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Abstract 

Tracking points in ultrasound (US) videos can be especially useful to characterize 
tissues in motion. Tracking algorithms that analyze successive video frames, such as 
variations of Optical Flow and Lucas–Kanade (LK), exploit frame‑to‑frame temporal 
information to track regions of interest. In contrast, convolutional neural‑network 
(CNN) models process each video frame independently of neighboring frames. In this 
paper, we show that frame‑to‑frame trackers accumulate error over time. We propose 
three interpolation‑like methods to combat error accumulation and show that all three 
methods reduce tracking errors in frame‑to‑frame trackers. On the neural‑network end, 
we show that a CNN‑based tracker, DeepLabCut (DLC), outperforms all four frame‑to‑
frame trackers when tracking tissues in motion. DLC is more accurate than the frame‑
to‑frame trackers and less sensitive to variations in types of tissue movement. The only 
caveat found with DLC comes from its non‑temporal tracking strategy, leading to jitter 
between consecutive frames. Overall, when tracking points in videos of moving tissue, 
we recommend using DLC when prioritizing accuracy and robustness across move‑
ments in videos, and using LK with the proposed error‑correction methods for small 
movements when tracking jitter is unacceptable.

Keywords: Ultrasound, Point tracking, OpenCV, Neural network tracking, Tracking 
correction

Introduction
Tissue tracking and ultrasound

Visualizing deformations in skeletal tissues of the body during movement can be essen-
tial to understand relationships between body pose, muscle function, and movement. 
Understanding these features can also facilitate injury treatment and improve training, 
vital components of sports medicine and physical therapy. Ultrasound (US) is a com-
prehensive tool for this application, as it is one of the most used, least expensive, non-
invasive forms of medical imaging available.

By far the most used form of US is brightness (B) mode, where transducer signals 
are converted into pixel brightness values [1]. When using US as a method of studying 
human motion, B-mode scanning is typically done before, during, or after a particular 
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movement. In prior work, US images of the medial gastrocnemius muscle were collected 
every 24  h after delayed onset muscle soreness [2]. Changes in muscle area observed 
in 3 US images were correlated to power output and glycogen levels in cyclists [3]. In 
another study, US images of the biceps brachii muscle were acquired every 5 s through-
out a series of contraction exercises [4]. These studies show that US images can be cap-
tured with varying time intervals, time instances, and probe positioning according the 
region of interest. They also describe how imaging tissue with US B-mode can be used to 
observe fatigue states, detect anatomical changes, assess injuries, and analyze other fea-
tures of interest. We believe the diagnostic capabilities of US imaging can be expanded 
by tracking features of tissues in motion.

When imaging skeletal tissue using US during movement, there are various common 
features of interest known as muscle architecture parameters that are correlated with 
muscle contractions and motion [5–8]. Features such as the pennation angle and fas-
cicle length can only be observed when imaging the skeletal muscle longitudinally, and 
skeletal features such as bone rotation angle can only be observed when imaging the 
skeletal muscle transversally [9]. Other muscle architecture parameters include muscle 
thickness, cross-sectional area, and muscle displacement (Fig. 1).

Successes in US feature tracking have been observed in prior work, although registra-
tion and feature tracking in US is still a challenging and unsolved problem [10]. Feature 
segmentation algorithms such as the Rayleigh distribution [11], Curvelet transforms [12, 
13], and curve fitting [14] have been used to distinguish regions of interest within the 
probe’s field of view. Speckle tracking was found to be as accurate as MRI observations 

Fig. 1 Ultrasound imaging setup. Ultrasound probe position on the upper arm for imaging the brachialis 
and the long head of the biceps brachii (left). A representative US image (right) showing how features such as 
muscle thickness and bone rotation can be estimated from tracking specific points of interest in ultrasound 
videos
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when measuring ventricular torsion [15]. Optical Flow and block matching were com-
bined to find sub-millimeter accuracy when measuring finger tendon motion [16]. Fea-
tures such as pennation angle, thickness, and fascicle length of tissues were extracted 
from lower limb US video and used to estimate information about lower limb motion 
[9, 17]. These feature-tracking methods have all shown success, but have approached 
tracking on a case-by-case basis by developing custom algorithms and analysis pipe-
lines, which can be time-consuming, computationally expensive, and challenging to 
generalize.

The ability to track increasingly smaller regions can establish a general methodology 
for tracking deformable features. Region and point-tracking algorithms such as Opti-
cal Flow [18, 19], block matching [20, 21], and template tracking [22] have been used 
to identify and track various tissues, tendons, and bones. Optical Flow uses pixel inten-
sity (brightness) changes between two consecutive frames to determine pixel velocity 
and displacements [16] which can be helpful to track slow-moving features in any video. 
Block matching and template tracking can estimate the movement of a region of interest 
from one frame to another by maximizing the similarity between all regions in the next 
frame [16].

These methods often encounter various challenges due to the quality of US imaging. 
Optical Flow, for example, can fail with sudden movements, high speckle noise or fluc-
tuating brightness. The issue of despeckling in particular has been addressed using fil-
tering methods such as the Rayleigh Mixture Model [23], Daubechies complex wavelet 
transform [24], ripplet domain nonlinear filtering [25], and Laplacian pyramid-based 
nonlinear diffusion [26], which improve quality of US videos and tracking. Template 
tracking can encounter similar issues due to a short depth of view or poor image quality 
induced by the varying speed of sound characteristics of the imaged tissues. In addition, 
depending on the orientation of the probe and the body movement being observed, any 
point in the region of interest can inconsistently appear and disappear frame-to-frame. 
We encountered many of these challenges when tracking skeletal tissue features in the 
upper arm.

Tracking algorithms

Here, we collected US videos of a transverse section of the upper arm, and labeled points 
in several frames of each video during various movements—walking, reaching, maxi-
mum voluntary contraction (MVC), and rest (see "Video collection"). Five tracking algo-
rithms were used to track these points including four frame-to-frame trackers from the 
OpenCV library—Lucas–Kande (LK) [27], CSRT [28], MOSSE [29], and KCF [30]—as 
well as an open-source neural-network (NN) package—DeepLabCut (DLC) [31]. We will 
refer to the OpenCV trackers as “frame-to-frame” because they use information change 
between successive frames to track points.

Here, we show that point-tracking using frame-to-frame trackers are susceptible to 
error accumulation over time due to gradual drifting of the point being tracked. We also 
show that DLC-based tracking is not susceptible to this drift as CNN-based trackers do 
not make use of temporal information between frames. DLC-based tracking has the dis-
advantage of manual labeling and training a model to track points.
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In this paper, we seek to improve frame-to-frame trackers so that they achieve DLC-
level accuracy without the need to train a model. To achieve this, we propose three 
correction strategies—sigmoid tracking correction (STC), reverse tracking correction 
(RTC) and reversed sigmoid tracking correction (RSTC). These are heuristics-based 
methods that minimize drifting by interpolating the tracking result between manually 
labeled correction frames.

Results
Cumulative drifting occurs in all frame‑to‑frame trackers tested

To understand how cumulative drifting affected each frame-to-frame tracking algorithm, 
3 distinct features were tracked starting at the first frame, tracking forward to N frames 
of a video, then tracking backward the same N frames. Since this process starts and ends 
in the same frame, the error was simply the average distance between the point loca-
tions in the first and last frames. Figure 2a shows average error per tracker type across 
all movements, and Fig. 2b shows average error per movement type across all trackers. 
Accuracy (error) values are calculated as the average distance between the labeled points 
and the tracked points in pixels. In this study, 13 pixels correspond to 1 mm. Raw data 
presented in all the results can be found in Additional file 2.

From Fig.  2a, it is clear that the CSRT tracker experienced the most drifting 
( xCSRT = 36.8 pixels over 3200 frames) relative to the other trackers ( xKCF = 14.1 pixels 
for KCF, xMOSSE = 12.2 pixels, xLK = 10.1 pixels over 3200 frames). In addition, Fig. 2b 
shows that large tissue movements during reaching and high-impact activities such as 
walking resulted in more drifting by the trackers ( xwalk = 23.4 pixels, xreach = 26.4 pix-
els over 3200 frames). Despite some trackers and movements resulting in lower cumula-
tive errors than others, Fig. 2 shows that drifting is a challenge present in frame-to-frame 
trackers across the board.

Fig. 2 Error accumulation in frame‑to‑frame trackers. a Error in frame‑to‑frame trackers. The average 
error accumulation rate for the CSRT tracker, for example, is 0.0115 pixels/frame, or 0.88 μm/frame. b Error 
comparison across movements—walk, reach, maximum voluntary contraction (MVC), and rest (see “Video 
collection” for description). The error bars here show standard error of the mean (SEM)
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Approaching drifting correction using three novel methods

Sigmoid tracking correction (STC) is our first proposed method to minimize drifting, 
and requires at least two frames with points labeled—one initial frame for the trackers 
to start on and at least one “correction” frame to reset the tracker. We ran each tracker 
from the initial labeled frame to the first correction frame, reset the points, and similarly 
continued the process for an increasing number of correction frames all equally spaced 
apart. If more correction frames were used, the space between two correction frames 
decreased accordingly. After tracking was complete, we added a sigmoid to smooth out 
the tracking path, as described in “Sigmoid tracking correction”. Figure 3b summarizes 
these results.

Next, to use reverse tracking correction (RTC) and reverse sigmoid tracking correc-
tion (RSTC), we ran each tracker forward and backward in time. For RTC, the forward 
and backward tracked paths were averaged (“Reversed tracking correction (RTC)”). 
For RSTC, the contribution from the forward path near the initial labeled frame was 
increased, and the contribution from the backward path near the last labeled frame was 
increased (“Reversed sigmoid tracking correction (RSTC)”). We then compared the 
errors when no drifting correction was used, when RTC was used, and when RSTC was 
used (Fig. 3).

Fig. 3 Accuracy improvement following drifting correction methods. a Tracking accuracy significantly 
improves upon STC (left), RTC (middle), and RSTC (right) correction methods. b Effect of increasing the 
number of correction frames on tracking accuracy with STC correction. c Comparison of tracking accuracy 
between RTC, and RSTC corrections. Error bars refer to SEM across the 20 subjects (*** p < 0.001)
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As expected, using more correction frames with STC reduced the average error, 
with significant improvements with just 1 correction frame (Fig. 3a, left panel; paired 
t-test, n = 80, t = 12.21 , p < 0.0001 ). STC provides an efficient way to reduce tracking 
error using labeled frames to combat drifting of the traced feature (Fig. 3b). However, 
it is important to note that error is measured at these frames, so when more correc-
tion frames are used, more errors equal to 0 will contribute to the average shown in 
the figure.

RTC and RSTC correction methods with just two labeled frames significantly 
decreased tracking error (Fig.  3a, middle and right panels; RTC—paired t-test, 
n = 80, t = 8.509 , p < 0.0001 ; RSTC—paired t-test, n = 80, t = 16.47 , p < 0.0001 ), 
and using RSTC also significantly decreased error when compared to using RTC 
(Fig. 3c; paired t-test, n = 80, t = 14.66 , p < 0.0001 ) among all trackers. LK and KCF 
consistently resulted in the lower error when compared to CSRT and MOSSE.

Fig. 4 Tracking accuracy for DLC. a Tracking accuracy when using one DLC model per subject (Group 1) 
versus one model per group of subjects (Group 2). b Tracking errors when increasing the number of training 
iterations for DLC model across subjects (Group 2). The datapoints for Group 1 come from the average errors 
in 20 subjects, 6 videos each. The datapoints for Group 2 come from the average errors over 20 randomized 
video groups among 6 subjects. Error bars represent SEM (*** p < 0.001)

Fig. 5 Errors when combining drifting correction methods: accuracy of methods combining LK and DLC 
tracking algorithms with proposed STC and RSTC methods of drifting correction. Error bars represent SEM



Page 7 of 24Magana‑Salgado et al. BioMedical Engineering OnLine           (2023) 22:52  

The key takeaway for Fig. 3 is that the STC, RTC, and RSTC methods significantly 
improve the accuracy of frame-to-frame trackers (Fig. 3a), RSTC correction is supe-
rior to RTC (Fig. 3c), and LK is the most accurate among the LK, CSRT, MOSSE and 
KCF trackers tested (Figs. 2, 3). Therefore, for further analysis, we combine the STC 
and RSTC correction methods with LK tracker (Fig. 5).

DLC proves accurate and efficient post‑training

Up to now, we analyzed the frame-to-frame trackers among one group of subject vid-
eos (Group 1) in which each subject’s US videos were labeled with a unique template. 
Next, we used DLC to train individual models for each subject in Group 1 with  the 
same labeled frames used as ground truth to test frame-to-frame trackers. We found 
the average test error to be 3.8 ± 0.2 pixels (Fig. 4a), lower than that obtained with any 
frame-to-frame trackers using drifting correction (Fig. 3).

It is likely these models performed this well because we trained one model per 
subject, meaning each model only learned the morphological characteristics of one 
bone-muscle group. To test the effectiveness of a generalized DLC model across mul-
tiple subjects, we used videos from a second group of subjects (Group 2) and cre-
ated a general template frame with three labeled points along the edge of the humerus 
(Fig.  9). After labeling all videos in Group 2, we trained three models using 80% of 
the videos—one using 500,000 training iterations, one using 750,000, and one using 
1,000,000—to understand the sensitivity of model accuracy to the number of train-
ing iterations. The remaining 20% of videos were randomly placed into 20 groups of 
6 videos each, and the three models were applied to these groups. For each model 
(500 k, 750 k, 1000 k), the errors of all 20 groups were found, and their accuracy is 
shown in Fig. 4b.

As expected, the error in the 500 k-iteration Group 2 model was significantly greater 
than that of the 500  K-iteration Group 1 models (unpaired t-test, df = 38, t = 7.18 , 
p ≪ 0.001 ), as the Group 2 model learned the characteristics of multiple bone-mus-
cle groups to track the given points. The average errors in Group 2 were not signifi-
cantly different among the models with increasing training iterations (500 k to 750 k 
to 1000 k, one-way ANOVA, df = 35, F = 0.26, p = 0.77 ), showing that DLC is robust 
and consistent across the number of training iterations used.

If DLC is chosen to track features in these types of US videos, we recommend using 
500  k training iterations as it has comparable accuracy to higher iteration models 
while being less costly to train.

Combining corrections to frame‑to‑frame methods to approach DLC accuracy

Tracking error when using DLC is lower than uncorrected frame-to-frame tracking 
(Figs. 3,4). Here, we seek to identify a correction strategy that improves the accuracy 
of frame-to-frame trackers to approach that of DLC tracking.

We knew from Figs.  2a that the average LK drifting error of ~ 0.3 μm per frame. 
DLC’s Group 1 models had an average error of ~ 300 μm, implying that LK is more 
accurate than DLC for tracking points in videos less than about 1000 frames. With 
this in mind, we combined these methods using every 200th frame tracked by DLC as 
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a pseudo-labeled frame, tracking forwards and backwards from each of these frames 
using LK, and applying RSTC to reduce drifting effects (LK + RSTC + DLC).

We also observed in Fig. 3a that using STC with 4 correction frames resulted in a 
low average error of 6.6 pixels among all trackers, but the contribution to that aver-
age from LK was an error of 5.5 pixels (LK + STC). In an attempt to decrease this, we 
combined STC and RSTC by tracking from each of the 4 correction frames forwards 
and backwards with LK, and applying RSTC to these paths (LK + RSTC + STC). 
Finally, we grouped the errors to compare each method’s sensitivity to movement, 
shown in Fig. 5.

This figure presents one of the main advantages of using DLC—robustness. The 
range of errors when using DLC was smaller than any other method here, showing 
it was less sensitive to large or fast tissue movements when tracking. However, using 
LK + RSTC + STC resulted in an error not significantly different than that obtained 
by DLC across movements (paired t-test, n = 4 , t = 0.918 , p = 0.427 ), with DLC out-
performing LK + RSTC + STC for quick and/or large movements in tissue (walk—
paired t-test, n = 20 , t = 2.909 , p = 0.009 ; reach—paired t-test, n = 20 , t = 2.688 , 
p = 0.0145 ), and the tables turning for small and/or slow movements (MVC—paired 
t-test, n = 21 , t = 0.360 , p = 0.723 ; rest—paired t-test, n = 17 , t = 9.418 , p < 0.0001).

DLC tracking has more jitter than recommended combined frame‑to‑frame method

When tracking these videos, we observed that the points jittered more when using 
DLC than using LK with RSTC and STC. A few jitters seen were due to tracking outli-
ers (discussed in “Tracking”) which can be mostly eliminated by adding more labeled 
frames. The more consistent jitter likely comes from the non-temporal tracking of 
CNN trackers that estimate the point location(s) at every frame independently of the 
frames right before or after it. LK, on the other hand, exploits spatial and temporal 
information by searching a point’s location in the prior frame to determine its move-
ment, leading to a smoother path. Figure 6 gives an example of this difference.

This figure presents the primary caveat to using DLC. Though accurate and robust 
to video variability, DLC tracking jitters much more strongly than LK, making it an 

Fig. 6 Comparing tracking jitter in DLC and LK with correction. a A representative example of a tracked 
point’s x‑coordinate with DLC tracking in black and LK + RSTC + STC tracking in orange. b High‑pass filtered 
(> 15 Hz) signals from (a) to contrast the amount of jitter with these two approaches. Outlier from DLC 
tracking shown with red arrow. c Group data contrasting the average amount of absolute jitter. Error bars 
represent SEM across 20 subjects (*** p < 0.0001)
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unattractive choice to track small tissue movements. To contrast jitter in LK and 
DLC, we quantified jitter as the average of the absolute value of the high-passed signal 
and found the jitter in tracking with LK + RSTC + STC to be significantly lower than 
jitter in tracking with DLC (Fig. 6c, paired t-test, n = 20, t = 4.952 , p < 0.0001).

Discussion
Tracking

Among all frame-to-trackers analyzed, LK had the least error due to drifting, which 
is perhaps the reason LK is used often to analyze US videos [22, 32, 33]. For analyzing 
small changes in imaged tissues, for example during the rest condition (“Video collec-
tion”), results from LK were visually more pleasing and preferred to DLC results due to 
the lack of jitter (Fig. 6).

Combining DLC and LK (LK + RSTC + DLC) increased error compared to using DLC 
alone, going against our initial hypothesis that using DLC tracking to aid LK would 
decrease error. Further inspection showed that when insufficient labeled data is given to 
DLC, it is unable to confidently and fully track the points, resulting in several “outlier” 
frames. DLC has a feature to relabel these outlier frames, but we chose not to use it to 
maintain the quantity of labeled information across trackers. Because of this, DLC outli-
ers created discontinuous jumps in tracking from one frame to another, often skewing 
LK to track away from the desired feature, and increasing the error as a result. Further 
research is required to combine diverse tracking algorithms such as Optical Flow and 
CNNs in a meaningful manner to achieve accuracies better than either of the methods 
in isolation.

Since DLC tracking does not use temporal information, we reasoned that post-pro-
cessing corrections that use temporal information, such as Kalman filtering or low-
pass filtering can potentially reduce jitter in tracking and improve tracking results. 
Counter-intuitively, even though these methods reduced jitter, the tracking error did 
not decrease, and in some cases, such as walking motion, the tracking error instead 
increased (Additional file 1: Sect. 1.4 and Fig. S4). Further research is required to iden-
tify appropriate post-processing algorithms and successfully combine them with point-
tracking algorithms.

Labeling

A caveat that might limit the accuracy of all trackers including DLC is labeling. Manually 
labeling US videos sometimes required rough estimates of a feature’s position, especially 
when tissue moved out of the imaging field of view during large arm movements. These 
estimates could have  biased the error values, especially for DLC which already had a 
very low error.

The sparsity of the frames chosen to be labeled might have also caused errors in accu-
racy. As later described in “Methods”, 8 equally distributed frames in each video were 
labeled. For short ~1-min-long videos, the gaps between each labeled frame lasted ~ 7 s 
(400–500 frames), while the gaps for longer ~ 3-min videos lasted ~ 20 s (1200 frames). 
The errors were only measured at these labeled frames, so no information about the 
quality of tracking during these gaps was measured, potentially missing tracking failures. 
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We hope that by averaging errors from videos of various movements and various dura-
tions, the error variations were averaged out.

Manually labeling correction frames is time-intensive, and the optimal number of 
correction frames for LK tracker can be chosen based on the movement type and error 
tolerance based on the results presented in Fig. 2b. For example, the correction frames 
would be spaced at shorter intervals for reaching and walking compared to maximum 
voluntary contraction movement. When training one DLC model per subject, labeling a 
total of 24 frames per model was sufficient to have an average test error below 4 pixels. 
The number of labeled frames depends on training one model per probe position for 
DLC, whereas it depends on the amount of data collected for LK with RSTC and STC.

DLC had an average error lower than 4 pixels in Group 1 after labeling 24 frames per 
probe placement (in this case one probe placement per subject). The total number of 
labeled frames for the per-subject model approach was 1440 (20 subjects × 3 points per 
frame × 24 frames per subject), rendering it potentially infeasible for quick analysis. Cur-
rent DLC models are manually intensive for creating training data, time consuming to 
train, and computationally intensive. To optimize tracking accuracy without training a 
model, we recommend using LK with RSTC and STC corrections based on our findings.

Hardware

A consideration for any study using US probes is their potential impact to deform elas-
tic tissues during an experiment. US requires constant contact with the area of interest, 
often paired with pressure to maintain the probe at a unique location. In this application, 
the probe was strapped pointing perpendicularly into the arm with self-adhesive tape 
tightly wrapping around it. This tape was flexible and allowed the upper arm muscles to 
contract and relax, but constraining the arm in this manner might have affected how the 
skeletal tissue took shape during fast movements.

The b-mode ultrasound videos captured in this study are from a linear probe provid-
ing a cross-sectional view into a portion of the upper arm. The approaches proposed 
in this work are only meaningful for features that stay in the imaging plane, which can 
vary with the type of motion. This is a significant challenge for characterizing tissues in 
motion, and can be addressed through hardware innovations that allow for volumetric 
imaging. The proposed methods would then have to be adapted and evaluated for point 
tracking in 3D space.

Applications

Ultrasound technology can be used to evaluate muscle function non-invasively dur-
ing motion, which could illuminate the role of elastic tissues in movement, preventing 
injury, and promoting recovery. Algorithmic improvements and innovations are essen-
tial for extracting quantitative information from ultrasound data and precise evaluation 
of muscle function. The strategy of point tracking can be applied to track changes in fea-
tures such as muscle cross-sectional area, muscle thickness, pennation angle, and bone-
muscle interaction during motion. Even though point tracking is the focus of this work, 
other strategies such as image segmentation can also be useful for quantitative muscle 
function evaluation using ultrasound.
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Improving the precision of point tracking in b-mode ultrasound videos can potentially 
aid in understanding and managing tremors in healthy individuals and patients with 
movement disorders. If a much larger dataset were to be labeled by expert sonographers, 
better neural-network models that generalize well across regions of the body and across 
subjects can be trained to quantify tissue movement with a much lower tracking error 
than shown in Fig. 4a for Group 2.

Conclusion
US is an inexpensive and non-invasive tool to visualize skeletal muscle during move-
ment, but tracking features in B-mode US using Optical Flow-based trackers presents 
many issues including point drifting. In this paper, we show that drifting is a recurring 
challenge when tracking in US, and propose various correction algorithms to minimize 
this phenomenon. We show that using Lucas–Kanade (LK) for this application results in 
the lowest tracking error of the frame-to-frame trackers that we explored, and applying 
these correction algorithms improves accuracy.

We show that DeepLabCut (DLC) outperforms all non-modified frame-to-frame 
trackers, not only being minimally sensitive to the type of movement but also generally 
resulting in lower error. The only caveat against DLC is the jitter that can sometimes 
result in noisy tracking.

In conclusion, we recommend DLC for point tracking in ultrasound videos due to its 
accuracy and robustness, except for tracking small movements in tissues, where we rec-
ommend LK in combination with the proposed correction algorithms.

Methods
In this section, we describe the experimental setup for collecting US videos, our pro-
posed enhancements to point tracking, and methods to compare the results of various 
trackers.

Video collection

26 healthy subjects (13 female, 13 male) aged 27.9 ± 7.9 years participated in a study held 
at the MIT.nano Immersion Lab. All subjects provided written informed consent accord-
ing to MIT’s Committee on the Use of Humans as Experimental Subjects (COUHES). 
Data were collected using a Cephasonics Cicada Ultrasound system (Cephasonics Ultra-
sound Solutions, San Jose, California, USA) and a 7.5  MHz 128 channel linear ultra-
sound probe. The probe was attached to the brachialis of a randomly selected arm in 
order to capture a transverse view of its internal morphology—this arm will be referred 
to as the “US arm”. The probe captured B-mode images at ~60 frames-per-second. Fig-
ure 1 shows an example view.

During the experiment, each subject performed a sequence of movements meant 
to invoke various morphological changes. The first was walking, invoking quick tissue 
movements from the impact of each step. The second was maximum voluntary contrac-
tion, invoking quick but small tissue movements due to muscular co-contraction. The 
third was reaching, invoking slow progressions between stretched and unstretched mus-
cles. The last was resting, invoking small changes in the morphology. Figure 7 displays 
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a sample sequence of frames for some of these movements, highlighting how various 
points in tissues shift and twist as the movement occurs.

We collected between 20 and 30 videos per subject each lasting between 1 and 3 min 
depending on the movement, resulting in a range of 3600 to 13,000 frames per video, 
with the analyzed videos averaging about 6400 frames long. Data were derived from 20 
subjects for all analyses, except for when training a cross-subject DLC model (Fig. 4), 
where data were derived from another subject group. One video was chosen per move-
ment per subject, with the exception of the MVC movement, where 2 videos were cho-
sen from one of the subjects, and the average error across these two videos was used for 
that subject. For the rest condition, one video was chosen per subject from 17 subjects.

Human labeling

Human labeling was used as ground truth to evaluate the performance of tracking algo-
rithms. A portion of this data was also used to train the DLC-based tracker. Subjects 
were divided into groups, and data from each group was labeled differently (Figs. 8 and 
9. Features unique to an individual were chosen in Group 1, and features common across 
individuals were chosen in Group 2. For DLC tracking, one model was trained per sub-
ject in Group 1, and one model was trained across all subjects in Group 2.

Features chosen in Group 1 were prominent landmarks on the bone and fascia specific 
to the probe positioning that would not go off-frame in any of the videos. A template 
was first created per subject by marking these features on one frame (Figs. 8 and 9, left 
panel). Then, eight frames equally separated in time were chosen for each movement 
type (walking, maximum voluntary contraction, rest, and reaching) from one randomly 
selected video and labeled using the template as a reference. Figure  8 illustrates this 
process.

Fig. 7 Sequence of US frames throughout various movements: highlighting how various types of 
movements during walking affect the morphology of the skeletal muscle in the upper arm
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With this process, each subject had a total of 48 labeled frames with 3 labeled points, 
or 144 total labeled points used by tracking algorithms and used to assess each algo-
rithm’s tracking accuracy.

The ultimate goal of this process was to find the most accurate tracking algorithm 
independent of the type of feature being tracked. Having each subject’s template high-
light different features prevented tracking to be generalized for this purpose. There-
fore, we collected a second group of videos from a six subjects, and three points along 
the edge of the bone were labeled as shown in Fig. 9. For this group, each subject had 
between 13 and 20 US videos. 10 frames that were 0.33 s (20 frames) apart were labeled. 
Choosing a shorter gap between all labeled frames of this batch of subjects allowed for 
a more precise manual labeling process, especially because only small and clear move-
ments would occur from one labeled frame to another.

The more points that are labeled along the edge of the bone or other tissues, the more 
accurate these feature approximations can be.

Frame‑to‑frame tracking algorithms

OpenCV

The first set of algorithms used are frame-to-frame trackers within the OpenCV library. 
These algorithms were analyzed extensively on various types of videos [33–36], and were 
used to track pedestrians in a crowd, vehicles, or faces. Although many image-process-
ing algorithms have been developed to tackle specific tracking challenges in US video 
(liver tracking [37], surgical instruments [38]), little work has been conducted comparing 

Fig. 8 Labeling process for Group 1: the tracking template for an example subject is shown at the top with 
green labeled points. In the bottom panel, labeled points from 8 equally spaced frames across the video are 
shown in red
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the accuracy of OpenCV algorithms. Imaging the upper limbs transversally can specifi-
cally display detailed cross-sections muscle thicknesses, bone rotation, and fascia distri-
butions, but it has yet to be thoroughly analyzed using OpenCV.

As of writing this manuscript, OpenCV has 8 major frame-to-frame trackers including 
CSRT (Channel and Spatial Reliability Tracker) [28], MOSSE (Minimum Output Sum of 
Squared Error) [29], KCF (Kernelized Correlations Filter) [30], BOOSTING [39], MIL 
(Multiple Instance Learning) [40], MedianFlow [41], TLD (Tracking Learning Detec-
tion) [42], and GOTURN (Generic Object Tracking Using Regression Network) [43]. 
Analysis of only the CSRT, KCF, and MOSSE trackers was performed due to promising 
prior results from non-US video tracking [34] and pilot analyses.

Most of the issues that these trackers might encounter arise from feature obstruction, 
fast feature movement between frames, feature movement away from the field of view, 
and tracker drifting. Imaging the arm transversely made it possible for similar issues 
to be encountered since tissue features could travel out of the plane; however, various 
aspects of tracking in this US application actually lessen these burdens. First, tissues 
remain close and in the same general orientation relative to each other. Second, features 
that exit the plane of view during one movement return to the plane during the reversal 
of that movement. And third, once the US probe is attached to a specific location, the 
average size of morphological features do not vary greatly. These benefits when tracking 
US videos are not often found in the other common pedestrian or vehicle applications.

Fig. 9 Labeling process for Group 2: the left panel shows an example template for the second video labeling 
process. The right two frames show approximate methods for obtaining relative bone rotations and muscle 
thickness
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In order to begin tracking, all OpenCV algorithms require a bounding box that acts 
like a template for some of these trackers to capture frame-to-frame movement of image 
features. A 100 × 100 pixel square was used as the initial bounding box size, but smaller 
square sizes were also used for comparing tracker accuracy and speed. After each update 
to the bounding box, the center point of the new box was found, and the new box’s size 
was reset to its initial dimensions to avoid the potential distorting of box dimensions 
over time.

Lucas–Kanade (LK)

The Lucas–Kanade (LK) method [27] has been one of the most widely used computer 
vision techniques for tracking, motion estimation, face decoding, etc. [44] for the last 
30 years. From studying the gastrocnemius medialis tendon in [22] to tracking the inter-
nal jugular vein in [32] to tracking the carotid artery in [33], Optical Flow algorithms 
like LK are observed to be generally accurate when compared visually or quantitatively 
to ground truth. LK uses a template image T (x) , usually a small subsection of a video 
frame, and aligns it to an image of interest I(x) , usually the video’s next frame. A param-
eterized warp matrix W (x; p) takes some pixel of the template T (x) and maps it to the 
coordinate frame in the image I . This matrix allows the algorithm to check how various 
features are not only moving, but also distorting throughout the video. The algorithm is 
described in [44], but a brief summary is presented here.

The goal of the algorithm was originally to find where the template image likely moved 
to in the next frame, regardless of how the template might have distorted between 
frames. Mathematically, this refers to minimizing the sum of squared errors between the 
template T (x) and the image I warped back onto the template’s coordinate frame:

Some �p is computed using the partial derivatives of the gradient of I evaluated at 
W (x; p) . This value is updated until the norm of the vector is below some threshold.

while ||�p|| < ǫ:
compute �p

The OpenCV adaptation of the algorithm simplifies this method by simply minimiz-
ing the sum of squared errors between a template T (x) and the next image in a video I , 
to avoid considering warping effects. Under the assumption that the pixels in the tem-
plate continue to have the same size, shape, and intensity, one of these pixel’s change as 
follows:

which can be simplified via Taylor-series approximation to:

(1)min
∑

x
[I(W (x; p))− T (x)]2

p+ = �p

(2)I(x, y, t) = I(x + dx, y+ dy, t + dt)

(3)
δf

δx

δx

δt
+

δf

δy

δy

δt
+

δf

δt
= 0
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Expanding this to all n× n pixels in the template, the problem expands to solving 
n2 equations with 2 unknowns, which can be estimated with a least-squares to get the 
solution:

This solution provides the corresponding velocity vector of a particular pixel at that 
time.

Anti‑speckling

Initial visual inspection of these algorithms revealed that drifting occurred consist-
ently, especially in longer videos with more tissue and bone movement. To partly tackle 
this issue, the wavelet denoising algorithm from Python’s Scikit library was used prior 
to tracking, as it was shown to increase the Peak Signal to Noise Ratio (PSNR) of each 
frame. Tracking visually improved after this process.

Drifting correction algorithms

Sigmoid tracking correction (STC)

In general, the issue of cumulative drifting in the frame-to-frame algorithms described 
above was decreased significantly with anti-speckling techniques when analyzing vid-
eos with a low-movement activity, such as when resting. This unfortunately did not fully 
eliminate the problem for videos with a high-movement activity. In an attempt to mini-
mize the effect of drifting using labeled data, an algorithm that corrects drifting motion 
over time is proposed.

The movements performed by the subjects were both slow and repetitive which made 
the drifting patterns of the bounding boxes somewhat predictable. If drifting did occur 
during tracking, it often had a slow and steady progression away from the feature of 
interest. For this reason, a method called sigmoid tracking correction (STC) is proposed.

The idea behind STC is relatively simple—if a point being tracked drifts away from the 
desired feature, and you have labeled data at some initial and end frames, a smooth func-
tion can be added to connect the labeled points while maintaining most of the higher-
frequency movements during tracking. More explicitly, say a point’s coordinate at frame 
i is xi and the point’s coordinate at the next labeled frame i + T is xi+T

When the point is tracked from frame i to frame i + T, it drifts to some: xi+T + d

An example of this drifting is shown in Fig. 10 below. As tracking occurs from some 
initial Labeled frame 1 to the next Labeled frame 2, the original yellow point in Fig. 10a 
drifts away from the desired (purple) point on Fig. 10b. The drift value d is, therefore, 
just the distance between the yellow and purple points on Labeled frame 2.

To correct the point’s drift, a sigmoid function is added to the frame’s tracked coordi-
nates between some initial and following labeled frame. Sigmoids have the form:

(4)fxu+ fyv + ft = 0

(5)
�
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which are smooth functions that approach 0 and + 1 as x approaches − ∞ and + ∞, 
respectively, with a maximum slope at x = 0 . The function can be parameterized to the 
form:

and tuned to shift this function accordingly. The value of A scales the height of the func-
tion as x approaches + ∞, the value of B determines the maximum steepness of the 
function ( slope = AB

4  ) at its midpoint, the value of C determines the horizontal shift 
of the function, and D determines the vertical shift of the function. This function only 
approaches its asymptotes, so the drifting path error can also only be corrected up to a 
small tolerance ǫ times the error d . An ǫ of 0.01 is chosen in this case to reach a 1% error. 
Therefore, the new coordinate after summing the appropriate sigmoid function at the 
initial labeled frame j = i should be

and the new coordinate right before the next labeled frame j = i + T − 1 should be

Knowing the coordinate should approach xj + ǫd instead of 0 at −  ∞, and 
xj + (1− ǫ)d instead of 1 at + ∞, it can be concluded that the vertical shift to the sig-
moid function should be D = xi . The horizontal shift to the function is determined 
by the location of the midpoint which is C = 0 for the standard sigmoid. For this 

(6)S(x) =
1

1+ e−x

(7)S(x) =
A

1+ e−B(x−C)
+ D

xnew,j = xj + ǫd

xnew,j = xj + (1− ǫ)d

Fig. 10 Tracking drifting example. a shows the video at a labeled frame, and b shows the video at the next 
labeled frame, with the yellow point representing where the purple point on (a) should have been tracked to
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application, the midpoint between the initial and end frames (and therefore the hori-
zontal shift) should be C = i + T/2 . The scaling factor should be the drift A = d , as this 
is the coordinates’ difference in the initial and end frames. Substitution of these three 
terms into Eq. (7) for i = 0 (assuming tracking starts at the first frame) is required to find 
the last parameter B:x0 + ǫd = A

1+e−B(0−C) + D , substituting to

Therefore, the full algorithm from j = 0 to j = T − 1 becomes:

In the context of US tracking, this algorithm would be applied to tracking points for 
both x and y pixel coordinates. In Fig. 10, the tracking of the purple point drifts away 
from the desired feature to some higher y-coordinate. Figure  11 graphically shows an 
example of this algorithm in action. Once the labeled frame is reached, the tracker is 
reset to the desired coordinate, and the appropriate sigmoid function is added to com-
pensate for the drift.

x0 + ǫd =
d

1+ e−B(−T/2)
+ x0

ǫ =
1

1+ eBT/2

ǫ + ǫeBT/2 = 1

eBT/2 =
1

ǫ
− 1

B = 2ln(
1

ǫ
− 1)/T

(8)xnew,j = xj +
d

1+ e−2ln(1/ǫ−1)(j−T/2)/T

Fig. 11 Sigmoid tracking correction visualized: this shows how STC can be applied to the example in Fig. 10. 
The purple line shows the tracked y‑coordinate with LK starting at the first labeled point (left red point). The 
green line shows the path this point takes after applying sigmoid correction (black trace)
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STC was used to improve the issue of drifting for all frame-to-frame trackers. Since 
STC requires labeled data to exist, it is important to understand how the quantity of 
labeled data improves tracking accuracy. 0–4 labeled frames per video were used for cor-
rection, called “correction frames,” which dictated at what frames the algorithm would 
reset the tracked points to their labeled location. As described earlier, each subject has 8 
equally distributed labeled frames per video, so the chosen correction frames were also 
distributed evenly throughout. For 1 correction frame, labeled frame number 4 was used 
for correction. For 2 correction frames, labeled frame 3 and 6 were used for correction. 
For 3 correction frames, labeled frames 2, 4, and 6 were used for correction. And for 4 
correction frames, labeled frames 1, 3, 5, 7 were used for correction.

Reversed tracking correction (RTC)

STC is a heuristics-based technique that requires labeled frames throughout the video 
of interest and is used after tracking is complete. In the scenario where no labeled point 
data is available, a method called reversed tracking correction (RTC) is proposed.

Given a set of initial points, one can assume in the worst scenario that drifting will 
increase error throughout the course of a video. Under this assumption, if the video is 
reversed with a set of initial points, running the same frame-to-frame tracker will also lead 
to drifting with increasing error. Using this information, a given tracker is applied normally 
to the original video starting at the start frame’s labeled points, and the tracked points are 
stored as the forward path Pf. Then, the tracker is applied to the reversed video starting at 
the end frame’s labeled points, and tracked points are stored as the backward path Pb.
Pf ,Pb(Nxpx2) → path forward, path backward (x, y coordinates).
ti, te → initial frame, end frame
N , p→number of frames, p number of points.
RTC averages the two paths (Pf + Pb)/2 , returning a new tracked path that includes an 

equal contribution from both.

Reversed sigmoid tracking correction (RSTC)

STC is useful when many frames throughout a video are labeled. RTC can be useful when 
only the start and end frames of a video are labeled. Reversed sigmoid tracking correc-
tion (RSTC) combines ideas from both methods to potentially improve accuracy given 
the same minimal information as in RTC. However, instead of an equal contribution from 
both paths, RSTC creates a new path that is more influenced by the forward path near the 
start of the video, and more influenced by the backward path near the end of the video. 
To do so, it scales the forward path by a sigmoid function with a value near 1 at the start 
frame, and a value near 0 at the end frame, and repeats this in reverse for the backward 
path. The sigmoid function parameters are found using a similar process as in Eq. (8):

where B = 2ln( 1
ǫ
− 1)/(te − ti) and C = (ti + te)/2

Pfs = sfPf ,Pbs = sbPb(10)

(9)sf =
1

1+ e−B(x−C)
, sb =

1

1+ eB(x−C)

PT = Pfs + Pbs
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To visualize the difference between RTC and RSTC, the path of an example point’s 
y-coordinate while tracking is shown in Fig. 12.

STC, RTC, and RSTC attempt to decrease the drifting errors of frame-to-frame track-
ers, but these heuristics-based approaches do not necessarily fix full tracking failures 
or tracking subtle movements. In an attempt to incorporate training using the labeled 
frames, an existing method of tracking using Convolutional Neural Networks (CNNs) 
will be described next in “DeepLabCut (DLC)”.

DeepLabCut (DLC)

DLC is an open-source software used typically for markerless feature tracking of ani-
mals [31]. It uses the feature detector architecture from DeeperCut [45], a high-accuracy 
human pose-estimation algorithm that includes a network pretrained on more than 1.4 
million images. This allows it to use a small number of training images (in order of a 
few hundred) to achieve human-level accuracy. DLC combines the pretrained ResNet 
encoder (typically used for object recognition with excellent performance) and deconvo-
lutional layers (used to produce spatial probability densities) into a robust tracking CNN 
[31].

While DLC has been used extensively to track animal and human features during 
movements, its ability to track features in US videos has been minimally explored. [46] 
used DLC to track the upper surface of the tongue and compared it to other US con-
tour estimators, concluding that DLC requires significantly less training data to perform 
with the same level of accuracy. [47] used DLC to track the gastrocnemius muscle–ten-
don junction, observing the morphology of the lower leg longitudinally. In addition, [48] 
used DLC as a general CNN to track hyoid kinematics during swallowing, comparing its 
accuracy to other manual and automatic hyoid-specific trackers. All related applications 
of this package not only focus on tracking different anatomies than those studied in this 
paper, but they also focus on tracking a singular feature. In this paper, DLC is used to 
simultaneously track features in soft tissue, bone, and adipose while comparing its accu-
racy with non-CNN trackers.

Fig. 12 Reversed tracking correction and reversed sigmoid tracking correction visualized: visual of RTC and 
RSTC using the y‑coordinate of an example point. The purple line represents the path of the point tracked 
forward in time. The orange line represents the path of the point tracked backward in time. The yellow line 
is the averaged path from RTC. The green line is the sigmoid‑scaled path from RSTC. The red points are the 
human labeled points
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DLC has a Python toolbox [49] used to facilitate the manual steps involved with select-
ing videos, labeling points, and training and evaluating the network. The toolbox can be 
accessed via any text editor or its own GUI targeted towards those without program-
ming experience. As described in “Human  labeling”, both subject groups were labeled 
differently to tackle how tracking various features (Group 1) varied from tracking spe-
cific features across subjects (Group 2). Subjects in Group 1 had 8 equally spaced labeled 
frames per video, and half of those labeled frames across all videos were chosen as train-
ing data. Subjects in Group 2 had 10 equally spaced labeled frames per video, and 80% 
of the videos were chosen as training data. The rest of the frames and videos for these 
groups was chosen as testing data on which the DLC models would be evaluated. The 
manually labeled data of both Group 1 and Group 2 was restructured into the appropri-
ate file types for DLC to use for training. The training data was augmented using the 
imgaug method (https:// github. com/ aleju/ imgaug) and a 50-layer ResNet network was 
re-trained using this data for 500 k iterations, where error commonly plateaus [46] for 
ResNet50.

Although this series of steps typically performs visually well, DLC has an additional 
feature that checks the results for outlier frames by observing large changes in feature 
trajectories. Depending on the accuracy when manually labeling and the robustness of 
that particular network, the 144 originally labeled points might not have sufficiently 
eliminated these outliers, so the option to label additional frames was provided. How-
ever, in order to establish a standard benchmark in which all trackers used the same 
labeled frames, this outlier-detection feature was not used.

Measuring accuracy and speed

In order to compare the accuracy of all algorithms, the error of interest was measured 
as the Euclidean distances between the ground truth labeled points and the center of the 
tracker’s estimated bounding boxes. This was done both before and after correction to 
compare both the accuracy between frame-to-frame algorithms (like OpenCV trackers) 
and trained deep networks (like DLC) given a specified number of labeled frames. These 
same distance metrics were used to compare tracking accuracy depending on the type of 
movement performed, or the number of correction frames used.

Next, to understand the impact of cumulative drifting, 8 copies of each labeled video 
were made and cropped to have an increasing number of frames (N)—in this case, 
N = 200, 400, … 1400, 1600. Each copy was then reversed and concatenated to the end 
of the non-reversed copy to create videos with 2N-1 frames as if each copy was mirrored 
onto itself. Then, from the starting frame and its labeled points, each tracker was applied 
to these copies, and the distances between the points at the start and end frames were 
measured. Since these copies are mirrors of themselves, the start and end frames were 
the same, so an ideal non-drifting tracker would return an error of 0. The larger the error 
between the points, the worse the drifting for that tracker.

Finally, to analyze the speed of these various methods, the time to completion of each 
algorithm was determined. A computer with a 3  GHz CPU and 64 GBs of RAM was 
used (Intel i9-9980 XE) to run all frame-to-frame trackers, and only one tracking process 
ran on it at a time. Another computer’s 1860 MHz GPU (NVIDIA GeForce RTX-3090 

https://github.com/aleju/imgaug
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Ti) was used to run all DLC processes, as the DLC GitHub (https:// deepl abcut. github. io/ 
DeepL abCut/) explains code will run an order of magnitude faster using a GPU.

Abbreviations
US  Ultrasound
LK  Lucas–Kanade
MOSSE  Minimum output sum of squared error
KCF  Kernelized correlations filter
CSRT  Channel and spatial reliability tracker
DLC  DeepLabCut
STC  Sigmoid tracking correction
RTC   Reversed sigmoid correction
RSTC  Reversed sigmoid tracking correction
MVC  Maximum voluntary contraction
CNN  Convolutional neural network
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