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Modern hash table designs for DRAM and PMEM strive to minimize space while maximizing speed. The most
important factor in speed is the number of cache lines accessed during updates and queries. On PMEM, there
is an additional consideration, which is to minimize the number of writes, because on PMEMwrites are more
expensive than reads.

This paper proposes two design objectives, stability and low-associativity, that enable us to build hash tables
thatminimize cache-line accesses for all operations. A hash table is stable if it does notmove items around, and a
hash table has low associativity if there are only a few locations where an item can be stored. Low associativity
ensures that queries need to examine only a fewmemory locations, and stability ensures that insertions write
to very few cache lines. Stability also simplifies concurrency and, on PMEM, crash safety.

We present IcebergHT, a fast, concurrent, space-efficient, and crash-safe (for PMEM) hash table based on
the design principles of stability and low associativity. IcebergHT combines in-memory metadata with a new
hashing technique, iceberg hashing, that is (1) space efficient, (2) stable, and (3) supports low associativity.
In contrast, existing hash-tables either modify numerous cache lines during insertions (e.g. cuckoo hashing),
access numerous cache lines during queries (e.g. linear probing), or waste space (e.g. chaining). Moreover, the
combination of (1)-(3) yields several emergent benefits: IcebergHT scales better than other hash tables, has
excellent performance, and supports crash-safety on PMEM.

Our benchmarks show that IcebergHT has excellent performance both in DRAM and PMEM. In PMEM,
IcebergHT insertions are 50% to 3× faster than state-of-the-art PMEM hash tables, such as Dash and CLHT, and
queries are 20% to 2× faster. IcebergHT space overhead is 17%, whereas Dash and CLHT have space overheads
of 2× and 3×, respectively. IcebergHT also scaled linearly throughout our experiments and is crash safe. In
DRAM, IcebergHT outperforms state-of-the-art hash tables libcuckoo and CLHT by almost 2× on insertions
while offering good query throughput and much better space efficiency.
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1 INTRODUCTION

Hash tables are a core data structure in many applications, including key-value stores, databases,
and big-data-analysis engines, and are included in most standard libraries. Hash-table performance
can be a substantial bottleneck for many applications [14, 29, 34].

Themost important factor in hash-table speed is the number of cache lines accessed during updates
and queries. Additional performance objectives are concurrency and space efficiency.

The advent of PMEM, such as IntelOptane, has introduced additional concerns in hash-table design.
On PMEM, writes are more expensive than reads, and hash tables need to be crash safe. Despite
several years of research on hash tables for PMEM [6, 10, 17, 19, 24–26, 33, 41, 43, 45], state-of-the-art
PMEMhash tables—such asDash [24] andCLHT [9]—utilize less than 35%of PMEM’s raw throughput
for insertions or queries or both (see Figure 5). Furthermore, Dash and CLHT have space overheads
of 2-3× (see Table 3).
In this paper, we introduce a new hash table, IcebergHT, that offers excellent performance on

both DRAM and PMEM. On PMEM, IcebergHT uses over 60-70% of the hardware throughput on
both insertions and queries, and it is crash safe. On DRAM, IcebergHT outperforms state-of-the-art
DRAM hash tables on inserts and is competitive on queries. For both PMEM and DRAM, IcebergHT
scales easily with additional threads and has space efficiency of over 85% (i.e. space overhead is less
than 1/0.85 ≈ 17%).

In this paper, we argue that hash tables can achieve high performance on both DRAM and PMEM
by optimizing two criteria: referential stability and low associativity. As we will see, these two goals
seem to be at odds with each other, and part of the innovation of our hash table design is that it
simultaneously achieves both. Naturally, the third design goal for a high-performance hash table
is compactness, but compactness also seems at odds with referential stability and low associativity.
A hash table is said to be stable if the position where an element is stored is guaranteed not to

change until either the element is deleted or the table is resized [16, 18, 40]. Stability offers a number
of desirable properties. For example, stability enables simpler concurrency-control mechanisms and
thus reduces the performance impact of locking. Moreover, since elements are not moved, writing
is minimized, which is particularly beneficial to PMEM performance.
The associativity of a hash table is the number of locations where an element is allowed to

be stored.1 The best known low-associative (DRAM) hash table is the cuckoo hash table [35, 36].
In the original design, each element has exactly two locations in the table where the element is
allowed to be stored, meaning that the associativity is two. Low associativity yields a different set of
desirable properties—most importantly, it helps search costs. For example, searching for an element
in a cuckoo hash table is fast because there are only two locations in the table to check. In addition,
low associativity can enable us to further improve query performance by keeping a small amount
of metadata; see Section 2.
In combination, stability can be used to achieve high insertion throughput, especially in PMEM,

where writes are expensive; and low associativity can be used to achieve high query performance.
Furthermore, stability enables locking and concurrency-control mechanisms to be simplified, leading
to better multithreaded scaling and simpler designs for crash consistency.
1Associativity is often associated with caches that restrict the locations an item may be stored in. Here we refer to data
structural associativity, which is a restriction on how many locations a data structure may choose from to put an item in,
even on fully associative hardware.
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Fig. 1. Throughput for insertions, deletions, and queries (positive and negative) using 16 threads for PMEM

hash tables. The throughput is computed by inserting 0.95𝑁 keys-value pairs where 𝑁 is the initial capacity

of the hash table. (Throughput is Million ops/second)

Unfortunately, there is a tension between stability and low associativity. If a hash table has asso-
ciativity 𝛼 , and elements cannot move once they are inserted, then an unlucky choice of 𝛼 locations
for 𝛼 elements can block an (𝛼 + 1)st element from being inserted. As 𝛼 decreases, the probability
of such an unlucky event increases. Cuckoo hashing reduces the probability of these bad events by
giving up stability via kickout chains, which are chains of elements that displace each other from
one location to another. Practical implementations [21] generally increase the number of elements
that can be stored in a given location—and thus the associativity—to reduce the kickout-chain length
and increase the maximum-allowed load factor , i.e, the ratio of the total number of keys in the table
to the overall capacity of the table.
Similarly, there is a three-way tension between space efficiency, associativity, and stability. For

example, cuckoo hash tables can be made stable if they are overprovisioned so much that the
kickout-chain length reaches 0. Such overprovisioning decreases space efficiency and also increases
associativity. Linear probing hash tables are stable (assuming they use tombstones to implement
delete) but, as the load factor approaches 1, the average probe length for queries goes up, increasing
associativity. Other open-addressing hash tables have a similar space/associativity trade-off. Chain-
ing hash tables are stable, but they have large associativity and significant space overheads. CLHT [9]
improves query performance despite high associativity by storing multiple items in each node, but
this leads to reduced space efficiency after deletions.

IcebergHT is based on a new type of hash table, which we call iceberg hash tables. Iceberg hash
tables are the first to simultaneously achieve low associativity and stability, and they also have small
space consumption. To date, hash tables have had to choose between stability (e.g., chaining), low
associativity (e.g., cuckoo) or neither (e.g., RobinHood [1, 5]). The techniques introduced in this paper
also have ramifications to the theoretical study of hash tables—we present a detailed study of these
implications, including closing various theoretical open problems, in a companion manuscript [4].
We describe Iceberg hash tables in Section 2.

Results. In this paper, we introduce Iceberg hashing and its implementation, IcebergHT.We prove
that Iceberg hashing simultaneously achieves stability and low associativity. Iceberg hashing is
the first hash-table design to achieve both properties. These guarantees give IcebergHT excellent
performance on DRAM and PMEM and for workloads ranging from read-heavy to write-heavy.
Specifically, IcebergHT accesses very few cache lines, both for queries and insertions, has low CPU
cost, and has high load factor (and thus small space). Stability and low associativity enable simpler
concurrency mechanisms, so that IcebergHT achieves nearly linear scaling with the number of
threads, and it is crash safe on PMEM.

Inbuilding IcebergHT,basedonour Iceberghash table,weoffer the followingdesigncontributions:
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(1) An efficient metadata scheme that is adapted to practical hardware constraints. Queries in ice-
berghash tablesmust searcha small constantnumberofbuckets,whereabucket is a contiguous
range of slots thatmay spanmultiple cache lines and hencewould be expensive to scan through
during a query. Themetadata scheme is small enough that themetadata for each bucket fits in a
cache line, enabling queries to typically access at most two cache lines per bucket—one for the
metadata and one for the slot containing the queried item. Furthermore, when IcebergHT is on
PMEM,wekeep themetadata inDRAM, further acceleratingqueries andupdates.Ourmetadata
scheme also enables nearly lock-free concurrency, i.e., locks are needed only for resizing.

(2) A highly concurrent and thread-safe implementation of Iceberg hashing. IcebergHT scales
almost linearly with increasing threads in our experiments.

(3) Fenceless crash safety on PMEM. Achieving crash-safety on PMEM often requires controlling
the order in which cache lines get flushed to persistent storage, e.g., to ensure that an undo-log
entry gets persisted before the changes to the hash table get persisted. Since insertions in
our hash table modify only a single PMEM cache line, we can achieve crash safety by simply
persisting that cache line.

(4) A high-performance and concurrent technique for resizing Iceberg hash tables in a lazy online
manner, thus reducing the worst-case latency of insertions.

Performance.Weevaluated IcebergHT onDRAMand Intel Optane PMEM.On PMEM,we find that:
(1) Inserts and deletions: IcebergHT insertions and deletions are roughly 50% faster than Dash

and 2 − 3× faster than CLHT.
(2) Queries: IcebergHT positive queries are as fast as CLHT and negative queries are about 20%

faster. IcebergHT queries are 1.5 − 2× faster than Dash.
(3) Space: IcebergHT achieves a space efficiency of 85%, whereas Dash and CLHT have space

efficiencies of 45% and 33%, respectively.
(4) Scalability: IcebergHT throughput scales nearly linearly in all our benchmarks. CLHT also

scales roughly linearly to 8 threads but scales slightly less efficiently than IcebergHT from
8 to 16 threads. Dash hits a wall at 8 threads in several benchmarks.

(5) YCSB: IcebergHT is anywhere from 1× to 8× faster than Dash and CLHT in our YCSB
benchmarks.

On DRAMwe compare IcebergHT to libcuckoo [21], CLHT [9], and TBB [37] and find that:
(1) Inserts: IcebergHT insertions are twice as fast as CLHT, the next fastest hash table for inserts

in our benchmarks.
(2) Queries: IcebergHT queries are within 25% of CLHT, the hash table with the fastest queries

in our benchmarks.
(3) YCSB: IcebergHT is up to 2 − 3× faster than the fastest other hash table on YCSB Load and

Workload A, 25% faster onWorkload B, and within 20% of the fastest hash table onWorkload C.
Furthermore, every other hash table is dead last on at least one workload, but IcebergHT is
always fastest or a close second, demonstrating that it provides strong performance across
all the YCSB workloads we tested.

(4) Deletes: IcebergHT deletions are only about 60% as fast as CLHT, the fastest hash table for
deletions.

2 ICEBERGHASHING

In this section, we begin by introducing Iceberg Hashing, a new, stable, low-associativity hash-table
design. We then give the theoretical basis for Iceberg hashing, proving the theorems that establish
its correctness. In subsequent sections, we show how to exploit Iceberg hashing’s low associativity
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Ave fill = ℎ Max fill = 𝑏 Space Efficiency = 𝑏/ℎ
𝑂 (1) 𝑂 (log𝑛/log log𝑛) Θ(log𝑛/log log𝑛) ≫ Θ(1)
log𝑛 𝑂 (log𝑛) Θ(1)

≫ log𝑛 ℎ +𝑂 (
√
ℎ) 1 + 𝑜 (1)

Table 1. The relationship between the average fill, 𝒃 , and the maximum fill, 𝒉, in a balls-and-bins system is

well understood [3, 30].

to implement an efficient metadata scheme, explain how to make the hashtable concurrent, how to
handle resizes, and how to ensure crash safety.

Thegoal of this section is to establish the theoretical basis for thehighperformancewedemonstrate
in Section 7. Of particular note is that IcebergHT enables an unmanaged backyard that results in
stability, which we will show is important for both high performance and, on PMEM, crash safety.
These theoretical guarantees hold even in the presence of deletes. Previous hash-table designs have
weak or no theoretical guarantees in the presence of deletes, e.g., cuckoo hashing. An important
technical challenge is to guarantee stability and low associativity simultaneously, which we achieve
in a hash table for the first time.

2.1 From Load Balancing to Iceberg hashing

In this section, we have an overview of the design and design principles of IcebergHT. IcebergHT
is a three-level hash table, wheremost items are hashed into a very efficient first level, some items are
hashed into a less efficient second level, anda fewresidual itemsarehashed into anoverflowthird level.
Thefirst level is called the frontyard and the secondand third levels are called thebackyard. In the re-
mainder of the section,we describe how each level is designed, andwe give theorems to show that Ice-
bergHT is correct and fast. Interestingly, the bounds in ourmain theorems are so tight thatwe are able
to make all parameter choices in our implementation based on these theorems, as we describe below.

Consider a one-level hash table (which will correspond to the first level of IcebergHT). One way
to design a hash table is to take an array and logically break it into𝑚 buckets of size 𝑏. As items are
inserted, they are hashed to a random bucket and placed in any free spot of the bucket. After inserting
𝑛 items, the expected number of items in each bucket will beℎ = 𝑛/𝑚 and the space efficiency of the
table will be𝑏𝑚/𝑛 = 𝑏𝑚/ℎ𝑚 = 𝑏/ℎ. Thus, in order to optimize space efficiency, we want to minimize
𝑏/ℎ. But 𝑏 is a function of ℎ, so the choices are not independent, as show in Table 1. Note that in a
balls-and-bins game, 𝑏 is the maximum fill of a bucket, because in our hash table, each bucket must
be configured to be big enough to handle all insertions into that bucket.

The second observation is that, by using a backyard, we don’t need to get the number of overflows
to 0. Specifically,we configure the front yard so that the number of overflowswill be𝑂 (𝑛/polylog(𝑛)).
Thenwe can use any hash table for the back yard as long as it hasΘ(1) space efficiency. In section 2.2,
we show that the overall space efficiency of the hash table will be a remarkable 1 +𝑂 (1/log𝑛).

We conclude thatℎ should be somewhat greater than log𝑛, so we set the bucket size to be 64. This
bucket size is bigger than a cache line but IcebergHT does not read the whole bucket. Rather it
will keep metadata to index the bucket. IcebergHT finds itself in a sweet spot because, as will show
below, buckets of size 64 are small enough that the metadata needed to index the items in a bucket
fits in a cache line.
A smaller bucket size offers a poorer choice. Smaller buckets would either decrease the space

efficiency, by increasing the number of buckets needed to prevent overflows, or increase the number
of items that land in the less efficient backyard. On the other hand, a larger bucket size does not
decrease overflows but the metadata for bigger buckets no longer fits in a cache line.
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2.2 Bounding the Overflows

In this section, we describe the theoretical basis for Iceberg hash tables. The primary theoremwe
need is a bound on the number of items that will be placed in the backyard.

As before, we have a hash table with a front yard consisting of an array broken into𝑚 equal-size
buckets. Items are hashed to a single bucket and may be placed in any slot in their bucket—if there
is no free slot in the bucket, then the item is placed in the backyard. The hash table is stable: once
inserted, items are not moved until they are deleted.

The following theorem bounds the size of the backyard.

Theorem 1. Consider a frontyard/backyard hash table that can hold up to 𝑛 items. Suppose further
that the front yard consists of𝑚 bins.When an item𝑥 arrives, it is hashed uniformly into a bin𝐻 (𝑥). If bin
𝐻 (𝑥) has room, the item is placed into the bin, and if bin𝐻 (𝑥) is full, it is placed into the backyard. The
capacity of a bin is determined by two parameters:ℎ ≤ 𝑛1/4/

√︁
log𝑛 and 𝑗 ≤

√
ℎ. Specifically, each bin

has capacityℎ + 𝑗
√
ℎ + 1 + 1. Then at any moment over the course of poly(𝑚) insertion/deletions where

the table never has more than 𝑛 items, the number of balls in the backyard is𝑂 (𝑛/2Ω ( 𝑗2 ) + 𝑛3/4
√︁
log𝑛)

with probability 1 − 1/poly(𝑛).

Proof. For the sake of analysis, partition the bins into 𝐾 =
√
𝑛 collections B1, . . . ,B𝐾 each of

which contains𝑚/𝐾 bins. For each time 𝑡 and bin collectionB𝑖 , define 𝑅𝑡,𝑖 to be the set of balls 𝑥 that
are present at time 𝑡 and satisfy𝐻 (𝑥) ∈ B𝑖 . By a standard application of Chernoff bounds, we can
deduce that, for any fixed 𝑖, 𝑡 we have

|𝑅𝑖,𝑡 | ≤ 𝑛/𝐾 +𝑂 (
√︁
(log𝑛) · 𝑛/𝐾)

≤
√
𝑛 +𝑂 (𝑛1/4

√︁
log𝑛)

(1)

with high probability in 𝑛 (i.e., with probability 1 − 1/poly(𝑛)). Applying a union bound over all
𝑖, 𝑡 , we find that (1) holds with high probability in 𝑛 for all 𝑖, 𝑡 simultaneously. Consider any possible
outcome𝑅 for the sets {𝑅𝑖,𝑡 }, where the only requirement on𝑅 is that (1) holds for all 𝑖, 𝑡 ; wewill show
that if we condition on such an𝑅 occurring, then the size of the backyard is𝑂 (𝑛/2Ω ( 𝑗2 ) +𝑛3/4

√︁
log𝑛)

with high probability in 𝑛.
Consider some time 𝑡 , and let 𝑋𝑖 be the number of balls that are in the backyard at time 𝑡 and

that satisfy𝐻 (𝑥) ∈ B𝑖 . Observe that the conditional variables𝑋1 |𝑅,𝑋2 |𝑅, . . . , 𝑋𝐾 |𝑅 are independent
(since 𝑅 fully determines which 𝑥 and 𝑖 satisfy𝐻 (𝑥) ∈ B𝑖 ). Thus, if we define

𝑋 |𝑅 :=
𝐾∑︁
𝑖=1

𝑋𝑖 |𝑅,

then 𝑋 |𝑅 is a sum of independent random variables, each of which is (by (1)) deterministically in
the range [0,𝑂 (

√
𝑛)]. We can therefore apply a Chernoff bound to𝑋 |𝑅 to deduce that

P[𝑋 |𝑅 ≤ E[𝑋 |𝑅] +𝑂 (
√︁
𝐾𝑛 log𝑛)] ≥ 1 − 1/poly(𝑛),

Recalling that𝐾 =
√
𝑛, we conclude that𝑋 |𝑅 ≤ E[𝑋 |𝑅] +𝑂 (𝑛3/4

√︁
log𝑛) with high probability in 𝑛.

To complete the proof, it suffices to bound E[𝑋 |𝑅] by𝑂 (𝑛/2Ω ( 𝑗2 ) ). For this, in turn, it suffices to
show that each ball 𝑥 present at time 𝑡 (there are up to 𝑛 such balls) satisfies

P[𝑥 in backyard | 𝑅] ≤ 1/2Ω ( 𝑗2 ) . (2)

To prove (2), consider a ball𝑥 that hashes to some collectionH𝑖 . At the previous time 𝑡0 < 𝑡 that𝑥 was
inserted,wehaveby (1) that therewere atmost

√
𝑛+𝑂 (𝑛1/4

√︁
log𝑛) balls present that hashed toH𝑖 (i.e.,
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balls in the set 𝑅𝑖,𝑡0 \ {𝑥}); each of these balls has probability𝐾/𝑚 = 𝐾/(𝑛/ℎ) = 𝐾ℎ/𝑛 of hashing to
the same bin as 𝑥 , meaning that the number𝑌 of balls that hash to the same bin as 𝑥 at time 𝑡0 satisfies

E[𝑌 |𝑅] ≤
𝐾ℎ
√
𝑛 +𝑂 (𝐾ℎ𝑛1/4

√︁
log𝑛)

𝑛

= ℎ(1 +
√︁
log𝑛/𝑛1/4) ≤ ℎ + 1.

The random variable𝑌 |𝑅 is just a sum of (up to) 𝑛2/3 +𝑂 (𝑛1/3
√︁
log𝑛) independent indicator random

variables (one for each ball in 𝑅𝑖,𝑡0 \ {𝑥}). So by a Chernoff bound we have that

P[𝑌 | 𝑅 ≥ ℎ + 1 + 𝑗
√
ℎ + 1] ≤ 2−Ω ( 𝑗2 ) .

This implies (2), which completes the proof. □

The main consequence of this Theorem is that this simple bucketed front-yard design can hold all
but𝑛/poly(ℎ) items, and bydesign the front yard is also stable. For example, ifwe setℎ = log𝑛 and 𝑗 =
Ω(

√︁
log log𝑛), then𝑂 (𝑛/log𝑛) itemswill go to thebackyard.The choiceofℎ = log𝑛 suggests that the

front-yard buckets should be of size 64, which we show in Section 7 provides excellent performance.

2.3 The Backyard

Iceberghashing allows anyof several backyarddesigns. For IcebergHT,wehave selected ahash-table
strategy based on the power-of-2-choices. We use power-of-two-choices in order to mitigating the
space overhead of the backyard. The potential issue with using a power-of-two-choice hash table
is that queries and inserts level 2 must examine two buckets. However, most items reside in the front
yard, so most queries need to examine only the front yard, which means that the cost of checking
two buckets in level 2 will not substantially impact overall performance.

To analyze the space efficiency and overflow probability of the backyard, let 𝑧 be the upper bound
on the number of overflowing items from Theorem 1. The backyard consists of an array of length
Θ(𝑧 log log 𝑧), divided into 𝑧 buckets of sizeΘ(log log 𝑧). Items are hashed to two buckets and are
placed into a slot in the bucket with fewer items.
The following result of Vöcking provides a theoretical guarantee that the backyard will not

overflow.

Theorem2 ([42]). Consider an infinite balls-and-bins processwith𝑧 bins inwhich at each step a ball is
either inserted using the power-of-2-choices algorithmor an existing ball is removed, such that there are at
mostℎ𝑧 balls present at any given step. Then themaximum load of any given bin is (ln ln 𝑧)/ln 2+𝑂 (ℎ).

For level 2, the average bucket fillℎ is less than 1, so Theorem2 tells us that the number of items that
overflow at level 2 is quite small. We store these items in a third level that uses a standard chaining
hash table. So few itemsmake it to the third level that performance and space efficiency are negligible.
As noted above, Theorem 2 suggests that level 2 buckets should be of size ln ln𝑛. We use 8 as a coarse
upper bound on log log n for all practical purposes.

2.4 Summary

In summary, an Iceberg hash table consists of three levels, as shown in Figure 2. Level 1 is a power-of-
one-choice front yardwith buckets of size log𝑛+𝑂 (

√︁
log𝑛 log log𝑛), level 2 is a power-of-two-choice

table with buckets of size𝑂 (log log𝑛), and level 3 consists of a simple chaining hash table.
This design offers several benefits:
• Such a table is stable: items never move after they are inserted.
• The number of buckets an item can reside in is only 4 (1 bucket in level 1, 2 in level 2, and 1
in level 3).
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Level 1 Level 2 Level 3

64 slots 8 slots

h0 (x)

h1 (x)

h2 (x)

h0 (x)

Fig. 2. Iceberg hash table block structure. Iceberg table has three levels. To insert a key value pair, we first hash

the key 𝒉0(key) and determine a block in level 1. If the block in level 1 is full, we try to insert it in level 2. In

level 2, we hash the key twice 𝒉1(key) and 𝒉2(key) and insert the key in the emptier block. If the both blocks

are full in level 2 then we insert the key value pair in level 3 block 𝒉0(key). Level 3 contains a tiny fraction
of keys (see Table 4) and choice of structure in level 3 does not have an impact on the hash table performance.

• Most queries are satisfied by searching in level 1, so the average number of buckets accesses
per query is just over 1.
• The buckets are small, so the associativity of the scheme is log𝑛 + log log𝑛 (plus level 3, which
is rarely used). So we can encode the exact slot of an element using𝑂 (log log𝑛) bits.

We conclude by noting that IcebergHT offers several advantages. Specifically, it is stable and has
low associativity and is backed by strong theoretical guarantees. This results in low read and write
amplification, which are desired characteristics to achieve high performance both in DRAM and on
PMEM. Furthermore, crash safety correctness follows almost directly from stability (see Section 6).

3 IMPLEMENTATION

We now describe howwe implement metadata scheme and operations in IcebergHT.

3.1 Metadata scheme

This section describes our metadata scheme, which enables most queries and inserts to access only
a single cache line in the main hash table.

One of the impediments to storing key-value pairs in large buckets, as in IcebergHT, is that large
buckets span multiple cache lines and hence are expensive to scan.
IcebergHT addresses this concern by maintaining metadata for each bucket, so that searches

within a bucket usually examine at most a single slot within that bucket.
Our goal is ambitious: metadata is designed so that (1) metadata for each bucket fits on a single

cache line and (2) we can use vector instructions for all metadata operations.
Our metadata always lives in DRAM even when the main iceberg hash table is stored on PMEM,

whichmeans thatmost queries access atmost a single PMEMcache line and all updatesmodify only a
singlePMEMcache line. Sincemetadata stays inDRAM, it costs substantially less toaccess thanPMEM.
In the event of a crash, we can recompute the metadata during recovery, as explained in Section 6.
The metadata for a block of 𝑘 slots consists of an array of 𝑘 8-bit fingerprints, one per slot. If the

slot holds a valid key, the corresponding fingerprint is a hash of the key, otherwise themetadata entry
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Algorithm 1 Insert (k, v)
1: 𝑖𝑑𝑥 ← ℎ0 (𝑘 ) ⊲ Compute the block index in level 1
2: 𝑓 𝑝 ← ℱ (𝑘 ) ⊲ Compute the fingerprint for key
3: Lock(lv1_metadata[𝑖𝑑𝑥])
4: if ReplaceExisting(𝑘 , 𝑣) then
5: Unlock(lv1_metadata[𝑖𝑑𝑥])
6: return False
7: end if

8: 𝑚𝑎𝑠𝑘 ← Metadata_Mask(lv1_metadata[𝑖𝑑𝑥 ], EMPTY) ⊲𝑚𝑎𝑠𝑘 is a bit-vector identifies empty slots in the block
9: 𝑐𝑜𝑢𝑛𝑡 ← popcount(𝑚𝑎𝑠𝑘 ) ⊲ Compute the number of empty slots
10: if 0 < popcount(𝑚𝑎𝑠𝑘 ) then
11: 𝑖 ← 0
12: 𝑠𝑙𝑜𝑡 ← Select(𝑚𝑎𝑠𝑘, 0) ⊲ Compute the index of the first empty slot
13: lv1_block[𝑖𝑑𝑥 ] [𝑠𝑙𝑜𝑡 ] ← (𝑘, 𝑣) ⊲ Store (𝑘, 𝑣) using 128-bit atomic store
14: lv1_metadata[𝑖𝑑𝑥 ] [𝑠𝑙𝑜𝑡 ] ← 𝑓 𝑝

15: else

16: insert_lv2(𝑘, 𝑣, 𝑖𝑑𝑥 ) ⊲ Level 1 block is full. Try level 2
17: end if

18: Unlock(lv1_metadata[𝑖𝑑𝑥])
19: return True

holds a special EMPTY fingerprint. Note that we do not reserve an entire bit to indicate empty/non-
empty—we reserve a single fingerprint value—so there are 255 valid fingerprints.

The metadata scheme thus has a space overhead of 6.25% for a 16 byte key-value pair. For smaller
key-value pairs, the space overhead of the metadata may be higher (e.g. 25% for 4-byte key-value
pairs) but, as we will see in the evaluation section, many other hash tables have much higher space
overeheads. Importantly, because the blocks in level 1 have 64 slots and the blocks in level 2 have
8 slots, the metadata for each block fits in a single cache line.

During an insert operation, probing the metadata corresponding to a block indicates which slots
are empty in the block. The insert can then try to insert the new key into one of those empty slots.

During a query operation, the fingerprint of the queried key can be checked against the fingerprints
in the metadata, yielding only those slots with a matching fingerprint. This filters out empty slots
as well as nearly all slots with non-matching keys.
The metadata is also used to quickly compute the load in each block by counting the number of

occupied slots in the metadata block.
Allof theseoperationscanbe implementedusingvector instructions.Forexample, tosearch forafin-

gerprint𝑥 in ametadata vector𝑣 ,weuse vector broadcast to construct a newvector𝑞where each entry
equals𝑥 and thenperformavector comparisonof𝑣 and𝑞. Tofindanempty slot,wedo the same, except
we set 𝑥 to EMPTY. To count the occupancy of a bucket, we perform the search algorithm for EMPTY,
which yields a bit-vector ofmatching entries, and then use popcount to get the number of empty slots.

Note that we do not use 2 bits for EMPTY and RESERVED. Rather, these are two values out of 28
(256) values. Therefore, the fingerprints support 254 values and the chance of collision is 64/254.

3.2 Operations

Here we explain how to perform single-threaded operations in IcebergHT. Later in Section 5, we
explain how to make these operations thread-safe.
Inserts.Our algorithm first searches whether 𝑘 already exists and, if so, updates its associated value.
For space, we omit the code for replacing an existing item and show only the code for inserting a
new item.
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Algorithm 2 Insert level2 (k, v)
1: procedure insert_lv2(𝑘, 𝑣, 𝑖𝑑𝑥 )
2: 𝑖𝑑𝑥1← ℎ1 (𝑘 ) ⊲ Compute primary and secondary block indexes in level 2
3: 𝑖𝑑𝑥2← ℎ2 (𝑘 )
4: 𝑓 𝑝1← ℱ1 (𝑘 ) ⊲ Compute primary and secondary fingerprints for the key
5: 𝑓 𝑝2← ℱ2 (𝑘 )
6:
7: 𝑚𝑎𝑠𝑘1← Metadata_Mask(lv2_metadata[𝑖𝑑𝑥1], EMPTY) ⊲

Compute a vector identifying empty slots in primary and secondary blocks
8: 𝑚𝑎𝑠𝑘2← Metadata_Mask(lv2_metadata[𝑖𝑑𝑥2], EMPTY)
9: 𝑐𝑜𝑢𝑛𝑡1← popcount(𝑚𝑎𝑠𝑘1) ⊲ Compute the number of empty slots in primary and secondary blocks
10: 𝑐𝑜𝑢𝑛𝑡2← popcount(𝑚𝑎𝑠𝑘2)
11:
12: if 𝑐𝑜𝑢𝑛𝑡2 < 𝑐𝑜𝑢𝑛𝑡1 then
13: 𝑖𝑑𝑥1← 𝑖𝑑𝑥2
14: 𝑓 𝑝1← 𝑓 𝑝2
15: 𝑚𝑎𝑠𝑘1←𝑚𝑎𝑠𝑘2
16: 𝑐𝑜𝑢𝑛𝑡1← 𝑐𝑜𝑢𝑛𝑡2
17: end if

18: 𝑖 ← 0
19: while 𝑖 < 𝑐𝑜𝑢𝑛𝑡1 do
20: 𝑠𝑙𝑜𝑡 ← Select(𝑚𝑎𝑠𝑘1, 𝑖 ) ⊲ Compute the index of the next empty slot
21: if atomic_cas(lv2_metadata[idx1][slot], EMPTY, 𝑓 𝑝1) then ⊲

Atomically set the metadata slot before updating the table
22: lv2_block[𝑖𝑑𝑥1] [𝑠𝑙𝑜𝑡 ] ← (𝑘, 𝑣) ⊲ Store (𝑘, 𝑣) using 128-bit atomic store
23: return

24: end if

25: 𝑖 ← 𝑖 + 1
26: endwhile

27: insert_lv3(𝑘, 𝑣, 𝑖𝑑𝑥 ) ⊲ Level 2 block is full. Try level 3
28: end procedure

We first try to insert the key-value pair in level 1. We hash the key usingℎ0 to determine a block in
level 1. If there is an empty slot in the block thenwe insert the key-value pair and store the fingerprint
in the corresponding slot in the level 1 metadata. See the pseudocode in Algorithm 1.

If the block in level 1 is full, then we try to insert the key in level 2. In level 2, we use power-of-two-
choice hashing to determine the block. We hash the key twice and pick the emptier block. Similar
to level 1, if there is an empty slot in one of the blocks then we insert the key-value pair and store
the fingerprint in the corresponding slot in the level 2 metadata. See the pseudocode in Algorithm 2.
Finally, if both the blocks in level 2 are full, then we insert the key in level 3. We use the hash

function from level 1 (ℎ0) to determine the linked list to insert the key-value pair and insert at the
head of the linked list.
Queries. Similar to the insert operations, we perform queries starting from level 1 and moving to
levels 2 and 3 if we do not find the key in the previous level.
During a query, we determine the block in a level in the same way as we do during the insert. In

level 1 and 3, there is only one block to check and we use use hash functionℎ0 to determine the block.
In level 2, the key can be present in either of the primary or the secondary block. Therefore, we also
perform a check in the secondary block if the key is not found in the primary block.

Oncewe determine the block, we then perform a quick check to see if the fingerprint of the queried
key ispresent in themetadataof theblock.Checking thefingerprint requires a singlememoryaccessas
all the fingerprints in a given block fit inside a cache line. If the fingerprint is not found in themetadata
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of the block thenwe can terminate the query at that level andmove to the next level. Otherwise, if one
or more fingerprint matches are found in the metadata of the block we then perform a complete key
match in the table for all possible matches and return a pointer to the value if a key match is found.
If we are in level 3 during a query, we perform a linear search through the linked list to find the

key. However, buckets in level 3 are almost always empty (<<1% please refer to Table 4) and therefore
we rarely have to perform the linear search through the linked list.
Deletions.Deletions are performed similarly to queries. We first look for the key starting from level
1 and then proceed to levels 2 and 3 if the key is not yet found. Once the key is found, we first reset
the corresponding fingerprint in the metadata and then reset the key-value pair slot in the table.
The pseudo-code for the query and remove operations follow the similar approach as the insert

operation pseudo-code. Therefore, they are omitted from the paper to avoid redundancy.

4 RESIZING

This section describes howwe resize the IcebergHT hash table when it reaches full capacity.
The three levels of the IcebergHT hash table (see Section 2) can be resized independently of each

other.We invoke a resize when the load factor of the hash table reaches a predefined threshold, which
in IcebergHT has the default of 85%.

In IcebergHT, we perform an in-place resize. In the in-place resize, we do not allocate a separate
table of twice the current size and move existing keys over to the new table. Instead we usemremap2

to remap the existing table space to twice the size. To resize a given level, we first remap the level
to twice the number of current blocks. The size of each block remains the same (64 slots in level 1
and 8 slots in level 2) across resizes. This means that during a resize, the space overhead of the table
will be a most 2× instead of 3× if we allocate a separate table of twice the size.

Doing in-place resize means that only about half the existing keys (rather than all) need to be
moved to a new location because each item 𝑥 ’s bucket is computed asℎ(𝑥) mod𝑚, where𝑚 is the
number of buckets in the table. Wemove each key-value pair by first inserting it into its new block
(in the same level) and then deleting it from its old block.

The shrink can be performed in the similar way as the doubling. The keys from the second half of
the table can be moved to the first half by rehashing the keys. Once the move is complete, the second
half of the table can be freed.

4.1 Guaranteeing Balanced Levels After Resizing

In this subsection, we argue that, as the table is dynamically resized, the bounds from Section 2.2 on
the number of elements that overflow from levels 1 and 2 continue to hold. The bound on the number
of overflow elements from level 1 follows from essentially the same argument as in Theorem 1, so
we will focus here on showing that the bins in level 2 remain balanced.

Whenever the size of level 2 doubles, from𝑚 bins to 2𝑚 bins, each bin 𝑖 can be thought of as splitting
into twobins𝑖 and𝑚+𝑖; eachof theelements thatwere inbin𝑖move tobin𝑚+𝑖withprobability50%(de-
pendingontheelement’shash).Wearenotawareofanypastbounds for themaximumfillofabinwhen
bins are split in two from time to time.Here,we provide a lemma showing that the nice load-balancing
property of power-of-2-choice bin selection (i.e., Theorem 2) is maintained, even when using our
resizing scheme. The proof can be viewed as an extension of the witness-tree techniques used in [42].

Lemma 3. Start with𝑀0 empty bins, and perform 𝑁 ≤ poly(𝑀0) ball insertions. Double the bins
whenever the current number 𝑛 of balls in the system surpasses𝑚/4, where𝑚 is the current number
of bins. At any given moment, the number of balls in the fullest bin is guaranteed to be𝑂 (log log𝑁 )
with probability 1 − 1/poly(𝑁 ).
2mremap() expands (or shrinks) an existing memory mapping [32]).
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Proof Sketch. For each ball𝑢, define𝑛𝑢 (resp.𝑚𝑢 ) to be the number of balls (resp. bins) that were
present when𝑢 was inserted. As an invariant, we always have 𝑛𝑢 ≤ 𝑚𝑢/4.

If a given ball 𝑥 has heightΘ(log log𝑁 ) then we can construct a depth-Θ(log log𝑁 ) witness tree
𝑇 of balls, where 𝑥 is the root, and where the children, 𝑣1 and 𝑣2, of any given node𝑢 are determined
as follows: if𝑢 was placed at height ℓ when it was inserted, then 𝑣1, 𝑣2 are the balls that were at height
ℓ − 1 in binsℎ1 (𝑢,𝑚𝑢) andℎ2 (𝑢,𝑚𝑢).

We claim that, for any given ball𝑢, if𝑢 were to be a node in𝑇 , then the expected number of ways
that we could hope to assign children to𝑢 is at most 1/4. Indeed, there are

(
𝑛𝑢
2
)
≈ 𝑛2𝑢/2ways to choose

two nodes 𝑣1, 𝑣2 that were present when𝑢 was inserted, and the probability that both 𝑣 ∈ {𝑣1, 𝑣2}
satisfy {ℎ1 (𝑣,𝑚𝑢), ℎ2 (𝑣,𝑚𝑢)} ∩ {ℎ1 (𝑢,𝑚𝑢), ℎ2 (𝑢,𝑚𝑢)} ≠ ∅ is at most 4

𝑚2
𝑢
. So the expected number

of ways that we can assign children to𝑢 is at most

𝑛2𝑢
2 ·

4
𝑚2
𝑢

=

(
2𝑛𝑢
𝑚𝑢

)2
≤

(
1
2

)2
=
1
4 .

Assume for simplicity that all polylog(𝑛) of𝑇 ’s nodes are distinct balls.3 We have shown that,
for each ball 𝑢, the expected number of ways that we can assign children to 𝑢 is 1/4. Using this,
one can argue that the expected number of valid configurations for the full tree𝑇 with polylog(𝑁 )
parent/child relationships is at most 1/4polylog(𝑁 ) ≤ 1/poly(𝑁 ). The probability of such a𝑇 existing
is therefore at most 1/poly(𝑁 ). □

5 MULTI-THREADING

We now describe howwe implement thread-safe operations in IcebergHT.We first describe how to
synchronize among threads performing insert, query, and delete operations. Afterwards, we explain
how to synchronize among threads when a level resizes.

5.1 Thread-safety across operations

We use one bit in the level 1 metadata as a lock. For level 1, the metadata consists of an array of 64
8-bit fingerprints. We steal one bit from one of the fingerprints to serve as the lock bit. Consequently,
that fingerprint slot is only 7 bits and has a slightly higher false-positive rate.
When a thread wants to insert a key that hashes to block 𝑖 in level 1, it first sets the lock bit for

block 𝑖 using an atomic fetch-and-or loop. It holds this lock for the entire duration of the insert, i.e.
even if the element ends up inserted in level 2 or 3. This ensures that inserts/updates/deletes of the
same key cannot execute concurrently, since they will both attempt to acquire the same lock.

After acquiring the lock, the thread checks whether the key already exists in any level and updates
or deletes it, depending on the requested operation.
When inserting a key that does not already exist in the hash table, we first check for an empty

slot in level 1 by using the metadata. If we find one, then we use a 128-bit atomic write to store the
key and value in the slot and update the fingerprint in the metadata. Since we hold a lock on the level
1 block, no additional synchronization is necessary.

If the insertion goes to level 2 or 3, then we need to carefully update the bucket and metadata
because the locks on level 1 do not preclude other threads operating on the same level 2 or 3 bucket
(but not the same key). In level 2, we find a metadata slot holding EMPTY, CAS our fingerprint into
the metadata slot, claiming it for our operation, and then write the key-value pair into the slot using
a 128-bit atomic write. In level 3, we use an array of 1-byte integers to lock the linked list in which we
want to insert the key. We acquire a lock on the linked list using an atomic test-and-set instruction.

3Formally, we can reduce to this case via standard pruning arguments, as in, e.g., [42].
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To support concurrent deletes and queries, we reserve a special “invalid” key. Deletes reset the slot
to the invalid key and then set the corresponding fingerprint to EMPTY. Note that we can still allow
the application to insert a key that is equal to our special “invalid” key. We just need to set aside a
special location for storing the associated value and a bit indicating whether the key is present or
not. Concurrent updates can be made safe by using cmpxchg16b to update the associated value and
the “present” bit atomically. Queries must also special-case this key to check the designated location
instead of performing the standard lookup algorithm. They must also use 128-bit loads to get the
“present” bit and the value in one atomic read.

Queries are lockless on levels 1 and 2. They proceed through the levels, examining any slots with a
matching fingerprint. They load the key-value pair from a candidate slot using 128-bit atomic reads
and then check whether the key read from the slot is valid and actually matches the queried keys. On
level 3 they check for bucket emptiness locklessly but acquire locks on buckets before searching in
them. Since all slots are read and written using 128-bit atomic operations, and since buckets on level
3 are locked, queries are guaranteed to see only entries with either invalid keys (which are ignored)
or with correct key-value pairs.

5.2 Multi-threaded performance analysis

Each insert or delete dirties at most one metadata cache line (which is always in DRAM even when
the data is stored in PMEM) and one cache line in the main iceberg hash table. Each mutation also
dirties the level 1 metadata cache line (always in DRAM) for the target key’s block (to acquire the
lock). If the insert does not go into level 1, then it will also access 2 metadata cache lines for level
2, and will dirty one of them. Level 3 is so rarely used that we can largely ignore it. As our evaluation
shows, over 90% of the keys go in level 1, so the average number of DRAM cache lines accessed is
around 1.2, and the average number dirtied is around 1.1.
Furthermore, since the cache line accesses are determined by the hash of the key, they are inde-

pendent (unless there are some hot keys that get frequently updated) and therefore it is unlikely
that two threads will attempt to access/dirty the same cache lines at the same time. Hot keys that are
frequently updated are a genuine scaling bottleneck for almost all hash tables, including IcebergHT.

Queries are invisible, i.e. they are lock free and dirty no cache lines.

5.3 Thread-safety across resizes

Initiating resizes.When a resize is invoked, the table structure goes through the memory-doubling
phase, which requires a global lock on the hash table. During the doubling phase, the insert, query,
and delete operations cannot operate on the table. Thus, the table has a global reader-writer lock for
synchronizing between thememory-doubling step and all other operations. All other operations grab
the global lock in read-mode, a thread performing the memory-doubling step grabs it in write mode.

The global lock is implemented as a distributed readers-writer lock [20] so that threads acquiring
the lock in read mode do not thrash on the cache line containing the count of the number of readers
holding the lock.

Each insertion checks the current load factor of the hash table and performs a memory-doubling
step if the load factor is above a configurable threshold. In order to ensure high concurrency, insertion
threads first check the load factor while holding the global lock in read mode. If a thread detects that
a resize is needed, it releases the global lock in read mode, reaquires it in write mode, and rechecks
the load factor. If it is still above threshold, then it performs the memory-doubling step, releases the
global lock, and then performs an insertion, as described below.

Recall that we ensure there is at most one operation per key by locking the level 1 block for a key
being inserted, updated, or deleted. A memory-doubling step changes the mapping from keys to
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level 1 blocks, and hence changes the lock for each key. We need to ensure that there are not two
threads operating concurrently but using different key-to-lock mappings. The global resizing lock
solves this problem by waiting for all in-flight mutations to complete before beginning the resize.
Thus, during the resize, there are no threads holding any locks on level 1 blocks. After the resize
completes, mutations can resume, using the new key-to-lock mapping.

Concurrency of blockmoves and other operations.After the memory-doubling step, existing
key-value pairs must be moved to their new location in the table.
We refer to blocks in the first half of the table as old blocks and blocks in the second half of the

table as new blocks. Each new block has a corresponding old block.
One clearly safe way to perform this step is to freeze the world, perform all the moves, and then

let other operations proceed. Rather than freezing the world, we simulate this by moving blocks
the first time any insert, update, or delete operation attempts to access them. Concretely, during a
resize, we maintain an additionalmoved flag for each old block. The flag can be in one of three states:
UNMOVED, IN-FLIGHT, or MOVED. Initially all old blocks are marked as UNMOVED. Whenever an insert,
update, or delete is about to access a block, it first checks the state of the corresponding old block. If
the old block is in the UNMOVED state, then the thread attempts to CAS the block’s state to IN-FLIGHT.
If the CAS fails, then the thread waits until the state is MOVED. If the CAS succeeds, then the thread
iterates over the block, moving key-value pairs to their new block. The thread then sets the block’s
state to MOVED. The operation can then continue its execution.
Queries do not check the moved flags, so we need to ensure that queries and concurrent moves

will not result in incorrect answers. Queries check both the old and new locations for a key, in that
order. Moves ensure that each key-value pair is written to its new location before erasing it from
its old location. Thus queries will never miss an item in the table.

As an optimization, we also maintain a counter of the number of blocks that still need to be moved.
Threads check this counter after acquiring the global resize lock in readmode. If the counter is 0, then
threads can skip the above additional work. Thus, in the common case when there is no on-going
resize, operations do not incur the overhead of checking moved flags or additional locations for a
key. Furthermore, since the count of blocks to be moved is never modified when a resize is not in
progress, each core can keep this counter in its local cache, making the counter check very cheap.

6 CRASHCONSISTENCYANDPERFORMANCEONPMEM

Crash safety. Because IcebergHT is stable, crash consistency is straightforward.
Because all the data in levels 1 and 2 is accessed by computing an offset using block numbers, there

are no direct pointers into them, and so there is no need for additional pointer swizzling. The linked
lists in level 3 allocate nodes by offset from a fixed array, which is mapped into PMEM. These offsets
are then used to reference the nodes.

Recall that all metadata is kept in volatile memory, so that only the data is kept in PMEM. This data
is stored in several large preallocated sparse files on a PMEM-backed DAX file system, one each for
levels 1 and 2, and 2 for level 3 (one for the linked list heads and one for allocating nodes). A specially
designated value is used to indicate if a key or value is invalid, and the key-value pair is considered
invalid (and therefore free) if either key or value is invalid.
An insert or deletion is persisted by writing the item into a slot (residing in a block in a level

on PMEM), and then performing a cache line writeback instruction followed by an sfence, using
PMDK[38].One small issue is that persistentmemory guarantees atomicity only for 8-byte stores, but
we must write 16 bytes to insert a key-value pair. However, because the key-value pair is considered
invalid if either key or value is invalid, we can store them in a slot in either order, or the stores can
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even be reordered by the CPU, and the hash table will always be in a consistent state. This eliminates
the need for a fence between storing the value and storing the key.

A globalmetadata file is used to store the initial size of the array aswell as the number of (doubling)
resizes that have been performed. Note that this file is onlymodifiedwhen a resize is initiated. Resizes
first initialize the new PMEM data region to consist of invalid key-value pairs, then updates and
persists the table size in the global metadata file, before updating the size in volatile memory.
Recovery consists of reading through the data array and rebuilding the metadata for each valid

key-value pair found. Because data from an in-progress resize may not have been moved, recovery
must check that each key-value pair is in the correct block, and move it if it is not. Because this can
be performed using a sequential scan, the process is efficient.
For example, consider a table initialized with 224 = 16777216 level 1 slots (18874368 slots total in

levels 1 and 2), into which is inserted 226 ∗ 1.07 ≈ 71.8M items, which causes 2 resizes, after which the
table is dismounted or crashes (dismount only performs deallocation). Recovery on a single thread
then takes 0.48 s, recovering 173M slots per second and 148M items per second (roughly 63× faster
than individual insertions). Furthermore this process is easily parallelized.
Performance. Changes to the hash table (i.e. inserts, deletes, and updates), modify a single PMEM
cache line unless they go to level 3, which we show in our experiments is extremely rare. Positive
queries almost always access a single PMEM cache line, plus occasional additional cache lines from
false positives in the metadata. Negative queries also almost always touch only a single PMEM cache
line to examine the head of the queried key’s bucket in level 3 (plus, like other queries, any false
positives from the metadata checks in level 1 and 2). We could eliminate even that PMEM access by
maintaining in-DRAMmetadata about the emptiness of each bucket in level 3, but we have not found
it necessary to do so. Since inserts, deletes, and updates must query for the target key, they may also
occasionally access (but not modify) extra PMEM cache lines due to metadata false positives.

So, in summary, all operations access a single PMEM cache line in the common case.

7 EXPERIMENTS

In this section, we evaluate the performance of IcebergHT hash table. We compare IcebergHT
against two state-of-the-art concurrent PMEMhash tables, Dash [24] and CLHT [9] from the RECIPE
library [19]. In our evaluation, we have used the Dash-Extendible Hashing (Dash-EH) variant from
the Dash-enabled hash tables. Dash-EH offers faster performance compared to other Dash variants.
For CLHT, we have used the CLHT_LB_RES variant which is lock-based and supports resizing. The
CLHT_LB_RES variant is ported to PMEM in the RECIPE library [19].
On DRAM, we compare IcebergHT against state-of-the-art concurrent in-memory hash tables,

libcuckoo [21], Intel’s threading building blocks (TBB) hash table [37], and CLHT [9]. Similar to the
PMEM evaluation, we use CLHT_LB_RES variant of CLHT.

Weevaluatehash tableperformanceon three fundamental operations: insertions, lookups, anddele-
tions.We evaluate lookups both for keys that are present and for keys that are not present in the hash
table. We also evaluate these hash tables on multiple application workloads from YCSB [8], as well as
for space efficiency and scalability. In IcebergHT, we useMurmurHash to compute theℎ0,ℎ1, andℎ2.

The goal of this section is to answer the following questions:
(1) How does IcebergHT performance compare to other hash tables when hash tables are on

PMEM?
(2) How does IcebergHT compare to libcuckoo, TBB, and CLHTwhen hash tables are in DRAM?
(3) How does IcebergHT scale with increasing number of threads compared to other hash tables?
(4) How does IcebergHT compare to other hash tables in terms of space efficiency and instan-

taneous throughput?
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Fig. 3. Performance of hash tables on PMEM onmicro workloads. (Throughput is Million ops/second)

(5) What is the impact of hash table resizing on the latency of operations in IcebergHT?

7.1 Other hash tables

CLHT [9] andTBB [37] are both chaining-based hash tables. They use a linked list to handle collisions.
They dynamically allocate a new a node and add it to the linked list to insert a key if the head bin
is already occupied. Their space usage is also suboptimal compared to other hash table designs.
Dash [24] is based on extendible hashing [13]. A directory is used to index (or store pointers to) the
blocks that store key-value pairs. Similar to chaining-based hash tables, Dash also perform dynamic
allocation of nodes at run time to add new keys. In cuckoo hash table [21], a pre-allocated array of
blocks is maintained where each block can store up to four key-value pairs. Cuckoo hashing [35, 36]
is used to perform insertions. Unlike chaining-based or extendible hashing, there is not dynamic
allocation in cuckoo hash table.

7.2 Experimental setup

In our evaluation, we perform two sets of benchmarks: micro benchmarks and applicationworkloads.
For both types of benchmarks, we evaluate the scalability of hash table operations with increasing
number of threads.
Microbenchmarks. We measure performance on insertions, deletions, and lookups which are
performed as follows. We generate 64-bit keys and 64-bit values from a uniform-random distribution
to be inserted, removed or queried in the hash table. We configured each hash table to have as close
to 226 slots as possible, and we filled each hash table to its maximum recommended load factor.
Specifically, we configuredCLHT to use 225 buckets, eachwith 3 slots4. Dash andTBBwere initialized
with a target size of 226, libcuckoo was initialized with 226 slots, and IcebergHTwas initialized with
4Wealso tried configuredCLHTwith226/3 slots, but its performance ismuchworsewhen thenumberof slots is not apowerof 2.
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Fig. 4. Performance of hash tables on PMEM on YCSB workloads. (Throughput is Million ops/second)

a front yard of 226 slots, for a total of (1 + 1/8)226 slots, when also counting level 2. We then inserted
0.95𝑁 keys into each hash table, where𝑁 is the number of slots in the table (e.g.𝑁 = 3×225 for CLHT,
(1 + 1/8)226 for IcebergHT, and 226 for all other hash tables). We report the aggregate throughput
going from empty to 95% full as the insertion throughput.
Once the data structure is 95% full, we perform queries for keys that exist and keys that do not

exist in the hash table to measure the query throughput for both positive and negative queries. For
positive lookups, we query keys that are already inserted and for negative lookups we generate a
different set of 64-bit keys than the set used for insertion. The negative lookup set contains almost
entirely non-existent keys because the key space is much bigger than the number of keys in the
insertion set. Empirically, 99.9989% of keys in the negative lookup query set were non-existent in
the input set. We then remove a random selection of existing keys from the hash table until its load
factor reaches ≈ 50% and report the aggregate deletion throughput.

In order to isolate the performance differences between the hash tables, we do not count the time
required to generate the random inputs to the hash tables.
Application workloads.We also measure the hash table performance on YCSB [8] workloads. We
use YCSB workloads A, B, and C in our evaluation. Workload A has a mix of 50/50 reads and writes.
Workload B has a 95/5 reads/write mix. Workload C is 100% read. We do not include other YCSB
workloads as operations required by other workloads are not supported by these hash tables. The
YCSB workloads consist of a load and a run phase. In the load phase, we insert 64M keys and values
(64-bit keys and 64-bit values same as in the micro benchmark) generated using a uniform random
distribution. The load phase configuration is the same for all threeworkloads. The keys are generated
using the YCSB workload generator. All the hash tables are configured as in the microbenchmarks,
except we target 224 ≈ 17𝑀 slots instead of 226. This ensures that they resize twice during the load
phase of 64M keys. In the run phase, we perform amixed workload depending upon the workload
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type. In order to make the performance in the run phase a representative of the actual performance
of the hash tables, we make sure that the run phase is large enough so that the table doubles its size.
Doing this enables us to include the impact of a resize on the insert and query operations in the hash
table and ensures that resizes do not unfairly bias the benchmarks.

We achieve this by keeping the number of keys inserted in the run phase the same as the number
of keys that are present in the hash table at the start of the run phase. Therefore, the run phase
in workload A consists of 128M operations out of which 64M (50/50 reads and writes) are inserts.
Similarly, the run phase in workload B consists of 1.28B operations out of which 64M are inserts (95/5
reads/write mix). Workload C does not have any inserts and only contains 64M read operations.

Speed/space tradeoff. Tomeasure how different hash tables can trade space efficiency for speed,
we fill the hash table from empty to 95% full in increments of 5%. Data items are generated as in the
microbenchmarks. We record the throughput and max RSS (resident-set size) in each increment.
To report the memory usage of the hash table we subtract the total memory allocated by the driver
process from the Max RSS reported by getrusage.
To measure the space usage of PMEM hash tables, we measure the size of the file created by the

hash tables on PMEM. In IcebergHT, the PMEM files are created using a sparse flag therefore the
space can be measured by counting number of allocated blocks in the file. For Dash and CLHT,
the files created are not sparse. Therefore, we measure the space of the hash tables by computing
the minimum file size required by Dash and CLHT to complete the benchmark without complete
doubling. We start with sizing the file equal to the size of the dataset and keep increasing the size
in increments of 100M until the benchmarks completes successfully. We report the space usage as
space efficiency which is the ratio of the size of the dataset over the size of the hash table. All the
instantaneous performance benchmarks are performed using a single thread.

System specification. All the experiments were run on an Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz with two NUMA nodes, 16 cores per nodes, and 44M L3 cache. The machine has 192GiB of
DRAM running Linux kernel 5.4.0-70-generic. We restrict our runs to all the cores on a single NUMA
node to avoid NUMA effects in the performance. For all the benchmarks, we increase the number
of threads by powers of two starting from 1 up to 16 (i.e., 1, 2, 4, 8, and 16) which is the maximum
number of cores on a NUMA node.

PMEM setup. The machine has 1536GiB of Intel Optane 100 series persistent memory in 12 128GiB
DIMMs, 6 per socket. The PMEM is configured to use AppDirect mode and is accessed using fsdax
on an ext4 filesystem. This filesystem is configured with a 2MiB stride to enable 2MiB huge page
faults, and mounted using dax. IcebergHT stores its data to PMEM by creating large sparse files at
initialization for each level, and only using (and therefore populating) a prefix of each file.

Availibity. The source code for the IcebergHT implementation and all the benchmarking infras-
tructure is available at https://github.com/splatlab/iceberghashtable.

7.3 PMEMbenchmarks

Micro benchmarks. Figure 3 shows the performance and scaling of IcebergHT, Dash, and CLHT
onmicrobenchmarks in PMEM.
IcebergHT always performs faster than Dash and CLHT. Specifically, it is 1.1×–2.7× faster for

insert, query, and remove operations.
For all four operation types, all the hash tables scale almost linearly. The scaling ratio (i.e., the

ratio of the relative throughput and the relative number of threads for a system) of IcebergHT is
0.67, Dash is 0.56, and CLHT is 0.77.
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Insertions Positive Queries

Percentile IcebergHT Dash CLHT IcebergHT Dash CLHT

50 353 ns 830 ns 1.29 µs 602 ns 834 ns 974 ns
95 1.11 µs 2.39 µs 2.63 µs 1.49 µs 2.16 µs 2.14 µs
99 1.97 µs 3.50 µs 3.72 µs 1.96 µs 2.74 µs 3.41 µs
99.9 249.88 µs 78.4 µs 5.68 µs 2.42 µs 4.35 µs 5.24 µs
99.99 277.52 µs 103 µs 16.49 µs 5.24 µs 7.91 µs 15.60 µs
max 37.09ms 8.62ms 12.31 s 259.65 µs 16.0ms 153.21 µs

Table 2. Percentile latencies in IcebergHT,DashandCLHT forYCSBworkloadA runonPMEMusing16 threads.

YCSBworkloads. Figure 4 shows the performance of IcebergHT, Dash, and CLHT for three YCSB
workloads on PMEM.

For the load phase of these workloads, IcebergHT is faster than other hash tables. Specifically,
it is between 1.1× and 2.5× faster than Dash and CLHT. For the run phase all three workloads,
IcebergHT is faster compared to both Dash and CLHT. CLHT performance for workload C is closer
to IcebergHT. Workload C consists of 100% queries. And this observation is consistent with the
positive query performance in microbenchmarks.
The YCSB benchmarks show that IcebergHT performs better than other hash tables when the

workload also involves resizing the hash table as the YCSB load phase and workloads A and B
require the hash tables to resize at least twice. Moreover, similar to the microbenchmarks, the load
performance of IcebergHT scales almost linearly with increasing number of threads.
For different workload types (A, B, and C), the performance of IcebergHT is always better than

other hash tables and also scales almost linearly with increasing number of threads.
Discussion.Thehighperformanceof IcebergHTbothon themicro andYCSBworkloads is primarily
due to the small number of PMEM accesses during insert, query, and delete operations. During insert
and delete operations, we only perform a single PMEMwrite. During query operations, we usually
perform at most a single PMEM read (unless there is a false positive in the metadata). Furthermore,
since most items are in level 1, most inserts, deletes, and positive queries access only a single DRAM
cache line, as well. Negative queries must access 4 DRAM cache lines (1 metadata cache line for level
1, 2 for level 2, and 1 for level 3), but they usually do not have to access a PMEM cache line at all.
Finally, metadata searches are implemented using vector instructions, so they take constant time
even though our buckets are larger than a cache line.
Insert and query latency. Table 2 shows the 50, 95, 99, 99.9, and 99.99 percentiles and the worst
case for insert and positive query operations in the benchmarked hash tables.

On PMEM, Dash has slower latency up to 99.99 percentile compared to IcebergHT for both inserts
and queries. However, Dash is 2× faster for the worst-case insert latency and about 50% slower for
the worst-case query latency.
CLHT has the worst-case insert latency of 12 seconds. This is because during a resize operation

all active inserts are stopped and insert threads help to move the keys from the old hash table to the
new one. In CLHT, the query latency is always good. This is because the queries can always perform
probes on the old copy of the hash table even when the resize is active. Queries are never blocked in
CLHT. CLHT performs resizes by allocating a new hash table of twice the size and moving key-value
pairs from the old hash table to the new one.

The latency of operations is computed during the YCSB workload A run that contains insert and
positives queries (50/50). The workload is configured so that hash tables must perform at least one
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Hash table Space Efficiency

IcebergHT 85%
Dash 69%
CLHT 33%

Table 3. Space efficiency of PMEM hash tables. Space efficiency is the ratio of Data size over hash table size.

We compute the space efficiency after inserting 0.95𝑁 keys-value pairs in the hash table where 𝑁 is the initial

capacity.
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Fig. 5. Throughput for insertions, deletions, and queries (positive and negative) using 16 threads for DRAM

hash tables. The throughput is computed by inserting 0.95𝑁 keys-value pairs where 𝑁 is the initial capacity

of the hash table. (Throughput is Million ops/second)

resize during the run.All thehash tables are runusing 16 threads.Comparing the latencyof operations
during a workload run helps explain the impact of a resize on the worst case latency of operations.
Space efficiency in PMEM. Table 3 shows the space efficiency of PMEM hash tables. Both Dash
and CLHT have low space efficiency compared to IcebergHT. IcebergHT PMEM representation is
1.2GB for a dataset size of 1.06GB (1.07 × 226 8-byte keys and values) and in-memory representation
is ≈ 80MB.

7.4 DRAMperformance

Micro and YCSB benchmarks.. Figure 5 shows the performance of IcebergHT, cuckoo, TBB, and
CLHT onmicrobenchmarks and YCSB workloads using 16 threads in DRAM.

IcebergHT is 2.3×–9.1× faster for insertions and 1.7×–2.6× faster for lookups than the libcuckoo
and TBB. For deletions, IcebergHT is up to 5.3× faster than TBB but ≈ 50% slower than libcuckoo.
IcebergHT is also faster than CLHT for insertions. However, CLHT has faster deletions and query
operations compared to IcebergHT. This is due the extra overhead of one metadata probe in level
1 and two probes in level 2 in IcebergHT in DRAM. These metadata probes are essential to avoid
multiple cache line access in the main table, especially on PMEMwhere accessing multiple locations
in the table can hurt performance.
Figure 5 shows the performance of IcebergHT and other hash tables for YCSB workloads. For

the load phase of these workloads, IcebergHT is faster than other hash tables. It is up to 2.2× faster
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than libcuckoo, 4.4× faster than TBB, and 2.9× faster then CLHT in DRAM. For workload C which
contains all queries, CLHT is faster than IcebergHT. This is similar to the query workload results
in the microbenchmarks.
The faster query performance of CLHT comes at a high space overhead. Specifically, CLHT uses

3×more space than IcebergHT.
Insert and query latency in DRAM. Table 5 shows the 50, 95, 99, 99.9, and 99.99 percentiles and
the worst case for insert and positive query operations in various hash tables in DRAM. The latency
of operations is computed in the same way as it was done for the PMEM benchmarks.
IcebergHT and libcuckoo have similar median insert latency but the worst case latency is three

orders of magnitude slower in libcuckoo. This is due to the fact that IcebergHT performs resizing
in a lazy dynamic manner which helps to avoid stalling other operations during a big resize. TBB’s
median insert latency is 2× higher than IcebergHT and libcuckoo. But TBB’s worst-case latency
is an order of magnitude faster than libcuckoo. This is because resizes can be done fairly efficiently
by splitting buckets in TBB and do not require a complete rehashing of items.
libcuckoo has the lowest median query latency compared to IcebergHT and TBB. However, the

worst-case latency is again about three orders of magnitude slower than IcebergHT. TBB has the
lowest worst-case query latency due to the fact the splitting a bucket is fairly fast and can be achieved
using a pointer swing. However, in IcebergHT a few queries may have to wait if the block they want
to look into is getting fixed during a resize.

7.5 Speed/space tradeoff

Figure 6 shows the instantaneous DRAM insertion throughput of IcebergHT, libcuckoo, TBB, and
CLHT versus their space efficiency . We compare instantaneous throughput versus space efficiency
only in DRAM only because it is not always possible to measure the instantaneous space usage of
PMEM-based hash tables (see discussion above), whereas in DRAMwe can always get the MaxRSS.
The point of these experiments is to uncover the general relationship between insertion performance
and space usage.
As Figure 6 shows, CLHT’s insertion performance in DRAM comes at a high price in terms of

space efficiency. CLHT never gets a space efficiency higher than 40%.
CLHT space efficiency improves initially as the 3-entry bucket-heads fill but then begins to

decline as bucket-heads overflow, necessitating the allocation of 3-entry overflow links in its chains.
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Benchmark Level 1 Level 2 Level 3

Micro 91.2% 8.7% 0.000082%
YCSB load 95.9% 4.0% 0%
YCSBWorkload A 95.8% 4.1% 0%
YCSBWorkload B 95.8% 4.1% 0%

Table 4. Distribution of keys across the three levels in IcebergHT hash table.

Insertions Positive Queries

Percentile IcebergHT libcuckoo TBB IcebergHT libcuckoo TBB

50 336 ns 264 ns 819 ns 290 ns 198 ns 494 ns
95 671 ns 2.02 µs 1.59 µs 548 ns 429 ns 955 ns
99 1.09 µs 5.99 µs 2.24 µs 687 ns 562 ns 1.22 µs
99.9 22.03 µs 19.8 µs 6.52 µs 979 ns 836 ns 1.57 µs
99.99 29.08 µs 219 µs 9.27 µs 1.93 µs 218 µs 4.97,µs
max 345.34ms 2.05 s 734ms 38.35 µs 1.01 s 42.8 µs

Table 5. Percentile latencies in IcebergHT, libcuckoo and TBB for YCSB workload A run on DRAM using 16

threads.

In Figure 6, the change in the space efficiency of the CLHT is marginal after 30% and therefore these
points are clustered together.

Figure 6 also shows that IcebergHToffers bothhigh space efficiencyandhigh insertion throughput.
IcebergHT also has consistent insertion throughput irrespective of the space usage. Interestingly,
the throughput increases (beyond 80%) as more keys end up in level 2 and 3. For example, going from
85% to 90% load, ≈ 47% of the keys end up in level 2 and from 90% to 95% load, almost 65% keys end
up in level 2. Inserting keys in level 2 is comparatively faster than level 1 as level 2 is much smaller
in size compared to level 1. Due to the smaller size, a major fraction of the level 2 can be cached in
the last level cache (LLC).

The insertion throughput for both libcuckoo and TBB drops as the space efficiency increases. For
libcuckoo, the drop in the throughput is fairly sharp above 70% space efficiency. For TBB, the drop
is consistent and gradual up to 95% space efficiency.

7.6 Distribution of keys in IcebergHT

Table 4 shows the distribution of keys across the three levels in IcebergHT. Most of the keys (>90%)
reside in level 1 across all the benchmarks and workloads. A small percentage of keys (<10%) reside
in level 2 and almost no keys are found in level 3. This shows that the empirical distribution of keys
across different levels follows the theoretical guarantees of Iceberg hashing.

Level 3 sees a tiny number of keys in the microbenchmark because, in the microbenchmarks, we
fill the table to 95% load factor without resizing. However, even at 95% load factor, the number of
keys in level 3 is negligible and does not impact the query or deletion performance.

For YCSB workloads, we report the distribution after the load phase (which is the same across the
three workloads) and also after the run phase for workloads A and B that contain new insertions.
The IcebergHT hash table has default load factor threshold of 85% which means a resize is invoked
when the hash table reaches an 85% load factor. This makes the hash table always have enough space
in levels 1 and 2 so level 3 remains empty.
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Block size Insertions Neg Queries Pos queries Deletions %L2 %L3

L1 64 L2 8 62.94 128.71 144.23 50.48 8.7 0.00007
L1 64 L2 6 65.58 129.27 149.27 53.77 7.0 0.007
L1 64 L2 4 64.36 115.07 152.12 51.60 5.4 0.27
L1 32 L2 8 53.99 109.28 129.54 45.97 17.7 0.03
L1 32 L2 6 54.75 109.15 133.71 49.31 13.7 0.06
L1 32 L2 4 53.20 95.99 140.08 46.33 10.38 0.64

Table 6. Performance of IcebergHT for different front/backyard block sizes on DRAM using 16 threads.

Throughput in Million/sec. Each instance is filled to 95% capacity.

7.7 Configuring front yard and back yard

Table 6 shows the performance of IcebergHTwith different block sizes in front and back yards. The
goal of these experiments is to determine the best configuration of front and back yard to achieve
high performance and fill capacity. We vary the block sizes in front and back yard and fill up each
instance to 95% load factor and evaluate the performance.
Reducing the number of blocks in L2 to 6 results in more items going into L3. This results in

faster operations overall. However, reducing the L2 blocks to 4 slows down the negative queries
considerably due to a high fraction of items in L3 which require pointer chasing during queries.
Reducing the block size in L1 to 32 increases the fraction of items going into L2 and L3. This results
in slowdown across the board. This also means that if we size front and back yards equally then the
performance would be worse as more items would end up in L2/L3 causing extra cache misses.

8 RELATEDWORK

In this section,wewill discuss varioushash table implementations and their applications.Adiscussion
of various hash table designs used in our evaluation is given in Section 7.1.
In-memory hash tables. There are numerous in-memory hash table implementations such as
sparse and dense hash maps from Google [15], the F14 hash table from Facebook [12], the FASTER
hash table fromMicrosoft [7], the hash table in Intels’ TBB library [37], the cuckoo hash table [21],
the linear probing-based fast hash table [26, 27], and the unordered map in C++ STL. However, most
of these hash tables only support single threaded operations.

MemC3 [14] supports multiple readers but only a single writer. It is based on optimistic concurrent
cuckoo hashing. MemC3 also supports variable-length keys and optimizes accesses using finger-
printing. FASTER [7] further optimizes the implementation by storing the tag in the higher order
bits of the pointer. It also supports scaling out of memory to a secondary storage device and supports
crash safety using logging. Libcuckoo [21] extends MemC3 to support multiple readers and writers.
Persistent-memory hash tables. Persistent memory offers byte-addressability and high capacity
compared to other traditional storagemediums. Thismakes PMEMan attractivemedium for building
dynamic hash tables. Recently numerous hash tables have been developed for PMEM [6, 10, 19, 24,
33, 41, 45]. The main goal of PMEM-based hash tables is to reduce the number of write operations
during an insert/remove while still support efficient queries.
PFHT [10] reduces the number of writes using a two-level scheme similar to IcebergHTwhere

the second level acts as a stash (or backyard). Similar to level 3 in IcebergHT PFHT also uses linked
lists to store items in the stash. Path hashing [43] optimizes the storage in the stash by reorganizing
it into a tree structure. This lowers the search costs in the stash. Level hashing [44, 45] is another
two-level scheme that bounds the search cost to at most four buckets.
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CCEH [33] is based on extendible hashing [13]. It is crash-consistent and the extendible design
helps to avoid rehashing all the items after a resize. The queries tend to be slower due to random
memory access. Therefore, it bounds the probing length to a few cachelines but that in turn leads
to low load factors. NVC-hashmap [41] presents a lock-free design for a PMEM-based hash table.
The lock-free design though suitable for PMEM has added implementation complexity and makes
searching slower due to pointer chasing.

Applications. Hash tables are widely used to maintain symbol tables in compilers, implement
caches, index databases, manage memory pages in Linux, implement routing tables, and to build
inverted indexes for document search. Examples of such systems are Redis [39], Memcached [28],
Cassandra [2], DynamoDB [11], MongoDB [31], etc. These implementations have been further
improved in follow up works such as MemC3 [14], MICA [23], and SILT [22].

9 DISCUSSION

We attribute the high performance and space-efficiency to stability and low associativity. Stability
helps in achieving a faster inserts. Low associativity helps in getting faster query performance.
Iceberg hashing achieves both stability and low associativity at the same time.
IcebergHT insertion performance with 16 threads is about 70% of the hardware limit. The 30%

overhead in the insert operation is due the overhead of maintaining transient information, e.g., to
update the metadata and increment counters for resize checks. We were able to get to 85% of the
hardware limit by commenting out counter-maintenance code and using huge pages. For query
performance, the overhead is about 50%. Some of this overhead is due to the same factors as in the
insert operation. However, the query operation has other overheads that results in extra PMEM
access. For example, there is a 25% chance of a collision in the metadata fingerprints that results
in extra PMEM accesses during the query operation. In the DRAM setting (where the hash table
resides in DRAM), the cost of metadata accesses is a non-trivial fraction of the overall operation
cost. Therefore, each query operation incurs at least two cache line misses. CLHT on the other hand
performs a single cache line miss for most of the keys. This results in IcebergHT having a slightly
slower query and deletion performance compared to CLHT.

Our implementation supports 8-byte keys and 8-byte values. As in other hash-table designs, such
asDash, this core functionality can be extended to variable-length keys and values by storing pointers
to the actual keys and values in the hash table.
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