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Abstract: X-ray tomography is a non-destructive imaging technique that reveals the interior of
an object from its projections at different angles. Under sparse-view and low-photon sampling,
regularization priors are required to retrieve a high-fidelity reconstruction. Recently, deep
learning has been used in X-ray tomography. The prior learned from training data replaces the
general-purpose priors in iterative algorithms, achieving high-quality reconstructions with a
neural network. Previous studies typically assume the noise statistics of test data are acquired a
priori from training data, leaving the network susceptible to a change in the noise characteristics
under practical imaging conditions. In this work, we propose a noise-resilient deep-reconstruction
algorithm and apply it to integrated circuit tomography. By training the network with regularized
reconstructions from a conventional algorithm, the learned prior shows strong noise resilience
without the need for additional training with noisy examples, and allows us to obtain acceptable
reconstructions with fewer photons in test data. The advantages of our framework may further
enable low-photon tomographic imaging where long acquisition times limit the ability to acquire
a large training set.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

X-ray tomography is a non-destructive imaging technique that visualizes the interior features
of solid objects, with applications in biomedical imaging [1–3], materials science [4–6],
manufacturing inspection [7,8], and other disciplines. The core idea is to measure the X-ray
flux projected through the object at many angles, and then use a reconstruction algorithm to
determine its attenuation coefficients throughout the volume. A high-quality reconstruction
can be generated by densely-sampled, full-angle, and noise-free measurements that cover the
entire Fourier space [9]. However, in practice, acquiring such measurements can be a challenge
in situations where an object is not amenable to full angular inspection, such as with laminar
structures, when the object is radiation sensitive, or when the acquisition is time sensitive. For
measurements that are limited-angle, sparse, and noisy, the resulting inverse problem becomes
ill-conditioned due to the deficits in the Fourier-space information [10–12]. Under such sampling
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conditions, direct and filtered back-projection algorithms fail to produce satisfactory results. To
retrieve a high-fidelity reconstruction, therefore, it is essential to utilize regularization [13], here
provided by prior distributions.

Conventionally, the regularization prior is a general-purpose penalty function included in
an iterative optimization algorithm. The algorithm starts from an initial reconstruction, and
then progresses by iteratively updating the reconstruction to maximize its likelihood given the
noisy tomographic measurements. This likelihood function is based on X-ray propagation,
and is also called the data-fidelity term in the computed tomography (CT) community. The
maximum likelihood estimate (MLE) assumes a prior by using a particular penalty function
to the data-fidelity term, often to be a mean square error under a Gaussian noise prior on the
measurements. In addition, the optimization may include another prior term that penalizes the
lack of regularity on the reconstruction, leading to a maximum a posteriori (MAP) estimate. One
of the most successful priors for tomography is sparsity, which assumes the reconstruction has a
sparse representation after certain transformation [14–16]. Total Variation (TV), in particular,
penalizes the discrete gradient of the reconstruction to minimize spatial variability [17,18].

Alternatively, the regularization priors can also be learned, e.g., through unsupervised machine
learning such as sparse coding [19,20], or supervised machine learning methods [21–23] on
well-labeled data. Given a paired dataset, a supervised machine learning algorithm can be trained
to create an inverse map that directly generates object reconstructions from the tomographic
measurements. Deep learning, a subset of machine learning based on artificial neural networks,
has been particularly successful in approximating the inverse map. During training, high-order
spatial correlations in the objects, as well as the noise statistics of the measurements, are
implicitly learned. Test data, i.e., data which are disjoint from training data, are used to evaluate
the generalization performance of the learned priors [24,25]. A recent trend in research is
to also compute an estimate of the object by a conventional algorithm to prepare the training
data, empirically achieving higher reconstruction quality by separating the forward model of
tomography from training [26–28]. Among these approaches, filtered back-projection (FBP)
with a convolutional neural network based on UNet is favored due to its computational efficiency.
Once trained, networks with learned priors are able to greatly improve the FBP reconstruction
without requiring additional iterations or regularization [29].

One major assumption in previous studies of the learned prior is that the noise statistics in
the measurements are comparable between training and test datasets [28,30,31]. Assuming
measurements are corrupted by Poisson noise, the reconstruction quality from using the learned
prior is often evaluated by test data with the same number of photons per ray as the training
data. However, in practical tomography systems, training and test data might have different
photon counts per ray due to the variability in the light source and detector. For a test dataset
with a different noise level than training data, generally referred to as out-of-distribution (OOD)
data, the generalization of the learned prior is not guaranteed [32,33], leading to degradation
in reconstruction fidelity [34–37]. The ability to maintain reconstruction quality against noise
statistics variations in test data is called the “noise resilience” of the learned prior.

In this paper, we propose a noise-resilient deep-reconstruction algorithm for X-ray tomography
and apply it to simulated and model integrated circuits. Our approach improves the noise
resilience of the learned prior by using noise-resilient MAP reconstructions as the input to the
neural network. Unlike previous efforts, we focus on the generalization of the deep learning
algorithms to test data with different noise levels than the training data, which is critical in
practical applications. By incorporating a Gaussian noise prior and a sparsity-promoting prior to
the MAP reconstruction, our method reduces the distribution shifts between input reconstructions
obtained from measurements with different noise levels. This leads to noise resilience in the
learned prior without the need to sample the noise statistics using additional measurements,
which is particularly useful in applications where acquiring training datasets at different noise
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levels is challenging, such as in circuit imaging. Both simulation and experimental results show
that a Total Variation regularizer on the maximum a posteriori estimate, instead of a more
standard maximum likelihood or filtered back-projection approach, improves the noise resilience
of the learned prior. Without training samples from different photon statistics, our MAP+UNet
approach can produce acceptable reconstruction down to 80 photons per ray in simulations, and
214 photons per ray in experiments, allowing us to obtain comparable fidelity reconstructions
with 8× fewer photons in simulation and 2.5× fewer photons in experiments than using the
FBP+UNet approach for imaging integrated circuits.

The rest of the paper is organized as follows: First, we introduce the background of imaging
integrated circuits, the forward model for tomography, and three reconstruction algorithms in
Section 2. Next, we explain our noise-resilient approach based on neural networks in Section
3. Details of our evaluation methods are in Section 4. Simulation and experimental results are
in Sections 5.1 and 5.2, respectively. Limitations and future works are discussed in Section 6.
Concluding remarks are in Section 7. All acronyms for the algorithms investigated in this paper
are defined in Table 1.

Table 1. Acronyms for the reconstruction algorithms.

Abbreviation Definition

FBP filtered back projection

MLE maximum likelihood estimate

MAP/TV maximum a posteriori estimate with Total Variation

FBP+UNet improved FBP, MLE, or MAP/TV reconstruction

MLE+UNet using the learned prior from UNet, shown in Fig. 2

MAP+UNet

2. Background

2.1. Imaging integrated circuits

Integrated circuits are fundamental to the operation of all industrialized countries. In the
United States, imaging these structures has been identified as a national goal to ensure the
high-quality manufacturing of integrated circuits used in advanced computing and communication
technologies [38]. Over the past two decades, advances have been made from initial tomographic
reconstructions of integrated circuit test structures [39] to ptychographic imaging for larger circuit
areas [40]. Despite this progress, photon-limited measurements will continue to be a challenge
in imaging large circuits. For example, recently a laboratory-based experiment performed a
reconstruction of a hundred square micrometers of integrated circuit interconnect using fewer
than 100 photons per voxel [41]. Further reduction in the photon requirements will allow for
the measurement of larger areas of interconnect irrespective of hardware limitations. Such
considerations motivate this work.

2.2. Forward model for X-ray tomography

An X-ray tomography system commonly consists of a cone-beam source, a high-precision rotation
stage, and a detector. The conceptual diagram is in Fig. 1. The measurements are projections
of the attenuation coefficients of the object at different angles, i.e., integrals over rays from the
source through the object to the detector pixels at each angle, and over different photon energies
of each set of rays. For monochromatic illumination with reconstruction to a single material, the
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forward model can be simplified and discretized to

g = H(f ) = N0e−αAf , (1)

where g is the set of noise-free measurements in terms of photon counts, H is the forward operator,
N0 is the photon count per ray from the source, α is the attenuation coefficient of a reference
material with units of inverse length, and A is the system matrix with a unit of length, and f is
the fractional density at a point in the object compared to the reference material. Here, α is a
real scalar, Af is a matrix-vector product, and the exponential is applied to each component of
the resulting vector. Therefore, the dimension of f is the number of voxels in the sample, the
dimension of g is the number of X-ray paths through the sample—for all projections—that yield
measurements, and an element of A specifies the length of a particular X-ray path through a
particular voxel. In practice, measurements are subject to noise from various sources. Assuming
Poisson statistics in the detection system, the forward model is modified as

g∗ ∼ P(g), (2)

where g∗ is the noisy measurements vector, and P is a vector of Poisson distributions whose
parameters are elements of the vector g. The operator ∼ means “is drawn from the distribution,”
following a convention from statistics. We implemented the forward model in PyTorch with
parallel computation on a graphics processing unit [42].

Fig. 1. Conceptual diagram for the X-ray imaging system, shown in object-fixed coordinates,
as is typical in medical tomography. The source and detector simultaneously rotate around
the object along the y axis. X-rays, represented by red arrows, travel towards the pixelated
detector shown as a dark grey rectangle. The X-rays, source, and detector are depicted
in light grey to represent their position before and after the current rotation angle. In our
experiment, however, the sample rotates with the source and detector in fixed positions.

2.3. Reconstruction algorithms

2.3.1. Filtered back-projection

The filtered back-projection (FBP) algorithm directly generates the inverse solution f̂ by

f̂ = H−1 [︁F(g∗)]︁ . (3)

Here, H−1 is the back-projection operator and F is a filter to smooth the noisy measurements g∗,
often chosen as a ramp at low frequencies and a tunable decay shape at higher frequencies up to
the passband [43]. The FBP method is computationally efficient and effective for full-angle and
densely sampled data [44]. However, reconstruction artifacts might appear for measurements
that are limited in their total angular range, or sparsely sampled and noisy [45,46].
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2.3.2. Maximum likelihood and maximum a posteriori estimates

A maximum likelihood estimate (MLE) is the reconstruction obtained by iteratively maximizing
an objective function based on a likelihood incorporating the projective geometry and a prior
on the noise statistics of the measurements. We find an optimal estimate f̂ using the objective
function

f̂ = arg max
f (0)

[︂
p(g∗ |f (0))

]︂
, (4)

where p(g∗ |f (0)) is the likelihood of a proposed reconstruction f (0) given the noisy measurements
g∗, representing the data-fidelity term. The estimate of the likelihood includes a prior by using
a particular penalty function, often taken to be a mean square error which assumes additive
Gaussian noise in the measurements.

When the iterative optimization includes an additional term that penalizes lack of regularity or
mismatch to a prior distribution on the reconstruction, the objective function becomes [47,48]

f̂ = arg max
f (0)

[︂
p(g∗ |f (0)) + βΨ(f (0))

]︂
, (5)

where Ψ is the regularization prior on the proposed reconstruction, and β is the regularization
parameter. The final reconstruction given the prior distribution on the reconstruction is the
maximum a posteriori (MAP) estimate. The key to a high-quality iterative reconstruction is a
proper choice of Ψ and β for a given set of objects [49–51]. One of the most successful priors
for tomography is sparsity, which assumes the reconstruction has a sparse representation after
certain transformation [14–16]. For a sparsity-promoting prior such as Total Variation (TV),
the Ψ term penalizes variation in the recovered function, which tends to impose sparsity in the
function’s gradient. When the prior distribution is uniform or β is zero, the maximum a posteriori
estimate is equivalent to the maximum likelihood estimate. In general, iterative optimization
achieves higher reconstruction quality than direct inversion algorithms at the expense of increased
computational cost [50,52]. While the regularization prior and its parameters can sometimes be
chosen by objective criteria [53,54], in practice, they are usually determined by trial and error.

2.3.3. Deep-reconstruction network from supervised learning

Supervised learning is a data-driven approach. Given a set of training samples from the joint
distribution P (g∗, f0), where g∗ is drawn from the set of physical measurements, and f0 is drawn
from the set of ground truth objects, the machine learning algorithm acquires the regularization
prior implicitly by approximating P (f0 | g∗), the conditional probability of having an output f0
given an input g∗. In particular, deep learning, a subset of machine learning based on artificial
neural networks, has shown promising results for tomography in recent years [23,26,55–58]. The
process of approximating P (f0 | g∗) becomes an optimization problem, where the objective is to
find a deep neural network with appropriate weights which can map the physical measurements
g∗ to its corresponding ground truth object f0 from training data

ŵg = argmin
w
E(g∗,f0)

[︂
L {Gw(g∗), f0}

]︂
≈ argmin

w

ntrain∑︂
i=1

L
{︁
Gw(g∗i ), f0i

}︁
.

(6)

Here, Gw is a deep neural network, w is a vector of network parameters, i.e., weights, ntrain is
the number of training samples, and L is the objective function. This is known as end-to-end
training [59]. Once trained, the inversion of the forward operator, the noise statistics of the
measurements, and the object prior are, in principle, incorporated into the network parameters.



Research Article Vol. 31, No. 10 / 8 May 2023 / Optics Express 15360

In contrast to end-to-end training, in physics-assisted training [28,29,60–62], a conventional
reconstruction algorithm pre-processes the measurements in the training data before sending them
into the neural network. Utilizing approximate reconstructions from a conventional algorithm
reduces the learning burden, and leads to

ŵf = argmin
w
E(f̂ ,f0)

[︂
L {Gw(f̂ ), f0}

]︂
≈ argmin

w

ntrain∑︂
i=1

L
{︁
Gw(f̂i), f0i

}︁
,

(7)

where f̂ is an estimate of the object from a conventional algorithm.
One of the most popular physics-assisted methods is FBP with a convolutional neural network

based on UNet, where the approximate reconstruction f̂ is from the FBP algorithm to encapsulate
the physical model of the imaging system. After training, the convolutional UNet can remove
artifacts while preserving image structure in the FBP reconstruction without requiring additional
iterations and regularization, showing high computational efficiency and low latency [29]. Other
variants of this technique have also shown promising results with short inference time and
reconstruction quality superior to MAP with general-purpose priors [22,26,63,64].

3. Noise resilience of deep-reconstruction networks

One major concern with using supervised learning for tomography is the generalization problem,
which refers to the ability of the learned prior to adapt to unseen test data. When properly
trained, the learned prior can generalize well and produce high-quality reconstructions for test
data sampled from the same distribution as the training data. However, in practical tomography
systems, training and test data can come from different distributions. Though one could know
the class of imaging objects a priori and fix the imaging geometry, the noise characteristics in
the data might vary with time.

Previous studies of supervised learning generally assume that the noise statistics in the
measurements are comparable between training and test datasets. If measurements g∗ are
corrupted by Poisson noise, the reconstruction quality from the learned prior is evaluated by test
data with the same photon count N0 per ray as the training data. When the trained network is
given test data collected at N1 photons per ray, a noise distribution shift would occur between
training and testing, and the reconstruction quality from the learned prior might not be guaranteed
when no training samples at N1 photons are provided. In other words, the estimated conditional
probability P (f0 | g∗) may be unreliable if the joint distributions P

(︂
g∗N0

, f0
)︂
≉ P

(︂
g∗N1

, f0
)︂
, where

N0 and N1 indicate the different photon statistics in the measurements g∗. The ability to maintain
reconstruction quality against noise statistics variations in test data is regarded as the noise
resilience of the deep-reconstruction network.

To improve the noise resilience of the deep reconstruction network, one could approximate
P (f0 | g∗) by using a set of distributions P

(︂
g∗Ni

, f0
)︂

, Ni ∈ {0, 1, 2, . . .}, resulting in a network

that generalizes to the noise statistics. Also, one could approximate a series of P
(︂
f0 | g∗Ni

)︂
, Ni ∈

{0, 1, 2, . . .}, resulting in a bank of networks specialized in each noise level. However, these
approaches require collecting training data under various noise levels, which is time-consuming
for tomography systems with long acquisition times. Instead, our approach is to train the network
using a joint distribution without collecting more noisy data. By utilizing a Gaussian prior on the
noise statistics and a sparsity-promoting prior on the reconstruction, we produce noise-resilient
f̂MAP from the maximum a posteriori estimate, and then approximate P

(︂
f0 | f̂MAP

)︂
by sampling
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the training distribution P
(︂
f̂MAP, f0

)︂
only at a given photon statistics. Test data from different

photon statistics are used to evaluate the noise resilience of the learned prior.

4. Evaluation methods

4.1. Description of X-ray tomography experiment

Our X-ray imaging system is the Zeiss Xradia 620 Versa at MIT.nano. The X-ray spectrum is
generated from a tungsten target with a tube voltage of 80.0 kV and a power of 10.0 W. The 3D
printed sample from CircuitFaker [28], a generator of 3D spatial patterns that match rudimentary
circuit-like statistics, is placed 230 mm from the source and is mechanically rotated from 0◦ to
360◦ evenly with 1600 projections by a high-precision stage. A charge-coupled device (CCD) is
placed 572 mm from the source. The Fresnel number is approximately 100. Therefore, it is safe
to use projections as the forward model. The imaging geometry is shared between simulations
and experiments. With a cone angle of 3◦ (or maximum divergent angle 1.5◦), and a maximum
tolerance angle around 2.4◦ for the sample, we also conclude that it is safe to use the parallel-beam
(Radon) assumption in the forward model. The Poisson statistics for the measurements in the
simulations are synthetically generated. The experimental exposure time varies from 35 ms to 9
s per view to implement increasing photon counts.

4.2. Reconstruction algorithms for comparison

There are three traditional reconstruction algorithms, namely FBP, MLE, and MAP/TV, and three
learning-based algorithms by adding a UNet for each. MAP+UNet is our noise-resilient approach
by approximating P

(︂
f0 | f̂MAP

)︂
, whereas MLE+UNet and FBP+UNet represent alternative

learning-based algorithms by approximating P
(︂
f0 | f̂MLE

)︂
and P

(︂
f0 | f̂FBP

)︂
, respectively. All

acronyms for the algorithms are defined in Table 1. For a fair comparison, the three learning-based
algorithms share the same optimization parameters and the UNet architecture. The only difference
is in the input reconstruction. The regularization parameter β is 2 for all the MAP reconstructions
at different noise levels. A conceptual diagram is shown in Fig. 2. For simulation, the weights in
the networks are randomly initialized and then updated by 10 000 noise-free training samples.
For the experiment, the weights are initialized by values trained from simulated data and then
updated by 120 experimental training samples. This training strategy, called transfer learning, is
useful to reduce the required number of experimental training samples [65].

4.3. Network architecture

Figure 3 shows the network architecture for the learning-based algorithms. Four downsampling
blocks and four up-sampling blocks were used in the UNet-like architecture. The spatial
dimension of the feature map is reduced or up-sampled by 2 per block. The downsampling is
achieved by stride convolution and the up-sampling is by transposed convolution. The initial
input is 128 × 128 × 1, the same as the output dimension. The latent vector in the center has the
dimension 8 × 8 × 512, where the channel size is in the last dimension. ReLU is used as the
activation function in the blocks. The skip connections concatenate features from downsampling
blocks to up-sampling blocks. The script that generates the architecture can be found on our
GitHub page [42].

4.4. Training and test data preparation

4.4.1. Simulated data

Our simulated imaging objects are samples from CircuitFaker. The ground truth reconstructions
are obtained from full-angle, densely-sampled (with 1600 angular views), and noise-free
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Fig. 2. A conceptual diagram for the learning-based algorithms. An inverse algorithm
first produces the traditional reconstruction f̂ from the sparsely-sampled and low photon
measurements. Then the UNet takes f̂ and outputs reconstruction Gw(f̂ ). The differences
between Gw(f̂ ) and f0 are backpropagated to find the optimal UNet parameters based on
Eq. (7).

Fig. 3. UNet architecture for the learning-based algorithms. The top box shows the overall
design of the network, where the light orange modules are downsampling blocks and the dark
orange modules are up-sampling blocks. Blue dotted lines represent the skip connections.
The middle box shows the design of the downsampling blocks. The bottom box shows the
design of up-sampling blocks. BN is batch normalization.

measurements with MAP. The training datasets are generated at a fixed imaging geometry (32
evenly spaced angular views) with 10 000 CircuitFaker objects using noise-free measurements.
The test datasets are generated at the same imaging geometry with 1000 objects with different
Poisson noise levels in the measurements, over the range of 32 to 2000 photons per ray.

Under the parallel-beam approximation, the cone-beam projections are divided into line
projections with dimensions of 256 × 1. The reconstructions have 150 × 150 × 1 voxels filling
a region of 8.0 mm × 8.0 mm × 0.1 mm volume from the line projections. Although we
simulate data for 16 layers of circuit objects in a single simulation, we reconstruct these layers
independently, using a 2D algorithm for each. The reconstructions are cropped to 128 × 128
pixels for visual and quantitative comparison.



Research Article Vol. 31, No. 10 / 8 May 2023 / Optics Express 15363

4.4.2. Experimental data

The experimental imaging objects are designed in OpenSCAD, with 3D configuration based on
new samples drawn from CircuitFaker. Each circuit independently occupies one layer and stands
on a broad substrate, and substrates are excluded from the datasets. The 3D configuration is
fabricated by using projection stereo-lithography apparatus (Ember 3D printer, Autodesk) with
clear resin (PR48), followed by washing with isopropyl alcohol to remove uncured monomers
from the as-printed sample, then transferred to the tomography imaging system for experimental
measurements. The cone-beam projections are cropped to the region of interest, downsampled,
and then divided into line projections with dimensions of 256 × 1. The dimensions of the circuit
reconstructions are the same as in the simulation.

The ground truth reconstructions are obtained from full-angle and densely-sampled (with 1600
angular views) measurements with the highest photon count per ray (13 598) with MAP. The
training dataset consists of 120 samples collected with the highest photon count per ray with
32 evenly spaced angular views across the full range of angles. The test data sets consist of 40
samples each, collected over the range of 66 to 3347 photons per ray with the same angular views.

4.5. Algorithmic details

Our algorithms are implemented in Python 3.8.13 using PyTorch 1.12.1, and performed on
MIT Supercloud [66] with Intel Xeon Gold 6248 and an NVIDIA V100 GPU. The CircuitFaker
parameters are consistent with [28]. For all the deep learning algorithms, the number of trainable
parameters is around 14 million. To train the networks, an AdamW optimizer [67] is used with
parameters β1 = 0.9, β2 = 0.95, and weight decay of 0.05. The training objective function is
the mean squared error. For training with simulated data, the batch size is 64, the number of
warmup epochs is 40, and the total number of epochs is 400. The neural network receives one
update from one batch of training samples per iteration, and all updates from all the batches once
per epoch. For transfer learning on experimental data, the batch size is 10, the warmup epoch
is 10, and the total number of epochs is 100. The initial learning rate is 5 × 10−4 per iteration,
and the scheduler reduces the learning rate with half-cycle cosine after warmup, in proportion to
1 + cos(πn/ntot) where n is the epoch number [68].

For the iterative reconstruction algorithm, an Adam optimizer [69] is used with an initial
learning rate of 10−2. The total number of iterations is 100, and the scheduler reduces the
learning rate by half per 20 iterations. The objective function is again the mean squared error of
the measurements. Importantly, the regularization parameter β for TV in MAP reconstruction
is 0.25 for ground truth reconstructions, and 2 for all the test reconstructions at different noise
levels. The FBP algorithm is imported from MATLAB with a Hanning filter [70].

4.6. Quality metrics and their acceptability thresholds

4.6.1. Pearson correlation coefficient

The Pearson correlation coefficient r is defined as

rf0,f̂ =
cov(f0, f̂ )
σf0 σf̂

, (8)

between ground truth reconstruction f0 and reconstruction f̂ from a particular algorithm, where
cov is the covariance and σ is the standard deviation. This first metric is introduced to evaluate
the perceptual quality of the reconstruction, and the acceptable quality threshold is 1 − r ≤ 10−1,
indicating a strong linear relationship between the reconstructions [71]. Its shortcoming is that it
is a pixel-by-pixel correlation that is sensitive to misregistration and image distortion, and is not
highly sensitive to the connectivity or topology of the image [72].
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4.6.2. Mallat Scattering Transformation

The normalized L2 distance of the logarithm of the Mallat Scattering Transform (MST) space
[73,74] is defined as

φf0,f̂ =
∥Φ(f0) − Φ(f̂ )∥2

∥Φ(f0)∥ ∥Φ(f̂ )∥
, (9)

where Φ is the logarithm of the MST operator. This second metric is introduced to evaluate
multi-scale correlations and topology (connectivity) of the reconstructions. It is also insensitive
to misregistration and image distortion. The acceptable quality threshold is φ ≤ n/M2 = 3×10−3,
where the reconstruction is of size M2 = 128 × 128 and n = 50 is the average number of circuit
elements.

MST can be viewed as a Convolutional Neural Network (CNN) with predetermined weights.
The filters are designed so that the CNN can span an exponentially large range in scale with a
kernel of constant size. Following [75], we define the logarithm of MST of an input image f as

Φ(f ) =
(︂
logΦ(0)

J (f ), logΦ(1)
J (f ), logΦ(2)

J (f )
)︂

(10)

and
Φ

(0)
J (f ) = ϕJ ⊛ f

Φ
(1)
J (f ) = ϕJ ⊛

|︁|︁ψλ1 ⊛ f
|︁|︁, λ1 ∈ Λ1,

Φ
(2)
J (f ) = ϕJ ⊛

|︁|︁ψλ2 ⊛
|︁|︁ψλ1 ⊛ f

|︁|︁ |︁|︁, λ1 ∈ Λ1, λ2 ∈ Λ2.

(11)

Here, ⊛ denotes the convolution in 2D space, ϕJ is a low-pass filter, {ψλi } is a family of band-pass
filters, i = 1, 2. Morlet filters [76] are used in our computation. There are three parameters that
determine how the MST is taken: M2 is the number of pixels in the image, J is the log2 of the
scattering scale and L is the number of angles used in the transform. For this work, values of
M = 128, J = 4, and L = 8 were used.

MST has been shown by Mallat [73] to be Lipschitz continuous to diffeomorphic deformation
and invariant under translation. Therefore, MST is insensitive to misregistration and deformation
because they are both small diffeomorphic deformations. It also induces a high sensitivity to
topology, since the topology is invariant to diffeomorphic deformation. Furthermore, taking
the logarithm of the transformation flattens the extracted features to a low-dimensional complex
linear subspace where the topology of the features is exposed. The practical outcome is that the
extracted features in MST space will form a high-precision cluster. The precision should be the
fractional dimension of the space, n/M2, where n is the number of the features.

5. Results

5.1. Simulations

We first demonstrate our noise-resilient approach for ill-conditioned tomography with simulation.
The imaging condition is in full-angle, sparse sampling (with 32 out of 1600 angular views,
evenly spaced), and low-photon tomographic simulations where ill-conditioning exhibits itself
severely without regularization. Figure 4 shows 2D reconstructions, at selected photon counts per
ray, for different algorithms using simulated data. Each row represents different reconstruction
algorithms. Each column represents reconstructions under different photon counts per ray.
Visually, MAP+UNet generates better reconstructions at lower photons per ray compared to
MLE+UNet and FBP+UNet approaches.

The quantitative comparison of different algorithms is shown in Fig. 5 where we report the
means and standard errors for the two metrics over 1000 test instances from CircuitFaker. The
general trends from the two metrics are similar, and we focus our interpretations below on the
MST metric. Given the threshold of 3 × 10−3, our MAP+UNet method satisfies the requirement
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Fig. 4. Selected 2D reconstructions (in 128 × 128) for different algorithms using simulated
data. Each row represents a reconstruction algorithm, and each column represents an
intensity of the photon rays. The ground truth is repeated in the last row. The dotted orange
line is the boundary between acceptable and unacceptable performance as determined by the
MST metric.

Fig. 5. Quantitative comparison between different reconstruction algorithms for tomographic
simulations under different photon counts per ray. The x axis is the number of photons per
ray, and the y axis on the left figure is 1− r where r is the Pearson correlation coefficient. The
y axis on the right is the L2 distance in MST. The error bars are standard deviations in the
log scale of 1000 test instances. The dotted orange line shows the thresholds of acceptable
performance.
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Fig. 6. Selected 2D reconstructions (in 128 × 128) for different algorithms using experi-
mental data. Each row represents a reconstruction algorithm. Each column represents an
intensity of the photon rays. The dotted orange line is the boundary between acceptable and
unacceptable performance as determined by the MST metric.

for fluxes larger than 80 photons per ray. The MLE+UNet method is the second-best algorithm,
which can satisfy the requirement for 128 photons per ray or above. FBP+UNet exhibits the
least noise resilience among the learning-based algorithms, withstanding noisy measurements
only down to 640 photons per ray. Thus, MAP+UNet allows us to use 8× fewer photons than
FBP+UNet in simulation. At low photon fluxes, the performance of the sparsity-promoting
MAP+UNet is greater than that of the maximum-likelihood-based MLE+UNet. At high photon
flux, the discrepancy between the two algorithms is eliminated. Finally, compared to the results
of each traditional reconstruction algorithm, the addition of learning with a UNet leads to a lower
photon flux requirement.

5.2. Experiments

Next, we demonstrate our noise-resilient approach to experimental data, using the same imaging
condition as in the simulation. Figure 6 shows 2D reconstructions, at selected photon counts per
ray, for different algorithms using experimental projection data.

Figure 7 shows the quantitative comparison between different algorithms for experimental
data collected at various photon fluxes, based on the two quality metrics. The trends seen in the
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simulation are apparent in the experimental results as well: a more faithful input reconstruction
leads to an equal or better reconstruction from UNet, with equality more likely at higher photon
counts. At lower photon counts, MAP+UNet is the most noise-resilient learning-based algorithm.
Using the same requirement for acceptable quality as the simulation (φ ≤ 3 × 10−3 for the MST
metric), none of the traditional algorithms is acceptable for sparsely sampled and low-photon
experimental measurements. In contrast, each of the learning-based algorithms yields an
acceptable performance. The thresholds for acceptable performance for all the learning-based
algorithms in the experiment and simulation are summarized in Table 2. Quantitative results
using alternative metrics can be found in the Appendix (Fig. 8). Overall, MAP+UNet allows us to
use 2.5× fewer photons than FBP+UNet in experimental data, vs. an 8× reduction in simulation.

Fig. 7. Quantitative comparison between different reconstruction algorithms for experimen-
tal data of 40 instances under different photon counts per ray. Symbols and error bars as in
Fig. 5. The dotted orange lines show the thresholds of acceptable performance.

Table 2. Thresholds for acceptable performance based on the MST metric.

Method Simulation (photons/ray) Experiment (photons/ray)

FBP+UNet 640 531

MLE+UNet (+Gaussian) 128 330

MAP+UNet (+Gaussian+sparsity) 80 214

6. Discussion

In our study, we selected TV as the sparsity-promoting prior to the MAP and MAP+UNet
algorithms. While TV is well-suited for reconstructing simple circuit structures, its applicability
to more generalized imaging tasks with complex structures may be limited. Alternative sparsity-
promoting priors, such as wavelet-based and Laplacian priors [77–79], could be explored to
ensure the reconstruction performance of our method across various applications. In addition, we
did not fine-tune the regularization parameter for TV regularized reconstructions under different
noise conditions. Using the same value for all noise levels might be sub-optimal, suggesting
room for further improvement.

Though the trends observed in the simulation are consistent with the experimental results,
there is a discrepancy in the thresholds of acceptable performance. This can be attributed to
several factors typically present in real-world experimental settings, such as noise sources, system
imperfections, and simplified modeling.
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7. Conclusions

We have demonstrated and evaluated quantitatively a noise-resilient deep-reconstruction approach
for X-ray tomography with integrated circuits in both simulation and experiment. Using the
maximum a posteriori reconstructions as the training inputs compensates the noise in the
measurements, and leads to a learned prior that is noise-resilient. More importantly, such noise
resilience is achieved without obtaining training samples at each possible noise distribution.
The use of a sparsity-promoting prior is especially helpful for noisy data collected under low
energy fluxes. Our noise-resilient deep-reconstruction algorithm may benefit applications with
limited training sets due to long acquisition times and real-time dynamic imaging constrained by
temporal change rates.

Appendix: quantitative results with alternative metrics

Fig. 8. Quantitative comparison between different reconstruction algorithms with mean
squared error (MSE) and structural similarity index measure (SSIM) metrics. The top two
figures are for simulated data, and the bottom two are for experimental results.

Here, we present our quantitative comparison of various reconstruction algorithms with mean
squared error (MSE) and structural similarity index measure (SSIM) metrics. We find that our
main conclusions do not depend on which metric is chosen.
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