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Abstract 

 

Although it has been shown experimentally that a temperature discontinuity exists at the liquid-

vapor interface during evaporation and condensation, quantitatively modeling this temperature 

jump has been difficult.  The classical Schrage equation does not give enough information to 

determine the interfacial temperature jump.  Starting from the Boltzmann transport equation, 

this paper establishes three interfacial boundary conditions to connect the temperature, density, 

and pressure jumps at the liquid-vapor interface to the interfacial mass and heat fluxes: one for 

the mass flux (the Schrage equation), one for the heat flux, and the third for the density 

discontinuities.  These expressions can be readily coupled to heat and mass transport equations 

in the continuum of the liquid and the vapor phases, enabling one to determine the values of the 

interfacial temperature, density, and pressure jumps.  Comparison with past experiments is 

favorable.  A thermomolecular emission model, mimicking thermionic emission of electrons, is 

also presented to gain more molecular-level insights on the thermal evaporation processes. 
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1. INTRODUCTION 

 

Evaporation and condensation processes happen widely in nature and industrial technologies [1–

4].  Interfacial temperature discontinuity in these processes has been recognized [5,6], supported 

by direct measurements across liquid-vapor interfaces [7–14], kinetic theory-based modeling 

[15–22], Monte Carlo simulation [23], and molecular dynamics simulations[24–27].  Although 

some heat transfer models recognized the existence of such temperature discontinuities, most 

of the time, the temperature discontinuity is neglected.  There seems to be ambiguity on the 

physical mechanisms of the temperature discontinuity at the liquid-vapor interface during phase-

change heat transfer, as well as a lack of convenient physics-based models to treat the interfacial 

discontinuities.  The objectives of this paper are to provide simplified kinetic theory-based 

interfacial conditions for determining the discontinuities in temperature, density, and pressure 

and a microscopic emission picture for the thermal evaporation process.  These interfacial 

conditions can be combined with continuum equations for modeling phase-change processes. 

 

The literature on evaporation and condensation is vast and cannot possibly be reviewed within 

this short introduction. Here, we will briefly mention key historical developments. Pioneering 

studies of evaporation were carried out by Hertz [28] and Knudsen [29]. Hertz measured 

evaporation of mercury. Knudsen also measured mercury and introduced the concept of the 

coefficient of evaporation, a.  Langmuir made original contributions to evaporation through his 

study of tungsten evaporation at high temperatures [30].  Knacke and Stranski [31] gave a good 

summary of the experiments and understanding of evaporation mechanisms prior to 1956.  The 

Hertz-Knudsen equation, which can be readily derived from the kinetic theory by neglecting any 

collision of the molecules, gives the evaporation mass flux between two parallel plates: 
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where Ps is the saturation pressure corresponding to the liquid surface temperature Tl, and Pv 

and Tv are the vapor phase pressure and temperature near the interface, kB the Boltzmann 
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constant, m the mass of a single molecular, R the universal gas constant, M the molar mass, and 

a the accommodation coefficient. 

 

Schrage [32] in his PhD thesis also gave a good review of the prior work, including work before 

Hertz.  He argued that the Hertz and Knudsen formula did not consider the drift velocity of the 

evaporating molecules.  After considering molecular drift, the equation he arrived at differs from 

Eq. (1) in the prefactor, 
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The Schrage equation is widely used as a fundamental relation for evaporative and condensation 

heat transfer.  Knowing the evaporation and condensation rates, one usually finds the heat 

transfer rate by multiplying 𝑚̇. and the latent heat of evaporation.  We show in this article that 

the latter is at best only an approximation. 

 

Although Schrage derived the molecular distribution function near the interface that is consistent 

with the drift of the molecules, his theory did not include the effect of heat transfer across the 

interface.  The molecular flux expression Eq. (2) depends on Tl, Pv and Tv, which are usually not 

known themselves.  Coupling Eq. (2) with continuum descriptions on the liquid and the vapor 

phases do not give enough equations to determine these unknowns.  The exact location of Pv and 

Tv in Eqs. (1) and (2) is not clear, although it is generally considered to be at the edge of the 

Knudsen layer, i.e., with several mean free path from the liquid-vapor interface. Furthermore, 

there are no easy ways to determine these quantities in typical heat transfer situations such as 

film evaporation or condensation.  Based on solutions to the Boltzmann transport equation (BTE), 

different approximate expressions have been given relating the interfacial mass and heat fluxes 

to the liquid side pressure (Ps) and temperature (Tl), the vapor side pressure (Pv) and temperature 

(Tv), and the accommodation coefficient (𝛼) [18–20,22,33] . It is fair to say that the interfacial 

heat flux expressions derived by different authors have not come to the same level of clarities as 

in the Hertz-Knudsen and Schrage expressions for the mass flux.  Even with any of the derived 



 4 

interfacial heat flux expression, I will show that there are still not sufficient equations to solve for 

all the unknowns when combined with continuum descriptions on the two phases.     

 

Experimentally, Ward and co-workers [7,8] measured the temperature profile of a liquid-vapor 

interface and noticed that quite a large temperature discontinuity exists at the interface.  

Although most solutions of the BTE will predict a temperature discontinuity, no theory seems to 

have been able to predict the magnitude of the measured temperature discontinuity [9,34].  

Ward and co-workers developed a statistical rate theory and the corresponding evaporation rate 

to replace the Schrage equation, but the theory still has the same difficulties in terms of not 

having enough equations to solve for the unknowns [35]. Bond and Struchtrup [34] used kinetic 

theory with an interfacial temperature discontinuity to model Ward’s experiment, but their 

model showed much smaller temperature discontinuity than the experiments, although the 

agreement with experiments became better after including surface curvature. Follow-up 

experiments by several other groups also showed the interfacial temperature discontinuities [9–

14], as well summarized in Ref. [23] .  Badam et al. [9] used the temperature discontinuity 

boundary condition of Cipolla et al. [20], but found that the modeling results were 10-20 times 

smaller than their experimental data. 

 

The lack of favorable comparison between experiments and modeling, coupled to difficulties in 

the experiments and modeling, raises doubt on the existence of the interfacial temperature 

jumps. However, discontinuities at interfaces are rules rather than exceptions in different fields. 

Well-known examples are velocity and temperature slips in rarefied gas flow [36], phonon 

interfacial thermal resistance [37], the Deissler temperature jump boundary condition for 

thermal radiation [38], and interfacial voltage drops. These discontinuity conditions provide a 

convenient way to connect transport through the interfacial region with the bulk region.  

Different ways to derive the discontinuity conditions had been developed, as the starting points 

of the transport equations are usually different.  However, for most dilute particles, kinetic theory 

based on the BTE provides a common starting point [39,40]. I had shown before that one can 

consistently derive the interfacial discontinuity conditions for different carriers starting from the 
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diffusion approximation to the BTE, which I called diffusion-transmission boundary conditions, 

and applied the strategy to study rarefied fluid flow, heat conduction, and electrical contact 

resistance [41,42].   

 

In this work, I will follow same strategies to derive a set of interfacial conditions that are sufficient 

to connect the Knudsen layer with the liquid and vapor continuum phases, which include, in 

addition to the well-known Schrage equation, a relation between the interfacial heat flux and 

temperature discontinuity, as well as an expression for the interfacial density discontinuity (Sec. 

3).  With these interfacial relations, one can connect continuum descriptions for the liquid and 

the vapor-phases and solve for the temperature, density, and pressure of both phases 

immediately near the interface.  These solutions will give interfacial temperature, density, and 

pressure jumps. I will show the usefulness of these interfacial conditions by first demonstrating 

that these conditions can well explain the past experimental data on the interfacial temperature 

discontinuities [7,9]. (Sec. 4.1). Since most evaporation and condensation heat transfer 

experiments report an overall evaporating heat transfer coefficient, I will connect the overall heat 

transfer coefficient to the single-phase convective heat transfer coefficient. Such modeling 

suggests that the interfacial temperature discontinuities are not negligible for practical heat 

transfer scenarios (Sec. 4.2). Before deriving interfacial discontinuity conditions, I will provide a 

thermomolecular emission model for the transport between the liquid and vapor phases (Sec. 2), 

mimicking the well-established thermionic emission theory for electron transport across 

interfaces.  Although the final interfacial conditions do not depend on this model, I believe the 

thermomolecular emission model provides useful insights on the interfacial phase-change 

process and the origin of the evaporation and condensation coefficients that are often used in 

literature. Because this paper includes many derivations, I will put most of these derivations in 

supplemental materials (SM) for interested readers, while focusing the main text on key results.   
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2. THERMOMOLECULAR EMISSION MODEL FOR EVAPORATION 

 

I use the phrase “thermomolecular emission” to mimic the “thermionic emission” that was 

discovered by Edmond Becquerel in 1853 [43] and rediscovered by Thomas Edison in 1880 [44].  

Thermionic emission refers to the evaporation of electrons from hot metal surface as shown in 

Fig.1(a).  Most mobile electrons have energy near the Fermi level.  Those electrons with kinetic 

energy larger than the workfunction can escape the metal surface, entering the surrounding 

vacuum.  The correct theory for thermionic emission was developed by Owen Richardson  

[45,46].  The development of the thermionic emission theory invoked the physical picture behind 

liquid thermal evaporation.  Ironically, I have not found a similar theory for the liquid thermal 

evaporation.  In this section, I will present such a theory, and call it the thermomolecular emission 

theory in analogy to the thermionic emission.  The thermionic emission model is also often the 

basis for extension to include other processes such as photon-enhanced thermionic emission 

[47].  The thermomolecular emission model presented below might also serve as a starting point 

to model the photomolecular evaporation processes that we recently discovered [48,49]. 

 

Thermal evaporation bears a similar picture to thermionic emission, as shown in Fig. 1(b).  

Molecules in the liquid are bound together near its average potential energy, which is lower than 

the vapor phase (analogous to vacuum) by D, the latent heat per molecule.  The water latent heat 

at 25 oC is 2346.3 kJ/kg, which is equivalent to 0.44 eV/molecule. The kinetic energy of molecules 

spread from zero to infinite. These molecules in the interfacial region with kinetic energy larger 

than D can escape liquid and enter the vapor phase, as suggested also by molecular dynamics 

simulations [50].   

 

A key challenge in modeling liquid is to specify the statistical distribution function.  Unlike dilute 

gases which can be described by the one-particle Maxwell-Boltzmann distributions, liquid 

molecules are strongly correlated with each other via potential interactions.  Liquid molecules 

also differ from that in crystalline solids, which are periodically arranged [51]. The randomness 

plus the strong correlation have hindered progress in describing thermal transport in liquid. The 
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BBGKY hierarchy is an approach that progressively reduces the N-particle distribution function 

(where N is the total number of molecules or atoms) to eventually the one-particle distribution 

function, i.e., the Maxwell-Boltzmann distribution [52,53], 
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where kB is the Boltzmann constant, m is the molecular mass, T the absolute temperature, v the 

velocity with components vx, vy, vz, and nL the density of the liquid.  Unlike dilute gas, for which 

the N-particular distribution function is the product of the one-particle distributions, the liquid 

N-particle distribution functions cannot be constructed from the one-particle distribution 

function alone.  However, for our purpose of considering the evaporation of individual molecules, 

assuming validity of Eq. (3) for each molecule is a reasonable starting point, since the kinetic 

energy expression remains the same even for correlated liquid molecules [53]. Using the above 

distribution function, and assuming only molecules with kinetic energy component in the 

direction perpendicular to the interface (the z-direction) larger than the energy barrier D can 

escape the interface, i.e., 

 

                                 

 (a)     (b) 

Figure 1: Illustrations demonstrating similarities between (a) thermionic emission of electrons 

from a hot surface and (b) thermomolecular emission from a liquid-vapor interface. 
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,
𝑚𝑣8, ≥ ∆, (4) 

 

the flux of the molecules that can leave surface is (see SM, Sec.1) 
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In the above expression, e is artificially added to include nonidealities, representing the molecular 

emittance from the liquid phase.  Note that e is not the evaporation coefficient as used in the 

evaporation literature [33] because here nL is the liquid density while the evaporation coefficient 

is defined based on the vapor density.  Its relationship with the evaporation coefficient will be 

discussed later.  Detailed math behind arriving at Eq. (5) is given in the SM, Sec. 1, in which I also 

give an expression when the condition for molecules leaving the surface is set as the total kinetic 

energy larger than the energy barrier.  Richardson’s original work did consider this latter case, 

although the classical expression for thermionic emission used in electronics mostly imposes the 

condition of normal component of kinetic energy larger than the energy barrier as Eq. (4). 

 

The above expression describes molecules leaving the liquid-vapor interface.  Meanwhile, 

molecules from the vapor phase also moves towards the interface. The Maxwell-Boltzmann 

distribution, Eq. (3) can be more easily justified for molecules in the vapor phase (it does imply 

the ideal gas approximation).  We consider vapor molecules adjacent to the liquid surface and 

neglect the collisions among the molecules themselves.  Some of these molecules move towards 

to liquid surface.  The vapor molecular flux absorbed by the liquid surface can be similarly 

obtained as (SM, Sec. 1) 

 

 𝐽#0 = 𝛼𝑛5%
%!($
,$#

, (6) 

 

where nV is the density of the vapor-phase molecules and Tv its temperature, a represents the 

fraction of incoming vapor flux absorbed by the liquid phase, i.e., the condensation coefficient. 
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In deriving Eq. (6), we assumed that the vapor molecules near the interface obey the Maxwell-

Boltzmann distribution, and yet they reach the interface without any collision.  These two 

assumptions conflict each other intrinsically in the following sense.  The Maxwell-Boltzmann 

distribution means molecules are in thermal equilibrium, which can only be reached if there are 

collisions among molecules.  Hence, Eq. (6) is at best an approximation where Tv is considered as 

the vapor temperature at the edge of the Knudsen layer, but any collision within the Knudsen 

layer is neglected.  Extensively studies had been reported in the past treating collisions within 

the Knudsen layer via solving the Boltzmann transport equation, Monte Carlo simulations, and 

molecular dynamics simulations, as cited before.  In these studies, Tv is usually considered as a 

boundary condition at the outer edge of the Knudsen layer.  However, we should bear in mind 

that even at the edge of the Knudsen layer where continuum description is considered valid, the 

transport is still at nonequilibrium.   

At equilibrium, i.e., when Tl=Tv, the outgoing and incoming flux are balanced 𝐽;6 = 𝐽;0, which leads 

to 

 

 /
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where we use ns to represent nv at equilibrium with the liquid, i.e., the saturation condition.  This 

is an example of the detailed balance principle, which in fact applies not only to the total flux 

integrated over all directions as we used here, but also along each direction. Because of the 

detailed balance principle, the outgoing flux can also be expressed using the vapor phase 

properties: 

 

 𝐽#6 = 𝛼(𝑇>)𝑛;(𝑇>)%
%!(#
,$#

. (8) 

 

In the above expression, I was careful to denote that ns and 𝛼 should be taken at the temperature 

of the liquid surface.  In literature, a in Eq. (8) is often defined as the evaporation coefficient [33].  

The detailed balance principle, i.e., at equilibrium, there is no net flux, guarantees that the 
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evaporation coefficient equals the condensation coefficient or the accommodation coefficient.  

When the evaporation coefficient is directionally and energetically dependent, the detailed 

balance principle guarantees that the evaporation and condensation coefficients are equal for 

every direction and molecular velocity. 

When 𝑇> ≠ 𝑇5, the net molecular mass flux is the difference between 𝐽#6  and 𝐽#0 , 
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where in the last step we have replaced the molecular density with the ideal gas relation 𝑃 =

𝑘@𝑛𝑇.  The above relation is Hertz-Knudsen equation given in Eq. (1).  In arriving at this equation, 

we assumed that the condensation coefficient is independent of temperature.  

[NO_PRINTED_FORM]In reality, the condensation coefficient depends strongly on temperature, 

as we will show below.   

 

The use of detailed balance principle enables us to express the emission of molecules from liquid 

in terms of vapor properties as in Eq. (8). This approach was also taken by Herring and Nichols in 

their treatment of thermionic emission [54].  It is also well-established in thermal radiation where 

we use the blackbody radiation law in vacuum rather than inside the emitting medium, with a 

similar to emissivity, and its equality to the condensation coefficient similar to the Kirchhoff’s law 

[55]. However, the treatment of thermomolecular emission process from liquid phase sheds light 

on the physical pictures of thermal evaporation, which we will discuss below. 

 

First, the Gibbs phase rule says that for pure substance at liquid-vapor phase equilibrium, only 

one intensive property, for example temperature, is changeable.  For a given temperature, the 

saturation pressure and the liquid and the vapor phase molecular densities are all fixed. We use 

saturated water data and set ∆= 𝑀𝐿/𝑁A, where NA is the Avogadro constant, L the latent heat, 

and obtain the ratio of a/e according to Eq. (7) based on water properties.  This ratio is shown in 

Fig. 2(a).  One can see that a/e depends strongly on temperature.  This strong temperature 
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dependence hints that a itself is strongly temperature dependent and explains why often one 

needs to separate the evaporation coefficient from the condensation coefficient.   

  

 
Figure 2. Ratio of the vapor accommodation coefficient and the emittance [defined according to 

Eq. (5)] based on (a) internal energy and enthalpy of phase change and (b) after considering surface 

energy assuming interfacial density changes occur only over one molecular layer, using properties 

of water. 

 

Second, in the above calculation, we assumed that the latent heat is the energy barrier needed 

to overcome. This picture is not entirely correct, however, since molecules at the surface have 

higher energy than that of the molecules inside, while the latent heat per molecule is averaged 

to all molecules in the domain and dominated by molecules in the bulk region.  Suppose that the 

energy per molecule at the surface is s, then the energy barrier needed to overcome for 

evaporation is D-s.  Evaluating s, however, is difficult, as the density of interfacial molecules 

change from bulk liquid to vapor phase over a distance of 3-7 Å  [56,57], i.e., involving several 

molecular layers, and the measured surface tension includes contributions from this region. I 

attempted to attribute the measured water surface tension to one molecular layer of water on 

the surface, and replace D in Eq. (7) by D-s, the obtained 𝛼/𝜀 ratio is shown in Fig. 2(b).  In this 

case, a becomes much larger than e and the temperature dependence becomes different, which is 

probably because I attributed the surface tension to only one molecular layer. In reality, several 

molecular layers of water molecules contribute to the surface tension. 
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Also unknown is the distance d within liquid itself for the liquid molecule energy to change from 

bulk value D to their values at surface D-s.  Over this distance, the liquid is cooled, but this cooling 

is coupled to heat conduction within the liquid phase and the vapor phase.  There seems to be 

no study on this distance.  However, surface tension theory suggests that molecules in the surface 

region experience anisotropic tension (or pressure) [58].  Within the same d, the pressure 

changes from isotropic for molecules in the bulk region to anisotropy pressure in the surface 

region. 

 

When molecules leave the liquid-vapor interface, they also experience an attractive force from 

the bulk dense molecules in the surface region and inside the bulk region.  This force is sometimes 

attributed to the van der Waals force but is more generally called Casimir force, characterized by 

the Hamaker constant [59].  The van der Waals force is an electrostatic picture while the Casimir 

force is based on the electrodynamic picture, typically modelled using the fluctuating 

electrodynamic approach.  This is the origin of the disjoining pressure [59].  A valid question is if 

the disjoining pressure should be included in phase change modeling.    

 

For evaporation from a bulk liquid surface, the equilibrium condition between the bulk liquid and 

its vapor phase already included the disjoining pressure caused by the above-mentioned force.  

This force will affect values of the evaporation and condensation coefficients.  However, for a 

very thin liquid film on a solid substrate, molecules in the vapor phase near the liquid surface will 

experience a different force due to the long-range interaction with the solid substrate materials.  

In this case, correction to this different interaction should be made, under the concept of 

disjoining pressure [59].  Rigorous calculation of this disjoining pressure can be done based on 

the fluctuational electrodynamics used for calculating the Casimir force.  This also explains why 

accommodation coefficient depends on materials. 

 

Another question is if the latent heat should be used, or the internal energy difference between 

the vapor and the liquid phase should be used in estimating D.  The latent heat is the enthalpy 
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change between the liquid and the vapor phase, which includes the work done by volume 

expansion.  Although the above discussion was based the latent heat, i.e., enthalpy, in estimating 

D, using internal energy difference during phase transition to estimate D would better reflect that 

it represents the potential energy difference.  Fig. 1(b) includes a/e ratio based both the enthalpy 

and the internal energy changes during the liquid-vapor phase transition.   

 

Clearly, the above discussions are qualitative.  Based on the water data (energy, enthalpy, and 

surface tension), it seems that both e and a depend strongly on temperature.  Although past 

literature had emphasized evaporation coefficient could be different from condensation 

coefficient, the above discussion suggests what we really need is the temperature dependence 

of the condensation coefficient.  This view was also indicated in the discussion of Ref. [60].  

 

 

3.  Diffusion Approximation with Diffusion-Transmission Jump Boundary Conditions 

 

Since even the emission process can be described by the vapor phase properties using the 

detailed balance principle, in this section we will focus on one-dimensional transport in the vapor 

phase along the direction perpendicular to the interface, i.e., the z-direction.  This problem has 

been treated in many past studies based on the kinetic theory [15–18,21,61] . Our focus is on 

deriving interfacial jump boundary conditions.  We use the BTE as the starting point.  For the bulk 

region, we will use the diffusion approximation derived from BTE.  For the interfacial region, we 

derive temperature, pressure, and density jump boundary conditions that are consistent with the 

diffusion approximation in the bulk region.  The starting point is the BGK approximation of the 

BTE [39,40]  

 

 𝑣8
BC
B8
= − C0C)

D
 (10) 

 

where t is the relaxation time, f the distribution function in the phase space, fd is the displaced 

Maxwell velocity distribution[40,62], 
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where u(z) is the average velocity in the z-direction, and n(z) and T(z) are the local density and 

temperature, respectively.  The above expression considers kinetic energy of the molecules only.  

Extension to include other forms of energy (rotational and vibrational) can follow similar 

treatment in literature [16], which in the continuum regime will be mainly reflected in using the 

appropriate specific heat.  Although the Maxwell-Boltzmann distribution implies the ideal gas law 

𝑃(𝑧) = 𝑘@𝑇(𝑧)𝑛(𝑧), we will delay this substitution. This way, the expression may be more 

general and applicable to cases where the ideal law is not obeyed. 

 

3.1. Diffusion Approximation for the Bulk Region 

 

Away from the interface, the first order perturbation solution to the BTE leads to the distribution 

function as 
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We consider that the above expression is valid outside the Knudsen layer. The density, velocity, 

and temperature are all local equilibrium values (and correspondingly the pressure).  We will use 

Eq. (12) to derive transport equations for the continuum region, away from the interface. 

 

From Eq. (12), we can derive expressions for the mass flux 𝑚̇ and heat flux q as (see SM, Sec. 2 

for details): 
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We use the approximate signs to indicate that higher order nonlinear terms are neglected.  These 

terms are given in the SM Sec.2 and can be included if the Mach number is high.  The three terms 

in the above expressions are due to (1) convection, (2) self-diffusion from the density gradient, 

and (3) diffusion due to the temperature gradient. The density and the temperature gradients 

both contribute to the mass and heat transfer, and the cross terms represented by L12 and L21 are 

related, a manifestation of the Onsager reciprocity relation. 

 

We can write Eq. (13) as 

 

 BH
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*+
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Note that the continuity condition for one-dimensional transport leads to,  

 

 𝜌(𝑧)𝑢(𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (16) 

 

Substituting Eq. (15) into Eq. (14), we have 
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where k is the thermal conductivity.  Equations (13-17) are applicable to the bulk region.  We 

need connect them to the interfacial region, which we will treat in the next section. 

 

In literature, the mass flux 𝑚̇ is often set to equal to ru, i.e., the first term of Eq. (13).  Or 

alternatively, one can argue that the velocity itself is defined based on Eq. (13), including the 

temperature and density gradient terms.   The former treatment completely neglects the 

diffusion process under temperature and density gradients.  In the case of pure heat conduction, 

u=0 and one can use the mass flux equaling zero to eliminate the density gradient in arriving at 
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the proper thermal conductivity as given in Eq. (17) [39,40].  However, when there is macroscopic 

convection, it is unlikely that the two diffusion terms in Eq. (13) cancel each other.  How to treat 

such self-diffusion is a question still under debate [63–68].  Brenner introduced a mass velocity 

and a volume velocity and modifications to the Navier-Stokes equations [63,64].  Similar 

treatment was introduced by Elizarova [[67].  The treatment presented here is consistent with 

their views.  Equation (16) is the consequence of ensuring that density n(z) represents the local 

density in the continuum (see SI, Sec.2).   

 

3.2 Interfacial Mass Flux 

Consider a stationary interface and transport in the interfacial region, applying detailed balance 

principle to each direction, the distribution of the molecules leaving the surface can be expressed 

in terms of a Maxwellian distribution as 

 

 𝑓;6(𝑇>) = 𝛼(𝑇>)𝑛;(𝑇>) 1
#

,$%!(#
2
2/,

𝑒𝑥𝑝 6−#45%&65'&65(&7
,%!(#

7    (for vz>0) (18) 

 

We have assumed an isotropic accommodation coefficient. Note that unlike the vapor phase 

which obeys the drifted Maxwellian distribution, molecules leaving the liquid phase have a much 

smaller velocity, which is neglected in Eq. (18).     

 

In the diffusion-transmission approach to derive the interfacial discontinuities [41], the 

distribution of molecules coming towards the interface is identical to that used for the diffusion 

approximation, but only for vz<0 and at z=0, i.e., the density, temperature, and velocity in Eq. 

(12) are the values in the vapor phase at z=0.  These approximations are inherently similar to 

those used in the Hertz-Knudsen or the Schrage equations, implying that we neglect the finite 

thickness and collisions within the Knudsen layer that eventually lead to the molecular 

distribution following the diffusion approximation Eq. (12).  The values of Tv(0), u(0), and nv(0) 

are actually values at the outer edge of the Knudsen layer.   Many of the past treatments of the 

Knudsen layer also assumed that the molecules outside the Knudsen layer obey the displaced 

Boltzmann distribution, i.e., Eq. (11), with however zero gradients of n, T, and u beyond the 
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Knudsen layer.   Such zero gradients are inconsistent with continued diffusion in the continuum 

region as represented by Eqs. (13)-(17).  In contrast, the use of Eq. (12) to represent the 

distribution of molecules coming towards evaporating interface ensures that interfacial 

conditions we derived below are consistent with diffusion in the continuum.  Hence, we expect 

that the ballistic transport approximation within the Knudsen layer incurs inaccuracy compared 

to models rigorously treating the Knudsen layer, but gains accuracy in connecting with the 

continuum treatment. 

 

Among the incoming molecules, only a fraction a(Tv(0)) is absorbed similar to Eq. (6). The rest 

fraction 1- a(Tv(0)) is reflected.  Subtle questions are what the distribution of the reflected 

molecules is and what the equivalent temperature of these reflected molecules is.  The most 

likely process is that molecules get absorbed and then re-emitted.  But if that is the case, it means 

an accommodation coefficient equaling one.  In fact, most molecular dynamics simulations 

suggest indeed that accommodation coefficient is close to one, although experimental values 

vary several orders of magnitude [60].  To keep an accommodation coefficient in the theory, 

probably the next good assumption is diffuse scattering.  That is, the incoming molecular flux is 

redistributed isotropically into the hemispherical direction.  It is also possible to assume some 

specular reflection, i.e., the reflected molecules will leave surface in mirror-like fashion.  My 

derivation will use this latter approximation for mathematical simplicity, although physically, 

diffuse scattering is more likely.  For transport in the perpendicular direction, my sense is that 

the difference between the two approximations should be relatively small, especially when a is 

close unity.  Molecular dynamics simulations do show that kinetic energy distributions can be 

anisotropic as characterized by anisotropic temperatures [26,27].  Specular reflection 

approximation would lead to some kinetic energy anisotropy that is consistent with such 

simulations. 

 

Using 𝑓;6(𝑇>) in Eq. (18) for vz>0, we can express the outgoing mass flux from the interface as 

(SM, Sec. 1) 
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𝐽#6 = 𝛼𝑛;(𝑇>)%
%!(#
,$#

 (19) 

 

and using Eq. (12), the molecular flux coming towards the interface is (SM, Sec.3, Eq.(A33)) 

 

𝐽#0 = 𝛼 M−𝑛 Q%!($(M)
,$#

R
9/,

+ N-
,
N (20) 

 

Note that the above expression contains the unknown net molecular flux Jm, since the diffusion 

creates a distortion of the molecular distribution function as is evident in Eq. (12).  The difference 

between Tl and 𝑇5(0) represents the temperature jump at the interface.  The sum of 𝐽#6  and 𝐽#0  

(which is negative) gives the net molecular flux 

 

𝐽# = 𝛼𝑛;(𝑇>)%
%!(#
,$#
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R
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Solving for Jm, we obtain expression for the molecular flux 

 

𝐽# = ,/
,0/

Y𝑛;(𝑇>)%
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,$#

R
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Or in terms of the mass flux 

 

𝑚̇ = ,/
,0/

% ?
,$+

[𝜌;(𝑇>)\𝑇> − 𝜌5(0)\𝑇5(0)] (21) 

 

= ,/
,0/
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*(#

− &$(M)
*($(M)

N (22) 

 

The last step used the ideal gas law.  Although the ideal gas law is implied in the Maxwell-

Boltzmann distribution, in practice, using Eq. (21) is more accurate for liquids such as water.  The 
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last step is identical to the Schrage expression, although he arrived at the same expression using 

a different method [32,69].  It is interesting that Schrage’s derivation included only the drift 

velocity but did not include the temperature nor the density gradients, while what we presented 

here included all three terms, and yet the final results are the same because contributions from 

both the density and temperature gradients to the distortion of the distribution function weigh 

equally as the drift contribution (ru) he considered. 

 

3.3.  Interfacial Heat Flux and Temperature Discontinuity 

 

Equations (21) and (22) suggest that at the liquid-vapor interface, discontinuities in the 

temperature, the density, and the pressure are possible.  Schrage’s equation only gave the mass 

flux, which is not sufficient to determine the discontinuities.  Here, we use the same strategy, 

i.e., using Eq. (12) to represent the molecules coming towards the interface, and derive an 

interfacial heat flux expression. 

 

The heat flux coming towards the interface is [SM, Sec. 3, Eq. (A44)] 

 

𝑞0 ≈ − #
,√$

𝑛 Q,%!(
#
R
2/,

	+ P
,
 (23) 

 

Again,	𝑞0  itself contains the net heat flux q, which equals the sum of q+ and q-.  The outgoing 

heat flux due to surface emission can be expressed as [SM, Sec. 3, Eq.(A45)] 

 

𝑞6 (𝑧) = 𝛼 ∫ 𝑑𝑣Q
R
0R ∫ 𝑑𝑣S

R
0R ∫ 𝑣8

#5&

,
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R
M   

= #
,√$

𝛼𝑛;(𝑇>) Q
,%!(
#
R
2/,

−	(1 − 𝛼)𝑞0  (24) 

 

where the first term is due to emission and the second term represents the reflection of the 

incoming flux.  Summing up Eqs. (23) and (24), we get 
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Rearranging the above equation, we get 

 

𝑞 = ,/
,0/

?
+
%,?
$+
[𝜌;(𝑇>)𝑇>2/, − 𝜌5(0)𝑇52/,] (25) 

 

= ,/
,0/

%,?
$+
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where Tv=Tv(0) is again the temperature of the vapor phase immediately at the interface.  We 

can use Eqs. (21) and (22) to further express the heat flux as 

 

𝑞 = ,?(#
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,0/
?
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%,?
$+
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Equations (25)-(28) are equivalent. Sone and Onishi derived a temperature jump boundary 

condition but they had a different form [18]. Our form is similar to that of Bond and Struchtrup 

[34], although their coefficients are more complicated since they employed a model of 

condensation coefficient that depends on energy.  In their work, diffuse and specular reflection 

is considered, where the diffuse reflection is assumed to obey the Maxwell distribution with a 

different equivalent pressure and liquid temperature.  At equilibrium, they further proved that 

the pressure for diffuse evaporation must be the saturation pressure, using the detailed balance 

principle.  However, during nonequilibrium, they calculated a different equivalent pressure for 

the diffusely reflected molecules. Their Eq. (44) is identical to what I presented above. 
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Barrett and Clement [33] actually derived a similar equation as Eq. (25), again without considering 

the diffusion terms.  However, they argued that this equation is in conflict what one will get by 

multiplying the mass flux as given by the Schrage equation with the enthalpy of the vapor 5RT/2.  

Due to this conflict, they stated that the Schrage equation violates energy and momentum 

conservation laws, hence casting doubts on the Schrage equation.  I cannot agree with Barrett 

and Clement for the following reasons.  From the above derivations for both the Schrage 

equation and the interfacial heat flux expression, it is clear that the interfacial region is in highly 

nonequilibrium states.   One cannot easily define a temperature.  An enthalpy of 5RTv/2 

represents the local equilibrium temperature, while the molecules going in the positive and the 

negative z-directions are clearly at different temperatures and carry different enthalpies.  

Mathematically, one cannot write the product of two quantities in the phase-space integral, see 

for example Eq.(A34) which is the product of molecular flux and molecular kinetic energy, as the 

product of two averaged quantities.   

 

Another fine detail is also worth mentioning.  The above discussion clear defines that the 

interfacial temperature jump as represented by Eq. (27) is between the liquid surface 

temperature and that of the vapor temperature at the outer edge of the Knudsen layer, despite 

that we approximated this outer edge as z=0.  In kinetic approaches solving the Boltzmann 

transport equations or molecular dynamics simulations [27,70–72], this temperature jump is 

replaced by a continuous varying temperature distribution over the Knudsen layer and hence 

there may be no apparent temperature jump at physical liquid-vapor interface.  However, 

sometimes one can still discern a small temperature discontinuity at the liquid-vapor interface.  

This is because the angular distribution of the evaporated molecules is usually assumed to be 

Maxwellian, i.e., isotropic, which is qualitatively different from the distributions of the molecules 

near the interface.  This asymmetric can lead to the equivalent temperature of the vapor phase 

different from that of the liquid.  The interfacial temperature drop in our heat flux equation 

represented by Eq. (27) includes this temperature drop as well as the temperature drop 

throughout the Knudsen layer. 
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3.4 Interfacial Density Jump 

While it is recognized that there is interfacial density discontinuity at evaporation, as is seen from 

solutions of the Boltzmann transport equation, I have not found reports on interfacial density 

jump boundary condition.  Here, l will use the same strategy to derive an interfacial density 

discontinuity boundary condition.   

 

The molecular number density 𝑛5(0) can be determined by  

 

𝑛5 = ∫ 𝑑𝑣Q ∫ 1∫ 𝑓0𝑑𝑣8
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R
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where f- is gain given by Eq. (12) and f+ consists of 𝑓;6(𝑇>) + (1 − 𝛼)𝑓0.  Substituting these 

expressions and carrying out the integration (SM, Sec. 3), we have 
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which can be written as 
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We can use Eqs. (13) and (14) to express the above equation as 
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The above expression is explicitly written for the case of evaporation.  For the case of 

condensation, the equation also holds although 𝑚̇ as given by Eqs. (21) and (22) are negative, 
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while q can be either positive or negative depending on the solution of heat transfer in the vapor 

phase. 

 

Equation (21) or (22) for the mass flux, one of the Eqs. (25)-(28) for the heat flux, and (31) or (32) 

for the density discontinuities give three independent equations that can connect the interfacial 

density at saturation condition determined by Tl, the vapor phase temperature Tv, density rv, or 

pressure Pv immediately at the interface, i.e., at the outer edge of the Knudsen layer, with the 

interfacial mass and heat fluxes.  These interfacial conditions can be used in conjunction with the 

continuum descriptions for the vapor and the liquid regions.  Eqs. (13) and (14) are constitutive 

equations for the one-dimensional transport in the vapor bulk phase, neglecting higher order 

nonlinear effect (which can be included by referring to results in the SM).  In the following 

sections, we will treat the problem of evaporation and condensation at a single interface, which 

is commonly seen in heat transfer applications.   

 

 

4. EVAPORATION OR CONDENSATION AT A SINGLE INTERFACE  

Evaporation or condensation on a single flat interface forms the foundation to many relevant 

phase-change problems.  Ytrehus [21] assumed that there are three groups of molecules: emitted 

that is determined by the surface temperature, and another forward going flux depending on 

temperature outside the Knudsen layer multiplied by a coefficient due to reflection of incoming 

molecules, and a backward flux.  He used the moments of the BTE to arrive at equations 

determining the unknown coefficients.  His treatment did not consider the influence of the 

transport in the bulk region, which is assumed to be of zero gradient.  Pao [15] studied the half 

space problem via solving the integral form of the BTE, assuming a linear temperature 

distribution far away from the interface. He showed that the problem is identical to the case of 

rarefied gas conduction when flow is zero: reducing to two integral equations.   

 

In certain sense, the way we established the interfacial conditions contains the Ytrehus picture 

of three different streams of molecules: emitted, incoming from the bulk region, and reflected, 
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although we assumed ballistic transport in the Knudsen layer, and the scattering effect is only 

implied from the molecular distribution given in Eq. (12).  Since Eq. (12) is also the foundation for 

transport in the bulk region, the interfacial conditions we established enable us to connect to 

different transport conditions in the continuum region.  Here, we will first consider evaporation 

and condensation above a liquid film so that we can compare with previous experiments.  We 

will then connect typical heat transfer measurement, which usually reports an overall 

evaporation heat transfer coefficient, to the interfacial discontinuities.  We assume that the 

water layer thickness is fixed, i.e., there is water supply to the layer in case of evaporation and 

extraction from the layer in case of condensation.  We assume the water layer is thick enough so 

we can neglect the disjoining pressure.  We also assume that the absorption of the latent heat 

happens in the liquid phase and right at the surface, although as discussed in Sec. 2, heat is 

absorbed over a certain distance close to the interfacial region when molecules move from inside 

the bulk liquid to the surface region. 

 

4.1 Temperature Discontinuity at An Evaporating or Condensing Interface: Comparison with 

Experiment 

Ward and co-workers carried out pioneering experiments demonstrating temperature 

discontinuities at a water-vapor interface [7,8].   In their experiment, the evaporation rate is 

controlled externally by a vacuum pump.  They measured that the liquid side temperature is 

lower than the vapor side.  Badam et al. [9] conducted similar measurements, with additional 

data showing even larger temperature discontinuity when the vapor phase is heated. They listed 

more details of their experiments, including the liquid and vapor side heat fluxes, although the 

vapor side heat flux is calculated from a model.  I will focus on comparing with Badam et al.’s 

experiment because of their more detailed information and the fact that their interface is flat, 

while the liquid-vapor interface is curved in Ward and co-workers’s experiments. 

 

As shown in Fig. 3(a), we can divide the problem into three regions: the bulk vapor region (region 

I), the interfacial region (region II), and the liquid film (region III).  We first consider the bulk 

region, for which Eqs. (13)-(17) are applicable.  In a typical experimental configuration, the 
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pressure above the surface is kept at certain value 𝑃5,R using a vacuum pump.  So, the boundary 

condition can be written as 

 

 𝑧 = 𝑑5 ,			𝑃5 = 𝑃5,R (33) 

 

We first consider transport in the bulk vapor phase.  From Eq. (17) and considering that the 

relaxation time expression dependence on density  

 

 𝜏 = #
$√,HW&5./

 (34) 

 

 
 (a) (b) (c) 

Figure 3. (a) Illustration of evaporation or condensation at a single interface.  Comparison of (b) 

calculated (lines) and measured (dots) interfacial temperature jump and (c) temperature 

distributions (experimental data from Badam et al. [9]). 

 

we see that thermal conductivity depends T1/2.  In Eq. (34), a is the diameter of the molecule.  To 

include this temperature dependence, we can rewrite Eq. (17) as 
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The above equation can be analytically solved for the temperature distribution in the bulk vapor 

phase.  The solution is given in SM Sec. 4.  We can also approximate the thermal conductivity as 

a constant, and in this case, the temperature distribution is an exponential function. 
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The density or pressure distribution in the vapor phase can be obtained from solving Eq. (15) 

(SM, Sec.4) 
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Or 
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Note that we do not assume 𝑚̇ = 𝜌R𝑢R as discussed before, because Eq. (13) clearly shows that 

the mass flux depends not only on the bulk motion 𝜌R𝑢R, but also diffusion due to density and 

temperature gradients. 

 

We now relate the mass flux 𝑚̇ and heat flux q in the above equations to the interfacial region 

and the liquid region.  In the liquid side, the heat flux that must be taken away is 

 

 𝑞 = 𝑘>
(50(#(M)

B
− 𝑚̇𝐿 (39) 

 

where Tw is the wall temperature.  The first term is heat conduction from the wall to the interface 

(positive for evaporation and negative for condensation), since the convective heat flux due to 

liquid flowing in (evaporation) or out (condensation) is small (see SM, Sec. 4 for further 

justification).  The second term is the heat absorbed from liquid-phase due to evaporation, which 

we assume happens right at the interface.  This heat flux should equal to the heat flux carried out 
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by the vapor phase, i.e., the same q used in Eq. (35).  The same heat flux goes through interface, 

which can be represented by one of Eqs. (25-28).   

 

In a typical experiment, Ts, 𝑃5,R are usually known.  The unknowns include q, 𝑚̇, 𝑢R, 𝑇5(0),	𝜌5(0), 

𝑇>(0), 𝑎𝑛𝑑	𝑇5,R [Eq.(16) always holds due to continuity and ideal gas law will connect r, P, and T 

at the same location].  Since 𝜌; corresponds to the saturation density, it can be found either from 

the steam table or the Clausius-Clapeyron equation once Tl(0) is known.  We can use Eqs. (16), 

(21), (27), (32), (36), (37), and (39), or their alternatives in terms of pressure, to solve for the 

seven unknows.  The problem is well-defined.   

 

Comparison with Badam et al.’s experiments [9] can be done without solving all the above 

equations simultaneously, since they have listed the liquid and vapor side heat fluxes.  As their 

vapor side heat flux was calculated, we will use liquid side heat flux qw only.  The qw is essentially 

the conductive heat flux, i.e., the first term in Eq. (39).  Equating Eq. (39) with Eq. (27), we have  
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Badam et al.’s experiments include two scenarios: the vapor phase is heated or not heated.  

Equation (40) applies for both cases.  Figure 3(b) compares the interfacial temperature jump 

DT= 𝑇>(0) − 𝑇5(0) calculated based on Eq. (40) for both cases, using the measured 𝑚̇ and Tl in 

the Badam et al. experiment, and a as a fitting parameter.  The interfacial conditions we use here 

can well explain the large measured interfacial temperature jump.  The accommodation 

coefficient is not far from one. 

 

In Fig. 3(c), we also show the temperature distributions in the liquid and the vapor phase.  The 

temperature distribution in the vapor phase is obtained from Eq. (36).  Although my calculation 

shows similar trend as observed in the experiment, in terms of interfacial temperature jump and 

temperature distribution trends reversal between the liquid and the vapor phases, the 

comparison with Badam et al.’s data is not perfect on the vapor temperature distributions.  This 
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is understandable since their heater is only 3 mm away from the interface and the heater seems 

to be made of wires to allow vapor to escape.  It is unlikely that transport in the vapor-phase is 

one-dimensional as we assume here, and the heater region might be much hotter than measured 

in between heating wires using a thermocouple, as Fig.3(c) suggests. 

 

Although the fact that the measured and simulated temperature distribution seems to be 

counter-intuitive: the vapor temperature is higher than the liquid interface temperature and heat 

conducts from both the vapor and the liquid sides to the interface, it is consistent with the fact 

that evaporation leads to cooling.  In the experiments of both Badam et al.[9] and Ward and co-

workers [7,8], the liquid layers are thick (~mm range), so the first term in Eq. (39) is not sufficient 

to supply heat needed for evaporation.  Hence, heat conducts from the vapor phase to the liquid-

vapor interface.  The higher is the evaporation rate, the more heat needs to be supplied from the 

vapor side, and the larger is the interface temperature jump.  This is particularly true in Badam 

et al.’s experiment when the vapor phase is actually heated.  We will show next that in typical 

heat transfer situations when the liquid layer is thin and wall is heated, the liquid side 

temperature will be higher than the vapor side.  The different trends of the interfacial heat flow 

were considered a puzzle but are really due to relative magnitudes of liquid heat supply vs. latent 

heat needed for evaporation, i.e., the two terms in Eq. (39), which determine the sign of q, i.e., 

if the vapor phase transfers heat to the interface or takes away heat from the interface. 

 

4.2 Temperature Discontinuity from Measured Vapor Phase Heat Transfer Coefficient 

 

In evaporation or condensation heat transfer, one often uses a heat transfer coefficient, ht, 

neglecting details between the liquid and the vapor phases. The heat transfer coefficient is 

defined based on the wall temperature and bulk vapor phase temperature away from wall (𝑇R), 

or the free stream temperature, i.e., 

 

 𝑞Z = ℎ[(𝑇Z − 𝑇R) (41) 
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The question is if we can use the measured evaporative heat transfer coefficient to infer the 

interfacial temperature discontinuity. 

 

In typical heat transfer situations, the vapor phase transport is usually not one-dimensional as 

we dealt above.  To resolve this difficulty, we use the single-phase convective heat transfer 

coefficient hs to describe the convective heat transfer between the vapor phase and the liquid 

surface instead of computing q from Eq. (17).  With this picture, we can write heat transfer in the 

vapor side as: 

 

 𝑞 = I
,
?($(M)
+

𝑚̇ + ℎ;[𝑇5(0) − 𝑇R] (42) 

 

where the first term represents the enthalpy carried by the mass flux and second term due to 

regular single-phase convective heat transfer.  Note unlike the interfacial heat flux, the local 

enthalpy in the continuum phase is given by the ideal gas specific heat at constant volume 5RTv/2.  

This situation can be treated as coupled heat and mass transport [72]. 

 

In addition to using Eq. (42) for the heat flow in the bulk vapor phase, we can similarly replace 

Eq. (13) for mass diffusion by a mass transfer coefficient hm so that the mass flux can be expressed 

as 

 

 𝑚̇ = 𝜌𝑢 + ℎ#(𝜌5(0) − 𝜌R) (43) 

 

The mass transfer coefficient can be related to the convective heat transfer coefficient by 

assuming a Lewis number equaling one, with the understanding that this assumption can be 

easily relaxed for other Lewis number values [72], i.e.,  

 

 ℎ# = \"
H]6

 (44) 

 

Substituting the above expressions for 𝑚̇ and q into Eq. (32), we get [SM, Sec. 5, Eq.(A70)] 
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𝜌5(0) = 𝜌; −
(,0/)
/

Q ,+
$	?($

R
9/,

Y\",$
H]6

(𝜌5 − 𝜌R) +
+

I?($(M)
ℎ;,5[𝑇5(0) − 𝑇R]Z (45) 

 

For the liquid film, we can assume conduction only, which means  

 

 𝑞Z = 𝑘>
(50(#(M)

B
 (46) 

 

Equations (42), (43), (45) can be combined with two interfacial conditions for mass and heat flux 

in Sec. 3, and Eqs. (39) and (46) to solve for q, 𝑚̇, 𝑢R, 𝑇5(0),	𝜌5(0), Tl(0) and qw (seven equations 

with seven unknowns), assuming 𝜌R and 𝑇R and hs are known.  These equations are solved 

numerically.  We will give some examples of the solution below. 

 

Figure 4(a) shows the liquid and vapor phase temperatures as a function of the liquid film 

thickness and Fig. 4(b) the interfacial temperature differences.  Figure 4(c) shows the overall heat 

transfer coefficients and Fig. 4(d) the mass flux for specific sets of given conditions that 

correspond to typical heat transfer applications.  We can see that in these cases, the liquid side 

temperature is always higher than the vapor side, because the liquid film is thin and can supply 

sufficient heat for evaporation, leading to a vapor phase heat flux also in the same direction as 

the liquid phase.  The higher is the single-phase heat transfer coefficient, the larger is the 

interface temperature jump and the higher is the overall heat transfer coefficient (Fig. 4(c)).  

Nonideal accommodation coefficient (a not equaling one) leads to lower overall heat transfer 

coefficient and mass evaporation rate.  For an overall temperature drop of 20 oC, the interfacial 

temperature drop could be 0.5-2 oC.  Most of the temperature drops occur in the vapor phase. 
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  (a)  (b) (c) 

       
  (d)  (e) (f) 

Figure 4. Simulation results for single interface evaporation heat transfer as a function of the 

liquid film thickness at different single phase heat transfer coefficient and accommodation 

coefficient values (a) the liquid and the vapor phase temperatures at the interface and (b) the 

temperature drops across the liquid-vapor interface, (c) overall heat transfer coefficient, (d) 

evaporation mass flux, (e) saturation density and vapor side density, and (f) saturation pressure 

and vapor side pressure at the interface.  All for solid wall temperature Tw=320 K, and ambient 

𝑇R=300 K. 

 

Accompanying the interface temperature discontinuity are also the density and pressure 

discontinuities [Fig.4(e) and 4(f)].  The saturation density and pressure, which are presumably the 

vapor properties right on the liquid surface, are higher than their corresponding values on the 

vapor side, i.e., at the outer edge of the Knudsen layer. At 104 Pa, the mean free path is ~1 µm 

and the Knudsen layer is a few times of the mean free path, which we treated as zero thickness.  

Although the density and pressure differences are small, they are the driven force for the mass 

transport.  In some sense, the temperature drop across the interface can be thought as the 

interfacial Joule-Thomson effect.  The vapor side temperature is colder due to the sudden 

expansion from the liquid phase to the vapor phase.   
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5.  Conclusion 

In this work, we established interfacial conditions for evaporation and condensation at the 

interface based on the kinetic theory.  These interfacial conditions are consistently derived from 

the solution of the BTE in the bulk region, based on the general diffusion-transmission boundary 

condition we established before for interfacial transport.  Three interfacial boundary conditions 

are derived, one is for the mass flux, which is identical to the well-known Schrage equation.  The 

other is for the heat flux.  We also derive an additional interfacial condition for the density 

discontinuity across the interface.  The three equations can be used to couple transport in the 

bulk liquid and vapor regions to determine the interfacial discontinuities in temperature, density, 

and pressure.   

 

We show that our approach can well explain the experimental data reporting interfacial 

temperature discontinuities, while previous modeling efforts had failed to explain quantitatively.  

We also used these interfacial conditions to connect the evaporation heat transfer coefficient to 

the single-phase heat transfer coefficient between the vapor and the liquid phase.  Our results 

show that the interfacial temperature drop is appreciable in typical heat transfer experiments.   

 

In addition to the interfacial conditions, we also present a thermomolecular emission model for 

evaporation, mimicking the well-established thermionic emission theory for electrons.  Although 

the final results can all be based on the vapor-phase properties, this model gives more physical 

insights on thermal evaporation.  The evaporation and condensation coefficients distinguished 

in the past literature are likely due to the strong temperature dependence of the condensation 

coefficient.  More work is needed to refine the model for better understanding of the molecular 

picture of phase-change processes.   

 

We should point out that our work did not include the internal degree of freedom in the 

molecules.  Past studies suggest that we can include them by, for example, replacing the 5R/2M 

in the enthalpy expression with the constant pressure specific heat.  We did not include nonlinear 
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effect, although the SM materials provided can be used to extend the formulation to include 

these effects.  Also, the vapor-phase is pure substance.  Further work to include the mixtures, 

especially non-condensable gases should be conducted. 
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Sec. 1. Thermomolecular Emission Current 
 
The outgoing molecular flux is obtained from  
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In the above expression, we assume only molecules with kinetic energy component in the z-
direction larger than the potential barrier can escape the liquid surface.  Another extreme is 
molecules with total energy larger than the potential barrier can escape the liquid surface, i.e., 
 
 -

*
2𝑣#* + 𝑣&* + 𝑣'*4 > ∆ and  𝑣' > 0 (A2) 

 
Integration for the molecular flux leaving the surface with the above condition can be done by 
using spherical coordinate 
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This flux is much larger than (A1) since 2

/!0"
 is ~10 for water.  In comparison, the Richardson 

formula for electron thermionic emission is  
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where A is the Richardson constant.  The difference comes from the fact that electron statistical 
distribution, even in the limit that the Boltzmann statistics is valid, is different from molecules 
since electrons are Fermions.  Richardson originally had same T1/2 dependence in the prefactor 
similar to (A1) and (A3) because he used same Maxwell-Boltzmann distribution function. 
 
 
Sec. 2. Mass and Heat Fluxes in the Bulk Region 
 
The diffusion approximation is well discussed in standard textbooks (28,34).  For completeness, 
we will give the derivation here.  We will first write done details some useful integrals that we 
will use often.  For such purpose, it is useful to start with the following integral  
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Setting 𝑎 = 𝑚/(2𝑘9𝑇), we get 
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*/!0
A 𝑑𝑣#

$
%$ = − :;(8)

:8
A
8>-/(*/!0)

= √1
*
?*/!0

-
A
3/*

 (A7) 

 

 ∫ 𝑣#@𝑒𝑥𝑝 ?−
-5#$

*/!0
A 𝑑𝑣#

$
%$ = :$;(8)

:8$
A
8>-/(*/!0)

= 3√1
@
?*/!0

-
A
A/*

 (A8) 

 

 ∫ 𝑣#B𝑒𝑥𝑝 ?−
-5#$

*/!0
A 𝑑𝑣#

$
%$ = − :';(8)

:8'
A
8>-/(*/!0)

= CA√1
D
?*/!0

-
A
E/*

 (A9) 

 
Mass Flux.  To evaluate the molecular flux,  
 

𝐽-(𝑧) = L 𝑑𝑣#
$

%$
L 𝑑𝑣&
$

%$
L 𝑣'𝑓𝑑𝑣'
$

%$
= 𝑢𝑛(𝑧) − 

  

−∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* O

C
F
:F
:'
+ C

0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
Q + -[5&%G(')]

/!0(')
:G
:'
R 𝑑𝑣'

$
%$  (A10) 

 
Next we evaluate each term in Eq. (A10): 
  
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* -

C
F
:F
:'
/ 𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0(')
1
3/*

∫ 2𝜋𝑣//𝑒𝑥𝑝 P−
-5//

$

*/!0
Q 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝𝑝 P−

-(5&%G('))$

*/!0
Q 𝑑𝑣'

$
%$   
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= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A ∫ T(𝑣' − 𝑢)* + 2𝑢(𝑣' − 𝑢) + 𝑢*U𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 𝜋 ?*/!0

-
A 0 -

*1/!0
1
3/*

V√1
*
?*/!0

-
A
3/*

+ 𝑢*)*1/!0
-

W  

 

= 𝜏 :F
:'
?*/!0

-
A 0C

*
+ -G$

*/!0
1  

 
≈ 𝜏 :F

:'
?/!0
-
A  (A11) 

 
Note that the odd order (vz-u) term drops out because of symmetry in the integration.  Later, 
when we consider the boundary condition, this term will not drop out.  The last step kept only 
the lowest order term, assuming the average velocity u is much smaller than thermal velocity.  
This higher order term can be kept if the evaporation rate is very high. 
 
Next, we consider dT/dz term in Eq. (A10) 
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* O

C
0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
QR 𝑑𝑣'

$
%$   

	
= 𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:' ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'* OP

-45#$"5%$"(5&%G)$ 6
*/!0

− 3
*
QR 𝑑𝑣'

$
%$ 	  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

+ -
*/!0

∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*(𝑣' − 𝑢)* 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

− 3
* ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ Q  

 
 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

𝜋 ?*/!0
-
A
*
∫ [𝑣'K* + 2𝑢𝑣'K + 𝑢*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$   

 

+ -
*/!0

𝜋 ?*/!0
-
A ∫ [𝑣'K@ + 2𝑢𝑣'K3 + 𝑢*𝑣'K*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$   

 

− 3
*
𝜋 ?*/!0

-
A ∫ [𝑣'K* + 2𝑢𝑣'K + 𝑢*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$ 1  
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= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
V -
*/!0

𝜋 ?*/!0
-
A
*
〈√1
*
?*/!0

-
A
3/*

+ 𝑢*)*1/!0
-

〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A 〈3√1

@
?*/!0

-
A
A/*

+ 𝑢* √1
*
?*/!0

-
A
3/*
〉− 3

*
𝜋 ?*/!0

-
A 〈√1

*
?*/!0

-
A
3/*

+ 𝑢*)*1/!0
-

〉W  

 

= 𝑛𝜏 C
0
:0
:'
0?*/!0

-
A ?C

*
+ -G$

*/!0
A + 〈3

@
?*/!0

-
A + C

*
𝑢*〉− 3

*
?*/!0

-
A ?C

*
+ -G$

*/!0
A1  

  
= 𝑛𝜏 C

0
:0
:'
?/!0
-
A (A12) 

 
Next, we evaluate the du/dz term  
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* -

-[5&%G(')]
/!0(')

:G
:'
/ 𝑑𝑣'

$
%$   

  

= 𝜏𝑛 -
/!0

:G
:' ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ (𝑣' − 𝑢)𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

   

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:' ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ (𝑣' − 𝑢)𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

   

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A 2𝑢 √1

*
?*/!0

-
A
3/*

  

  
= 2𝜏𝑛𝑢 :G

:'
  (A13) 

 
Combining all terms, the molecular flux can be expressed as    
 

 𝐽-(𝑧) = 𝑛𝑢 − 𝜏 :F
:'
?*/!0

-
A 0C

*
+ -G$

*/!0
1 − 𝑛𝜏 C

0
:0
:'
?/!0
-
A − 2𝜏𝑛𝑢 :G

:'
  

 
 ≈ 𝑛𝑢 − /!0

-
𝜏 :F
:'
− /!0

-
𝑛𝜏 C

0
:0
:'

 (A14) 
 
Multiplying the above expression by individual molecule’s mass, we obtain the mass flux 
expression in Eq. (13). 
 
Heat Flux.  Next, we consider the heat flux,  
 
𝑞(𝑧) = ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'

-
*
T𝑣#* + 𝑣&* + 𝑣'*U𝑓𝑑𝑣'

$
%$  (A15) 

 
Substitute f in Eq. (12) into the above expression, we again see that the energy flux has 
convection term, the density, temperature and velocity gradient terms, as below. 
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Convection term 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'

-
*
T𝑣#* + 𝑣&* + 𝑣'*U𝑓:𝑑𝑣'

$
%$   

	
= -

*
𝑛 0 -

*1/!0
1
3/*

P∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$ 	  

 

+∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'3𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ Q  

 

= -
*
𝑛 0 -

*1/!0
1
3/*

P𝜋 ?*/!0
-
A
*
∫ [𝑣′' + 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A𝑑𝑣'

$
%$   

 

+𝜋 ?*/!0
-
A ∫ [𝑣'K3 + 3𝑢𝑣'K* + 3𝑢*𝑣'K + 𝑢3]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣'

$
%$ Q  

 

= -F
*
?*/!0

-
A 𝑢	 + -F

*
?*/!0

-
A 𝑢 03

*
+ -G$

*/!0
1  

 

= -F
*
?*/!0

-
A 𝑢 0A

*
+ -G$

*/!0
1 (A16) 

 
The mass diffusion term dn/dz is as follows 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'*

-
*
T𝑣#* + 𝑣&* + 𝑣'*U -

C
F
:F
:'
/ 𝑑𝑣'

$
%$   

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

F
:F
:'
P∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

+∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ Q  

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

F
:F
:'
P𝜋 ?*/!0

-
A
*
∫ [𝑣'′* + 2𝑢𝑣'′ + 𝑢*]𝑒𝑥𝑝 ?−

-5&K$

*/!0
A 𝑑𝑣'′

$
%$   

 

+𝜋 ?*/!0
-
A ∫ [𝑣'K@ + 6𝑢*𝑣'K* + 𝑢@]𝑒𝑥𝑝 ?−

-5&K$

*/!0
A 𝑑𝑣'′

$
%$ Q  

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

F
:F
:'
V𝜋 ?*/!0

-
A
*
〈√1
*
?*/!0

-
A
3/*

+ 𝑢*)*1/!0
-

〉  

 

+𝜋 ?*/!0
-
A 〈3√1

@
?*/!0

-
A
A/*

+ 6𝑢* √1
*
?*/!0

-
A
3/*

+ 𝑢@)*1/!0
-

〉W  
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= -
*
𝑛𝜏 C

F
:F
:'
P?*/!0

-
A
*
?C
*
+ -G$

*/!0
A + ?*/!0

-
A
*
Y3
@
+ 3-G$

*/!0
+ 0-G

$

*/!0
1
*
ZQ  

 

= -
*
𝑛𝜏 ?*/!0

-
A
*
YA
@
+ *-G$

/!0
+ 0-G

$

*/!0
1
*
Z C
F
:F
:'

 (A17) 

 
The temperature gradient term dT/dz is: 
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'*

-
*
T𝑣#* + 𝑣&* + 𝑣'*U

C
0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
Q 𝑑𝑣'

$
%$   

 

=
𝑚
2 𝑛𝜏 P

𝑚
2𝜋𝑘9𝑇

Q
3/* 1

𝑇
𝑑𝑇
𝑑𝑧 VL 2𝜋𝑣//𝑒𝑥𝑝 c−

𝑚𝑣//*

2𝑘9𝑇
d𝑑𝑣//

$

J
× 

 

∫ 𝑣'*2𝑣//* + 𝑣'*4 〈
-L5//

$ "(5&%G)$ M

*/!0
− 3

*
〉 𝑒𝑥𝑝 Y−-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
× P -

*/!0
〈∫ 2𝜋𝑣//A𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$ 〉  

 

+ -
*/!0

〈∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ T𝑣'@ + 𝑣'*(𝑣' − 𝑢)* U𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$ 〉  

 

+ -
*/!0

〈∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@(𝑣' − 𝑢)* 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$ 〉  

 

− 3
*
〈∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ 〉  

 

− 3
* ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ Q  

 
 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
× P -

*/!0
2𝜋 ?*/!0

-
A
3
〈∫ [𝑣'K* + 2𝑢𝑣' + 𝑢*]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'

$
%$ 〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A
*
〈∫ [2𝑣'K@ + 3𝑢*𝑣'K* + 2𝑢𝑣'K3 + 𝑢@]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣′'

$
%$ 〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A 〈∫ [𝑣'KB + 2𝑢*𝑣'K@ + 𝑢@𝑣'K*]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'

$
%$ 〉  

 

− 3
*
𝜋 ?*/!0

-
A
*
〈∫ [𝑣'K* + 2𝑢𝑣′' + 𝑢*]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'

$
%$ 〉  
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− 3
*
𝜋 ?*/!0

-
A ∫ T𝑣'K@ + 2𝑢@ 𝑣'K* + 𝑢@U𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$ Q  

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
× V -

*/!0
2𝜋 ?*/!0

-
A
3
〈√1
*
?*/!0

-
A
3/*

+ 𝑢*)*1/!0
-

〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A
*
〈2 3√1

@
?*/!0

-
A
A/*

+ 3𝑢* √1
*
?*/!0

-
A
3/*

+ 𝑢@)*1/!0
-

〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A 〈CA√1

D
?*/!0

-
A
E/*

+ 2𝑢* 3√1
@
?*/!0

-
A
A/*

+ 𝑢@ √1
*
?*/!0

-
A
3/*
〉  

 

− 3
*
𝜋 ?*/!0

-
A
*
〈√1
*
?*/!0

-
A
3/*

+ 𝑢*)*1/!0
-

〉  

 

− 3
*
𝜋 ?*/!0

-
A 〈3√1

@
?*/!0

-
A
A/*

+ 𝑢* √1
*
?*/!0

-
A
3/*

+ 𝑢@)*1/!0
-

〉W  

 

= -
*
𝑛𝜏 C

0
:0
:'
× P -

*/!0
2 ?*/!0

-
A
3
〈C
*
+ -G$

*/!0
〉 + -

*/!0
?*/!0

-
A
*
〈2 3

@
?*/!0

-
A + 3𝑢* C

*
+ -G*

*/!0
〉  

 

+ 〈CA
D
?*/!0

-
A
*
+ 2𝑢* 3

@
?*/!0

-
A + 𝑢@ C

*
〉 − 3

*
?*/!0

-
A
*
〈C
*
+ -G$

*/!0
〉  

 

− 3
*
?*/!0

-
A 〈3

@
?*/!0

-
A
C
+ 𝑢* C

*
+ -G*

*/!0
〉Q  

 

= -
*
𝑛𝜏 C

0
:0
:'
× ?*/!0

-
A
*
?A
*
+ 2 -G$

*/!0
A (A18) 

 
The du/dz term is 
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'*

-
*
T𝑣#* + 𝑣&* + 𝑣'*U

-[5&%G(')]
/!0(')

:G
:'
𝑑𝑣'

$
%$   

= -
*
𝜏𝑛 -

/!0
:G
:'
0 -
*1/!0

1
3/*

P∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*[𝑣' − 𝑢(𝑧)]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

+∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@[𝑣' − 𝑢(𝑧)]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ Q  

  

= -
*
𝜏𝑛 -

/!0
:G
:'
0 -
*1/!0

1
3/*

P𝜋 ?*/!0
-
A
*
∫$%$ T𝑣'K3 + 2𝑢𝑣'K* + 𝑢*𝑣'′U𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'  

 

+𝜋 ?*/!0
-
A ∫ T𝑣'KA + 2𝑢*𝑣'K3 + 𝑢@𝑣'′U𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z𝑑𝑣'′

$
%$ Q  
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= -
*
𝜏𝑛 -

/!0
:G
:'
0 -
*1/!0

1
3/*

𝜋 ?*/!0
-
A
*
2𝑢 √1

*
?*/!0

-
A
3/*

  

 
 
= 2𝑘9𝑇𝜏𝑛𝑢

:G
:'

  (A19) 
 
 
Substituting each of the above terms into heat flux expression Eq. (A16), and keep only the lowest 
order terms, we obtain Eq. (14). 
 
Prove that ru=constant in bulk region.  The density at any point can be written as 
 
𝑛(𝑧) = ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓	𝑑𝑣'

$
%$ = ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝑑𝑣'

$
%$   

  

−∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' OC

F
:F
:'
+ C

0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
Q + -[5&%G(')]

/!0(')
:G
:'
R 𝑑𝑣'

$
%$   

 
The first the term related to fd is 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝑑𝑣'

$
%$ = 𝑛5(𝑧)  

  
The density gradient term: 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' -C

F
:F
:'
/ 𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0(')
1
3/*

∫ 2𝜋𝑣//𝑒𝑥𝑝 P−
-5//

$

*/!0
Q 𝑑𝑣//

$
J ∫ 𝑣' 𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A ∫ [(𝑣' − 𝑢) + 𝑢]𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A 0𝑢 ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

$
%$ 1  

 

= 𝜏𝑛 -C
F
:F
:'
/ 𝜋 ?*/!0

-
A 0 -

*1/!0
1
3/*

V𝑢)*1/!0
-

	W  

 
= 𝜏𝑢	 :F

:'
  

 
The dT/dz term is 
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∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' OC

0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
QR 𝑑𝑣'

$
%$   

	
= 𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:' ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣' P-45#

$"5%$"(5&%G)$ 6
*/!0

− 3
*
Q 𝑓:𝑑𝑣'

$
%$ 	  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣' 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

+ -
*/!0

∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣' (𝑣' − 𝑢)* 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

− 3
* ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣' 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$ Q  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

𝜋 ?*/!0
-
A
*
∫ [𝑣'K + 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$   

 

+ -
*/!0

𝜋 ?*/!0
-
A ∫ [𝑣'K3 + 𝑢𝑣'K*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$ − 3

*
𝜋 ?*/!0

-
A∫ [𝑣'K + 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$ 1  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P− 1

*
?*/!0

-
A 𝑢 ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

$
%$ +𝜋𝑢 ∫ 𝑣'K*𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
%$ 1  

  

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P− C

*
𝑢 ?*1/!0

-
A
3/*

+ C
*
𝑢 ?*1/!0

-
A
3/*
Q   

 
= 0  
 
The du/dz term is 
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' --[5&%G(')]

/!0(')
:G
:'
/ 𝑑𝑣'

$
%$   

  

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:' ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ (𝑣' − 𝑢)𝑣' 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ∫ [(𝑣' − 𝑢)* + 𝑢(𝑣' − 𝑢)]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

$
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ∫ [𝑣'K* + 𝑢𝑣'K]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣'′

$
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A √1

*
?*/!0

-
A
3/*
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= 𝜏𝑛 :G
:'

  
 
So, the local density is 
 
𝑛(𝑧) = 𝑛5(𝑧) + 𝜏𝑢	

:F
:'
+ 𝜏𝑛 :G

:'
= 𝑛5(𝑧) + 𝜏	

:(GF)
:'

 (A20) 
 
For the above equation to be valid, nu=constant, i.e., ru=constant. 
 
 
Sec. 3.  Heat and Mass Fluxes at Interfaces 
 
Momentum Flux Coming Towards Interface.  Now, we consider the imbalance at the interface.  
Let us first consider the flux coming towards to interface, using the molecular distribution 
function again by Eq. (12).  However, in this case, the integration of vz is for all values less than 
zero.  The momentum flux is 
 

𝐽-% (𝑧 = 0) = L 𝑑𝑣#
$

%$
L 𝑑𝑣&
$

%$
L 𝑣'𝑓:𝑑𝑣'
J

%$
 

  

−∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* O

C
F
:F
:'
+ C

0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
Q + -[5&%G(')]

/!0(')
:G
:'
R 𝑑𝑣'

7
%$   (A21) 

 
 
We evaluate the first the term related to fd  
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝑣'𝑑𝑣'

7
%$ = 𝑛 0 -

*1/!0
1
3/*

  

 

= 𝑛 0 -
*1/!0

1
3/*

∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z𝑑𝑣//

$
J ∫ 𝑣'𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

= 𝑛 0 -
*1/!0

1
3/*

𝜋 ?*/!0
-
A ∫ 𝑣'𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

= 𝑛 0 -
*1/!0

1
3/*

𝜋 ?*/!0
-
A P∫ [𝑣' − 𝑢) + 𝑢]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$ Q  

 

= 𝑛 0 -
*1/!0

1
3/*

𝜋 ?*/!0
-
A 0∫ 𝑣'K𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' + 𝑢 ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

%G
%$

%G
%$ 1  

 

= 𝑛 0 -
*1/!0

1
3/*

𝜋 ?*/!0
-
A 0−∫ 𝑣'K𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' + 𝑢 ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

$
G

$
G 1  
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= 𝑛 0 -
*1/!0

1
C/*

P− ?/!0
-
A 𝑒𝑥𝑝 Y− -G$

*/!0
Z + 𝑢 ∫ 𝑒𝑥𝑝 Y−-5&$

*/!0
Z 𝑑𝑣'

$
G Q  

 

= 𝑛 0 -
*1/!0

1
C/*

V− ?/!0
-
A 𝑒𝑥𝑝 Y− -G$

*/!0
Z + 𝑢	)*/!0

-
	√1
*
𝑒𝑓𝑟𝑐 c)-G$

*/!0
dW  

 

= −𝑛 V?/!0
*1-

A
C/*

𝑒𝑥𝑝 Y− -G$

*/!0
Z − G	

*
𝑒𝑟𝑓𝑐 c)-G$

*/!0
dW   

 

= −𝑛 P?/!0
*1-

A
C/*

𝑒𝑥𝑝(−𝛿*) − G	
*
𝑒𝑟𝑓𝑐(𝛿)Q (A22) 

 
 
where 
 

 𝛿 = )-G$

*/!0
 (A23) 

 
and complementary error function 
 
 𝑒𝑟𝑓𝑐(𝛿) = *

√1
∫ 𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O  (A24) 

 
Since u is typically much smaller than thermal velocity, (A22) can be approximated as 
 

= −𝑛 P?/!0
*1-

A
C/*

− G	
*
Q (A25) 

 
The first term in (A25) contributes to the influx in the classical Hertz-Knudsen equation.  The 
second term is related to the correction Schrage made, although he did not take this approach.  
The complementary error function was also seen in Carey’s book (1), although I am not sure the 
original source.  In fact, Schrage work seems to be equivalent to setting the integration limit for 
vz as [-∞, u], while we set the limit for vz as [-∞, 0] .  Since vz-u represents random velocity of 
molecules relative to the average flow while vz represents absolute random velocity, when vz<0, 
molecules indeed flow towards interface.  Hence, the correct integration limit is what we used 
and the extra error function terms in (A22) appear as a consequence.   
 
Next, we consider the density gradient term: 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* -

C
F
:F
:'
/ 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0(')
1
3/*

∫ 2𝜋𝑣//𝑒𝑥𝑝 P−
-5//

$

*/!0
Q 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

7
%$   
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= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A ∫ T(𝑣' − 𝑢)* + 2𝑢(𝑣' − 𝑢) + 𝑢*U𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A 0∫ 𝑣'K*𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' + 2𝑢 ∫ 𝑣'K𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' +

%G
%$

%G
%$

𝑢* ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A𝑑𝑣′'

%G
%$ 1  

  

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A 0∫ 𝑣'K*𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' − 2𝑢 ∫ 𝑣'K𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' +

$
G

$
G

𝑢* ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

$
G 1  

 

= 𝜏𝑛 -C
F
:F
:'
/ 𝜋 ?*/!0

-
A 0 -

*1/!0
1
3/*

VC
*
?*/!0

-
A
3/*

?𝛿𝑒%O$ + √1
*
𝑒𝑟𝑓𝑐(𝛿)A − 𝑢 ?*/!0

-
A 𝑒%O$ +

G$

*
)*1/!0

-
	𝑒𝑟𝑓𝑐(𝛿)W  

 

= 𝜏𝑛 -C
F
:F
:'
/ ?*/!0

√1	-
A 0C

*
?𝛿𝑒%O$ + √1

*
𝑒𝑟𝑓𝑐(𝛿)A − 𝛿𝑒%O$ + 𝛿* √1

*
𝑒𝑟𝑓𝑐(𝛿)1   

 

= 𝜏𝑛 -C
F
:F
:'
/ ?*/!0

√1	-
A 0− C

*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)1 (A26) 

 
≈ 𝜏 :F

:'
?/!0
*-
A  (A27)  

 
The last approximation equals half of Eq. (A11).   
 
Next, we consider dT/dz term  
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* O

C
0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
QR 𝑑𝑣'

7
%$   

	
= 𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:' ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'* OP

-45#$"5%$"(5&%G)$ 6
*/!0

− 3
*
QR 𝑑𝑣'

7
%$ 	  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

+ -
*/!0

∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*(𝑣' − 𝑢)* 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

− 3
* ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ Q  

 
 



 50 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

𝜋 ?*/!0
-
A
*
∫ [𝑣'K* + 2𝑢𝑣'K + 𝑢*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

%G
%$   

 

+ -
*/!0

𝜋 ?*/!0
-
A ∫ [𝑣'K@ + 2𝑢𝑣'K3 + 𝑢*𝑣'K*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

%G
%$   

 

− 3
*
𝜋 ?*/!0

-
A ∫ [𝑣'K* + 2𝑢𝑣'K + 𝑢*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

%G
%$ 1  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

𝜋 ?*/!0
-
A
*
∫ [𝑣'K* − 2𝑢𝑣'K + 𝑢*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
G   

 

+ -
*/!0

𝜋 ?*/!0
-
A ∫ [𝑣'K@ − 2𝑢𝑣'K3 + 𝑢*𝑣'K*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
G   

 

− 3
*
𝜋 ?*/!0

-
A ∫ [𝑣'K* − 2𝑢𝑣'K + 𝑢*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
G 1  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
V -
*/!0

𝜋 ?*/!0
-
A
*
?*/!0

-
A
3/*

c− C
*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)d  

 

+ -
*/!0

𝜋 ?*/!0
-
A ?*/!0

-
A
A/*

∫ [𝑥@ − 2𝛿𝑥3 + 𝛿*𝑥*]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O   

 

− 3
*
𝜋 ?*/!0

-
A ?*/!0

-
A
3/*

∫ T𝑥* − 2𝛿𝑥 + 𝛿*U𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O Q  

 
 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

𝜋 ?*/!0
-
A
*
?*/!0

-
A
3/*

〈− C
*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A ?*/!0

-
A
A/*

VYO
'

*
𝑒%O$ + 3O

@
𝑒%O$ + 3√1

D
𝑒𝑟𝑓𝑐(𝛿)Z − 𝛿(1 + 𝛿*)𝑒%O$ +

𝛿* cC
*
𝛿𝑒%O$ + √1

@
𝑒𝑟𝑓𝑐(𝛿)dW− 3

*
𝜋 ?*/!0

-
A ?*/!0

-
A
3/*

c− C
*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)dW  

 

= 𝑛𝜏 C
√1

C
0
:0
:'
?*/!0

-
A Vc− C

*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)d   

 

+ VYO
'

*
𝑒%O$ + 3O

@
𝑒%O$ + 3√1

D
𝑒𝑟𝑓𝑐(𝛿)Z − 𝛿(1 + 𝛿*)𝑒%O$ + 𝛿* cC

*
𝛿𝑒%O$ + √1

@
𝑒𝑟𝑓𝑐(𝛿)dW  

 

− 3
*
c− C

*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)dW  
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≈ 𝑛𝜏 ?/!0
	*-
A C
0
:0
:'
𝑒𝑟𝑓𝑐(𝛿) (A28) 

 
≈ 𝑛𝜏 C

0
:0
:'
?/!0
*-
A (A29) 

 
Eq. (A29) is half of Eq. (A12), showing consistency.  We will see next in the du/dz term. 
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'* -

-[5&%G(')]
/!0(')

:G
:'
/ 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -
/!0

:G
:' ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ (𝑣' − 𝑢)𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:' ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ (𝑣' − 𝑢)𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ∫ [(𝑣' − 𝑢)3 + 2𝑢(𝑣' − 𝑢)* + 𝑢*(𝑣' −

7
%$

𝑢)]𝑒𝑥𝑝 Y−-(5&%G)$

*/!0
Z 𝑑𝑣'  

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ∫ [𝑣'K3 + 2𝑢𝑣'K* + 𝑢*𝑣'K]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣'′

%G
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ?*/!0

-
A
*
∫ [−𝑥3 + 2𝛿𝑥* − 𝛿*𝑥]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O   

 

= 𝜏𝑛 *
√1

:G
:'
?*/!0

-
A
C/*

V− C
*
(1 + 𝛿*)𝑒%O$ + 2𝛿 cC

*
𝛿𝑒%O$ + √1

@
𝑒𝑟𝑓𝑐(𝛿)d − C

*
𝛿*𝑒%O$W  

 

= 𝜏𝑛 *
√1

:G
:'
?*/!0

-
A
C/*

0− C
*
𝑒%O$ + √1

*
𝛿𝑒𝑟𝑓𝑐(𝛿)1 (A30) 

 

≈ −𝜏𝑛 C
√1

:G
:'
?*/!0

-
A
C/*

+ 𝜏𝑛𝑢 :G
:'

 (A31) 
  
It is interesting that the first term is not in Eq. (A13) because the odd velocity terms do not cancel 
out.  The coefficient for this term much larger.  If this term is important, likely we need higher 
order terms in Eq. (A14) since the second term is exactly half of the corresponding term in 
Eq.(A14).   
 
Summing up all of the above terms, and applying the approximations used, the flux going towards 
the interface is then 
 

𝐽-% = −𝑛 P?/!0
*1-

A
C/*

− G	
*
Q − 𝜏 :F

:'
?/!0
*-
A − 𝑛𝜏 C

0
:0
:'
?/!0
*-
A + 𝜏𝑛 C

√1
:G
:'
?*/!0

-
A
C/*

− 𝜏𝑛𝑢 :G
:'
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≈ −𝑛 P?/!0
*1-

A
C/*

− G	
*
Q − 𝜏 :F

:'
?/!0
*-
A − 𝑛𝜏 C

0
:0
:'
?/!0
*-
A (A32) 

 

= −𝑛 ?/!0
*1-

A
C/*

+ P+
*

 (A33) 
 
Where in Eq. (A32) step, we assume that du/dz terms are negligible, which is reasonable for one-
dimensional problems but may not be a good approximation for multidimensional problems 
since first term in Eq. (31) is much larger than the second term if du/dz is not negligible.   In 
writing down Eq. (A33), we used Eq. (A15). 
 
Heat Flux Coming Towards Interface.  The heat flux has convection term, the density, 
temperature, and velocity gradient terms, which are evaluated as below. 
 
Convection term 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'

-
*
T𝑣#* + 𝑣&* + 𝑣'*U𝑓:𝑑𝑣'

7
%$   

	
= -

*
𝑛 0 -

*1/!0
1
3/*

P∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$ 	  

 

+∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'3𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ Q  

 

= -
*
𝑛 0 -

*1/!0
1
3/*

P𝜋 ?*/!0
-
A
*
∫ [𝑣′' + 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A𝑑𝑣'

%G
%$   

 

+𝜋 ?*/!0
-
A ∫ [𝑣'K3 + 3𝑢𝑣'K* + 3𝑢*𝑣'K + 𝑢3]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣'

%G
%$ Q  

 

= -
*
𝑛 0 -

*1/!0
1
3/*

P𝜋 ?*/!0
-
A
3
∫ [−𝑥 + 𝛿]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O   

 

+𝜋 ?*/!0
-
A
3
∫ [−𝑥3 + 3𝛿𝑥* − 3𝛿*𝑥 + 𝛿3]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O Q  

 

= -
*√1

𝑛 ?*/!0
-
A
3/*

0?− C
*
𝑒%O$ + √1

*
𝛿𝑒𝑟𝑓𝑐(𝛿)A + 0− C

*
(1 + 𝛿*)𝑒%O$+  

 

?3
*
𝛿*𝑒%O$ + 3√1

@
𝛿𝑒𝑟𝑓𝑐(𝛿)A− 3

*
𝛿*𝑒%O$ + √1

*
𝛿3𝑒𝑟𝑓𝑐(𝛿)1W  

 

= -
*√1

𝑛 ?*/!0
-
A
3/*

0− ?1 + O$

*
A 𝑒%O$ + A√1

@
𝛿𝑒𝑟𝑓𝑐(𝛿) + √1

*
𝛿3𝑒𝑟𝑓𝑐(𝛿)1 (A34) 
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≈ − -
*√1

𝑛 ?*/!0
-
A
3/*

	+ A-F
D
?*/!0

-
A 𝑢 (A35) 

 
The second term in (A35) is half of the value in Eq. (A17) (neglecting the higher order term).  An 
extra first term appears, which will be responsible for the temperature discontinuity. 
 
dn/dz term is as follows 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'*

-
*
T𝑣#* + 𝑣&* + 𝑣'*U -

C
F
:F
:'
/ 𝑑𝑣'

7
%$    

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

F
:F
:'
P∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

+∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ Q  

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

F
:F
:'
P𝜋 ?*/!0

-
A
*
∫ [𝑣'′* + 2𝑢𝑣'′ + 𝑢*]𝑒𝑥𝑝 ?−

-5&K$

*/!0
A 𝑑𝑣'′

%G
%$   

 

+𝜋 ?*/!0
-
A ∫ [𝑣'K@ + 2𝑢*𝑣'K* + 𝑢@]𝑒𝑥𝑝 ?−

-5&K$

*/!0
A 𝑑𝑣'′

%G
%$ Q  

 
 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

F
:F
:'
𝜋 ?*/!0

-
A
E/*

T∫ [𝑥* − 2𝛿𝑥 + 𝛿*]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O   

 
+∫ [𝑥@ + 2𝛿*𝑥* + 𝛿@]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$

O U  
 

= -
*√1

𝑛𝜏 C
F
:F
:'
?*/!0

-
A
*
Vc− C

*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)d  

 

YO
'

*
𝑒%O$ + 3O

@
𝑒%O$ + 3√1

D
𝑒𝑟𝑓𝑐(𝛿)Z + 𝛿* c𝛿𝑒%O$ + √1

*
𝑒𝑟𝑓𝑐(𝛿)d+𝛿@ √1

*
𝑒𝑟𝑓𝑐(𝛿)1   

 
 

= -
*√1

𝑛𝜏 C
F
:F
:'
?*/!0

-
A
*
PO
@
𝑒%O$ + 3O'

*
𝑒%O$ + √1

*
?A
@
+ 2𝛿* + 𝛿@A 𝑒𝑟𝑓𝑐(𝛿)Q (A36) 

 

≈ -
D√1

𝜏 ?*/!0
-
A
3/*

𝑢 :F
:'
+ A/!$0$

@-
𝜏 :F
:'

 (A37) 
 

≈ A/!$0$

@-
𝜏 :F
:'

  (A38) 
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The first term in Eq.(A37) should be small since u is much smaller than thermal velocity and can 
be neglected, leading to Eq.(A38), which is half of the first term in Eq.(A18). 
 
The temperature gradient term is: 
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'*

-
*
T𝑣#* + 𝑣&* + 𝑣'*U

C
0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
Q 𝑑𝑣'

7
%$   

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
P∫ 2𝜋𝑣//𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*T𝑣//* + 𝑣'*U V

-L5//
$ "(5&%G)$ M

*/!0
−7

%$

3
*
W 𝑒𝑥𝑝 Y−-(5&%G)$

*/!0
Z 𝑑𝑣'  

 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
× P -

*/!0
〈∫ 2𝜋𝑣//A𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$ 〉  

 

+ -
*/!0

〈∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ T𝑣'@ + 𝑣'*(𝑣' − 𝑢)* U𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$ 〉  

 

+ -
*/!0

〈∫ 2𝜋𝑣//C𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@(𝑣' − 𝑢)* 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$ 〉  

 

− 3
*
〈∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ 〉  

 

− 3
* ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ Q  

 
 

= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
× P -

*/!0
2𝜋 ?*/!0

-
A
3
〈∫ [𝑣'K* + 2𝑢𝑣' + 𝑢*]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'

%G
%$ 〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A
*
〈∫ [2𝑣'K@ + 3𝑢*𝑣'K* + 2𝑢𝑣'K3 + 𝑢@]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣′'

%G
%$ 〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A 〈∫ [𝑣'KB + 2𝑢*𝑣'K@ + 𝑢@𝑣'K*]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'

%G
%$ 〉  

 

− 3
*
𝜋 ?*/!0

-
A
*
〈∫ [𝑣'K* + 2𝑢𝑣′' + 𝑢*]𝑒𝑥𝑝 Y−

-5&)$

*/!0
Z 𝑑𝑣'

%G
%$ 〉  

 

− 3
*
𝜋 ?*/!0

-
A ∫ T𝑣'K@ + 2𝑢@ 𝑣'K* + 𝑢@U𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

%G
%$ Q  
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= -
*
𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:'
× P -

*/!0
2𝜋 ?*/!0

-
A
Q/*

〈∫ [𝑥* − 2𝛿𝑥 + 𝛿*]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O 〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A
Q/*

〈∫ [2𝑥@ + 3𝛿*𝑥* − 2𝛿𝑥3 + 𝛿@]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O 〉  

 

+ -
*/!0

𝜋 ?*/!0
-
A
Q/*

〈∫ [𝑥B + 2𝛿*𝑥@ + 𝛿@𝑥*]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O 〉  

 

− 3
*
𝜋 ?*/!0

-
A
E/*

〈∫ [𝑥* − 2𝛿𝑥 + 𝛿*]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O 〉  

 

− 3
*
𝜋 ?*/!0

-
A
E/*

∫ [𝑥@ + 2𝛿*𝑥* + 𝛿@]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O Q  

 

= -
*√1

𝑛𝜏 ?*/!0
-
A
* C
0
:0
:'
× V2c− C

*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)d  

 

+ V2 YO
'

*
𝑒%O$ + 3O

@
𝑒%O$ + 3√1

D
𝑒𝑟𝑓𝑐(𝛿)Z + 3O$

*
c𝛿𝑒%O$ + √1

*
𝑒𝑟𝑓𝑐(𝛿)d 	− 𝛿(1 + 𝛿*)𝑒%O$ +

𝛿@ √1
*
𝑒𝑟𝑓𝑐(𝛿)W	  

     

+ PYO
,

*
𝑒%O$ + AO'

@
𝑒%O$ + CAO

D
𝑒%O$ + CA√1

CB
𝑒𝑟𝑓𝑐(𝛿)Z + 2𝛿* YO

'

*
𝑒%O$ + 3O

@
𝑒%O$ +

3√1
D
𝑒𝑟𝑓𝑐(𝛿)Z + 𝛿@ ?O

*
𝑒%O$ + √1

@
𝑒𝑟𝑓𝑐(𝛿)AQ   

 

− 3
*
c− C

*
𝛿𝑒%O$ + √1

*
?C
*
+ 𝛿*A 𝑒𝑟𝑓𝑐(𝛿)d  

 

− 3
*
VYO

'

*
𝑒%O$ + 3O

@
𝑒%O$ + 3√1

D
𝑒𝑟𝑓𝑐(𝛿)Z + 𝛿* c𝛿𝑒%O$ + √1

*
𝑒𝑟𝑓𝑐(𝛿)d + 𝛿@ √1

*
𝑒𝑟𝑓𝑐(𝛿)Wi  

 

= -
*√1

𝑛𝜏 ?*/!0
-
A
* C
0
:0
:'
0(𝛿 + 2𝛿3 + 2𝛿A)𝑒%O$ + √𝜋 ?A@ + 𝛿

*A 𝑒𝑟𝑓𝑐(𝛿)1 (A39) 
 

≈ -
*√1

𝑛𝜏 ?*/!0
-
A
3/* G

0
:0
:'
+ A-

D
𝑛𝜏 ?*/!0

-
A
* C
0
:0
:'
	 (A40) 

 
 
Eq.(A40) is half of Eq.(A19). 
 
The final term, the du/dz term is 
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∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣'*

-
*
T𝑣#* + 𝑣&* + 𝑣'*U

-[5&%G(')]
/!0(')

:G
:'
𝑑𝑣'

7
%$   

  

= -
*
𝜏𝑛 -

/!0
:G
:'
0 -
*1/!0

1
3/*

P∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'*[𝑣' − 𝑢(𝑧)]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

+∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣'@[𝑣' − 𝑢(𝑧)]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ Q  

 

= -
*
𝜏𝑛 -

/!0
:G
:'
0 -
*1/!0

1
3/*

P𝜋 ?*/!0
-
A
@
∫$O [−𝑥3 + 2𝛿𝑥* − 𝛿*𝑥]𝑒𝑥𝑝(−𝑥*)𝑑𝑥  

 

+𝜋 ?*/!0
-
A
@
∫ [−𝑥A − 2𝛿*𝑥3 − 𝛿@𝑥]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O Q  

 

= -
√1
𝜏𝑛 :G

:'
?*/!0

-
A
3/*

[ ∫ [−𝑥3 + 2𝛿𝑥* − 𝛿*𝑥]𝑒𝑥𝑝(−𝑥*)$
O 𝑑𝑥  

 
+∫ [−𝑥A − 2𝛿*𝑥3 − 𝛿@𝑥]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$

O U  
 

= -
√1
𝜏𝑛 :G

:'
?*/!0

-
A
3/*

Vc−𝛿*𝑒%O$ + √1
*
𝛿𝑒𝑟𝑓𝑐(𝛿)d − 02𝛿@ + 3𝛿* + 3

*
1 𝑒%O$W  

 

≈ -
√1
𝜏𝑛 :G

:'
?*/!0

-
A
3/*

?− 3
*
+ √1

*
𝛿A  

 

≈ − 3-
*√1

𝜏𝑛 :G
:'
?*/!0

-
A
3/*

+ 𝜏𝑛𝑢𝑘9𝑇
:G
:'

 (A42) 
 
The second term is half of Eq. (A20).  However, the first term can be much larger than the second 
term.  In 1D situation, we expect that du/dz is small and hence both terms can be neglected. 
 
Combining all energy flux terms, the heat flux coming towards interface is 
 

𝑞% = − -
*√1

𝑛 ?*/!0
-
A
3/*

	+ A-F
D
?*/!0

-
A 𝑢 − A/!$0$

@-
𝜏 :F
:'
− 𝑛𝜏 C

0
:0
:'
?/!0
*-
A (A43) 

 

≈ − -
*√1

𝑛 ?*/!0
-
A
3/*

	+ R
*
 (A44) 

 
 
Heat Flux Emitted from Interface to Vapor Phase: 
 

𝑞" = 𝛼 ∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'

-5$

*
𝑓S𝑑𝑣'

$
7   
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= -
*
𝛼𝑛!(𝑇.) 0

-
*1/!0"

1
3/*

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣'T𝑣#* + 𝑣&* + 𝑣'*U𝑒𝑥𝑝 ?−

-45#$"5%$"5&$6
*/!0"

A𝑑𝑣'
$
7   

 

= -
*
𝛼𝑛!(𝑇.) 0

-
*1/!0"

1
3/*

𝜋 ?*/!0
-
A
*
P𝜋 ?*/!0

-
A
* C
*
?*/!0

-
A + 𝜋 ?*/!0

-
A C

*
?*/!0

-
A
*
Q  

  

= -
*√1

𝛼𝑛!(𝑇.) ?
*/!0
-
A
3/*

 (A45) 
 
Density Contributed by Molecules Moving Towards Interface.  Now, we consider contributions 
of molecules moving towards the interface to the density at the interface.   
 

𝑛% (𝑧 = 0) = L 𝑑𝑣#
$

%$
L 𝑑𝑣&
$

%$
L 𝑓:𝑑𝑣'
J

%$
 

  

−∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' OC

F
:F
:'
+ C

0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
Q + -[5&%G(')]

/!0(')
:G
:'
R 𝑑𝑣'

7
%$   (A46) 

 
The first the term related to fd is 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝑑𝑣'

7
%$ = F-(7)

*
 (A47)  

  
Next, we consider the density gradient term: 
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' -C

F
:F
:'
/ 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0(')
1
3/*

∫ 2𝜋𝑣//𝑒𝑥𝑝 P−
-5//

$

*/!0
Q 𝑑𝑣//

$
J ∫ 𝑣' 𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A ∫ [(𝑣' − 𝑢) + 𝑢]𝑒𝑥𝑝 P−

-(5&%G)$

*/!0
Q 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A 0∫ 𝑣'K𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' + 𝑢 ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

%G
%$

%G
%$ 1  

 

= 𝜏𝑛 -C
F
:F
:'
/ 0 -

*1/!0
1
3/*

𝜋 ?*/!0
-
A 0−∫ 𝑣'K𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′' + 𝑢 ∫ 𝑒𝑥𝑝 ?−-5&)$

*/!0
A 𝑑𝑣′'

$
G

$
G 1  

 

= 𝜏𝑛 -C
F
:F
:'
/ 𝜋 ?*/!0

-
A 0 -

*1/!0
1
3/*

V− C
*
?*/!0

-
A 𝑒%O$ + G

*
)*1/!0

-
	𝑒𝑟𝑓𝑐(𝛿)W  

 

= 𝜏𝑛 -C
F
:F
:'
/ ?*/!0

1	-
A
C/*

0− C
*
𝑒%O$ + √1

*
𝛿𝑒𝑟𝑓𝑐(𝛿)1  
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≈ − C
*
𝜏 :F
:'
?*/!0
1	-

A
C/*

 (A48)  
 
Next, we consider dT/dz term  
 

∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' OC

0
:0
:'
P-45#

$"5%$"(5&%G('))$ 6
*/!0(')

− 3
*
QR 𝑑𝑣'

7
%$   

	
= 𝑛𝜏 0 -

*1/!0
1
3/* C

0
:0
:' ∫ 𝑑𝑣#

$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑣' P-45#

$"5%$"(5&%G)$ 6
*/!0

− 3
*
Q 𝑑𝑣'

7
%$ 	  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

∫ 2𝜋𝑣//3𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣' 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

+ -
*/!0

∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣' (𝑣' − 𝑢)* 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

− 3
* ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−

-5//
$

*/!0
Z 𝑑𝑣//

$
J ∫ 𝑣' 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$ Q  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P -
*/!0

𝜋 ?*/!0
-
A
*
∫ [𝑣'K + 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

%G
%$   

 

+ -
*/!0

𝜋 ?*/!0
-
A ∫ [𝑣'K3 + 𝑢𝑣'K*]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

%G
%$   

 

− 3
*
𝜋 ?*/!0

-
A ∫ [𝑣'K + 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

%G
%$ 1  

 

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
P− 1

*
?*/!0

-
A ∫ [𝑣'K − 𝑢]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣′'

$
G   

 

−𝜋∫ [𝑣'K3 − 𝑢𝑣'K*]𝑒𝑥𝑝 ?−
-5&)$

*/!0
A 𝑑𝑣′'

$
G 1  

  

= 𝑛𝜏 0 -
*1/!0

1
3/* C

0
:0
:'
V− 1

*
?*/!0

-
A
*
cC
*
𝑒%O$ − √1

*
𝛿	𝑒𝑟𝑓𝑐(𝛿)d   

 

−𝜋 ?*/!0
-
A
*
∫ [𝑥3 − 𝛿𝑥*]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O Q   

 

= 𝑛𝜏 C
0
:0
:'
?*/!0
1-

A
C/*

V− C
*
cC
*
𝑒%O$ − √1

*
𝛿	𝑒𝑟𝑓𝑐(𝛿)d  

 

− VC
*
(1 + 𝛿*)𝑒%O$ − 𝛿 cC

*
𝛿𝑒%O$ + √1

@
𝑒𝑟𝑓𝑐(𝛿)dW  
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≈ − 3
@
𝑛𝜏 C

0
:0
:'
?*/!0
1-

A
C/*

 (A49) 
 
Next, we evaluate the du/dz term  
 
∫ 𝑑𝑣#
$
%$ ∫ 𝑑𝑣&

$
%$ ∫ 𝑓:𝜏𝑣' --[5&%G(')]

/!0(')
:G
:'
/ 𝑑𝑣'

7
%$   

  

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:' ∫ 2𝜋𝑣// 𝑒𝑥𝑝 Y−
-5//

$

*/!0
Z 𝑑𝑣//

$
J ∫ (𝑣' − 𝑢)𝑣' 𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z 𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ∫ [(𝑣' − 𝑢)* + 𝑢(𝑣' − 𝑢)]𝑒𝑥𝑝 Y−

-(5&%G)$

*/!0
Z𝑑𝑣'

7
%$   

 

= 𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ∫ [𝑣'K* + 𝑢𝑣'K]𝑒𝑥𝑝 ?−

-5&)$

*/!0
A 𝑑𝑣'′

%G
%$   

 

= −𝜏𝑛 -
/!0

0 -
*1/!0

1
3/* :G

:'
𝜋 ?*/!0

-
A ?*/!0

-
A
3/*

∫ [−𝑥* + 𝛿𝑥]𝑒𝑥𝑝(−𝑥*)𝑑𝑥$
O   

 

= −𝜏𝑛 *
√1

:G
:'
V− cC

*
𝛿𝑒%O$ + √1

@
𝑒𝑟𝑓𝑐(𝛿)d + C

*
𝛿𝑒%O$W  

 
≈ 0  (A50) 
  
So, the contribution of molecules in negative direction to the local density is 
 

𝑛% = F-(7)
*

+ C
*
𝜏 :F
:'
?*/!0
1	-

A
C/*

+ 3
@
𝑛𝜏 C

0
:0
:'
?*/!0
1-

A
C/*

 (A51)  
 
The forward going density consists of molecules emitted by the surface and reflected 
 
𝑛" = 𝛼 F.

*
+ (1 − 𝛼)𝑛%  (A52) 

 
We have the local density as 
 
𝑛5(0) = 𝑛" + 𝑛%  
 

= 𝛼
𝑛!
2 + (2 − 𝛼)𝑛

%  

 

= 𝛼 F.
*
+ (2 − 𝛼) OF-(7)

*
+ C

*
𝜏 :F
:'
?*/!0
1	-

A
C/*

+ 3
@
𝑛𝜏 C

0
:0
:'
?*/!0
1-

A
C/*
R (A53)  

 
The above expression leads to 
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𝑛5(0) = 𝑛! +
(*%T)
T

𝜏 ?*/!0
1	-

A
C/*

-:F
:'
+ 3

*
𝑛 C
0
:0
:'
/ (A54) 

 
 
Sec. 4. Evaporation and Condensation At A Single Interface with Diffusion Above the Interface  
 
Temperature distribution.  Equation (17) is copied here 
 

𝑞 = A
*
U0
V
𝑚̇ − 𝑘$ ?

0
0/
A
C/* :0

:'
 (A55) 

 
It is better we cast the above equation into dimensionless form by setting 
 
𝜃 = 0

0/
    and  𝜁 = R'

//0/
 (A56) 

 
So that Eq. (A55) becomes 
 
1 = 𝐵𝜃 − 𝜃C/* :W

:X
  (A57) 

 
With 
 
𝐵 = A

*
U-̇0/
VR

   (A58) 

 
Equation (A57) can be written as 
 
√W:W
9W%C

= 𝑑𝜁 (A59) 
 
Set t2=𝜃, Eq. (A59) is then 
 
*Z$:Z
9Z$%C

= 𝑑𝜁   (A60) 
  
Integrating the above equation, we get 
 
 

o)9W-(7)%C
)9W-(7)"C

o p√9W"C
√9W%C

p 𝑒𝑥𝑝Tq𝐵𝜃5(0) − √𝐵𝜃U = 𝑒𝑥𝑝 ?− 9'/$X
*
A (A61) 

 
We can also obtain the temperature gradient at z=0 from the above expression  
 
:W
:X
1
X>7

= 𝐵q𝜃5(0)
9W-(7)%C

9W-(7)"*√9%C
 (A62) 
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Or 
 
:0
:'
1
'>7

= A
*
U-̇0/
V//

)0-(7)
0/

90-(2)0/
%C

90-(2)0/
"*√9%C

 (A63) 

 
We can also solve Eq.(17) assuming k is a constant.  In this case,  
 
𝑘 :0
:'
= A

*
U0
V
𝑚̇ − 𝑞  (A64) 

 
Integrating the above equation, we have 
 

r
$45
,6+̇%0(')
$45
,6+̇%0-(7)

r =exp?A
*
U-̇
V/
𝑧A  (A65) 

 
From which, we have 
 
:0
:'
1
'>7

= ?A
*
U-̇
V/
A ?*RV

AU-̇
− 𝑇5(0)A (A66) 

 
Density and Pressure Distributions.  To solve for density, 𝐸𝑞. (13) can be written as 
  
:[.F(0[)]

:'
= − V

0[U\
(𝑚̇ − 𝜌$𝑢$) (A67) 

 
where we have used Eq. (16).  The reason we write into the above expression is since tr~T-1/2, 
the right-hand side is actually independent of the density, and is proportional to T-1/2, so we can 
integrate the above expression 
 
𝑙𝑛 ? 0(')[(')

0-(7)[-(7)
A = −∫ C

[]
(𝑚̇ − 𝜌$𝑢$)𝑑𝑧

'
J  (A68) 

 
where D=RTt/M is the self-diffusivity, which is a function of temperature r𝐷~√𝑇.  The above 
equation can be expressed as 
 
𝑙𝑛 ? 0(')[(')

0-(7)[-(7)
A = 𝑙𝑛 ? ^(')

-̂(7)
A = − (-̇%[/G/)

[/]/
∫ C

)0/0/
𝑑𝑧'

J  (A69) 

 
Using temperature distribution, the integral on the right-hand side can be performed.   
 
Liquid Region Temperature Distribution.  The heat flow in the liquid layer is 
 
 𝑞. = 𝑚̇𝑐_,.[𝑇(𝑧) − 𝑇a] − 𝑘.

:0
:'

 (A70) 
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where Tr is a reference temperature for the liquid enthalpy.  We assume that liquid comes into 
the region at a temperature equaling the wall temperature.  Since ql is a constant, the above 
equation can be easily integrated, leading to 
 

 y
0(')%08%

4"
+̇9:,"

0.%08%
4"

+̇9:,"

y = 𝑒𝑥𝑝 ?-̇b:,"
/"

𝑧A  

 
We take Tr=Ts, solving for ql, 
 

 𝑞. =
-̇b:,"(0.%0")

S#_c
+̇9:,"
<"

:d%C
 (A71) 

 

When 
-̇b:,"
/"

𝑑 << 1
̇

, we can approximate the exponential by expansion, which leads to 

 
 𝑞. =

/"
:
(𝑇! − 𝑇.) (A72) 

 
which means that the convective term is small and we can just consider heat conduction inside 
the liquid layer.     
 
Solving for Interfacial Temperature and Density Jumps.   
 
Mass flux is given by 
 

 𝑚̇ = *T
*%T

) U
*1V

T𝜌!(𝑇.)q𝑇. − 𝜌5(0)q𝑇5(0)U (A73) 

  
Continuity of heat flux at liquid-vapor interface is 
 

 /"
:
(𝑇! − 𝑇.) − 𝑚̇𝐿 =

*U0"
V
𝑚̇ + *T

*%T
U
V
)*U
1V
𝜌5(0)q𝑇5(𝑇. − 𝑇5) = 𝑞 (A74) 

 
Eqs. (A73), (A74) (which are two equations), together with Eqs. (A65), (A69), Eqs.(16) and (32) 
are a total of seven independent equations that can be used to solve for seven unknowns q, 𝑚̇, 
𝑢$, 𝑇5(0),	𝜌5(0), 𝑇.(0), 𝑎𝑛𝑑	𝑇5,$.   
 
Saturation Condition.  We can use the Clausius-Clapeyron equation to relate the saturation 
pressure and temperature: 
 
𝑙𝑛 $̂

=̂
= −V(

U
? C
0$
− C

0=
A (A75) 
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For water, the above expression is not accurate.  I used the following correlation after fitting 
water Ps(T) using data from the steam table,  
 
𝜌(𝑇) = 𝑒𝑥𝑝[−0.0017384𝑇* + 0.1599𝑇 − 36.0032] (A76) 
 
Clearly, the above expression has narrow temperature range of validity.   
 
Sec. 5  Evaporation and Condensation at a Single Interface with Convection Above the Interface   
 
If above the interface, there are convection, we need to replace the diffusion equations in the 
vapor phase, i.e., Eqs. (13) and (14) with appropriate single phase convection boundary 
conditions.  We copy Eqs. (13) and rewrite (14) as below: 
 
 𝑚̇ ≈ 𝜌𝑢 − U0

V
𝜏 :[
:'
− U0

V
𝜌𝜏 C

0
:0
:'

 (A77) 
 
 *VR

AU0
≈ 𝜌𝑢 − 𝜏 U0

V
:[
:'
− 2 U0

V
𝜌𝜏 C

0
:0
:'

    (A78) 
 
Subtracting the two equations, we get 
 
 U0

V
𝜌𝜏 C

0
:0
:'
= 𝑚̇ − *VR

AU0
     (A79) 

 
Substituting (A79) into (A77), we get 
 
 U0

V
𝜏 :[
:'
= 𝜌𝑢 − 2𝑚̇ + *VR

AU0
    (A80) 

 
Substituting Eqs. (A79) and (A80) into Eq. (31) leads to 
 

 𝜌5(0) = 𝜌! +
(*%T)
T

? *V
1	U0

A
C/*

-𝜌𝑢 − -̇
*
− VR

AU0
/   (A81) 

 
Replacing 𝑚̇ and q in the above equation with Eqs. (42) and (43), we obtain  
 

𝜌5(0) = 𝜌! −
(*%T)
T

? *V
1	U0-

A
C/*

Ve.,-
[b:

(𝜌5 − 𝜌$) +
V

AU0-(7)
ℎ!,5[𝑇5(0) − 𝑇$]W  (A82) 

 
There is the question what density we should use in the denominator of first term in the square 
bracket.  Based on the fact that for heat flux, we have Tv(0) in the denominator, it is probably 
best if we use the density as 𝜌5.  There is also the choice of taking an average or using 𝜌$.  The 
differences among the choices are likely to be small and our solution used 𝜌$.   
 


