
MIT Open Access Articles

Unified treatment of exact and approximate 
scalar electromagnetic wave scattering

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Pang, Subeen and Barbastathis, George. 2022. "Unified treatment of exact and 
approximate scalar electromagnetic wave scattering." Physical Review E, 106 (4).

As Published: 10.1103/PHYSREVE.106.045301

Publisher: American Physical Society (APS)

Persistent URL: https://hdl.handle.net/1721.1/150778

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/150778


PHYSICAL REVIEW E 106, 045301 (2022)

Unified treatment of exact and approximate scalar electromagnetic wave scattering

Subeen Pang * and George Barbastathis †

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 18 February 2022; revised 15 July 2022; accepted 2 September 2022; published 4 October 2022)

Under conditions of strong scattering, a dilemma often arises regarding the best numerical method to use. Main
competitors are the Born series, the beam propagation method, and direct solution of the Lippmann-Schwinger
equation. However, analytical relationships between the three methods have not yet, to our knowledge, been
explicitly stated. Here, we bridge this gap in the literature. In addition to overall insight about aspects of optical
scattering that are best numerically captured by each method, our approach allows us to derive approximate error
bounds to be expected under various scattering conditions.
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I. INTRODUCTION

In computational imaging, quantitative physical properties
of objects are estimated from optical measurements of scat-
tered fields. The complex light-matter interactions leading
to scattering are governed by Maxwell’s equations or, under
some assumptions, by the scalar Helmholtz equation that de-
scribes optical elastic scattering from objects that are large
compared to the wavelength [1].

To simplify the process of modeling optical scattering and
estimating object properties, there have been many studies
on approximating solutions to the scalar Helmholtz equation.
One of the most primitive is the projection approximation,
where the scattered field is assumed to maintain the incident
wavefront, e.g., a plane or spherical wave, while attenua-
tion and phase delay accumulate proportional to the optical
path length of rays through the object. When the incident
wavefront is planar or spherical, this assumption leads to the
Radon transform formulation, and is the basis of computed
tomography. When it comes to relatively thin objects with
nonnegligible refraction, a more appropriate description is
provided by the so-called single scattering approximations,
including the first Born and Rytov methods [2]. As objects
become dense and highly scattering, as expected, even single
scattering methods start to fail, and models accounting for
multiple scattering are required. Representative approaches
are the Lippmann-Schwinger equation (LSE) [3–5], the multi-
slice method [6–9] and the beam propagation method (BPM)
[10–13], and the Born series [14,15]. The multislice and
beam propagation methods are very closely related, with the
important distinction that the former was motivated by solv-
ing Schrödinger’s equation, whereas the latter was for the
Helmholtz equation.

Multiple scattering models can all be formulated starting
from the scalar Helmholtz equation, but they rely on dif-
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ferent approximations on the scattering process [1,16–19].
Subsequently, all three aforementioned methods may exhibit
certain drawbacks compared to exact solutions of the scalar
Helmholtz equation, and the discrepancies evidence them-
selves differently for each method. For example, the multislice
method that preceded BPM historically often does include
backscattering [20,21] at the cost of added computational
complexity. However, it has been reported that BPM cannot
account for backscattering or reflection of fields and it would
not be suitable for experimental conditions that significantly
deviate from the paraxial approximation [22,23]. In this study,
we have chosen to also neglect backscattering in the interest
of deeper insight into the remaining approximations involved
[9]. Born series is numerically unstable, unless the optical po-
tential is sufficiently weak. On the contrary, the LSE, by virtue
of originating simply as an integral formulation of the scalar
Helmholtz equation under the standard Rayleigh-Sommerfeld
radiation condition, requires no further assumptions. In prin-
ciple, this can lead to high-precision solutions in numerically
ideal cases [17,19,24]. However, solving the LSE may still be
subject to numerical artifacts resulting from the inversion of
the integral equation, and requires relatively intensive compu-
tational resources.

Hence, while the LSE promises the most reliable approx-
imations of scattered fields and optical objects [3], we can
consider using BPM or Born series if an error compared
to LSE is bounded below a given acceptable threshold. In
previous studies, conditions that can make such small error
achievable are usually summarized qualitatively, e.g., laterally
large objects, small illumination angles, and weak potential.
This is because LSE, BPM, and Born series originate from dif-
ferent approximations and derivations. Subsequently, explicit
and quantitative relationships between the different methods,
especially between LSE and BPM, have not been addressed
very clearly.

In fact, the precision of a scattering model may not be
the sole parameter to determine the quality of field/object
estimations. This is because such estimations consist of com-
plex optimization procedures, which would also depend on
various mathematical conditions, e.g., preconditioning and
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regularization. Nevertheless, a more concrete understanding
of the relationships and relative strengths and weaknesses of
each method would be beneficial for us to analyze estima-
tion results, review numerical settings, and track origins of
artifacts and errors by evaluating applicability of scattering
models.

Therefore, in this paper, we propose a definitive and quan-
tifiable relationship among LSE, Born series, and BPM and
introduce concrete conditions where the scattered fields es-
timated respectively from the three methods exhibit insignifi-
cant differences. Specifically, we first suggest a dimensionless
parameter that is easy to evaluate and can be used to test the
validity of Born series solution. Furthermore, we derive the
BPM from the LSE and its corresponding Born series. This
leads to another dimensionless parameter based on explicit ap-
proximations adopted along the derivation. We expect that our
study can help analysis not only of field and object estimations
but also of scattering models themselves. We expect that our
approach can be extended to other models, e.g., Refs. [23,25],
that are not discussed in this paper but closely relate to LSE,
Born series, and BPM.

II. FORMULATION OF LSE

When the wavelength of an incident field is smaller than
the length scale of the object, the elastic scattering of fields
ψ (r) is governed by the scalar Helmholtz equation,[∇2 + (nbk0)2

]
ψ (r) = −(nbk0)2

[(
n(r)

nb

)2

− 1

]
ψ (r). (1)

Here, k0 is the wave number in vacuum, and nb and n(r) are
the indices of refraction in the background medium and in
the (spatially variant) object, respectively. As a reminder, the
phase velocities are obtained by dividing the vacuum light
speed by the respective indices. Using the Green’s function
that satisfies the radiation condition [26],

G(r − r′) = exp (inbk0‖r − r′‖)

4π‖r − r′‖ , (2)

we may derive an integral formulation identical to Eq. (1),
which is the LSE:

ψ (r) = ψ0(r) +
∫

dr′ G(r − r′)V (r′)ψ (r′). (3)

Here, V (r) = (nbk0)2[( n(r)
nb

)2 − 1] is the optical scattering po-
tential and ψ0 is the incident field.

The BPM describes the scattering process as a sequential
application of 2D scattering layers, so it is not obvious how
it can relate to the above LSE development. To develop the
relationship later, it will be convenient to re-express the 3D
Green’s function in terms of its Fourier spectrum. To this end,
we use the Weyl expansion [27]

einbk0r

r
= i

2π

∫
dkxdky

ei(kxx+kyy+kz |z|)

kz
, (4)

where r = ‖r‖, kz =
√

(nbk0)2 − k2
x − k2

y , and kx and ky are

coordinates in the Fourier space. Setting z to be the optical
axis, let us denote F̂xy as the 2D Fourier transform operator in
the lateral dimensions. From the Weyl expansion, the original

FIG. 1. An example geometry for optical scattering from an
optical potential V .

LSE can be rewritten as a composition of 2D Fourier trans-
forms as

ψ (r) − ψ0(r) = i

2

∫
dz′ F̂†

xy

[
eikz |z−z′ |

kz
β(kx, ky, z′)

]
, (5)

where † represents the adjoint operation and

β(kx, ky, z) = F̂xy[V (r)ψ (r)]. (6)

The full derivation is in Appendix A. Without much loss of
generality, we can assume that ψ0 is incident from z = −∞
and the optical detectors are located outside the support of V .
In addition, let us set z0 as an arbitrary point on the optical axis
between the illumination source and the scattering potential
V . Figure 1 depicts the overall geometry. Consequently, we
obtain

ψ (r) − ψ0(r)

=
∫

dr′ G(r − r′)V (r′)ψ (r′)

=
∫ z

z0

dz′
∫

dx′dy′ G(r − r′)V (r′)ψ (r′)

= i

2

∫ z

z0

dz′ F̂†
xy

[
eikz (z−z′ )

kz
β(kx, ky, z′)

]
, (7)

i.e., the 3D convolution with the Green’s function becomes a
cascade of 2D convolutions at each z slice.

III. FROM LSE TO BORN SERIES

To derive a connection between LSE and BPM, we are
required to express the original Born series in terms of the cas-
cade of 2D convolutions in Eq. (7). For this, we first slightly
modify Eq. (7). Following the small-wavelength approxima-
tion underlying the scalar Helmholtz equation or noting that
the wavefront envelope of ψ0 would be much larger than
objects in many imaging systems, it may be assumed that
ψ0 = exp(inbk0z), i.e., a pure plane wave. Dividing both sides
of Eq. (7) by ψ0, we obtain

ϕ(r) = 1 + i

2

∫ z

z0

dz′ F̂†
xy

[
eikz (z−z′ )

kz
γ (kx, ky, z′)

]
, (8)
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where ϕ = ψ/ψ0, kz = kz − nbk0, and

γ (kx, ky, z) = F̂xy[V (r)ϕ(r)]. (9)

From Eqs. (7) and (8), we define an LSE integral operator
ĜVα as

ĜVα: ϕ → 1

ψ0

∫ z

α

dz′
∫

dx′dy′ G(r − r′)V (r′)ψ (r′)

= i

2

∫ z

α

dz′ F̂†
xy

[
eikz (z−z′ )

kz
γ (kx, ky, z′)

]
, (10)

e.g., ϕ = 1 + ĜVz0ϕ. In addition, using that eikz (z−z′ ) = 1 at
the origin of the Fourier space and setting z0 = −∞, we
convert Eq. (8) to a more generalized form as

ϕ(r) = 1 + i

2

∫ z1

−∞
dz′ F̂†

xy

[
eikz (z−z′ )

kz
γ (kx, ky, z′)

]

+ i

2

∫ z

z1

dz′ F̂†
xy

[
eikz (z−z′ )

kz
γ (kx, ky, z′)

]
= F̂†

xyeikz (z−z1 )F̂xy

×
{

1 + i

2

∫ z1

−∞
dz′ F̂†

xy

[
eikz (z1−z′ )

kz
γ (kx, ky, z′)

]}

+ i

2

∫ z

z1

dz′ F̂†
xy

[
eikz (z−z′ )

kz
γ (kx, ky, z′)

]
= F̂†

xyeikz (z−z1 )F̂xyϕ(x, y, z1)

+ i

2

∫ z

z1

dz′ F̂†
xy

[
eikz (z−z′ )

kz
γ (kx, ky, z′)

]
, (11)

where z1 � z is a point on the optical axis.
Assuming that the operator norm of ĜVz0 is less than 1, the

solution of the Fredholm integral equation of the second kind,
Eq. (8), can be described as a convergent geometric series
(Born series or Liouville-Neumann series) [28]:

ϕ(r) =
∞∑
j=0

( i

2

) j

f j (r), (12)

where

f0(r) = F̂†
xyeikz (z−z0 )F̂xyϕ(x, y, z0), (13a)

f j (r) =
∫ z

z0

dz′ F̂†
xy

eikz (z−z′ )

kz
F̂xy[V (r′) f j−1(r′)]

= 2

i
ĜVz0 f j−1. (13b)

This may be shown by substituting Eq. (12) into Eq. (11). That
f j represents the jth order scattering term becomes obvious if
Eq. (12) is rewritten as

ϕ(r) = f0(r) + ĜVz0 f0(r) + (
ĜVz0

)2
f0(r) + · · · , (14)

using Eq. (13). Equations (12) and (13) are the core connec-
tion between LSE and BPM that we will establish in the next
section.

A. Convergence of the Born series

Before discussing the BPM, we briefly take a pause to
consider the validity of the Born series. Assuming that solu-
tions of the LSE are continuous, the convergence of the Born
series can be shown in a few different ways, e.g., using the
Banach-Keissinger theorem [29], again given that the operator
norm of ĜVz0 is less than 1. Otherwise, the convergence of the
series cannot be guaranteed and due to the divergent behavior
of (ĜVz0 ) j as n � nb and j → ∞ it would be difficult to
obtain the error bound between the series expansion and the
true solution of the LSE. Hence, it is important to estimate the
dependency of the operator norm on V . In other words, we try
to estimate conditions on V that make the operator norm of
ĜVz0 less than 1 in some domain. In numerical computations,
we are interested in evaluating ϕ(r) in a bounded subset D of
R3, e.g., a box

D =
[
−L1

2
,

L1

2

]
×

[
− L2

2
,

L2

2

]
×

[
−L3

2
,

L3

2

]
, (15)

which contains the support of V . We now evaluate the operator
norm in D.

From the definition of ĜVz0 , Eq. (10),∥∥ĜVαϕ
∥∥ �

∥∥Ĝ
∥∥‖ϕ‖ sup

D
(V ), (16)

where ‖Ĝ‖ is the operator norm of

Ĝ: ϕ →
∫
D

dr′ G(r − r′)ϕ(r′). (17)

It is difficult to get an analytical expression for ‖Ĝ‖, par-
ticularly due to the singularity of G at the origin. Instead,
Ref. [30] suggests using a numerical method, which is a crude
approximation on the true norm. To achieve a more analytical
approach, we first try to remove the singularity using the
discussion in [31]. It can be easily shown that

ĜVz0ϕ

= 1

ψ0

∫
D

dr′ G(r − r′) rect

(‖r − r′‖
2LM

)
V (r′)ψ (r′), (18)

where LM is the diagonal length of the smallest box containing

the support of V , e.g.,
√

L2
1 + L2

2 + L2
3. Then ‖Ĝ‖ becomes the

norm of a convolution with a new kernel,

Ḡ(r) = G(r) rect

( ‖r‖
2LM

)
, (19)

whose Fourier transform is entire by virtue of the Paley-
Wiener theorem:

F̂Ḡ(r)(k)

= 1

k

1

(nbk0 − k)(nbk0 + k)

× [
einbk0LM (k cos kLM − inbk0 sin kLM ) − k

]
. (20)

Since the Fourier transform is unitary, ‖Ĝ‖ would be bound
by the largest Fourier coefficient of Ḡ(r). Under the small
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wavelength approximation on which the scalar Helmholtz
equation is based, nbk0LM � 1 and subsequently, the absolute
value of F̂Ḡ(r)(k) has two peaks at k = nbk0 (from surface
of momentum conservation) and k = 0 (from regularization
of the singularity), which asymptotically approach LM

nbk0
and

LM
2nbk0

, respectively. Therefore,

‖Ĝ‖ � LM

nbk0
, (21)

and subsequently, ∥∥ĜVz0

∥∥ � LM

nbk0
sup
D

(V ). (22)

However, Eq. (22) would be too loose an estimate on the
operator norm, i.e., the use of sup

D
(V ) in Eq. (16). Hence, we

instead suggest using∥∥ĜVα

∥∥ � LM

nbk0
mean

D
(V ) (23)

as an approximation if the potential V is mostly smooth.
Setting V (r) = (nbk0)2[( n(r)

nb
)2 − 1], Eq. (23) can be rewritten

as ∥∥ĜVα

∥∥ � LMnbk0

⎡⎣(mean
D

(n)

nb

)2

− 1

⎤⎦. (24)

That is, roughly speaking, the validity of the Born series guar-
antee is inversely proportional to the object scale with respect
to the incident wavelength and the square of the refractive
index. The estimation of the norm in Eq. (24) is tighter and
simpler than previous reports, e.g., [29,32] as the size of opti-
cal objects becomes large. A detailed discussion is presented
in Appendix C. The tightness of the bound also helps improve
the truncation error estimate expressed as geometric series of
the norm, e.g., [29],∥∥∥∥∥ϕ −

N∑
j=0

(
ĜVz0

) j
f0

∥∥∥∥∥ �
∥∥ĜVz0

∥∥N+1

1 − ∥∥ĜVz0

∥∥‖ f0‖. (25)

IV. FROM BORN SERIES TO BPM

As discussed in the previous section, Eq. (13) plays a key
role in connecting LSE and BPM. We begin with analyzing
f1, the first term in the Born series, representing a single
scattering event:

f1(r) =
∫ z

z0

dz′ F̂†
xy

eikz (z−z′ )

kz
F̂xy

× {
V (r′)F̂†

xyeikz (z′−z0 )F̂xy[ϕ(x′, y′, z0)]
}
. (26)

To derive the BPM, it is required that the two operators

F̂†
xy

eikz (z−z′ )

kz
F̂xy and V (r)× (27)

commute. Using the convolution theorem, it can be shown that

F̂†
xy

eikz (z−z′ )

kz
F̂xyV (r′)

= 1

(2π )2
F̂†

xy

eikz (z−z′ )

kz

[
Ṽz′�

]
F̂xy, (28)

where Ṽz′� is a convolution operator:

Ṽz′� : ϕ(k) →
∫

dk′F̂xy[V (x, y, z)](k − k′)ϕ(k′). (29)

Here, we assume that V is band-limited in each of its xy-slices.
For brevity, we first define the boxcar function in R2 as

rect(x) =
{

0, if ‖x‖ > 1
2 ,

1, otherwise,
(30)

and approximate F̂xyψ and Ṽz′ as

F̂xyϕ ≈ Cϕ rect

(
k

2Kϕ

)
, (31a)

Ṽz′ ≈ CV rect

(
k

2KV

)
, (31b)

i.e., their support is confined to spheres of size Kϕ and KV ,
respectively, while Cϕ and CV are upper bounds on the ap-
proximate operator amplitudes. It follows that

eikz (z−z′ )

kz

[
Ṽz′�

]
F̂xyϕ

≈ CϕCV
eikz (z−z′ )

kz

(
πK2

V

)
rect

[
k

2(KV + Kϕ )

]
. (32)

However,[
Ṽz′�

]eikz (z−z′ )

kz
F̂xyϕ

≈ CϕCV rect

(
k

2(KV + Kϕ )

)[
e−inbk0(z−z′ )

×
∫

BKV (k)
dk′ ei(z−z′ )

√
(nbk0 )2−(k′

x )2−(k′
y )2√

(nbk0)2 − (k′
x )2 − (k′

y)2

]
, (33)

where BKV (k) is a ball of radius KV centered at k. Compar-
ing Eqs. (32) and (33), the two operators in Eq. (27) would
commute if

πK2
V

eikz (z−z′ )

kz

≈ e−inbk0(z−z′ )

×
∫

BKV (k)
dk′ ei(z−z′ )

√
(nbk0 )2−(k′

x )2−(k′
y )2√

(nbk0)2 − (k′
x )2 − (k′

y)2
, (34)

i.e., if the propagator (2D Fourier spectrum of the Green’s
function) is nearly constant in BKV (k) for every k in
BKϕ+KV (0). This is consistent with the weak scattering ap-
proximation applied separately on each slice of the BPM. To
satisfy condition (34), it is sufficient to require that

z − z′ and KV are small. (35)

To further simplify the integrand in Eq. (34) toward obtaining
an estimate of its validity bound, let us assume that z − z′ is
sufficiently small so that the term eikz (z−z′ ) can be considered
locally constant in BKV (k) and describe this term as a constant
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FIG. 2. Dependence of δ0 on S. As S increases, δ0 approaches
its maximum value, 1. This implies that the Fourier transform of V
has significant effects on the validity of the BPM.

Cz. Then, at k = 0,∫
BKV (0)

dk′ eikz (z−z′ )√
(nbk0)2 − (k′

x )2 − (k′
y)2

=
∫ 2π

0
dθ

∫ KV

0
rdr

Cz√
k2 − r2

= 2πCz

(
nbk0 −

√
(nbk0)2 − K2

V

)
, (36)

and, subsequently,∣∣∣∣∣πK2
V

eikz (z−z′ )

kz
−

∫
BKV (0)

dk′ eikz (z−z′ )√
(nbk0)2 − (k′

x )2 − (k′
y)2

∣∣∣∣∣
≈ πCznbk0

(
2 − 2

√
1 − S2 − S2

)
, (37)

where S is the dimensionless parameter

S ≡ KV

nbk0
. (38)

We shall refer to the last term in Eq. (37) as

δ0 = 2 − 2
√

1 − S2 − S2 ≈ S4

2
. (39)

The behavior of δ0 versus S is shown further down in Fig. 2
as part of a longer discussion on the BPM’s validity. The
approximation applies for S � 1

From Eqs. (32) and (33), Eq. (37) corresponds to the error
of the commutation at k = 0 (more precisely, the error nor-
malized by Cϕ and CV that are average amplitudes of ϕ and

LSE BPM Born

(a)

(b)

z

xy(Length per wavelength)

(Diverge)

FIG. 3. Comparison of scattered fields from LSE, BPM, and
Born series. Two different dielectric spheres are considered where
we only change n to adjust the estimated norm of the LSE operator
in Eq. (24). (a) The norm is 0.9. (b) The norm is 15.

V in the Fourier space). When k �= 0 it is not straightforward
to derive an analytical expression for the error, but we can
anticipate that it would be proportional to ‖k‖. This is because

1/
√

(nbk0)2 − (k′
x )2 − (k′

y)2 in Eq. (33) changes rapidly as the

domain of integral, BKV (k), moves away from the origin in the
Fourier space. Hence,

∣∣∣∣∣eikz (z−z′ )

kz

[
Ṽz′�

]
F̂xyϕ − [

Ṽz′�
]eikz (z−z′ )

kz
F̂xyϕ

∣∣∣∣∣
≈ πCϕCzCV nbk0δ0︸ ︷︷ ︸

ε0

+ε(KV , Kϕ ), (40)

where ε represents the additional error originating from k �= 0
regions, which depends on the effective support of both V and
ϕ in the Fourier space and increases more rapidly than ε0.

From now on, assume that Eq. (35) is satisfied in our
system. Then, Eq. (26) becomes

f1(r)

=
∫ z

z0

dz′ V (x, y, z′)F̂†
xy

eikz (z−z0 )

kz
F̂xy[ϕ(x, y, z0)]

=
{∫ z

z0

dz′ V (x, y, z′)
}
F̂†

xy

eikz (z−z0 )

kz
F̂xy[ϕ(x, y, z0)]. (41)
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FIG. 4. Scattered fields estimated from LSE and BPM when the size L of a cubic computational box changes. We consider two distinct
potentials, marked as (a) and (b), both consisting of dielectric spheres. The mean refractive index is 1.02. The difference refers to the
elementwise absolute error divided by the maximum field amplitude.

Subsequently, evaluating f2 yields

f2(r) =
∫ z

z0

dz′ F̂ †
xy

eikz (z−z′ )

kz
F̂xy

(
V (r′)

{∫ z′

z0

dz′′ V (r′′)
}

×F̂ †
xy

eikz (z′−z0 )

kz
F̂xy[ϕ(x, y, z0)]

)

=
{∫ z

z0

dz′ V (x, y, z′)
∫ z′

z0

dz′′ V (x, y, z′′)
}

×F̂ †
xy

eikz (z−z0 )

k2
z

F̂xy[ϕ(x, y, z0)]

= 1

2!

{∫ z

z0

dz′ V (x, y, z′)
}2

F̂ †
xy

eikz (z−z0 )

k2
z

F̂xy[ϕ(x, y, z0)], (42)

where the last equality is derived using integration-by-parts
[28]. Repeating the same procedure, we can deduce

f j (r) = 1

j!

{∫ z

z0

dz′ V (x, y, z′)
} j

× F̂†
xy

eikz (z−z0 )

k j
z

F̂xy[ϕ(x, y, z0)]. (43)

From the analysis on the commutation error, BPM requires Kϕ

and KV to be small. Hence, |kx|, |ky| � nbk0 and kz ≈ nbk0.
Subsequently,

f j (r) ≈ 1

j!

{∫ z

z0

dz′ V (x, y, z′)
} j

× F̂†
xy

eikz (z−z0 )

(nbk0) j
F̂xy[ϕ(x, y, z0)]. (44)
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TABLE I. Image quality metrics on fields from LSE and BPM
when the size L of a cubic computational box changes. We consider
15 different potentials which consist of dielectric spheres. The mean
refractive index is 1.02. The phase is unwrapped along the optical
axis. The full width at half maximum of the Gaussian window in
SSIM is λ/2.

SSIM PSNR Relative L1

L = 16λ, amplitude 0.948 37.996 6.683×10−3

L = 24λ, amplitude 0.965 40.147 6.909×10−3

L = 32λ, amplitude 0.974 41.732 7.127×10−3

L = 40λ, amplitude 0.977 42.616 7.400×10−3

L = 16λ, phase 0.991 38.067 4.101×10−2

L = 24λ, phase 0.995 41.617 2.698×10−2

L = 32λ, phase 0.997 44.126 2.010×10−2

L = 40λ, phase 0.998 46.067 1.602×10−2

Inserting Eq. (44) into Eq. (12) gives

ϕ(r) = exp

(
i

2nbk0

{∫ z

z0

dz′ V (x, y, z′)
})

× F̂†
xyeikz (z−z0 )F̂xy[ϕ(x, y, z0)]

= exp

(
inbk0

2

{∫ z

z0

dz′
[(

n(x, y, z′)
nb

)2

− 1

]})
× F̂†

xyeikz (z−z0 )F̂xy[ϕ(x, y, z0)]

≈ exp

(
inbk0

ξ
(z − z0)

[(
n(x, y, z)

nb

)ξ

− 1

])
× F̂†

xyeikz (z−z0 )F̂xy[ϕ(x, y, z0)], (45)

where ξ = 2. Comparing Eqs. (13) and (44), it is implied that
the jth order scattering term in Born series corresponds to the
jth order polynomial in the Taylor expansion of the exponen-
tial modulation in the BPM. This successive application of
the diffraction and phase modulation is also reminiscent of a
similar result derived according to the multislice method [7,9].

A. Difference between Born series and BPM

Though Born series and BPM both originate from the LSE
and their mathematical structures are closely related, BPM
imposes different assumptions on the scattering process. First,
due to Eq. (35), it is required that |z − z0| be small. Hence,
previous studies on BPM suggest slicing a thick V along the
optical axis and applying BPM on each slice consecutively.
However, this violates our assumption that z is outside of the
support of V , as in Fig. 1. In other words, at each jth slice
inside V , BPM has a numerical discrepancy

i

2

∫ z

z0

dz′ F̂†
xy

eikz (z−z′ )

kz
F̂xy

{
V (r′)

[
ϕ j−1 − ϕ

]
(r′)

}
, (46)

where ϕ j−1 is a field at the ( j − 1)th slice in BPM and ϕ is
that of LSE. The difference ϕ j−1 − ϕ would approximately
amount to backscattered fields from V (x, y, z) where z � z j

and z j is the z coordinate of the jth slice.

Despite Eq. (45) suggesting a close connection between
Born series and BPM, they do exhibit different numerical
convergence. Specifically, BPM is known to be numerically
stable with high V , compared to the Born series. We may
be able to speculate that such behavior can be attributed to
the following conditions. First, in BPM, it is assumed that
Kϕ and KV are small, which makes 1/kz as small as possible
in the expansion. In other words, all Fourier coefficients that
are multiplied with large 1/kz are effectively ignored, and that
promotes convergence. Second, as in Eq. (46), BPM does not
consider backscattered fields. This would decrease the norm
of the LSE operator. We present numerical experiments on
comparing the convergence behavior of Born series and BPM
in Sec. V.

B. On the appearance of a different value of ξ in BPM’s wave
modulation term

According to Eq. (45), BPM consists of two operations.
First, an incident field is propagated with small distance z–z0.
Subsequently, the field undergoes a phase modulation. The
modulation is proportional to (n/nb)ξ /ξ where ξ = 2. This
resembles BPM in previous studies except they suggest ξ = 1
[1,18].

The difference in the assumed values of ξ originates from
the respective assumptions. To track the differences, let us
again start with the Helmholtz equation Eq. (1), rewritten here
for convenience as[

∂2

∂2z
+ ∇2

xy + k2
0n2

]
ψ = 0, (47)

where ∇xy refers to the gradient in the lateral dimensions.
Setting P̂2 = ∂

∂z and Q̂2 = ∇2
xy + k2

0n2, the equation can be
further simplified as[

(P̂ + iQ̂)(P̂ − iQ̂) + i〈P, Q〉]ψ = 0, (48)

where 〈, 〉 is the commutator. If the variation of n along the op-
tical axis is negligible, then 〈P, Q〉 → 0 [18], which requires

[
P̂ − iQ̂

]
ψ = 0. (49)

In fact, we have another set of solutions from [P̂ + iQ̂]ψ = 0,
but this represents fields propagating backwards [33]. Conse-
quently, from Eq. (49), ψ can be expressed as

ψ (x, y, z) = exp
[
i(z − z0)

(∇2
xy + k2

0n2
)1/2

]
ψ (x, y, z0). (50)

Note that n = 1 leads to the propagation in free space, as
shown in [33]. To derive the BPM, it is required to separate
∇2

xy from n2 in the square root. A straightforward way to
separate them is to use the Taylor expansion:(∇2

xy + k2
0n2

)1/2 = k0

[
1 + 1

k2
0

∇2
xy + (n2 − 1)

]1/2

≈ k0 + 1

2k0
∇2

xy + k0

2
(n2 − 1). (51)

Eq. (51) would be satisfied if ‖ 1
k2

0
∇2

xy + (n2 − 1)‖ is small, i.e.,
both the refraction angle and the lateral variation of n are small
[34]. Equation (51) corresponds to the phase modulation with
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FIG. 5. xz view of scattered fields estimated from LSE and BPM for the objects as in Fig. 4, marked as (a) and (b).

ξ = 2, which uses the same assumptions on fields leading to
the derivation of Eq. (45). However, Refs. [18,35] suggest that(∇2

xy + k2
0n2

)1/2 ≈ (∇2
xy + k2

0

)1/2 + k0(n − 1), (52)

which can be justified if the lateral variation of n is small. This
corresponds to the phase modulation with ξ = 1.

Summarizing, Eqs. (51) for ξ = 2 and Eq. (52) for ξ = 1
require different assumptions. The former requires both ∇2

xyψ

and ∇2
xyn to be small; whereas the latter does not need the

small refraction angle condition. However, the small lateral
variation of n indirectly implies that the refraction angle of ψ

in the potentials also needs to be small. Hence, it is expected
that the ξ = 1 modulation would not result in significant
difference over the ξ = 2 modulation, especially when S is
small. This was confirmed empirically by our numerical ob-
servations. Explicitly, we depict the effect of ξ on spherical
potentials in Appendix D.

C. Validity of the BPM

Equations (35) and (40) imply that the BPM approaches
the LSE as KV , the upper bound of diffraction away from the
optical axis, becomes smaller. Hence, the difference between
BPM and LSE would also depend on KV and S . Since, again,
the exact evaluation of such difference can be difficult, here
we devise some simplifying approximations that also lend
some insight to the problem. From Eq. (31b),

Vz(x) ≈ CV K2
V sinc (2KV‖x‖)

≈ (k0nb)2

(
nz(x)

nb

)2

, (53)

where the subscript z is used to represent a z slice. In other
words, V is a function whose amplitude is (k0nz )2 and effec-
tive support is K−1

V . Assuming that the gradient of nz in the xy

plane is negligible, we may derive

ε0 ≈ CϕCzS−2

(
nz

nb

)2

(nbk0)δ0. (54)

This is the commutation error at k = 0 in Eq. (40). If S is
sufficiently small, then Eq. (39) gives

ε0 ≈ CϕCz

(
nz

nb

)2

(nbk0) S2. (55)

Neglecting the diffraction effect between z and z0, the com-
mutation error in the first-order scattering term, Eq. (26),
becomes

εz,z0 =
∫ z

z0

dz′ F̂†
xy

[
CϕCz

(
nz′

nb

)2

(nbk0)S2 + ε

]

≈ (z − z0)F̂†
xy

[
CϕCz

(
nz0

nb

)2

(nbk0)S2 + ε

]
, (56)

where the subscripts in εz,z0 are used to emphasize that now
we consider the total commutation error from a potential slice.
If we approximate ε as a function whose amplitude is ε0 and
effective support is mostly governed by ϕ, then Eq. (56) finally
becomes

εz,z0 ≈ C(z − z0)

(
nz0

nb

)2

(nbk0) S2, (57)

where C is a dimensionless number that is almost independent
of the system configuration. In addition, since we require
eikz (z−z0 ) to be nearly constant in the derivation of BPM,
nbk0(z − z0) can be regarded as another dimensionless number
that is independent of the system configuration. Subsequently,
we can further simplify εz,z0 as

εz,z0 ≈ C

(
nz0

nb

)2

S2. (58)
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FIG. 6. Scattered fields estimated from LSE and BPM when the mean refractive index n of spherical potentials changes. We consider
potentials which consist of spheres. The size of a cubic computational box is 16λ. We show two different objects, which are marked with
(a) and (b). Difference refers to the elementwise absolute error divided by the maximum field amplitude.

Using εz,z0 , the total commutation error, εt , in the first-order
scattering term from an entire potential can be expressed. Let
us denote as z1, · · · , zN th locations of the z slices along the
optical axis. Then,

εt =
N∑

m=1

εzm,zm−1

= C
N∑

m=1

(
nzm−1

nb

)2

S2(zm−1)

≈ C(nbk0)
∫ Rz/2

Rz/2
dz

(
nz

nb

)2

S2(z), (59)

where the z dependency of S is due to KV in S , and that is
approximately reciprocal to the size of the potential in the xy
plane; whereas Rz is the size of the potential along the optical
axis.

Equation (59) implies that the error of BPM increases as
the thickness of the potential increases and the lateral size of
the potential decreases, which agrees with previous studies on
optical scattering. What is important is that the effect of the
lateral size is larger than that of the thickness. To be more
specific, we can consider a case of Mie scattering where an
incident plane wave is scattered by a spherical potential of
radius Rz with constant refractive index n. Then

KV (z) ∼ 1√
R2

z − z2
, z ∈

[
−Rz

2
,

Rz

2

]
, (60)
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TABLE II. Image quality metrics on fields from LSE and BPM
when the mean refractive index n of spherical potentials changes. We
consider 15 different potentials which consist of dielectric spheres.
The size of the cubic computational box is 16λ. The phase is un-
wrapped along the optical axis. The full width at half maximum of
the Gaussian window in SSIM is λ/2.

SSIM PSNR Relative L1

n = 1.07, amplitude 0.931 36.722 2.790×10−2

n = 1.12, amplitude 0.888 34.429 6.291×10−2

n = 1.17, amplitude 0.838 32.394 9.715×10−2

n = 1.22, amplitude 0.812 31.137 12.076×10−2

n = 1.07, phase 0.990 39.126 4.114×10−2

n = 1.12, phase 0.971 36.198 4.339×10−2

n = 1.17, phase 0.933 31.826 5.272×10−2

n = 1.22, phase 0.910 29.105 6.042×10−2

which gives

εt ≈ C

(
n

nb

)2 1

nbk0Rz
ln 3. (61)

In other words, as the sphere becomes large with respect to the
incident wavelength, the error decreases though the thickness
of the potential grows. This is because the average error at
each potential slice decreases more rapidly.

Overall, Eq. (59) entails that BPM approximates the LSE if
the magnitude of the refractive index n and the dimensionless
parameter S are both small enough. Qualitatively, small S im-
plies that the variation of n along the lateral direction should
be small in the scale of the wavelength. In addition, Eq. (45)
suggests that the variation of n should also be small along the
optical axis. These ideas agree with previous studies [18,35].
Due to the complex behavior of ε and the accumulation of
commutation error in high order scattering terms in Eq. (44),
the actual dependency of the difference between BPM and
LSE may deviate from εt . Nevertheless, it can serve as a useful
lower bound for the accuracy of the BPM.

V. NUMERICAL DISCUSSION

In this section, we try to numerically validate our discus-
sions on LSE, Born series, and BPM. The Fourier transform
in BPM is efficiently evaluated by using the fast Fourier
transform (FFT). Similarly, the convolution integral with the
Green’s function in the Born series and the LSE is evaluated

TABLE III. Image quality metrics on fields from LSE and
FDTD. We consider 6 different potentials which consist of spheres.
The mean refractive index of spherical potentials is 1.02. The size of
a cubic computational box is 24λ. The phase is unwrapped along the
optical axis. The full width at half maximum of the Gaussian window
in SSIM is λ/2.

SSIM PSNR Relative L1

Amplitude 0.982 42.162 3.592×10−3

Phase 0.999 42.465 2.486×10−2

FDTD LSE

(a)

(b)

z

xy

(Length per wavelength)

x10-3
2 4 6 8 10

FIG. 7. Comparison of scattered fields from FDTD and LSE.
Two different potentials are considered where the mean refractive in-
dex is 1.02. These potentials are marked with (a) and (b). Difference
refers to the elementwise absolute error divided by the maximum
field amplitude.

using the convolution theorem and FFT [31,36]. We consider
a uniform and cubic computational grid where 6 pixels per
wavelength are used to discretize fields and refractive index
functions. The LSE is solved using the QMRCGSTAB al-
gorithm [37] until ‖Âψ − ψ0‖2/‖ψ0‖2 reaches 10−5 where
Âψ = ψ − Ĝ(V ψ ). Without much loss of generality, we
set nb = 1. Before proceeding further, we first demonstrate
that LSE well approximates the finite-difference time-domain
(FDTD) solutions in Appendix B.

In Sec. IV A, we discuss the stronger convergence behavior
of BPM compared to Born series. Mainly, this is because BPM
neglects high 1/kz portions in the field propagator, though
both methods originate from the same polynomial series of
f j . Figure 3 shows how scattered field estimations depend on
the magnitude of n. As n increases, the upper bound of the
operator norm of the LSE operator in Eq. (24) becomes high,
which indicates the divergence of Born series. However, BPM
does not exhibit such divergence.

We further investigate the difference between LSE and
BPM. Qualitatively speaking, it is controlled by the dimen-
sionless parameter S , which tells that large size and small
refractive index induce small difference. In Fig. 4, we can
see that complex interference patterns near small objects are
not well estimated in BPM. We also present quantitative com-
parison between them in Table I by measuring the structural
similarity index (SSIM) [38], the peak signal-to-noise ratio
(PSNR) [39] and the relative L1 error (also referred to as
MAE, mean absolute error). The quantitative metrics follow
the same trend as the qualitative analysis, except the L1 error
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FIG. 8. Scattered fields estimated from BPM with different ξ choices: ξ = 1 and ξ = 2. We consider potentials which consist of spheres.
The size L of a cubic computational box is changed from 16λ to 40λ. The mean refractive index of spherical potentials is 1.02. We show
two different objects, which are marked with (a) and (b). Difference refers to the elementwise absolute error divided by the maximum field
amplitude.

TABLE IV. Image quality metrics on fields from BPM with ξ =
1 and ξ = 2 when the size L of a cubic computational box changes.
We consider 15 different potentials which consist of spheres. The
mean refractive index of spherical potentials is 1.02. The phase is
unwrapped along the optical axis. The full width at half maximum of
the Gaussian window in SSIM is λ/2.

SSIM PSNR Relative L1

L = 16λ, amplitude 1.000 64.461 2.911×10−4

L = 24λ, amplitude 1.000 62.679 3.636×10−4

L = 32λ, amplitude 1.000 62.884 4.319×10−4

L = 40λ, amplitude 1.000 62.849 4.999×10−4

L = 16λ, phase 1.000 91.573 1.944×10−5

L = 24λ, phase 1.000 91.587 1.882×10−5

L = 32λ, phase 1.000 91.601 1.841×10−5

L = 40λ, phase 1.000 91.416 1.813×10−5

in amplitude. This can be attributed to high frequency oscilla-
tions along the optical axis when ψ0 is scattered by relatively
large objects. For example, in Fig. 5, we again see the good
agreement between LSE and BPM as the size of potentials in-
creases. At the same time, fine stripes of high relative L1 errors
appear, which originates from oscillatory patterns in ampli-
tudes along the optical axis. Such patterns are numerically
subtle to estimate accurately. In the perspective of n, Fig. 6 and
Table II demonstrates strong reciprocity between the magni-
tude of the refractive index and the error between LSE and
BPM, which agrees with our theoretical analysis. As addi-
tional information, we present the size dependency of the error
between LSE and BPM with relatively high mean refractive
indices in Appendix E. For more generality, we investigate the
behavior of LSE and BPM on objects that are topologically
distinct to spheres, i.e., tori in Appendix F. The results therein
show comparable results to the spherical cases.
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FIG. 9. Scattered fields estimated from LSE and BPM when the size L of a cubic computational box changes. We consider potentials which
consist of spheres. The mean refractive index of spherical potentials is 1.08. We show two different objects, which are marked with (a) and (b).
Difference refers to the elementwise absolute error divided by the maximum field amplitude.

VI. CONCLUSIONS

In this work, we discuss analytical relationships between
three methods for estimating optical scattering: LSE, BPM,
and Born series. It is shown that BPM and Born series both
can originate from the series expansion of LSE. However,
they exhibit different convergence behavior. Analyzing this
behavior, we suggest a simple and dimensionless condition
to guarantee the convergence of Born series that is tighter
than previous studies. Furthermore, assumptions behind BPM
that field propagation and modulation from optical potentials
commute can effectively reduce the operator norm of the LSE
operator, leading to a stronger convergence than Born series.
The errors resulting from such commutation assumption can
be estimated by a dimensionless parameter S . Subsequently,
we conduct numerical experiments, which corroborate the

feasibility of our theoretical analysis. We limited our analysis
to scattering from the Helmholtz model; we expect that the
discussions are applicable to other scattering models, relevant
methods and experimental conditions.
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FIG. 10. Scattered fields estimated from LSE and BPM when the size L of a cubic computational box changes. We consider two distinct
potentials, marked as (a) and (b), both consisting of dielectric tori. The mean refractive index is 1.02. The difference refers to the elementwise
absolute error divided by the maximum field amplitude. For more visibility, we show the shape of objects where the scattered field boxes
correspond to the regions enclosed with dotted black lines.
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FIG. 11. xz view of scattered fields estimated from LSE and BPM for the objects as in Fig. 10, marked as (a) and (b).
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APPENDIX A: LSE AS A COMPOSITION
OF 2D FOURIER TRANSFORMS

In this section, we derive Eq. (5). Fourier transforming ψ −
ψ0 yields

F̂xy[ψ (r) − ψ0(r)](kx, ky, z)

=
∫

dx dy e−ikxx−ikyy[ψ (r) − ψ0(r)]

=
∫

dx dy e−ikxx−ikyy
∫

dr′ G(r − r′)V (r′)ψ (r′). (A1)

Using the Weyl expansion, Eq. (4), the Green’s function can
also be expressed as a 2D Fourier transform. Then we obtain

F̂xy[ψ (r) − ψ0(r)](kx, ky, z)

= i

8π2

∫
dx dy

∫
dr′

∫
dk′

xdk′
y e−ikxx−ikyy

× ei(k′
x (x−x′ )+k′

y (y−y′ )+k′
z |z−z′ |)

k′
z

V (r′)ψ (r′)

= i

8π2

∫
dr′V (r′)ψ (r′)

∫
dk′

xdk′
y

× e−i(k′
xx′+k′

yy′−k′
z |z−z′ |)

k′
z

∫
dx dy ei(x(k′

x−kx )+y(k′
y−ky ))︸ ︷︷ ︸

(2π )2δ(kx−k′
x )δ(ky−k′

y )

= i

2

∫
dr′V (r′)ψ (r′)

e−i(kxx′+kyy′−kz |z−z′ |)

kz

= i

2

∫
dz′ eikz |z−z′ |

kz

∫
dx′dy′V (r′)ψ (r′) e−i(kxx′+kyy′ )

= i

2

∫
dz′ eikz |z−z′ |

kz
F̂xy[V (r)ψ (r)](kx, ky, z′). (A2)

Taking the inverse Fourier transform in Eq. (A2) finalizes the
derivation leading to Eq. (5).

APPENDIX B: COMPARISON BETWEEN FDTD AND LSE

To test the estimation quality of LSE, we compare it with
FDTD solutions from the Lumerical [40] 3D Electromagnetic
Simulator. In Fig. 7, it can be observed that the high frequency
interference patterns are approximated well by the LSE. The
numerical difference in each voxel is less than one percent of
the maximum amplitude value. In Table III, we list quantita-
tive results considering six different potentials. These results
further corroborate the validity of the LSE.

APPENDIX C: POTENTIAL BOUND FOR CONVERGENCE
OF THE BORN SERIES

Previous studies discuss how to estimate the operator
norm of the LSE integral operator and thus guarantee the
convergence of the Born series. For example, Ref. [29]
requires

2
∫

max
θ,φ

|V (r, θ, φ)|rdr < 1, (C1)

where r, θ , and φ are radial distance, polar angle, and az-
imuthal angle in the spherical coordinate system. Considering
the simplest case, let us assume a Mie scattering condition
in which a sphere of radius R scatters a plane wave. Then
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TABLE V. Image quality metrics on fields from LSE and BPM
when the size L of a cubic computational box changes. We consider
15 different potentials which consist of spheres. The mean refractive
index of spherical potentials is 1.08. The phase is unwrapped along
the optical axis. The full width at half maximum of the Gaussian
window in SSIM is λ/2.

SSIM PSNR Relative L1

L = 16λ, amplitude 0.923 36.243 3.392×10−2

L = 24λ, amplitude 0.930 37.200 4.170×10−2

L = 32λ, amplitude 0.932 37.691 4.932×10−2

L = 40λ, amplitude 0.937 38.330 5.528×10−2

L = 16λ, phase 0.989 38.068 4.121×10−2

L = 24λ, phase 0.990 40.656 2.769×10−2

L = 32λ, phase 0.986 41.105 2.220×10−2

L = 40λ, phase 0.983 40.212 1.938×10−2

Eq. (C1) becomes(
n

nb

)2

< 1 + 1

(nbk0R)2
. (C2)

Similarly, Ref. [32] suggests(
n

nb

)2

< 1 + 1

17/2(nbk0R)2 + 2
√

74(nbk0R) + 105
. (C3)

By comparison, our discussion in Sec. III A concludes that it
is sufficient to satisfy(

n

nb

)2

< 1 + 1

2
√

3(nbk0R)
(C4)

to make the Born series convergent. The scalar wave ap-
proximation already requires nbk0R � 1, which means that
(nbk0R)2 terms in Eqs. (C1)–(C3) increase quickly. This
makes the estimation on the upper bound of n too close to
1. On the contrary, Eq. (C4) shows the first-order dependency
on nbk0R, which relaxes the requirement on n.

TABLE VI. Image quality metrics on fields from LSE and BPM
when the size L of a cubic computational box changes. We consider
15 different potentials which consist of dielectric tori. The mean
refractive index is 1.02. The phase is unwrapped along the optical
axis. The full width at half maximum of the Gaussian window in
SSIM is λ/2.

SSIM PSNR Relative L1

L = 16λ, amplitude 0.947 39.372 7.497×10−3

L = 24λ, amplitude 0.965 41.841 7.795×10−3

L = 32λ, amplitude 0.972 42.954 8.147×10−3

L = 40λ, amplitude 0.975 43.626 8.514×10−3

L = 16λ, phase 0.991 38.066 4.102×10−2

L = 24λ, phase 0.995 41.622 2.699×10−2

L = 32λ, phase 0.997 44.137 2.011×10−2

L = 40λ, phase 0.998 46.081 1.603×10−2

TABLE VII. Image quality metrics on fields from LSE and BPM
when the mean refractive index n of spherical potentials changes. We
consider 15 different potentials which consist of dielectric tori. The
size of the cubic computational box is 16λ. The phase is unwrapped
along the optical axis. The full width at half maximum of the Gaus-
sian window in SSIM is λ/2.

SSIM PSNR Relative L1

n = 1.07, amplitude 0.915 36.019 3.534×10−2

n = 1.12, amplitude 0.835 32.101 8.188×10−2

n = 1.17, amplitude 0.740 29.499 13.925×10−2

n = 1.22, amplitude 0.657 27.537 17.640×10−2

n = 1.07, phase 0.986 37.707 4.143×10−2

n = 1.12, phase 0.951 33.572 4.681×10−2

n = 1.17, phase 0.899 28.539 5.971×10−2

n = 1.22, phase 0.852 25.029 8.073×10−2

APPENDIX D: NUMERICAL COMPARISON ON
DIFFERENT ξ IN BPM’S WAVE MODULATION

Based on the discussion in Sec. IV B, we compare field
estimations from different ξ in BPM. In Fig. 8, it is
shown that there is no significant difference in scattered
amplitudes and the elementwise difference is less than one
percent of maximum amplitude value. This can be quan-
titatively validated in Table IV where SSIM and PSNR
exhibit very high values. Hence, we may conclude that ξ = 1
and ξ = 2 in the phase modulation term would not signif-
icantly influence the field estimation, except some unusual
cases.

APPENDIX E: SUPPLEMENT TO SIZE DEPENDENCE
OF ERROR BETWEEN LSE AND BPM

Corroborating results in Fig. 4 and Table I, we conduct
additional experiments on the size dependency of the error
between LSE and BPM under a higher refractive index n
condition. Specifically, we set n = 1.08. In Fig. 9, we can
observe the expected tendency of BPM to well approximate
interference patterns of LSE as size increases, except at
strong focal points. Table V lists corresponding quantitative
results, which show decrease in SSIM and PSNR for the
phase from large potentials. This may be attributed to the
increased ill-conditionedness of the LSE operator [41] and
fine oscillatory features, which reduces the numerical stability
of the simulation.

APPENDIX F: COMPARISON BETWEEN LSE
AND BPM WITH NONSPHERICAL OBJECTS

In Sec. V, we compare LSE and BPM based on the dimen-
sionless parameter S , providing numerical results on spherical
objects. To further check the applicability of our discussion,
we consider tori, which are topologically distinct to spheres
while not containing edges that are sharp enough to desta-
bilize numerical solvers [42]. In Fig. 10, it can be seen that
high-frequency interference patterns start to appear in BPM
as L increases. Table VI shows quantitative analysis on the
effect of L. Except for the relative L1 error in amplitude seen
in Fig. 11 and which we discussed already with reference to
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LSE BPM LSE BPM
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z
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FIG. 12. Scattered fields estimated from LSE and BPM when the mean refractive index n of a cubic computational box changes. We
consider potentials which consist of tori. The size of a cubic computational box is 16λ. We show two different objects, which are marked with
(a) and (b). Difference refers to the elementwise absolute error divided by the maximum field amplitude. For more visibility, we show the
shape of objects where the scattered field boxes correspond to the regions enclosed with dotted black lines.

Fig. 5, the quantitative results are in a good agreement with
our theoretical discussion. Figure 12 depicts the difference
between LSE and BPM and n changes. The agreement be-
tween LSE and BPM deteriorates in a high index setup

and near the focal points, which implies that BPM may be
inappropriate in this case. Table VII provides quantitative
analysis on the effects of n, which also meets the theorecial
expectation.
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