh is the temperature above/below which spins are

incoherent/coherent [127–130]. Recently, the scope of this model has been expanded

to describing in general the effects of local moments on MR responses in metallic

systems, not restricted to those from the f -electrons [131–134]. Here, Tcoh = 20 K is

used for this analysis under an assumption that the inflection-like feature in ρxx(T )

at T = 20K is also a signature of this. Within 20 K ≤ T ≤ 250 K, the MR traces

at different T , when plotted against μ0H/(T+Tcoh), overlay nearly perfectly onto

each other (Fig. 5-8(d)). The success of this scaling analysis at T > Tcoh indicates
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that the system in the zero-field state in fact contains an ensemble of incoherently

fluctuating spins. In contrast, the MR traces below 20 K deviate significantly from

the scaling curves above 20 K (Fig. 5-8(e)). The failure of this scaling analysis at

T < Tcoh suggests the insufficiency of the incoherent spin fluctuation model in fully

accounting for the MR response in this T regime. As depicted in the inset of Fig.

5-8(e), it is hypothesized that the spin-spin coherence energy (Ecoh) counteracts the

field-polarization of individual spins (driven by the Zeeman energy EZeeman), leading

to the suppression of the negative MR component and enabling the positive MR

component to dominate the net response.

5.2.4 Magnetic characterization

From the electrical transport measurements, we have gained an insight that Ni3In

may harbor fluctuating local moments likely responsible for the breakdown of the FL

state. Having identified the magnetic origin of the quantum fluctuations, we directly

probe the magnetic properties of Ni3In films with torque magnetometry. The sample

used for this measurement has tfilm = 20 nm and is synthesized with (Td, Ta) = (97
◦C, 427 ◦C) (sample S#3 henceforth).

Figure 5-9(a) shows the magnetic field dependent torque (τ(H)) at different tem-

peratures. At T ≥ 80 K, τ(H) reveals a small but non-quadratic response likely

originating from complex background contributions. The background signal depends

heavily on cantilever material/shape as well as sample quality/condition. As T drops

below 60 K, a relatively well defined quadratic τ(H) is observed as Ni3In starts to

develop a sizable magnetic susceptibility (χ). We note as a clarification that the quan-

tity being measured is the torque susceptibility χτ (or torque magnetization Mτ ) that

is related to the anisotropy of χ (or M) rather than its absolute value. Despite this

distinction, the amplitudes of χ and χτ are positively correlated in general. τ mono-

tonically increases as T decreases, reflecting the divergence of χ observed in bulk

Ni3In (Fig. 5-9(e)).

As T decreases further, however, τ(H) tends to show a linear or even saturating

behavior. Such non-quadraticity in τ(H) reflects the nonlinear magnetic response
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Figure 5-9: Magnetic torque of a Ni3In film

(a) Magnetic torque τ of a Ni3In film (S#3). Temperature dependent (b) τ , (c)
torque magnetization (Mτ ), and (d) torque susceptibility (χτ ) at selected magnetic
fields. (e) Temperature dependent magnetic susceptibility of bulk Ni3In (from [60]).

of Ni3In at low temperatures. Fig. 5-9(b),(c),(d) show temperature dependent τ ,

Mτ , χτ , respectively, for different values of magnetic field. χτ develops a mild field

dependence below ∼ 40 K, which grows exponentially below ∼ 20 K. Considering the

nearly identical temperature scale, we hypothesize that the emergence of spin-spin

coherence (Tcoh = 20 K) may be related to the onset of nonlinear magnetic response.

At T = 2 K, we find that χτ is significantly suppressed by magnetic field. This recalls

the MR response at T = 2 K in which the positive MR component always dominates

the negative MR component as μ0H → 9 T. With the magnetic susceptibility rapidly

decreasing as a function of magnetic field, the negative MR component can no longer

counterbalance the positive MR in the high field regime.
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Figure 5-10: Thermoelectric response of a Ni3In film

(a) Temperature dependent Seebeck coefficient Sxx of a Ni3In film (S#1) at 0 T (red)
and 9 T (blue). (b),(c) Magneto-Seebeck response. (b) plots the difference between
the 9 T trace and the 0 T trace in (a). (c) plots the percentage change of (b) with
respect to the 0 T trace.

5.2.5 Thermoelectric characterization

Lastly, we characterize the thermoelectric properties of S#1 within 4 K ≤ T ≤ 300

K and compare them with its electrical transport properties. Fig. 5-10(a) displays

the temperature dependent Seebeck coefficients (Sxx) at μ0H = 0 T (red) and 9

T (blue). They shows sign reversing behaviors with hole-like/electron-like characters

above/below 100 K. The switching of the effective carrier polarity does not agree with

the monotonically hole-like Hall response in Fig. 5-7(f), indicating that the band that

dominates electrical conduction does not coincide with the band that drives thermal

diffusion. Approaching the lowest T , Sxx converge to 0 as anticipated from the Mott

relation Sxx ∝ T (i.e. thermal diffusion is frozen out at T = 0 K) [135].

To capture the effects of magnetic field, we plot in Fig. 5-10(b),(c) the magneto-

Seebeck (MS) response at μ0H = 9 T. Within 4 K ≤ T ≤ 230 K, MS is positive with

Sxx increasing in amplitude without changing sign under magnetic field (note that

MS is ill-defined near T = 100 K where Sxx crosses 0). In contrast, above 230 K,

the tendency is reversed and the positive Sxx decreases in amplitude under magnetic

field. The positive MS response at T ≤ 230 K is in agreement with the negative

MR response at T ≤ 250 K − electrons flow more easily when the spin fluctuations
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disappear. Likewise, the negative MS response at T > 230 K is consistent with the

positive MR response at T = 300 K, the T regime where the moments are significantly

diminished in size.

5.2.6 Discussion: anisotropic non-Fermi-liquid state

A combination of electrical transport, magnetic torque, and Seebeck coefficient con-

structs an insightful viewpoint on the NFL state in Ni3In. A critical question is: “how

relevant is the flat band to this anomaly?” Recalling the high degree of anisotropy

of the flat band, it is necessary to examine the anisotropy of the NFL state. In this

section, we introduce an interpretation by L. Ye et al. based on bulk experiments and

revisit the transport responses of the films.

Fig. 5-11(a) shows the reported temperature dependent electrical resistivity of

bulk Ni3In in [60] with the current within the ab-plane (ρxx(T )) and along the c-axis

(ρzz(T )). Compared to ρxx(T ), ρzz(T ) shows a T 2 rollover at an order of magnitude

higher temperature. This suggests that the quantum fluctuations have a lesser im-

pact for electrons traveling out-of-plane and the A-coefficient is expected to be smaller

when extracted from ρzz(T ). As well as scattering-originated quantities, thermody-

namic quantities are extracted from heat capacity. The heat capacity measurement on

bulk Ni3In from [60] manifest a response which deviates from a FL-like response in its

cousin compound Ni3Sn. From here, the Sommerfeld coefficient γ can be estimated.

The extracted A and γ are mapped onto the Kadowaki-Woods ratio plot (KW

≡ Ac/γ2) originally compiled in [136] (Fig. 5-11(c)). A number of heavy fermion

systems, each harboring distinct A and γ values, belong to the same class with KW

∼ 10 μΩ mol2 K2 J−1. By comparison, transition metals belong to a different class

with KW < 1 μΩ mol2 K2 J−1. Ni3In is situated in an unusual position in this

plot. For in-plane conduction, KWab = Aab/γ2 = 226 μΩ mol2 K2 J−1, an order of

magnitude larger than the ratio for heavy fermion materials. On the other hand,

for out-of-plane conduction, KWc = Ac/γ2 ∼ 0.65 μΩ mol2 K2 J−1, closer to the

ratio for transition metals. While γ is not directly measured in our films, we assume

that the films have the same KWab with the bulk. Using the Aab values extracted in
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Figure 5-11: Kadowaki-Woods ratio of Ni3In

(a) Temperature dependent electrical resistivity for in-plane (blue) and out-of-plane
conductions (red) in bulk Ni3In. (b) Heat capacity measurements for bulk Ni3In and
bulk Ni3Sn. (a),(b) are from [60]. (c) Kadowaki-Woods ratios of various compounds
compiled in [136]. The yellow stars and orange stars mark the parameters extracted
from bulk Ni3In in [60] and thin film Ni3In in this work, respectively.

section 5.2.3, we mark S#1 at μ0H = 0 T and 9 T on this plot (orange stars in Fig.

5-11(c)). The observation of KWab/KWc ∼ 350 suggests an intriguing aspect of the

NFL state in Ni3In: for a given quasiparticle density, electrons traveling within the

plane experience a scattering more than two orders of magnitude stronger than those

traveling out of plane.

L. Ye et al. have proposed that the flat band in Ni3In can account for this

extremely anisotropic KW [60]. Being localized within the ab-plane and delocalized

along the c-axis, the flat band electrons are expected to act as f -electron-like (or d-

electron-like) scatterers for other conduction electrons traveling within the plane (or

out of plane). Furthermore, in the context of the spin fluctuation framework discussed

in section 5.2.3 - 5.2.5, the strong in-plane localization of the flat band satisfies one of

the key requirements in making local moments [16, 137]. Throughout this section, we

have assembled a number of evidence to correlate the NFL behaviors, the anisotropic
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flat band, and the fluctuating local moments. We remark that further studies are

required to reinforce the connections between them by e.g. resolving the mechanism

of local moment formation or identifying the nature of the ordered phase beyond the

suspected QCP.

5.3 Tuning non-Fermi-liquid behaviors in Ni3In

To understand better the NFL state in Ni3In, we apply different experimental control

parameters to our Ni3In films and track the changes in the electrical transport prop-

erties. In section 5.3.1, we modify the MR response of Ni3In via spin injection. In

section 5.3.2, we tune the key energy scales of the NFL state by intercalating alkali

metal atoms into Ni3In.

5.3.1 Heterointerfacial spin injection

To engineer the magnetic scattering processes in Ni3In, we deposit magnetic insulators

on Ni3In films and inject spinful quasiparticles across the interfaces. The film used

for this experiment is a tfilm = 15 nm sample grown with (Td, Ta) = (80 ◦C, 375
◦C) and capped with a 190 nm thick antiferromagnetic insulator NiO (sample S#4

henceforth). Fig. 5-12(b) displays the XRD spectrum of S#4 (black), showing a

comparable quality to a bare Ni3In film grown in the same manner (green). As NiO

is insulating, the electrical transport of S#4 reflects the intrinsic properties of Ni3In,

nearly identical to those observed in S#1 and S#2 (Fig. 5-13(a)).

A vertical temperature gradient (ΔT ) is generated so that quasiparticles in the

NiO layer can diffuse into the Ni3In layer [138–140]. The setup is similar to that for

thermoelectricity measurements (Fig. 5-12(a)). To vary ΔT while maintaining the

Ni3In layer at a desired temperature Tfilm, the temperatures of the hot end (Thot) and

the cold end (Tcold) are independently controlled. Fig. 5-13(b) shows the temperature

dependent 9 T MR under different ΔT . The ΔT = 0 trace (red) reproduces the

behavior expected for a bare Ni3In film (see section 5.2.3). In the ΔT = 1 K (green),

2 K (blue), 3 K (purple) traces, however, the negative MR amplitudes systematically
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Figure 5-12: Fabrication of NiO/Ni3In heterostructure

(a) Schematic of a NiO/Ni3In heterostructure with a heater and thermocouples at-
tached. (b) X-ray diffraction spectra of a NiO/Ni3In heterostructure (S#4; black)
and a bare Ni3In film (reference; green).

suppress with increasing ΔT . This tendency monotonically intensifies down to 20 K,

below which it becomes less pronounced; the full MR responses at Tfilm ∼ 20 K are

presented in Fig. 5-13(c) as an example. These observations are also summarized in

Fig. 5-13(d), where we plot the percentage suppression of MR amplitude at each Tfilm

and ΔT . As described above, the MR changes most dramatically around 20 K.

As a control experiment, we perform the same set of measurements on a thicker

sample with tNi3In = 35 nm and confirm that MR is nearly unaffected by ΔT (Fig.

5-14(a)). The strong dependence on tNi3In suggests that the observed effect is an

interface-originated one. When tNi3In � ξ, where ξ is the characteristic quasiparticle

decay length, the quasiparticles do not propagate deep into the bulk part of the film

and the electrical transport will remain unchanged. Comparing the results from tNi3In

= 15 nm and tNi3In = 35 nm, we expect that ξ 	 35 nm and reduction of tfilm below

15 nm may further enhance the ΔT dependence of MR. Another control experiment

is performed on a sample with tNi3In = 15 nm, but capped with nonmagnetic BaF2.

In this case, the injected quasiparticles are not spinful and MR is does not change

appreciably under ΔT �= 0 (Fig. 5-14(b)). This indicates that the modification of

MR is associated with the magnetic nature of the injected quasiparticles.
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Figure 5-13: NiO/Ni3In under thermal gradient

(a) Temperature dependent electrical resistivity of a NiO/Ni3In heterostructure
(S#4). (b) 9 T MR at different temperatures under different thermal gradients (ΔT ).
(b) MR traces under different ΔT with the Ni3In layer fixed at ∼ 20 K. (d) Percentage
change of 9 T MR under different ΔT .

Based on these findings, we discuss a possible interpretation for the suppression of

negative MR. In general, one of the major decay pathways for magnetic quasiparticles

is a spin-non-preserving scattering process. This gives rise to a rapid decay of spin

current when injected into a ferromagnet with opposite spin polarization direction

(i.e. giant magnetoresistance) [141] or into a heavy metal with large spin-orbit in-

teractions (e.g. Pt, Ta, W) [142]. Ni3In does not belong to either of these material

classes, but is suspected to contain fluctuating local moments. We hypothesize that

the magnetic scattering with the intrinsic local local moments in Ni3In may be the

dominant decay pathway for the injected quasiparticles. This quasiparticle−moment
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Figure 5-14: Other heterostructures under thermal gradient

9 T MR at different temperatures under different thermal gradients in other het-
erostructures. (a) Results for a sample with the identical structure as S#4, but
thicker Ni3In layer. (b) Results for a sample with the same Ni3In layer thickness as
S#4, but capped with BaF2.

scattering will simultaneously modify the lifetime and degeneracy of the local mo-

ments and eventually affect their interactions with the existing conduction electrons

in Ni3In, incurring a significant change in the MR response as observed here. This

interpretation can account for other aspects of the data. The enhancement of MR

modification at lower Tfilm can be explained as the quasiparticle−moment scattering

manifesting more clearly when thermal fluctuation is reduced. Below Tfilm = 20 K,

the local moments are seen to be impervious to the quasiparticles. Recalling that

this temperature scale coincides with Tcoh = 20 K, we anticipate that a coherent

many-body ensemble of the local moments is more robust against external magnetic

scatterings that lift the degeneracy of individual spins. Similarly as the coherence

energy counteracts the Zeemen energy under magnetic field, it is suspected to resist

against the interaction energy with the NiO quasiparticles.

5.3.2 Alkali metal intercalation

In section 5.3.1, we engineered the nature of quantum fluctuations in Ni3In via spin

injection and made a stronger tie between the NFL state and the local moments. In
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Figure 5-15: Schematic experimental sequence for alkali intercalation

this section, a different approach is taken. We intercalate alkali metal atoms into

our Ni3In films and track the changes in the key energy scales of the NFL state.

Whereas bulk crystals with macroscopic sample dimensions show highly inhomoge-

neous intercalant distributions even after prolonged synthesis, thin films with a few

nm thickness facilitate homogeneous intercalant distribution within a reasonable ex-

periment time. Furthermore, it is known that chemical pressure from intercalants

tend to pulverize bulk samples [143]. Thin films, however, are known to maintain

their single crystallinity owing to the film−substrate epitaxial energy.

We intercalate Li and K into Ni3In through diffusion-mediated approach frequently

used for processing Li-ion battery electrodes [144]. Fig. 5-15 is the schematic experi-

mental procedure. For lithiation, we first prepare a reagent solution by dissolving 1M

Li metal and 1M Biphenyl (BP) in Dimethoxyethane (DME) solvent. The solution

turns dark blue as Li atoms and BP molecules bind to form Li1+BP1− complexes with

optical energy gaps. Then, Ni3In films are dipped into the reagent solution at tem-

perature 25 ◦C ≤ T1 ≤ 75 ◦C for t1 (min). When the chemical potential of lithiated

Ni3In (LixNi3In) is lower that that of the reagent solution, Li atoms spontaneously

unbind from BP and diffuse into Ni3In matrix. The relative chemical potential of

LixNi3In with respect to that of Li−BP/DME solution is determined by a number of

factors including Li concentration, stabilization from Li−Ni3In chemical reaction, and
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Figure 5-16: X-ray diffraction of alkali intercalated Ni3In films

Intercalation-induced changes in the Ni3In (002) X-ray diffraction (XRD) peak. XRD
peak positions in (a) lithiated and (b) potassiated Ni3In films. XRD peak intensities
in (c) lithiated and (d) potassiated Ni3In films.

destabilization from Li-induced chemical pressure. We find empirically that LixNi3In

forms spontaneously at room temperature and the rate of reaction can be boosted

at elevated T1. After the reagent dip, the samples tend to have higher/lower Li con-

centration near the top/bottom surface and manifest asymmetric XRD peaks. To

distribute the intercalants uniformly, the films are post-annealed at T2 = 105 ◦C for

t2 (hr) and the XRD peaks restored symmetric shapes. To obtain potassiated Ni3In

(KxNi3In), Diethoxyethane (DEE) is used for the reagent solution and a similar syn-

thesis protocol is followed.

In response to intercalation, the (002) XRD peak of Ni3In shifts systematically.

As shown in Fig. 5-16(a),(b), the shift is roughly proportional to log(t1), reflecting an

exponential slow down of the reaction as the chemical potential of LixNi3In or KxNi3In

changes as x increases. As inferred from the direction of the shift, the c-axis lattice

constant of Ni3In expands as a consequence of negative chemical pressure from Li or
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Figure 5-17: Electrical transport of alkali intercalated Ni3In films

(a) Temperature dependent electrical resistivity and (b) 9 T MR (absolute value) for
lithiated Ni3In films with different percentage changes in the c-axis lattice constant
(Δdc). (c) Δdc-dependent changes in the key energy scales, including the coherence
temperature (Tcoh), the zero MR temperature (TMR=0%), and the NFL-to-FL transi-
tion temperature (TFL). (d)-(f) are the same measurements/analyses as (a)-(c) for
potassiated Ni3In films.

K. By varying t1 and T1, we stabilize a wide range of intercalated states as denoted by

the phase space shaded green and purple in Fig. 5-16(a) and (b), respectively. Across

the entire range of intercalation, the XRD peak intensity maintains the same order

of magnitude (except for the fluctuations due to beam alignment and sample size

effects), indicating the sample quality does not deteriorate significantly with respect

to the pristine state (Fig. 5-16(c),(d)).

We characterize the electrical transport properties of LixNi3In and KxNi3In. Fig.

5-17(a) shows ρxx(T ) of LixNi3In with different percentage changes in the c-axis lattice

constant (Δdc). The RRR decreases from 1.55 at Δdc = 0% to 1.21 at Δdc = +1.67%,

likely originating from the increased scattering centers at the Li sites. For Δdc ∼ 0,
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ρxx(T ) is approximately linear down to the lowest T measured, while for Δdc → 1.67%

T 2 rollover is observed from ∼ 2.5 K, higher than TFL = 1 K in pristine Ni3In. This

suggests another type of NFL-to-FL transition driven by lithiation. Fig. 5-17(b)

shows the temperature dependent 9 T MR amplitudes for different values of Δdc.

All samples manifest qualitatively similar trends, but the positive and negative MR

components simultaneously decrease as Δdc increases. Furthermore, the temperature

at which the negative MR is maximized − corresponding to Tcoh in pristine Ni3In −
gradually increases from ∼ 20 K at Δdc = 0% to ∼ 42 K at Δdc = +1.67%. Fig.

5-17(c) summarizes the changes in TFL (squares) and Tcoh (circles) as a function of

Δdc. Also plotted in this phase diagram is the temperature at which the 9 T MR

crosses 0% (TMR=0%; triangles), increasing from ∼ 5 K at Δdc = 0% to ∼ 27 K at

Δdc = +1.67%. A collection of TFL, Tcoh, and TMR=0% constitute a phase diagram

which highly resembles a phase diagram of a system shifting away from a QCP with

all relevant energy scales increasing. The same set of measurements are performed

on KxNi3In (Fig. 5-17(d),(e)) and an analogous phase diagram is constructed (Fig.

5-17(f)). While the phase diagrams of LixNi3In and KxNi3In show similar NFL-

to-FL transitions, we find that the rate at which the system moves away from the

suspected QCP is approximately two times faster for KxNi3In when plotted against

Δdc. As K generates a stronger negative chemical pressure than Li, the discrepancy

between the two phase diagrams is expected to be larger when plotted against doping

concentration. These suggest that neither unit cell size nor doping capacity alone can

fully account for the observed quantum critical tuning.

We therefore investigate the effects of local bond distortions at a sub-unit cell

scale. Structural stability calculations suggest that alkali atoms favor the centers of

compressed Ni3 trimers in Ni3In, the localization sites for the flat band electrons. This

as a result disrupts the hopping interference condition in pristine Ni3In and increases

the in-plane bandwidth of the flat band. Being approximately twice as large as Li, K

is expected to impose more drastic deformations to the flat band wavefunction and

suppress the NFL state more rapidly. In a broader perspective, the lattice engineering

of Ni3In via intercalation can help manipulate the flat band morphology in a designer
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approach. We propose that driving the flat band to the zero bandwidth state may

push the system across the suspected QCP and stabilize a possible ordered phase.

5.4 Conclusions and outlook

In this chapter, we have investigated the electronic structure and physical properties

of an AB-stacked paramagnetic kagome metal Ni3In. By taking into account some of

the key structural aspects, we identified a disappearance of the kagome-derived band

singularities and a concurrent emergence of a new type of anisotropic flat band. We

stabilized Ni3In in epitaxial thin film form with MBE and characterized its properties

significantly deviated from the FL expectations, suggestive of a QCP in the proximate

phase space. The field dependence of the NFL state implies that fluctuating local

moments, potentially originating from the flat band in the band structure, may be

account for the quantum fluctuations that give rise to Fermi surface breakdown. We

enriched this understanding by engineering the NFL behaviors via heterointerfacial

spin injection and alkali metal intercalation, through which the connections between

the NFL behaviors, the fluctuating local moments, and the flat band are examined.

Looking forward, we anticipate that epitaxial strain, electrostatic gating, quantum

confinement, and chemical doping can all be applied to thin films of Ni3In and its

related systems so that the nature of their quantum criticality can be elucidated.

Along this line, one of the theoretical advances that can be made is to decipher the

mechanism through which local moments can be born out of the anisotropic flat band.

Last but not least, as well as the physics of quantum criticality, the anisotropic flat

band discussed herein represents only one among numerous pathways of designing a

flat band. This study proposes that a concerted action of stacking sequence, lattice

distortion, and orbital degrees of freedom can generate different types of flat bands

starting from building block atoms and layers that originally do not support a flat

band in the energy spectrum.
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Chapter 6

Band engineering of

antiferromagnetic semimetal GdBi

In the previous chapters, we have investigated different types of topological and corre-

lated electronic states in the kagome lattice placed under various symmetry conditions

and electromagnetic environments. The purpose of this chapter is to provide a per-

spective on commingling topology and correlation in a non-kagome-derived platform

and compare it with the kagome-derived approaches taken in chapter 3 - 5. Here,

we present our works on synthesis and characterization of epitaxial thin film GdBi −
a member of rare-earth monopnictides (RX) in which topologically nontrivial Dirac

electrons interact with the internal magnetic order. Whereas the kagome metals ac-

complish the above by the characteristic lattice geometry of the constituent layers and

their stacking sequences, RX does so by the spatial coexistence of localized f -electrons

and spin-orbit coupled p-electrons, the former providing spin degrees of freedom and

the latter driving band inversion. We realize the films down to the two-dimensional

limit in a degradation-free manner and drive them across a metal-to-insulator transi-

tion via quantum confinement, while preserving the magnetic order and topological

character. Finally, we propose a possible higher Chern number state realizable in the

monolayer limit of this compound.
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Figure 6-1: Properties of LaBi and GdBi

Schematic crystal structures of (a) GdBi and (b) LaBi. The spin structure is also
depicted in (a). (c) Band structures of LaX (X = P, As, Sb, Bi). (d) (111)-projected
band structure of a LaBi slab, manifesting a topological Dirac surface state. (e)
Photoemission spectrum of bulk single crystal LaBi. (f) Band structure of GdBi in
the antiferromagnetic state. (c),(d) are adapted from [145]. (b),(e) are from [146].
(f) is adapted from [147].

6.1 Properties of (La:Gd)Bi

The rare-earth monopnictides (RX, R: rare-earth; X: pnictogen) are a class of

materials which host a rich variety of magnetic and electronic phases [147]. RX

crystallizes in a rocksalt structure with R and X each occupying one of the sublattices.

With spin-orbit coupled (SOC) p-electrons in X atoms and localized f -electrons in R

atoms coexisting in a single material, RX has been identified as a potential platform

to study the interplay of nontrivial band topology and electronic correlation.

GdBi is a member of RX (R = Gd; X = Bi) that stabilizes a type-II antiferro-

magnetic order below TN = 28 K, in which Gd spins polarize ferromagnetically within

156



each (111) plane with the easy-plane moment directions and arrange antiferromagnet-

ically along the [111] vector [148]; the spin structure is depicted in Fig. 6-1(a). LaBi

plays a crucial role in understanding the electrical properties of GdBi (Fig. 6-1(b)).

As La does not contain f electron, distinguished from other R = Ce - Lu, LaX (X =

P, As, Sb, Bi) typically serve as reference systems in extracting the effects of p-f in-

teractions in other RX. Given that the valance configuration of Gd is [Xe]5d16s24f 7,

seven 4f -orbitals added to La ([Xe]5d16s2), GdBi is expected to harbor an electronic

structure qualitatively similar to that of LaBi but with additional f -bands far below

the Fermi level (EF). These localized f -electrons give rise to magnetism, but cannot

contribute directly to electrical transport.

Density functional theory (DFT) band structures of LaX reveal semimetallic band

structures with conduction bands from X p-orbitals and valence bands from La d-

orbitals at EF (Fig. 6-1(c)) [145]. The conduction and valence bands intersect along

the Γ − X line and open up a SOC gap, through which a band inversion occurs.

As a consequence of nontrivial band topology in the bulk, the (111) surface of LaBi

is predicted to have a topological Dirac surface state as presented in Fig. 6-1(d).

Following these theoretical insights, photoemission experiments on bulk single crystal

LaBi have verified the existence of surface Dirac bands (Fig. 6-1(e)) [146, 149, 150].

As shown in Fig. 6-1(f), the band structure of GdBi in the antiferromagnetic state

manifests a nearly identical morphology to that of LaBi. While its topological char-

acter has not been reported, a similar band degeneracy is present along the Γ−X line

and a SOC gap of the same origin as in LaBi is anticipated (note that GdBi is listed

in a catalogue of topological materials recently compiled based on high-throughput

computations [151–153]). Sharing key aspects of the LaBi band structure, GdBi is

also expected to have Dirac surface states, which upon onset of the antiferromagnetic

order may interact with spin degrees of freedom.

A challenge in selectively probing these surface states (and further exploring their

couplings to magnetism) in GdBi is the presence of large bulk bands from negative

indirect band gap of ∼ -1 eV. However, theoretical calculations of RX systems in the

ultrathin limit suggest that quantum confinement has a potential to push away the
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Figure 6-2: Optimization of GdBi thin film synthesis

(a) Schematic atomic arrangements on the GdBi (111) plane (left) and the BaF2 (111)
plane (right). X-ray diffraction spectra of GdBi films synthesized (c) at different
deposition temperatures and (d) with different BEP ratios. (d) Schematic growth
phase diagram of GdBi thin films. An optimized film has high crystallinity (above the
blue boundary), connected in-plane morphology (below the red boundary), and 1:1
stoichiometry (along the black dashed line). The region that satisfies these conditions
is shaded yellow.

bulk bands from EF and energetically isolate the surface bands [154]. In the following

sections, we present our studies on synthesis, characterization, and thickness-tuning

of GdBi thin films conducted with a goal of realizing the bulk insulating state with

its topological and magnetic characters preserved.

6.2 Synthesis and characterization of GdBi epitaxial

thin films

6.2.1 Epitaxial thin film synthesis of GdBi

GdBi is deposited on the (111) surface of cubic BaF2 with lattice constant aBaF2 =

6.20 Å, well-matched with that of GdBi (aGdBi = 6.32 Å). The inter-atom distance of
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the Ba network on (111) planes of BaF2 is 8.9 Å, 2.2% smaller than that of the Bi (or

Gd) network on (111) planes of GdBi (9.1 Å). The identical in-plane crystallographic

symmetry and the reasonable match between the two relevant inter-atom distances

enable stabilization of GdBi (111) film on BaF2 (111) substrate (Fig. 6-2(a)).

Without any chemical or thermal treatment, we load as-received BaF2 substrates

(Crystal GmbH) to the molecular beam epitaxy (MBE) chamber and pre-anneal them

at 450 ◦C for 1.5 h. Then, the substrate temperature is changed to 765 ◦C for

deposition of a 200 nm thick epitaxial BaF2 (111) buffer layer in order to prepare flat

and step-terraced surface morphology. Following the buffer layer deposition, GdBi

(111) film is deposited at temperature Td = 400 ◦C. The beam-equivalent pressures

(BEPs) for Gd (PGd) and Bi (PBi) are calibrated before each growth with an in-situ

flux monitor. After the film deposition, the samples are capped with 40−100 nm

thick BaF2 to suppress degradation when taken out of the chamber.

The synthesis of high quality GdBi requires fine calibration of Td and PBi : PGd.

In the case of FeSn (chapter 3, 4) or Ni3In (chapter 5), where the sticking coefficients

of constituent elements are comparable to each other at a selected Td range, an

extremely precise BEP tuning is required to ensure the intended stoichiometry. The

case of GdBi is different in that it realizes an absorption-limited growth due to high

vapor pressure of Bi. As the sticking coefficient of Bi is orders of magnitude smaller

than that of Gd within the optimized Td range, synthesis under a Bi-rich environment

stabilizes GdBi relatively easily and any surplus Bi desorbs from the substrate. This

tendency also helps enlarge the growth phase space for connected films. In absorption-

limited growth, island segregation tends to occur at temperature much higher than

the melting point of Bi (TBi,melt = 271 ◦C).

Fig. 6-2(b) shows the X-ray diffraction (XRD) spectra of four samples grown with

different Td (PBi : PGd = 5 : 1 fixed). The wavelength of the incident X-ray beam was

λ = 0.154 nm and all traces show the BaF2 (222) XRD peaks at 2θ = 51.10◦. For 350
◦C ≤ Td ≤ 550 ◦C, pronounced film peaks are observed around the XRD peak position

of GdBi (222) (2θGdBi,(222) = 50.02◦). Films grown outside this Td range have either

low crystallinity (Td 	 350 ◦C) or disconnected film morphology (Td � 550 ◦C). Fig.
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Figure 6-3: Structural characterizations of GdBi films

(a) X-ray diffraction spectrum of an optimized GdBi film. Inset: optical micrograph
of a GdBi film (scale bar: 1 mm). (b) X-ray reflectivity oscillation (black) and the
best fit to the data (red). (c) Rutherford backscattering spectrum from an 8.9 MeV
O4+ beam experiment (red) and the best fit to the data (blue). (d) Schematic sample
structure (left) and atomic force microscopy images of the BaF2 capping layer (top
right) and the BaF2 buffer layer (bottom right).

6-2(c) shows the XRD spectra of three samples deposited at different PBi : PGd (Td

= 400 ◦C fixed). A pronounced film peak is observed for PBi : PGd = 5 : 1 and the

BEP ratios excessively deviated from this fail to stabilize GdBi. The resultant growth

phase diagram for GdBi is depicted in Fig. 6-2(d) with the optimized growth phase

space shaded in yellow.

6.2.2 Structural characterizations

Figure 6-3(a) shows the XRD spectrum of an optimized GdBi film synthesized with

Td = 400 ◦C and PBi : PGd = 5 : 1, where a pronounced XRD peak is identified

at 2θ = 49.90◦ (∼ 0.2% deviated from the bulk reference position). The thicknesses
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of the GdBi layer (tGdBi) and the BaF2 capping layer (tBaF2−cap) are calibrated by

fitting the X-ray reflectivity (XRR) oscillation to a model structure simulation (Fig.

6-3(b)) and tGdBi = 40 nm and tBaF2−cap = 42 nm are obtained. To further confirm

the sample structure, we perform a Rutherford backscattering (RBS) measurement

on a GdBi film with the calibrated thickness of 100 nm. Fig. 6-3(c) shows the

RBS spectrum from an 8.9 MeV O4+ ion beam experiment, manifesting pronounced

peaks from Gd and Bi as well as Ba continuum from the substrate contributions. By

fitting the spectrum to the simulated trace, we obtain tGdBi = 105 nm and 1.06 :

0.94 atomic ratio between Gd and Bi, both within the uncertainties of fit from the

calibrated thickness and stoichiometry. The atomic force microscopy images in Fig.

6-3(d) display flat surface morphologies of the BaF2 cap (top) and the BaF2 buffer

(bottom). The surface morphology of the GdBi layer is not directly visualized as it

rapidly degrades in air unless capped in-situ immediately after growth.

6.2.3 Magnetic characterizations

To probe signatures of a magnetic transition, we characterize a GdBi film with tGdBi

= 40 nm using a commercial superconducting quantum interference device (SQUID).

Figure 6-4(a) shows the temperature dependence of the magnetic moment m in the

GdBi film (red, blue) as well as the magnetic susceptibility χbulk in GdBi bulk single

crystal (green). At the reported TN = 28 K, the bulk measurement manifests a kink

in χbulk(T ). While for the film there is a relatively large background signal, there are

small but discernible features near T ∼ TN for both field orientations.

In order to detect the magnetic response of the films with higher resolution, we

perform torque magnetometry. The magnetic field dependent torque τ(H) is shown

in Fig. 6-4(b). At T = 100 K, we observe a quadratic response typical of a paramag-

netic susceptibility. This response is enhanced at T = 30 K, while a prominent dip at

intermediate H develops at the lowest T = 4 K. In Fig. 6-4(c) we plot the correspond-

ing torque magnetization Mτ ≡ τ/(μ0H) = Mplane - Mnorm, where Mplane and Mnorm

are the magnetization parallel and normal to the sample plane, respectively. Here,

the trend of an approximately linear Mτ at high T giving way to a strong nonlinear
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Figure 6-4: Magnetic characterizations of GdBi films

(a) Temperature dependence of the magnetic moment m in a GdBi film (tGdBi = 40
nm) (red and blue, left axis) and the magnetic susceptibility χbulk in GdBi bulk single
crystal (green, right axis), both measured from SQUID. Magnetic field dependent
(b) torque τ and (c) torque magnetization Mτ of a GdBi film (tGdBi = 40 nm) at
selected temperatures. (d),(e) Temperature dependent torque susceptibility χτ at
fixed magnetic fields for (d) a tGdBi = 40 nm sample and (e) a tGdBi = 9 nm sample.
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Figure 6-5: Origin of the magnetic torque response

(a) Schematic of the low temperature torque response in GdBi. Inset: schematic spin
orientations in different magnetic field regimes. (b) Schematic behaviors of Mplane

and Mnorm in different magnetic field regimes. Mplane - Mnorm in (b) determines the
sign and magnitude of τ in (a).

response at low T can be observed.

The onset of non-quadratic τ(H) (Fig. 6-4(b)) and nonlinear Mτ (H) (Fig. 6-4(c))

at low T can be naturally explained by the development of magnetic anisotropy in the

magnetic phase. In the absence of H, GdBi forms multiple antiferromagnetic domains

with the q-vectors along four equivalent [111] vectors in a cubic crystal (Fig. 6-5(a),

H ∼ 0). An application of small magnetic field, however, stabilizes a single domain

state with the q-vector along one of the [111] vectors parallel to the film normal

direction (Fig. 6-5, H < Hf). In this low field state, Gd spins are confined within

the film plane due to easy-plane anisotropy, but directed along three different high

symmetry directions. Such three-fold degeneracy suppresses Mplane and generates Mτ

< 0. Upon entering the high field regime, the Zeeman energy eventually dominates

and Gd spins flop towards the direction perpendicular to both in-plane and out-of-

plane components of H (Fig. 6-5, H > Hf). In this high field state, Mτ > 0 is

obtained due to inherent easy-plane anisotropy of GdBi.

As described above, the complex competition of domain energy, anisotropy energy,

and Zeeman energy generates a nonlinear and sign-changing Mτ (H) response in GdBi.

Such response can also be used to probe the Neel temperature of the film (TN,film). We
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Figure 6-6: Degradation-free sample preparation

Time dependent resistance of GdBi films (a) inside the glovebox without additional
coating and (b) outside the glovebox with a PMMA coating. (c) Schematic structure
of a sample covered with an ionic liquid and a coverslip (left) and an optical micro-
graph of a sample in that structure. (d) Time dependent resistance of a GdBi film
embedded in the structure in (c). It shows a relatively stable behavior in air.

plot the temperature dependent torque susceptibility χτ ≡ χplane - χnorm = Mτ/(μ0H)

in Fig. 6-4(d) for different H and identify TN,film ∼ 30 K. A similar TN,film is observed

from a film with tGdBi = 9 nm (Fig. 6-4(e)). The high resolution magnetometry

reveals the persistence of the original type-II antiferromagnetic order with nearly

identical transition temperature in our GdBi films.

6.3 Confinement-driven metal-insulator crossover

Having confirmed the structural and magnetic properties of our GdBi films, we now

explore their electrical transport properties. Critical to this, especially in the ultra-
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thin limit, is preventing films from degrading in air. In section 6.3.1, we describe the

experimental methodologies developed to preserve the film quality in ambient con-

ditions. In section 6.3.2, we utilize these techniques to observe the thickness-tuned

metallicity of the films.

6.3.1 Degradation-free transport sample preparation

Even in bulk form, RX are known to be highly air-sensitive. Within a few minutes

in air, surfaces of RX oxidize, which themselves act as protection layers for further

permeation of oxygen and moisture into the inner parts of the crystal. The volume

of the oxidation layer is generally negligible compared to that of the bulk.

In RX films, however, the entirety of the sample is much thinner than the typical

thickness of the oxidation layer. Even with a BaF2 cap, GdBi films degrade in air

within a time scale of seconds and their physical properties change dramatically. To

preserve sample properties, we transfer as-grown films directly from the MBE to an

Argon-filled glovebox without any air exposure (see section 2.1). As shown in Fig.

6-6(a), the resistance of a tGdBi = 9 nm sample inside the glovebox stays nearly

constant for a prolonged period of time. When taken out of the glovebox, however, it

immediately oxidizes and turns insulating. This can be slowed by coating the samples

with polymethyl methacrylate (PMMA), but the resistance still increases by ∼ 10-fold

within ∼ 20 min (Fig. 6-6(b)).

A number of non-aqueous or hydrophobic liquids have been tested in terms of

sample protection performance and a properly degassed ionic liquid has proven the

most effective. By adding a droplet of ionic liquid and covering it additionally with

a coverslip, we are able to slow down sufficiently the rise in sample resistance for >

10 min in air (Fig. 6-6(c),(d)). In the present sample configuration, the conduction

channel is defined by the region underneath the ionic liquid droplet; the area outside

the droplet immediately becomes insulating in air and do not contribute to electrical

transport. To remove any source of degradation, pressed indium contacts are used

instead of conductive epoxies.
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Figure 6-7: Thickness-tuned longitudinal resistivity in GdBi films

Temperature dependent electrical resistivity of GdBi films with (a) 40 nm, (b) 9
nm, (c) 6 nm, and (d) 5 nm thicknesses. Insets: second derivatives of (a)-(d). The
kink-like features are marked in (a)-(d).

6.3.2 Thickness-tuned electrical transport

Figure 6-7 shows the temperature dependent longitudinal resistivity ρxx(T ) of GdBi

films with different tGdBi. For the thickest film with tGdBi = 40 nm, ρxx(T ) reveals

a metallic response for all T with a kink near T= 30 K, the latter more clearly

observed in the second derivative d2ρxx/dT
2 (Fig. 6-7(a)). This matches the TN,film

= 30 K identified from the magnetic torque response, suggesting it is a signature

of the antiferromagnetic transition. We note that a qualitatively similar feature is

also observed in FeSn across its antiferromagnetic transition (see chapter 3). For all

measured thicknesses down to tGdBi = 5 nm, the kink is consistently observed around

T= 30 K, indicating the preservation of the identical antiferromagnetic order with

unchanged TN down to at least five crystallographic unit cells of GdBi. While the

magnetism stays nearly thickness-independent, the overall electrical response changes

from metallic to non-metallic with decreasing tGdBi; the low T slope dρxx/dT changes

from positive in tGdBi = 40 nm to negative in tGdBi = 5 nm. This crossover reflects a

possible band rearrangement taking place as the system is driven towards the ultrathin

limit with significant confinement effects. We note that a similar metal-to-insulator
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crossover has been observed as semimetallic Bi thin films are driven to a few nm

thickness limit [155, 156].

In order to examine the thickness dependence, we first investigate more thoroughly

the properties of a relatively thick film that does not harbor appreciable confinement

energy. The black traces in Fig. 6-8 display the magnetic field dependent longitudinal

(ρxx(H)) and Hall resistivity (ρyx(H)) of the tGdBi = 40 nm sample at T = 2 K.

ρxx(H) shows a non-saturating quadratic field dependence with approximately 10%

increase at μ0H = 9 T (disregarding the cusp-like feature near H = 0 from the

superconductivity of the Indium electrodes), whereas ρyx(H) shows a nonlinear and

sign-changing Hall slopes. We analyze these behaviors using the two-band model, in

which ρxx and ρyx are given by

ρxx =
σe
xx + σh

xx

(σe
xx + σh

xx)
2 +

(
σe
xy + σh

xy

)2 ,
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xy
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where nh (ne) and μh (μe) are the carrier density and electronic mobility of the hole

(electron) band, respectively. We set ne, μe, and μh as fit parameters and apply the

constraint e (neμe + nhμh) = σxx,0 to extract nh, where σxx,0 is the measured zero-field

longitudinal conductivity.

The best fit is acquired by minimizing the deviation between the experimental

traces and the calculated curves, which gives ne = 2.5×1020 cm−2, μe = 389 cm2 V−1

s−1, nh = 3.0×1020 cm−2, and μh = 349 cm2 V−1 s−1 (Fig 6-8, red). We note that these

parameters are close but not identical to the values extracted from bulk single crystal
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Figure 6-8: Multi-band analysis of magnetotransport

Magnetic field dependent (a) longitudinal and (b) Hall resistivity. Black and red
traces are the experimental data and the multi-band fittings, respectively.

GdBi [157]. A number of RX systems have shown non-saturating magnetoresistance

(MR) response similar to that seen here but with significantly larger amplitudes [157–

162]. Provided that non-saturating MR requires a nearly perfect compensation of ne

and nh, the suppressed ρxx(H) amplitude in our films may reflect the deviation from

the ne/nh ∼ 1 condition.

Starting from the typical semimetallic band structure in the tGdBi = 40 nm sample,

we now revisit the thickness dependent electrical transport properties. For this, we

measure ρyx(H) across a broad range of T and tGdBi. As shown in Fig. 6-9(a),

the tGdBi = 40 nm sample manifest a nonlinear, sign-changing ρyx(H) at low T and

linear, positive ρyx(H) at high T . The strong temperature dependence suggests a

competition of conductivity contributions between the electron and hole bands. With

decreasing tGdBi (Figs. 6-9(b)-(d)), a linear response emerges at low T suggestive of a

hole-like single-band transport. For tGdBi ≤ 6 nm, the temperature dependence also

becomes nearly quenched, consistently suggesting the disappearance of the competing

electron band contribution to the Hall response (Fig. 6-9(c),(d)).

This observed multi-to-single band crossover can be explained in light of the

confinement-driven band shift as depicted schematically in the upper insets of Fig. 6-

9(a)-(d). Upon reducing tGdBi, confinement energy quantizes the allowed momentum
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Figure 6-9: Thickness-tuned Hall effect in GdBi films

Hall effect of GdBi films with (a) 40 nm, (b) 9 nm, (c) 6 nm, and (d) 5 nm thicknesses
measured at selected temperatures. The traces are offset vertically for clarity. The
upper inset in each panel is a schematic of the bulk band arrangement.

values along the film normal direction and the band edges of the originally three-

dimensional electron/hole bands shift upward/downward. This band shift effectively

decreases the semimetallic band overlap at EF and the negative indirect band gap

gradually decreases in magnitude. Approaching tGdBi = 5 nm, the bottom edge of

the electron band is expected to shift above EF, leaving the hole band to solely dom-

inate the transport response. This framework is also consistent with the crossover

from metallic to mildly insulating behavior in ρxx(T ) shown in Fig. 6-7; there, the

hole band remains metallic but the upwards shifted electron band produces a parallel

thermally activated conduction generating an increasing resistivity contribution at

lower T . Within this interpretation, we anticipate that stabilizing films thinner than

5 nm will further enhance quantum confinement and eventually generate a positive

band gap across the entire Brillouin zone − a truly bulk insulating state.

In suppressing the bulk electrical conductivity, Anderson localization in the two-

dimensional limit will cooperate with the confinement-induced band shifts in dimin-

ishing the mobility of bulk carriers [163, 164]. To understand the relevance of lo-
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calization effects in the ultrathin limit, we probe the thickness dependence of MR

response. Figure 6-10(a) shows the T = 2 K MR responses for different tGdBi. As

tGdBi decreases from 40 nm to 6 nm, the non-saturating MR rapidly changes to sat-

urating MR with reduced amplitude, likely arising from (i) further deviation of the

band parameters from the perfect carrier compensation condition as a result of the

confinement-induced band rearrangements and (ii) the suppression of mobility. Unlike

in other samples, the MR for the tGdBi = 5 nm sample quickly increases in the low field

regime (|μ0H| < 3T ) until it saturates beyond a shoulder-like feature around 4 T (also

plotted in Fig. 6-10(b) in the unit of conductance quantum). This behavior cannot

be explained within the Drude model of magnetotransport and we therefore ascribe it

to the weak antilocalization (WAL) effect. According to the Hikami-Larkin-Nagaoka

(HLN) theory [165], correction of conductivity due to WAL is given by:
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assuming negligible spin-flip scattering and diffusive transport regime. HSO and Hφ

are the characteristic fields for spin-orbit scattering and phase coherence, respectively,

and ψ is the digamma function. The fit results of this formula are shown as black

dotted lines in Fig. 6-10(b) and the associated length scales for spin-orbit scattering

lSO = (h̄/4eμ0HSO)
1/2 and phase coherence length lφ = (h̄/4eμ0Hφ)

1/2 are plotted in

Fig. 6-10(c). lφ increases rapidly below TN = 28 K potentially stemming from the

suppressed scattering by magnetic fluctuations. As the effects of WAL is generally

enhanced in low dimensions, the observation of WAL only in our thinnest films evi-

dences that they are in fact approaching the two-dimensional limit. lSO, lφ > tGdBi =

5 nm also supports this interpretation.

Stabilization of thinner films will simultaneously intensify the confinement effects

and the localization effects, both contributing to the realization of a bulk insulat-
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Figure 6-10: Thickness-tuned magnetoresistance in GdBi films

(a) Magnetoresistance of GdBi films with different thicknesses (tGdBi). The measure-
ments are conducted at T = 2 K and the data for tGdBi = 40 nm are scaled by a factor
of 0.1. (b) Field-modulation of conductivity in the tGdBi = 5 nm sample at selected
temperatures. Low field region of the data is fitted to the Hikami-Larkin-Nagaoka
theory and the best fits to the data are shown as the black dotted lines. (c) Temper-
ature dependence of the spin-orbit scattering length (lSO) and the phase coherence
length (lφ) extracted from the fittings in (b).

ing state in GdBi. In such a limit, the transport is anticipated to be driven by the

topological Dirac surface states (or edge modes if the Dirac point gaps out in the

magnetic phase). This prediction, however, assumes that GdBi maintains a topologi-

cally nontrivial character all the way down to the ultrathin limit. Below, we examine

the validity of this assumption.

6.3.3 Discussion: metallicity and topology of monolayer GdBi

Here we provide theoretical perspectives on the metallicity and topology of bulk and

monolayer GdBi. Figure 6-11(a) shows the bulk band structure of antiferromagnetic

GdBi (111) in the hexagonal unit cell with SOC. It exhibits an indirect negative band

gap of about -1 eV between the Bi-derived valence band at the Γ-point and the Gd-

derived conduction band at the M -points. This band structure matches well with

the previous calculations on (La:Gd)Bi presented in section 6.1. From the orbital-

projection analysis, we confirm that the bands are inverted at the M -point, giving

rise to nontrivial topology.
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Figure 6-11: Band structures of bulk and monolayer GdBi

(a) Band structure of bulk GdBi (111) in the antiferromagnetic state with spin-orbit
coupling (SOC). (b) Schematic crystal structure of monolayer GdBi (111). d1 is the
distance between the Bi layer and the Gd layer and a1, a2 are the in-plane lattice
constants. (c) Schematic Brillouin zone of monolayer GdBi (111). Color of the circle
denotes the change in the Chern number ΔC across the topological phase transition,
contributed by each Dirac point: −1 for red and +1 for blue. (d) Band structure of
monolayer GdBi (111). Orbital projections in (b),(d) are color-coded red (Bi p) and
blue (Gd d). (e) Edge states of monolayer GdBi (111) along the Zigzag direction,
exhibiting a pair of edge modes around the Γ point. The calculations for (a),(d),(e)
are performed by M. Hu and J. Liu in [76].
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Figure 6-12: Topological phase diagram of monolayer GdBi (111)

(a) Topological phases in monolayer GdBi (111) at different values of the inter-layer
distance d1 and the SOC strength λ. The color represents the direct gap size and
the negative value indicates inverted band ordering. The inset shows the fitting
results of the k · p Hamiltonian (solid line) to the first-principles calculations (empty
circle) around the critical point d1 = 0.134 nm. (b) Strain induced topological phase
transition in monolayer GdBi (111). The top and bottom panels respectively show
the band evolution and energy gap as a function of d1. In the bottom panel, the red
line represents the direct gap at the Γ point and the negative value means the Chern
state with C = 2. The blue line represents the fundamental gap in the whole Brillouin
Zone and the negative value denotes a semimetallic band overlap. The calculations
here are performed by M. Hu and J. Liu in [76].

We then consider a monolayer GdBi (111), consisting of a pair of single atomic

layers of Gd and Bi, separated by the lattice spacing d1 from each other (Fig. 6-11(b));

this corresponds to the half of the magnetic unit cell in GdBi. The band structure of

monolayer GdBi (111) is calculated using d1 = 0.182 nm (the bulk value) and assuming

ferromagnetic spin texture (Fig. 6-11(d)). From the overall band morphology, we

observe that the size of the negative indirect gap is nearly lifted, while a positive

direct gap can be identified at every momentum. The orbital-projection analysis

reveals a band inversion between the Gd dz2-orbital and the Bi px-orbital at the Γ

point, implying a nontrivial band topology persisting down to the monolayer limit

(Fig. 6-11(d)). Intriguingly, from the edge-projected band structure in Fig. 6-11(e),
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we find within the inverted gap two copies of topological edge modes, suggesting a

non-ordinary C = 2 state.

To understand this high Chern number state better, we track the topological

character of the system while varying d1 and SOC. As shown in Fig. 6-12(a), the

phase diagram contains only two distinct phases with C = 0 and C = 2, with no

intermediate C = 1 phase. This indicates that the gap in fact realizes a high Chern

number state rather than consisting of two overlapping C = 1 gaps. Furthermore, at

the phase boundary between the two is realized a quadratic band touching, a typical

signature of a higher order topological phase transition (Fig. 6-12(a), inset). The

top panel in Fig. 6-12,(b) shows the evolution of the energy gap Δ at the Γ point

as a function of d1. A trivial Δ monotonically decreases to 0 as d1 increases up

to d1 = 0.134 nm and a nontrivial Δ opens beyond that. The nontrivial topology

is indicated as a negative-valued gap (Δ < 0) in the red trace in Fig. 6-12(b).

Across this topological phase transition, the fundamental gap is consistently positive

(Fig. 6-12(b), blue). At d1 > 0.176 nm, however, the system recovers a semimetallic

behavior, in which a negative indirect gap is restored in other parts of the Brillouin

zone. While the C = 2 gap is expected at the Γ-point in real monolayer GdBi (d1 =

0.182 nm), parallel bulk conduction may obscure its direct detection. Based on these

results, we propose that driving the system towards 0.134 nm ≤ d1 ≤ 0.176 nm via

e.g. epitaxial strain may realize a perfectly bulk insulating state with two chiral edge

modes circulating around the sample.

6.3.4 Discussion: symmetry analysis on the C = 2 state

We track the symmetry-origin of the C = 2 gap in monolayer GdBi (111) by con-

sidering the low energy band structure near the Γ-point. Monolayer GdBi (111) has

three-fold rotation symmetry C3. Given a ferromagnetic spin texture, both time-

reversal symmetry (T ) and mirror symmetry with the mirror plane perpendicular to

y-direction (My) are broken, whereas the combined TMy is preserved. We therefore

construct a generic k · p Hamiltonian that obeys the little group containing C3 and

174



TMy symmetries:

H (kx, ky) = m1σz +m2(k
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)
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where σ is the pseudo-spin representing the conduction and valence bands, m1 and

m2 are mass parameters, kx and ky are the crystal momenta, and v1, v2, and v3 are

velocity parameters. We set v3 = 0 here as it gives the same energy shift for both

conduction and valence bands and does not affect the topological properties.

We first consider the simplest case with m2 = v2 = 0, where the k · p Hamiltonian

reduces to the typical massive Dirac Hamiltonian. For m1 �= 0, a gap opens at the

Γ-point (red circle in Fig. 6-11(c), left) with ΔC = -1 expected between m1 > 0 and

m1 < 0 (i.e. band inversion). We then turn to the case of small v2 �= 0 and m2 =

0, in which Dirac cones appear at four different points in the Brillouin zone: one at

the Γ-point (red circle in Fig. 6-11(c), right) and the other three at equivalent points

along the Γ −M lines (blue circles in Fig. 6-11(c), right). As m1 flips sign, the net

change in the Chern number is ΔC = 2, ΔC = -1 from the Dirac point at the Γ and

the ΔC = 3 from the other three. As v2 increases (with m2 = 0 fixed), the three

Dirac points along the Γ−M lines converge to the zone center and eventually merge

with the one at the Γ-point in the v2 � v1 limit to create a quadratic band touching.

Despite changes in the band morphology, ΔC = 2 is maintained across a wide range

of v2. We find that inclusion of non-zero m2 can generate via more complex band

distortions intermediate phases with ΔC = -1 or 3. Their phases space areas (δ),

however, is approximately δ = |m2| (v1v2 )2, indicating practical absence of such phases

in the regime of small m2 and small (v1
v2
).

Fitting all k·p parameters to the actual low energy band structure near the Γ-point

calculated with the critical value d = 1.34 (Fig. 6-12(a), inset), we find v1 = -0.3, v2

= 37.2, v3 = -7.1, and |m2| < 0.1. This parameter set situates real monolayer GdBi

in the regime with negligibly δ = |m2|(v1v2 )2 ∼ 10−5 and no intermediate Chern state

is expected between the C = 0 state and the C = 2 state. The successful explanation
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of the first-principles calculation with a generic k · p model conveys a message that

the identified C = 2 state is a general feature of a Hamiltonian that shares the

same symmetry properties with monolayer GdBi. This realization proposes that

material tunings of the SOC strength and the lattice parameters may help navigate

the discussed phase space and realize different types of high Chern number states.

6.4 Conclusions and outlook

In this chapter, we have investigated the structural, magnetic, and electrical proper-

ties of antiferromagnetic topological semimetal GdBi stabilized in epitaxial thin film

form. We discovered that bringing GdBi to the ultrathin limit does not suppress the

original magnetic order but drives the system towards a bulk insulating regime as a

result of confinement-driven band shifts. In conjunction with first principles calcu-

lations, we also predicted that monolayer GdBi potentially harbors an inverted gap

that supports the C = 2 state. Stabilization of mono-to-few layer thick GdBi films

and subsequent engineering via epitaxial strain or electrostatic gating will help realize

the bulk insulating high Chern number state in a real material. In addition, the ex-

perimental methodologies developed herein can be used to stabilize thin films of other

RX with more complex magnetic properties, allowing exploration of a wide variety

of symmetry broken phases interacting with topologically nontrivial band structures

[147, 166–168].

As a final remark, we compare these results to the kagome-originated approaches

taken in the previous chapters. The idea of opening a topological gap at the lattice-

derived Dirac points in kagome metals (e.g. FeSn) is conceptually analogous to the

original proposals on the honeycomb lattice. A Dirac point, being at the pinchpoint

of any type of gap opening, provides a natural starting point for this. By comparison,

in Bi-based compounds like GdBi, the nontrivial topology is attained by the SOC-

driven band inversion. The process of band inversion, though not lattice-driven as

in the kagome lattice, can also be viewed as a closing of a trivial gap and a reopen-

ing of a nontrivial gap passing through an intermediate “Dirac-like” band touching
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point. These two complementary but conceptually similar approaches constitute im-

portant design principles for topological materials: (i) realizing the kagome lattice

with sufficiently heavy atoms, with relaxed requirements for their SOC strength or

(ii) realizing an arbitrary lattice with extremely heavy mass atoms, not limited to its

lattice structure.
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Chapter 7

Concluding remarks

In this thesis, we have explored emergent quantum phenomena arising from the char-

acteristic electronic structure of the kagome lattice realized embedded in a class of

intermetallic compounds called the kagome metals. Their crystal structures were

constructed by layer-by-layer stacking of the two-dimensional kagome/honeycomb

networks of transition metal elements. Different choices of the constituent elements

and the layer stacking sequences gave rise to a varierty of electronic structures with

the key band features of the original lattice model preserved or collapsed. Among

different candidate materials, we have stabilized two representative kagome metals,

FeSn and Ni3In, in epitaxial thin film forms using molecular beam epitaxy and, by

engineering their material parameters with various experimental tuning knobs, un-

covered the connections between the salient band features therein to the observed

topological and correlated physical properties.

FeSn is an antiferromagnetic kagome metal with the kagome-derived Dirac and

flat bands manifested in its quasi-two-dimensional electronic structure. With the

systematic chemical doping across a large energy range, we have driven FeSn thin

films towards heavily electron- and hole-doped regimes where the lattice-driven band

singularities can be brought to the Fermi level (EF). Taking advantage of the complete

tunability over the chemical potential and spin structure, we were able to control fully

on-demand either massless or massive Dirac electrons to govern the transport response

of the system − an important step towards designing high temperature Dirac states,
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the quantum spin Hall state, and the quantum anomalous Hall state all derived from

a single parent compound with appropriate stoichiometric modifications. As well as

the Dirac physics, we also elucidated the flat band driven nature of magnetism in

this compound, which in a broader context formulates a design principle that fine

engineering of the intra-kagome flat band instability and the inter-kagome exchange

coupling can generate a rich variety of emergent phases.

The heterointerface of FeSn film and SrTiO3 substrate was identified as a unique

platform to study the fate of the kagome band structure upon broken inversion sym-

metry. From planar tunneling spectroscopy across a Schottky heterointerface of FeSn

and Nb-doped SrTiO3, we have observed a local band structure reconstruction at the

interfacial kagome layer formed immediately above the top-most layer of the substrate.

One of its most conspicuous consequences was the generation of a two-dimensional

surface/interface flat band not expected in the bulk of FeSn. With further analyses,

we have discovered the Dirac origin of this flat band though manifested in a dramat-

ically deformed morphology. This conveys a crucial message that a surface-driven

anomalous band flattening effects on Dirac bands may offer an alternative pathway

to realize a topological flat band; one can either make a flat band to become topolog-

ical or make a topological band to become flatter.

As a counterpart for FeSn, Ni3In provides a model case in which the kagome layers

actively hybridize which each other and produce a three-dimensional band structure

with the lattice-driven Dirac and flat bands hardly visible. Accompanied with this

electronic dimensional crossover was an emergence of an anisotropic flat band inherent

to the characteristic stacking sequence of this compound. We synthesized epitaxial

thin films of Ni3In and identified with various experimental probes the non-Fermi-

liquid (NFL) behaviors potentially originating from the intrinsic spin fluctuations in

the system. By spin injection experiments and alkali metal intercalation experiments,

we also engineered the key energy scales of the NFL state in Ni3In, through which

the connections between the anisotropic flat band, the fluctuating local moments, and

the Fermi surface breakdown were reinforced.

In chapter 6, we introduced briefly a non-kagome-originated approach in com-
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mingling topology and correlation. We synthesized epitaxial thin films of GdBi, an

antiferromagnetic topological semi-metal, and manipulated the metallicity of the bulk

via quantum confinement while their magnetic and topological characters remained

unperturbed. We compared the band-inversion-based approach in designing topolog-

ical materials to the kagome-based approaches discussed in chapter 3 - 5.

This thesis research inspires a number of future research prospects. We summarize

below some of the major directions:

• (i) Stabilization of ultrathin kagome films

One of the long standing goals in the field is to stabilize a mono-layer kagome

material, the most faithful realization of the original lattice model. While we

have focused primarily on > 10 nm thick films in this thesis, dramatic changes

in the physical properties are anticipated in the mono-to-few layer thickness

regimes of these compounds.

� Mono-layer regime (i.e. ≤ 0.5 nm): Being free of any inter-layer coupling, the

flat band in a mono-layer kagome film is expected to restore its zero-bandwidth

state predicted in the original lattice model. The flat band in bulk FeSn have

shown a tendency to induce ferromagnetism within the kagome plane (see chap-

ter 3) − the situation predicted from the Hubbard model on a partially flat band

with non-singular density of states peak [37–40]. The realization of a perfect flat

band, however, would further enhance the correlation strength and potentially

lead to the observations of other predicted phases, including the spin liquid

phase and the fractional quantum Hall phase [32–36]. In addition, the regime

of (surface-to-bulk ratio) = 1 is where the two-dimensional surface/interface flat

band in FeSn (see chapter 4) can govern the global transport and thermody-

namic properties. A variety of bulk-sensitive probes, originally inapplicable for

detecting the surface flat band in thick films, can be used to track the changes

in physical properties of the films as the flat band position and morphology are

manipulated via e.g. substrate engineering or adlayer deposition.

� Few-layer regime (i.e. ≤ 2 - 5 nm): The films in the few-layer regime will

represent the evolution of physical properties from the monolayer to the bulk.
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In FeSn films with n kagome layers (n = 2, 3, 4, ...), for example, their inherent

antiferromagnetic inter-layer coupling will quench the net magnetization when

n = 2, 4, 6, ... ∈ (even numbers) whereas it cannot do so when n = 3, 5, 7,

... ∈ (odd number), which in the latter case would let the system behave like

a weak ferromagnet macroscopically. Such alternation of symmetry conditions

for even vs. odd layer numbers would help stabilize distinct topological phases

realized under higher/lower symmetry conditions. Similar observations have

been made in the few layer limit of magnetic topological insulator MnBixTey

(x:y = 2:4, 4:7, 6:10), in which either the Chern insulator phase or the Axion in-

sulator phase was observed at zero-field depending on the even-ness or odd-ness

of the layer number [169–171]. Unlike in quasi-two-dimensional kagome metals,

electronic structures of three-dimensional kagome metals are expected to mod-

ify significantly in the few-layer thickness regime. In Ni3In films, for example,

the anisotropic flat band with strong kz dispersion will quantize into multiple

subbands. In the limit the confinement energy is larger than the in-plane band-

width, the anisotropic flat band will evolve into a nearly isotropic flat band with

suppressed dispersions along all three directions. It is of significant interest to

study the evolution of the NFL behaviors as the electronic dimensionality of

the anisotropic flat band is altered.

� Synthesis strategies: Utilizing the conventional growth mode of MBE, we have

attained high quality films with a minimum thickness of ∼ 5nm in this thesis

(films thinner than this showed lower quality). We anticipate that further reduc-

tion of film thickness down to the mono-to-few layer regime may be facilitated

by more advanced growth optimizations, surfactant-mediated growth [172], van

der Waals epitaxy [173], or confinement heteroepitaxy [174].

• (ii) Incorporation of optimally tuned kagome metal films to spintronic devices

Recent studies have shown exceptionally high spin-orbit torque generation ef-

ficiencies of spin-orbit coupled Dirac electrons and flat band electrons [175–

179]. In chapter 3, we have demonstrated a capability to tune EF of a kagome
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metal film to any desired energy in the kagome band structure via ultra-precise

chemical doping. Some of the optimally tuned films, when incorporated into de-

vice geometry, would help evaluate spintronic performances of the lattice-driven

band singularities.

• (iii) Stabilization of artificial kagome heterostructures

Artificial kagome heterostructures with highly metastable stacking sequences

(those not found in bulk materials) may help realize more exotic variants of

the kagome band structure − similarly as the FeSn/Nb:STO interfacial layer

produces the flat band nonexistent in bulk of FeSn. This approach has given

rise to developments of electronic/magnetic phase spaces in complex oxide su-

perlattices [180] and Kondo superlattices [181].

• (iv) Proximity effects

Films can also be interfaced (either epitaxially or non-epitaxially) with hetero-

geneous materials and be proximitized various electronic correlations from the

neighboring layers. For example, the Dirac electrons in kagome metal films,

if proximitized a superconducting pairing interaction, may stabilize unconven-

tional order parameters predicted in section 1.3.3 [41–43].

To conclude, the material designs and thin film engineerings of kagome metals

provide crucial insights and useful methodologies for exploring the interplay of topol-

ogy and correlation in lattice-model-based platforms. We anticipate that the scientific

findings and interpretations presented herein would make an important step towards

realizing thus-far-unexplored topological and correlated electronic states as well as

incorporating some of the candidate compounds into functional electronic/spintronic

devices operating at high temperatures.

183



184



Appendix A

Magnetic transitions in doped FeSn

films

In section 3.3.4, we have discussed the doping dependence of Neel temperatures (TN)

in (Fe1−x−yMnxNiy)Sn films. TN at each doping concentration was extracted from

kinks/inflections in the temperature dependent electrical resistivity (see Fig. 3-22).

Here, we present additional experimental signatures of the magnetic phase transitions

in doped FeSn films.

A.1 Seebeck coefficients in (Fe1−yNiy)Sn films

We perform the Seebeck coefficient (Sxx ≡ ΔVxx/ΔT ) measurements on (Fe1−yNiy)Sn

films. Fig. A-1(a) shows the thermal conductivity κ ≡ (Q d)/(A ΔT ) measured

from a FeSn/SrTiO3 sample, where Q is heat load, d is sample length, A is sample

cross-section. The measured κ is determined by the intrinsic thermal conductivity

of SrTiO3 substrate and a similar behavior has been observed in bulk single crystal

SrTiO3 [182]. Given a ΔT determined by the SrTiO3 substrate, Sxx is generated

solely by the FeSn film. Fig. A-1(b) and (c) display the temperature dependent Sxx

of an undoped FeSn film and a (Fe0.75Ni0.25)Sn film, respectively. For both films,

Sxx is negative and decreases in magnitude as T decreases. This is consistent with

T -linear suppression of Sxx predicted from the Mott formalism of thermoelectricity
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5 mm

Figure A-1: Temperature dependent Seebeck coefficient in (Fe1−yNiy)Sn

(a) Thermal conductivity κ measured from a FeSn/SrTiO3 sample (inset: optical
micrograph of the measurement setup). Temperature dependent Seebeck coefficients
of (b) an undoped FeSn film and (c) a (Fe0.75Ni0.25)Sn film measured at μ0H = 0 T.
The arrows in (b),(c) mark the magnetic transition temperatures.

[135]. In addition to the overall temperature dependence, kink-like anomalies are

observed at high temperature. For the FeSn film, the kink occurs at T ∼ 360 K,

nearly identical to the intrinsic TN of FeSn (Fig. A-1(b)). For the (Fe0.75Ni0.25)Sn

film, the kink with qualitatively similar form as in Fig. A-1(b) is observed at T ∼
290 K (Fig. A-1(c)). This is proximate to the temperature at which an anomaly was

observed in the electrical resistivity of (Fe0.75Ni0.25)Sn (T ∼ 288 K; see Fig. 3-22).

We therefore identify this as the magnetic transition temperature of (Fe0.75Ni0.25)Sn,

suppressed from that of undoped FeSn. The TN values extracted from the Seebeck

coefficient measurements are reflected in Fig. 3-21.

A.2 Canting-induced hysteresis onset temperatures

in (Fe1−yNiy)Sn films

Magnetic phase transitions in heavily doped films are accompanied by the onset of

field hysteresis, potentially arising from spin-canting effects in the disordered regime

of an antiferromagnet [90]. Fig. A-2 shows the temperature dependent coercive fields

(Hcoer) in (Fe1−yNiy)Sn films. Hcoer is defined as the field at which the hysteresis loop
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Figure A-2: Canting-induced coercive fields in (Fe1−yNiy)Sn

Coercive field (Hcoer) in (Fe1−yNiy)Sn films (0.15 ≤ y ≤ 0.45) at different tempera-
tures. The arrows mark the approximate hysteresis onset temperatures.

crosses zero (different definitions of Hcoer give qualitatively similar traces). When the

magnetic phase sets in, Hcoer also acquires a non-zero value. The hysteresis onset

temperature for each doping concentration matches TN extracted from the electrical

resistivity (Fig. 3-22) and the Seebeck coefficient (Fig. A-1). The TN values inferred

from Fig. A-2 are reflected in the Fig. 3-21.

While the hysteresis persists down to the lowest T , Hcoer exhibited a nonmonotonic

temperature dependence. Hcoer rapidly increases below TN until it gives way to a

sudden decrease, forming a broad peak-like feature. As T decreases further, Hcoer

begins to increase again approaching T → 0. Such behavior is observed across the

entire range of y, though the peak-like features become less prominent hump-like

features at higher y. This nonmonotonic behavior is reminiscent of a cascade of spin

reorientation transitions within the antiferromagnetic phase of Co-doped FeSn bulk

single crystals [87]. There, the magnetic easy axis rotated from axial (along the

c-axis) in the high temperature regime to planar (within the ab-plane) in the low

temperature regime. Though its exact origin has not been clearly identified, a similar

change in magnetic anisotropy may potentially account for the observed temperature

dependence of Hcoer in (Fe1−yNiy)Sn films.
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