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due to CAP: a targeted maximum likelihood 
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Abstract 

Introduction Patients with community‑acquired pneumonia (CAP) admitted to the intensive care unit (ICU) have 
high mortality rates during the acute infection and up to ten years thereafter. Recommendations from international 
CAP guidelines include macrolide‑based treatment. However, there is no data on the long‑term outcomes of this 
recommendation. Therefore, we aimed to determine the impact of macrolide‑based therapy on long‑term mortality 
in this population.

Methods Registered patients in the MIMIC‑IV database 16 years or older and admitted to the ICU due to CAP were 
included. Multivariate analysis, targeted maximum likelihood estimation (TMLE) to simulate a randomised controlled 
trial, and survival analyses were conducted to test the effect of macrolide‑based treatment on mortality six‑month 
(6 m) and twelve‑month (12 m) after hospital admission. A sensitivity analysis was performed excluding patients with 
Pseudomonas aeruginosa or MRSA pneumonia to control for Healthcare‑Associated Pneumonia (HCAP).

Results 3775 patients were included, and 1154 were treated with a macrolide‑based treatment. The non‑macrolide‑
based group had worse long‑term clinical outcomes, represented by 6 m [31.5 (363/1154) vs 39.5 (1035/2621), 
p < 0.001] and 12 m mortality [39.0 (450/1154) vs 45.7 (1198/2621), p < 0.001]. The main risk factors associated with 
long‑term mortality were Charlson comorbidity index, SAPS II, septic shock, and respiratory failure. Macrolide‑
based treatment reduced the risk of dying at 6 m [HR (95% CI) 0.69 (0.60, 0.78), p < 0.001] and 12 m [0.72 (0.64, 0.81), 
p < 0.001]. After TMLE, the protective effect continued with an additive effect estimate of − 0.069.

Conclusion Macrolide‑based treatment reduced the hazard risk of long‑term mortality by almost one‑third. This 
effect remains after simulating an RCT with TMLE and the sensitivity analysis for the HCAP classification.
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Introduction
Community-acquired pneumonia (CAP) is a lead-
ing cause of infectious death worldwide and one of the 
principal causes of admission to the Intensive Care 
Unit (ICU) [1, 2]; its annual worldwide mortality varies 
between 50,000 and 100,000 patients [3], and the over-
all hospital mortality associated with CAP varies from 
20 to 50% [4]. Notably, mortality due to CAP in the ICU 
has remained steady during the last decade, impacting 
healthcare systems tremendously worldwide. Its eco-
nomic burden exceeds $17 billion in the United States 
and more than €10 billion annually in Europe [5]. While 
the main focus of research has been the acute illness in 
CAP patients, survivors have a significantly higher mor-
tality risk for up to ten years after the acute episode [6, 7]. 
It has been suggested that long-term mortality (i.e., after 
hospital discharge) in CAP patients may be related to a 
chronic proinflammatory state documented after hos-
pital discharge [8, 9]. However, the specific mechanism 
underlying long-term mortality in CAP patients remains 
unclear, although excess cardiac mortality is highly likely 
to be one contributing cause [10–12].

Treatment for patients with CAP admitted to the ICU 
is based on broad-spectrum antibiotics and early goal-
directed therapy [13]. Some studies have suggested that 
using at least two antibiotics with different mechanisms 
of action is associated with better acute clinical out-
comes [14, 15]. One study in elderly patients hospitalised 
with CAP demonstrated several cardiovascular ben-
efits, except for myocardial infarction, in patients who 
received azithromycin plus another appropriate antibi-
otic [16]. Recent data have shown that using β-lactams 
plus macrolides might reduce the length of hospital stay 
and mortality in patients with CAP admitted to the ICU 
[17]. The proposed mechanisms to explain the beneficial 
effect of including a macrolide in treating patients with 
CAP (i.e., macrolide-based treatment) [18, 19] are the 
atypical coverage and the anti-inflammatory effect pro-
duced by inhibiting intracellular signalling pathways 
such as the NFkB [8, 20]. Some researchers have hypoth-
esised that macrolides might improve clinical outcomes 
by decreasing the production and liberation of some 
toxins produced by Gram-positive bacteria, such as the 
pneumolysin produced by the Streptococcus pneumoniae 
and the Panton-Valentine Leucocidin, produced by the 
Staphylococcus aureus [21–24].

The Infectious Diseases Society of America and Ameri-
can Thoracic Society (IDSA/ATS) guidelines recommend 
using macrolide-based treatment in patients admitted to 
the ICU due to CAP [13]. However, data exploring the 
long-term implications of this recommendation is lack-
ing. We hypothesise that patients treated with macrolide-
based treatment have lower long-term mortality [i.e., 

six-month (6 m) and twelve-month (12 m) mortality]. To 
test this hypothesis, we performed a multivariate analy-
sis, targeted maximum likelihood estimation (TMLE), 
and survival analysis of patients admitted to the ICU due 
to CAP using the Medical Information Mart for Intensive 
Care IV (MIMIC-IV) database, a large prospective cohort 
of patients hospitalised in the ICU.

Material and methods
This is a prospective cohort of patients admitted to the 
ICU and registered to the MIMIC-IV database. Regis-
tries were taken from the multi-parametric intelligent 
monitoring data from the ICU at the Beth Israel Deacon-
ess Medical Centre (BIDMC) in Boston, Massachusetts, 
containing the complete information of 69,639 patients 
admitted to the ICU between 2008 and 2019 (https:// doi. 
org/ 10. 13026/ 7vcr- e114). The Laboratory of Computa-
tional Physiology (LCP) created the database at the Mas-
sachusetts Institute of Technology (MIT). The database is 
supported by the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB) of the National Institutes 
of Health (NIH) [25]. Further information about the data-
base can be found elsewhere (https:// lcp. mit. edu/ mimic).

Participants
The cohort included patients admitted to the ICU due 
to CAP. The definition of CAP was based on the ATS/
IDSA guidelines [13]. The inclusion criteria were patients 
older than 16 requiring admission to the ICU with an 
ICD-9 code of pneumonia within the top ten diagnoses 
and must receive pneumonia-related antibiotics dur-
ing the first 48  h of hospital admission. The MIMIC IV 
database organises diagnoses by cost, not by relevance. 
All the included diagnoses are shown in Additional file 1: 
Table S1. Patients with another infectious diagnosis dif-
ferent to pneumonia during the first 48  h, transferred 
patients, those in whom antibiotic treatment was sus-
pended during the first 96 h, those who received a mac-
rolide for less than 48  h, and with less than 70% of the 
numerical data (labs and vital signs) were excluded from 
the study (Fig. 1).

Study groups
The cohort was stratified depending on the antibi-
otic administered during the first 48  h of admission: 
macrolide-based and non-macrolide-based treatment. 
Patients who received an antibiotic accepted by interna-
tional guidelines plus a macrolide (e.g., azithromycin or 
clarithromycin) were included in the macrolide-based 
treatment group. In contrast, those who received other 
antibiotics recommended by the IDSA/ATS guide-
lines but not a macrolide were included in the non-
macrolide-based treatment group [13, 26]. Notably, all 

https://doi.org/10.13026/7vcr-e114
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patients were treated with at least a β-lactam (including 
carbapenems) or a fluoroquinolone.

Data collection
The following variables were obtained during the 
first 24  h of admission: demographic data, comor-
bidities (i.e., Charlson comorbidity index), urine out-
put, laboratory data, invasive interventions, severity 
(i.e., Simplified Acute Physiology Score II [SAPS II]), 
and outcomes. The data was taken directly from the 
critical care information systems, electronic hospital 
records, laboratory results, and vital signs monitors, as 
described before [25]. All information was secured with 
read-only access to ensure data integrity. The MIMIC-
IV database is integrated with the US Social Security 
System to allow access to mortality data even after hos-
pital discharge [25].

Statistical analysis
Continuous variables were described as minimum or 
maximum values, mean and standard deviation (SD), 
or median and interquartile range (IQR), depending on 
their clinical relevance and distribution. Dichotomous 
variables were presented as frequencies and percent-
ages. For the univariate analysis, differences between the 
intervention groups were assessed with the chi-square 
test and Fisher’s exact test for categorical variables or the 
student’s t-test or Mann–Whitney U test for continuous 
variables, depending on their distribution.

A multivariate logistic regression model was developed 
in the general cohort to evaluate the relationship between 
6 and 12  m mortality (dependent variable) and demo-
graphics, comorbid conditions, and laboratory variables 
(explanatory variables). The logistic regression model 
included variables with a p < 0.20 in the initial univari-
ate analysis. The fitness of the model was assessed with 
the Hosmer–Lemeshow test. Odds ratios (OR) were 

Fig. 1 Study flow chart of patients included in the analysis
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calculated based on the exponentials of the coefficients 
obtained by the final model and presented in forest plots. 
To evaluate the performance of the logistic regression 
model, the area under the model’s receiver operating 
curve (AUROC) was used; for this, a tenfold cross-valida-
tion method was used, in which the dataset was divided 
into ten subsets, and the validation was repeated ten 
times. Each time, one of the subsets was used as the test 
cohort, and the other nine subsets were used as training 
subsets, and then the average AUROC was calculated and 
reported. Also, a Cox Proportional Hazard Model was 
constructed to evaluate the hazard ratios (HR) for mor-
tality at 6 m and 12 m. This model was adjusted by demo-
graphics, comorbid conditions, and laboratory variables. 
Adjusted HR were calculated and presented in tables.

Finally, we performed a targeted maximum likelihood 
estimation (TMLE) analysis to simulate a randomised 
controlled trial using the baseline characteristics to esti-
mate the one-year mortality average effect of macrolide-
based treatment in critical patients with CAP admitted 
to the ICU. TMLE is used for the estimation of causal 
effects using observational data. TMLE estimates both 
the outcome and the treatment mechanisms and requires 
an initial estimate of the conditional expectation of the 
outcome given the exposure, the covariates, and the 
probability of being treated given the observed con-
founders, which is done using ensemble and machine-
learning algorithms. Then, it performs a substitution step 
that optimises the bias-variance trade-off for the average 
treatment effect (ATE). TMLE calculates the adjusted 
marginal difference in mean outcome associated with 
a binary point treatment for continuous or binary out-
comes. To estimate the ATE of macrolide treatment, we 
calculated the marginal risk difference of one-year mor-
tality for patients receiving macrolide-based therapy ver-
sus those not receiving it through TMLE. A significance 
level of 0.05 and a confidence level of 95% were chosen. 
Data analysis was done using R and SPSS (IBM) version 
29.

Results
A total of 3775 patients were included in the study 
(Fig.  1). Most patients were male [57.9% (2185/3775)], 
and the mean (SD) age was 67.6 (6.1) years. Comorbidi-
ties were evaluated with the Charlson comorbidity index, 
with a mean (SD) of 6.5 (3.0) points (Table 1). Also, more 
than half of the patients developed respiratory failure 
[58.6% (2213/3775)], and a quarter developed septic 
shock [26.9% (1017/3775)]. All invasive interventions are 
shown in Additional file  1: Fig. S1A. Severity was esti-
mated with the SAPS II, with a mean (SD) of 38.5 (13.2) 
corresponding to a 21.3–23.0% risk of in-hospital mortal-
ity during the acute episode. Finally, regarding long-term 

mortality, almost half of the cohort died within a year of 
ICU admission due to CAP [43.7% (1648/3775)] (Table 1, 
Fig. 1).

Only 1127 of the patients had an identified microbio-
logical pathogen. The most frequently identified microor-
ganisms were Staphylococcus aureus [34.0% (383/1127)], 
Pseudomonas aeruginosa [15.6% (176/1127)], Klebsiella 
pneumoniae [8.7% (98/1127)], and Streptococcus pneu-
moniae [6.1% (69/1127)] (Additional file 1: Fig. S1B and 
S1C, Table  S2). Regarding antibiotic treatment, most 
of the patients were treated with vancomycin [47.9% 
(1809/3775)] and cefepime [26.5% (1001/3775)] (Addi-
tional file  1: Table  S3). An alluvia present the causative 
pneumonia agents, treatment, and long-term mortality, 
as shown in Fig. 2.

A total of 30.6% (1154/3775) received macrolide-based 
therapy and 69.4% (2621/3775) non-macrolide-based 
treatment. Both had similar mean (SD) age [68.0  years 
(16.2) vs 67.4  years (16.0), p = 0.19], gender [male: 55.6 
(642/1154) vs 58.9 (1543/2621), p = 0.07], and mean 
(SD) Charlson comorbidity index score [6.6 points (3.0) 
vs 6.5 (3.0), p = 0.43]. Patients who received macrolide-
based treatment were more often treated with non-inva-
sive ventilatory supports [high flow nasal cannula: 6.3 
(73/1154) vs 1.7 (45/2621), p < 0.001; non-invasive venti-
lation: 6.5 (75/1154) vs 2.9 (76/2621), p < 0.001]. In con-
trast, those that received non-macrolide-based treatment 
more frequently received invasive mechanical ventilation 
[32.1 (370/1154) vs 42.4 (1111/2621), p < 0.001]. Also, 
the non-macrolide-based group had worse long-term 
clinical outcomes, represented by 6  m [31.5 (363/1154) 
vs 39.5 (1035/2621), p < 0.001] and 12 m mortality [39.0 
(450/1154) vs 45.7 (1198/2621), p < 0.001] (Table 1).

Multivariate analysis between patients 
with macrolide‑based versus non‑macrolide‑based 
treatment
After adjusted variables, a logistic regression model was 
performed for 6 m and 12 m mortality (Tables 2 and 3). 
The main risk factors associated with mortality were a 
higher Charlson comorbidity index [6  m: OR (95%CI) 
1.52 (1.38–1.67), p < 0.001; 12  m: 1.71 (1.55–1.87), 
p < 0.001], SAPS II [6 m: OR (95%CI) 1.35 (1.22–1.49), 
p < 0.001; 12 m: 1.25 (1.13–1.37), p < 0.001], septic shock 
[6 m: OR (95%CI) 1.30 (1.20–1.40), p < 0.001; 12 m: 1.26 
(1.17–1.37), p < 0.001], and respiratory failure [6 m: OR 
(95% CI) 1.22 (1.13–1.32), p < 0.001; 12  m: 1.14 (1.06–
1.23), p = 0.01]. Moreover, macrolide-based treatment 
was a protective factor for 6  m and 12  m mortality as 
compared to patients treated with non-macrolide-
based treatment [6  m: OR (95%CI) 0.82 (0.76–0.88), 
p < 0.001; 12 m: 0.84 (0.78–0.91), p < 0.001] (Fig. 3A and 
B). The model used had a good discriminatory capacity 
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Table 1 Demographic characteristics of all patients and stratified between treatments

SD Standard derivation; BUN Blood urea nitrogen; WBC White blood cells; INR International normalised ratio; PT Prothrombin time; PTT Partial thromboplastin time; 
HFNC High flow nasal cannula; SAPS Simplified acute physiology score; ARDS Acute respiratory distress syndrome

Characteristic All cohort (n = 3775) Macrolide‑based 
(n = 1154)

Non‑macrolide‑based 
(n = 2621)

p‑value

Demographic

Male, n (%) 2185 (57.9) 642 (55.6) 1543 (58.9) 0.07

Age, mean (SD) 67.6 (16.1) 68.0 (16.2) 67.4 (16.0) 0.19

Charlson comorbidity index, mean (SD) 6.5 (3.0) 6.6 (3.0) 6.5 (3.0) 0.43

Laboratory variables at admission, mean (SD)

Haematocrit min, % 30.6 (6.6) 31.6 (6.7) 30.2 (6.6) < 0.001

Haemoglobin max, mg/dL 11.3 (2.2) 11.4 (2.3) 11.2 (2.2) 0.06

Platelets min, cell/mm3 205.3 (119.6) 200.5 (104.0) 207.4 (125.9) 0.74

WBC min, cell/mm3 11.3 (10.0) 11.5 (10.8) 11.3 (9.6) 0.73

WBC max, cell/mm3 15.1 (12.6) 15.0 (14.7) 15.1 (11.5) 0.04

Anion gap max, mEq/L 17.2 (4.9) 17.3 (4.6) 17.2 (5.0) 0.11

Bicarbonate min, mEq/L 22.3 (5.6) 22.5 (5.7) 22.3 (5.6) 0.49

BUN max, mg/dL 33.1 (25.3) 32.3 (23.3) 33.4 (26.1) 0.99

Calcium max, mEq/L 8.6 (0.9) 8.6 (0.7) 8.6 (0.9) 0.05

Chloride min, mEq/L 100.1 (6.9) 99.0 (6.9) 100.6 (6.9) < 0.001

Creatinine min, mEq/L 1.4 (1.4) 1.4 (1.4) 1.4 (1.4) 0.82

Glucose min, mg/dL 121.2 (44.8) 123.3 (46.1) 120.3 (44.1) 0.04

Sodium max, mEq/L 139.7 (5.5) 139.5 (5.4) 139.9 (5.6) 0.30

Potassium max, mEq/L 4.7 (0.9) 4.8 (1.0) 4.7 (0.9) 0.001

Lymphocytes max, cell/mm3 1.5 (5.0) 1.5 (6.5) 1.4 (4.1) 0.64

Neutrophils max, cell/mm3 11.4 (6.9) 11.2 (7.0) 11.5 (6.9) 0.31

INR max 1.8 (1.3) 1.8 (1.3) 1.7 (1.3) 0.34

PT max, sec 19.0 (13.6) 19.1 (13.5) 19.0 (13.6) 0.06

PTT max, sec 43.9 (28.4) 42.6 (26.4) 44.4 (29.2) 0.67

Urine output, mL 1752.4 (1246.4) 1801.4 (1238.4) 1730.8 (1249.6) 0.05

Interventions, n (%)

HFNC 118 (3.1) 73 (6.3) 45 (1.7) < 0.001

Invasive ventilation 1481 (39.2) 370 (32.1) 1111 (42.4) < 0.001

Non‑invasive ventilation 151 (4.0) 75 (6.5) 76 (2.9) < 0.001

Severity, n (%)

SAPS II 38.5 (13.2) 37.2 (12.1) 39.1 (13.5) < 0.001

Respiratory failure 2213 (58.6) 751 (65.1) 1462 (55.8) < 0.001

Septic shock 1017 (26.9) 311 (26.9) 706 (26.9) 0.98

ARDS 42 (1.1) 19 (1.6) 23 (0.9) 0.06

Other antibiotic treatments, n (%)

Quinolones 1417 (37.5) 246 (21.3) 1171 (44.7) < 0.001

Aetiology, n (%)

No aetiology 970 (25.7) 269 (23.3) 701 (26.7) 0.03

Atypical bacteria 276 (7.3) 46 (4.0) 230 (8.8) < 0.001

Typical bacteria 198 (5.2) 35 (3.0) 163 (6.2) < 0.001

P. aeruginosa or MRSA 533 (14.1) 95 (8.2) 438 (16.7) < 0.001

Fungi 41 (1.1) 19 (1.6) 22 (0.8) 0.04

Virus 1 (0.0) 0 (0) 1 (0.0) 0.67

Outcomes, n (%)

Hospital mortality 610 (16.2) 156 (13.5) 454 (17.3) 0.004

6 m mortality 1398 (37.0) 363 (31.5) 1035 (39.5) < 0.001

12 m mortality 1648 (43.7) 450 (39.0) 1198 (45.7) < 0.001
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when evaluated by the AUROC, mean (SD) of 0.74 
(0.03) for 6 m and 12 m (Fig. 4A and B) and appropriate 
fitness determined by Hosmer Lemeshow Test shown 
in Additional file 1: Fig. S2.

A propensity score matching (PSM) was performed 
according to the patient’s clinical characteristics and 
CURB 65 score (Additional file 1: Fig. S3) as a sensitiv-
ity analysis. Results showed that macrolide treatment 
continues to be a protective factor against 12  m mor-
tality [OR (95% CI) 0.85 (0.77–0.94)] (Additional file 1: 
Fig. S4), with an AUROC 0.71 (0.04) (Additional file 1: 
Fig. S5).

Survival analysis
Cox Proportional Hazard Model analysis (Fig.  5) iden-
tified a lower adjusted risk for 6  m and 12  m mortality 
when patients were treated with macrolide-based treat-
ment [6 m: HR (95% CI) 0.69 (0.60, 0.78), p < 0.001; 12 m: 
0.72 (0.64, 0.81), p < 0.001] compared to non-macrolide-
based. The Cox Proportional Hazard Regression output is 
shown in Additional file 1: Fig. S6, Tables S4 and S5.

Targeted maximum likelihood estimation (TMLE) analysis
After TMLE analysis, the association of macrolide treat-
ment with one-year mortality remained significant 
(p < 0.001). The Additive Effect (AE) and 95% CI esti-
mates were − 0.059 (− 0.081, − 0.036). Our simulation of 
a randomised controlled trial using the TMLE analysis 
suggested positive associations between macrolide-based 
treatment with a significant reduction of mortality risk in 
patients admitted to the ICU due to CAP.

Sensitivity analysis
Healthcare-associated pneumonia (HCAP) was a clas-
sification proposed to identify patients at higher risk of 
developing CAP due to P. aeruginosa or methicillin-
resistant S. aureus (MRSA). Due to its low clinical util-
ity, this classification was removed from the current ATS/
IDSA guidelines. However, many doctors have used it 
for many years. Thus, we performed a sensitivity analy-
sis excluding patients with confirmed P. aeruginosa or 
MRSA CAP and demonstrated the protective value of 
the macrolide-based treatment even after excluding these 
patients (Additional file 1: Figs. S7 and S8).

Discussion
This study found that almost half of the patients admit-
ted to the ICU due to CAP died within one year after the 
acute episode. Additionally, patients with a higher Charl-
son comorbidity index, SAPS II, septic shock, and respir-
atory failure had a higher probability of dying within one 
year of the acute CAP hospitalisation in the ICU. After 
a comprehensive statistical analysis of this large prospec-
tive cohort, our results suggest that macrolide-based 
treatment reduces long-term mortality in patients admit-
ted to the ICU due to CAP. Although results regarding 
coverage of atypic microorganisms with fluoroquinolo-
nes proved to be a protector factor at 6  m, this was a 
vague association that was not maintained thereafter.

Different studies have shown that long-term mor-
bidity and mortality rates in CAP patients are elevated 
[27]. Mortensen et  al. [28], in a prospective cohort 
study with 1555 CAP patients, found that 8.7% of 
patients died within 90  days, and 30.3% died within 

Fig. 2 Pneumonia causal agents, treatment received, and long‑term outcome. Alluvial diagram of pneumonia causative agents, treatment, and 
one‑year mortality
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Table 2 Univariate analysis and logistic regression analysis for 6 m mortality

BUN Blood urea nitrogen; WBC White blood cells; INR International normalised ratio; PT Prothrombin time; PTT Partial thromboplastin time; HFNC High flow nasal 
cannula; SAPS Simplified acute physiology score; ARDS Acute respiratory distress syndrome

Variable Univariate analysis Multivariate analysis

OR (95% CI) p‑value OR (95% CI) p‑value

Demographic

Male 1.12 (0.98–1.28) 0.10 1.09 (1.01–1.17) 0.02

Age 1.03 (1.02–1.03) < 0.001 1.13 (1.03–1.23) 0.01

Charlson comorbidity index 1.25 (1.22–1.28) < 0.001 1.52 (1.38–1.67) < 0.001

Laboratory variables at admission

Haematocrit min, % 0.96 (0.95–0.97) < 0.001 1.04 (0.91–1.19) 0.55

Haemoglobin max, mg/dL 0.86 (0.84–0.89) < 0.001 0.82 (0.71–0.93) 0.01

Platelets min, cell/mm3 1.00 (1.00–1.00) 0.91

WBC min, cell/mm3 1.01 (1.00–1.02) 0.01 1.36 (1.08–1.71) 0.01

WBC max, cell/mm3 1.01 (1.00–1.01) 0.01 0.82 (0.67–1.01) 0.06

Anion gap max, mEq/L 1.02 (1.01–1.04) 0.01 0.97 (0.89–1.06) 0.5

Bicarbonate min, mEq/L 0.99 (0.98–1.00) 0.21

BUN max, mg/dL 1.01 (1.01–1.01) < 0.001 0.92 (0.85–1.00) 0.06

Calcium max, mEq/L 1.05 (0.97–1.13) 0.23

Chloride min, mEq/L 0.99 (0.98–1.00) 0.13 0.93 (0.86–1.00) 0.04

Creatinine min, mEq/L 1.03 (0.98–1.08) 0.22

Glucose min, mg/dL 1.00 (1.00–1.00) 0.25

Sodium max, mEq/L 1.00 (0.99–1.01) 0.91

Potassium max, mEq/L 1.09 (1.01–1.16) 0.02 0.95 (0.88–1.03) 0.18

Lymphocytes max, cell/mm3 1.01 (0.99–1.02) 0.24

Neutrophils max, cell/mm3 1.01 (1.00–1.02) 0.15 0.96 (0.87–1.06) 0.41

INR max 1.20 (1.14–1.27) < 0.001 1.25 (0.93–1.68) 0.14

PT max, sec 1.02 (1.01–1.02) < 0.001 0.92 (0.68–1.24) 0.59

PTT max, sec 1.01 (1.00–1.01) < 0.001 1.05 (0.97–1.13) 0.21

Urine output, mL 1.00 (1.00–1.00) < 0.001 0.88 (0.82–0.96) 0.01

Interventions

HFNC 1.05 (0.72–1.53) 0.80

Invasive ventilation 1.18 (1.03–1.35) 0.02 0.91 (0.83–0.99) 0.03

Non‑invasive ventilation 1.06 (0.76–1.49) 0.72

Severity

SAPS II 1.05 (1.04–1.05) < 0.001 1.35 (1.22–1.49) < 0.001

Respiratory failure 1.76 (1.54–2.02) < 0.001 1.22 (1.13–1.32) < 0.001

Septic shock 2.30 (1.99–2.67) < 0.001 1.30 (1.20–1.40) < 0.001

ARDS 1.41 (0.77–2.60) 0.27

Antibiotic treatment

Macrolide‑based 0.70 (0.61–0.81) < 0.001 0.82 (0.76–0.88) < 0.001

Quinolones 0.78 (0.65–0.93) 0.01 0.92 (0.85–0.99) 0.03

Aetiology

No aetiology 1.57 (1.36–1.83) < 0.001 1.15 (1.06–1.24) 0.01

Atypical bacteria 1.36 (1.06–1.74) 0.02 1.02 (0.95–1.10) 0.58

Typical bacteria 1.06 (0.79–1.43) 0.69

P. aeruginosa or MRSA 1.25 (1.04–1.51) 0.02 1.04 (0.97–1.12) 0.30

Fungi 1.21 (0.65–2.25) 0.56

Virus 0.00 (0.00–0.00) 1.00
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Table 3 Univariate analysis and logistic regression analysis for 12 m mortality

BUN Blood urea nitrogen; WBC White blood cells; INR International normalised ratio; PT Prothrombin time; PTT Partial thromboplastin time; HFNC High flow nasal 
cannula; SAPS Simplified acute physiology score; ARDS Acute respiratory distress syndrome

Variable Univariate analysis Multivariate analysis

OR (95% CI) p‑value OR (95% CI) p‑value

Demographic

Male 1.10 (0.97–1.26) 0.14 1.11 (1.03–1.19) 0.01

Age 1.03 (1.03–1.04) < 0.001 1.17 (1.07–1.28) 0.01

Charlson comorbidity index 1.28 (1.25–1.31) < 0.001 1.71 (1.55–1.87) < 0.001

Laboratory variables at admission

Haematocrit min, % 0.96 (0.95–0.97) < 0.001 1.17 (1.04–1.33) 0.01

Haemoglobin max, mg/dL 0.85 (0.83–0.88) < 0.001 0.69 (0.60–0.78) < 0.001

Platelets min, cell/mm3 1.00 (1.00–1.00) 0.84

WBC min, cell/mm3 1.01 (1.00–1.01) 0.04 1.01 (0.94–1.09) 0.76

WBC max, cell/mm3 1.00 (1.00–1.01) 0.24

Anion gap max, mEq/L 1.02 (1.01–1.03) 0.01 0.99 (0.90–1.08) 0.77

Bicarbonate min, mEq/L 1.00 (0.99–1.01) 0.9

BUN max, mg/dL 1.01 (1.01–1.01) < 0.001 1.11 (1.00–1.23) 0.06

Calcium max, mEq/L 1.06 (0.99–1.15) 0.10 1.04 (0.96–1.12) 0.38

Chloride min, mEq/L 0.99 (0.98–1.00) 0.04 0.90 (0.84–0.97) 0.007

Creatinine min, mEq/L 1.03 (0.98–1.08) 0.18 0.73 (0.66–0.82) < 0.001

Glucose min, mg/dL 1.00 (1.00–1.00) 0.50

Sodium max, mEq/L 1.00 (0.99–1.01) 0.95

Potassium max, mEq/L 1.11 (1.04–1.19) 0.01 0.98 (0.90–1.06) 0.56

Lymphocytes max, cell/mm3 1.01 (0.99–1.02) 0.42

Neutrophils max, cell/mm3 1.00 (0.99–1.01) 0.58

INR max 1.24 (1.17–1.31) < 0.001 1.33 (0.98–1.79) 0.06

PT max, sec 1.02 (1.01–1.02) < 0.001 0.91 (0.67–1.23) 0.53

PTT max, sec 1.01 (1.00–1.01) < 0.001 1.06 (0.98–1.14) 0.16

Urine output, mL 1.00 (1.00–1.00) < 0.001 0.85 (0.78–0.92) < 0.001

Interventions

HFNC 0.98 (0.68–1.42) 0.92

Invasive ventilation 1.05 (0.92–1.20) 0.48

Non‑invasive ventilation 1.09 (0.79–1.51) 0.61

Severity

SAPS II 1.05 (1.04–1.05) < 0.001 1.25 (1.13–1.37) < 0.001

Respiratory failure 1.59 (1.39–1.81) < 0.001 1.14 (1.06–1.23) 0.01

Septic shock 2.10 (1.81–2.43) < 0.001 1.26 (1.17–1.37) < 0.001

ARDS 1.18 (0.64–2.16) 0.60

Antibiotic treatment

Macrolide‑based 0.76 (0.66–0.88) < 0.001 0.84 (0.78–0.91) < 0.001

Quinolones 0.81 (0.69–0.96) 0.02 0.94 (0.87–1.01) 0.10

Aetiology

No aetiology 1.40 (1.21–1.62) < 0.001 1.10 (1.02–1.19) 0.02

Atypical bacteria 1.28 (1.00–1.63) 0.05 1.02 (0.95–1.10) 0.52

Typical bacteria 0.93 (0.69–1.24) 0.61

P. aeruginosa or MRSA 1.17 (0.97–1.40) 0.10 1.02 (0.95–1.10) 0.56

Fungi 1.12 (0.60–2.07) 0.72

Virus 0.0 (0.00–0.00) 1.00
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Fig. 3 Logistic regression model to identify factors associated with 6 m and 12 m mortality. Logistic regression was performed with the optimal 
subset of variables obtained with the random forest model. The odds ratios (OR) are graphically represented in the Forest plot for better medical 
interpretability. Panel A presents the odd proportions of the risk for 6 m mortality, and panel B shows 12 m mortality

Fig. 4 Area under de Curve. Cross‑validation trial’s receiver operative curve (ROC) for the subset of the selected variables. The blue curve represents 
the average of the ROC curves of each test, and the average area under de ROC is also presented. Panel A shows the AUC‑ROC for 6 m mortality and 
panel B for 12 m mortality
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5  years of the acute presentation. Also, in a multi-
centric study of 3415 adults with CAP prospectively 
enrolled, Johnstone et al. [29] found that 30 day, 1 year, 
and 3.8  year mortality rates were 12%, 28%, and 53%, 
respectively. These studies are not specific to patients 
with CAP admitted to the ICU; however, these align 
with our results. We found a 6  m and 12  m mortality 
rate of 37.0% and 43.7%, respectively, demonstrating 
that mortality in patients with CAP admitted to the 
ICU is unacceptably high and undoubtedly increases 
the economic burden even after hospital discharge.

Several risk factors have been associated with higher 
mortality in patients with CAP. Regarding severity, 
the utility of the SAPS II score among long-term out-
comes is still debatable [30, 31]. On top of that, other 
scores as the higher Charlson comorbidity Index, are 
associated with higher mortality during hospitalisa-
tion due to CAP [32]. Still, some medical conditions 
included in this score have been individually associ-
ated with worse long-term clinical outcomes. Almirall 
et al. [33], a systematic review confirmed that older age 
increases long-term fatal outcomes in CAP hospitalised 
patients. On the other hand, respiratory failure patients 
continue to have an increased mortality risk in the fol-
lowing months and years after the ICU discharge [34, 
35]. Similarly, Wang et al. found that one-year mortal-
ity was significantly higher than in-hospital mortality 
in patients hospitalised with respiratory failure (41% 
vs 24%, p = 0.01) [36]. Finally, sepsis patients exhibited 
increased all-cause mortality rates up to 5  years after 

the acute infection [37]. This preliminary data aligns 
with our study’s results.

Empiric antibiotic treatment has been described as 
the cornerstone of CAP management [13], and mac-
rolide-based vs non-macrolide-based therapy is contro-
versial in the literature [38–40]. One of the macrolides’ 
benefits is to block bacterial toxins and have potential 
immunomodulatory properties that control disease 
progression [8, 20, 41]. However, Postma et  al. [42] 
cluster-randomised crossover trial with CAP patients 
admitted to non-ICU wards concluded that non-mac-
rolide-based treatment was a non-inferior strategy 
when analysing 90 day mortality. Nevertheless, Waterer 
et  al. [38] identified problems with the methodology. 
25% of the cohort had no radiological confirmation 
of pneumonia, and over one-third of patients in the 
monotherapy, β-lactam strategy received a macrolide 
antibiotic, resulting in an unbalanced intervention and 
a substantial risk of bias. König et  al. used a multina-
tional machine learning cross-validation scheme with 
4898 [43]. They found that patients treated with non-
macrolide-based treatment had a higher 180-day mor-
tality than macrolide-based treatment [8.1% vs 7.6%; 
OR 1.06 (95% CI 0.82–1.36)]. A post hoc analysis of a 
cohort study of 594 CAP patients with low drug-resist-
ant pathogen risk was performed by Okumura et  al. 
[44] showed that those treated with macrolide treat-
ment had better clinical outcomes regarding 30  day 
mortality [OR 0.28 (95% CI 0.09–0.87)]. Although 
these and other studies have demonstrated the acute 

Fig. 5 Survival models. Cox Proportional Hazard Curves to identify factors associated with A 6 m mortality and B 12 m mortality
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benefit of macrolide-based treatment in patients with 
severe CAP, they have not assessed their long-term 
implications. Strikingly, our study is the first to iden-
tify a medication used during acute infection that could 
improve long-term outcomes, being novel and having 
important implications for clinical practice. To improve 
clinical outcomes, patients with CAP admitted to the 
ICU should be treated with macrolide-based antibi-
otic treatment. This therapy may also reduce long-term 
mortality and impact healthcare systems.

Our study has certain limitations that are important 
to acknowledge. First, this is a monocentric, observa-
tional, non-randomised study design. However, we 
included an extensive sample size of over three thou-
sand patients over 10  years. Moreover, we conducted 
a TMLE (that simulates an RCT) to adjust results for 
potential confounding variables, controlling the risk 
of bias and enabling greater statistical power. Second, 
patients were enrolled in a high-income country, mak-
ing it difficult to extrapolate and replicate the method-
ology to validate this data in low- and middle-income 
countries. However, clarithromycin is an inexpensive 
medication that could be used in limited-resource set-
tings with myriad potential benefits. Third, no stand-
ardised protocols of antimicrobial treatment, doses, 
start time, and total days of administration were used, 
which also restricted the stratification analysis by these 
data. Nevertheless, macrolides are available globally 
and are used frequently in patients admitted to the hos-
pital in the ICU with CAP using standard dosing. Also, 
the centres in this study used internationally accepted 
guidelines for using empirical antibiotics. Finally, we 
could not differentiate patients diagnosed with HCAP 
in our cohort. This might be a limitation because 
patients with HCAP were considered at risk of CAP 
due to P. aeruginosa and MRSA. Consequently, patients 
with HCAP were recommended to receive antipseu-
domonal and anti-MRSA coverage. However, no rec-
ommendation about macrolide usage was available for 
these patients; therefore, this classification may not 
interfere with our results. Also, we performed a sensi-
tivity analysis excluding these patients and confirmed 
our results.

In conclusion, our study used a robust statistical anal-
ysis to demonstrate that macrolide-based treatment is 
associated with lower long-term mortality by reducing 
over one-third of the hazard risk; therefore, the benefit 
observed during acute hospitalisation is sustained over 
time. Thus, these data provide further justification for 
using macrolide-based treatment in patients with CAP 
admitted to the ICU to reduce the long-term burden of 
this prevalent disease. Additional prospective studies are 
required to support these conclusions.
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