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The phonon Boltzmann transport equation (BTE) has been widely utilized to study thermal transport in solids.
While for a number of materials the exact solution to the BTE has been obtained for a uniform heat flow, problems
arising in micro/nanoscale heat transport have been analyzed within the relaxation time approximation (RTA).
Since the RTA breaks down at temperatures low compared to the Debye temperature, this approximation prevents
the study of an important class of high Debye temperature materials such as diamond, graphite, graphene,
and some other two-dimensional materials. We present a full scattering matrix formalism that goes beyond
the RTA approximation and obtain a Green’s function solution for the linearized BTE, which leads to an explicit
expression for the phonon distribution and temperature field produced by an arbitrary spatiotemporal distribution
of heat sources in an unbounded medium. The presented formalism is capable of describing a wide range of
phenomena, from heat dissipation by nanoscale hot spots to the propagation of second sound waves. We provide
numerical results for graphene for a spatially sinusoidal heating profile and discuss the importance of using the
full scattering matrix compared to the RTA.

DOI: 10.1103/PhysRevB.104.245424

I. INTRODUCTION

Recent research on phonon-mediated thermal transport in
solids demonstrated the breakdown of the Fourier law of heat
conduction on the micro/nanoscale when the characteristic
dimension becomes comparable to the phonon mean free path.
To describe nondiffusive transport that no longer obeys the
ubiquitous heat equation one needs to resort to the Peierls-
Boltzmann phonon transport equation (BTE) [1]. While the
exact iterative solution of the BTE for the case of spatially uni-
form steady-state heat flow has been extensively used in the
past decade for first-principles thermal conductivity calcula-
tions [2,3], micro/nanoscale heat transport involving localized
heat sources and/or boundaries has been studied under the re-
laxation time approximation (RTA), which greatly simplifies
the BTE [4]. However, the RTA fails at low temperatures (or
even at room temperature for high Debye temperature mate-
rials) when umklapp phonon-phonon scattering processes are
rare and normal scattering dominates. Consequently, the RTA
approximation cannot be used for materials with high Debye
temperature such as diamond [5] or graphene [6] and cannot
capture phonon hydrodynamic phenomena such as second
sound [7]. In addition, the RTA does not conserve energy (see
Sec. II below), which introduces an error in the analysis that
cannot be readily quantified. To assess the accuracy of the
RTA in handling nonuniform and nonstationary problems, one
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needs to compare its results with solutions obtained with the
full scattering integral.

In this paper, we aim to develop a methodology for obtain-
ing rigorous nonstationary and nonuniform solutions of the
full BTE capable of handling a wide range of problems from
heat dissipation by nanoscale hot spots to the propagation
of second sound waves. The iterative approach described in
Ref. [8] is not easily extendable beyond the stationary and
uniform special case. However, modern computational capa-
bilities make it possible to solve the linearized BTE in the
discretized wave-vector space directly by matrix algebra. The
diagonalization of the BTE has been previously discussed
by Hardy in the context of second sound [7]; however at
that time the scattering matrix could not be computed for
any material. More recently, Cepellotti et al. studied the
diagonalization of the scattering matrix and introduced the
term “relaxons” for the corresponding eigenvectors [9,10].
However, the relaxon basis cannot be readily applied to the
spatially nonuniform case as it makes the advective term in
the BTE nondiagonal. Below we present a matrix-based ap-
proach for solving the BTE containing a nonuniform source
term and derive the Fourier-domain Green’s function with
the full scattering matrix for this problem [11]. Once the
Green’s function is known, the temperature and phonon pop-
ulation distributions for an arbitrary space-time distribution
of heat sources in an unbounded medium can be computed.
To illustrate the range of phenomena that can be described
within the proposed framework, we will present two numer-
ical examples for graphene: (i) steady-state heat dissipation
by a spatially sinusoidal heat source at room temperature
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and (ii) transient heat transport following impulsive spa-
tially sinusoidal heating, yielding second sound oscillations at
low temperatures.

II. SOLVING THE BTE WITH THE FULL
SCATTERING MATRIX

Given an arbitrary volumetric heat generation rate Q(�r, t )
in an infinite anisotropic crystal, we wish to calculate
the phonon distribution function fn(�r, t ) and temperature
response T (�r, t ) = T0 + �T (�r, t ), where T0 is the back-
ground reference temperature, and �T is the temperature
change due to the heating Q. Assuming that deviations
from the thermal equilibrium distribution are small, the lin-
earized phonon BTE with the full scattering matrix takes the
form [12]

∂ fn

∂t
+ �vn · �∇ fn = Qn

Nυ

h̄ωn
+

∑
j

Wn, j
(

f 0
j − f j

)
, (1)

where n is a short-hand index for a given phonon mode (de-
fined by a branch and wave vector in the Brillouin zone),
ωn is the phonon mode frequency, �vn is the phonon group
velocity, f 0

n is the equilibrium distribution function, which
is given by the Bose-Einstein distribution f 0

n = fBE ( h̄ωn
kBT ) de-

fined as fBE (x) ≡ 1
ex−1 , h̄ is the reduced Planck constant, kB

is the Boltzmann constant, and we define N to be the number
of discretized points in the Brillouin zone, and b to be the
number of phonon dispersion branches for the crystal, so that
M = bN is the number of phonon modes. The d-dimensional
volume of the crystal unit cell is given by υ (which will be an
area for a two-dimensional material). The validity of Eq. (1)
is restricted to crystals with translational symmetry where
anharmonicity and disorder can be treated via perturbation
theory and for length scales that are large compared to the
phonon wavelength. The continuous integral of the collision
term in the BTE has been discretized as matrix Wn, j , which is
a general scattering matrix of dimensions M × M describing
the scattering rate between phonon states n and j, acting on
the difference between the equilibrium and nonequilibrium
distribution functions [13]. The RTA is the simple case of
a diagonal matrix Wn, j = 1

τn
δn, j , where τn are the relaxation

times. The volumetric heat generation rate for a given mode
is given by Qn = pnQ, where Q is the macroscopic volu-
metric heat generation rate, and the values pn describe the
distribution of heating among the phonon modes, which has
been shown to have a large effect on the nanoscale thermal
transport [14]. These values are nonnegative and normalized
so that

∑
n pn = 1. The thermal distribution of the source is

the particular case pn = cn/C, where cn is the heat capacity
of a phonon mode at the reference temperature T0, given

by cn = h̄ωn
Nυ

∂
∂T0

fBE ( h̄ωn
kBT0

) = kB
Nυ

[
h̄ωn

2kBT0

sinh(
h̄ωn

2kBT0
)
]2, and C is the total

volumetric heat capacity, C = ∑
n cn.

The temperature T is defined as the value for which the
equilibrium energy density of phonons matches the nonequi-
librium energy density, i.e.,

1

Nυ

∑
n

h̄ωn fBE

(
h̄ωn

kBT

)
= 1

Nυ

∑
n

h̄ωn fn. (2)

If we linearize the equilibrium distribution function in
terms of the temperature rise above the background, we
obtain:

f 0
n ≈ fBE

(
h̄ωn

kBT0

)
+ Nυ

h̄ωn
cn�T . (3)

To simplify, we introduce the deviational phonon en-
ergy density per mode, gn ≡ h̄ωn

Nυ
[ fn − fBE ( h̄ωn

kBT0
)] and g0

n ≡
h̄ωn
Nυ

[ f 0
n − fBE ( h̄ωn

kBT0
)] = cn�T , to yield the linearized BTE in

terms of the deviational phonon energy density after proper
scaling of Eq. (1):

∂gn

∂t
+ �vn · �∇gn = Qpn +

∑
j

ωnWn, j
1

ω j
(c j�T − g j ). (4)

The BTE given by Eq. (4) describes transport where not
only the deviation from the equilibrium distribution at the lo-
cal temperature is small, but the deviation of the latter from the
background constant temperature distribution is also small.
The energy density above the background is given simply by∑

n gn and the heat flux by
∑

n gn�vn. In this linearized regime,
the scattering matrix W depends on the background tempera-
ture T0 but not on the temperature rise �T . Linearizing Eq. (2)
gives the temperature rise as the ratio of the nonequilibrium
energy density of phonons divided by the heat capacity:

�T = 1

C

∑
n

gn. (5)

The full scattering matrix must be energy conserving. This
means that summing over the scattering matrix term on the
right-hand side of Eq. (4) must yield zero, regardless of the
distribution gn [12]. If we insert the temperature of Eq. (5)
into Eq. (4), and sum over all modes, energy conservation for
an arbitrary distribution of modes gn will require∑

i, j

ωiWi, j
1

ω j

(c j

C
− δ j,n

)
= 0, (6)

which must be true for every phonon mode indexed by n ∈
[M] here. For a scattering matrix which satisfies the condition
of Eq. (6), the system is energy conserving in any heat transfer
configuration. In the RTA, the diagonal form of the scattering
matrix inserted into Eq. (6) yields the following condition
for the relaxation times in order for the system to be energy
conserving:

1

τn
= 1

C

∑
j

c j

τ j
. (7)

Since the index n does not appear on the right-hand side
of Eq. (7), the relaxation time must be the same for every
mode n, i.e., the only energy conserving diagonal matrix W
is an identity matrix with a single relaxation time. Conse-
quently, the use of realistic phonon relaxation times in the
RTA violates the conservation of energy. What is typically
done to circumvent the violation of energy conservation in the
RTA is a redefinition of the temperature, such that the energy
conservation equation is used to obtain a pseudotemperature
[15,16] as opposed to the conventional temperature given by
Eq. (5). The full scattering matrix is energy conserving by
construction, although due to the numerical broadening used
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to approximate the delta functions in the matrix elements,
small deviations from energy conservation may occur [13].

To solve for the phonon distribution for a system with no
boundaries, we take the spatial and temporal Fourier trans-
form of Eq. (4) to convert the differential equation into an
algebraic matrix equation, and find the Fourier transform of
the deviational nonequilibrium distribution function in terms
of the temperature:

g̃n = Q̃
∑

j

A−1
n, j p j + �T̃

(
cn − i

∑
j

A−1
n, j (ω + �q · �v j )c j

)
,

(8)
where the matrix A, whose inverse appears in Eq. (8), is
defined as An, j = Wn, j

ωn
ω j

+ iδn, j (ω + �q · �vn), tilde denotes the
Fourier transform, ω represents the temporal frequency from
the Fourier transform, not to be confused with the frequency
of a phonon mode ωn, and �q is the spatial wave vector from
the Fourier transform. We find the temperature by inserting
Eq. (8) into Eq. (5) and solving to obtain

�T̃ = Q̃

∑
n, j A−1

n, j p j

i
∑

n, j A−1
n, jc j (ω + �q · �v j )

. (9)

By inserting the temperature of Eq. (9) into Eq. (8) we
obtain the energy density distribution for each phonon mode:

g̃n = Q̃
∑

j

A−1
n, j p j + Q̃

∑
n, j A−1

n, j p j

i
∑

n, j A−1
n, jc j (ω + �q · �v j )

×
(

cn − i
∑

j

A−1
n, j (ω + �q · �v j )c j

)
. (10)

Equations (9) and (10) constitute the main result of
this work. For Q̃ = 1 (i.e., for Q given by a Dirac delta
function in time and space), we obtain the Fourier-domain
Green’s functions of the full scattering matrix BTE. For an
arbitrary heat source Q, the temperature and phonon distri-
bution as functions of time and position can be obtained
by an inverse Fourier transform. The computational com-
plexity of the inversion of matrix A, for a single point in
(discretized) Fourier-space, scales like O((M )3) and is there-
fore the dominant contribution to the overall computational
cost of this approach. However, since each point in Fourier
space is independent, one can employ a trivial parallelization
scheme.

We note that the previously obtained RTA Green’s function
solution of Ref. [17] is not a particular case of Eq. (9). Since
Eq. (9) utilizes the definition of temperature given by Eq. (5)
and an energy conserving scattering matrix W that satisfies
Eq. (6), the temperature field obtained with Eq. (9) will not
be the same as the pseudotemperature obtained with a non-
energy-conserving scattering matrix W in the RTA. However,
if Eq. (5) is replaced by the equation for the pseudotemper-
ature [17], then following the same procedure as described
above, we get a result for a diagonal scattering matrix that is
equivalent to Eq. (9) of Ref. [17].

III. EXAMPLES

This presented formalism allows us to study thermal trans-
port in the micro/nanoscale regime. As the first example, we
consider the one-dimensional steady state thermal grating, in
which the heat source is constant in time and sinusoidal in
space, Q = Q̄ei �q·�r . This is a grating in one dimension along the
direction of the vector q with a grating period λ = 2π/q. In-
serting the Fourier-transform of the source function in Eq. (9),
we get the temperature distribution

�T = Q̄ei �q·�r
∑

n, j A−1
n, j p j

i
∑

n, j A−1
n, jc j (�q · �v j )

, (11)

where the matrix A is now given by the steady state form
An, j = Wn, j

ωn
ω j

+ i �q · �vnδn, j . It is instructive to compare this
result with the temperature profile given by the heat diffusion
equation in the same geometry, �TFourier = Q̄ei �q·�r 1

q2kq̂
, where

kq̂ ≡ q̂T K q̂ is the element of the thermal conductivity tensor
in the direction of the thermal grating. The spatial temper-
ature distributions predicted by the Fourier heat conduction
equation and by the BTE are identical: both are sinusoids
of the same spatial wave vector q as the volumetric heat-
ing profile. However, the expressions for the amplitude of
the temperature modulation are different. One can define an
effective thermal conductivity by matching the Fourier tem-
perature profile to the solution of the BTE from Eq. (11).
The effective thermal conductivity depends on the grating
spacing λ,

kq̂ = 1

q2

i
∑

n, j A−1
n, jc j �q · �v j∑

n, j A−1
n, j p j

. (12)

To provide a numerical example, we calculate kq given by
Eq. (12) for graphene with a natural abundance of isotopes and
compare it with the RTA result. Details of the construction
of the scattering matrix can be found in a previous work by
Fugallo et al. [13], and the parameters we used as well as an
example of convergence with respect to q mesh can be found
in the Supplemental Material [18] (see, also, Refs. [13,19],
therein). Figure 1 shows the effective thermal conductivity of
graphene obtained using the full scattering matrix as well as
with the RTA as a function of the grating period for the case
of a thermal source distribution pn = cn/C.

It is well known that the RTA underpredicts the macro-
scopic thermal conductivity of graphene [20], therefore a large
discrepancy between the two curves in the limit of large λ is
not surprising. More interestingly, we find that RTA also fails
to predict the size effect: the full scattering matrix calculations
show that the effective conductivity decreases by 50% from
the bulk macroscopic value at λ ≈ 4 um, while according to
the RTA, a 50% reduction occurs at λ ≈ 300 nm. We note
that a localized heat source of size L can be represented as
a superposition of thermal gratings with periods extending
down to about 2L; thus Fig. 1 can be used to qualitatively
predict the size effect in the heat dissipation from micro-
scopic hot spots in graphene. The temperature distribution
for a given profile of a localized source can be obtained by
the inverse spatial Fourier transform of the solution given
by Eq. (9).
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FIG. 1. Effective thermal conductivity of graphene for a steady
state thermal grating at room temperature as a function of the grating
period calculated with the full scattering matrix and with the RTA.
Note that pseudotemperature is used for the RTA solution.

Our methodology also enables modeling of transport in-
duced by transient heat sources. As an example, we consider
a transient thermal grating with the heating profile Q =
Q ei �q·�rδ(t ), where a sinusoidal heat pattern is rapidly deposited
into the system. Experimentally, such a source can be created
by the interference two short laser pulses; the laser-based
transient grating technique has been used extensively to study
phonon-mediated thermal transport [21]. The Fourier trans-
form of the temperature distribution is numerically calculated
using Eq. (9), and then the inverse temporal Fourier transform
yields the amplitude of the thermal grating as a function
of time. Temperature responses at 100, 200, and 300 K for
isotopically pure graphene for a grating period of 10 μm are
shown in Fig. 2.

The time-dependent oscillations (i.e., sign changes of
temperature modulation amplitude) at lower temperatures
(< 200 K) indicate standing temperature waves, i.e., second
sound, with a wavelength given by the transient grating spa-
tial period λ and the speed determined by the ratio of the
wavelength to the period of oscillation. These oscillations are
signatures of the phonon hydrodynamic regime, where the
frequency of normal scattering must be much greater than the
frequency of Umklapp scattering [22]. Our approach enables
one not only to predict the window of temperatures where one
can expect second sound to exist [23], but simulate the tem-
perature waves that can be experimentally observed. Indeed,
recently transient grating measurements have revealed second
sound in graphite at temperatures exceeding 100 K [24,25].

IV. CONCLUSIONS

We have described a Green’s function treatment of the BTE
with the full scattering matrix enabling calculations of the

FIG. 2. The amplitude of the temperature modulation in a tran-
sient thermal grating versus time for isotopically pure graphene for a
grating period of 10 μm at different background temperatures for the
full scattering matrix (full line) and RTA (dashed line) BTE solutions.
Note that pseudotemperature is used for the RTA solution.

temperature and phonon population distributions produced by
a heat source with an arbitrary spatiotemporal dependence.
The methodology presented extends the rigorous ab initio
framework previously used to compute macroscopic thermal
conductivity values to problems involving transient and spa-
tially nonuniform heat flux. It allows a wide variety of thermal
transport phenomena and heating geometries to be studied
and will be particularly useful where both the heat equation
and the RTA fail, for example, in studying nanoscale heat
transport in high thermal conductivity materials and phonon
hydrodynamic phenomena such as second sound. Extending
this methodology to geometries with boundaries presents a
challenging problem for future work.
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