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Fig. 1. We present a fast and easy-to-use method for animating the types of abstract and varied human-like figures drawn

by children.

Children’s drawings have a wonderful inventiveness, creativity, and variety to them. We present a system that automatically

animates children’s drawings of the human igure, is robust to the variance inherent in these depictions, and is simple and

straightforward enough for anyone to use. We demonstrate the value and broad appeal of our approach by building and

releasing the Animated Drawings Demo, a freely available public website that has been used by millions of people around the

world. We present a set of experiments exploring the amount of training data needed for ine-tuning, as well as a perceptual

study demonstrating the appeal of a novel twisted perspective retargeting technique. Finally, we introduce the Amateur

Drawings Dataset, a irst-of-its-kind annotated dataset, collected via the public demo, containing over 178,000 amateur

drawings and corresponding user-accepted character bounding boxes, segmentation masks, and joint location annotations.
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CCS Concepts: · Computing methodologies→ Animation; Image manipulation.

1 INTRODUCTION

Children’s depictions of the human igure are highly expressive and varied. As one of the very irst subjects
children attempt to draw, these representations begin as an almost unintelligible cloud of scribbles. As a child
grows, their representation of the human igure becomes more developed and is extended to graphically represent
many diferent types of characters: people, animals, and even personiied objects (see Figure 1).
Who among us has not wished, either as a child or as an adult, to see such igures come to life and move

around on the page? Sadly, while it is relatively fast to produce a single drawing, creating the sequence of images
necessary for animation is a much more tedious endeavor, requiring discipline, skill, patience, and sometimes
complicated software. As a result, most of these igures remain static upon the page.

Inspired by the importance and appeal of the drawn human igure, we design and build a system to automatically
animate it given an in-the-wild photograph of a child’s drawing. Our system is fast, intuitive, and robust to much
of the variation present in these types of drawings, making it well-suited to allow our target audienceśchildrenśto
see their own characters coming to life. The system is comprised of four stages: igure detection, segmentation
masking, pose estimation/rigging, and animation. We describe each stage and identify common causes of failure
in each. For object detection and pose estimation, we make use of existing computer vision models designed to
detect human igures and joints in photographs; we ine-tune these models for use with children’s drawings. For
segmentation, we present a straightforward, image processing-based method that, for animation purposes, is
more useful and accurate than segmentation masks obtained from a ine-tuned object detection model. During
the animation step, we take advantage of the twisted perspective commonly seen in children’s drawings to retarget
motion capture data onto the character in a novel and appealing way.
While our system leverages existing models and techniques, most are not directly applicable to the task due

to the many diferences between photographic images and simple pen and paper representations. Therefore,
we couple the presentation of our system with a set of experiments exploring the relationship between ine-
tuning training set size and success rates. We also include a perceptual study validating viewer preference for
incorporating twisted perspective into the motion retargeting step.

We validate the desirability and appeal of our system by building and publicly releasing a version of it as the
Animated Drawings Demo [Meta 2022]. Launched in December 2021, this demo has been used by millions of
people around the world to animate their drawings. Inspired by this reception, our second contribution is the
Amateur Drawings Dataset: 178,166 drawings and user-accepted annotations collected, with consent, through the
demo. See Section 3.5 for a description of how the annotations were generated. We believe this dataset will be a
resource to researchers from various ields seeking to better understand the space of amateur drawings, evaluate
new algorithms in this domain, or develop new drawing-based tools in general.

To summarize, our contributions are as follows:

(1) We explore the problem of automatic sketch-to-animation for children’s drawings of human igures and
present a framework that achieves this efect. We also present a set of experiments determining the amount
of training data necessary to achieve high levels of success and a perceptual study validating the usefulness
of our motion retargeting technique.

(2) To encourage additional research in the domain of amateur drawings, we present a irst-of-its-kind dataset
of 178,166 user-submitted amateur drawings, along with user-accepted bounding box, segmentation mask,
and joint location annotations.

In addition, we also provide the project’s animation code and the ine-tuned model weights for drawn human
igure detection and pose estimation.
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2 BACKGROUND

Ourwork builds on existingmethods from several ields but is, to our knowledge, the irst work focused speciically
on fully automatic animation of children’s drawings of human igures. To ground the work, we provide a summary
of salient observations from the ield of children’s art analysis. In addition, we briely review related work on 2D
image-to-animation and object and pose estimation for abstract images.

2.1 Analysis of Children’s Drawings

Children’s drawings have long been of interest to the scientiic community. For well over a century, researchers
from multiple ields have collected [Geist and Carroll 2002; Kellogg 1967; Robert et al. 2016; Venable 2022] and
analyzed them, seeking to understand and measure children’s thought processes [Barnes 1892; Buhler 2013; Clark
1897; Sully 2021], intellectual development [Goodenough 1926], and perceptions [Chambers 1983; Cherney et al.
2006]. Particular attention has been given to drawings of human igures, one of the irst and most frequently
drawn subjects throughout childhood [Cox 2013].
As the child develops, the schemas they employ to represent the human form become more complete (see

Figure 2). Even within these schemas, there is signiicant variation. In addition to asymmetries and variation in
color and proportion, many body parts appear optional to include; a study of drawings by 4-6 year old children
showed that, while heads, legs, and eyes are almost universally present, other body parts (including torsos, arms,
hands, and feet) were frequently absent [Cox 2013]. Inversely, non-human body parts are frequently added in
order to represent other subject classes [Kellogg 1969]. With the addition of large ears, the igure may represent a
cat or bear (Figures 4.m and 4.g); with the addition of a crown, it can represent a pineapple (Figure 4.n). All of
these sources of character variation make automatic character animation from drawings a non-trivial task.

Many researchers have focused closely on the unique style of children’s drawings. The psychologist and artist
John Willats argues that, in order to understand the style of children’s drawings, one must understand that the
primary picture primitives employed by children are regions, or 2D areas [Willats 2006]. A squat volume, such
as a head or torso, may be represented by a circular or ellipsoid region, whereas an elongated volume, such as
a leg, may be represented by a long, thin region or even a single line. These regions are not depictions of the
object from any particular point of view. Rather, they are 3D volumetric object-centered descriptions [Marr 1982],
2D areas with attributes perceptually similar to those of 3D object they are meant to represent.
There are two stylistic outcomes of these object-centered descriptions that bear mention. First, the use of

foreshortening is very rare in children’s drawings [Piaget 1956;Willats 1992]. This design choice is understandable;
foreshortening a long region, such as a limb, results in a short region which does not adequately relect the
longness of the object. Second, the human igure may appear to have been drawn frommany diferent perspectives,
so as to make each part of the character maximally recognizable. For example, the head and torso may face
forward while the legs and feet are pointed to the side. This technique, often referred to as twisted perspective, is
frequently seen and well-documented [Dziurawiec and Deregowski 1992]. Both of these stylistic aspects are used
to guide the design decisions of our system when applying human motion capture data onto the character.

2.2 2D Image to Animation

Previous researchers have proposed methods to animate drawings or photographs, many of which rely upon
additional modes of user input. Hornung et al. present a method to animate a 2D character in a photograph,
given user-annotated joint locations [Hornung et al. 2007]. Pan and Zhang demonstrate a method to animate 2D
characters with user-annotated joint locations via a variable-length needle model [Pan and Zhang 2011]. Jain et al.
present an integrated approach to generate 3D proxies for animation given joint locations, segmentation masks,
and per-part bounding boxes [Jain et al. 2012]. Levi and Gotsman provide a method to create an articulated 3D
object from a set of annotated 2D images and an initial 3D skeletal pose [Levi and Gotsman 2013]. Live Sketch [Su
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Fig. 2. As children learn to draw the human figure, the morphologies of the schemas they employ vary and evolve consider-

ably [Cox and Cox 2014]. Children frequently begin by drawing a tadpole figure, a circular head region from which arms and

legs extend. Some will progress to a transitional figure, dropping the arms down so they extend from the legs. When a line is

drawn between the legs, creating the separate torso region, the conventional figure is formed. Though these are small changes

from the perspective of the drawer, they result in significantly diferent character morphologies when viewed through the

lens of character animation. A successful drawing-to-animation system must be robust to these types of variations.

et al. 2018] tracks control points from a video and applies their motion to user-speciied control points upon a
character. Other approaches allow the user to specify character motions through a puppeteer interface, using
RGB or RGB-D cameras [Barnes et al. 2008; Held et al. 2012]. ToonCap [Fan et al. 2018] focuses on an inverse
problem, capturing poses of a known cartoon character, given a previous image of the character annotated with
layers, joints, and handles.

Toonsynth [Dvorožnák et al. 2018] and Neural Puppet [Poursaeed et al. 2020] both present methods to synthesize
animations of hand-drawn characters given a small set of drawings of the character in speciied poses. Hinz
et al. train a network to generate new animation frames of a single character given 8-15 training images with
user-speciied keypoint annotations [Hinz et al. 2022].

Monster Mash [Dvorožňák et al. 2020] presents an intuitive framework for sketch-basedmodeling and animation,
and 2.5D Cartoon Models [Rivers et al. 2010] presents a novel method of constructing 3D-like characters from
a small number of 2D representations. Both of these are intuitive and well designed animation tools targeted
towards amateur users.

Some animation methods are speciically tailored toward particular forms, such as faces [Averbuch-Elor et al.
2017], coloring book characters [Magnenat et al. 2015], or characters with human-like proportions. One notable
work that is focused on the human form is Photo Wake Up [Weng et al. 2019]. The authors show a method for
creating a rigged and textured 3D mesh from a single image of a human-like igure. Similar to us, their end goal is
to allow users to seamlessly bring 2D characters to life; their work does an impressive job of accomplishing this.

ACM Trans. Graph.
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Our method difers in two signiicant ways. First, while their work is focused on creating a 3D model for a mixed
reality use case, ours is speciically focused on animating twisted perspective igures while staying within a 2D
plane. Second, children’s drawings are much more abstract, incorrectly proportioned, and non human-like than
the examples demonstrated in the paper. We test our method upon the more abstract examples demonstrated in
their paper and, with minor segmentation cleaning, they were successfully animated by our method.
While the approaches listed here are wonderful tools to ease the burden of animation, none were perfectly

suited to our use case. Some require additional user input beyond the drawing itself, making the animation
process more complex. Others require the user to consistently draw the same character in multiple poses, which
is beyond the skills of young children. Others are focused on animating speciic forms, precluding their use on
children’s drawings of the human igure.

2.3 Detection, Segmentation, and Pose Estimation on Non-Photorealistic Images

Aided by the the existence of large annotated datasets [Andriluka et al. 2014; Ionescu et al. 2014; Lin et al. 2014],
researchers have made considerable progress solving the problems of object detection, segmentation, and pose
estimation from photographs. See, for example [Cao et al. 2019; Fang et al. 2022; He et al. 2017; Rıza Alp Güler
2018; Toshev and Szegedy 2014]. We explain the methods in this area that we leverage in Sections 3.1 and 3.3.
While traditional methods for detection, segmentation, and pose estimation of non-photorealistic images

exist [Bregler et al. 2002; Choi et al. 2012; Davis et al. 2006; Eitz et al. 2012], the lack of easily available datasets
has resulted in slower adoption of deep learning models. Some researchers are addressing this problem by
developing methods and releasing datasets focused on the domain of anime characters [Chen and Zwicker 2022;
Khungurn and Chou 2016], professional sketches [Brodt and Bessmeltsev 2022], and mouse doodles [Ha and
Eck 2017]. Other researchers have presented a non-deep learning method for inferring character poses from
gesture drawings [Bessmeltsev et al. 2016]. Because the Amateur Drawings Dataset is comprised of in-the-wild
photographs of drawings created by the general public, we believe it will complement the value of existing
datasets and allow for new dimensions of exploration and analysis.

3 METHOD

Fig. 3. An overview of the drawing-to-animation pipeline. Given an input drawing, the human figure within it is identified

and used to crop the image. From the cropped image, the human figure segmentation mask and joint locations are obtained

and used to create a character rig. Motion capture data is then retargeted onto the character rig to produce animations.

Our goal is a system that generates an animation from a single drawing of a human igure. To make the
experience as simple and accessible as possible, we take the input to be a single in-the-wild photograph of a
drawing, as might be captured with a mobile phone camera. While vector drawings from tablet-based interfaces
can provide stroke-level information, previous in-classroom research has found tablet-based drawing interfaces
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to be more fatiguing and diicult to use than their analog counterparts [Picard et al. 2014]; we therefore assume
the input to be a raster image that is a photograph of a child’s drawing with pen, crayon, paint, or other common
art material.

Starting with the single image, we structure the task as a series of sub-tasks: human igure detection, segmenta-
tion, pose estimation, and animation (Figure 3). The irst step is to identify the human igure within the drawing
and predict a bounding box that tightly encompasses it. Second, we use the contents of the bounding box to obtain
a segmentation mask, separating pixels belonging to the human igure from those belonging to the background.
Third, we use the contents of the bounding box to perform pose estimation on the igure, identifying a series
of skeletal joints. With the original image, segmentation mask, and joint locations, we generate a character rig
suitable for animation. Finally, we animate the character rig by retargeting motion capture data onto it.

In the following sections, we describe the steps in more detail and provide examples of common failures that
can occur. We end by describing how the system is framed within the publicly released Animated Drawings
Demo and how the user interface is structured to allow users to modify the model predictions as needed.

3.1 Figure Detection

We irst detect a bounding box around the human igure within the drawing. This step is necessary because many
children’s drawings portray human igures as part of a larger scene [Kellogg 1967] and because the photograph
may include background either drawn or outside the bounds of the piece of paper such as a table surface.

We make use of a state-of-the-art object detection model, Mask R-CNN [He et al. 2017], with a ResNet-50+FPN
backbone. We utilize pretrained weights derived from the MS-COCO dataset, one of the largest publicly available
semantic segmentation datasets [Lin et al. 2014]. However, MS-COCO is comprised primarily of photographs
of real-world objects, not artistic renderings, and does not contain a category for drawings of human igures.
Therefore, we ine-tune the model. The model’s backbone weights are frozen and attached to a head, which
predicts a single class, human igure. The weights of the head are then optimized using cross-entropy loss and
stochastic gradient descent with an initial learning rate of 0.02, momentum of 0.9, weight decay of 1e-4, and
minibatches of size 8. Training was conducted using OpenMMLab Detection Toolbox [Chen et al. 2019]; all
other hyperparameters were kept at the default values provided by the toolbox. Each model was trained until
convergence on a server with eight Tesla V100-SXM2 GPUs.
In Figure 4, we show representative example predictions. See supplemental material for additional examples.

For an exploration of the amount of training data necessary to achieve acceptable results, see Section 4.2.

3.2 Figure Segmentation

With the bounding box identiied, we next obtain a segmentation mask, separating the igure from the background.
This step is surprisingly diicult; there is a great deal of variation in igure appearance and in photograph quality.
Additionally, texture and color, two attributes that are useful for segmentation in photographs, are of limited
value here: they are a function of the artist’s drawing style and their available drawing tools. While Mask R-CNN
does predict a segmentation mask for each detection, we found them to be inadequate in many cases. Because this
mask will be used to create a 2D textured mesh of the igure, it must be a single polygon that tightly conforms to
the edges of the igure, includes all body parts, and excludes extraneous background elements.
We therefore use a classical, image processing-based approach for extracting masks (see Figure 5). First, we

resize the bounding box-cropped image to a width of 400 pixels while preserving the aspect ratio. Next, we convert
the image to grayscale and perform adaptive thresholding, where the threshold value is a Gaussian-weighted
sum of the neighborhood pixel values minus a constant C [Gonzalez and Woods 2008]. Here, we use a distance of
8 pixels to deine the neighborhood and a value of 115 for C. To remove noise and connect foreground pixels, we
next perform morphological closing, followed by dilating, using 3x3 rectangular kernels. We then lood ill from
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Fig. 4. Row 1 shows representative detection failures from pretrained Mask R-CNN (let) that were corrected ater model

fine-tuning (right): excluding hollow parts of a figure (a), false negatives (b), incorrectly detecting objects in the background

(c), and detecting and incorrectly classifying parts of figures (c, d). Row 2 contains examples of successful detections from

the fine-tuned model. Row 3 contains representative examples of failures: multiple detections of the same figure (l), false

negatives (m, n), false positives (o, q), and detections that cut of figure parts (p, r). Additional examples are shown in the

supplemental material.

the edges of the image, ensuring that any closed groups of foreground pixels are solid and do not contain holes.
Finally, we calculate the area of each distinct foreground polygon and retain only the one with the largest area.

While this method is straightforward, we nonetheless found it to be an efective method for extracting useful
and precise igure masks. However, it will fail when body parts are drawn separated, limbs are drawn touching at
points other than the joints, the igure is not fully contained by the bounding box, or the outline of the igure is not
completely connected. For examples comparing the Mask R-CNN segmentation predictions to the image-based
processing approach, see Figure 6.

3.3 Pose Estimation

To allow the character to perform complex motions, we need an understanding of its proportions and pose.
However, a ine-grained analysis of a igure’s body parts is tricky, due to the sparse and abstract way in which
they can be represented; a single line may be the edge of an arm (Figure 7.l), an entire arm (Figure 7.k), a design
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Fig. 5. We use an image processing-based approach to extract the figure mask. Beginning with the contents of the detected

bounding box (a), we convert to grayscale and apply adaptive thresholding (b), perform morphological closing (c) and dilating

(d), flood filling (e), and retain only the largest polygon (f). Here the resulting mask tightly conforms to the original figure (g).

Fig. 6. Given the input images cropped to the computed bounding boxes, shown in the top row, the image processing-based

segmentation method computes the masks shown in the middle row. The botom row shows the masks predicted by the

fine-tuned Mask R-CNN model. Oten the image processing method gives usable results while the Mask R-CNN model

excludes or detaches body parts (a, b, g, h), improperly ataches limbs to the body or head (c, d, e, f,) or includes non-figure

elements (f, h). Columns i and j show examples in which the image processing method fails to extract a good mask, which

can occur when the limbs of the figure are not drawn atached to the body (i) or the strokes outlining the figure are not

connected (j). Note that (j) is an example of a figure for which the Mask R-CNN segmentation prediction is more suitable for

animation than the mask obtained through our image processing-based segmentation method.

on the igure’s shirt (Figure 7.e), a background element (Figure 4.f), or a preexisting print upon the page (Figure
4.l),

Discerning exactly what each stroke of a drawing is can be diicult, even for humans. To make this task more
tractable, we instead only seek to identify a small set of keypoints that can be used as joints during the animation
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step. We assume the presence of the 17 keypoints used by MS-COCO [Lin et al. 2014] (see Figure 8) and use a
pose estimation model to predict their locations.
While there are many pose estimation models suitable for photographs of people, they do not perform well

upon images of drawn human igures, which are quite diferent in appearance. We therefore train a custom pose
estimation model utilizing a ResNet-50 backbone, pretrained on ImageNet, and a top-down heat map keypoint
head that predicts an individual heatmap for each joint location. The cropped human igure bounding box is
resized to 192x256 and fed into the model, and the highest-valued pixel in each heatmap is taken as the predicted
joint location. Mean squared error is used for joint loss, and optimization is performed using Adaptive Momentum
Estimation with learning rate of 5e-4 and minibatches of size 512. Training was conducted using the OpenMMLab
Pose Toolbox [Contributors 2020]; all other hyperparameters were kept at the default values provided by this
toolbox. The model was trained on a server with eight Tesla V100-SXM2 GPUs until convergence.

We provide representative examples of successful and unsuccessful pose estimation examples in Figure 7. See
the supplemental material for additional examples. As with detection, see Section 4.2 for an exploration of the
amount of training data necessary to achieve acceptable results.

Fig. 7. Examples of successful and unsuccessful pose estimations. Frequent causes of failure include limb confusion caused

by background elements (k), limb confusion caused by other figure parts (h, m, n), and objects held by the figure (i, l).

Human figures not drawn facing forward, while infrequent, also result in failure (j). Additional examples are shown in the

supplemental material.

3.4 Animation

We next create a rigged character, suitable for animation, from the mask and joint predictions. From the seg-
mentation mask, we use Delaunay triangulation to generate a 2D mesh and texture it with the original drawing.
Using the joint locations, we construct a character skeleton. We use the predicted positions of the left and right
shoulders, elbows, wrists, hips, knees, ankles, and nose. We average the position of the two hips to obtain a root
joint and average the position of the two shoulders to obtain the chest joint. We connect these joints to create
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Fig. 8. Let: Given the predicted joint keypoints (a), we create a skeletal rig used to animate the character (b). Right: In this

example, we take the original pose from a motion capture actor and project the torso and upper limb joint locations onto a

frontal plane, while projecting the lower limb joint locations onto a sagital plane (c). We then find the global orientations of

the bones within their respective planes and rotate the character’s joints to match, resulting in the retargeted pose (d).

the skeletal rig as shown in Figure 8.b. Finally, we assign each mesh triangle to one of nine diferent body part
groups (left upper leg, left lower leg, right upper leg, right lower leg, left upper arm, left lower arm, right upper
arm, right lower arm, and trunk) by inding the closest bone to each triangle’s centroid. During the animation
step, diferent body part groups can be rendered in diferent orders, giving the illusion of limbs being in front of
or behind the body.

We animate the character rig by translating the joints and using as-rigid-as-possible (ARAP) shape manipula-
tion [Igarashi et al. 2005] to repose the character mesh. To make the process simple for the user, we drive the
character rig using a library of preselected motion clips obtained from human performers. Because the human
igures are 2D and often have very diferent proportions and appearances from those of real humans, care must
be taken when deciding how to best utilize the 3D motion data. We retarget the motion in the following manner.

We initially preprocess a motion clip by subtracting, per frame, the X and Z position of the root joint from the
motion caption actor’s skeleton, such that the skeleton’s root joint is always located above the origin. We also
rotate the skeleton about the vertical axis such that its forward vector (deined as the vector perpendicular to the
average of the vector connecting the shoulder joints and the vector connecting the hip joints) is facing along the
positive X axis. We then project the skeleton’s joint locations onto a 2D plane (shortly, we will describe how to
select the 2D plane).
Next, for the bones of the upper arms, lower arms, upper legs, lower legs, neck, and spine, we compute the

global orientation of each bone within the 2D projection plane. We then rotate the corresponding bones of the
character rig so as to match these global orientations. Using the new joint positions as ARAP handles, we repose
the mesh. When the character rig is reposed this way, the lengths of the character’s bones are never foreshortened.
This is an intentional design decision; foreshortening is quite rare in children’s drawings [Willats 2006], and we
therefore opted for a method of animation that does not introduce it.
To apply root motion, we compute the per-frame root ofset of the human actor and scale it by the constant

ratio of the actor’s average leg length to the character’s average leg length. The resulting ofset is applied to the
character rig, moving it horizontally across the screen.

When projecting the actor’s 3D joint locations onto a 2D plane, there are multiple planes from which to choose.
Which plane to select depends upon the motion: jumping jacks will be most recognizable when projected onto a
frontal plane, while the hip hop dance running man will be most recognizable when projected onto a sagittal
plane. In order for the motion to remain recognizable, the choice of projection plane should preserve as much
joint position variance as possible.

ACM Trans. Graph.
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We automatically compute the plane as a function of the motion. After preprocessing the motion data (as
described above), we plot the joint positions over the entire motion clip as a point cloud and perform principal
component analysis upon it. The irst two principal components deine a 2D plane upon which joint position
maximally varies. The third principal component deines a vector normal to this plane. We select as the 2D
projection plane either the skeleton’s frontal plane or sagittal plane, depending upon which has a normal vector
with a higher cosine similarity to the third principal component.

This projection technique will work well when the source 3D motion primarily occurs on a single plane (such
as jumping jacks or a cartwheel). However, some motions do not cleanly fall onto a single plane, and are therefore
more diicult to recognize after being projected to 2D.

To increase the number of motions that remain recognizable, we do not restrict ourselves to using the same 2D
plane for the entire skeleton. Rather, we independently create joint point clouds, perform principal component
analysis, and select the projection plane for the upper limbs and the lower limbs (see Figure 8, right).

Mixing perspectives in this manner can result in unrealistic motions, but there can be artistic reasons to justify
such deviations from realism [Singh 2002]. Many children’s drawings already employ the technique of twisted
perspective, drawing diferent parts of a human igure from diferent points of view [Dziurawiec and Deregowski
1992]. As a result, mixing perspectives when retargeting matches the motion style to the drawing style, increasing
the appeal of the inal animation as we demonstrate with a user study (see Section 4.3).

3.5 User Interface

The purpose of the system is to empower users to create appealing animations from their children’s drawings. To
increase the chance of a successful outcome, we make certain assumptions about the input image and expose a
simple user interface that allows for step-by-step corrections, if needed.
For the detection step, we assume a single human igure to be present within the scene. If multiple human

igures are detected by the model, we return a single bounding box encompassing all detected bounding boxes. If
no human igures are detected, we return a single bounding box containing the entire image. Users are prompted
to drag the edges of the bounding box to it to their human igure as needed before continuing to the segmentation
step (Figure 9.b).
In the segmentation step, users are presented with a visualization of the segmentation mask overlaid on the

original image. Users can use a pencil and eraser tool to add and subtract pixels from the mask (Figure 9.c). After
the user has modiied the mask, it is again lood illed and the largest polygon is retained to ensure the mask is a
single, solid region (steps e and f in Figure 5).

In the pose detection step, users are shown the predicted joint locations overlaid upon their drawing. If a joint
is incorrectly positioned, the user can drag it to a more appropriate location (Figure 9.d). Users cannot add or
delete joints, but are instructed to drag joints far away from the human igure to avoid using them for animation.
Finally, users are shown a gallery of preselected motions performed by an example character; clicking on a

motion applies it to the user’s character rig (Figure 9.e). The gallery of preselected motions is static and does not
vary depending upon the uploaded image or annotations.

The demo is deployed on Amazon Web Services using a combination of g4dn.2xlarge and c5.4xlarge servers. If
the user makes no annotation modiications, the entire image-to-animation user low takes less than 10 seconds.

4 EVALUATION AND ANALYSIS

We evaluate our system in three ways. First, we briely describe the public reception of the demo. Second, we
present a set of experiments exploring the efect of training data size on the system’s success rate. Third, we
perform a user study to validate the appeal and desirability of twisted perspective motion retargeting.
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Fig. 9. User interface within the Animated Drawings Demo. Ater uploading a drawing (a), users can observe and optionally

modify the predicted bounding box (b), modify the segmentation mask (c), and reposition joints (d) prior to selecting a

motion to apply to the character rig (e).

4.1 Public Reception

On December 16, 2021, a version of the proposed system was publicly released as the Animated Drawings
Demo [Meta 2022]. The launch was accompanied by several high-proile social media posts and a blog post;
however, all subsequent online promotion came from users organically sharing the demo within their networks.
Over the next nine months, over 3.2 million unique users visited the site and spent, on average, over ive

minutes using the demo. They uploaded 6.7 million images and, on average, generated four animations per
image. Based upon a subset of highly visible social media posts, the demo is especially popular among parents,
elementary school teachers, technology enthusiasts, and artists.
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4.2 Efect of Training Sample Size

Our system incorporates repurposed computer vision models trained on photographs of real-world objects.
Because the domain of children’s drawings is signiicantly diferent in appearance, these models must be ine-
tuned prior to use. However, given the abstract and varied nature of the drawings, it is not obvious how many
drawings must be collected and annotated for training. Therefore, we present a set of experiments exploring the
relationship between training dataset size and model prediction success.
We report the performance of the models in two ways. Because the models employed have pre-established

accuracy metrics, we irst report the achieved mean average precision (mAP) [.5:.95] for each model. However,
our goalśanimationśis a somewhat distinct downstream use of these predictions, and the mAP may not fully
relect the rate of success. For example, a predicted bounding box that overlaps ground truth by 90% would
contribute to a very high mAP; however, if the prediction excluded a igure’s foot or cut of half of its head, the
resulting animation would be considered a failure. Therefore, we also report the percent of predictions that result
in successful animations, as determined by visual inspection.

We compare the performance of several diferent ine-tuned versions of our models. First, we ine-tune using
177,666 images from the Amateur Drawings Dataset; we excluded 500 images to use for validation (as described
below). However, some of the user-accepted annotations are noisy and inaccurate; therefore, we also ine-tune
models using ‘clean’ training datasets of multiple sizes. To obtain these, we randomly selected and manually
reviewed images and annotations from within the Amateur Drawings Dataset. Images that had clearly incorrect
annotations were rejected. Common reasons for rejection included: segmentation masks that did not contain
the entire igure or included background elements, limbs that were fused together, joints that did not lie on the
igure. In this way, we identiied 2,500 images with suitable user-accepted annotations to serve as our training
and validation data.
We randomly selected 500 images to serve as the validation set across all training runs, while the remaining

2,000 served as the training sample pool. We created eight diferent training sets, varying in size from 10 through
2,000. For each training set, we randomly selected data samples from the training sample pool of 2,000 until we
obtained the appropriately sized set.
We used the model architecture and training parameters speciied in Sections 3.1 (for both detection and

segmentation predictions) and 3.3. Because our goal is to show the efect of training sample size, rather than
optimize absolute accuracy, we restrict ourselves to a single model architecture and keep all hyperparameters
constant.
To evaluate the percent of predictions suitable for animation, we used the same training sets as described

above, but also included the additional set of all 2,500 images. For evaluation, we randomly selected an additional
571 images that were uploaded to the Animated Drawings Demo. While we reviewed these images to ensure
that their contents were suitable for animation, we did not review, nor do we make use of, their user-approved
annotations. Instead, model predictions were visually inspected to determine whether they would result in a
successful animation.

This evaluation was meant to give an assessment of the models’ in-the-wild success rates, and not have it be
biased towards simpler drawings that our system could already predict perfectly, or those that took little efort to
manually correct. A detection was classiied as failure if it did not detect the human igure, detected it multiple
times, falsely detected non-human igures in the scene, had a bounding box that cut of a portion of the igure
necessary for animation (such as an arm or foot), or had a bounding box extending to include other markings
that were not a part of the igure. A segmentation was classiied as failure if it included background elements that
were not part of the igure, did not tightly conirm to the bounds of the igure, contained holes in the interior of
the igure, was more than one distinct polygon, or connected igure limbs at locations without a joint. A pose
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estimation was classiied as failure if the nose, shoulders, hips, elbows, knees, wrists, or ankles were not located
on or in close proximity to the correct body part.

4.2.1 Results. Validation set mAP as a function of ine-tuning training set size is shown in Table 1. Using a
Linux server with two NVIDIA Quadro GP100 graphics cards, models trained with 177,666 samples converged
in 20 hours, whereas the smaller training sets all converged in under 5 hours. For comparison, we also show
the mAP obtained when using pretrained model weights (essentially, a ine-tuning training set size of zero) and
considering the drawn human igures to be instances of the person object class.

Fine-Tuning Bounding Box Segmentation Pose Estimation
Training Set Size mAP mAP mAP

(no ine-tuning) 0 0.06 0.04 0.09
10 0.27 0.30 0.34
100 0.51 0.51 0.76
250 0.58 0.57 0.80
500 0.69 0.63 0.82
1000 0.77 0.68 0.84
1500 0.80 0.70 0.85
2000 0.81 0.71 0.85

(noisy) 177,666 0.82 0.49 0.90
Table 1. Per stage final mAP obtained on validation set as a function of fine-tuning training set size.

The percentage of successful, animation-ready model predictions on the random 571 test images are given
in Table 2. We report the percentage of predictions that were successful in each stage, as well as the percent-
age of images for which predictions in all three stages were successful. Because our system uses the image
processing-based approach described in Section 3.2, we also evaluate this technique’s performance using the
same segmentation success-failure criteria; 42.4% of segmentation masks obtained this way were successful. In
parentheses in the rightmost column of Table 2, we report the percentage of images for which predictions in
all three stages were successful when the image processing-based segmentation algorithm is used instead of a
ine-tuned model prediction.

4.2.2 Discussion. As Table 1 shows, directly using model weights trained on real-world images results in very low
mAP scores for bounding box, segmentation masks, and pose estimation predictions upon children’s drawings.
However, ine-tuning results in a large gain in accuracy across all steps. Continuing to increase the number of
ine-tuning training samples results in continuing, yet slowing, improvements in mAP; increasing training set
size from 1,500 to 2,000 increases performance by a single percentage point for bounding box and segmentation
predictions and does not measurably improve pose estimation.
Interestingly, using the dataset of 177,666 images with noisy annotations results in a minor improvement in

bounding box predictions, a signiicant improvement in pose estimation predictions, and a signiicant deterioration
in segmentation predictions. Fixing segmentation masks within the Animated Drawings Demo is more tedious
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Fine-Tuning Bounding Box Segmentation Segmentation Pose Estimation All Stages All Stages
Training Set Size Success Rate Success Rate Success Rate Success Rate Success Rate Success Rate

(Mask R-CNN) (Image Process) (Mask R-CNN Seg.) (Image Process Seg.)

(no ine-tuning) 0 0.4 0.0 | 0.6 0.0 0.0
10 27.1 0.4 | 2.1 0.0 0.9
100 60.9 6.4 | 54.1 4.9 19.4
250 62.2 8.2 | 69.5 6.4 24.0
500 74.4 14.5 42.4 77.4 12.8 30.5
1000 83.0 19.4 | 83.0 17.7 34.7
1500 89.8 20.3 | 87.4 19.1 37.7
2000 91.8 22.7 | 89.5 21.2 38.9
2500 92.5 24.7 | 90.2 23.3 39.4

(noisy) 177,666 92.5 16.1 | 94.6 16.1 40.6

Table 2. Percentage of model predictions that can successfully be used for animation, as a function of model fine-tuning

training set size. We report the successes per stage for the bounding box, segmentation mask (both Mask R-CNN and image

processing-based), and pose estimation predictions. In the two right-most columns, we report the percentage of images for

which the bounding box, segmentation mask, and pose estimation model predictions were all successful.

Fig. 10. Let: Achieved mean average precision of bounding box, segmentation, and pose estimation predictions as a function

of fine-tuning dataset size.Middle: Percentage of bounding box, segmentation mask, and pose estimation predictions that

could be used for animation without manual correction, respectively. Right: Percentage of images for which bounding box,

segmentation mask, and pose estimation predictions could all be used for animation without manual correction. We show

the percentages when using both the Mask R-CNN segmentation predictions and the image processing-based segmentation

technique described in Section 3.2.

than ixing bounding box or joint locations. Therefore, it is likely that more users skipped the segmentation
clean-up step, resulting in more noisy segmentation masks within the Amateur Drawings dataset, which in turn
lowered the performance of the ine-tuned models. This insight suggests that, depending upon the complexity of
the prediction clean-up tasks oloaded onto the user during data collection, it may or may not be worthwhile to
perform additional processing and reinement upon the collected annotations.
Table 2 shows the percentage of model predictions that could successfully be used for animation. Similarly,

without ine-tuning only a very small percentage of bounding box and pose estimation predictions are usable;
none of the segmentation predictions are usable. When ine-tuning with 2,500 ‘clean’ samples, the percentages of
usable bounding boxes, segmentation masks, and pose estimations increase to 92.5%, 24.7%, and 90.2%, respectively.
When using the noisy training set of 177,666 images, the pose estimation success rate increased to 94.6%, while
the bounding box success rate was unchanged and the segmentation success rate dropped substantially. In the
supplemental materials, we present many examples of successful and unsuccessful detection and pose predictions
from the models trained with 2,500 samples.

ACM Trans. Graph.



16 • Smith et al.

Segmentation mask predictions, by contrast, require many more training samples to obtain comparable rates of
success; by a large margin, this step is the most diicult and failure-prone. With even 2,500 training samples, fewer
than one quarter of predictions from Mask R-CNN are suitable for animation without some sort of manual clean-
up. In part, this can be attributed to the presence of many ‘hollow’ or ‘outline’ igures within the dataset, for which
the texture of the igure and the texture of background are identical. A hollow character’s predicted segmentation
mask often contains holes within the sparse, non-detailed parts of the igure, and includes connections between
non-attached body parts that are drawn close together. Model predictions also often fail on stick legs and stick
arms, which are often missed, especially when other parts of the igure are 2D regions with area. We present
examples of all of these types of failures in the supplemental material.
In comparison, our image processing-based segmentation approach results in a 42.4% success rate. While

this approach does a better job of following the outline of the igure, it frequently fails on images with hard
shadows introduced during the photographing of the drawing, drawings on lined paper, and igures that are not
watertight or have limbs that do not connect. With the image processing-based segmentation approach, 39.4% of
igures could be fully automatically animated without any manual intervention. Clearly, further work on robustly
segmenting hand drawn igures, or automatically reining the segmentation masks, would be useful in improving
the overall success rate.

4.3 Twisted Perspective Animation Retargeting

We evaluate our use of twisted perspective retargeting through a perceptual user study on Amazon Mechanical
Turk with 66 subjects. Subjects were shown a set of 20 videos: four igures that were successfully detected,
segmented, and rigged by our system, each performing ive diferent motions (see top of Table 3). Within each
video were two side-by-side animations: one animation had been created with twisted perspective, by projecting
the lower body and upper body onto diferent planes, while the other animation used only a single plane of
projection. The side upon which the twisted perspective condition appeared was randomized. Both animations
played simultaneously, and viewers were asked to select, in a forced-choice manner, the animation whose
character motion was ‘more appealing.’ To ensure subjects paid attention, four ‘ilter’ questions were embedded
in the stimuli, in which workers were explicitly directed to select either the left or the right animation.

We present the results in Table 3. For each character and each motion type, we report the percentage of viewers
who preferred the animation with twisted perspective motion retargeting over a single perspective. In parentheses
we report signiicance as the result of a binomial test comparing the distribution of responses to random chance.

In 16 of the 20 videos, a signiicant preference for twisted perspective was observed. In the remaining four
videos, there was no signiicant preference for either type. Taken together, this result shows that, for these
character and motion combinations, twisted perspective retargeting often results in more preferable animation.
Interestingly, three of the four videos in which users had no signiicant preference depicted igures performing
the ‘Wave Hello’ motion. As can been in the supplemental video, there is signiicantly less bending of the legs in
the ‘Wave Hello’ motion relative to the other motions tested; as a result, twisted perspective retargeting and
single perspective retargeting result in more similar character poses. This observation suggests that twisted
perspective retargeting may not be necessary in all situations; rather it is more useful when both the arms and
the legs have substantial motion in diferent planes.

5 AMATEUR DRAWING DATASET

As part of the Animated Drawing Demo, users were asked to consent to a data usage agreement, allowing their
uploaded image and annotations to be used for research purposes, including release as part of a public dataset.
Consenting was optional, and refusal to do so did not restrict the experience in any way. Images collected prior
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Table 3. The results of our perceptual study on the use of twisted perspective when retargeting motion. For each character

and motion type, we show the percentage of viewers who preferred twisted perspective retargeting and the p-value indicating

diference from random chance.

to April 20th, 2022 were considered for inclusion into the Amateur Drawings Dataset. By that date, site users had
uploaded over 3.5 million images and consented to the data usage agreement for 1.7 million images.

5.1 Refinement

Many of the images uploaded to the site were photographs of actual people, pets, anime characters, brand logos,
and other out-of-domain content. Therefore, submitted images needed to be iltered to ensure they contained
amateur drawings. This reinement was performed in two steps. First, a self-supervised clustering approach
was used to identify and ilter out-of-domain images. Second, the remaining images were manually reviewed to
ensure their suitability.

5.1.1 Cluster-based Filtering. A self-supervised approach [Chen et al. 2020] was used to train a ResNet-50 feature
extractor speciic to the consent images. The feature extractor took the image contents of the igure bounding
box and projected it onto a 2048-dimensional embedding space. Within this space, k-means was used to cluster
the embeddings into 100 separate clusters. From visual inspection, 68 clusters contained out-of-domain subjects,
while the remaining 32 clusters primarily contained images of amateur, hand-drawn characters, suitable for
inclusion (see Figure 11).

Within those 32 clusters were many near-duplicates, images of the same drawing taken from slightly diferent
angles or under slightly diferent lighting conditions. Such near-duplicates are close together in the learned
embedding space (see Figure 12). We detected near-duplicates by computing the Euclidean distance between
each pair of images in the embedding space, and removing one of the images if this distance was less than 0.5, a
value empirically selected by the authors. After iltering out-of-domain clusters and removing duplicates, 471,405
images remained.
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Fig. 11. Example images from the clusters obtained via cluster-based filtering. Certain clusters contained similarly depicted

characters, such as stick figures, hollow characters, and solid marker characters (retained clusters 1, 2, and 3, respectively).

Other clusters contained out-of-domain images, such as anime faces or anime full-body characters (discarded clusters 4, 5

respectively).

5.1.2 Manual Review. An agency was contracted to review 283,146 of the remaining images. Reviewers were
instructed to ensure images were free-hand, physical drawings containing at least one full-bodied human igure,
did not contain characters that are protected intellectual property (such as Mickey MouseTM), and contained no
personally identiiable information or vulgar content. Because the reviewers were primarily English speakers,
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Fig. 12. Two input images and their six nearest neighbors within the learned embedding space. As these examples show,

duplicates or near-duplicates are quite close within the space, which is useful for filtering them. Similar but distinct figures

are also close together within the embedding space; the top figure is close to others with long hair and dresses, while the

botom figure is close to other heart-shaped tadpole figures.

images that contained non-English words were excluded on the basis they might contain inappropriate content.
After manual review, 178,166 images remained.

Of the images that were excluded, 30% were not freehand drawings, 24% did not contain full-bodied human
igures, 20% contained personally identiiable information, 15% contained protected intellectual property, 4%
were uploaded and annotated with an incorrect orientation, 4% had out of domain content, and 3% contained
vulgar content.

5.2 Release

We are pleased to provide the retained images, along with their annotations, for use by the research community.
While the Animated Drawings Demo was speciically designed for use with children’s drawings, the artists’ ages
were not recorded. We therefore refer to the dataset as the Amateur Drawings Dataset.

While the dataset includes the user-accepted character bounding boxes, segmentationmasks, and joint positions,
we have not attempted to guarantee the accuracy of these annotations. From a random sampling of 5,000 dataset
images and annotations, we observed that 35% of bounding box detections were modiied, 20% of masks were
modiied, and 29% of joint skeletons were modiied. By visual spot check, we conirmed that, in the vast majority
of cases, these modiications improved the quality of the annotations.

6 CONCLUSION

In this paper, we present a method to automatically animate the types of drawings created by children and
amateur drawers. We also present a irst-of-its-kind dataset of 178,166 in-the-wild drawings by children and
amateurs, annotated with user-accepted bounding boxes, segmentation masks, and joint locations.

We demonstrate the value of our method in several ways. First, we explore the accuracy and success from each
stage of our system as a function of training dataset size. Second, we perform a perceptual study to show the
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appeal of twisted-perspective retargeting when animating these characters. Third, we built and publicly released
a usable version of the system which, within its irst nine months, has been used to generate over 24 million
animations from 6.7 million images uploaded by over 3.2 million users.

Prior to deciding to create a public-facing data collection tool, we unsuccessfully attempted to generate useful
synthetic training data using generative adversarial networks [Isola et al. 2017; Zhu et al. 2017a,b]. We believe
our initial collection of less than 1,000 real children’s drawings did not contain enough variation to cover the
long-tail distribution of the domain. In addition, there were many sources of unanticipated nuisance variation
that were not in our initial collection, yet present within in-the-wild drawings (e.g., messy backgrounds, lined
paper, blurry shots, bad lighting, erased lines). It is possible that synthetic data approaches utilizing the entirety
of the Amateur Drawing Dataset, which includes these variations, may have more success.
Ultimately, we pivoted to a bootstrapping approach to collect the data necessary to ine-tune our models.

We manually annotated the images we had and trained initial models, then iteratively released closed beta
versions of the demo, collected additional training data, and retrained the models. By thoughtfully crafting
the user experience, keeping prediction and render times short, and providing the user something of value (a
downloadable animation of the drawing) in exchange for their eforts, we were able to collect enough real data
from our target domain and no longer needed synthetic data. We would encourage other researchers focused on
user-generated content domains, for which there are not yet any suitable datasets, to likewise consider how they
might invite their target audience into the dataset creation process, lowering the need to rely upon synthetic
data.

We believe this work is but a irst step towards a robust and comprehensive drawing-to-animation storytelling
system, and there are many ways our work could be improved. One step that can clearly be improved is
segmentation. Extracting a usable and accurate mask can be quite diicult and, because it is used to create the
character mesh, even small errors can result in bad animations. There are many reasons why segmentation is
hard to do accurately. The photograph of the drawing can be out of focus or distorted due to lighting glare or hard
shadows. Color and texture cues are not guaranteed to be helpful, as in the case of hollow characters. A line can
represent the edge of a body part region, or a line can represent the entire body part, such as with stick igures.
Often, characters are drawn on lined paper, the paper contains eraser marks, or background objects that touch
the character are drawn with the same pencil or marker. If the character is drawn with limbs touching in places
other than joints (as hands touch hips in the arms akimbo pose, for example), there is no predicted segmentation
mask that will result in a quality animation unless it is possible to add a segmentation diferentiating between
the two body parts.
Given the importance and diiculty of the segmentation task, methods that improve the robustness of the

masking step would greatly increase the success of our pipeline. A useful next step could be a principled method
for choosing between the image processing and Mask R-CNN segmentation masks on a per image basis, as each
method can fail for diferent reasons. Ideally, such a method could leverage the bounding box and joint location
predictions from the other stages of the pipeline.
In addition to improving the robustness of the current pipeline, future work should focus on extracting

additional information about the drawing prior to animation. A natural next step would be to infer the sub-type
of the human igure (e.g., robot, monster, snowman, princess). Such analysis could be used to modify the pose
estimation skeleton (e.g., removing the legs when a snowman has been identiied) or determine the types of
animation to apply (e.g., making monsters stomp, princesses dance, or superheroes ly). It could also be used to
infer what diferent character regions represent. For example, triangles on a cat’s head are ears, while triangles
on a devil’s head are horns; these insights could afect how the characters are ultimately animated.

Many users of the Animated Drawings Demo requested, via a feedback form, additional features. Many wanted
support for additional types of motions, or the ability to specify custom motions. Several requested facial features,
such as smiling, blinking, and gaze cues. Others requested extending the work to handle quadrupeds, multiple
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characters in a drawing, or to take the context and background of the scene into account when creating the
animation.
While our animation method is an appealing way to breathe life into children’s drawings, it has two broad

limitations. First, only certain motions can be appealingly retargeted in this manner. Not all limb motions can be
well represented on a 2D plane. Spoke-like and arc-like motions, which primarily vary in one or two dimensions,
are well handled while carving motions, which vary in all three spatial dimensions, are less recognizable when
lattened. In addition, we always move the character from left-to-right across the page. If the character is facing
right, this should be reversed. Robustly determining which direction the character is facing is diicult, as the
cues may be subtle; for example, the orientation of the nose may be the only cue as to whether the character is
facing left or right (see Figure 6.h).

Second, our animation method is also limited by the style of the drawing. We designed the retargeting technique
to take advantage of the style of amateur drawings, which lack foreshortening and mix perspective. If the igure is
drawn with foreshortening and proper perspective, the character-motion stylistic mismatch may be undesirable.
In such cases, constructing a proper 3D model of the igure and using a diferent retargeting technique, such
as [Weng et al. 2019], would be preferable.
It is our hope that the released dataset will encourage other researchers to focus on methods to analyze and

augment amateur drawings. This domain is a natural form of creativity and expression available to much of the
world’s population. And, given the reception of the Animated Drawings Demo, there appears to be widespread
appetite for animation and storytelling tools that build upon user-created drawings.
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