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ABSTRACT 
Pancreatic cancer is a lethal malignancy recalcitrant to immune checkpoint blockade and 

other immunotherapies. A subset of tumors is computationally predicted to harbor potentially 
immunogenic peptides for MHC class I (MHC-I) presentation, but the nature, expression, and 
immunogenicity of these peptides has yet to be determined. The only prior study of the 
pancreatic cancer immunopeptidome focused on profiling MHC-I-associated peptides (MAPs) 
from canonical proteins in bulk tumor samples; however, non-malignant cell populations 
comprise most of the pancreatic tumor mass, obscuring the identity of MAPs that derive 
specifically from cancer cells. In the second chapter of this thesis, I resolve this challenge 
through extensive profiling of patient-derived organoids with whole-genome sequencing, RNA 
sequencing, and immunopeptidomics. These data enable a proteogenomics approach that tailors 
MAP identification to each individual patient sample. Harnessing this platform, my colleagues 
and I uncovered a diverse cohort of MAPs derived from somatic mutations and transcript 
isoforms that are functionally unexpressed in most or all healthy tissues. These include MAPs 
derived from novel, unannotated open reading frames (nuORFs) present within long noncoding 
RNAs, processed transcripts, and 5’ and 3’ untranslated regions. We found that cytotoxic T cells 
specific to nuORF-derived MAPs can be readily generated from peripheral blood mononuclear 
cells of healthy donor individuals. This result highlights the immunogenicity of nuORF-derived 
MAPs and establishes them as promising targets for immunotherapies in pancreatic cancer. 

In Chapter 3, I report the development of a genetically engineered mouse model 
(GEMM) for performing prime editing in vivo. This system represents a rapid alternative to 
traditional cancer mouse models, which often take months or years to develop. Through a Cre-
inducible prime editor enzyme encoded in the mouse germline, prime editor GEMMs can 
mediate rapid and precise engineering of most cancer mutations, including many that are 
challenging or infeasible to achieve with other CRISPR technology. We demonstrate the utility 
of this system by mediating secondary Kras mutations and common Trp53 hotspot mutations in 
model-derived pancreatic organoids. Finally, we model lung and pancreatic cancer in vivo using 
lentiviral delivery of prime editing guide RNAs or orthotopic transplantation of prime edited 
organoids. We anticipate that prime editing GEMMs will accelerate preclinical functional studies 
of cancer-associated alleles that are challenging to model by traditional approaches. 
 
Thesis Advisor: Tyler Jacks 
Title: Professor of Biology 
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CHAPTER 1: INTRODUCTION 
 
Chapter 1, Part 0. 

I have been fortunate to explore several research areas during my graduate studies in the Jacks 

Lab. After joining the lab, I initially focused on modeling cancer mutations through applying 

genome editing technology, but I soon developed an additional interest in cancer immunology. 

This chapter will introduce projects in both areas. Part 1 will introduce a background for 

pancreatic cancer and immunotherapy, and Part 2 will describe a history of cancer mouse models 

and genome editing techniques. These projects inhabit different research areas, and thus Parts 1 

and 2 will separately motivate distinct projects described in Chapters 2 and 3. Though disparate, 

both projects share a focus on pancreatic cancer, a complex, deadly, and fascinating disease. This 

thesis will describe efforts to both model the disease and target it with immunotherapy. 

Chapter 1, Part 1: Enabling the immune system to target pancreatic cancer. 
 
Diagnosis, detection, and treatment of the disease. 

Of the nearly 500,000 patients diagnosed with pancreatic cancer worldwide each year, 1 more 

than 80% will die within a year of diagnosis 2. More than 90% will die within two. Most patients 

receive their diagnosis after the disease has already metastasized to distant organs 3, precluding 

the possibility of curative surgery. Prior to this late stage, patients are often asymptomatic, or 

they exhibit only nonspecific symptoms, such as weight loss or nausea. Without obvious, 

specific symptoms, it is challenging to identify the disease early. Early diagnosis is further 

hindered by a lack of cost-effective, noninvasive screening techniques 4.  

Despite these challenges, a subset of patients (~10-20%) are diagnosed without detectable 

metastases 5. Such cases of localized pancreatic cancer may be eligible for the Whipple 

procedure, a sometimes curative, oftentimes debilitating surgery that resects part of the pancreas. 
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This procedure is currently the only curative treatment for the disease, yet more than 80% of 

patients who undergo it will relapse and die within five years 5. Nevertheless, the ~20% five-year 

survival rate among surgically resected patients motivates many researchers to improve early 

detection of the disease and increase the fraction of patients eligible for surgery. 

Early detection methods for pancreatic cancer include endoscopy, clinical imaging methods like 

computed tomography, and assays for blood-based biomarkers, including DNA methylation 

patterns, the cancer-associated protein mesothelin, and mutant DNA shed by tumor cells 5,6. 

Unfortunately, these approaches are neither broadly applicable nor sufficiently sensitive. For 

example, plasma-based detection of KRAS mutations, which occur in almost all pancreatic 

tumors, identified only ~45% of patients from a cohort of those with surgically resectable disease 

6. Similarly, methylation-based assays are currently limited to a sensitivity of ~63% for early-

stage pancreatic cancer 7; however, these assays exhibit a remarkable specificity >99%. This 

could enable broad application without incurring a significant tradeoff in false-positive 

diagnoses, a critical consideration for early detection methods. Continued efforts from 

biotechnology companies that incorporate multi-variable readouts may someday yield an assay 

sufficiently sensitive and specific to motivate broader screening for pancreatic cancer. 

Early detection has reduced mortality from breast and colon cancer 8, but some researchers argue 

that early detection may not sway the future prognoses of pancreatic cancer. These doubts rest 

upon two disparate, seminal discoveries from human tumor genome sequencing and mouse 

models. In mice, Rhim et al. (2012) developed a model where pancreatic cancer cells are 

fluorescently labeled, enabling tracking of the disease and its metastatic spread 4. These 

investigators found that cancer cells can migrate beyond the pancreas early in tumor 

development, invading the bloodstream and seeding distant organs before the primary tumor is 
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detectable 4. In patients, Notta et al. (2016) used cancer genome sequencing to infer the 

evolutionary trajectory of tumors. They found that severe chromosomal instability can facilitate 

the simultaneous loss of multiple pancreatic tumor suppressor genes, potentially enabling 

premalignant lesions to immediately acquire highly invasive properties in a subset of patients 9. 

Both studies support a rapid model of pancreatic cancer progression and predict that only a small 

window may exist between the formation of an observable lesion and its subsequent metastatic 

spread. 

These studies conflict with the traditional paradigm of pancreatic cancer evolution, which 

proposes a stepwise evolution that spans several years, even up to a decade 10. In this model, 

formalized by Hruban et al. in 2000, initial activation of the KRAS oncogene triggers the 

formation of early-stage neoplasms. This is followed by loss of CDKN2A in low-grade neoplastic 

lesions and then deletion of tumor suppressor genes TP53 and/or SMAD4 in high-grade lesions 

that then progress to adenocarcinoma 11. Molecular analyses of histologically defined precursor 

lesions supported this model, with several studies reporting KRAS-activating mutations across all 

grades and others identifying inactivating mutations in tumor suppressor genes only in later-stage 

lesions 11–13.  

While this model remains a popular paradigm, the characterization of whole pancreatic cancer 

genomes by Notta et al. provides some nuance. The stepwise evolution of pancreatic cancer 

probably at least co-exists with cases of the ‘catastrophic’ model of tumor evolution. In this 

model, simultaneous driver gene alterations enable rapid transformation of early pancreatic 

neoplasms into invasive carcinomas. Which model predominates remains an open question, and 

its answer has important implications for the feasibility of early detection for pancreatic cancer. 
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If the disease is not diagnosed early, then it must be treated late. But nearly every class of anti-

cancer treatments has been trialed in metastatic pancreatic cancer to little avail. Despite decades 

of clinical studies, no treatment other than surgery yielded a significant clinical benefit until 

1997 14. In a Phase III clinical trial, gemcitabine, a nucleoside analog inhibiting DNA synthesis, 

met clinical endpoints, including pain reduction and prevention of weight loss in 23.8% of 

treated patients. While the median survival rate in gemcitabine-treated patients remained shorter 

than six months, gemcitabine became the standard of care for metastatic pancreatic cancer. 

It took another fourteen years for gemcitabine to be displaced as standard first-line therapy. In 

2011, French clinicians demonstrated that combination chemotherapy including folinic acid 

(leucovorin), 5-fluorouracil, irinotecan and oxaliplatin, collectively termed FOLFIRINOX, 

nearly doubled the overall survival of patients relative to gemcitabine 15. However, over 50% of 

patients treated with FOLFIRINOX experience debilitating grade 3 or grade 4 adverse events, 

including neutropenia, anemia, fatigue, and vomiting. FOLFIRINOX has thus been primarily 

limited to patients younger than 76 years old, who can better tolerate the treatment and its 

considerable side effects. 

Many other chemotherapeutic regimens, targeted therapies, radiotherapies, and immunotherapies 

have been tested, but all have been met with dismal results 5. There is the occasional success, 

such as a 6% increase in one-year survival when gemcitabine is combined with the epidermal 

growth factor inhibitor, erlotinib 16, but no therapy has outperformed FOLFIRINOX without 

significant toxicity. And modern treatments rarely extend life beyond a couple months compared 

to treatment in the pre-gemcitabine era. For most patients today, pancreatic cancer remains a 

death sentence. 
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Pancreatic cancer treatment has failed for several reasons. Many researchers point to pancreatic 

cancer’s dense tumor stroma, a notorious hallmark of the disease. Stromal cells, such as 

fibroblasts, uniquely dominate pancreatic tumors, often comprising more than 80% of the entire 

tumor volume 17. This stroma is highly desmoplastic, featuring thick networks of collagen and 

extracellular matrix deposited by cancer-associated fibroblasts. The stroma represents a physical 

barrier for drug entry in animal models of pancreatic cancer, creating a delivery challenge 

thought to contribute to the lack of efficacy of many drugs in patients 5. To better understand the 

challenges and opportunities for drug delivery, the next section will explore the origins of 

pancreatic tumors and their microenvironment. 

Cellular origins of the disease 

The pancreas resides deep within the abdomen, behind the stomach. The pancreatic duct 

traverses the body of the pancreas to its head, where it joins with the common bile duct and 

empties into the duodenum. The pancreatic duct is the primary vessel of the so-called pancreatic 

juice, a cocktail of enzymes and bicarbonate secreted by pancreatic exocrine cells to facilitate 

digestion. Most of the pancreatic juice is produced by enzyme-secreting acinar cells and 

bicarbonate-secreting ductal cells, the major epithelial cells of the pancreas. Acinar cells 

comprise >85% of the volume of the pancreas 18, and the less populous ductal cells form the 

lining of the pancreatic duct. 

Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal manifestation of 

pancreatic cancer, often simply called PDAC. PDAC is distinct from a rarer subset of pancreatic 

neuroendocrine tumors (PNETs) that originate from the endocrine cells of the pancreas. These 

cells include alpha and beta cells that regulate secretion of glucagon and insulin. While a small 
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subset of all cancers in the pancreas (< 3%) originate from endocrine cells 19, more than 90 

percent derive from exocrine cell types, primarily acinar and ductal cells. 

Both acinar and ductal cells are debated as a cell type of origin for human PDAC 20. While 

primary PDACs localize to the duct and often resemble ductal cells histologically, transformed 

acinar cells can generate PDAC in genetically engineered mouse models 21. In light of this 

finding, the histologic resemblance of PDAC to ductal cells is explained by a cell type 

transformation, acinar-ductal metaplasia (ADM), wherein acinar cells lose markers of cell 

identity and adopt a ductal phenotype after activation of oncogenic KRAS and/or in the presence 

of inflammation 20,22. In humans, a subset of ADM lesions reside adjacent to bona fide pancreatic 

neoplasms bearing identical KRAS mutations 23, reinforcing the possibility of a lineage by which 

acinar cells can give rise to neoplastic cells with ductal characteristics. 

Like acinar cells, ductal cells are also an empirically validated cell of origin for PDAC in mouse 

models 24. For example, Boj and colleagues showed that ductal organoids, three-dimensional cell 

culture models derived directly from pancreatic ducts, can recapitulate classic stages of PDAC 

progression after transplantation into murine hosts 25. Thus, there is substantial evidence for 

distinct modes of pancreatic tumorigenesis. While some studies suggest that cell of origin can 

dramatically affect the phenotype of the ultimate malignant tumor 20, this remains to be clinically 

validated. 

Genomic origins of the disease 

While the cell-of-origin is debated, the genetic roots are well-accepted. Like almost all cancer, 

PDAC is caused by somatic mutations in genes that promote cellular proliferation (oncogenes) or 

constrain it (tumor suppressor genes), leading to accelerated and unchecked cell division that 

fuels tumor growth. Since the advent of next-generation sequencing, several large-scale 
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consortium efforts, including The Cancer Genome Atlas (TCGA), have profiled the entire 

genomes or exomes of thousands of cancer patients’ tumors, including PDAC 17. The mutational 

landscapes of many cancers, such as lung adenocarcinoma, are defined by heterogenous 

oncogenes and tumor suppressor genes driving cancer in different subsets of patients, but the 

mutational landscape of PDAC is much more constrained. Strikingly, pancreatic tumors almost 

uniformly harbor somatic mutations in KRAS, a proto-oncogene that drives many cancer types 

but frequently in less than 50% of patients with a given disease 26. Mutations in other oncogenes, 

such as EGFR or PIK3CA, are seldom to never observed in pancreatic tumors. 

Several studies have sequenced pancreatic intraepithelial neoplasia (PanIN) lesions, the benign 

precursors to pancreatic adenocarcinoma. In autopsy-derived samples, over 70% of PanIN 

lesions harbor KRAS mutations 23. Other studies of primary and advanced PDAC have identified 

KRAS mutations in more than 90% of cases 17,27. While these findings suggest KRAS mutations 

are necessary events for PDAC development, these mutations alone may be insufficient. 

Strikingly, KRAS mutations are found in PanINs of ~38% of individuals who have no evidence 

of pancreatic cancer 28. Reflecting this, current guidelines do not recommend any clinical action 

for incidental discovery of low-grade PanINs in otherwise healthy individuals 29. This is because 

low-grade PanINs are unlikely to progress to adenocarcinoma, and they are likely present in the 

majority of healthy older individuals 30. Collectively, these studies support the notion that KRAS 

mutations, while fundamental and early events in disease development, are insufficient to drive 

complete progression to adenocarcinoma. 

This is further supported by experiments showing that some cell types may possess a ‘fail-safe’ 

mechanism that senses aberrant signaling driven by oncogenic KRAS. In response to overactive 

KRAS signaling, the cell cycle can be arrested in the G1 growth phase, eventually leading to 
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cellular senescence 31. In some studies, this has been linked to the accumulation of proteins 

encoded by TP53 and CDKN2A, tumor suppressor genes that regulate cell cycle progression 32. 

For example, Morton and colleagues used a mouse model of pancreatic cancer to show that 

premalignant pancreatic lesions formed by oncogenic KRAS exhibit markers of senescence and 

growth arrest, including upregulation of p53 and its target, p21CIP1, compared to normal ductal 

cells. p21CIP1 is activated by p53 and serves as a potent cyclin-dependent kinase inhibitor that can 

induce cell cycle arrest. In mice, Morton et al. found that lesions formed by oncogenic KRAS 

only progressed to adenocarcinoma after they deleted both copies of Trp53. 

It is unsurprising, then, that other genetic alterations necessary for PDAC development include 

the loss of one or more tumor suppressor genes. Only three tumor suppressor genes—TP53, 

CDKN2A, and SMAD4—are frequently inactivated in PDAC. These genes are mutated or 

otherwise inactivated in more than 50-80% of patients 5,9,17,27. While mutations can occur in 

other tumor suppressor genes, such as ARID1A, these events are limited to fewer than 10% of 

patients. The high frequency of CDKN2A, TP53, and SMAD4 mutations and their regular co-

occurrence indicates a functional role in driving disease progression, which has been widely 

reviewed across numerous studies 5.  

As discussed, the stepwise model of PDAC progression posits that pancreatic neoplasms acquire 

driver mutations sequentially. Oncogenic KRAS mutations occur first, followed by loss of 

CDKN2A in low-grade PanINs and then loss of TP53 and/or SMAD4 in high-grade lesions and 

adenocarcinomas 33. The chronology of these mutations is inferred from targeted and whole-

exome sequencing of pancreatic neoplasms spanning low-grade PanINs to invasive PDAC 

within and across individuals with the disease. But this paradigm is complicated by recent 

studies that look beyond somatic mutations like single nucleotide variants 9,17,34. Using whole-
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genome and/or DNA methylation sequencing, these studies have revealed rampant chromosomal 

rearrangement patterns and recurrent DNA methylation events that frequently inactivate tumor 

suppressor genes or amplify oncogenic KRAS. It remains to be seen whether these events also 

follow the sequential ordering proposed for traditional somatic mutations in KRAS, CDKN2A, 

TP53, and SMAD4, though, as discussed, some of these events can occur simultaneously in a 

subset of tumors. 

Regardless of their ordering, these genetic alterations cooperate to enable excessive cell division 

uncoupled from the cell cycle checkpoints governing the behavior of most normal cells 35. As 

pancreatic tumors evolve, malignant cells lose normal cell lineage identity and acquire various 

phenotypes that facilitate tumor growth. PDAC driver genes operate critical cell signaling nodes, 

and these mutations consequently dysregulate hundreds of genes in pancreatic cancer cells 36. In 

addition to cell autonomous effects, these mutations can effect changes in the local 

microenvironment. 

Desmoplasia in the PDAC Microenvironment 

The substantial tissue remodeling characteristic of PDAC has been linked, in part, to oncogenic 

RAS through the Hedgehog signaling pathway. Hedgehog signaling is critical during 

embryogenesis, and often becomes reactivated in several cancers as tumors dedifferentiate and 

lose lineage identity. Oncogenic KRAS may promote the ectopic expression of Sonic Hedgehog 

(SHH) 37,38, a critical ligand absent in normal pancreatic epithelia but secreted by cancer cells 39. 

SHH acts in a paracrine fashion, binding its receptor on local fibroblast and stellate cells. This 

interaction stimulates fibroblast differentiation into a myofibroblast subtype, signified by 

expression of α-smooth muscle actin 40. This active subtype of cancer-associated fibroblasts is 

causally linked to and representative of the strong desmoplastic response signature to pancreatic 
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tumors. The link between SSH and desmoplasia is supported by pharmacological studies in 

animal models showing that inhibition of the Hedgehog pathway decreases the proliferation of α-

smooth muscle actin-expressing fibroblasts, corresponding to a depletion of stromal tissue 41. 

Hedgehog, along with other pathways, can thus promote PDAC’s notorious desmoplastic 

microenvironment. 

The densely packed nature of tumor-associated fibroblasts and production of a rich extracellular 

matrix renders an unusually hypovascularized environment 42. The extracellular matrix wrought 

by cancer-associated fibroblasts generates high interstitial pressure, reducing perfusion into the 

local microenvironment 43. The tumor stroma thus both physically barricades cancer cells and 

stifles the delivery route of drugs into the tumor. This is widely cited as a contributor to the 

failure of traditional therapeutics in pancreatic cancer 5,42,43. However, while traditional small 

molecules and biologics may be excluded from the PDAC microenvironment, numerous studies 

support the notion that immune cells routinely traffic in and out of the tumor stroma, prompting 

an interest in cell-based or cell-mediated therapies as an alternative treatment avenue 44–46. 

Immunotherapy 

Given the challenges posed by the microenvironment for delivery of traditional drugs, 

immunotherapy presents a promising alternative. Cancer immunotherapies potentiate pre-

existing immune responses, or induce de novo responses, that can destroy tumor cells with high 

specificity. To understand the immune system’s role in treating cancer, we will focus on 

cytotoxic T lymphocytes, commonly known as CD8+ T cells, for the CD8 surface protein that 

uniquely marks their cellular membrane. Like all leukocytes, T cells originate in the bone 

marrow. But unlike other major immune cell subsets, T cells traffic to the thymus for their 

development into specialized cell lineages (this is the origin of their name— “T” for thymus). T 
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cell function is ultimately directed by the T cell receptor (TCR), a surface protein that recognizes 

short peptides bound by major histocompatibility complex (MHC) molecules. MHC class I is 

presented on the surface of almost all mammalian cell types 47. Through their TCRs, CD8+ T 

cells recognize peptides (8-11 amino acids long) bound by MHC class I molecules, while CD4+ 

T cells recognizes peptides (13-25 amino acids long) bound by MHC class II molecules. In CD8+ 

T cells, the TCR:MHC class I interaction is stabilized by the CD8 co-receptor 47. 

In the thymus, undifferentiated T cells are molded primarily, though not exclusively, into either 

CD4+ ‘helper’ T cells or CD8+ cytotoxic T cells. During this time, all T cells undergo thymic 

selection, the process by which immature T cells are selected for peptide:MHC binding ability in 

the thymic cortex and are culled for autoreactivity in the thymic medulla. In the latter stage, 

called negative selection, autoreactive T cells with TCRs that recognize an organism’s natural 

peptide:MHC complexes with high affinity are destroyed, thereby skewing the repertoire of 

TCRs toward a “self”-tolerant phenotype and protecting the organism from T cell attacks on 

healthy cells. 

T cells that escape thymic selection are released into the blood stream, and the TCRs expressed 

by these T cells are collectively known as the TCR repertoire. The TCR repertoire is enormously 

vast, made possible by V(D)J gene rearrangement, a process of somatic recombination that 

reshuffles DNA sequences in the genes encoding components of the TCR 47. This largely random 

process is thought to be capable of generating over 1015 structurally distinct TCRs before thymic 

selection 48. Thymic selection then reduces this vast number into the much smaller TCR 

repertoire active in the human circulatory system. 

After thymic selection, naïve T cell lineages defined by a unique TCR and descended from a 

single T cell persist for years in humans 48. Sequencing-based efforts suggest that a relatively 
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constant pool of up to 100 million TCRs is maintained throughout a human lifetime, and the 

repertoire size is continually balanced by thymic output and by events that cause T cell death or 

persistence. Critically, the constrained TCR repertoire dictates what antigens T cells can respond 

to in the setting of infection or cancer.  

Antigen recognition depends on TCR interaction with MHC molecules, encoded by the most 

polymorphic gene family in the human genome 47. In humans, there are three MHC class I genes: 

human leukocyte antigen (HLA)-A, HLA-B, and HLA-C. Collectively, over 6,000 MHC class I 

alleles exist in the human population, often encoding structurally distinct proteins. This variation 

primarily occurs in the extracellular domain of the protein, especially in the peptide binding 

groove. This gives rise to distinct, though often overlapping, peptide binding preferences among 

different MHC class I alleles. From an evolutionary perspective, the polymorphic nature of MHC 

class I alleles reflects both the rich diversity of geographic lineages in the human species and a 

competitive edge against pathogens. Indeed, much of this variation is thought to result from 

pathogen-driven diversifying selection. In this process, MHC alleles are preferentially 

maintained in heterozygous combinations that afford individuals a greater breadth of peptide 

candidates for MHC binding 49.  

Once outside the thymus, CD8+ T cells remain inactive and persist at low frequency until they 

encounter an antigen recognized by their TCR. Prior to antigen engagement, T cells are classified 

as naïve. T cells are thought to remain in a naïve state until they encounter their cognate antigen 

presented by an antigen-presenting cell (APC) in a secondary lymphoid organoid, such as a 

lymph node. While several cell types can serve as APCs, dendritic cells act as professional APCs 

critical for the initial stimulation and activation of naïve T cells. Dendritic cells reside in tissues 

throughout the body, either in a resting state or actively sampling their local environments for 
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foreign proteins in response to signs of an infection 50. As phagocytes, dendritic cells can ingest 

large amounts of extracellular debris, including mutant proteins released from cancer cells, 

though a variety of processes. Once internalized, proteins are degraded and traffic through 

antigen processing pathways for presentation by MHC class I on the surface of dendritic cells 51. 

As activated dendritic cells migrate to secondary lymphoid organoids, they encounter and 

present their antigens to naïve T cells. 

Antigen presentation by dendritic cells to a cognate T cell is called T cell “priming.” Priming is a 

critical point at which T cells differentiate from a naïve state to an effector state. The TCR 

interaction with cognate antigen, coupled with costimulatory interactions, triggers signaling 

pathways that induce dramatic increases in T cell proliferation. Proliferation results in an 

expanded clonotype of many T cells bearing the same TCR 47. In addition to dendritic cells and 

TCR:antigen binding, CD4+ T cells and inflammatory stimuli can also promote CD8+ T cell 

priming, and these secondary cues may be required to elicit full T cell activation, including the 

development of memory populations 52. Once primed, effector CD8+ T cells exit secondary 

lymphoid organs and circulate broadly throughout the body, in search of signals indicating a site 

of infection or cancer. When engaging cells presenting cognate antigen, effector CD8+ T cells 

unleash a barrage of effector proteins, including perforins and granzymes that puncture the target 

cell membrane (perforins) and trigger apoptosis (granzymes). 

Though the development, lineages, and functions of T cells extend and diversify well beyond this 

description, the process described above encompasses most of the core components of the cancer 

immunity cycle. The final stages involve T cell infiltration into the tumor microenvironment and 

subsequent interaction with antigen-presenting cancer cells. These interactions can lead to cancer 

cell death, but they can also lead to T cell exhaustion, a cell state that severely restrains the 
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overall anti-tumor immune response. T cell exhaustion is fundamentally targeted by several 

successful immunotherapies that will be described later in the next section. 

Brief overview of immunotherapy 

Physicians and scientists have long speculated that the immune system could be induced to 

eradicate cancer. This notion can be traced back as early as the 1890s, when surgeon William 

Coley became perplexed by the loss of his first cancer patient, a young girl who succumbed to 

sarcoma despite a radical surgery performed by Coley 53. Poring over medical records at the New 

York Hospital (now Weill Cornell), Coley stumbled upon an older case of another patient with 

sarcoma. Stunningly, this patient had possessed an inoperable sarcoma that regressed after a 

streptococcal infection of his skin. Coley investigated further and found that the patient was now 

clear of disease. This spurred Coley on to a yearslong development of the earliest reported cancer 

immunotherapy, eventually called Coley’s toxins, which included extract from heat-killed 

Streptococcus pyogenes and gram-negative Serratia marcescens. By 1940, more than 20 patients 

of 104 treated with Coley’s toxins experienced permanent and complete disease regression. Over 

the decades, Coley observed that this treatment had little effect on carcinomas, and his toxins 

were eventually superseded by chemotherapy, which demonstrated broader applicability across 

different types of cancer. Of note, though, Coley himself wrote that while his toxins did not elicit 

a remarkable effect on most carcinomas, he speculated that other vaccine formulations may elicit 

strong responses in other tissues. This has yet to be achieved for pancreatic carcinomas, though it 

is worth noting that the Bacillus Calmette–Guérin (BCG) vaccine is among the standard of care 

for the treatment of modern-day bladder cancer patients. It is widely thought that BCG promotes 

an effective anti-tumor immune response in these patients, though the precise mechanism 

remains under investigation 54. 
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After Coley, numerous other immunotherapies were tested with little success. Progress was 

probably hampered by a poor understanding of the immune system—even Coley’s efforts were 

done in an era when the germ theory of disease was still in its infancy and was not broadly 

accepted by the medical community. Furthermore, the primary agents of the adaptive immune 

system— B and T lymphocytes—were not in common immunology vernacular until the late 

1950s 55. Even the TCR, arguably the most important functional molecule in 21st-century 

immunotherapy, was not discovered until 1982 56. However, these discoveries prompted 

exponential growth in our understanding of the immune system, which has revolutionized the 

development of biologically informed immunotherapies. 

In this vein, pioneering work by Steven Rosenberg and others led to the first broadly applicable 

immunotherapy approved by the Food and Drug Administration (FDA): a cytokine therapy based 

on interleukin-2 (IL-2). Like Coley, Rosenberg’s career in immunotherapy was motivated by a 

case of spontaneous tumor regression, this time in a patient with gastric cancer that had 

metastasized to the liver and lymph nodes 57,58. The patient’s only treatment had been palliative 

surgery that left most of the tumor intact. In the excised portion, physicians noted an abundance 

of tumor-infiltrating T cells, indicating a potential anti-tumor immune response. This prompted 

an interest in therapeutics that could enhance the anti-tumor activity of T cells, and Rosenberg’s 

case report was followed a few years later by the discovery of IL-2 and its capacity to stimulate 

and maintain T cell growth in vitro 55. 

In mice and patients with melanoma, Rosenberg found that IL-2 could elicit robust tumor 

regression 59. In mice, this effect was dependent on the presence of lymphocytes, as mice 

depleted of lymphocytes by irradiation prior to treatment showed no therapeutic benefit. These 

data prompted large-scale clinical trials, which ultimately led to approval of IL-2 therapy for 
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melanoma patients in 1992. This was a landmark event in the history of immunotherapy, 

representing the first approval of a broadly applicable cancer treatment that targets cells of the 

adaptive immune system. While IL-2 therapy elicits unquestionable clinical benefit for some 

patients, it leads to significant toxicity and has been superseded by immune checkpoint 

inhibitors, arguably the most important clinical development in cancer treatment since the advent 

of chemotherapy. 

IL-2 therapy stimulates T cell activation and expansion, promoting their ability to infiltrate and 

attack pockets of antigen-presenting target cells. In turn, cancer cells may respond with 

additional defense mechanisms, including the upregulation of surface co-inhibitory factors such 

as programmed death-ligand 1 (PD-L1). PD-L1’s primary function is to regulate T cell 

responses, preventing the immune system from targeting normal healthy tissue. PD-L1 is 

typically expressed on the surface of many immune cell types and in many non-hematopoietic 

tissues (e.g., epithelia, endothelial cells) 60. PD-L1 binds to PD-1, a receptor expressed by many 

T cells subtypes under certain conditions, including after initial T cell activation and in the 

setting of chronic antigen exposure 61. This binding interaction triggers downstream signaling 

events, including the recruitment of SH2-containing phosphatase 2 62, in PD-1-expressing T 

cells. These events serve to constrain outputs from TCR and CD28 signaling and result in 

reduced T cell proliferation and cytokine production 63. Collectively, this can promote a state of 

T cell dysfunction, rendering T cells unable to mount an effector response upon cognate antigen 

recognition. While helpful in regulating initial T cell activation and tempering an overactive 

immune response, this immune checkpoint can be co-opted by tumor cells that overexpress PD-

L1 to shield themselves from T cell attack. 
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Another key checkpoint involves cytotoxic T-lymphocyte associated protein 4 (CTLA-4), which 

functions in a less direct manner to negatively regulate T cell responses. CTLA-4 can be 

expressed in both cytotoxic T cells and regulatory T cells. In cytotoxic T cells, CTLA-4 

competes with a co-stimulatory receptor, CD28, for binding to CD80 and CD86 expressed by 

antigen-presenting cells 64. CD28, when bound, normally amplifies the activation of T cells, 

encouraging growth and the transition to an effector state 47; however, when sufficiently 

expressed, CTLA-4 outcompetes CD28 for CD80/86 binding, stifling overall T cell activation 65. 

In the context of chronic antigen exposure, as is the case with tumor antigens, T cells may 

become exhausted and unable to execute effector functions, due in part to expression of CTLA-4 

on their surface. Regulatory T cells also express CTLA-4 and can actively suppress CD8+ T cell 

activation by stripping antigen-presenting cells of CD80/86 through transendocytosis 66. 

Many of the mechanistic insights into CTLA4 were made in the 1980s and 1990s 67,68. For 

example, James Allison and colleagues hypothesized that this molecule may restrain the immune 

system from a sustained attack on tumor cells. In 1996, they showed that antagonistic antibodies 

specific to CTLA-4 reduced tumor growth in mouse models bearing antigen-expressing colon 

carcinoma transplanted beneath the skin 69. 15 years later, the FDA approved Ipilimumab, an 

anti-CTLA-4 monoclonal antibody. After a series of clinical trials demonstrating robust and 

durable efficacy, Ipilimumab became part of the standard of care for patients with advanced 

stage IV, inoperable melanoma 70. Soon after, additional monoclonal antibodies targeting PD-1 

(Nivolumab) and PD-L1 antibodies were approved for advanced melanoma as well. 

Furthermore, the combination of both nivolumab and ipilimumab is now among first line therapy 

for metastatic melanoma and some additional cancers 71. Strikingly, these immune checkpoint 

inhibitors (ICIs) completely eradicate widely metastatic tumors in a subset of patients, providing 
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durable cures for over a decade in some individuals 72. In a Phase III trial of advanced 

melanoma, 52% of patients treated with this combination survived more than five years after 

treatment. Though highly effective, it should be noted that this combination can still incur 

substantial toxicities. 

While ICIs yield stunning effects in a subset of patients with melanoma and lung 

adenocarcinoma, clinical trials in PDAC have completely failed to demonstrate efficacy. Most 

notably, two trials tested single agent anti-CTLA-4 and anti-PD-L1 antibodies in a total of 41 

PDAC patients 73,74. Unfortunately, not a single therapeutic response was observed in either 

study. Potential reasons for this will be explored in the next section. 

Beyond ICIs, cancer vaccines and adoptive cell therapies seek to circumvent the endogenous 

immune system’s limited capacity to sustainably recognize and destroy cancer cells. Adoptive 

cell therapy (ACT) often involves the transfer of T cells obtained from the patient’s body, such 

as through extraction of tumor-infiltrating lymphocytes—TILs—from resected tumors. These 

cells are then expanded ex vivo and reinfused into the patient. ACT can also involve T cells 

obtained outside the patient’s body, e.g., from a donor individual. These T cells naturally possess 

or are engineered to express a TCR specific to a known tumor antigen 75.  

With ACT, clinicians aim to eradicate the cancer by exogenous supply of T cells already known 

to target an antigen. Some companies are also pursuing synthetic enhancement of these T cells 

(e.g., by deleting the gene encoding PD-1) prior to delivery, thus potentially endowing T cells 

with enhanced properties, such as resistance to dysfunction. Though numerous ACT modalities 

have been tested, with some limited success, chimeric-antigen receptor T cells (CAR-T) are 

currently the only FDA-approved ACT. CAR-T cells are engineered to target a surface protein 

rather than a peptide:MHC molecule. Unfortunately, the clinical benefit of CAR-T is currently 
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limited to a subset of patients with hematopoietic malignancies 76. CAR-T trials targeting 

mesothelin, a protein highly overexpressed in some pancreatic tumors relative to most normal 

tissues, have shown minimal, rather underwhelming clinical benefit in pancreatic cancer, but 

additional studies are ongoing 77,78. 

Other types of ACT, such as those targeting the MART-1 (melanoma antigen recognized by T 

cells-1) peptide:MHC complex, have struggled in part due to unanticipated TCR cross-reactivity 

with off-target complexes 79. This has led to severe adverse events, including treatment-related 

fatalities in the worst examples. By contrast, there are more promising examples of impressive 

efficacy without severe adverse events. For example, Tran and colleagues infused a colon cancer 

patient with TIL-derived cells that recognized a neoantigen derived from the KRASG12D mutation 

80. This patient experienced a dramatic regression of all liver metastases that was sustained for at 

least nine months. A similar result was recently reported for a pancreatic cancer patient treated 

with T cells specific to the same KRAS mutation. In this patient, autologous T cells were 

engineered ex vivo to present a TCR specific to the neoantigen. Like the colon cancer case, 

multiple metastases regressed, a response sustained up to at least six months, when the study was 

published 78. These examples inspire continued optimism for the potential of ACT as a cancer 

treatment modality. With continued identification of cancer-specific antigens and increased 

knowledge of T cell receptor reactivities, researchers may eventually identify ACT strategies that 

effectively treat solid malignancies. 

Like ACT, cancer vaccines aim to mount an anti-tumor immune response where one may not 

previously exist. While traditional vaccines for infectious disease are often prophylactic, cancer 

vaccines are often intended to treat pre-existing disease. (There are clinically approved examples 

of prophylactic cancer vaccines for certain virus-driven cancers, such as human papillomavirus-
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driven cervical cancer.) Cancer vaccine strategies vary and include applications like injection of 

the patient with proteins representing known cancer-specific antigens or with genetical material 

encoding such antigens 81. However, the only FDA-approved, non-prophylactic cancer vaccine 

targeting a known tumor antigen is Provenge, approved for the treatment of hormone refractory 

prostate cancer. Provenge works through vaccination outside the patient’s body: dendritic cells 

are isolated and pulsed ex vivo with prostatic acid phosphatase (PAP), an antigen often 

overexpressed in prostate cancer. These dendritic cells are then reinfused to the patient to 

effectively prime T cells and induce an anti-tumor response. This therapy elicits a modest 

clinical benefit, with a median increase in overall survival of ~4 months versus patients treated 

with placebo 82. Beyond Provenge, many cancer vaccine strategies are currently in trial, and 

optimism exists for greater clinical benefit based on the advent of new vaccination modalities 

and strategies. These include mRNA-based vaccines, as well as improved bioinformatic 

prediction of cancer-specific antigens 83. 

The vast landscape of immunotherapy stretches well beyond those described, encompassing 

CD40 agonists that aim to enhance T cell priming in vivo, and emerging ICIs such as antibodies 

targeting T cell immunoreceptor with Ig and ITIM domain (TIGIT) and many other classes still 

45. Beyond modulators of immune cell function, other emerging approaches engineer synthetic 

proteins that target predefined peptide:MHC complexes. For example, Yarmarkovich et al. 

introduced an approach for developing novel CARs that recognize peptide:MHC class I 

complexes via single chain fragment variables (scFvs). These were optimized through an 

iterative process of panning the target complex against a phage library of more than 2*1010 

structures 84. After integration of optimized scFvs into a CAR construct, these researchers 

demonstrated antigen-specific killing of tumor cells by the engineered CAR-T cells in vitro and 
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in vivo. Using a similar phage panning approach, Han-Chung Hsiue and colleagues developed a 

bi-specific single-chain diabody consisting of an scFv that binds a peptide derived the common 

p53R175H point mutation in complex with the common HLA-A*02:01 allele 85. The scFv is fused 

to a traditional antibody that binds to a constant region of the TCR-CD3 complex on T cells. This 

second binding event triggers downstream TCR signaling, even if the TCR is not specific to the 

target antigen. This promotes a T cell effector response as if the T cell had recognized its cognate 

antigen, redirecting a killing response against the nearby tumor cell. Like Yarmarkovich et al., 

these researchers demonstrated antigen-specific killing of tumor cells in vitro and in vivo. Both 

studies highlight an improving ability to engineer novel protein structures that can redirect T 

cells to prespecified cancer antigens. As these technologies improve, they will expand the 

repertoire of cancer-specific targets amenable to immunotherapy and potentially broaden the 

cohort of cancer types that can be effectively treated. 

Methods to identify immunotherapy targets in pancreatic cancer 

As discussed, immunotherapies do not currently benefit most patients suffering from PDAC. 

Many studies have posited that this is due to an ‘immunologically cold’ tumor 

microenvironment, in which cytotoxic T cells are scarce, immunosuppressive cells are abundant, 

and a low mutational burden precludes productive immune recognition. In principle, a low 

mutational burden should give rise to few or no mutated peptides (neopeptides) that could be 

bound by MHC class I molecules and presented on the tumor surface for recognition by CD8+ T 

cells. Neoantigens efficiently bound and presented by MHC are an empirically validated target of 

anti-tumor T cells and many T cell-based immunotherapies, including ICI, cytokine therapy, and 

ACT 80,86. Their supposed absence in PDAC patients that fail to respond to ICI is often 

contrasted with the success of ICIs in a small cohort (<2%) of PDAC patients whose tumors bear 
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defects in the mismatch repair (MMR) system. Such defects include loss-of-function mutations 

in an MMR gene like MSH2. MMR deficiencies promote errors during DNA replication, leading 

to a higher mutational burden, more than five or ten times that of a typical PDAC tumor 87. A 

higher mutational burden, in theory, should produce more neoantigens and is typically predictive 

of a better ICI response within and across many tumor types. Accordingly, most patients with 

MMR-deficient PDAC tumors experience a significant clinical benefit when treated with ICI 88. 

The low mutational burden in MMR-proficient PDAC is widely cited to explain why patients do 

not respond to ICI 88–90. However, emerging evidence indicates the primary reason may involve 

defects in the immunosurveillance of pancreatic tumors 44. Specifically, Hedge and colleagues 

showed that dendritic cells are both scarce and dysfunctional in PDAC tumors of both patients 

and mouse models. This was drastically different than the microenvironment of lung 

adenocarcinoma, a cancer subtype that often responds to ICI and is frequently infiltrated with 

CD8+ T cells bearing markers of exhaustion. In the lung, tumors were typically infiltrated with 

functional dendritic cells presenting co-stimulatory molecules that promote T cell priming. This 

suggests that dendritic cells efficiently survey the lung tumor microenvironment for antigens, 

leading to efficient T cell priming and a neoantigen-specific response. By contrast, the scarcity of 

dendritic cells in PDAC tumors prevents adequate immunosurveillance. This would preclude 

neoantigen-specific T cell priming and subsequent effector cell exhaustion. Without these steps, 

PDAC patients would not benefit from ICI, since they lack effector T cells that recognize tumor 

antigens to begin with. 

Furthermore, recent computational studies have challenged the notion that PDAC tumors lack 

neoantigens, predicting dozens of neoantigens in the typical PDAC patient 45,91–93. This suggests 

that neoantigens play a previously underappreciated role in PDAC immunology and has 
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prompted continued clinical interest in immunotherapy for this disease. Most recently, a 

landmark Phase I trial this year reported positive results for neoantigen-based vaccines in 

pancreatic cancer patients 81. In this trial, 16 patients received mRNA-based vaccines informed 

by bioinformatic neoantigen prediction based on somatic mutations detected in resected samples. 

They also received FOLFIRINOX and anti-PD-L1 antibody treatment. Eight patients 

demonstrated a response, exhibiting a longer relapse-free survival than non-responders, with the 

median unreached in the responder cohort after more than 15 months. While these samples sizes 

are insufficient to make final conclusions, they suggest that neoantigen-based vaccines may soon 

play a role in prolonging patient survival after surgery. Mechanistically, researchers also 

observed a robust expansion of neoantigen-specific T cells in these patients, supporting the 

expected therapeutic mechanism and underscoring the potential of this approach. 

To date, the field has primarily analyzed pancreatic cancer neoantigens derived from missense 

mutations that are typically unique to individual patients. Within each tumor, many missense 

neoantigens are predicted to reside in only a fraction of tumor cells, limiting therapeutic 

potential. However, neoantigens can derive from a much broader class of mutations and other, 

non-mutational sources 94–98.  Each of these represents a potentially untapped pool of 

immunotherapy targets in pancreatic cancer. The next section will review several such examples. 

Frameshift mutations  

Many early papers predicting neoantigens focused solely on those derived from missense 

mutations that alter a single amino acid. For example, seminal work by Gubin et al. (2014) and 

Campbell et al. (2016) predicted and validated missense-derived neoantigens in both mouse 

models and human tissue, respectively. However, both papers limited their analysis to single 

nucleotide substitutions, but somatic insertions/deletions (indels) are also common mutations in 
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human cancer. Indels in protein-coding regions can create frameshift mutations that eliminate 

protein function by shifting the reading frame, thereby disrupting the entire downstream protein 

sequence 99. 

Such frameshift mutations can thus generate long, novel peptide sequences that, in principle, 

could recur across different cancer patients, as different frameshifts in the same gene can yield 

overlapping alternative reading frames. Frameshift mutations in tumor suppressor genes (TSGs), 

especially TP53, SMAD4, and CDKN2A, are common drivers of pancreatic cancer. I hypothesize 

that frameshift mutations in TSGs may generate recurrent neoantigens capable of stimulating 

tumor-specific cytotoxic T cell responses. Given their intrinsic link to a tumor-initiating 

mutation, I also predict that these neoantigens would be clonal or expressed by most tumor cells. 

Some bioinformatic evidence and a single clinical example in a melanoma patient support the 

possibility of TSG-derived frameshift neoantigens 100,101, but the existence of TSG frameshift-

derived neoantigens has not been investigated in pancreatic cancer. If confirmed in pancreatic 

cancer, these neoantigens could represent powerful targets for immunotherapies, particularly 

adoptive T cell therapy and neoantigen vaccines, even in patients with a low mutational burden, 

who may otherwise lack potent neoantigens. 

Frameshift neoantigens are also interesting in the context of thymic selection. During negative 

selection, autoreactive T cells with TCRs that recognize an organism’s natural peptide:MHC 

complexes too strongly undergo apoptosis, thereby skewing the repertoire of TCRs toward a 

“self”-tolerant phenotype. This may explain why the majority of predicted missense neoantigens 

are not immunogenic in validation studies 102, as cross-reactive T cells that recognize both the 

neoantigen and its wild-type analog are removed during negative selection, biasing the TCR 

repertoire against recognition of neopeptides that differ from their wild-type counterpart by only 
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one amino acid. The exceptions would be neopeptides that are sufficiently divergent from self-

peptides or those that substantially enhance MHC class I binding affinity. Since frameshift 

mutations generate entirely novel amino acid sequences, neopeptides derived from frameshifts in 

TSGs may also be frequently immunogenic. 

While TSG frameshift-derived neoantigens could be immunogenic, clonal, and recurrent among 

patients, they may be less likely to be translated into protein. Frameshift mutations generally 

induce a premature stop codon (PTC) encoded within the alternative reading frame. PTCs can 

reduce transcript expression by triggering nonsense-mediated decay (NMD), a pathway that 

recognizes and degrades PTC-bearing transcripts. Though NMD can certainly target frameshift-

bearing transcripts, Litchfield and colleagues showed that many frameshifts frequently escape 

NMD in cancer, depending partly on the position of the indel within the transcript 103. 

Furthermore, Roudko et al. (2020) showed that frameshift mutations are translated into protein in 

human MMR-deficient endometrial, colorectal, and stomach cancers.  

Finally, while NMD may target transcripts for degradation, thereby reducing protein levels, some 

level of peptide is still translated during the pioneering round of translation, before NMD takes 

place, as so-called defective ribosomal products. These products are preferentially shuttled to the 

MHC class I presentation pathway 104, potentially enhancing the likelihood of antigen 

presentation despite an overall loss in protein production. Thus, while NMD may reduce 

expression of potential neoantigens derived from frameshift mutations, many are likely still 

translated and represent a source of MHC class I-associated peptides. 

Retained introns 

In addition to mutations in protein coding genes, variation in the transcriptome may represent a 

source of cancer-specific antigens. Like the genome, the transcriptome also becomes 
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dysregulated and distorted as cancer cells evolve and de-differentiate from normal cell lineages, 

leading to global changes in gene expression patterns 105. This can affect the expression of genes 

encoding splicing factors, promoting errors in splicing regulation and the consequential 

production of novel mRNA transcripts derived from retained introns (RIs), exon skipping or 

shuffling, other splicing events 106. Some splicing factors also serve as frequently mutated cancer 

driver genes. For example, SF3B1, an RNA splicing factor that regulates intron excision during 

mRNA processing, is often mutated in uveal melanoma and other cancers 104. Mutations in 

SF3B1 can lead to the production of more than 1,000 novel splicing junctions, including the 

retention of introns in mRNA. These mis-spliced transcripts have been shown to generate novel 

protein sequences and immunogenic peptide:MHC complexes in human patients 104. Alternative 

splicing events like these are thought to be cancer-specific, since the responsible mutations (e.g., 

in SF3B1) are limited to the cancer cells. Thus, dysregulated alternative splicing can represent 

another class of cancer-specific epitopes not presented by normal tissues nor incorporated into 

thymic selection. 

In 2018, Smart et al. published the first demonstration of retained introns encoding peptides 

presented by MHC class I in cancer. Using a novel RNA-Seq analysis pipeline, they identified 

hundreds of transcripts retaining introns in melanoma cells. Many of the same introns were 

absent in a cohort of normal skin tissue controls, suggesting possible cancer specificity. With 

mass spectrometry, they then profiled MHC class I-bound peptides on the surface of human 

melanoma, B cell lymphoma, and leukemia cell lines, identifying one or two peptides derived 

from cancer-specific retained introns in every cell line. These findings established proof-of-

concept for retained introns as an additional source of cancer epitopes, though broader 

expression of retained introns in tissues throughout the body was not examined.  
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Like frameshift mutations, retained introns (RIs) are underexplored as a source of cancer-

restricted antigens in PDAC. While a recent study predicted retained introns in a cohort of PDAC 

samples from The Cancer Genome Atlas 107, these researchers only considered bulk tumor 

samples. This represents a confounding variable, as bulk pancreatic tumor samples notoriously 

possess more stromal cells than they do cancer cells 17. Retained introns are primarily detected 

by calculating the ratio of sequencing reads that span an exon-intron junction over the those that 

span the annotated exon-exon junction 97. Thus, in bulk tumor samples, the intron retention ratio 

may be diluted by sequencing reads derived from stromal cells unaffected by dysregulated 

splicing. Furthermore, it remains unclear whether retained introns reported in this study are 

present in normal tissues, as the investigators only considered normal pancreas samples as 

healthy tissue controls. This limitation will be explored further in Chapter 2. 

Novel or unannotated open reading frames (nuORFs) 

Only 1-2% of the human genome content is predicted to encode a protein sequence 108. For 

decades, the remaining genome was dismissed by many as “Junk” DNA without an obvious 

function 109. However, it is increasingly appreciated that the noncoding genome performs a 

variety of functions. For example, many non-genic sequences encode long noncoding RNAs or 

microRNAs that fine-tune the expression levels of canonical protein-coding genes 110. Other 

regions encode gene promoters and enhancers that interact with transcription factors to 

orchestrate gene expression programs, including the use of alternative isoforms 105. 

Consortium efforts like ENCODE have even established that most of the human genome is 

pervasively transcribed into RNA 109, yet most of this RNA is not thought to encode protein. 

Noncoding RNAs, by definition, lack open reading frames (ORFs), or they possess ORFs too 

short to give rise to a functional protein 111. Most noncoding RNA sequences have not been 
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conserved throughout mammalian evolution, suggesting they would not encode proteins with 

important function. Thus, noncoding RNAs are often ignored as potential sources of cancer 

antigens. 

However, in 2015, pioneering work from the laboratories of Aviv Regev and Kevin Struhl 

revealed that many noncoding RNAs are bound by ribosomes, the organelle machinery 

responsible for mass production of cellular proteins. While this has long been established for 

mRNAs, Ji et al. (2015) found that ORFs deriving from as many as 40% of lncRNAs and 

pseudogenes can be translated by ribosomes into protein sequences. Ji and colleagues further 

found that ~9% of these novel protein-coding ORFs are evolutionarily conserved between mice 

and humans, suggesting a selective pressure to maintain critical functions. These results show 

that the mammalian proteome is broader and more complex than initially appreciated. 

Ouspenskaia et al. (2022) later showed that protein sequences encoded by these novel or 

unannotated ORFs (nuORFs) are processed for MHC class I presentation in a variety of both 

normal and cancer cell types. This was validated through extensive ribosome sequencing (Ribo-

Seq), a technique that identifies mRNAs undergoing active translation. With Ribo-Seq profiling, 

the researchers empirically identified thousands of translated nuORFs contained within long 

noncoding RNAs (lncRNAs), pseudogenes, and 5’ and 3’ untranslated regions. These data 

facilitated construction of an augmented proteome search space for the detection of peptides 

eluted from MHC class I molecules. This enabled a second layer of empirical validation, and the 

results provided direct evidence of nuORF-derived peptides bound to MHC class I molecules. 

Notably, many of these peptides derived from transcripts that were not detectably expressed in 

normal tissues, suggesting that nuORFs could represent yet another class of cancer-restricted 

epitopes. Furthermore, Ouspenskaia and colleagues identified dozens of somatic mutations 
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predicted to alter the protein sequences of nuORFs, thus furnishing an additional source of 

mutation-derived neoepitopes. nuORFs remain unexamined as a source of cancer-restricted 

epitopes in pancreatic cancer. 

Other sources 

Though they will not be examined in the present thesis work, other classes of cancer-specific 

antigens should be mentioned. For example, alternative splicing events beyond intron retention 

could give rise to cancer antigens. These include exon skipping, exon shuffling, and the 

formation of alternative 3’ or 5’ splice sites 106. Lu et al. (2021) found that pharmacological 

modulation splicing factors amplifies the production of such events, increasing the load of 

alternative splicing-derived peptides presented by MHC class I 112. Beyond splicing, 

dysregulated RNA editing by double-stranded RNA-specific adenosine deaminase (ADAR) 

could induce novel amino acid substitutions, and alternative polyadenylation events could lead to 

the translation of RNA sequences that are not normally read by the ribosome 106.  

Prediction of cancer-specific MHC-associated peptides 

Prediction of cancer-restricted antigens is informed by bioinformatic analysis of genomic or 

transcriptomic data. Next-generation RNA sequencing (RNA-Seq), whole exome sequencing 

(WES), and whole genome sequencing (WGS) are the basis of numerous high-profile papers 

predicting and/or detecting cancer-specific antigens in patients 113–115. To date, neoantigen 

prediction has largely emphasized missense mutations, which are predicted using a common 

computational framework. In general, this framework operates by 1) identification of patient-

specific HLA alleles with HLA genotyping algorithms, 2) somatic variant calling, 3) mutant 

peptide sequence annotation, and 4) the prediction of binding affinity between patient-specific 

MHC class I alleles and all possible mutation-derived peptides. Most neoepitope prediction 
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follows this general workflow, though dozens of additional parameters can be incorporated, 

including RNA expression levels and the predicted likelihood of peptide processing and stability 

83. Candidate neoepitopes can be further filtered or ranked according to several variables, such as 

the strength of predicted MHC binding affinity, DNA or RNA variant allele frequency, and the 

ratio of mutant peptide binding affinity for MHC versus that of the cognate wild-type peptide, 

among others.   

The ultimate utility of neoepitope prediction pipelines depends on the accuracy of each of the 

above steps. The first step, HLA genotyping, is extremely accurate. In a benchmarking 

comparison of five popular HLA typing software tools, OptiType achieved the highest accuracy 

in calling donor-specific class I alleles, across both WGS (71% accuracy) and WES (98%) 

datasets. This was benchmarked against a set of 1,000 HLA genotypes validated with 

polymerase chain reactions 116. 

Somatic variant calling is similarly accurate and highly sensitive: approximately 95% of single 

nucleotide variants (SNVs) and insertions/deletions (indels) with a variant allele frequency of at 

least 15% are reliably detected, assuming 50X coverage (i.e., the number of sequencing reads 

that map to a defined nucleotide in the genome) 117. Variant annotation tools, such as Ensembl’s 

Variant Effect Predictor 118, are also highly reliable; however, their ability to predict a mutant 

peptide sequence depends on underlying functional annotations of each genomic sequence in a 

reference database. For SNVs and indels affecting coding sequences, these tools are extremely 

accurate and even predict downstream frameshifted protein sequences.  

While these upstream components are extremely accurate, peptide:MHC binding affinity 

predictions are more variable. One of the leading programs in the field is the NetMHCpan-4.1 

prediction algorithm 119, an artificial neural network. NetMHCpan-4.1 is trained by data derived 
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from both peptide:MHC binding affinity assays and mass spectrometry profiling of peptides 

eluted from MHC complexes. The training dataset underlying NetMHCpan-4.1 includes peptides 

from at least 250 protein-coding MHC class I alleles, including several high frequency alleles in 

the human population. While allele-specific accuracy depends on the size of the respective 

training set 120, NetMHCpan-4.1 is extraordinarily sensitive. When assessed for performance on 

biochemically-validated MHC binding peptides, NetMHCpan-4.1 predicted binding of ~97% of 

candidate ligands to the corresponding MHC allele 121. While highly sensitive, NetMHCpan-4.1 

has a considerable false positive rate, though estimates of this vary 120,121. 

In practice, NetMHCpan-4.1 outputs various metrics, including a predicted MHC binding 

affinity (IC50) and an allele-specific percentile binding rank (i.e., the ranking of the peptide’s 

predicted affinity relative to a set of random natural peptides). Traditionally, researchers 

establish an IC50 threshold (typically <500 nanomolar) to designate neoepitope candidates, 

though it is increasingly common to defer to the allele-specific percentile rank and designate a 

cutoff of 2%. This has recently been shown to promote the highest balance between sensitivity 

and specificity 119,121.  

The high sensitivity of these tools makes them valuable for antigen discovery efforts. This is well 

highlighted in work by Lu et al. (2021). Using an earlier version of NetMHCpan (4.0), they 

demonstrate that out of thousands of murine MHC class I-bound peptides identified from mass 

spectrometry, more than 80% were predicted to bind to mouse MHC class I alleles. In contrast, 

less than 1% of peptides selected from random positions in the proteome were predicted to bind 

to MHC class I. These results highlight that most peptides discovered with empirical assays can 

also be predicted bioinformatically. 
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The accuracy and broad utility of neoepitope prediction pipelines is evidenced in many 

empirically validated preclinical and clinical studies 81,113–115,122. For example, studies by Sahin et 

al. (2017) and Keskin et al. (2019) harnessed neoantigen prediction algorithms to conduct Phase 

I clinical trials in patients with melanoma and glioblastoma, respectively 113,122. Both studies 

assembled neoepitope-based cancer vaccines for delivery to patients. These vaccines elicited de 

novo CD8+ T cell responses against patient-specific neoepitopes in both melanoma and 

glioblastoma. This corresponded to increased tumor infiltration of neoantigen-specific T cells in 

glioblastoma and sustained progression-free survival in melanoma. Strikingly, both studies and 

other clinical trials report an unexpected yet robust CD4+ T cell response against vaccinating 

neoantigens 114. The reasons for this remain unclear and warrant further investigation. 

Beyond the clinic, neoepitope predictions enabled the discovery of hundreds of empirically 

validated neoepitopes in human samples and cancer mouse models. For example, seminal work 

by Gubin and colleagues harnessed neoepitope prediction to identify natural neoepitopes derived 

from missense mutations in Lama4 and Alg8 in a 3-methylcholanthrene-induced (MCA) mouse 

sarcoma cell line. This enabled the first empirical demonstration that mutation-derived 

neoepitopes are targeted by exhausted, PD-1+ CD8+ T cells in an animal model in vivo. This 

provided key mechanistic insights regarding anti-tumor CD8+ T cells following therapeutic 

reinvigoration with immune checkpoint inhibitors. These two neoepitopes now form the basis of 

many preclinical murine systems that enable researchers to probe the interaction of cancer and 

the immune system in vivo. This is particularly important as classic genetically engineered 

mouse models of cancer accumulate far fewer mutations than human cancers 45,123. 

Despite their tremendous utility, peptide:MHC binding algorithms do not account for critical 

upstream cellular processes that can dictate which peptides ultimately get presented on the 



 43 

surface of cells 120. Differences in protein turnover rates, cellular localization, and proteasomal 

processing patterns influence which proteins are degraded into the specific 8-11mer peptide 

sequences required by MHC class I alleles. Finally, processes that affect mRNA stability and 

degradation influence protein abundance, an important consideration as peptide substrate 

concentrations must be sufficient for meaningful interaction with MHC molecules and 

engagement with cognate T cells 123. These caveats represent one reason why many predicted 

neoepitopes are not empirically validated by mass spectrometry.  

For non-mutation-based cancer antigens, epitope prediction often relies on RNA-Seq data, rather 

than whole exome or whole genome sequencing. For example, RNA-Seq data is required to 

identify cancer-specific splice isoform variants and their encoded epitopes 106. This is necessary 

in part to help restrict the search space of downstream empirical assays. For example, mass 

spectrometry profiling of MHC-bound ligands, commonly called immunopeptidomics, can only 

identify peptide sequences that are presented within a defined proteome search space. In most 

studies, this search space simply includes the reference proteome and thus excludes novel splice 

isoforms. 

The confidence in mapping spectra back to the originating protein is quantified by a false 

discovery rate (FDR), i.e., the proportion of identified peptides passing thresholds that are not 

actually the correct spectral mapping 95. Several studies demonstrate that the size of a protein 

search space affects the FDR in immunopeptidomics experiments 95,112,124, and excessively large 

search spaces promote an unacceptably high FDR 124. Due to these limitations, an augmented 

search space comprised of all possible alternative splicing events is impractical. Instead, RNA 

sequencing data can be used to identify aberrant transcripts to construct a smaller, informed 

search space. These principles apply to other sources of translated products, including transcripts 
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from the non-coding genome, which could generate a theoretically vast number of potential 

peptides. 

Candidate epitopes computationally predicted or empirically detected are often assessed for 

immunogenicity, i.e., their ability to stimulate a T cell response. There are numerous variations 

of T cell immunogenicity assays. In general, antigen-presenting cells are stimulated with a 

candidate peptide (or a genetic sequence encoding the peptide). These cells are cocultured with 

CD8+ T cells, which are assessed for a functional T cell response. This is often signified by the 

release of interferon gamma, granzyme B, or other functional molecules released by effector 

CD8+ T cells upon antigen recognition 96,102. Other cellular assays employ customized 

peptide:MHC tetramers, complexes comprised of four biotinylated, peptide-loaded MHC protein 

monomers bound to a streptavidin core, conjugated to a fluorophore. These reagents bind TCRs, 

enabling identification and isolation of antigen-specific T cells via flow cytometry.  

In studies of cancer, both types of T cell-based assays are often performed using tumor-

infiltrating lymphocytes (hereafter, TILs). In principle, identification of antigen-specific CD8+ 

TILs demonstrates that a candidate neoepitope elicited an anti-tumor immune response in a 

patient or animal from which the epitope was predicted (or detected). However, TIL-based 

screening validates very few neoantigens, often fewer than 2% of nominated neoepitope 

candidates. This number reaches only as high as 6% in consortium-based efforts that optimize 

neoepitope prediction 83,102.  

Some investigators argue that TIL-based assays suffer from inherent biases that underestimate 

the true cancer epitope burden 125. For example, TIL-based neoantigen validation assumes the 

subject being studied successfully mounted an anti-tumor immune response against every 

presented neoepitope. It further presumes that the fraction of TILs obtained at the time of 
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extraction represents the full life history of the anti-tumor immune response. It is conceivable, 

however, that cancer-specific TILs are variably present, despite continued expression of cognate 

antigen. 

Expounding on this concept, Strønen et al. (2016) demonstrated that healthy donor peripheral 

blood mononuclear cells (PBMCs) enable in vitro generation of neoepitope-specific T cells from 

undetectable naïve TCR repertoires 125. This study generated antigen-specific T cells for 11/57 

(19%) tested neoepitopes nominated by a prediction pipeline analysis of melanoma patient 

tumors. Critically, these donor-derived T cells could recognize and elicit an effector response 

against cultured tumor cells from which the neoepitopes had been predicted. Furthermore, 

patient-derived TILs were found to recognize only one of the eleven validated neoepitopes, 

suggesting that patient T cells frequently failed to respond to bona fide neoantigens. These 

results support the notions that (1) the host immune system does not necessarily mount a 

response against every neoepitope presented by cancer cells and (2) that TIL-based screening 

may underestimate the presence of candidate neoepitopes nominated by prediction pipelines. The 

true cancer-specific epitope burden in tumors likely falls between the number predicted by 

bioinformatic pipelines and the number validated by empirical assays. In the future, as 

computational and empirical practices improve, researchers will more accurately identify 

presented neoepitopes, enabling more informed immunotherapies. 

While neoantigen prediction and validation has been well documented in melanoma and lung 

cancer, the cancer-specific epitope landscape in PDAC remains vastly understudied. Prior efforts 

in PDAC are primarily limited to missense mutations, including an elegant study by 

Balachandran et al. (2017). These researchers demonstrated that tumors from long-term 

survivors of PDAC are enriched with missense-derived neoepitopes that bear high sequence 



 46 

homology to viral peptides, which may render them highly immunogenic. Accordingly, the 

authors identified frequent T cell responses to these neoepitopes in patient samples, suggesting a 

successful anti-tumor immune response is responsible for the sustained tumor regressions in this 

cohort of long-term survivors. In a similar study, Łuksza, Sethna, and Rojas et al. (2022) later 

showed that missense neoepitopes in the TP53 tumor suppressor gene can elicit immune 

responses in PDAC patients. Beyond these studies of missense mutations, the broader neoepitope 

landscape remains largely understudied in PDAC. 

Empirical investigations are also lacking. To date, only one immunopeptidomics study in human 

PDAC has been published 126. This study primarily analyzed bulk tumor tissue, limiting the 

ability to distinguish MHC class I-bound peptides derived from cancer cells from those derived 

from stromal cells. Furthermore, these investigators only scanned the reference proteome, 

preventing identification of epitopes derived from mutations, alternative splicing events, and 

nuORFs. 

These observations highlight a critical gap in our knowledge of pancreatic cancer. Few efforts 

have been made to characterize the landscape of antigens in this deadly disease, despite abundant 

computational and empirical evidence of diverse cancer antigens in other malignancies. 

Emerging clinical data, such as the neoepitope vaccination trial discussed previously, underscore 

the potential for effective PDAC immunotherapies informed by knowledge of the neoepitopes 

borne by patient tumors. This potential is further reinforced by work in mouse models of PDAC, 

including work from our laboratory and others that have devised effective immunotherapy 

strategies in the preclinical setting. 

In the context of PDAC, the KPC (KrasLSL-G12D/;, Trp53LSL-R172H/+;Pdx1-Cre) mouse model is 

considered the gold-standard because of its fidelity to salient traits of the human disease, such as 
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a fibroblast- and macrophage-dominant tumor microenvironment, similar neoplastic tissue 

morphology, and propensity to metastasize to tissues such as the liver, lung, and lymph nodes. 

Though these are desirable attributes, Evans et al. (2016) reported that KPC tumors have 

mutation burdens far lower than the typical human cancer and lack predicted neoantigens. Thus, 

the KPC model is not ideal for studying the relationship between neoantigens and the immune 

system. To circumvent this, my colleagues William Freed-Pastor and Laurens Lambert 

developed a new system based on the orthotopic transplantation of genetically defined KrasLSL-

G12D/+; Trp53flox/flox;H11neoantigen pancreatic organoids, which express a defined neoepitope: the 

high affinity MHC class I-restricted CD8+ T cell antigen OVA257–264 [SIINFEKL], or missense-

derived neoepitopes from Lama4 or Alg8. Defined neoantigens enable us to precisely track 

antigen-specific CD8+ T cell responses in vivo. Importantly, we showed that, like the KPC 

model, pancreatic adenocarcinomas evolving from these transplants preserve key 

histopathological features of the human disease.  

After profiling neoepitope-specific TILs in these mice and studying other TILs derived from 

PDAC patients, we found that TIGIT and PD-1, both exhaustion markers, were frequently co-

expressed on the surface of TILs from our model and from patients. We then devised a triple 

combination immunotherapy based on CD40 agonism, PD-1 inhibition, and TIGIT inhibition. 

Notably, we observed a 46% objective response rate and, most importantly, a complete tumor 

regression in 23% of the 48 animals tested with this combination in our preclinical trial 

(Appendix I). In contrast, all possible single-agent and dual-agent combinations failed to elicit a 

powerful response (at best an 11% ORR with no CRs using CD40 agonism as a monotherapy). 

Notably, anti-PD-1 monotherapy did not elicit a response in any animal (0% ORR; n = 9), 

corroborating prior work in the KPC mouse model 127. Our results with TIGIT/PD-1 co-blockade 
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plus CD40 agonism provided a powerful preclinical proof that carefully designed 

immunotherapy can elicit a therapeutic response in vivo, even in mouse models that exhibit 

immunosuppressive hallmarks of the human disease. 

Motivated by these preclinical findings, as well as the profound success of immunotherapy in 

other tumor types, I sought to address the gap in our understanding of the neoepitope landscape 

in human PDAC. As I will describe in Chapter 2, this work began with the development of a 

suite of bioinformatic pipelines. Collectively, these enable prediction of cancer-restricted 

epitopes derived from missense and frameshift mutations, retained introns, and nuORFs. These 

tools were applied to whole genome sequencing (WGS) and RNA-Seq data obtained from 

pancreatic cancer patient-derived organoids, provided by colleagues at the Dana-Farber Cancer 

Institute. Organoids are three-dimensional cultures of cells that bear a greater phenotypic 

resemblance to the architecture and biology of cell types in vivo than traditional two-dimensional 

cell lines 25. Importantly, organoids also represent pure cancer cell populations, enriched by 

culture conditions that favor pancreatic tumor cells but not the stromal compartment. Since 

organoids are pure tumor cell populations, we are thus able to study the mutational landscape, 

transcriptome, and immunopeptidome of human pancreatic cancer cells without the confounding 

influence of stromal cells. 

With a broadened bioinformatic lens focused on these patient-derived samples, we found that 

pancreatic cancer cells bear a larger somatic mutation burden and predicted neoepitope load than 

previously estimated by prior studies of bulk tumor samples. We also predicted shared cancer-

restricted epitopes derived from frameshifts in tumor suppressor genes and retained introns. 

Using immunopeptidomics, we empirically validated the presentation of epitopes derived from 

retained introns, lncRNAs, 5’ UTRs, missense mutations, a frameshift in the tumor suppressor 
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gene SMAD4, and other sources. We identified a large subset of these as PDAC-specific by 

scanning the transcriptome and immunopeptidome of hundreds of normal tissue specimens 

derived from over 30 different tissues and finding no evidence of functional expression levels in 

essential normal tissues. Finally, we demonstrate the recognition of three of these PDAC-specific 

MHC class I-bound peptides by CD8+ T cells derived from the blood of healthy donors, 

indicating they can elicit an endogenous immune response in HLA-matched individuals. 

Collectively, this work elucidates a broadened class of immunotherapy targets for pancreatic 

cancer, pinpointing new clinical directions for this notoriously recalcitrant disease. 

Synopsis and Outlook 

While the history of pancreatic cancer is bleak, new technologies and biological insights 

continue to emerge and reveal new ways of targeting cancer and rationally combining novel 

treatments. These include updated views of the mutational landscape, transcriptome, and 

proteome of pancreatic cancer cells, revealed in part by new cancer cell culturing systems, next-

generation sequencing techniques, and increasingly sensitive immunopeptidomics 128. 

My graduate work has focused on the discovery of new targets for this disease, which I hope will 

be applied towards new approaches in immunotherapy for treating pancreatic cancer. Preclinical 

work and certain clinical data, such as the approval of checkpoint inhibitors for mismatch repair 

deficient pancreatic cancers and the recent phase I trial employing neoantigen vaccines, suggest 

that next-generation immunotherapies possess great potential for treating this disease. The targets 

identified in Chapter 2 could be amenable to several of these approaches, including adoptive cell 

therapy, cancer vaccines, and peptide:MHC centric CARs and bi-specific antibodies described 

earlier in this chapter. In Chapter 4, I will outline several of these applications in greater detail. 
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Chapter 1, Part 2: Modeling the cancer genome with genome editing 
technology. 
The most important goal of all cancer research is to find new ways to diagnose, detect, or treat 

cancer. Before entering clinical trials, therapeutics must be evaluated through preclinical testing 

with animal models. These models enable scientists to ethically evaluate the benefits and side 

effects of a new therapeutic before risking administration to human patients. 

In cancer research, mice have long been the gold-standard animal model. Many of the most 

popular mouse models of cancer are genetically engineered so that they closely approximate 

features of the human disease. This is commonly done by engineering mutations that drive 

cancer in humans into the cancer-related genes of mice. By using these models in a controlled 

fashion, investigators can induce cancer in specific tissues (e.g., lung or pancreas) of mice and 

thereby study how the disease originates, evolves, and responds to experimental therapeutics. 

While valuable, genetically engineered mouse models take months or years to develop. Thus, the 

generation of new mouse models struggles to keep pace with the discovery of new cancer driver 

mutations occurring on a regular basis (see Chapter 3). These mutations, alone and in diverse 

combinations, produce dramatic differences in the biology and therapeutic vulnerabilities of 

tumors in different patients. Generating mouse models that recapitulate these effects is a critical 

step toward better understanding them.  

In this section, I will describe a brief history of genetically engineered mouse models and 

genome editing technology. I will then introduce the work presented in Chapter 3, in which my 

colleagues and I developed a new genetically engineered system capable of installing a broad 

spectrum of different cancer mutations into various tissues of adult mice. This technology 

enables modeling of most human cancer-associated mutations, without requiring the time-

consuming construction of a new mouse for each mutation of interest.  
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Cancer as a genetic disease 

Human cancer is driven by sporadic genetic alterations, including single nucleotide variants, 

insertions, deletions, chromosomal losses and gains, and chromosomal rearrangements. In solid 

epithelial malignancies, driver mutations often co-occur in sets of two or more, with each set 

typically conferring both a gain-of-function in an oncogene and a loss-of-function in a tumor 

suppressor gene. Major consortium efforts like The Cancer Genome Atlas (TCGA) and the Pan-

Cancer Atlas of Whole Genomes (PCAWG) have performed deep sequencing of cancer exomes 

and genomes across thousands of cancer patients and dozens of cancer types. These efforts 

continuously identify new cancer driver mutations, a catalog that now numbers in the thousands 

129.  

Driven by the insights of next-generation sequencing, precision oncology paradigms have 

emerged to tailor patient treatment options according to the specific genotype of each patient’s 

tumor. This paradigm is best exemplified by the use of targeted therapies. These drugs work by 

directly interfering with the products of driver mutations and related cell signaling pathways. A 

famous example is the landmark drug imatinib, a small molecule engineered to specifically 

inhibit the protein encoded by the BCR-ABL gene fusion, a driver event present in more than 

90% of cases of chronic myelogenous leukemia (CML). CML was among the most lethal cancer 

types prior to the advent of imatinib. Now, more than 90% of patients will survive five years 

after diagnosis without tumor recurrence, a stunning therapeutic success.  

Since the resounding success of imatinib, dozens of drugs targeting mutant oncogenes have been 

approved as first-line therapies by the Food and Drug Administration. These include EGFR 

inhibitors like osimertinib, KRAS inhibitors like sotorasib, and others. While most targeted 
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therapies are not nearly as effective as imatinib, they still often extend patient survival and 

therapeutic response rates relative to preexisting standards of care. 

Despite the clinical benefit of targeted therapies, solid tumors frequently develop resistance to 

these treatments. The source of resistance is often genetic, and next-generation sequencing 

efforts have unveiled hundreds of secondary mutations that can diminish a targeted drug’s effect. 

Epigenetic changes and copy number alterations are also known to promote resistance 130, but 

these are less frequently responsible than secondary mutations in the targeted oncogene or other 

genes 131. Interestingly, secondary mutations are often specific to tumors treated with targeted 

therapies and may never be observed in pre-treated primary cancers. For example, the T315I 

mutation in BCR-ABL is responsible for ~11% of clinical resistance to imatinib 132, and ~50% of 

non-small cell lung cancer tumors that acquire resistance to EGFR inhibitors bear the secondary 

T790M mutation in EGFR. The discovery of these mutations has prompted the development of 

second-generation inhibitors, like BCR-ABL-targeted ponatinib 133. Molecules like ponatinib can 

successfully inhibit or prevent the development of oncogenes bearing the secondary mutations, 

thereby prolonging patient survival even further 134.  

While rationally informed by human genetics, these targeted therapies require preclinical 

systems to evaluate their efficacy and safety before administration to human patients. In the next 

section, I will discuss systems for preclinical modeling of primary and secondary mutations that 

facilitate the testing of new therapies. 

Brief historical note 

While genetically engineered mouse models are the focus of this thesis, there are many other 

methods for modeling cancer in mice. For example, cell-derived xenograft (CDX) models, 

popular in the pharmaceutical industry, work by culturing patient tumor cells in vitro and then 
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transplanting them into a mouse host. These models are typically fast, with tumors often 

developing within a matter of days, depending on the transplanted tissue and tumor type. The 

resulting tumor is comprised of human cancer cells, reflecting the cancer driver and passenger 

mutations of the human disease. This affords investigators the option of rapidly testing therapies 

targeted to tumors with specific genetic alterations (e.g., a certain driver mutation, gene fusion, 

etc.). However, CDX models require immunodeficient hosts, mice that have had their immune 

system disabled. This is necessary to enable engraftment and tumor outgrowth, as the immune 

system would otherwise mount a response against the plethora of human protein sequences not 

incorporated into murine central tolerance. Thus, CDX models preclude the testing of most 

immunotherapies and their combinations. 

Immunocompromised animals further impede the discovery of unanticipated therapeutic 

mechanisms. For example, researchers studying KRASG12C inhibitors unexpectedly discovered 

that mutant KRAS inhibition promotes reshaping of the immune milieu (e.g., increase in CD8+ T 

cell infiltration, reduction in immunosuppressive populations). This effect was highly synergistic 

with immune checkpoint inhibitors in an immunocompetent mouse model of colon cancer 135. 

KRASG12C inhibition and ICIs are now being pursued as combination treatments in clinical 

studies 136, highlighting the importance of capturing the tumor-immune system interplay in 

response to therapy. 

In another class of mouse cancer models, researchers expose mice to carcinogens, such as 

tobacco smoke or other chemical compounds, to induce somatic mutations. Carcinogen-induced 

models thereby enable direct evaluation of substances hypothesized to promote the development 

of cancer. They can also recapitulate tumor phenotypes that may be specifically linked to a 

carcinogen-specific exposure, such as an increase in G:C to T:A transversions that are associated 
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with a number of carcinogens. These mice also develop a significantly higher mutational burden 

than genetically engineered mice 137, which tend to have dramatically lower mutational burden 

than human tumors. However, carcinogen-induced models do not enable preselection of the 

driver mutation, challenging efforts to study therapeutic vulnerabilities related to specific driver 

genes and/or mutations. 

Modeling cancer with genetically engineered mice 

In contrast to the sporadic nature of carcinogen-induced models, genetically engineered mouse 

models (GEMMs) enable the study of specific driver gene mutations in an immunocompetent 

system. This is typically accomplished by encoding driver mutations within genetic modules 

present in the mouse germline. Hundreds of these germline alleles exist, and they collectively 

enable cancer initiation across a wide variety of genetic and physiological contexts. These alleles 

can be classified as either conditional or constitutive. 

Constitutive alleles encode mutations that inactivate the gene of interest in every cell of the 

mouse. In a classic example, Donehower and colleagues developed a constitutive allele by 

encoding a germline deletion of Trp53 138. These investigators observed that the resulting mice 

developed normally, even for a few months after birth. However, the mice exhibited a high 

propensity for spontaneous tumor development in tissues throughout the body, reflective of 

p53’s critical role in regulating the cell cycle of many tissues. Most of these mice developed 

tumors by six months, an age at which tumors are rarely found in wild-type animals. This study 

thus provided early, convincing proof of p53’s role as a tumor suppressor in vivo. 

However, the utility of constitutive alleles is limited, as is their fidelity to the evolutionary paths 

experienced by adult human tumors. Whereas human tumors are largely thought to originate 

from sporadic mutation in a specific adult tissue 35, constitutive alleles initiate cancer early 
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during mouse development, affecting a far broader swath of cell types and organs than the 

human analog. This necessarily limits studies of tissue-specific gene function in a specified adult 

tissue 139. 

In contrast, conditional alleles require a secondary event for activation of the mutation. This 

enables researchers to control the location and timing of tumor development. Two prominent 

conditional alleles include the Lox-STOP-Lox-KrasG12D allele (KrasLSL-G12D/+) and the Trp53 

floxed allele (Trp53flox/+) 140. Both alleles are controlled by the Cre-lox system. This system has 

two central components: Cre recombinase and loxP DNA sequences, both derived from 

bacteriophages. In these viruses, Cre maintains genomic integrity and function by recognizing 

loxP sequences present within the viral genome. These sequences have not been detected in any 

other known genome beyond the P1 bacteriophage 141. When installed in the mouse genome, 

loxP sequences enable Cre-mediated excision, inversion, or translocation of genetic sequences. 

The positioning and orientation of the two loxP sites dictate which of these events will occur. 

In the KrasLSL-G12D/+ allele, a “lox-stop- lox” (LSL) cassette places loxP sites on either side of a 

“STOP” module located upstream of the first exon in Kras, which has been modified to encode 

the oncogenic G12D mutation 142. This module prematurely terminates transcription of KrasG12D, 

but not the wild-type allele. Cre-mediated recombination excises the sequence between the loxP 

sites, enabling expression of the mutant oncoprotein. In contrast, the Trp53flox/+ allele contains 

loxP sites flanking exons 2-10 of Trp53. Thus, functionally wild-type p53 is expressed until 

exposure to Cre. Cre then deletes either one or two Trp53 alleles, depending on whether the mice 

are heterozygous (Trp53flox/+) or homozygous (Trp53flox/flox). In mice with these alleles, Cre can 

be supplied exogenously through viral delivery.  



 56 

In the classical “KP” mouse model, mice harbor both KrasLSL-G12D/+ and Trp53flox/flox, and Cre is 

often delivered to the lung via lentivirus or adenovirus vectors. Intratracheal injection enables 

viral infection of mouse lung cells, followed by lentiviral integration into the host genome and 

subsequent transcription and translation of Cre recombinase. These mice develop dozens to 

hundreds of lung tumors, bearing classical histopathological features and evolutionary 

progression of lung adenocarcinoma seen in humans. There are other inducible systems beyond 

Cre-lox, such as Tet-on and Tet-off. In these systems, expression of a transgene is regulated by a 

transcriptional activator that can be switched on or off by exposure to tetracycline or a similar 

derivative. 

Cre can also be generated endogenously. For example, in the KPC (KrasLSL-G12D/+; Trp53LSL-

R172H/+; Pdx1-Cre) mouse model, Cre is encoded within the mouse genome. Cre expression is 

regulated by the pancreatic and duodenal homeobox 1 (Pdx1) promoter 143,144. The Pdx1 

promoter is bound by the Pdx1 transcription factor, which regulates the transcription of a variety 

of host genes essential for the embryonic development of the mammalian pancreas. In KPC 

mice, the pancreatic-specific expression of Pdx1 enables formation of adenocarcinoma in the 

pancreas but not other tissues. 

In the KPC model, activation of the heterozygous Trp53LSL-R172H/+ is uniformly followed by loss 

of heterozygosity (LOH) of the other allele, which is sufficient to drive tumorigenesis 

cooperatively with KrasLSL-G12D.  Canonically, tumor suppressor genes like Trp53 require loss or 

functional inactivation of both alleles to sufficiently promote tumorigenesis. However, studies 

using the KPC model have shown that certain point mutations like Trp53R172H can also exercise a 

dominant-negative or even gain-of-function effects. Studies comparing traditional KPC mice to 

KrasLSL-G12D/+; Trp53flox/+; Pdx1-Cre mice found that only KPC mice developed metastases 32. 
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This suggests that p53 point mutations can confer neomorphic properties that promote tumor 

development beyond the simple loss of cell cycle checkpoints. This result is consistent with 

similar observations comparing p53 point mutations to p53 deletions in other mouse models of 

cancer 145. 

Other mouse models of PDAC incorporate Cdkn2a- alleles. Cdkn2a is an unusual gene that 

encodes for two different proteins with completely distinct amino acid sequences. This is made 

possible by alternative transcriptional start sites. These generate two distinct transcripts, 

p16(INK4A) and p14(ARF), that are distinguished by different first exons but that share the 

same downstream exons 146. p16(INK4A) and p14(ARF) encode different reading frames, 

enabling the production of distinct protein products. Both p16(INK4A) and p14(ARF) function 

as tumor suppressors: p16(INK4A) functions as a cyclin-dependent kinase inhibitor that can 

suppress cell cycle progression, and p14(ARF) inhibits the mouse double minute homolog 2 

(MDM2), a negative regulator of Trp53 35. CDKN2A mutations in pancreatic cancer patients 

typically inactive both isoforms, though a small subset have been noted that only inactivate 

p16(INK4A). CDKN2A is thought to be inactivated in >90% of pancreatic tumors, by way of 

mutation, gene deletion, or promoter hypermethylation, which frequently silences CDKN2A 

expression in pancreatic cancer 5.  

KrasLSL-G12D/+;Trp53flox/+;  p16Ink4a-/+; Pdx1-Cre mice developed tumors much more quickly (15 

weeks compared to 22 weeks) than mice with only the KrasLSL-G12D/+;Trp53flox/+ alleles 147. This 

indicates that loss of both Trp53 and p16INK4A accelerates tumor development, consistent with the 

finding that both genes are inactivated in the majority of pancreatic cancers 5.  

The KrasLSL-G12D/+ and Pdx1-Cre alleles have together been combined with Trp53flox/flox, p16Ink4a-

flox/flox, or Smad4flox/flox alleles in different models. Interestingly, these show distinct phenotypes. 
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For example, models based on either and p16Ink4a-flox/flox or Trp53flox/flox succumb to disease within 

two or three months, respectively. Only Trp53flox/flox animals show evidence of metastases, and 

the primary tumors also adopt a more cystic phenotype 148. In contrast, similar models based on 

Smad4flox/flox, the other major tumor suppressor gene frequently inactivated in human PDAC, 

survive for more than nine months. These mice also exhibit a higher rate of intraductal papillary 

mucinous neoplasms, neoplastic lesions distinct from PanINs that can precede the development 

of pancreatic adenocarcinoma 149. Together, these foundational studies suggest that distinct 

combinations of driver gene alterations dictate differences in the outcome and phenotype of 

pancreatic cancers. 

All of the described alleles in principle can be combined through breeding programs, thus 

enabling complex combinations of cancer mutations. Such breeding programs, however, are 

time-consuming both to conduct and to maintain. The combined process of establishing breeding 

pairs and subsequent murine gestation takes months. These programs also require regular 

experiments to confirm the genotype of each individual mouse. Furthermore, existing alleles 

encoding a particular mutation may not be amenable to the scientific question of interest. For the 

KPC model and its variants, most pancreatic cells in the mice are subject to activation of 

oncogenic Kras and deletion of a tumor suppressor gene. Accordingly, KrasLSL-

G12D/+;Trp53flox/flox;  p16Ink4aflox/flox; Pdx1-Cre mice develop widespread tumors throughout their 

pancreas and succumb to this tumor burden before later-stage events like metastases can be 

examined. With this model, it is therefore impossible to examine how the temporal ordering of 

Trp53 and p16Ink4a inactivation influences tumor progression and patterns of metastasis. 

While GEMMs have deepened our knowledge of cancer biology and enabled testing of novel 

therapies, their success also underscores the need for fine-tuned selection of driver mutations. 
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For example, all 20 GEMMs of pancreatic cancer reviewed by Westphalen and Olive (2012) 

were based on KrasG12D. Models based on KrasG12C and KrasG12R were developed only recently 

150. While KRASG12D is the most abundant PDAC mutation (affecting 30-40% of patients), 

different Kras alleles have varying oncogenic propensities, rooted in differences in intrinsic 

GTPase activity and differential mutant protein affinity to the RAF kinases 151. 

To this point, Zafra et al. (2020) examined differences among G12D, G12C, and G12R in the 

setting of KrasLSL-mutation/+; p48-Cre (KC) models. (p48, like Pdx1, is exclusively expressed in the 

pancreata of mice, though its expression is thought to be limited to acinar cells.) In KC-G12D 

mice, more than 90% of pancreatic tissue exhibited a PanIN phenotype by 12 weeks, with less 

than 10% of the organ defined by normal acinar tissue. In contrast, KC-G12C mice exhibited a 

PanIN burden of only ~50% by 12 weeks. KC-G12R mice showed no evidence of PanINs, only 

exhibiting lesions arrested in the acinar-to-ductal metaplasia (ADM) state, evidenced by co-

expression of the acinar cell marker CPA1 and the ductal marker KRT19. ADM is thought to 

precede the formation of PanINs for tumor lineages that originate from acinar cells 21. This 

difference in KC-G12R mice endured even after a year. These results elegantly highlight how 

mutational differences in driver genes, even those as subtle as distinct alterations in the same 

codon, dictate dramatic differences in oncogenic potential. Such differences can only be captured 

by a comprehensive study of these mutations in vivo. 

As another example, most pancreatic cancer patients bear point mutations in TP53 other than the 

two mutations (TP53R175H and TP53R273H) represented in current GEMMs. The other mutations 

remain understudied in murine models of the disease. This gap is critical, especially in light of 

research showing that many genes, including TP53, often harbor point mutations that confer 

different properties relative to loss-of-function truncations, including gain-of-function effects 152. 
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For example, Schulz-Heddergott and colleagues demonstrated that TP53R248Q exhibits a gain-of-

function effect by hyperactivating the JAK2/STAT3 pathway, leading to more aggressive tumor 

progression in models of colon cancer 153. This mutation is also common in pancreatic cancer, 

but these in vivo observations remain untested due to a lack of pancreatic cancer mouse models 

and human cell lines harboring the mutation. 

While traditional GEMMs have shed tremendous light on the nature of several cancer mutations, 

the technology struggles to keep pace with the thousands of driver mutations identified from 

next-generation sequencing efforts. This impediment prompted the adoption of a new cancer 

modeling paradigm, one driven by the advent of targeted genome editing technologies based on 

CRISPR-Cas9. This approach enables rapid, combinatorial generation of cancer driver mutations 

in somatic cells, without the need for a germline allele. These models dramatically accelerate our 

ability to study novel cancer mutations. 

Engineering the cancer genome with CRISPR-Cas9 

CRISPR-Cas9 is a powerful genome-editing technology that originates from microbes. The 

discovery and development of this technology has been extensively reviewed in numerous 

articles 154,155, but the seminal advancements are worth describing here. In the 1980s, researchers 

observed arrays of repeated DNA sequences in the genomes of Escherichia coli 156. These 

mysterious repeats did not receive dedicated attention until the 1990s, when Dr. Francisco 

Mojica reported the discovery of clusters of palindromic repeats in the genome of Haloferax 

mediterranei, an archaebacteria native to the marshes of Spain where Mojica conducted his 

research 157. Mojica later identified these repeats, now known as CRISPR (clustered regularly 

interspersed short palindromic repeats), in thousands of organisms throughout bacterial and 

archaebacterial phyla. Critically, these sequences were present in the genomes of viruses that 
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infect these species, suggesting transmission of genetic sequences among microbes and 

pathogens 158. Across species, certain genes appeared physically linked to the presence of 

CRISPR arrays, often residing as adjacent loci 159. The function of these CRISPR-associated 

genes (Cas) remained obscure for a few years. 

In 2007, Barrangou et al. showed that CRISPR-associated cas genes encode specialized 

nucleases that facilitate excision of short genetic sequences from viral pathogens 160. They also 

showed that Cas nucleases can incorporate these sequences into the bacterial host genome, 

establishing them as the repeat sequences observed in CRISPR arrays. Upon re-infection, the 

integrated repeats are transcribed as short RNA sequences that bind with additional Cas proteins, 

forming complexes that target and destroy the invading viral genome. CRISPR thus functions as 

an adaptive immune system for vast numbers of microbial species. 

Harnessing this fundamental knowledge, pioneering work from the laboratories of Emmanuelle 

Charpentier, Feng Zhang, Jennifer Doudna, and George Church later demonstrated re-

engineering of these components for intentional modification of the genomes of bacteria and 

mammals 161–163. Critically, Jinek et al. (2012) engineered the first single guide RNA (sgRNA, 

or, gRNA) from two CRISPR RNA components and demonstrated programmable targeting of 

the bacterial genome using Cas9 161, a CRISPR-associated endonuclease. Cas9 cleaves DNA into 

a double-stranded break upon binding to a NGG motif adjacent to the protospacer targeted by the 

gRNA. (This protospacer-adjacent motif is called a PAM.) This technique was adapted by 

contemporaneous publications that demonstrated targeted genome editing in mammalian cells, 

including human cells 162,163. Collectively, these studies ushered in a revolution for biological 

research, based on a technology that enabled facile and broadly applicable targeting of the 

genome.  
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Thousands of studies have since harnessed CRISPR-Cas9 to probe gene function through 

targeted genetic knockouts. The DSBs induced by CRISPR-Cas9 are repaired by natural DNA 

repair pathways present within cells. The nature of DSB repair is partly dependent on both the 

state and type of the targeted cell, but in most contexts, DSBs are readily repaired by non-

homologous end joining (NHEJ). NHEJ-mediated repair often results in the stochastic formation 

of small insertions or deletions (indels) in the sequence extending from the breakpoint 164. When 

Cas9 is targeted to a coding region of a gene, the subsequent DSB repair frequently results in an 

out-of-frame indel, constituting a frameshift mutation that disrupts the encoded protein. This 

enables a powerful reverse genetics approach, whereby gene function can be understood through 

knockout and examination of the resulting phenotype. 

This approach was first applied to cancer modeling in vivo in 2014, when work from our 

laboratory applied Cas9 and gRNAs targeted to tumor suppressor genes to facilitate 

tumorigenesis in adult mouse tissues. This was first demonstrated by Xue et al. (2014), who 

initiated liver tumors by delivering plasmids encoding Cas9 and sgRNAs targeting Pten and 

Trp53 to otherwise wild-type mice 165. Later that same year, Sánchez-Rivera, 

Papagiannakopoulos, and colleagues published a lentivirus delivery system based on an all-in-

one vector capable of encoding Cas9, Cre recombinase, and a gRNA 166. When applied to 

KrasLSL-G12D/+ mice, this vector enables simultaneous activation of oncogenic Kras and disruption 

of a tumor suppressor gene targeted by Cas9 and the encoded gRNA. Harnessing this 

technology, our laboratory generated lung adenocarcinomas with modular knockout of different 

tumor suppressor genes. This enabled rapid interrogation of tumor suppressor genes such as Apc, 

hypothesized to impact lung tumorigenesis but not yet studied in GEMMs. Reminiscent of 

findings from pancreatic cancer GEMMs, researchers from our laboratory found that targeting 
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different tumor suppressor genes yielded differences in histopathology, cell pathway signaling, 

and overall tumor burden in the lung. This study dramatically accelerated preclinical cancer 

modeling using CRISPR-Cas9, bypassing the need for generation of new alleles for targeted 

gene deletion.  

Most cancer driver mutations represent single nucleotide variants (SNVs), not indels. Platt et al. 

(2014) were the first to demonstrate in vivo CRISPR modeling of a cancer SNV. To accomplish 

this, they installed germline alleles of Cas9 within Rosa26, a safe harbor locus where genes can 

be stably expressed without disrupting any apparent cell phenotypes 167. Importantly, installation 

of foreign genes in the mouse genome subjects the resulting protein to central tolerance, even in 

the context of an LSL cassette, like Rosa26LSL-Cas9 168. Thus, germline alleles can circumvent 

immune responses against Cas9, which is documented in both mice and humans 169,170. 

Germline alleles also avoid certain delivery challenges. Cas9 is a relatively large gene, and 

common viral vectors like adeno-associated virus (AAV) and lentivirus have a limited DNA 

packaging capacity 171. By installing Cas9 germline, more space is available for the delivery of 

other cargo. To this point, Platt et al. (2014) demonstrated delivery of multiple TSG-targeted 

gRNAs, enabling a multiplexed knockout of tumor suppressor genes within the context of the 

same tumor. In addition to TSG-targeted gRNAs, they also delivered a long genetic template for 

homology-directed repair (HDR). HDR is another major DSB repair pathway employed by 

mammalian cells. Harnessing HDR, researchers can design specific gene edits by encoding an 

HDR DNA template that bears homology to both regions flanking the targeted Cas9 cleavage 

position. The intervening sequence encodes genetic alterations of interest. At low efficiency, 

HDR will integrate the donor template sequence into the genome during the repair process, 

thereby permanently installing a designed edit. Platt et al. showed that this could be used to 
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install KrasG12D in otherwise wild-type Rosa26Cas9 mice. This approach has subsequently been 

adopted to model a subset of point mutations in a variety of oncogenes 172. 

Though useful, the utility of HDR for precision genome editing is limited by low efficiency 

173,174. HDR activity is generally limited to dividing cells, especially during the S and G2 phases 

of the cell cycle 175, and its efficiency is variable across cell types. Even in cell types with 

efficient HDR, NHEJ is preferentially engaged for DSB repair. This has been demonstrated with 

DNA sequencing of targeted loci, which often reveal low-frequency point mutations in the 

presence of a higher frequency of indels 175. 

This feature is prohibitive for some cancer applications, but not all. For example, activating point 

mutations in oncogenes confer a selective advantage that typically promotes increased cell 

division. Thus, tumors resulting from an HDR-mediated oncogene mutation should exhibit 

purely the point mutation, without evidence of indels 176. However, point mutations are also 

common and functionally active in tumor suppressor genes, especially TP53 152. Like point 

mutations, frameshifting indels in tumor suppressor genes are subject to positive selection. Thus, 

HDR-based edits in tumor suppressor genes are likely to be diluted by a higher frequency of 

indels, thus impeding the study of phenotypes linked to TSG point mutations. 

The advent of base editing 

With these and other limits of HDR in mind, second-generation CRISPR technologies were 

developed capable of precision genome editing without DSB intermediates. For example, 

CRISPR-Cas9 base editors are fusion enzymes capable of mediating precise single nucleotide 

substitutions without forming DSBs and without need for a donor DNA template. This 

technology employs a catalytically impaired Cas9 in which one or both nuclease domains are 

functionally inactivated. In the case of a Cas9 nickase, inactivation of only one domain enables a 
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single-stranded DNA cut, while inactivation of both domains (dCas9 variants) avoids DNA 

cleavage altogether. Two primary classes of base editors include cytidine base editors (CBEs) 

and adenine base editors (ABEs). In these classes, the catalytically impaired Cas9 is fused to 

either an adenine or cytidine deaminase. CBEs further incorporate a uracil glycosylase inhibitor 

as a third enzyme in the complex. Both ABEs and CBEs work by deaminating the target 

nucleotide, thereby producing an inosine (ABEs) or uracil (CBEs) intermediate. The 

intermediate base pair represents a mismatch detectable by DNA mismatch repair pathways, 

which then resolve the mismatch and produce the desired single nucleotide substitution. 

Base editors are extremely efficient, enabling targeted nucleotide conversions often at 

efficiencies of 60% or higher in mammalian cells 177. High editing efficiency coupled to the 

benefits of avoiding DSBs led to rapid adoption of base editing by the cancer modeling field. 

Seminal work by Zafra and colleagues demonstrated somatic editing in vivo through exogenous 

delivery of base editors to the liver of mice 178. In this study, the investigators delivered plasmids 

encoding a reengineered CBE, a sgRNA targeting the S45F mutation in the Ctnnb1 oncogene, 

and a Sleeping Beauty transposon–based Myc cDNA. Together, these components generated 

liver tumors with the intended mutations in all recipient mice. 

While base editing has expanded the precision of mouse cancer modeling, it is limited by the 

scope of achievable mutations. Traditional CBEs and ABEs are limited to transition mutations, 

and they can also suffer from bystander editing, which occurs when multiple cytidines or 

adenines co-exist within the base editing window. This can prohibit engineering the desired 

amino acid substitutions in certain contexts. While recent advances in transversion base editing 

will expand base editing scope, transversion base editors currently suffer from additional 

undesired on-target effects that are challenging to predict 179.  
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The advent of prime editing 

With these considerations in mind, Anzalone and colleagues developed a third-generation 

technology called prime editing 180. Prime editors are comprised of a Cas9 nickase fused to a 

reverse transcriptase (RT). Instead of a traditional 20-nucleotide gRNA, prime editors complex 

with longer prime editing guide RNAs (pegRNAs). pegRNAs encode a primer binding site 

(PBS) and a reverse transcriptase template (RTT), in addition to the targeting spacer and scaffold 

sequence that comprise traditional CRISPR gRNAs. This innovation enables a unique stepwise 

process in which 1) the prime editor enzyme is targeted to a specific genomic locus and induces 

a single-stranded DNA nick, 2) the 3’ PBS hybridizes to one of the subsequent flapping DNA 

strands, 3) the transcriptase reverse transcribes the sequence encoded by the RTT, and 4) 

subsequent DNA repair pathways resolve the resulting mismatch, ultimately leaving an edited 

sequence of nucleotides encoded by the RTT. Prime editing thus enables a full suite of small 

somatic mutations, including all types of single nucleotide substitutions, multi-nucleotide 

substitutions, and small insertions and deletions. Beyond editing versatility, prime editing also 

benefits from high editing purity, with intended edits typically far outnumbering unintended 

indel byproducts. 

While versatility is broad and purity is high, prime editing efficiency is typically low, much 

lower than single nucleotide conversion rates observed with base editors. To overcome this, 

several techniques can be employed. For example, varying the combination of PBS and RTT 

lengths can yield order of magnitude increases in editing efficiency. Furthermore, the selection 

of a protospacer near the targeted locus can influence efficiencies, as can the choice of the 

pegRNA scaffold sequence 181. Engineered pegRNA motifs (epegRNAs) can also be appended to 
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the 3’ extension of pegRNAs, which generally enhances efficiency by 3-4-fold through 

protecting the pegRNA from degradation 181. 

As a more complex solution, pegRNAs can also be coupled with traditional CRISPR sgRNAs 

designed to induce a nick on the unedited DNA strand. This biases DNA repair toward 

incorporation of the prime edited nucleotides during mismatch repair, though this generates a 

higher rate of indels by increasing the likelihood of a DSB. Nicking gRNAs specific to the prime 

edited sequence circumvent this limitation, as the second nick will be induced only after the first 

has been resolved into the heteroduplex DNA intermediate, minimizing DSB formation 180. 

Finally, pegRNAs can be further optimized by encoding benign or silent edits adjacent to the 

intended edit that can promote evasion of mismatch repair 182. 

While these and other strategies frequently enable prime editing efficiencies of 20-50% in 

mammalian cells, they underscore an important caveat associated with this system. Extensive 

pegRNA optimization can be laborious and require testing dozens of designs to identify a highly 

efficient pegRNA. However, this caveat may be an acceptable tradeoff for researchers seeking to 

model mutations that are not amenable to base editing or CRISPR-Cas9-based HDR.  

Preclinical modeling of cancer in mice with prime editing 

Though prime editing offers many benefits for modeling cancer, only a handful of studies have 

pursued this, and many are limited to in vitro applications 183. To my knowledge, the only in vivo 

studied published to date that employed prime editing for cancer used it to study liver cancer 184. 

Similar to the base editing study described previously, these investigators initiated liver cancer 

by hydrodynamic co-injection of PE2 (split across two plasmids), Ctnnb1-targeted pegRNAs, 

and Sleeping Beauty transposon–based Myc cDNA. When applied using a dual-AAV delivery 

approach, the authors noted unacceptably low in vivo editing efficiencies and intolerable indel 
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rates, which they posit could be linked to the reduced efficiency incurred by requiring the 

enzyme to be split across two AAV vectors.  

The size of the prime editor enzyme may explain the lack of additional studies using prime 

editing to model cancer in mice. The gene encoding the traditional PE2 enzyme is approximately 

6.3 kilobases in size 185. This exceeds the packaging capacity of AAVs (~4.8 kilobases) and 

nearly exceeds that of lentivirus (~8 kilobases). Furthermore, the immunogenicity of Cas9 is 

well-documented, and the viral-derived RT may also harbor potent antigens 170. The size and 

potential immunogenicity of the prime editor enzyme thus impose major obstacles to leveraging 

prime editing for modeling cancer in mice. 

Prime editor GEMMs to model a broad spectrum of somatic mutations 

With these considerations in mind, my colleagues and I developed a genetically engineered 

mouse model with the PE2 enzyme encoded within the Rosa26 locus. As will be described in 

Chapter 3, this system enables high efficiency prime editing in vivo without exogenous delivery 

of the prime editor enzyme. This circumvents challenges associated with both delivery and 

potential immunogenicity, which has been documented with exogenous delivery approaches 

using the PE2 enzyme 170. With this model, we demonstrated ex vivo and in vivo installation of a 

variety of genetic lesions, including precise insertions, deletions, and single and dinucleotide 

substitutions. In all cases, we observe negligible indel byproducts, including in the tumor 

suppressor gene Trp53. This enabled us to select pure populations of cells harboring Trp53 

mutations that are frequent in pancreatic cancer patients but understudied in preclinical models 

of the disease. 

Furthermore, we demonstrated rapid generation of new pancreatic organoid models defined by 

distinct KrasG12D or KrasG12C mutations. Using these models, we found that pancreatic cancer 
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organoids are uniformly more sensitive to KRASG12D or KRASG12C inhibitors when they are 

combined with the EGFR inhibitor, gefitinib. in vivo, we observed Kras allele-specific 

differences in tumor initiating potential in both an orthotopic transplant and autochthonous 

setting, nuancing prior observations made with LSL GEMMs. In the lung, we further find that 

prime editor GEMMs are capable of initiating lung adenocarcinoma even with lower efficiency 

pegRNAs, highlighting the broad utility of this system. We expect this model to accelerate 

preclinical functional studies of the vast landscape of untapped driver mutations described earlier 

in this chapter. By enabling rapid gene function studies in vivo, this system can both facilitate the 

discovery of new therapeutic vulnerabilities and the testing of new targeted therapies  

Synopsis and outlook 

Cancer is driven by genetic alterations that co-occur in thousands of combinations across 

different cancer patients. The precise effects of each mutation, as well as the interplay of these 

effects across multiple drivers, is a critical determinant of cancer progression and disease 

outcome. The technology presented in Chapter 3 will help fill critical gaps in our knowledge of 

how specific driver mutations and combinations thereof affect the progression, phenotype, and 

vulnerability of tumors. This will be accomplished in large part with prime editor GEMMs for 

the precise, simultaneous installation of multiple driver mutations (e.g., combined SNVs across 

an oncogene and tumor suppressor gene), as well as the combination of the Rosa26PE2 allele with 

preexisting technologies such as the KrasLSL-G12D allele.  

Beyond classical driver mutations, I envision this system will be harnessed to examine 

historically unexplored patterns of mutations. For example, several studies highlight the 

contributions of noncoding mutations in driving cancer, such as historically overlooked silent 

mutations that co-occur with missense mutations 186. Other studies pinpoint mutations in 
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regulatory sequences that can affect gene expression programs in pancreatic cancer cells 187. 

Through integration of long insertions, prime editing could also enable co-installation of a 

custom neoepitope sequence, enabling sophisticated cancer immunology studies. One potentially 

interesting application would involve screening cancer hotspot sites in murine driver genes for 

mutations that can both drive cancer and generate a neoepitope. This phenomenon is well-

established in a subset of human cancers but understudied in animal models 80,85. Combination of 

Rosa26PE2 with humanized HLA alleles could also enable in vivo testing of therapeutics targeted 

against such neoepitopes observed in human cancer. 

The combination of multiple genetic alterations will become more challenging as the number of 

edits increase in each application. Low basal prime editing rates present an obstacle to 

introducing multiple intended edits. For secondary mutations that induce a neutral or negatively 

selected event (e.g., neoepitope installation), some tumors may grow out that bear the driver 

mutation but lack the second event. In some cases, this may be convenient, e.g., to study 

intratumoral heterogeneity. In other cases, this may not be an issue if both edits are necessary for 

tumor formation (e.g., combined oncogene activation and loss of a tumor suppressor gene). 

The challenges associated with multiplexed editing experiments can be overcome with 

optimization of editing parameters. This includes various strategies for pegRNA optimization 

described and second-generation prime editor GEMMs based on more efficient PE enzymes, 

such as PEMax 182. It is also conceivable to deliver custom pegRNAs in which the edit necessary 

for tumor formation (e.g., a KrasG12 mutation) are programmed by pegRNAs intentionally less 

efficient than those programming neutral edits. This would increase the probability of resulting 

tumors containing both intended edits. These and other techniques will expand the capabilities of 
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prime editor GEMMs and ultimately reduce the need to generate and maintain GEMMs based on 

traditional alleles.  
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Abstract 
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease largely recalcitrant to traditional 

immunotherapy. A large subset of PDAC tumors is computationally predicted to harbor 

potentially immunogenic peptides for MHC class I (MHC-I) presentation, but the nature, 

expression, and cancer-specificity of these peptides has yet to be determined. The only prior 

study of the PDAC immunopeptidome focused on profiling MHC class I-associated peptides 

(MAPs) from canonical proteins in bulk tumor samples; however, non-malignant cell 

populations comprise most of the tumor mass in PDAC, obscuring the identity of MAPs that 

derive specifically from cancer cells. We overcame this challenge by expanding patient-derived 

PDAC organoids prior to profiling with whole genome sequencing, RNA sequencing, and 

immunopeptidomics. We find that organoids enable a higher resolution view of the PDAC 

transcriptome and immunopeptidome than bulk tumor populations, and they improve detection 

of protein-coding variants. We harnessed these data to construct patient-specific proteome 

databases, enabling the identification of MAPs derived from somatic and germline mutations, 

retained introns, and PDAC-enriched novel unannotated open reading frames (nuORFs) 

associated with noncoding RNAs, untranslated regions, and pseudogenes. We identified a large 

cohort of nuORFs and canonical genes that encode MAPs shared by multiple patients. These 

include nuORFs and genes that exhibit PDAC-restricted expression, validated by examination of 

RNA sequencing and immunopeptidome data derived from hundreds of healthy normal tissue 

specimens. We investigated the immunogenicity of several of these PDAC-restricted MAPs and 

discovered that CD8+ T cells specific to nuORF-derived MAPs can be readily generated from 

healthy donor peripheral blood mononuclear cells (PBMCs). These results shed new light into 

the immunopeptidome of pancreatic cancer cells and furnish a large set of novel targets for 

immunotherapies in PDAC. 
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INTRODUCTION 

Immunotherapy—the therapeutic manipulation of the immune system to target cancer—has 

revolutionized cancer treatment in the last decade, providing extended life and occasionally cures 

for a subset of patients. This achievement has invigorated the field of oncology with new hope, 

yet immunotherapies still fail to benefit patients suffering from most malignancies, including 

pancreatic cancer, an extremely lethal disease with a 5-year survival rate of approximately 10%. 

Many studies have explained this by invoking the concept of pancreatic cancer as an 

‘immunologically cold’ malignancy, in which a low mutational burden helps conceal the cancer 

from recognition by immune cells 1,2. In principle, a low mutational burden should give rise to 

fewer neoepitopes, mutant peptides that are empirically validated targets of anti-tumor T cells 

and many immunotherapies 3. However, recent computational studies have challenged this 

notion for pancreatic cancer, reporting dozens of predicted neoepitopes in the typical patient 4–6 

To date, the field has primarily analyzed pancreatic cancer neoepitopes derived from missense 

mutations that are typically unique to individual patients, limiting therapeutic applicability. 

However, neoepitopes can derive from other classes of somatic mutations. For example, 

frameshift mutations, in principle, should generate long, ‘foreign’ peptide sequences that could 

be recurrent among patients, as different frameshifts in the same gene could yield similar 

alternative reading frames. Frameshift mutations are often excluded from neoepitope predictions 

in PDAC 4,5. 

Beyond mutations, a burst of studies over recent years has elucidated numerous sources of 

cancer-restricted antigens. For example, mRNA splicing often becomes severely dysregulated in 

numerous cancer types 7, leading to the production of novel RNA isoforms encoding cancer-

specific protein sequences that can be presented by MHC class I 8,9. Although numerous mis-
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splicing events have been identified as potential sources of cancer-specific epitopes, several 

papers have highlighted intron retention as the most frequent splicing source of cancer-restricted 

epitopes 9. Yet, intron retention has not been explored as a source of neoepitopes in pancreatic 

cancer cells beyond a predictive study in bulk tumor samples 10. 

Other studies have explored novel or unannotated open reading frames (nuORFs) as new sources 

of cancer-restricted epitopes. Canonically thought not to encode protein, several classes of 

nuORFs spanning long noncoding RNAs (lncRNAs), 5’ and 3’ untranslated regions (UTRs), 

pseudogenes, and other regions have been shown to be bound by ribosomes and actively 

translated into peptides 11,12. Most recently, Ouspenskaia and colleagues employed high-

resolution immunopeptidomics to validate MHC presentation of thousands of nuORF-derived 

peptides on the surface of melanoma, chronic lymphocytic leukemia, and glioblastoma cells 12. 

Notably, many of the transcripts encoding these peptides were shown to be transcribed or 

translated in a cancer-specific fashion by RNA-Sequencing (RNA-Seq) and ribosome profiling, 

highlighting the potential of nuORF-derived peptides as a class of novel immunotherapy targets. 

Despite advances in our understanding of sources of cancer-restricted epitopes, efforts to profile 

these in pancreatic cancer have lagged far behind. To our knowledge, only one prior study has 

employed immunopeptidomics—the state-of-the-art technique for empirical detection of MHC-

associated peptides (MAPs)—to analyze bulk pancreatic cancer specimens 13. Although this 

study revealed a promising epitope derived from the placentally expressed gene, VGLL1, 

analysis was limited to the reference proteome, thereby excluding mutations, intron retention, 

and nuORFs as epitope sources. 

Both the single empirical study and the numerous computational predictions of the PDAC 

immunopeptidome are typically performed using bulk tumor samples, which contain cells from 
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the surrounding stroma, like immune cells or fibroblasts, in additional to cancer cells. Pancreatic 

cancer is notorious for its high stromal content 14. With most of the sequencing data derived from 

these non-mutated stromal cells, it is challenging to estimate the fraction of tumor cells 

containing a particular mutation, a metric known as variant allele frequency, and some mutations 

may even go undetected. Furthermore, transcriptomic and proteomic datasets profiling bulk 

PDAC samples are often contaminated with confounding signals from stromal populations 15,16.  

We sought to overcome these limitations by using patient-derived organoids (PDOs) to expand a 

pure malignant population for whole-genome sequencing, RNA-Sequencing, and 

immunopeptidomics. Importantly, we also employed a diverse set of bioinformatic techniques to 

construct a broad proteogenomic search space for MAPs, accounting for germline and somatic 

mutations, nuORFs, and retained introns as potential sources of MAPs. We applied this approach 

to seven patient biospecimens and detected 17,000-20,500 unique MAPs per sample, a dramatic 

increase in both depth and resolution over prior efforts. By analyzing the transcriptome and 

immunopeptidome of thousands of normal tissue specimens, we identified numerous MAPs 

spanning nuORFs, retained introns, and canonical proteins with detectable expression restricted 

solely to pancreatic cancer cells or restricted to both pancreatic cancer cells and select normal 

tissues. We also identified mutation-derived MAPs in the majority of PDOs, including a 

frameshift mutation derived from a tumor suppressor gene. In total, our findings elucidate the 

landscape of MAPs presentable by pancreatic cancer, broadening the repertoire of potential 

immunotherapy targets for this devastating disease. 

RESULTS 
Patient-derived pancreatic cancer organoids possess a greater somatic mutational burden 

than matched bulk tumor samples. Cancer cells typically represent <20% of the tumor volume 

in PDAC 14. Thus, the contribution of sequencing reads from stromal cells could significantly 
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deflate DNA variant allele frequency (VAF), a critical factor influencing the sensitivity of 

somatic variant detection 17. With these considerations in mind, we hypothesized that prior 

studies estimating tumor mutational burden (TMB) and predicted neoepitopes in pancreatic 

cancer may have underestimated PDAC TMB, as these studies are traditionally limited to bulk 

tumor samples 14,18. To assess this hypothesis, we computed TMB (i.e., the number of mutations 

per coding Mb) across three cohorts of patient-derived samples, including 148 primary bulk 

samples from The Cancer Genome Atlas (TCGA; WES), 57 metastatic bulk samples from the 

Dana-Farber Institute’s PancSeq (WES), and 41 patient-derived organoids (WGS) (Fig. 1a). The 

expansion of patient-derived cancer cells as organoids enables enrichment for cancer cells prior 

to analysis, thereby reducing or eliminating stromal contamination. 

We detected a significant difference in average TMB among all three cohorts (P < 0.0001, 

Kruskal-Wallis), with the highest TMB load observed in patient-derived organoids, followed by 

the metastatic DFCI cohort and lastly the primary TCGA cohort (Fig. 1b). The significant 

increase in TMB in patient0derived organoids is not attributable to sequencing depth, as this 

cohort was sequenced using WGS at a significantly lower depth than the WES used to profile 

bulk tumors 19. Furthermore, these organoids were sequenced after only an average of eight 

passages, and thus little time was available to accumulate additional mutations in culture. 

However, we cannot rule out the possibility that organoid generation selected for sub-clones of 

cancer cells, which may have impacted TMB assessment. 
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Figure 1: Pancreatic cancer organoids expand the neoepitope landscape and enable a high-
resolution characterization of the immunopeptidome. 
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a. Schematic depicting the cohorts of pancreatic cancer specimens analyzed and 
corresponding sequencing datasets. 

b. Tumor mutational burden (TMB) comparisons across TCGA primary bulk samples, 
PancSeq metastatic bulk tumor samples, and patient-derived organoids. Horizontal bars 
indicate median TMB. Two outlier data points (TMB = 10.7 and 34.6) from two organoid 
samples are excluded from the graph. P-value evaluated with the Kruskal-Wallis test. 

c. TMB comparison between pancreatic cancer organoids and matched bulk tumor 
specimens that were derived from the same patient. P-value determined by the Wilcoxon 
ranked sign test. 

d. Quantification of stromal and immune gene expression program scores calculated by the 
ESTIMATE algorithm for organoids and matched bulk tumor samples. 

e. Flow cytometry quantifying the surface expression of MHC class I proteins in pancreatic 
cancer organoids with (red) or without (blue) interferon gamma stimulation, compared to 
unstained controls (gray). Plots for four other samples are shown in Supplementary 
Figure 3. 

f. Total number of unique peptide sequences identified in the immunopeptidome of seven 
different patient-derived organoid samples. +2D indicates that data also include peptides 
identified from a matched cell line derived from the organoid. 

g. Distribution of peptide lengths for all mapped spectra, categorized for each organoid 
sample. 

h. Peptide sequence profile plots representing the amino acid profile of all 9mer peptides 
(top) or specific subsets of 9mers predicted to bind A*02:01 (second row), B*44:02 (third 
row), or C*06:02 (bottom), for peptides derived from sample P177. HLA allele binding 
partner predictions were made with HLAthena 20.  

i. Uniform Manifold Approximation and Projection (UMAP) depicting annotated cell types 
derived from >20 individual patient tumor samples (left). Expression of an aggregate 
gene module score derived from all source genes encoding peptides detected in the 
immunopeptidome for sample PANFR0151 is plotted in the middle. Average expression 
of seven gene modules derived from the immunopeptidomes of seven organoid samples 
shows specific enrichment in the malignant population (right). 

 

We also compared TMB among twelve matched samples for which both bulk tumors and 

organoids were derived and sequenced. We found that organoids almost uniformly presented a 

higher TMB than their bulk tumor counterparts (Fig. 1c; P < 0.01, Wilcoxon signed-rank test). 

Though a modest increase in overall TMB, these data support the notion that profiling cancer-

cell enriched organoids may increase our ability to discover neoepitopes in pancreatic cancer. 

Yoshihara and colleagues previously showed that tumor purity affects the number of mutations 

detected for a small fraction of cancer types, though PDAC was not examined. To test whether 
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tumor purity might impact TMB within bulk tumor cohorts, we categorized TCGA patients into 

high- and low-purity classes (top 25% vs bottom 25%) and compared TMB between groups. 

TMB was significantly higher in TCGA samples marked as high purity, regardless of the method 

for quantifying purity (Supplementary Fig. 1). While TMB also trended slightly higher in 

metastatic patients, it was not statistically significant. We confirmed that these predictions also 

hold when comparing predicted neoepitope burden between matched organoid and bulk tumor 

samples and between high- and low-purity samples (Supplementary Fig. 1). In total, these 

findings indicate that tumor purity has a pronounced effect on the estimate of mutational burden 

in PDAC, and they highlight the utility of patient-derived organoids for uncovering a broader 

landscape of mutations. 

Variant allele frequency (VAF) is a commonly used threshold for filtering candidate neoepitopes 

predicted by computational pipelines, including in studies examining PDAC 5,21,22. In general, 

VAF cutoffs below 10% increase the risk of false-positive calls that can arise from sequencing 

errors 17, but many bona fide PDAC mutations may be well below these cutoffs for the typical 

tumor with neoplastic cellularity below 20%. To quantify the impact of VAF cutoffs, we 

compared the number of predicted neoepitopes between matched bulk and organoid samples, 

considering only neoepitopes derived from somatic mutations called in both samples for each 

patient. We found that a standard VAF cutoff of 0.1 in bulk tumors resulted in a mean exclusion 

of 4.5 variants (0-17) encoding predicted neoepitopes (IC50 < 500 nM) that were detected in the 

corresponding organoid with VAF > 0.1 (Supplementary Fig. 1). Using a conservative VAF 

cutoff of 0.07 employed in prior studies of neoepitopes in PDAC 22, we found that 2.7 variants 

(0-11) were excluded on average. Notably, this effect was most dramatic for lower purity tumors 

(Supplementary Fig. 1). Collectively, these results further show that conventional methods of 
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predicting neoepitopes in PDAC can overlook somatic variants that encode potential 

neoepitopes. 

Patient-derived organoids provide a higher resolution profiling of the PDAC transcriptome 

and immunopeptidome. Beyond impacting variant detection, stromal populations in bulk 

PDAC samples also contribute noise to transcriptomic and proteomic measurements 15,16. To 

compare the presence of stromal gene expression programs between bulk pancreatic tumors 

(PancSeq) and pancreatic cancer organoids, we employed the Estimation of STromal and 

Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm and 

quantified the degree of stromal and immune cell contributions in these transcriptomes. As 

expected, bulk tumor populations contained a dramatically higher level of stromal and immune 

gene signatures than organoids (P < 0.0001 in both cases; Welch’s t-test), including a uniform 

increase in these signatures between ten bulk tumors and organoids derived from the same 

patients (Fig. 1d; Supplementary Fig. 2). Of note, 54% of the genes comprising the stromal and 

immune signatures were not expressed at all (mean raw RSEM counts < three) in the organoid 

cohort, while 98% were expressed in the bulk tumor cohort (Supplementary Fig. 2). The genes 

in each of these categories that were detected in PDOs were expressed at extremely low levels, 

reflected in the low stromal and immune scores for these samples. 

As expected, gene modules derived from these missing genes are absent in malignant cell 

populations derived from human PDAC single-cell expression data 23, instead enriching strongly 

in other cells from the tumor microenvironment (Supplementary Fig. 2). The aggregate 

ESTIMATE score and tumor purity calculated by ABSOLUTE showed a mild association 

(correlation = -0.56) comparable to that noted for other bulk tumor RNA-Seq datasets 

(Supplementary Fig. 2) 24. Collectively, these data confirm that organoids provide a purer view 
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of the pancreatic cancer transcriptome, devoid of the stromal gene expression signatures present 

in bulk samples that could confound interpretation of pancreatic cancer expression programs. 

Prior work suggests that autophagy-related pathways may degrade MHC class I in pancreatic 

cancer cells, thereby enabling evasion of an anti-PDAC immune response 25. To assess whether 

MHC class I is expressed in our PDOs, we performed flow cytometry to profile baseline and 

interferon-gamma inducible surface expression of MHC-I. In all eight examined patient samples, 

we identified significant cell surface baseline expression of MHC-I that was further elevated by 

exposure to interferon gamma (Fig. 1e; Supplementary Figure 3). These data suggest that most 

pancreatic tumors still present sufficient levels of MHC class I for presentation of potential 

cancer-restricted epitopes, motivating further characterization. 

To enable a higher resolution of the immunopeptidome in human PDAC, we expanded patient-

derived organoid lines (n = 7) to 50-100 million cells. These samples harbored driver mutation 

patterns resembling those observed in sequencing studies of larger PDAC cohorts 

(Supplementary Fig. 3) 14. We also adapted three of these organoid samples to monolayer cell 

lines (2D) for concomitant expansion and analysis. After expansion, we stimulated each line with 

interferon gamma to increase MHC class I expression and peptide detection sensitivity 20. After 

harvesting each sample and eluting peptides bound by MHC class I, we identified over 17,000 

MHC-associated peptides (MAPs) in each sample (Fig. 1f), a dramatic increase over the only 

prior study of the PDAC immunopeptidome 13. 

The characteristics of detected peptides matched expectations, including appropriate peptide 

length distribution (8-11 amino acids) and sequence motifs resembling established peptide-

binding profiles of patient-specific HLA alleles (Fig. 1g, h). These trends were consistent 

between matched organoid and 2D cell lines (Supplementary Fig. 3). Importantly, gene module 
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scores based on peptides’ source genes were specifically enriched in malignant pancreatic cancer 

cells (P ~ 0; XL-minimum hypergeometric test; see Methods), relative to all stromal cell types in 

a single cell expression dataset derived from more than 20 patient tumor samples (Fig. 1i) 26. 

These results further reflect the malignant cell purity of organoids, and they suggest that our 

cancer cell enrichment enables unambiguous identification of peptides derived from genes 

expressed by pancreatic cancer cells in vivo. 

A computational proteogenomics approach broadens the PDAC immunopeptidome search 

space. Identification of peptides in proteomics data critically depends upon the protein sequence 

search database 27. To enable identification of peptides derived from sources beyond the 

reference proteome, we constructed patient-specific databases informed by WGS and RNA-Seq 

of each sample (Fig. 2a). This included recoding the reference proteome with both germline and 

somatic variants. To account for cases in which nearby variants co-occur on the same haplotype, 

we also performed variant phasing and integrated this into the recoded search space. Beyond 

genetic variants, we applied a modified version of a previous pipeline for detection of retained 

introns (RIs) 8. We then further augmented our search spaces with protein sequences translated 

from the open frames of retained introns detected in each sample, as well as the two alternative 

reading frames to account for possible indels. In addition to mutations and retained introns, we 

also appended a search space encompassing the entire catalog of novel unannotated reading 

frames (nuORFs) identified by Ouspenskaia et al (2021). 

Using this augmented search space, we identified hundreds of peptides derived from nuORFs, 

dozens from germline variants and RIs, and five from somatic mutations (Fig. 2b-d). Notably, 

we identified 1-2 neoepitopes per sample in 4/7 (57%) PDOs, similar to detection rates 

previously reported in other cancer types like melanoma 28. All of these peptides were predicted 
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by our neoepitope pipeline to bind with <300 nM affinity to their corresponding MHC allele (Fig 

2b). Most notably, one of these peptides derives from a frameshift mutation in the tumor 

suppressor gene (TSG) SMAD4 (Supplementary Fig. 4). The corresponding indel is detected at 

100% DNA VAF in the organoid and conserved in the matched bulk tumor, suggesting the 

mutation is clonal, as would be predicted for a TSG mutation in PDAC 29. Prior studies have 

suggested the possibility of TSG-derived frameshift neoepitopes 30, but this, to our knowledge, is 

the first empirical identification of one presented in the immunopeptidome. Given that frameshift 

mutations in SMAD4, TP53, and CDKN2A are frequent drivers of PDAC, we analyzed the 

TCGA and PancSeq cohorts to estimate both the frequency and recurrence of TSG-FS 

neoepitopes in PDAC. We find that several recurrent TSG-FS neoepitopes are predicted in 

cohorts of up to 3% of patients (collectively >10% of all patients), and we find the corresponding 

mutations are typically expressed at the RNA-Seq level, suggesting TSG frameshift mutations 

could represent a common source of shared, driver gene-derived neoepitopes (Supplementary 

Fig. 4).  
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Figure 2: The pancreatic cancer immunopeptidome harbors hundreds of noncanonical 
peptides. 
a. Schematic depicting the workflow for establishing patient-specific protein search spaces 
for mass spectrometry (WGS = whole genome sequencing).  

b. Rank-ordered predicted MHC affinity for candidate neoepitopes predicted by the 
neoepitope prediction pipeline (see Methods). Only neoepitopes that derive from the 
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same sample and are predicted to bind the superset of the same alleles (B*38:01, 
A*02:01, B*44:02, A*01:01, C*05:01, B*07:02, and B*35:01) are included. Empirically 
detected neoepitopes are highlighted by colored, enlarged points. SMAD4 (L529FS) = 
frameshift mutation. 

c. Proportion of identified peptides that map to canonical ORFS and not nuORFs vs 
peptides that map to nuORFs but not canonical ORFs (mean nuORF % = 4.05%). 

d. The number of identified peptides that uniquely derive from a single noncanonical 
protein sequence entry across different classes of noncanonical protein sequences. Values 
are summed from all seven samples. 

e. Histogram depicting the frequency of nuORF-derived peptides predicted to specifically 
bind A*02:01 or B*44:02 and uniquely map to one or more sequences in nuORFdb and 
not the canonical proteome. Data incorporate all B*44:02 organoids and all A*02:01 
organoids. 

f. LC–MS/MS Spectrum Mill identification score for peptides derived from different 
protein sources. Only peptides that map to a single protein sequence entry are considered. 

 

Of the ~78,000 unique peptides detected across all samples, 2,203 derived from nuORFs (Fig. 

2c). More than 50% of these peptides derive from out-of-frame ORFs or ORFs present in 5’ 

“untranslated” regions (UTR) (Fig. 2d). We observed 128 peptides derived from lncRNAs and 

81 from pseudogenes. We also found that many nuORF peptides predicted to bind the same 

MHC alleles were detected in multiple allele-matched samples, including ten detected in all 

B*44:02 samples (n = 4) and four detected in all A*02:01 samples (n = 6) (Fig. 2e). Like prior 

studies of melanoma and glioblastoma, these results indicate that noncanonical open reading 

frames frequently encode peptides presented by MHC-I in pancreatic cancer cells. 

At the transcriptional level, we detect thousands of retained introns (RIs) in each organoid 

sample (Supplementary Fig. 5). In the immunopeptidome, we detected two to nine potential RI-

derived peptides in every organoid, and two were shared by more than one sample 

(Supplementary Fig. 5). The difference in number of retained introns detected transcriptionally 

versus the number detected in the immunopeptidome is similar to observations by Smart et al. 

(2018). Most classes of peptides showed similar Spectrum Mill MS/MS identification scores 

(Fig. 2f), reflecting similarly high quality in peptide-spectrum mapping. However, Spectrum 
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Mill scores were notably lower for a subset of retained intron peptides, suggesting these may 

warrant further investigation and reconsideration of the assigned peptide sequence. We manually 

discarded low-scoring candidate retained intron peptides from subsequent analysis (see 

Methods). 

In total, our results show that retained introns, nuORFs, and somatic mutations can contribute to 

the immunopeptidome of pancreatic cancer cells, and a subset may thus represent previously 

unexplored immunotherapy targets for this disease. 

A subset of peptide-generating nuORFs and canonical genes exhibit PDAC-restricted 

transcriptional expression. We next sought to determine whether nuORFs, retained introns, or 

canonical genes could encode PDAC-specific or PDAC-associated MAPs via cancer restricted 

expression patterns (Fig. 3a). For nuORFs, we examined parental transcript expression across 26 

normal tissue categories, encompassing 46 total tissue subtypes, from the Genotype-Tissue 

Expression (GTEx) project (n = 9-10 samples within each tissue subtype; n = 255 for Cortex) 

(Supplementary Table 1) 12,31. We excluded reproductive tissues from consideration, and we 

examined only the parental transcript that had been assigned to each nuORF by Ouspenskaia et 

al. (2022) (see Discussion). We classified PDAC-specific transcripts as the subset of transcripts 

whose 90th percentile Transcripts per Million (TPM) value was less than one in all normal tissue 

categories (see Methods). PDAC-associated transcripts were classified as the subset that 

exhibited limited expression in certain normal tissues for which tissue-related toxicities could be 

clinically managed (Supplementary Fig. 6) 13. All final transcripts were also required to be 

expressed at a TPM > 1 in at least one of the seven organoids profiled by immunopeptidomics. 

We took a similar approach to curate a list of seven PDAC-specific and PDAC-associated 
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canonical genes encoding peptides in our mass spectrometry data, requiring that the candidates 

show increased expression in profiled organoids. 

With this approach, we identified dozens of annotated and unannotated ORFs that exhibit 

PDAC-specific or PDAC-associated expression and encode MAPs detected in the 

immunopeptidome of pancreatic cancer cells (Fig. 3b-d, g). In total, we identified 47 MAPs 

from candidate PDAC-specific nuORFs or genes (35 nuORF transcripts and three canonical 

genes) and 92 MAPs from candidate PDAC-associated nuORFs or genes (57 nuORF transcripts 

and four canonical genes). Many of these genes and nuORF-associated transcripts were 

significantly overexpressed in the majority of the broader PDAC organoid cohort (n = 48) 

relative to normal tissues (Fig. 3e). 
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Figure 3: A subset of canonical and noncanonical transcripts exhibit PDAC-restricted 
expression patterns and encode MAPs presented by multiple patient samples.  
a. Schematic depicting the filtering process used to nominate PDAC-specific and PDAC-
associated nuORFs. 

b. Heatmap depicting the expression of all transcripts associated with 1,539 nuORFs with 
unambiguously mapped peptides from the immunopeptidome of PDAC organoids. 
Expression values were calculated using log2(TPM+1) of the 90th percentile (Q90) value 
of each nuORF in each of 30 normal tissues. NuORFs are ordered according to the mean 
Q90 expression value calculated across normal tissues (third column from right). The 
log2(TPM+1) value based on Q90 TPM across all PDAC organoids (n=48) and bulk 
tumors (n=49) are depicted in the two rightmost columns. Expression values were capped 
at log2(TPM+1) = 6 for plotting. A black bar separates data for normal tissues (left) vs 
mean values and PDAC samples (right). 

c. Heatmap depicting the expression of the six PDAC-specific (top) and six PDAC-
associated (bottom) nuORF transcripts with the highest average expression in seven 
organoids profiled with immunopeptidomics. Expression is based on the Q90 TPM value 
in normal tissues (30 leftmost columns), the calculated TPM value in each of the seven 
organoids (next seven columns), and the mean TPM value across all organoids and bulk 
tumors (two rightmost columns). All values are expressed as log2(TPM+1). Select normal 
tissues are labeled along the bottom of the heatmap. 

d. Heatmap depicting expression of three PDAC-specific (TDRD1, CALHM3, MAGEA11) 
and four PDAC-associated (IGF2BP3, C4orf36, ZNF695, and CT83) canonical genes. 
One gene (TDRD1) with one or more peptides detected in normal tissue 
immunopeptidomes is labeled in red. All values are expressed as log2(TPM+1) as 
described in (C). 

e. Box plots depicting the median (middle line), 25th and 75th percentiles (box limits) and 
minimum and maximum (whiskers) expression values of the top 12 nuORF-associated 
transcripts whose 25th percentile expression across PDAC organoids is two times the 
maximum Q90 TPM across normal tissues. Dots reflect expression values of individual 
tissues (n = 29, excluding testis) and PDAC organoids (n = 48).  

f. Bar plots depicting the total number of MAPs detected in two or more organoid samples 
that derive from nuORFs or canonical genes classified as PDAC-associated or PDAC-
specific.  

g. RNA-Seq coverage across an example PDAC-associated nuORF transcript (bottom 
annotation track) derived from CASP8. Plots depict coverage in three different B*44:02 
PDAC samples in which the same peptide was detected (bottom). This nuORF also gives 
rise to a second peptide detected in two A*03:01 samples (not shown). 

 

To further validate the PDAC-restricted expression of these MAPs, we also analyzed data 

derived from the immunopeptidomes of 31 different normal tissues across a total of 245 autopsy 

specimens (excluding reproductive tissues), and we removed peptides that were derived from 

parental genes or nuORF-associated transcripts encoding the same or different 8-11mer peptides 
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in normal tissue immunopeptidomes 32. After this final filtration, we retained 37 MAPs from 

PDAC-specific candidate genes or nuORFs (29 nuORF transcripts and two genes) and 71 MAPs 

from PDAC-associated candidate genes or nuORFs (52 nuORF transcripts and four genes).  

A subset of PDAC-specific and -associated MAPs were detected in multiple PDO samples and 

may thus represent shared immunotherapy targets (Fig. 3f). Four nuORF-derived peptides were 

particularly recurrent, including one 5’ overlap uORF peptide detected in five A*02:01 samples 

(transcript assigned by Ouspenskaia et al.: ENST00000512813.5_1), two ncRNA peptides each 

detected in four A*02:01 samples (transcripts assigned by Ouspenskaia et al.: 

ENST00000509913.1_1 and ENST00000478653.6_1), and one 5’ uORF peptide detected in 

three B*44:02 samples (transcript assigned by Ouspenskaia et al.: ENST00000490682.5_1) (Fig. 

3d). Notably, multiple organoids shared canonical peptides derived from IGF2BP3, encoding 

Insulin-like growth factor 2 mRNA-binding protein 3, which has been shown to promote 

metastasis in pancreatic cancer (Fig. 3d, f) 33. We also identified further evidence of PDAC-

specific IGF2BP3 protein expression by examining the Human Protein Atlas (Supplementary 

Fig. 7) 34. Though IGF2BP3 qualifies as a PDAC-associated gene according to our 

transcriptomic analysis, we initially filtered it due to a single peptide detected in a normal 

cerebellum immunopeptidome specimen. Since this peptide was also mappable to a nuORF 

transcript, IGF2PB3 may still represent a promising target for immunotherapy, especially given 

that it encodes four different peptides that each are detected in the immunopeptidome of three or 

more PDAC organoid samples. 

We analyzed another cohort of normal GTEx tissues for retained introns by employing the same 

intron retention pipeline applied to our PDO samples. We found that the number of retained 

introns in different normal tissues generally tracked with relative estimates established by 
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Braunschweig et al. (2014), with, as examples, heart, muscle, and colon tissues exhibiting lower 

levels of intron retention 35. To designate retained introns that define each normal tissue 

category, we took the intersection of introns detected for all samples within each tissue (see 

Methods; Supplementary Fig. 5). We then took the union of all retained introns called for each 

tissue and used this cohort to filter introns in organoids down to a set of PDAC-specific retained 

introns (Supplementary Fig. 5). After filtering, we identified hundreds of PDAC-specific 

retained introns shared by multiple organoids (Supplementary Fig. 5). Despite an apparently 

high load of cancer-specific retained introns, only 2/48 intron-derived peptides detected in our 

immunopeptidome dataset derive from cancer-specific retained introns (Supplementary Fig. 5). 

The Spectrum Mill scores for these two peptides were >10, supporting a correct peptide 

sequence assignment. 

Generation of T cells specific to PDAC-associated MAPs using healthy donor PBMCs. 

PDAC-specific and -associated MAPs could represent valuable immunotherapy targets for 

cancer vaccination strategies or adoptive cell therapy (ACT) with MAP-specific T cells. Prior 

preclinical and clinical studies suggest that the immune system can fail to recognize tumor-

specific antigens expressed in PDAC 6,36. This suggests that the TCR repertoire of patient TILs 

may not be an ideal source for gauging the immunogenicity of PDAC-associated MAPs, nor an 

ideal source for identifying T cells suitable for expansion and ACT. Thus, we opted to employ 

partially HLA-matched healthy donor PBMCs for the expansion and identification of T cells 

specific to PDAC-associated or PDAC-specific MAPs 37. We adapted a procedure described by 

Rollins and colleagues to prime and repeatedly stimulate CD8+ T cells with autologous 

monocyte-derived dendritic cells (Mo-DCs) pulsed with PDAC-associated or PDAC-specific 

MAPs (Fig. 4a; Supplementary Fig. 8) 38. For predicted A*02:01 binders, we stained CD8+ T 
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cells with peptide-loaded tetramers conjugated to two distinct fluorophores to enumerate antigen-

specific T cells. After expansion and repeated stimulation, we used this method to compare the 

frequency of dual-tetramer+ cells in the stimulated cohorts to the frequency among autologous 

CD8+ T cells not previously stimulated with the peptide of interest. For peptides predicted to bind 

other alleles (i.e., not A*02:01), we examined the frequency of CD8+ T cells expressing 

interferon gamma and tumor necrosis factor alpha after co-culture with peptide-pulsed DCs. 

Notably, of the six nuORF-derived peptides tested, three generated sizable populations of 

antigen-specific CD8+ T cells from undetectable precursor populations (Fig. 4b-c; 

Supplementary Fig. 8). The immunogenicity of these peptides was validated in additional 

experiments with PBMCs derived from a separate healthy donor, or with orthogonal validation 

using peptide-mediated stimulation of effector cytokine production (Fig. 4d). Of note, one 

peptide, ALSPRNWTL, derives from a PDAC-associated lncRNA. The corresponding nuORF 

overlaps both the transcript assigned by Ouspenskaia et al. (2022) and two others derived from 

the same lncRNA. The assigned transcript is expressed at Q90 TPM < 0.9 in all normal GTEx 

tissues, except whole blood (Q90 TPM = 1.3), and is expressed at TPM = 1.6 and 3.2 in the two 

different organoids in which the peptide was detected. The other two overlapping transcripts are 

expressed more highly in organoids and more broadly in normal tissues, challenging whether the 

transcript assigned by Ouspenskaia et al. (2022) is the correct source of the peptide (see 

Discussion). Regardless of the transcript source, this lncRNA does not generate a peptide 

detected in any normal tissue immunopeptidome, suggesting at least a pattern of cancer-

restricted translation. In total, these results indicate that T cells specific to PDAC-associated, 

nuORF-derived MAPs can be readily generated from healthy donor PBMCs, which may thus 

represent a potent source for T cell-based immunotherapies for PDAC. 
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Figure 4: T cells specific to PDAC-associated nuORF MAPs are readily generated from 
healthy donor PBMCs. 
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a. Schematic depicting the procedure for initial T cell priming and subsequent 
restimulations using partially HLA-matched healthy donor PBMCs. 20 CD8+ cytotoxic 
lymphocyte lines (CTL) were derived from each donor. Each set of 10 CTLs was primed 
and restimulated two to three times with a pool of four specific peptides.  

b. The percentage of dual-tetramer-positive cells among live CD8+ cells using A*02:01 
tetramers loaded with a peptide derived from a PDAC-associated lncRNA (left) or a 
peptide derived from a ncRNA transcript whose expression is TPM < 1 in all normal 
tissue samples (right). Bars indicate the percentage (value labeled above bars) across 
multiple CTLs derived from the same donor and expanded with the same peptide pool. 
The percentage among autologous CD8+ cells not previously stimulated with the peptide 
is depicted in the rightmost column. Only CTL lines that had a sufficient number of cells 
after expansion were included in the analysis. 

c. Flow cytometry plots depicting a large population of expanded CD8+ T cells stained with 
dual tetramers loaded with lincRNA-derived peptide, ALSPRNWTL. 10 independent 
CTL lines were pooled for analysis and demultiplexed using fluorescent staining with 
CellTrace™ Violet (CTV) and CarboxyFluoroscein Succinimidyl Ester (CFSE). 1.55% 
of all live CD8+ cells were dual tetramer positive (bottom middle), and most of these 
were cells derived from CTL #72 (bottom right). Dual-tetramer-positive cells represented 
10.6% of all CTL #72 live CD8+ cells (upper right) and a negligible fraction of control 
cells not previously stimulated with the peptide (“Pre-stim CD8s” labeled in purple in 
bottom right panel). 

d. Flow cytometry plot depicting the percentage of CD8+ cells expressing or not expressing 
IFNg and/or TNFa after treatment with ncRNA-derived ALYTVLDPV, or no peptide as 
a control. These data are derived the same donor depicted in the right panel of (b). 

e. The percentage of dual-tetramer-positive cells among live CD8+ cells using A*02:01 
tetramers loaded with peptides derived from nuORFs, IGF2BP3, missense mutations, or a 
retained intron. Peptide source categories are indicated below the X-axis. CTLs 
previously stimulated with the indicated peptide are labeled in blue, and autologous CD8+ 
CTLs not previously stimulated are labeled in purple. All technical replicates (different 
CTLs; same donor) and biological replicates (different CTLs; different donor) are pooled 
together in each column. The percentage of dual-tetramer-positive cells among live CD8+ 
cells using A*02:01 tetramers loaded with an irrelevant mesothelin (MSLN)-derived 
peptide are included on the left as an additional negative control. 

 

In contrast to nuORFs, we did not observe a T cell response against any of the PDAC missense-

derived neoepitopes tested (Fig. 4e; Supplementary Fig. 8), though we did observe a strong and 

robust response against two melanoma-derived neoepitopes reported in a previous study using a 

similar healthy donor PBMC-based assay (Supplementary Fig. 8) 37. We also did not observe a 

response against any of three tested IGF2BP3-derived peptides, nor against a retained intron-

derived peptide (Fig. 4e; Supplementary Fig. 8). Of note, we detected IGF2BP3-derived 
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peptides in the immunopeptidome of three thymus donor tissues, so it is likely that central 

tolerance excludes IGF2BP3-specific peptides from the naïve T cell repertoire. However, 

IGF2BP3 could still represent a valuable target for adoptive cell therapy if IGF2BP3-peptide-

specific TCRs could be identified or otherwise engineered. In total, these results suggest that 

nuORFs may represent a more immunogenic class of epitopes than canonical genes or somatic 

mutations, though more expansive testing with numerous different PBMC donors and additional 

epitopes is warranted. 

Discussion 
 PDAC is notoriously recalcitrant to immunotherapy 39,40. This has been partly attributed 

to its mutational burden 1,2; however, recent studies have elucidated numerous non-mutational 

sources of cancer-restricted antigens that have remained largely unexplored in PDAC 8,12,41,42. In 

this study, we performed the deepest characterization of the PDAC immunopeptidome to-date, 

uncovering dozens of MAPs from noncanonical sources with transcription or translation limited 

to PDAC cells or PDAC cells and select normal tissues. Importantly, we were able to 

unambiguously confirm the malignant origin of these peptides by employing patient-derived 

PDAC organoids, thereby avoiding signals from stromal cell populations that confound bulk 

pancreatic tumor datasets. 

 In additional to noncanonical sources, we also frequently identified mutation-derived 

neoepitopes in most organoid samples. This suggests that pancreatic tumors do in fact present 

neoepitopes despite a low mutational burden. By comparing predicted neoepitope burden across 

primary and metastatic bulk tumors and tumor-derived organoids, we found that the overall 

neoepitope burden in PDAC may be moderately higher than prior estimates based on primary 

tumors 4. We further found that even for metastatic samples, tumor-derived organoids typically 

harbor several neoepitope-encoding mutations that would be excluded by variant allele 
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frequency filters used in most bioinformatic pipelines 22. In light of this, current clinical efforts 

aimed at neoepitope-based vaccinations may benefit by expanding and sequencing tumor-derived 

organoids prior to neoepitope prediction and prioritization.  

In the case of retained introns, we found that while pancreatic cancer cells often present 

retained intron-derived epitopes, most of those detected are not cancer-specific. Prior studies 

have often limited their analysis of retained introns in normal tissues to the tissue-of-origin 8,9; 

however, it has been shown that intron retention profiles can be lineage-specific and thus 

considerably discordant among different tissue types 35,43. This emphasizes the importance of 

examining a broad cohort of normal tissues when designating cancer-specific retained introns. 

Our results warrant caution for clinical efforts that may employ retained intron-derived epitopes 

as therapeutic targets. However, our identification of a PDAC-restricted retained intron epitope 

suggests that a subset of patients may indeed harbor therapeutically actionable epitopes derived 

from retained introns. 

 We found that pancreatic cancer can harbor hundreds of MAPs derived from lncRNAs, 5’ 

UTRs, pseudogenes, out-of-frame ORFs, and canonical protein-coding ORFs. We systematically 

interrogated source gene expression patterns in the transcriptomes and immunopeptidomes of 

hundreds of normal tissue specimens. Through this process, we were able to designate a rigorous 

cohort of previously unreported candidate PDAC-specific or PDAC-associated MAPs. These 

included a subset encoded by canonical genes like IGF2BP3. We were unable to generate a T 

cell response against IGF2BP3-derived epitopes. This is consistent with our identification of 

IGF2BP3-derived peptides in thymic immunopeptidomes, direct evidence that canonical genes 

like IGF2BP3 are more likely subject to AIRE (autoimmune regulator)-induced thymic 

expression and central tolerance than nuORFs. In contrast, nuORF-derived peptides in the cancer 
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immunopeptidome may be due to cancer-specific transcription and/or translation that does not 

occur in the thymus. Indeed, most nuORF-associated transcripts nominated by RNA-Seq 

analyses were not detected in the immunopeptidomes of any normal tissue, including the thymus. 

One limitation of our study involves the construction of the nuORF database published by 

Ouspenskaia et al. (2022). In this study, nuORFs were inferred from ribosome profiling data. 

The subsequent nuORF ID was assigned to a specific transcript overlapping the nuORF 

coordinates. Upon manual review, we noted that many nuORFs overlap several transcripts 

without an intervening splice site that could be used to distinguish the proper isoform assignment 

(i.e., the transcript isoform that most likely generated the peptide). In the absence of sample-

matched RNA-Seq, Ouspenskaia et al. (2022) arbitrarily assigned a transcript to the nuORF’s ID. 

Consequently, the normal tissue expression analysis in both their study and our study is 

confounded in cases where this assignment may have been incorrect. To address these 

ambiguous assignments, we are restructuring the nuORF database by re-assigning each 

ambiguous nuORF to the candidate transcript exhibiting the highest expression in organoids with 

a nuORF-encoded peptide. This will enable more precise curation of nuORF-derived MAPs with 

PDAC-restricted expression patterns.  

Importantly, we found that T cells specific to nuORF-derived peptides were easily generated 

from healthy donor immune cell populations. In all cases, we could not identify a preexisting 

population of nuORF-specific T cells, suggesting that these cells began as naïve precursor 

populations. In total, our results suggest that nuORFs are an especially immunogenic class of 

PDAC-restricted epitopes, and naïve T cell repertoires represent a convenient source for 

developing nuORF-specific T cells. This finding has implications for both cancer vaccine 

strategies and adoptive cell therapy, both of which may benefit from targeting peptides derived 
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from PDAC-specific or PDAC-associated nuORFs, or nuORFs that may be translated in a 

PDAC-restricted fashion. In general, the MAPs identified in our study represent a promising 

class of targets for a broad array of traditional and next-generation immunotherapies. 
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Supplementary Figures and Legends: 

 

Supplementary Figure 1: Low tumor purity diminishes estimated TMB and predicted 
neoepitope burden in PDAC. 
a. Comparison of TMB (left two plots) and predicted neoepitope burden (two right plots) in 
low- vs high-purity bulk tumors derived from TCGA and PancSeq cohorts. 

b. The number of predicted neoepitopes in organoids vs matched bulk tumor samples. 
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c. The number of variants encoding candidate neoepitopes that are excluded by a traditional 
VAF cutoff of 0.1 or a more conservative cutoff of 0.07 across samples. Only variants 
called for both the organoid and bulk tumor are considered. 

d. ABSOLUTE-estimated bulk tumor purity for all 12 samples with matched organoids. 
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Supplementary Figure 2: Stromal gene expression signatures significantly contaminate the 
transcriptomes of bulk PDAC tumor samples.  
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a. ESTIMATE-calculated stromal, immune, and ESTIMATE scores for all PDAC 
organoids (n=48) and all PancSeq bulk tumors (n=49). 

b. The fraction of genes comprising ESTIMATE’s stromal and immune modules that are 
detectably expressed (mean RSEM raw counts > 3) across all organoids or bulk tumor 
samples. 

c. Modules of stromal and immune signature genes detected in bulk tumors but not 
organoids derive from non-malignant cell types. 

d. ESTIMATE scores show a modest negative correlation with ABSOLUTE-calculated 
tumor purity in bulk PDAC samples. 
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Supplementary Figure 3: Mutational profile and HLA types of organoids and derived 2D 
cell lines expanded for immunopeptidomics. 
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a. Oncoprint depicting the most commonly mutated genes among seven organoids profiled with 
immunopeptidomics. Legend on the right indicates mutation class. 

b. UpSet plots depicting the number of MHC class I-bound peptides (left) or peptide source 
proteins (right) shared between or unique to 2D cells and organoids derived from 
PANFR0413. 

c. Flow cytometry quantifying the surface expression of MHC class I proteins in pancreatic 
cancer organoids with (red) or without (blue) interferon gamma stimulation, compared to 
unstained controls (gray). These plots depict the results for the four organoid samples not 
depicted in Figure 1e. 

d. HLA alleles for each of the seven PDAC patient samples tested via immunopeptidomics. 
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Supplementary Figure 4: Frameshift mutations in tumor suppressor genes are predicted to 
generate shared neoepitopes in multiple cohorts of PDAC patients. 



 116 

a. The fraction of patients with a predicted TSG frameshift (top) or predicted TSG neoantigen 
(bottom) in TCGA and PancSeq. 
b. Example of several TP53-derived neoepitopes predicted to bind to the same MHC allele in 
multiple samples from TCGA. 
c. RNA variant allele frequency of indels in tumor suppressor genes for all TCGA samples with 
frameshift mutations in either TP53, CDKN2A, or SMAD4. 
d. Predicted TSG frameshift-derived peptide affinity for patient-specific MHC alleles for all 
organoid samples with a predicted TSG frameshift neoepitope.  
e. 90% of frameshift mutations in TSGs (blue curve) are present at 100% DNA variant allele 
frequency in organoid samples, a significant increase compared to frameshift mutations in other 
genes (pink curve). 
f. RNA-Sequencing reads aligned to the frameshift mutation that gives rise to the SMAD4 
frameshift neoepitope (YHADCRPTTF). Purple bars indicate the presence of an indel.  
g. BLAST results for the best wild-type peptide match comparing YHADCRPTTF against the 
reference proteome, confirming the peptide is unique to the frameshifted protein. 
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Supplementary Figure 5: PDAC organoids harbor hundreds of shared, cancer-restricted 
retained introns. 
a. Number of retained introns called for each GTEx normal tissue subtype 
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b. Frequency distribution of shared, PDAC-restricted retained introns in organoids (n=45). Plot 
begins with introns retained in 10% of organoids. 
c. Intron retention ratios for a PDAC-restricted, A6NG39-derived retained intron in five normal 
pancreatic tissue specimens (GTEx; left) and all PDAC organoids (right). Peptide sequence 
reflects the empirically detected MHC-bound peptide from sample P071. 
d. RNA-Seq coverage of the retained intron encoding peptide NAFQVRTV in the sample P071. 
Highlight shows a zoomed-in version including the peptide sequence highlighted in red (bottom). 
 

 

Supplementary Figure 6: Thresholds used to designate PDAC-associated genes and 
nuORFs from Bradley et al. 2020. 
a. Table describing the different tissues tiers and corresponding TPM cutoffs. 
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Supplementary Figure 7: Immunohistochemistry staining supports the expression of 
IGF2BP3 in human PDAC. 
a. Immunohistochemistry (IHC) staining for two human PDAC samples positive for IGF2BP3 
protein expression (top) and two that were negative (bottom). These data were retrieved from the 
Human Protein Atlas 34. 
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Supplementary Figure 8: Successful dendritic cell derivation and maturation and 
expansion of CD8+ T cells specific to bona fide melanoma neoepitopes. 
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a. Dendritic cells show increased expressed of maturation and activation markers after 
treatment with cytokines and adjuvants. 

b. Successful expansion of T cells recognizing a CDK4-derived melanoma neoepitope from a 
previously undetectable population. Controls cells not previously stimulated with the peptide 
do not stain positive for peptide loaded dual-tetramers (upper middle plot; purple label). 

c. Frequency of CD8+ T cells recognizing a CDK4-derived neoepitope (left) or GNL3L-derived 
neoepitope (right) across ten CTL lines derived from the same PBMC donor. 

d. The percentage of interferon gamma+ and TNF-alpha+ cells among live CD8+ cells 
stimulated or unstimulated with peptides derived from nuORFs, IGF2BP3, or a missense 
mutation. Peptide source categories are indicated below the X-axis. CTLs stimulated with the 
peptide they were expanded with are labeled in blue, and the same CTLs untreated with the 
peptide are labeled in purple. A pool of the CTL lines stimulated with PMA and ionomycin 
are included as a positive control. All technical replicates (different CTLs; same donor) 
(n=1=5) are pooled together in each column.  

 

Supplementary Table 1: Number of samples in each tissue subtype included in normal tissue 
expression analysis. 
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Methods 
Patient tumor organoid derivation and sequencing. 

The following two sections are taken from Raghavan et al. (2021), who first described the 

derivation and sequencing of the organoids described in Chapter 2 19. These sections will be 
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modified before a final submission of this manuscript to reflect an upcoming publication 

describing this resource in more detail. 

Human specimens 

Eligible participants were recruited from outpatient clinics and inpatient units at the Dana-Farber 

Cancer Institute and the Brigham and Women’s Hospital. Investigators obtained written, 

informed consent from patients at least 18 years old with pancreatic cancer for Dana-

Farber/Harvard Cancer Center Institutional Review Board (IRB)-approved protocols 11-104, 17-

000, 03-189, and/or 14-408 for tissue collection, molecular analysis, and organoid generation. 

Organoid samples for bulk genomic and transcriptomic analyses were collected between May 

2015 and January 2018. Core needle biopsy specimens were collected, and the first core was sent 

for pathologic analysis. One or more additional cores were then allocated for organoid 

generation.  

Bulk RNA- and DNA-sequencing of organoids 

RNA was obtained for bulk RNA-sequencing from established organoids using one of two 

approaches. Dissociated organoids were resuspended into cold Matrigel, added as droplets to 

tissue culture plates (Greiner BioOne), and allowed to polymerize for 30 min before addition of 

media. Organoids were grown for 14-21 days (until confluent) under these conditions with 

regular media changes. At the time of harvest, cells were washed with cold phosphate buffered 

saline (PBS) at 4C, then lysed with Trizol (Invitrogen) before snap-freezing. To isolate RNA, we 

performed chloroform extraction with isolation of the aqueous phase before processing RNA as 

per protocols outlined in the QIAGEN AllPrep DNA/RNA/miRNA Universal kit. In the second 

approach, used to obtain both RNA and DNA, dissociated organoids were resuspended in a 

solution of 10% Matrigel in complete organoid media (volume/volume) and cultured in ultra-
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low-attachment culture flasks (Corning). Organoids were grown for 14-21 days (until confluent) 

before pelleting, washing with cold PBS at 4C until most Matrigel was dissipated, and then snap 

frozen. Cell pellets were homogenized using buffer RLT Plus (QIAGEN) and a Precellys 

homogenizer. Samples were then processed for both DNA extraction and RNA isolation as per 

the QIAGEN AllPrep DNA/RNA/miRNA Universal kit. Purified RNA and DNA were then 

submitted for sequencing by the Broad Institute Genomics Platform. For bulk RNA-sequencing, 

total RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher) and 

normalized to 5 ng/mL. Following plating, 2 mL of a 1:1000 dilution of ERCC RNA controls 

(Thermo Fisher) were spiked into each sample. An aliquot of 200 ng for each sample was 

transferred into library preparation which uses an automated variant of the Illumina TruSeq 

Stranded mRNA Sample Preparation Kit. This method preserves strand orientation of the RNA 

transcript and uses oligo dT beads to select mRNA from the total RNA sample followed by heat 

fragmentation and cDNA synthesis from the RNA template. The resultant 400 bp cDNA then 

goes through dual-indexed library preparation: ‘A’ base addition, adaptor ligation using P7 

adapters, and PCR enrichment using P5 adapters. After enrichment, the libraries were quantified 

using Quant-iT PicoGreen (1:200 dilution; Thermo Fisher). After normalizing samples to 5 

ng/mL, the set was pooled and quantified using the KAPA Library Quantification Kit for 

Illumina Sequencing Platforms. The entire process was performed in 96-well format and all 

pipetting was done by either Agilent Bravo or Hamilton Starlet. Pooled libraries were normalized 

to 2 nM and denatured using 0.1 N NaOH prior to sequencing. Flowcell cluster amplification and 

sequencing were performed according to the manufacturer’s protocols using the NovaSeq 6000. 

Each run was a 101 bp paired-end with an eight-base index barcode read. Data were analyzed 
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using the Broad Picard pipeline which includes de-multiplexing and data aggregation 

(https://broadinstitute.github.io/picard/).  

For whole genome sequencing, 350 ng of genomic DNA was fragmented using a Covaris 

focused-ultrasonicator targeting 385bp fragments followed by size selection using SPRI cleanup. 

Library preparation was performed using a KAPA HyperPrep without amplification kit (KAPA 

Biosystems) with palindromic forked adapters with unique 8-base index sequences embedded 

within the adaptor (Roche). Libraries were then quantified using quantitative PCR (kit purchased 

from KAPA Biosystems) with probes specific to the adaptor ends on an Agilent Bravo liquid 

handling platform. Libraries were normalized to 2.2 nM, pooled into 24-plexes, combined with 

NovaSeq Cluster Amp Reagents DPX1, DPX2, and DPX3, and loaded into single lanes of a 

NovaSeq 6000 S4 flowcell using a Hamilton Starlet Liquid Handling system. Cluster 

amplification and sequencing occurred utilizing sequencing-by-synthesis kits to produce 151bp 

paired-end reads. Output from Illumina software was processed by the Broad Picard pipeline 

(https:// broadinstitute.github.io/picard/) to yield BAM files containing demultiplexed, 

aggregated aligned reads. 

Single nucleotide variant calls from whole-genome sequencing of organoids. 

For targeted DNA-sequencing of clinical samples, next-generation sequencing using a custom-

designed hybrid capture library preparation was performed on an Illumina HiSeq 2500 with 

2x100 paired-end reads. Sequence reads were aligned to reference sequence b37 edition from the 

Human Genome Reference Consortium using bwa, and further processed using Picard (version 

1.90, http://broadinstitute.github.io/picard/) to remove duplicates and Genome Analysis Toolkit 

(GATK, version 1.6-5-g557da77) to perform localized realignment around indel sites. Single 

nucleotide variants were called using MuTect v1.1.45 44. 
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Organoid propagation and preparation of organoids for immunopeptidomics 

Pancreatic organoid isolation and propagation has been previously described 45. Human patient 

derived organoids were cultured in three-dimensional domes of Matrigel (80-90% Matrigel) and 

passaged every 3-4 days. Prior to HLA-I immunopeptidomics, organoids were treated with 

hIFNg (PeproTech; 100 ng/mL) for 36-40 hours to upregulate surface MHC class I expression 20. 

Organoids were mechanically dissociated and then subjected to a gentle enzymatic digestion 

(TrypLE for less than 10 minutes at 37oC) to digest Matrigel. Cells were washed in 1x PBS and 

cell pellets were snap frozen and stored at -80oC for batch processing. 

Media for pancreatic organoids was formulated based on L-WRN cell conditioned media (L-

WRN CM) 46. Briefly, L-WRN CM was generated by collecting 8 days of supernatant from L-

WRN cells, grown in Advanced DMEM/F12 (Gibco) supplemented with 20% fetal bovine serum 

(Hyclone), 2 mM GlutaMAX, 100 U/mL of penicillin, 100 µg/mL of streptomycin, and 0.25 

µg/mL amphotericin. L-WRN CM was diluted 1:1 in Advanced DMEM/F12 (Gibco) and 

supplemented with additional RSPO-1 conditioned media (10% v/v), generated using Cultrex 

HA-R-Spondin1-Fc 293T Cells. The following molecules were also added to the growth media: 

B27 (Gibco), 1 μM N-acetylcysteine (Sigma-Aldrich), 10 μM nicotinamide (Sigma-Aldrich), 50 

ng/mL EGF (Novus Biologicals), 500 nM A83-01 (Cayman Chemical), 10 μM SB202190 

(Cayman Chemical), and 500 nM PGE2 (Cayman Chemical). 

Flow cytometry 

Pancreatic organoids 

Pancreatic organoids were grown as described above. Where indicated, organoids were treated 

with interferon-gamma (100 ng/mL; PeproTech) for 36-40 hours prior to analysis. Organoids 

were dissociated using TrypLE (10 minutes to minimize cleavage of surface proteins) washed 
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with PBS. Single cell suspensions were pelleted at 2000 rpm and transferred to 96-well round-

bottom plates for flow cytometric staining. Prior to surface staining, cell pellets were 

resuspended in Live/Dead dye (Ghost Dye Red 780, Tonbo Biosciences) diluted 1:1000 in PBS 

on ice for 20 minutes in the dark. Surface staining was performed using HLA-A/B/C (clone 

W6/32; PE; 1:40) on cells in PBS with 1% heat-inactivated FBS on ice for 30 min in the dark.   

Monocyte-derived dendritic cells 

MoDCs were prepared as previously described 38. Briefly, monocytes were isolated from 

autologous leukapheresis samples using the adherence method.  To generate immature dendritic 

cells, cells were cultured for 16-24 hours in recombinant human GM-CSF (800 U/ml) and 

recombinant human IL-4 (35 ng/ml). MoDCs were differentiated using a combination of 

recombinant human TNF-α (10 ng/ml), recombinant human IL-1β (10 ng/ml), recombinant 

human IL-6 (10 ng/ml), and recombinant human PGE2 (1 μg/ml).   

MoDCs were harvested for flow cytometric staining, washed with PBS, and transferred to 96-

well U-bottom plates. Prior to surface staining, cell pellets were resuspended in Live/Dead dye 

(Ghost Dye Red 780, Tonbo Biosciences) diluted 1:1000 in PBS on ice for 20 minutes in the 

dark. Surface staining was performed on ice for 30 min in the dark using the following 

antibodies: anti-CD14 (clone M5E2; BUV737), anti-CD11c (clone Bu15; PE), anti-CD83 (clone 

HB15e; FITC), anti-CD86 (clone 2331; BV650); anti-HLA-DR (clone G46-6; BUV661), anti- 

CD40 (clone 5C3; BV421).  All antibodies were used at recommended (1:20) dilution unless 

otherwise indicated.   

Antigen-specific T cells 
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To analyze antigen-specificity of expanded cytotoxic T lymphocytes lines (CTLs), we employed 

both fluorescently conjugated multimer analysis and peptide-mediated stimulation of cytokine 

production.   

Multimer analysis 

Briefly, each CTL line was harvested independently, washed in PBS, counted with a manual 

hemocytometer, and 3x105 cells (per multimer) were transferred to 96-well U-bottom plates.  

Individual CTL lines were fluorescently barcoded using a 3x4 grid of serially-diluted CellTrace 

CFSE (CFSE) and CellTrace Violet (CTV) (ref-Shumacher 2019).  Cells were barcoded on ice 

for 5 minutes in the dark and excess dye was quenched with HI-FBS. Following fluorescent-

barcoding, CTL lines from a given pool (typically 10 CTL lines plus one negative control CTL 

line) were combined into one reaction and then stained for flow cytometric analysis.  Prior to 

surface staining, cell pellets were resuspended in Live/Dead dye (Ghost Dye Red 780, Tonbo 

Biosciences) diluted 1:1000 in PBS on ice for 20 minutes in the dark.  Fluorescently-conjugated 

HLA-A*02:01 tetramers (APC and BV605) were loaded with peptide immediately prior to 

staining and cells were first incubated with tetramers at room temperature for 15 mins, prior to 

surface staining using anti-CD8 (clone SK1; BUV737) for 30 minutes on ice. 

Cytokine analysis 

Briefly, each CTL line was harvested independently, washed in PBS, counted with a manual 

hemocytometer, and 3x105 CTLs were plated per well in a 96-well U-bottom plate (typically 5 

wells per CTL line, one well for each experimental peptide and one well for a no peptide 

control).  In each well with CTLs, autologous CD8neg PBMCs (1:1 ratio with CTLs), 5 ug/mL 

peptide, and GolgiPLUG/GolgiSTOP were added.  Cells were allowed to incubate at 37oC for 5-

6 hours prior to flow cytometric staining.  Cells were washed and prior to surface staining, cell 
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pellets were resuspended in Live/Dead dye (Ghost Dye Red 780, Tonbo Biosciences) diluted 

1:1000 in PBS on ice for 20 minutes in the dark.  Cells then underwent surface staining using 

anti-CD8 (clone SK1; SK1) at 1:40 dilution for 30 minutes on ice. CTLs were fixed and 

permeabilized using FoxP3 fix (BD Biosciences) and followed by intracellular cytokine staining 

with anti-IFNg (clone B27; APC) and anti-TNFa (clone MAb11; PE), both used at 1:80 dilution. 

For all flow cytometry experiments, samples were acquired on BD LSR II or LSR Fortessa 

machines. 

T cell culture and stimulation 

CD8+ T cell isolation, culture, and peptide stimulation was carried out exactly as described in the 

protocol published by Rollins et al. (2020).  

Neoepitope Prediction for bulk tumor datasets 

In the TCGA cohort, 148 PDAC patients were analyzed (of 150). One patient lacking a normal 

BAM file was excluded, and another patient was also excluded due to hypermutation 47. In the 

DFCI-PancSeq cohort, 57 patients with (1) annotated mutations, (2) both WES and RNA-Seq 

data, and (3) sufficient tumor purity 48 were analyzed. Binary Alignment Map (BAM) files were 

obtained for PancSeq (aligned to GRCh37) and for TCGA (aligned to GRCh38). Thus, GRCh37 

was used as the reference genome for the PancSeq cohort in all downstream analyses, and 

GRCh38 was used for the TCGA cohort. 

HLA typing was performed using two programs and with both RNA-Seq and WES data to assess 

robustness of HLA allele calls. HLA alleles for classical genes (HLA-A, -B, and C) were called 

using the HLA genotyping algorithm, OptiType, version 1.3.1 49, as well as seq2HLA, version 

2.3 50, which was also used to identify alleles for HLA-E. Tumor and normal WES BAM files 

were used to create inputs to OptiType, which outperforms peer programs in WES-based HLA-
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typing 51, and RNA-Sequencing BAMs were used to create inputs to seq2HLA. WES BAMs 

were filtered to retain only reads mapping to the HLA region (6:28477897-33448354 in 

GRCh37; chr6:28510120-33480577 in GRCh38) with the genomics software suite, Samtools, 

version 1.10 52. The BAMs were then converted to FASTQ format, and then filtered with the 

genome mapping tool, RazerS 3, version 3.5.8 53, as recommended in the OptiType 

documentation. RNA-Seq BAMs were sorted, converted to FASTQ format, and compressed 

before being used as inputs to seq2HLA. Both programs were run with default parameters. 

A custom python script was then employed to evaluate concordance between (1) normal and 

tumor HLA allele calls from WES and (2) seq2HLA and OptiType calls. Only 4/342 alleles 

(0.58%) in the PancSeq cohort and only 2/888 (0.23%) alleles in the TCGA cohort were called 

differently between tumor and normal WES-based calls. Given the consistency of OptiType calls 

for tumor and normal WES data, the OptiType allele was accepted as the final call to resolve 

discrepancies between OptiType and Seq2HLA. 

Mutation Annotation Format (MAF) files were obtained for patients in both datasets and 

converted to Variant Call Format (VCF) files. VCF files were filtered to only retain single 

nucleotide variants (SNVs). Only PASS variants were available in the PancSeq MAF file and 

were thus not filtered further 48. Mutations in the TCGA cohort included non-PASS variants, 

which were all filtered in this cohort with the exception of some non-PASS mutations in known 

PDAC-associated genes that had been marked as either panel_of_normals, clustered_events, or 

homologous_mapping_event in the TCGA MAF file. For these cases, genes that had variants 

marked as non-PASS more than twice by at least one of these filters were reconsidered. The 

following genes with a known association with PDAC based on a literature search were retained: 

KRAS, TP53, GNAS, RNF43, PLEC, FLG, AHNAK, APOB, CSMD1, PLXNA1, MCM6, MKI67, 
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and SIPA1. This step was intended to reduce false negatives, and in the case of KRAS, this step 

retrieved 30 variants at residue position 12, a site known to confer oncogenic properties when 

mutated. 

Indel variants were called using the variant callers, Strelka2, version 2.9.2 54, and Scalpel, 

version 0.5.4 55. The structural variant and indel caller, Manta, version 1.6.0 56, was run prior to 

Strelka2 and these results were incorporated into the indelCandidates parameter for Strelka2. 

Scalpel was run with default parameters, with a bed file derived from the CGHub bitbucket 

account (https://cghub.ucsc.edu; 

whole_exome_agilent_1.1_refseq_plus_3_boosters.targetIntervals.bed). For the PancSeq cohort, 

the unmodified first 3 columns of this file were used. For the TCGA cohort, the coordinates in 

this file were converted to GRCh38 coordinates using the LiftOver tool from the UCSC genome 

browser 57. Scalpel failed to call variants for 13/148 TCGA patients due to excessive read 

buildup at some loci. To enable variant calling with Scalpel for these patients, the Picard tools’ 

DownsampleSam function (http://broadinstitute.github.io/picard/) was employed to randomly 

downsample reads in the tumor BAM files of these patients by decrements of 10%, starting at 

50%. This was done until Scalpel successfully called variants for each patient. Ten patients 

succeeded at 50%, two at 40%, and one at 30%.  

To reduce the contribution of caller-specific biases and hence the indel false positive rate, only 

those indels that were called and marked as PASS by both Scalpel and Strelka2 were retained. 

Variant call format (VCF) files containing the union of PASSed variants from Strelka2 and 

Scalpel were generated with a custom batch script, and variant allele frequencies were calculated 

using statistics output by Strelka2. These indel VCF files were then merged with the 
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corresponding SNV VCF files for each patient using the vcf-shuffle-cols and vcf-concat 

functions from VCFtools, version 0.1.13 58.  

Variant consequence was then annotated using the Ensembl Variant Effect Predictor (VEP), 

version 99 59. The corresponding VEP cache for both GRCh37 and GRCh38 was downloaded 

and used to run the software offline. VEP was run using the Wildtype and Downstream plugins 

to annotate the effects of indels. The following parameters were employed: --symbol, --

terms=SO, --cache, --offline, --transcript_version, --pick. The --pick parameter was reordered 

from the default to report the transcript with the most extreme consequence for each variant: 

rank, canonical, appris, tsl, biotype, ccds, length, mane.  

Neoepitopes were predicted with the HLA allele calls and variant effect predictions using the 

antigen prediction toolkit, pVACtools, version 1.5.7 60. For each mutation, mutant peptides were 

generated for lengths of 8-, 9-, 10-, and 11- amino acids, the spectrum of peptide lengths known 

to bind to MHC class I. MHC:peptide binding affinity was predicted for all peptide:MHC allele 

pairs with NetMHC-4.0, NetMHCpan-4.0, SMM (version 1.0), and SMMPMBEC (version 1.0), 

and the median value across all affinity predictions was taken as a final, composite measure of 

binding affinity. 

After predictions were made by pVACtools, candidate neoepitopes from all patients were 

merged into a single matrix and filtered using a custom python script and the following criteria 

(based on parameters output by pVACtools): median peptide:MHC binding affinity < 500 nM, 

tumor DNA depth >= 5, tumor DNA variant allele frequency >= 0.07,  cysteine_count <=1, and 

a median wildtype:mutant peptide binding affinity fold-change >= 1.  

Neoepitope predictions for patient-derived pancreatic organoids 
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Somatic mutation calls and neoepitope predictions for organoids were made as described for 

bulk organoids, with the following exception. All tools were run with parameters prescribed for 

whole genome sequencing datasets. In the case of Scalpel, indel calls were restricted to the 

exome intervals using the bed file described above. For both neoepitope and somatic mutational 

burden comparisons between organoids and bulk tumors, only the variants overlapping these 

intervals in bulk samples and organoid samples were considered.  

To analyze the impact of variant allele frequency (VAF) on neoepitope prediction, neoepitopes 

were predicted with all of the same parameters described above for both matched organoid and 

bulk tumor samples, with only VAF being altered. A VAF of 0.1 was used for the matched 

comparison bar plot of total predicted neoepitope load. 

Quantification of tumor mutational burden 

We defined tumor mutational burden as the number of all somatic mutations per megabase 

across coding regions of the genome. Coding regions were classified as the set of genomic 

regions in final_whole_exome_agilent_1.1_refseq_plus_3_boosters.targetIntervals.bed (totaling 

32,950,014 bases or 32.950014 Mb). To make a fair comparison between patient-derived 

organoids and bulk tumor samples, we considered only the subset of mutations that overlapped 

the Agilent file for calculating TMB. TMB was then calculated as the number of variants in the 

VCF (grep -v “#” | wc -l) divided by 32.950014 Mb. 

Construction of patient-specific proteome database for mass spectrometry analysis 

Germline mutations and variant phasing 

Germline SNVs were called using Strelka with default parameters and the reference genome file 

from human assembly 19. Only variants marked PASS were considered for downstream analysis. 

These were merged with somatic variants into single VCF files using the Genome Analysis 
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Toolkit (GATK), version 4.1.2.0 61. VCF files were then coordinate sorted, followed by read-

backed variant phasing performed using the ReadBackedPhasing function from GATK, version 

3.7. Final variant-recoded protein sequences were then retrieved using pVACtools’ Generate 

Protein Fasta function, with flanking sequence length set arbitrarily to 30,000 and with phasing 

enabled. Phased and unphased protein sequences were then added to patient-specific protein 

search databases. 

nuORF mutations 

Coordinates corresponding to nuORFs were retrieved from the nuORFdb_v1.0.bed file published 

by Ouspenskaia et al. (2022), downloaded from the NCBI Gene Expression Omnibus 

(GSE143263). We then took somatic SNVs and indels intersecting these coordinates and 

generated mutation-encoded nuORF protein sequences using a custom python script modified 

from one published by Ouspenskaia et al. (2022). Full-length mutant protein sequences were 

then aggregated into a single FASTA file for each patient. 

Retained intron analysis 

Raw RNA-seq FASTQ files were pseudoaligned to a transcriptome augmented to contain both 

exonic and intronic sequences, with intronic sequences set to extend 25 base pairs into adjacent 

exons, as described by Smart et al. (2018). TPM values were calculated using Kallisto, version 

0.45.0 62.  

Retained introns were called using the KeepMeAround algorithm, as implemented by Smart et 

al. (2018). Retained introns were called for all PDAC organoid samples and 239 GTEx samples, 

representing five randomly selected samples per each tissue subtype from the cohort of GTEx 

samples used by Ouspenskaia et al. (2022). Introns were considered retained if they passed the 

following thresholds: intron retention ratio > 0.05, intron TPM > 1, exonic TPM > 1, and ≥ 5 
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unique reads map to the intron. To define sets of tissue-specific retained introns, we required 

each intron to pass thresholds in all samples (n = 4-5) of a given tissue subtype. After taking the 

intersection of retained introns within each tissue, we then established the union of all of these 

sets as the full cohort of introns retained in normal tissues. We excluded reproductive tissues 

from consideration: testis, ovary, fallopian tube, and uterus. PDAC organoid-specific retained 

introns were then defined as those that pass the aforementioned thresholds in at least one 

organoid sample but were not contained in the set of normal tissue retained introns.  

For the seven organoid samples profiled with immunopeptidomics, we modified python scripts 

published by Smart et al. (2018) to retrieve the open reading frames and coordinates associated 

with sample-specific retained introns. We then used bedtools, version 2.29.1, to retrieve all 

germline and somatic SNVs intersecting retained intron coordinates from VCF files established 

in the mutation calling procedures described in the previous section 63. We then employed 

BCFtools in consensus mode to recode intronic sequences with all variants for both haplotypes 

separately and combined (to account for potential errors in variant phasing) 64. The resulting 

sequences were then all translated across all three reading frames, accounting for potential 

indels, to generate the retained intron-encoded protein sequence search space. 

HLA peptide immunoprecipitation and peptide sequencing by tandem mass spectrometry 

MHC-I peptide identification with Spectrum Mill 

Final, patient-specific protein sequences were amalgamated from retained introns, somatic and 

germline protein-coding variants, and nuORF-altering variants into a single FASTA file. MS/MS 

spectra for each organoid sample were searched against the patient-specific set of protein 

sequences appended to nuORFdb v.1.0 and a base reference proteome containing all UCSC 

Genome Browser genes with hg19 annotation of the genome and its nonredundant protein-
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coding transcripts (52,788 entries) as well as 264 common laboratory contaminants, including 

proteins present in cell culture media and immunoprecipitation reagents 12.  

Soluble lysates from up to 0.1 to 0.2 g organoid cells were immunoprecipitated with W6/32 

antibody (sc-32235, Santa Cruz). 10 mM iodoacetamide was added to the lysis buffer to alkylate 

cysteines during the lysis and incubation step (3 h, 4 °C). Peptides acid eluted either on 

StageTips or SepPak cartridges and analyzed in technical duplicates using high-resolution LC–

MS/MS on a QExactive Plus, QExactive HF or Fusion Lumos mass spectrometer (Thermo 

Scientific). 

Target-decoy FDR estimation was enabled by Spectrum Mill with on-the-fly generation of decoy 

sequences during searches. For each candidate sequence passing the precursor mass tolerance 

filter, the internal sequence was reversed, while holding fixed the second position and the peptide 

C terminus, to maintain not only equal size target and decoy search spaces, but also comparable 

HLA class I binding motifs among the sequence candidate population.  

PSMs were consolidated to the peptide level to generate lists of confidently observed peptides 

for each allele using the Spectrum Mill protein/peptide summary module’s peptide-distinct mode 

with filtering distinct peptides set to case sensitive. A distinct peptide was the single highest 

scoring PSM of a peptide detected for each allele. MS/MS spectra for a particular peptide may 

have been recorded multiple times (for example, as different precursor charge states, from 

replicate immunopeptidomes, from replicate LC–MS/MS injections). Different modification 

states observed for a peptide were each reported when containing amino acids configured to 

allow variable modification; a lowercase letter indicates the variable modification (C-

cysteinylated, c-carbamidomethylated) 12. 

Bulk RNA-Sequencing analysis of nuORF transcripts and canonical genes 
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All transcript-specific TPM values for 777 GTEx normal tissue samples were retrieved from the 

Gene Expression Omnibus (GSE143263). To compare expression of these transcripts in PDAC 

bulk tumors and organoid samples, we employed identical tools and parameters described by 

Ouspenskaia et al. (2022) and detailed at https://github.com/broadinstitute/gtex-

pipeline/blob/master/TOPMed_RNAseq_pipeline.md. Briefly, BAM files were sorted by query 

name using the collate function from Samtools, version 1.10. and then converted to FASTQ files. 

Sequencing reads were then aligned to reference human genome GRCh37 using STAR, version 

2.6.1 65, coupled with a transcriptome annotation comprised of GENCODE v26lift37, transcripts 

annotated as tstatus ‘unannotated’ from MiTranscriptome annotation 66, and a cohort of all 

lncRNAs reported by Cabili and colleagues 67. Isoform and gene expression was then quantified 

with RSEM, version 1.3.1 68. Isoform TPM values were compared to GTEx using the dataset 

retrieved from GEO, and gene-level TPMs were compared to GTEx using TPM values for all 

samples from a matrix downloaded through the GTEx expression website 

(https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz).  

Designation of PDAC-associated and PDAC-specific nuORF-associated transcripts and 

canonical genes 

nuORF-associated transcripts and canonical genes were considered for analysis if they had at 

least one peptide sequence unambiguously mapped to them from the immunopeptidomics dataset 

(i.e., the corresponding peptide sequence is uniquely encoded by the associated transcript). 

Transcripts and genes were designated PDAC-specific if their 90th percentile TPM values was 

less than one across all 26 normal tissue categories, which excluded testis, fallopian tube, uterus, 

and ovary. Tissue subtypes were aggregated into a single category (n = 26) before calculating the 
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90th percentile. PDAC-associated transcripts and genes were designated according to the cutoffs 

described in Supplementary Figure 7 and by Bradley et al. (2020). All candidates were required 

to be expressed at a TPM > 1 in at least one of the seven organoid samples profiled with 

immunopeptidomics.  

From these transcripts, we further filtered PDAC-specific and PDAC-associated nuORF 

candidates and canonical genes according to their detection in healthy tissue immunopeptidomes. 

For this analysis, we re-analyzed MHC-I peptide spectra derived from 31 different normal tissues 

previously reported 32, searching against both the canonical reference proteome and nuORFdb as 

described above for organoid samples. CT83 had a 7mer detected in a single bladder entry, so 

this gene was retained. IGF2BP3 was detected in three thymus samples and one cerebellum 

entry, though this latter entry was also mappable to a nuORF sequence. TDRD15 was detected in 

the kidney, liver, and lung. C4orf36, MAGEA11, ZNF695, and CALHM3 were not detected in 

any normal tissue immunopeptidome. 

Quantification of stromal gene signature programs in bulk tumors and organoids 

Expected counts calculated by RSEM were extracted from gene-level output files; only features 

annotated with “ENSG” Ensembl codes were retained for downstream analysis of stromal 

signatures. We further filtered genes down to a list of 17,165 canonical protein-coding genes by 

intersecting this list with all Ensembl gene IDs designated as protein-coding and “canonical” in 

the nuORFdb annotation file. Raw counts for 49 bulk tumor samples with more than 50 million 

RNA-Seq reads and 48 pancreatic cancer organoids were then aggregated within a single matrix 

for downstream analysis. We then took a subset of only the genes expressed in bulk tumor 

samples, defined as genes with a mean log2(count +1) > 2 across bulk tumor samples.  
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Raw counts were normalized using the estimateSizeFactors function from DESeq2 and then 

log2-transformed 69. The resulting transformed expression matrix was used an input for the 

Estimation of STromal and Immune cells in MAlignant Tumours using Expression data 

(ESTIMATE) package, using default parameters outlined in the package vignette. The computed 

stromal, immune, and ESTIMATE scores were then extracted to compare differences between 

bulk and organoid samples. Different normalization methods were tested, including the variance 

stabilizing transformation from DESeq2, and expression data for the two cohorts was also 

normalized separately as well as together. All of these methods robustly and uniformly indicated 

higher stromal and immune signatures in bulk tumor samples compared to organoids. We 

proceeded with the results obtained from log2-transformed expression data (normalized for both 

cohorts together) for computing the results described in the Main Text. For this analysis and the 

isoform-based RNA-Seq analyses described above, we excluded bulk tumor samples with a 

library size less than 50 million reads, including two samples with matched bulk tumor datasets 

(PANFR0151 and PANFR0181). To compare bulk tumor ESTIMATE scores against tumor 

purity, we used tumor purity estimates based on the ABSOLUTE algorithm 70. 

Human Protein Atlas 

Immunohistochemistry staining of IGF2BP3 depicted in Supplementary Figure 8 for human 

PDAC samples was retrieved from the Human Protein Atlas 34. 

Single cell RNA-Sequencing and Gene module analysis 

Human PDAC scRNA-Seq data 26 was downloaded from the Genome Sequencing Archive 

(accession: CRA001160). A count matrix of 41,986 pre-processed cells was prepared from these 

data and used to create a Seurat object. Genes expressed in less than 10 cells were filtered out. 

Data normalization and scaling, variable feature selection, cell clustering, and differential gene 
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expression analysis was performed using Seurat. Data were normalized by total expression per 

cell and scaled using a factor of 10,000 and log transformed (natural scale). The top 2,000 

variable genes were selected using Seurat’s default “vst” method. The expression of these genes 

was then scaled and centered, and these genes were then used for all downstream analysis. 

Principal component analysis (PCA) was then performed for dimensionality reduction. The first 

15 principal components were used for the construction of the k-nearest neighbor graph and the 

UMAP plot (metric parameter = Euclidean). Clusters were then assigned using the Louvain 

method with a resolution of 1. Clusters were re-annotated by cell type according to gene 

expression patterns as detailed by Peng et al. 2019. UMAP feature plots were generated using 

order=TRUE and min.cutoff = "q01", max.cutoff = "q99" as parameters. 

Seurat’s AddModuleScore function (control parameter = 8) was used to calculate gene module 

scores for all cells. Peptide signature gene set scores depicted in Figure 1 were derived from 

immunopeptidomics data for each patient sample by taking all of the peptides that mapped to a 

single canonical Ensembl protein ID and then matching these with the corresponding gene 

symbol. Stromal and immune gene modules depicted in Supplementary Figure 2 were derived 

from all of the genes excluded as unexpressed in PDAC organoids as described in ESTIMATE 

analysis. 

After cluster annotation and gene module scoring, the Seurat object metadata table was exported 

for analysis using the XL-mHG package in Python 71. This package and the XL-mHG 

hypergeometric test was used to determine whether gene modules were significantly enriched 

within each cell type.  

Statistical methods 
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Except for XL-mHG, all statistical tests mentioned in this manuscript were conducted in PRISM. 

For each dataset, we evaluated whether they followed a Gaussian distribution using the 

Anderson-Darling test. Parametric or nonparametric tests were then selected based on this result. 

Results were considered significant if the computed tested statistic was associated with a P-value 

< 0.05. 
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Abstract 
Genetically engineered mouse models (GEMMs) are used extensively to study the effects of a 

range of cancer-associated mutations in vivo, but current models only capture a small fraction of 

genetic lesions observed in human cancer. GEMMs based on CRISPR-Cas9 have enabled rapid 

assessment of additional mutations, primarily loss-of-function alleles that arise from insertions or 

deletions. However, the utility of these models for engineering precise mutations is limited due 

to their reliance on error-prone DNA repair mechanisms. Here, we describe the development of a 

facile system for performing in vivo prime editing in murine tissues by encoding a Cre-inducible 

prime editor enzyme in the mouse germline. We show that this model allows rapid and precise 

engineering of a wide range of mutations in cell lines and organoids derived from multiple 

primary tissues of these mice, including clinically relevant Kras mutations associated with 

resistance to targeted therapies, as well as Trp53 hotspot mutations commonly observed in 

pancreatic cancer patients. Lastly, we illustrate the utility of these mice for modeling lung and 

pancreatic cancer in vivo through lentiviral delivery of prime editing guide RNAs or syngeneic 

orthotopic transplantation of prime edited organoids. We anticipate that prime editing GEMMs 

will accelerate preclinical functional studies of cancer-associated alleles and complex genetic 

combinations that are challenging to model by traditional approaches. 

Introduction 
Cancer is driven by somatic mutations that accumulate throughout progression and display 

extensive intertumoral heterogeneity, occurring in thousands of different combinations across 

human cancer1,2. The precise nature of driver mutations can profoundly influence how cancers 

initiate, progress, and respond to therapy, thereby establishing tumor genotype as a critical 

determinant of disease outcome3,4. Emerging precision oncology treatment paradigms aim to 

match specific therapies with tumor genotypes, and this strategy has shown promise for a 
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handful of genetic lesions5,6. To expand the promise of precision oncology to more patients, it is 

critical for the field to develop tools to systematically interrogate the effects of distinct genetic 

lesions and combinations thereof on the overall tumor phenotype, particularly in vivo. 

GEMMs have been proven invaluable for elucidating the mechanisms by which cancer drivers 

promote tumor development and progression in vivo7,8. However, generating new GEMMs using 

traditional approaches is an expensive, laborious, and time-consuming process. Furthermore, 

established GEMMs can take months for investigators to acquire and often require laborious 

breeding programs to combine multiple alleles of interest and to establish a colony of sufficient 

size for experimental cohorts. These factors impede studies aimed at developing precision 

oncology treatments for tumors driven by specific genetic variants, which continue to be 

identified on a regular basis9. Moreover, they preclude convenient combinations of driver 

mutations that frequently co-occur in human cancer genomes. 

Genome editing technologies like CRISPR-Cas9 can be used to rapidly engineer somatic 

mutations when delivered exogenously or when installed as germline alleles10–14. While these 

models have accelerated our ability to study putative cancer driver genes, they are most 

frequently used to induce DNA double-stranded breaks (DSBs), leading to inactivation of tumor 

suppressor genes via error-prone repair and frameshifting insertion/deletion (indel) formation. 

Although CRISPR-based homology-directed repair (HDR) has been used to model precise single 

nucleotide variants (SNVs) in Cas9-knockin mice, this method requires an exogenous DNA 

donor template and is limited by low efficiency and high rates of indel byproducts15. 

Furthermore, the requirement for DSBs to induce frameshifts or HDR-based precise edits can 

lead to confounding genotoxic effects, including on-target chromothripsis events16. 
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Precision genome editing technologies like base editing17 can be used to model cancer in mice by 

installing specific transition mutations with high efficiency and negligible indel byproducts11. 

Though precise and highly efficient, base editors also have limitations, including the requirement 

for different base editor enzymes depending on the type of mutation being studied (e.g., cytosine 

or adenine base editors), and their propensity for bystander editing, which can prohibit 

introducing the desired amino acid substitutions. While the recent development of C:G 

transversion base editors will expand the scope of cancer modeling18,19, current base editing 

technology is not amenable to modeling the full spectrum of small somatic mutations. 

In contrast to base editing and CRISPR-Cas9, prime editing enables engineering the full 

spectrum of single nucleotide substitutions and small indels with high product purity20,21. Prime 

editors consist of a Cas9-reverse transcriptase fusion that complexes with prime editing guide 

RNAs (pegRNAs) encoding mutations of interest within a reverse transcriptase template20,21. 

Given that most recurrent cancer driver mutations are not captured by current mouse models and 

are not readily amenable to base editing, prime editing theoretically offers a more rapid, precise, 

and versatile approach to study the full spectrum of driver mutations, their combinations, and the 

growing catalog of genetic lesions that confer resistance to targeted therapies22–25. Beyond 

editing versatility, prime editing also avoids the formation of indel byproducts associated with 

DSBs. This is particularly important for studying SNVs with putative neomorphic qualities in 

tumor suppressor genes, as HDR-directed mutations would be diluted by the higher rate of 

naturally selected indels. Finally, the lower rates of off-target activity associated with prime 

editing reduce the risk of confounding off-target effects21. 

With these considerations in mind, we developed a prime editing GEMM (PE GEMM) that 

eliminates the need for exogenous delivery of prime editor genes, which can be challenging 
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given their current size of six kilobases26,27. Expressing the prime editing machinery from an 

endogenous locus also minimizes any concerns of confounding acute or chronic anti-tumor 

immune responses that could be induced by exogenous delivery of a Cas9-based fusion 

protein28–30. In conjunction with the development of the PE GEMM, we also developed a range 

of DNA vectors and engineered pegRNAs (epegRNAs) that promote efficient prime editing in a 

variety of cell lines and organoids derived from these mice. With this toolset, we established new 

organoid models harboring Trp53 mutations frequently found in pancreatic cancer patients but 

not modeled by current GEMMs of the disease, as well as clinically relevant Kras mutations 

associated with resistance to KRASG12C inhibitors. Finally, we harnessed PE GEMMs to model 

cancer in vivo by initiating lung adenocarcinoma in an autochthonous fashion and pancreatic 

adenocarcinoma via orthotopic transplantation of prime edited organoids. We expect PE 

GEMMs to both expand the landscape of achievable cancer-associated mutations and accelerate 

techniques required to study their function and elucidate associated therapeutic vulnerabilities. 

Results 
Quantification of human cancer-associated mutations amenable to modeling by prime 

editing in mice. Recent work has shown that base editing can be used to elucidate the function 

of specific cancer-associated genetic variants31 and to systematically probe a large fraction of all 

possible alleles for genes and proteins of interest32. Base editors are primarily capable of 

engineering transition SNVs20 (A•T>G•C or G•C>A•T), though the base editor architecture has 

recently been adapted to produce C•G>G•C transversions with variable efficiency18,19,33–35. In 

contrast, prime editors are capable of engineering all transition and transversion SNVs21, as well 

as indels36,37, expanding the potential for rapid modeling of genetic variants even further. To 

define the expanded editing capacity afforded by prime editing, we quantified the abilities of 

both base and prime editing to install specific somatic mutations identified from a cohort of 
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43,035 genetically-profiled cancer patients from the Memorial Sloan Kettering-Integrated 

Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) dataset (Fig. 1a,b and 

Supplementary Fig. 1)9,31. Out of 422,822 mutations identified from targeted exon sequencing 

of 594 cancer-associated genes, 82.3% are SNVs, while the remaining 17.7% are deletions 

(DEL), insertions (INS), and di/oligo-nucleotide variants (DNVs, ONVs), in descending order of 

frequency (Fig. 1a). 
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Figure 1. Quantification of human cancer-associated mutations amenable to modeling by 
base editing or prime editing in humans and mice.  
a. Distribution of somatic variant types in a cohort of 43,035 patients with 422,822 
mutations observed in 594 cancer-associated genes. Single nucleotide variants = SNV, deletions 
= DEL, insertions = INS, di-nucleotide variants = DNV, oligo-nucleotide variants = ONV.  
b. Schematic of the modeling capabilities of base editing (top) and prime editing (bottom).  
c. Quantification of somatic SNVs by type, illustrating enrichment for transition SNVs. 
Transition SNVs amenable to modeling by cytosine base editors (CBE) are shown in purple, 
while transition SNVs amenable to modeling by adenine base editors (ABE) are shown in blue. 
Transversions are shown in gray. 
d. Quantification of mutations amenable to modeling with cytosine or adenine base editors 
that use an NG or NGG PAM. All percentages are given as a percentage of all mutations in the 
dataset. 38.4% of all mutations are amenable to base editing and fall within the protospacer of an 
NGG PAM (dark green), while an additional 12.6% of all mutations are amenable to base editing 
and fall within an NG PAM protospacer (light green). Of this subset of mutations that fall within 
either an NG or NGG PAM protospacer, only ~60%, or 29.6% of all mutations, lack matching 
collateral bases within one nucleotide (nt) of the mutation site.  
e. 95.8% of all mutations in the dataset are potentially amenable to modeling by a prime 
editor using an NGG PAM (dark green) coupled with a pegRNA with a reverse transcription 
(RT) template length of 30 nucleotides. 99.9% of all mutations can be modeled by a prime editor 
using an NG PAM with the same pegRNA specifications.  
f. Percentage of mutations with at least one suitable pegRNA as a function of the RT 
template length of the pegRNA, excluding the additional length of a homologous region in the 
RT template. Calculations assume the prime editor recognizes an NGG PAM. 
g. Quantification of orthologous coding mutations potentially amenable to modeling by base 
editing in mice. Mutations are defined as orthologous if they derive from a wild-type amino acid 
conserved in the murine ortholog, as determined by pairwise protein alignment between human 
and mouse protein sequences. The rightmost bar indicates the fraction of orthologous coding 
mutations that can be modeled by base editors that recognize NG or NGG PAMs. “Excluded 
mutations” refers to mutations that fall in a gene lacking an ortholog. All percentages are given 
as a percentage of all mutations in the dataset.  
h. Quantification of orthologous coding mutations potentially amenable to modeling by 
prime editing. Orthologous mutations are defined as in Fig. 1g. The rightmost bar indicates the 
ability of an NG or NGG prime editor to model these orthologous mutations, assuming an RT 
template greater than 30 nt.  Excluded mutations are defined as in Fig. 1g. 
i. Summary of the cancer mutation modeling capabilities of base and prime editing 
assuming an NGG PAM.  
 

To estimate what fraction of common cancer-associated mutations are captured in currently 

available transgenic mouse models, we analyzed a dataset curated from the Mouse Genome 

Informatics database (see Methods)38,39. We found that 65 of the 100 most frequent SNVs in 

MSK-IMPACT (50/84 = 60% of missense SNVs) are not represented by published mouse cancer 
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models (Supplementary Tables 1 and 2). Notably, the majority of these mutations are transition 

SNVs, which comprise 61.8% of all SNVs in the MSK-IMPACT dataset and are theoretically 

compatible with engineering using base editors (Fig. 1c). Still, only 51% of the total mutations 

are potentially amenable to base editing, depending on the positioning of requisite NG or NGG 

PAM sequences20,31 (Fig. 1d). This value further drops to 29.6% when considering only 

mutations without identical bases present within one adjacent nucleotide (Fig. 1d). Adjacent 

identical nucleotides could be collaterally edited and potentially result in undesired editing 

outcomes. Moreover, this analysis does not account for the dependence of editing efficiency on a 

desired edit’s location within the protospacer, which further reduces these theoretical base 

editing compatibility values (Supplementary Fig. 2). 

We used a similar approach to quantify the modeling capabilities of prime editors that use an 

NGG or NG PAM coupled with variable reverse transcription template (RTT) lengths encoded 

within pegRNAs (Supplementary Fig. 1). Using an NGG PAM and RTT length of 30 base pairs 

(bp), excluding the additional length of a homologous region in the RTT, prime editing 

theoretically reaches 95.8% coverage of all mutations in this dataset — 2.5x the coverage of 

comparable base editors (Fig. 1e). This value increases to 99.9% for prime editors that use an 

NG PAM (Fig. 1e). Moreover, analysis of the relationship between RTT length and modeling 

capabilities reveals that ~85% of mutations in this dataset can be modeled by placing the 

mutation within the first 15 bp of the RTT (Fig. 1f). Importantly, these parameters are well 

within the recommended guidelines for pegRNA RTT length, even with the additional size 

required for a region of homology20. 

We also sought to determine the fraction of cancer-associated mutations that derive from protein 

sequences conserved in murine orthologs. We reasoned that only this subset of conserved 
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sequences, when mutated in mouse systems, could be expected to mimic effects seen in human 

cancer. To quantify the ability of base and prime editors to model cancer-associated mutations in 

mice, we performed pairwise alignment on orthologous mouse and human proteins to define 

whether mutations derive from a conserved wild-type amino acid and reside in a region of 

homology (Supplementary Fig. 1). Of the 95% of SNVs that occur in coding sequences, 90.9% 

derive from codons that encode conserved amino acids between mouse and human (representing 

69.7% of all mutations). Of these conserved, cancer-associated SNVs, 61.8% are amenable to 

base editing (NG or NGG PAM), which translates to 43.1% of all mutations in the dataset (Fig. 

1g). In contrast, NG or NGG prime editors are capable of modeling 100% of coding mutations 

that occur at conserved amino acid residues in mice (84.2% of all mutations in the dataset) (Fig. 

1h). In total, 80.8% of human cancer-associated mutations observed in this dataset could be 

modeled in mice with prime editors using a traditional NGG PAM, effectively doubling the 

modeling capabilities of base editors while also expanding to new classes of mutations beyond 

SNVs (Fig. 1f,i). This same pattern holds when filtering the dataset to only mutations that occur 

in multiple patients, and when considering various stringencies of homology in the regions 

flanking the mutations of interest (Supplementary Figs. 2 and 3). In total, these results 

demonstrate that prime editing could significantly broaden both the diversity and number of 

human cancer-associated mutations that can be rapidly modeled in murine orthologs. 

Design and construction of a Cre-inducible prime editor allele. We sought to develop a 

transgenic system capable of precisely engineering the majority of cancer-associated mutations 

without requiring exogenous delivery of a prime editor enzyme. To accomplish this, we targeted 

a transgene expression cassette encoding the PE2 enzyme and the mNeonGreen (mNG)40 

fluorescent reporter, separated by the P2A ribosome skipping sequence, into the Rosa26 
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locus10,41 (Fig. 2a). Like previous Cre-inducible Rosa26 alleles10,42,43, transgene expression is 

driven by the CAGG promoter and is induced by Cre-mediated excision of a loxP-stop-loxP 

(LSL) cassette. A neomycin resistance gene was included to enable selection of cells containing 

the targeted allele. We also incorporated FRT/FRT3 sequences flanking the central construct to 

enable Flp recombinase-mediated replacement of the Rosa26PE2 allele with future generations of 

prime editor enzymes or other desirable editors44,45. This vector was targeted to Trp53flox/flox 

C57BL/6J embryonic stem cells, where Trp53 can be deleted upon expression of Cre 

recombinase (Supplementary Fig. 4). Chimeric mice were then crossed to wild-type C57BL/6J 

mice to generate pure strain heterozygous Rosa26PE2/+;Trp53flox/+ mice. These mice were 

subsequently crossed with Rosa26PE2/+ Trp53+/+ and Trp53flox/flox mice to generate Rosa26PE2/+ 

mice on wild-type and Trp53flox/flox backgrounds. 
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Figure 2. Design and functional validation of the Rosa26PE2 prime editor allele. 
a. Schematic depicting the design of the Cre-inducible Rosa26PE2 allele. 
b. Schematic depicting the formation of hU6-pegRNA-EF-1α-Cre (UPEC) and hU6-
pegRNA-EFS-mScarlet (UPEmS) vectors from templates encoding a red fluorescent protein 
(RFP) by Golden Gate assembly. 
c. Bright-field images of pancreatic organoids derived from chimeric prime editor mice and 
wild-type mice. With and without treatment with neomycin. 
d. Bright-field and fluorescent images showing PE2-P2A-mNG expression only after 
exposure to Cre encoded by a UPEC vector. 
e. Schematic depicting the derivation of multiple organoids and a fibroblast cell line from 
Rosa26PE2/+ prime editor mice. 
Editing efficiency of a trinucleotide (+GGG) insertion located eight base pairs downstream of the 
start codon in Dnmt1 in pancreatic organoids, lung organoids, and tail tip-derived fibroblasts (n = 
2-3 biological replicates). Unintended indel byproducts in all conditions were present in <1% of 
sequencing reads. 
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Functional validation of the prime editor allele in organoids. To test the functionality of the 

Rosa26PE2 allele, we developed two lentiviral vectors that co-express a pegRNA and either Cre 

recombinase (UPEC) or the red fluorescent protein, mScarlet46 (UPEmS) (Fig. 2b). We derived 

pancreatic organoids from chimeric Trp53flox/flox;Rosa26PE2/+ mice and developed a pure culture 

of transgene-containing cells via selection with neomycin (Fig. 2c; Supplementary Fig. 5). As 

expected, these pancreatic organoids displayed Cre-dependent mNG expression upon 

transduction with UPEC vectors (Fig. 2d; Supplementary Fig. 5). To test the prime editing 

functionality of this allele, we designed a single Kras-targeting pegRNA to introduce the 

common KrasG12D mutation as a dinucleotide substitution (GGT>GAC), as well as a Dnmt1-

targeting pegRNA encoding a +1 CCC insertion, which templates a trinucleotide insertion of a 

GGG glycine codon at residue 4 of Dnmt1. The Dnmt1 pegRNA had been previously optimized 

and selected for its high activity, but the Kras pegRNA was assessed without prior optimization. 

UPEC-transduced organoids were selected using nutlin-3a, a mouse double minute 2 homolog 

(MDM2) inhibitor that induces cell cycle arrest in Trp53-proficient (but not deficient) cells47. 

After selection, we detected up to 33.8% editing efficiency at Dnmt1, 0.2% editing at Kras, and 

minimal indel byproducts in both cases (Supplementary Fig. 5). Together, these results validate 

the functionality of the Rosa26PE2 allele, including its ability to mediate prime editing of 

endogenous loci when using optimized pegRNAs. 

Efficient prime editing at multiple loci in tissues derived from the Rosa26PE2 model. We 

next sought to evaluate prime editing across multiple tissues and target loci. To accomplish this, 

we derived lung organoids, pancreatic organoids, and tail tip-derived fibroblasts (TTFs) from 

multiple Rosa26PE2/+ mice (Fig. 2e). Consistent with results using chimera-derived organoids, we 

observed highly efficient Dnmt1 editing across all these tissues (Fig. 2f). Given the low prime 
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editing efficiency of the initial Kras pegRNA, we next sought to empirically identify highly 

efficient pegRNAs that introduce the KrasG12D transition as a single nucleotide variant 

(GGT>GAT). Based on previous work48, we hypothesized that spacer sequences capable of 

producing the highest Cas9 indel efficiency in mouse N2A cells would serve as ideal scaffolds 

for high-efficiency pegRNA designs (Supplementary Fig. 6 and Supplementary Table 3). 

Using TTFs, we observed up to ~5% editing efficiency of KrasG12D with spacer-optimized 

pegRNAs (Fig. 3a and Supplementary Fig. 6). To further amplify editing efficiency, we 

modified our best-performing pegRNA with a structured RNA pseudoknot motif, prequeosine1-1 

riboswitch aptamer (tevopreQ1), recently shown to enhance prime editing efficiency by more 

than 3-fold in cell lines49. This resulted in up to ~18.4% editing efficiency of KrasG12D in 

pancreatic organoids and TTFs (Fig. 3b). We then modified this epegRNA to template the 

KrasG12C transversion and observed reduced efficiency at ~0.5% in pancreatic organoids and 

~5% in TTFs. We also generated KrasG12A and KrasG12R epegRNAs and observed up to ~30% 

editing efficiency with both epegRNAs in TTFs (Fig. 3b). Both KrasG12A and KrasG12R 

epegRNAs template G⋅C-to-C⋅G substitutions, which proceed from C⋅C mismatch intermediates. 

C⋅C mismatches are not efficiently repaired by mismatch repair and are thought to have higher 

basal prime editing rates as a consequence44. Collectively, these data demonstrate that the 

Rosa26PE2 allele enables efficient installation of both SNVs and insertions across a diverse array 

of cell lines and organoids.  
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Figure 3. Ex vivo prime editing and functional testing of Kras and Trp53 mutations. 
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a. Editing efficiency and indel byproduct frequency of the KrasG12D transition mutation 
(G:C to A:T) templated by a cohort of pegRNAs based on a single Cas9 spacer (n = 1 for each 
pegRNA). pegRNAs are delineated by differences in the lengths of the primer binding site (PBS) 
and reverse transcriptase template (RTT). 
b. Editing activity of four engineered pegRNAs (epegRNAs) templating either the KrasG12D 
transition or the KrasG12C, KrasG12A, or KrasG12R transversions in tail tip-derived fibroblasts or 
pancreatic organoids (KrasG12D and KrasG12C). n = 2-4 biological replicates. epegRNAs were 
generated by appending the trimmed evopreQ1 motif after the primer binding site of the leftmost 
pegRNA depicted in Fig. 1a. Indel byproduct calculations were pooled from all conditions within 
each tissue. 
c. Allele frequencies of KrasG12D or KrasG12C mutations in pancreatic organoids before and 
after 2 passages of treatment with gefitinib (1 µM) (n = 1). Gefitinib treatment selects for cells 
containing prime edited KrasG12D or KrasG12C mutations. 
d. Bright-field images of prime edited KrasG12C or KrasG12D organoids treated for four days 
with either control DMSO, sotorasib (2 µM) and gefitinib (1 µM), MRTX1133 (5 µM), or 
MRTX1133 and gefitinib. 
e. Viability of KrasG12D pancreatic organoids under various treatment conditions. Viability 
was quantified using the alamarBlue HS Cell Viability Reagent, which is metabolized into a 
fluorescent derivative in living cells. 
f. Allele frequency of KrasY96C in KrasG12C organoids during and after treatment with 
sotorasib (2 µM) and gefitinib (n = 1). After two passages, organoids were split into two groups, 
which included continued treatment (continuous treatment) in one group and removal of 
treatment in a second group (transient treatment). 
g. Allele frequencies of three Trp53 mutations in Trp53flox/+ pancreatic organoids treated 
with nutlin-3a for three to five passages after transduction with UPEC vectors (n = 2-5 biological 
replicates). Indel byproduct frequencies are also included. Note that the highest indel frequency 
depicted for Trp53R245W derives primarily from a scaffold insertion in a single replicate. 
Trp53R245Q and Trp53R245W are homologous to mutations commonly observed in pancreatic 
cancer patients (TP53R248Q and TP53R248W), as described in Supplementary Figure 8. Trp53R250FS 
denotes a dinucleotide deletion that induces a frameshift mutation.  
h. Immunoblot indicating detectable levels of p53 protein in prime edited Trp53flox/R245Q and 
Trp53flox/R245W organoids and an absence of detectable protein in Trp53flox/R250FS organoids. 
 

To confirm the functional effects of these mutations, we installed either KrasG12D or KrasG12C 

mutations in Trp53flox/flox Rosa26PE2/+ pancreatic organoids and selected transduced cells with 

nutlin-3a. We then treated prime edited organoids with the epidermal growth factor receptor 

(EGFR) inhibitor, gefitinib, to select for the oncogenic Kras mutation50 and evaluated the 

fraction of cells containing the intended edits before and after treatment. Consistent with 

receptor-independent signaling downstream of EGFR, cells transduced with KrasG12D and 
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KrasG12C epegRNAs survived treatment with gefitinib, while control cells infected with the 

template UPEC lacking a pegRNA did not (Fig. 3c and Supplementary Fig. 7). We then tested 

whether cells transduced with KrasG12C epegRNAs were sensitive to sotorasib, a KRASG12C-

specific inhibitor, alone or in combination with gefitinib. Consistent with previous work51, we 

found that KrasG12C pancreatic organoids were uniquely sensitive to the combination of sotorasib 

and gefitinib, while KrasG12D organoids were unaffected by these treatments (Fig. 3d and 

Supplementary Fig. 7). While KRASG12C inhibition has shown promising signs of clinical 

efficacy in pancreatic cancer5,52, current preclinical efforts focused on KRASG12D inhibition have 

the potential to benefit a broader fraction of patients with this disease (>38%)53,54. We therefore 

treated prime edited KrasG12D pancreatic organoids with MRTX113355, a KRASG12D inhibitor, 

alone or in combination with gefitinib. Consistent with results using sotorasib, we found that 

KrasG12D organoids were significantly more sensitive to the combination treatment compared 

with MRTX1133 alone (Fig. 3d,e and Supplementary Fig. 7), suggesting that concomitant 

EGFR inhibition may be a broadly effective strategy to augment the overall efficacy of KRAS 

mutant inhibitors in pancreatic cancer cells. Surprisingly, we also found that KrasG12C organoids 

were sensitive to this combination and that the effect was comparable to that of sotorasib and 

gefitinib (Supplementary Fig. 7). 

Prime editing enables rapid functional interrogation of putative resistance mutations. 

While targeted therapies have revolutionized modern cancer treatment, therapy resistance is 

common and frequently arises through the acquisition of secondary missense mutations affecting 

the drugged driver25,56,57. Recent work by Awad and colleagues revealed a novel class of 

secondary KRAS mutations occurring in over 10% of non-small cell lung cancer and colorectal 

cancer patients that exhibited initial responses to treatment with adagrasib, a KRASG12C 



 161 

inhibitor56. Intriguingly, several mutations occur in codons 95-96, which occupy the switch II 

pocket targeted by adagrasib and sotorasib. 

To test the utility of the Rosa26PE2 model to functionally interrogate novel mutations associated 

with resistance, we developed an epegRNA designed to introduce the KrasY96C transversion and 

tested its capacity to promote resistance in prime edited KrasG12C pancreatic organoids treated 

with gefitinib and sotorasib (Supplementary Fig. 7). All organoids were treated with both 

inhibitors for an initial two passages, followed by continued treatment for three additional 

passages in one group (continuous treatment) and treatment removal in the second group 

(transient treatment). Consistent with patient data56, organoids transduced with the KrasY96C 

epegRNA were resistant to combined treatment with gefitinib and sotorasib and exhibited 

increased allele frequency of the KrasY96C mutation over time (Fig. 3f). Positive selection for 

composite KrasG12C;Y96C mutant organoids was not observed in organoids following the removal 

of gefitinib and sotorasib, confirming the requirement of the selective pressure exerted by the 

treatment. Though initially discovered in lung cancer patients treated with sotorasib 

monotherapy, these data indicate that secondary KRAS mutations can also confer resistance in 

other tissue and combination treatment contexts. The above results demonstrate that the 

Rosa26PE2 allele can be harnessed for rapid preclinical evaluation of emerging mechanisms of 

resistance to targeted therapies in tissues of interest and, ultimately, for testing second-generation 

therapies designed to overcome resistance. 

Rapid engineering of common p53 mutations using prime editing. A key advantage of PE 

GEMMs is the ability to mediate nearly any codon substitution in any accessible tissue, thereby 

enabling tissue-specific functional studies of genetic variants with putative effects on tumor 

progression. TP53 is the most frequently mutated gene in human cancer and is often altered via 
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missense mutations that can confer gain-of-function properties in certain contexts58. In an 

analysis of data from cBioPortal59,60, we found that some of the most frequent p53 amino acid 

substitutions observed in lung (TP53R158L and TP53R270L) and pancreatic adenocarcinoma 

(TP53R248W and TP53R248Q) are not represented in published GEMMs of these diseases 

(Supplementary Fig. 8), despite having putative gain-of-function effects61–63. Notably, three of 

these mutations are transversions that cannot be modeled using base editing. Furthermore, the 

human amino acid (p53R248) but not the human codon (CGG vs CGC) is conserved in murine 

Trp53. Thus, engineering the Trp53R245W mutation in mice requires a dinucleotide substitution 

uniquely suitable to prime editing (Supplementary Fig. 8). We developed a suite of epegRNAs 

designed to introduce each of these mutations and a truncating deletion, Trp53R250FS, using a 

Trp53+/+ cell line derived from murine 3TZ cells (Supplementary Fig. 9). We achieved up to 

6.4% basal editing efficiency for Trp53R245Q and lower efficiencies (<3%) for other Trp53 edits. 

After selection with nutlin-3a, most Trp53flox/+;Rosa26PE2/+ pancreatic organoids transduced with 

each of these epegRNAs exhibited a prime edited allele frequency near 100%. Remarkably, we 

also observed >90% editing purity in most of these organoids, demonstrating that each of these 

mutations can be installed with high precision using prime editing (Fig. 3g; Supplementary Fig. 

8). While the ratio of prime edited reads to reads bearing random indels was typically high, we 

did observe a variable unintended single nucleotide substitution (0.24% - 11.34% of reads) 

attributable to partial transcription of the scaffold sequence when prime editing Trp53R245Q 

(Supplementary Fig. 8). In one instance, we also observed an insertion of the scaffold sequence 

when prime editing Trp53R245W (~7% of reads). Western blots of the resulting organoids 

confirmed retained p53 protein expression in the Trp53245Q and Trp53R245W conditions but not in 
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the Trp53R250FS condition (Fig. 3h). These results establish the utility of our approach for rapid 

installation of novel mutations using systems that can be easily translated to an in vivo setting.  

Modeling lung and pancreatic adenocarcinoma in vivo using prime editing. To benchmark 

the utility of PE GEMMs to model cancer in vivo, we initiated lung and pancreatic 

adenocarcinomas using autochthonous and orthotopic transplantation strategies, respectively 

(Fig. 4a). To model lung cancer, we intratracheally infected Trp53flox/flox;Rosa26PE2/+ and 

Trp53flox/flox;Rosa26PE2/PE2 mice with UPEC lentiviruses encoding the template vector (n=4) or 

the optimized KrasG12D (n=14), the less efficient KrasG12C (n=13), or the neutral Dnmt1+GGG 

pegRNAs (n=6). Tumors initiated by UPEC-KrasG12D were readily visible by µCT at 14 weeks 

post-injection (Supplementary Fig. 10). At 16 weeks, we observed multifocal fluorescent 

lesions in 10/14 (71%) UPEC-KrasG12D recipients and in none of the controls (Fig 4b).  



 164 

 

Figure 4. PE GEMMs enable autochthonous and orthotopic modeling of lung and pancreatic 
cancer. 
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a. Schematic depicting the design of in vivo experiments. Autochthonous lung tumors were 
initiated with lentivirus encoding UPEC vectors. Pancreatic tumors were initiated by orthotopic 
transplantation of prime edited pancreatic organoids. “Template” refers to the template UPEC 
vector lacking a pegRNA. 
b. Representative bright-field and fluorescent images of lungs derived from mice infected with 
the UPEC vector encoding the neutral Dnmt1+GGG pegRNA (top) or the KrasG12D (middle) or 
KrasG12C (bottom) epegRNAs described in Fig. 3b.  
c. Hematoxylin and eosin (H&E) staining of representative tissue from a control mouse infected 
with UPEC-Dnmt1+GGG (top), and tumor-bearing mice infected with UPEC-KrasG12D (middle) or 
UPEC-KrasG12C (bottom). Callout boxes highlight a Grade 2 lesion (top) and a Grade 3/4 lesion 
(bottom) from KrasG12D, as well as a Grade 2/3 lesion from KrasG12C, at a greater magnification.  
d. Stacked proportionality bar chart indicating the distribution of grades across lesions from nine 
tumor-bearing mice infected with UPEC-KrasG12D. Lesion grades were called using the Aiforia 
algorithm as described in Methods. 
e. Allele frequency of KrasG12D or KrasG12C in bulk lung tumors. Indel byproduct frequency was 
calculated as <1% in all cases. X-axis bar titles refer to specific mice. Mouse 2 had two tumors 
(T1 & T2) isolated for amplicon sequencing. 
f. Representative bright-field and fluorescent images of pancreatic tissue in mice transplanted 
with Trp53flox/flox organoids treated with the parental UPEC vector (top) or organoids prime 
edited to contain KrasG12D (middle) or KrasG12C (bottom). Organoids were transplanted after 
selection of the prime edited allele using gefitinib, as described in Fig. 3. 
g. H&E staining of representative pancreatic tissue from a control mouse (top), a mouse 
transplanted with KrasG12D organoids (middle), and a mouse transplanted with KrasG12C 
organoids (bottom). Histological features indicate a low-grade pancreatic intraepithelial 
neoplasia (PanIN) initiated by KrasG12C and a more advanced pancreatic adenocarcinoma 
initiated by KrasG12D. 
 

Histological analysis confirmed that lesions induced by prime editing recapitulated the full 

spectrum of lung cancer progression, from grade 1 atypical adenomatous hyperplasia through 

grade 4 adenocarcinoma. By immunohistochemistry, prime edited tumors recapitulated the 

cellular and molecular evolution seen in the classical KrasLSL-G12D/+;Trp53flox/flox (KP) GEMM 

model, demonstrating downregulation of lung lineage transcription factor Nkx2-1 and expression 

of chromatin regulator Hmga2 in poorly differentiated, advanced lesions64–66 (Fig. 4c-d, 

Supplementary Fig. 11). We confirmed that tumors were initiated through on-target prime 

editing by sequencing genomic DNA derived from several bulk tumors (Fig. 4e).  
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In contrast to UPEC-KrasG12D recipients, only 4/13 (31%) UPEC-KrasG12C recipients presented 

tumors when harvested at 19 weeks. In these mice, we observed a single tumor lesion in three 

animals and two lesions in the fourth. The lower tumor efficiency and burden in this cohort is 

likely a consequence of the lower prime editing efficiency of the KrasG12C epegRNA, although it 

could also be related to weaker oncogenicity of the KrasG12C allele51 in the context of our lung 

model. Regardless, these findings support the notion that PE GEMMs can be used to model 

cancer in vivo, even when using lower efficiency pegRNAs. Notably, across all UPEC-KrasG12D 

and UPEC-KrasG12C recipients, we observed tumor formation in 8/20 Trp53flox/flox;Rosa26PE2/+ 

mice (8/12 UPEC-KrasG12D and 0/8 UPEC-KrasG12C) and 6/7 Trp53flox/flox;Rosa26PE2/PE2 mice 

(2/2 UPEC-KrasG12D and 4/5 UPEC-KrasG12C). The difference in tumor formation between 

Rosa26PE2/+ and Rosa26PE2/PE2 recipients was significantly higher for UPEC-KrasG12C (P < 0.01 

for KrasG12C, Fisher’s Exact Test). Thus, two alleles of Rosa26PE2 likely facilitate higher prime 

editing efficiency, enabling tumor formation in the majority of animals infected with a low-

efficiency epegRNA. 

To further test the potential of PE GEMMs for cancer modeling in vivo, we transplanted prime 

edited KrasG12D/+;Trp53flox/flox;Rosa26PE2/+ and KrasG12C/+;Trp53floxflox;Rosa26PE2/+ pancreatic 

organoids into immunocompetent mice harboring the Rosa26PE2 allele (to ensure immunological 

tolerance67 to the prime editor enzyme). As controls, we transplanted Trp53flox/flox;Rosa26PE2/+ 

organoids infected with the template UPEC vector. Tumors were visible via ultrasound by five 

weeks, and fluorescent tumors that reflected the spectrum of pancreatic neoplasia were observed 

in 3/4 KrasG12D/+ recipients six weeks post-transplantation (Fig. 4f-g). A small, low-grade 

pancreatic intraepithelial neoplasia (PanIN) lesion not detected by fluorescent microscopy was 

observed in the fourth KrasG12D/+ recipient by histology. Notably, only one mouse from the 
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cohort of animals transplanted with KrasG12C/+ pancreatic organoids developed a lesion, 

specifically a low-grade PanIN, consistent with prior observations suggesting that KrasG12C/+ 

may be less tumorigenic in the pancreas51. We did not observe tumor formation in control 

recipients by ultrasound, microscopy, or histology, consistent with prior work showing that 

Trp53 knockout alone is insufficient for pancreatic tumorigenesis43,68. 

Discussion 
Advances in genome editing technologies have accelerated functional genetic studies, yet many 

approaches modeling cancer mutations to date have relied on Cas9-mediated gene disruption via 

non-homologous end joining and, therefore, fail to recapitulate specific genetic lesions observed 

in human cancer. Emerging precision genome editing technologies like base editing and prime 

editing are poised to fill this gap by allowing the engineering of specific cancer-associated 

mutations. Nevertheless, the considerable size of base editors and prime editors makes delivery 

to most tissues and cell types challenging and poses significant limitations for in vivo studies. 

Prior studies have addressed this using split-prime editor systems that enable prime editing in 

vivo when delivered by dual adeno-associated virus (AAV) vectors. However, dual-AAV 

approaches are still hampered by challenges of delivery to many tissues and, importantly, they 

elicit an immune response against the prime editor enzyme30,69. The immunogenicity of genome 

editing reagents when delivered exogenously complicates cancer modeling experiments, 

particularly given the important role of the immune system in tumor surveillance and the 

landmark success of immunotherapies and targeted therapies that modulate immune recognition 

and clearance of tumor cells. With these challenges in mind, we developed a PE GEMM capable 

of rapidly installing a variety of genetic lesions with single nucleotide precision across in vitro, 

ex vivo, or in vivo contexts, as well as in an autochthonous, immunocompetent setting. By 
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expressing the PE2 enzyme endogenously, we obviate the risk of a confounding immune 

response and significantly expand the capacity to deliver other functional cargo, such as Cre.  

We used this model to install a variety of cancer-associated mutations, including transversions, 

transitions, dinucleotide substitutions, and deletions across Kras and Trp53. In the context of our 

pancreatic orthotopic transplant experiments, we observed that different Kras mutations may 

exhibit variable in vivo tumor initiating potential, consistent with prior work comparing KrasG12C 

and KrasG12D autochthonous models in the pancreas51. Importantly, we also observed Kras allele-

specific responses to mutant-specific targeted therapies. For example, similar to prior studies of 

KRASG12C inhibitors51,70, we found that a KRASG12D inhibitor, MRTX1133, elicits a more 

powerful effect on prime edited KrasG12D pancreatic organoids when combined with the EGFR 

inhibitor, gefitinib. Several other clinical agents targeting a broader spectrum of oncogene 

mutations are undergoing clinical evaluation, and the first KRASG12C inhibitor, sotorasib, has 

now been approved by the FDA53,55. PE GEMMs represent ideal systems for rapid interrogation 

of the effects of targeted therapies in the context of virtually any oncogenic mutation, including 

secondary resistance mutations, like KRASY96C, that are now being identified in patients. 

Importantly, PE GEMMs also enable in vivo studies of these mutations in the context of 

syngeneic and immunocompetent mice, and our results show that autochthonous tumors can be 

generated efficiently in Rosa26PE2/PE2 mice even with a suboptimal KrasG12C epegRNA. This 

broad utility for modeling Kras mutations in vivo is critical, especially given that mutant KRAS 

inhibition has been shown to affect the immune milieu and tumor microenvironment in models 

of colon cancer71 and may synergize with immune checkpoint blockade in other tissues not yet 

examined.  



 169 

Beyond KRAS, we demonstrate in pancreatic organoids the precise installation and selection of 

two Trp53 dinucleotide substitutions encoding two mutant amino acid residues frequently 

observed at the same codon in human pancreatic cancer, as well as a dinucleotide deletion at a 

nearby codon. Importantly, we observed over 90% editing purity after selection of all three 

mutations in vitro. Despite a high intended edit-to-unintended indel ratio, we observed an 

unintended single nucleotide substitution at variable frequency when prime editing Trp53R245Q 

(Supplementary Fig. 8). We attribute this event to partial homology between the genomic 

region immediately following the reverse transcriptase template and the few nucleotides in the 

pegRNA scaffold that are commonly reverse-transcribed and excised during DNA repair, a 

prime editing intermediate noted by Nelson and colleagues49. Unintended edits such as this could 

be avoided by using an alternative pegRNA with a reverse transcriptase template ending a few 

nucleotides up or downstream to eliminate the homology, or could be reduced by introducing 

silent edits that prevent repeated editing of the same target site. However, this phenomenon 

merits additional caution during pegRNA design and may be exacerbated in long-term prime 

editing experiments such as when selecting cell lines over several passages with continuous 

expression of the prime editor and pegRNA. 

The overall editing purity we observed highlights the utility of prime editing for precise 

engineering of mutations with negligible indel byproducts. This is a key advantage over Cas9 

HDR-based approaches, in which the high rate of indel byproducts could dilute intended point 

mutations in vitro and in vivo. Low editing purity could especially limit the study of specific 

point mutations in tumor suppressor genes, as unintended indels in these genes can produce 

frameshift mutations subject to positive selection. This limitation is especially important when 

considering that many genes, including TP53, often harbor point mutations that confer different 
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properties relative to loss-of-function truncations, including gain-of-function effects61,72–74. For 

instance, Schulz-Heddergott and colleagues demonstrated that TP53R248Q exhibits a gain-of-

function effect by hyperactivating the JAK2/STAT3 pathway, leading to more aggressive tumor 

progression in models of colon cancer61. These observations remain untested in models of 

pancreatic cancer in vivo due to a lack of suitable transgenic mouse models and human cell 

lines73. PE GEMMs are poised to fill critical gaps like this by allowing rapid and fine-tuned 

mutation control in a variety of tissue settings. 

Though we did not explore them here, a variety of techniques are available to optimize prime 

editing efficiency, such as PE3 and PE3b editing strategies that combine nicking guides to bias 

DNA repair toward incorporation of prime edited nucleotides. Nevertheless, strategies based on 

single pegRNAs are more straightforward, have better multiplexing capacity because they rarely 

cause indels, and are better suited for high-throughput studies like genetic screens. Recent work 

has also detailed the use of silent or benign mutations close to the intended edit as a means to 

avoid mismatch repair of prime edited alleles and thereby enhance overall efficiency44. While we 

found that spacer optimization and testing of up to 15 guides was sufficient to identify 

epegRNAs suitable for our experiments, future users should consider these and other strategies, 

including the co-delivery of an MLH1 dominant negative gene (PE4/5)44 or sensor-based 

pegRNA library approaches31, to maximize overall prime editing efficiencies, which may be 

especially helpful for in vivo applications. Future models in development based on next-

generation prime editor enzymes, such as the optimized PEmax prime editor protein44, will 

further facilitate these applications. 

While we focused on installing cancer driver mutations, we note that PE GEMMs could be 

employed for broader applications, including modeling genetic diseases beyond cancer. We also 
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envision applications involving the insertion of custom neoepitopes and other functional genetic 

sequences. These would enable investigators to address key questions in cancer genetics and 

immunology, while further reducing the need to generate, genotype, and otherwise maintain 

traditional GEMMs. Finally, the combination of multiple epegRNAs in the context of a modified 

UPEC vector should enable autochthonous generation of tumors defined by custom sets of 

multiple driver mutations in wild-type prime editor mice. This would enable increasingly 

complex studies of cooperating driver mutations. In general, PE GEMMs can provide a rapid 

preclinical avenue to complement clinical investigations aimed at treating cancer with novel 

precision treatment paradigms. 
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Supplementary Figures and Legends 
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Supplementary Figure 1. Computational methods for determining mutations accessible to base 
and prime editing and for evaluating conservation in murine protein sequences.  
a. Method for determining whether a mutation is amenable to editing by a prime editor with 
an NGG PAM. Prime editing domains (the start sites of editing) are marked relative to the 
location of NGG PAMs. These domain markings are used, in combination with information 
about the RT template length, to determine if a mutation can be modeled.  
b. Method for determining whether a mutation is amenable to editing by a base editor 
(cytosine or adenine) with an NGG PAM. The location of NGG PAMs is marked on the plus and 
minus strand, and for each transition SNV, it is determined based on distances to marked PAMs 
whether the mutation falls in a high efficiency editing window (positions +4 to +8 in a 
protospacer), within a protospacer, or outside any protospacer. Search rules for CBE and ABE 
are shown below.  
c. Method for determining whether mutations fall in a conserved region between mouse and 
human orthologous protein sequences.  
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Supplementary Figure 2. Prime editing has a greater capacity to model recurrent cancer-
associated mutations than base editing.  
a. Quantification of mutations that are detected in multiple patients in cancer-associated 
genes, depicted for each mutant variant type (Single nucleotide variants = SNV, deletions = 
DEL, insertions = INS, di-nucleotide variants = DNV, oligo-nucleotide variants = ONV). The y-
axis in all plots indicates the total number of unique mutations per variant type. 
b. Quantification of recurrent mutations potentially amenable to modeling by a base editor 
with an NGG PAM (top) or a prime editor with an NGG PAM and a 30 base pair RT template 
(bottom). The columns show results considering mutations that occur in ≥5 patients (left) or ≥10 
patients (right). “CBE/ABE high” indicates that the SNV falls in the high efficiency editing 
window (position +4 to +8 in the protospacer), while “CBE/ABE low” indicates the SNV falls 
within the protospacer but outside the high efficiency window. The data include SNVs (blue 
outer circle; 78.8% of mutations) and other mutation types (gray outer circle; 20.2% of 
mutations). All calculations assume a base or prime editor that recognizes only NGG PAMs. 
c. Total percentage of recurrent mutations amenable to modeling by a base editor with an 
NGG PAM, quantified at multiple thresholds of mutation frequency, from mutations that occur 
≥1 patient to those that occur ≥10 patients. 
d. Total percentage of recurrent mutations amenable to modeling by a prime editor with an 
NGG PAM and a 30 base pair RT template at multiple thresholds of mutation frequency, from 
mutations that occur ≥1 patient to those that occur ≥10 patients.  
e. Capabilities of prime versus base editing to model orthologous mutations in mice at 
multiple thresholds of mutation frequency, from ≥1 to ≥10 patients with each mutation. Prime 
editing can model approximately double the number of orthologous mutations in mice at all 
thresholds of mutation frequency.  Base editing (BE) shown in red. Prime editing (PE) shown in 
blue.  
f. Quantification of the ability of base editing (left) and prime editing (right) to model 
orthologous mutations in mice for mutations that occur in ≥5 or ≥ 10 patients. 
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Supplementary Figure 3. Prime editing enables modeling a broader scope of cancer-associated 
mutations from residues conserved in mice at various homology stringencies.  
a. The percentage of mutations, categorized by variant type, that fall in a region of 
homology as a function of flank size. Flank size is defined as the number of amino acids on 
either side of the mutant codon that must match between the human and mouse orthologs for the 
mutated codon to be considered orthologous (e.g., a flank size of two would mean that a total of 
five amino acids–two upstream and two downstream of the mutant codon–would need to match 
in the human and mouse protein to be considered orthologous.) 
b. Capabilities of prime editing (blue) and base editing (red) to model mutations that derive 
from a wild-type amino acid residue conserved in mice as a function of conserved flank size (i.e., 
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the stringency of homology). All calculations assume a base or prime editor that recognizes only 
NGG PAMs. 
c. Quantification of the ability of base editing (top) and prime editing (bottom) to model 
orthologous mutations in mice at different flank size values (2, 3, 5, and 10 from left to right). 
These plots correspond with the data points in panel (b).  
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Supplementary Figure 4. Genetic validation of Rosa26 targeting. 
a. Southern blots depicting the external probe used to evaluate Rosa26 targeting. 
b. Southern blots depicting the internal probe used to evaluate Rosa26 targeting. 
Successfully targeted 100C7 and 100C8 ESC clones were transmitted through the germline. 
c. Gel image of a genotyping PCR of the Rosa26PE2 allele. The larger band (~717 base 
pairs) reflects the presence of the Rosa26PE2 allele, while the smaller band indicates a wild-type 
sequence. See Supplementary Table 3 for the primer sequences used for genotyping. 
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Supplementary Figure 5. Functional validation of the Rosa26PE2 allele in pancreatic organoids 
derived from chimeric mice.  
a. Schematic depicting the experimental workflow. Cells containing the Rosa26PE2 allele 
were selected using neomycin treatment. Purified Trp53flox/flox;Rosa26PE2/+ organoids were then 
treated with nutlin-3a after lentiviral infection to ensure selection of successfully transduced 
cells. 
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b. mNG expression in purified pancreatic organoids quantified by the Guava easyCyte flow 
cytometer. Untreated cells (“parental”) are depicted in gray and cells treated with the UPEC 
vector encoding Cre recombinase (“Cre”) are depicted in green. 
c. Editing efficiency and indel byproduct frequency of pegRNAs targeting Dnmt1+GGG (n = 
2) and KrasG12D (n = 1). The Kras-targeted pegRNA mediates a dinucleotide substitution 
encoding KrasG12D at low efficiency. 
d. Allele frequency table output by CRISPResso2 depicting the percentages of reads 
encoding specific sequences. The three red bars represent the position of the encoded 
trinucleotide insertion. 29.28% of all reads contain the prime edited insertion. Note that 
“reference” refers to the DNA sequence including the intended prime edit without modification.  
 
 
 

 
Supplementary Figure 6. Selection of an optimal spacer for pegRNAs templating KrasG12 
mutations. 
a. Indel frequencies associated with Cas9 activity from four single guide RNAs (sgRNAs) 
targeted near the KrasG12 locus in mouse N2A cells (n = 3 biological replicates). See 
Supplementary Table 2 for guide RNA sequences. 
b. Editing efficiency of representative pegRNAs based on spacers corresponding to 
sgRNAs-3 and -4 (n = 1 replicate per pegRNA). The data for the four leftmost pegRNAs based 
on sgRNA-3 are also presented in Fig. 3a. pegRNAs based on sgRNA-3 generally exhibited 
higher prime editing efficiency than pegRNAs based on sgRNA-4. 
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Supplementary Figure 7. Treatment of prime edited KrasG12D and KrasG12C pancreatic 
organoids with EGFR and KRAS inhibitors in the presence or absence of a secondary resistance 
mutation. 
a. Bright-field images of unedited Rosa26PE2/+ pancreatic organoids treated with gefitinib 
after infection with the template UPEC vector (i.e., lacking a pegRNA). 
b. Additional bright-field images supplementing Fig. 3d and depicting prime edited 
KrasG12D and KrasG12C organoids treated either with DMSO, gefitinib, or sotorasib. 
c. Viability of KrasG12C organoids under various treatment conditions quantified using the 
alamarBlue HS Cell Viability Reagent. 
d. Editing efficiency and indel frequencies of epegRNAs templating the KrasY96C 
transversion in Rosa26PE2/+ TTFs (n = 1-4 biological replicates per pegRNA). 
e. Nucleotide percentage quilts and allele frequency tables output by CRISPResso2 
depicting sequencing reads derived from prime edited KrasG12C and KrasG12D pancreatic 
organoids. Prime edited alleles were previously selected with gefitinib, and these sequencing 
data derive from organoids after treatment with gefitinib in combination with mutant KRAS 
inhibitors. 
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Supplementary Figure 8. Frequency distribution of TP53 mutations in lung and pancreatic 
cancer patients and prime editing Trp53 mutations in pancreatic organoids. 
a. Lolliplot frequency distributions retrieved from cBioPortal as described in the methods 
section for pancreatic cancer patients (top) and lung cancer patients (bottom). 
b. Multiple sequence alignment of murine (Trp53) and human (TP53) DNA and protein 
sequences surrounding the Trp53R245 locus. Substitutions are highlighted in red font. A single 
nucleotide substitution between these orthologs creates a requirement for a dinucleotide 
substitution to model Trp53R245W in mice. 
c. Allele frequency tables output by CRISPResso2 depicting the sequencing reads derived 
from Trp53flox/+;Rosa26PE2 pancreatic organoids after selection with nutlin. These are derived 
from the same sequencing data underlying the plots described in Fig. 3h. Edited codons for 
Trp53R245Q and Trp53R245W are indicated within a black box. Trp53R250FS involves a dinucleotide 
deletion of ACCA -> AA. 
d. Allele frequency tables depicting the region immediately after the 3’ extension sequence. 
The plots are derived from two biological replicates (R1 and R2) of Trp53flox/+;Rosa26PE2 
organoid lines infected with UPEC-Trp53R245Q and treated with nutlin. The top plot is derived 
from the same data for Trp53R245Q depicted in (c). A black box indicates an unintended 
nucleotide modification occurring at variable efficiency immediately after the 3’ extension 
sequence. 
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Supplementary Figure 9. Construction of the split-PE2 3TZ fibroblast line for testing 
epegRNAs targeted to Trp53. 
a. Schematic depicting the installation of split halves of the PE2 enzyme using lentivirus 
and a combination of puromycin and blasticidin resistance genes. 
b. Editing efficiency of a pegRNA targeted to Dnmt1 (n = 4 biological replicates) and an 
epegRNA (the same depicted in Fig. 3b) targeted to Kras (n = 1) in split-PE2 3TZ cells confirms 
their ability to mediate prime editing. Estimates of Dnmt1+GGG and KrasG12D frequency in cells 
not transduced with virus are included as controls (n = 1). 
c. Editing efficiency and indel byproduct frequency of 3-4 representative epegRNAs tested 
for each of the Trp53 mutations described in the Fig. 3, as well as two Trp53 mutations 
(Trp53R155L and Trp53R270L) homologous to those commonly observed in human lung cancer. 
epegRNA and spacer sequences are listed in Supplementary Table 2. 
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Supplementary Figure 10. Micro-CT and ultrasound imaging of lung and pancreatic tumors in 
vivo. 
a. Micro-CT of the lung in a Trp53flox/flox;Rosa26PE2/+ mouse 14 weeks after infection with 
lentiviral vectors encoding UPEC-KrasG12D (using the epegRNA described in Fig. 3b). A visible 
tumor is highlighted by a yellow circle. 
b. Ultrasound imaging depicting a pancreatic tumor derived from orthotopic transplantation 
of Trp53flox/flox;Rosa26PE2/+ organoids, which were prime edited using the KrasG12D epegRNA. 
The KrasG12D allele was selected with gefitinib in vitro prior to transplantation, as shown in Fig. 
3c. All organoids were transplanted into Rosa26PE2 recipients. 
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Supplementary Figure 11. Prime edited tumors recapitulate histological features of gold 
standard GEMMs of lung adenocarcinoma.  
a. Aiforia grade analysis of 16-week tumor-bearing lungs initiated by in vivo prime editing 
(red = Grade 1, green = Grade 2, blue = Grade 3, orange = Grade 4).   
b. H&E and immunohistochemical (IHC) staining of a representative Grade 2 tumor 16 
weeks post-initiation. IHC staining was performed with antibodies specific to Nkx2.1, a lung 
lineage transcription factor, or Surfactant Protein C (Sftpc), a marker of AT2 cells. Scale bars: 
200 µm.  
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c. H&E and IHC staining of a Grade 3/4 tumor 16 weeks post-initiation. IHC staining was 
performed with antibodies specific to Nkx2-1 or HMGA2, a lung embryonic chromatin 
regulator. Scale bars: 200 µm.  
 
 
Supplementary Tables are available upon request.   
 
 
 
Methods 
Bioinformatic analysis of prime and base editor capabilities for modeling cancer-associated 

mutations. 

We constructed a Python-based computational pipeline to compare the abilities of prime and 

base editors to model cancer-associated mutations. Data were retrieved from MSK-IMPACT 

datasets previously described31. The pipeline, all related scripts, and intermediate data needed to 

reproduce our results are available at https://github.com/samgould2/prime-vs-base-editing.  

Analysis of recurrent cancer mutations incorporated in published transgenic mouse 

models.  

To estimate the fraction of frequent cancer driver mutations captured by currently available 

transgenic mouse models, we used the MouseMine tool from the Mouse Genome Informatics 

database38,39 and obtained a comprehensive list of published transgenic alleles. We initiated our 

search using the mammalian phenotype code MP:0002006 (“neoplasm”) to retrieve all mouse 

models related to the study of cancer. We then modified the search by adding the following 

parameters: “Allele Type,” “Mutations (Name)”, “Alleles (Name and Molecular Note and 

Attribute string),” and “Subjects (synonyms → names).” We then filtered the results to retain 

only allele types annotated as “Targeted,” “Transgenic,” or “Endonuclease-mediated.”  

After exporting these data (Supplementary Table 2), we then identified the 100 most frequent 

single nucleotide variants present in the MSK-IMPACT dataset. We then manually cross-
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referenced these two lists using standard Bash commands (e.g., grep to isolate relevant genes and 

codons) to identify available models representing specific mutations. In cases where models 

were absent in the MouseMine list, we performed a manual literature search to confirm an 

absence of models in the published literature. Using this approach, we designated for each 

mutation whether 1) any transgenic allele exists that can be used to model cancer in mice and 2) 

whether any existing models enable selective expression in a tissue of interest (e.g., through Cre 

recombinase-induced removal of a LoxP-STOP-LoxP cassette). The manually annotated results 

for the 100 most frequent mutations, as well as the entire MouseMine list are included as 

Supplementary Tables 1 and 2. 

Design and cloning of the Cre-inducible prime editor allele. 

The PE2-P2A-mNG Rosa26 targeting vector was generated with a backbone formed via BstBI 

and AscI restriction enzyme digestion of the SpCas9-NLS-P2A-EGFP Rosa26 targeting 

vector10,41. A fragment encoding the PE2 enzyme was generated by PCR amplification from the 

pCMV-PE2 plasmid obtained from Addgene21 (Addgene no. 132775), and a fragment containing 

the P2A-mNG sequence was amplified from a lentivirus plasmid encoding Cre-P2A-mNG. Two 

additional fragments containing WPRE-pA-PGK (Woodchuck Hepatitis Virus 

Posttranscriptional Regulatory Element-poly(A)-PGK promoter) and a neomycin resistance gene 

(NeoR-pA) were PCR-amplified from the SpCas9-NLS-P2A-EGFP vector. A FRT3 site was 

installed by incorporating overlapping portions of this motif into the PCR primers. All primers 

used are listed and described in Supplementary Table 4. A 5-part Gibson assembly reaction 

generated the final targeting vector using these components75. Successful assembly was 

confirmed with diagnostic restriction enzyme digestions and Sanger sequencing. The plasmid 
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encoding the PE2-P2A-mNG Rosa26 targeting vector will be deposited at Addgene for 

distribution. 

Embryonic stem cell targeting, validation, and chimera generation. 

KP4*, a C57BL/6J Trp53flox/flox (P) murine embryonic stem (ES) cell line, was generated by 

crossing a hormone primed C57Bl6J Trp53flox/flox female with a C57Bl6J KrasLSL-G12D;Trp53flox/flox 

male. At 3.5 days post coitum, blastocysts were flushed from the uterus, isolated, and cultured 

individually on a mouse embryonic fibroblast (MEF) feeder layer in ESCM+LIF+2i (Knockout 

DMEM (GIBCO), 15% FBS (Hyclone), 1% NEAA (Sigma), 2mM Glutamine (GIBCO), 0.1mM 

b-mercaptoethanol (SigmaAldrich) 50 IU Penicillin, 50 IU Streptomycin, 1000U/ml LIF 

(Amsbio), 3µM CHIR99021 (Abmole), and 1µM PD0325901 (Abmole)). After 5-7 days in 

culture, the outgrown inner cell mass was isolated, trypsinized and replated on a fresh MEF 

layer. ES cell lines were genotyped for KrasLSL-G12D (KP4* was wildtype +/+ for Kras), 

Trp53flox/flox, and Zfy (Y-chromosome specific). Primer sequences are available upon request. ES 

cell lines were tested for pluripotency by injection into host blastocysts from albino mice to 

generate chimeric mice. 

Briefly, 36 µg of the prime editor targeting vector (R26–CAGG-LoxStopLox-Cas9(H840A)-

MMLVRT-P2A-mNeonGreen-WPRE-bHGpA; PGK-Neo-PGKpA) was linearized with PvuI, 

phenol/CHCl3 extracted, and then was ethanol precipitated. After resuspending the DNA in 

150µl of PBS it was mixed with 3 x 106 KP4* ES cells in 650 µl of PBS in a 4mm 

electroporation cuvette. The cell/DNA mixture was pulsed once in a Biorad Genepulsar 2 (600V 

and 25µF) followed by re-plating of the cells on irradiated mouse embryonic fibroblasts (MEFs). 

After 48hrs, the ES cell cultures were placed under selection with Geneticin (GIBCO) at 

350µg/mL. When colonies were large enough to pick, 45 colonies were manually picked using a 
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stereomicroscope.  Each clone was expanded and evaluated for correct integration by PCR with 

primers spanning the 5’ homology arm. Eleven PCR–positive clones were further evaluated 

using southern blot analysis. Briefly, genomic DNA was digested with EcoRV-HF (NEB) 

overnight. Digestions were electrophoresed on 0.7% agarose gels and blotted to Amersham 

Hybond XL nylon membranes (GE Healthcare). Samples were probed with 32P-labeled “Rosa26 

3’ “external” and Cas9 “internal” probes applied in Church buffer (probe sequences available on 

request). Five clones (100A8, 100A10, 100C5, 100C7, and 100C8) showed correct integration. 

Correctly targeted clones verified by both PCR and southern blot analysis were injected into 

albino C57BL/6J blastocysts. High degree chimeras (visually assessed by coat color percentage) 

from the 100C7 and 100C8 ES cell clones successfully transmitted the prime editor construct 

through the germline. 

Nucleofection of Neuro-2a cells and genomic DNA preparation 

To evaluate spacers near the genetic locus encoding G12 in Kras, Neuro-2a cells were 

nucleofected using the SF Cell Line 4D-Nucleofector X Kit (Lonza) with 2 x 105 cells per 

sample (program DS-137). 800 ng of SpCas9-expressing plasmid and 200 ng of single guide 

RNA(sgRNA)-expressing plasmid were used according to the manufacturer’s protocol. 

Following nucleofection, samples were brought to 100 µL total volume with DMEM 

supplemented with GlutaMax (Thermo Fisher Scientific) and 10% (vol/vol) FBS (Gibco, 

qualified) at 37 °C. After incubation for 10 minutes at room temperature, the cells were seeded 

on 48-well poly-D-lysine coated plates (Corning). 3 days following nucleofection, the cells were 

washed with PBS after removing the media and then lysed by addition of 150 µL of freshly 

prepared lysis buffer (10 mM Tris-HCl, pH 8 at 23 °C; 0.05% SDS; 25 μg ml−1 of proteinase K 

(Qiagen)). Lysates were incubated at 37 °C for one hour and then heat-inactivated for 30 min at 
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80 °C. The Kras amplicon was amplified from the genomic DNA samples, sequenced on an 

Illumina MiSeq, and analyzed with CRISPResso276 for indel quantification as previously 

described33. Primers used for amplification of the Kras amplicon are listed in Supplementary 

Table 4. 

pegRNA design and cloning. 

pegRNAs were designed in part using the pegRNA design tool, Prime Design77. In some cases 

(e.g., editing at KrasG12D), CRISPR sgRNAs were tested prior to pegRNA design to select 

spacers that exhibited the highest level of Cas9 activity. For some designs (e.g., all Trp53-

targeted pegRNAs), the trimmed evopreQ1 motif was included to form epegRNAs and optimize 

editing efficiency within a limited cohort of initial candidates49. pegRNAs and their sequences 

are provided in Supplementary Table 3. Generally, the editing efficiency of all Trp53-targeted 

pegRNAs was tested first in single replicates in split-PE2 Trp53+/+ 3TZ cells, while Kras-

targeted and other pegRNAs were tested in Rosa26PE2/+ tail tip-derived fibroblasts. pegRNAs 

with the highest editing efficiencies were selected for later assays in organoids and mice. 

All pegRNAs were tested within the context of hU6-pegRNA-EF-1α-Cre (UPEC) or hU6-

RFP/pegRNA-EFS-mScarlet (UPEmS) vectors. All pegRNA-expressing vectors were assembled 

via Golden Gate Assembly78 using the uncut template plasmid and three annealed oligo pairs 

consisting of the spacer sequence, the scaffold, and the 3’ extension, all with compatible 

overhangs. Assembly was facilitated using the Golden Gate Assembly Kit (BsmBI-v2) from 

New England BioLabs. Plasmid DNA was extracted from transformed bacterial cultures using 

QIAprep Miniprep or Midiprep kits according to the manufacturer’s instructions. 

The UPEmS template vector was generated via Gibson assembly of three insert fragments and a 

linearized backbone. Two fragments were formed by PCR amplification from the “pU6 pegRNA 
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GG acceptor” plasmid (Addgene plasmid no.132777)21. Specifically, the hU6 promoter was 

amplified using primers modified to install a BsmBI recognition site and the pAF Gibson adapter 

sequence on either side of the promoter (pAF-hU6-BsmBI), and the red fluorescent protein 

(RFP) component was also amplified in part using a primer that installed another BsmBI 

recognition site (forming BsmBI-RFP-BsmBI-pAR/gBF). A third fragment, gAR/pBF-EFS-

mScarlet-gBR, was amplified from a separate lentiviral plasmid containing U6-sgRNA-EFS-

mScarlet. All fragments were designed to contain compatible overhangs for Gibson assembly. 

All vectors with detailed maps and sequences will be deposited into Addgene. All primer names 

and sequences are listed in Supplementary Table 4. 

The UPEC template plasmid (hU6-RFP-EF-1ɑ-Cre; hU6-pegRNA-EF-1ɑ-Cre after cloning) was 

developed by Gibson assembly of two insert fragments and the same backbone used to clone 

pUPEmS. The pBF-EF-1alpha-Cre-gBR fragment was generated using pBF and gBR PCR 

primers targeting the pUSEC (U6-sgRNA-EF-1alpha-Cre) vector75,79. The pAF-U6-RFP-gAR 

fragment was amplified from the UPEmS vector. The final UPEC vector enables concomitant 

assembly of the pegRNA spacer, scaffold, and 3’ extension. Plasmids encoding the template 

UPEC and UPEmS vectors used for Golden Gate cloning will be deposited at Addgene. 

Generation of tail tip-derived Rosa26PE2/+ Trp53flox/flox fibroblasts. 

To generate a Rosa26PE2 cell line for convenient testing of pegRNAs, a 2 cm piece was excised 

from the tail tip of an anesthetized, 3.5-week-old male. The sample was sprayed with ethanol and 

then dipped in PBS several times. A lengthwise incision was made, and outside skin and hair 

were removed. The sample was then incubated at 37 °C in digestion buffer comprised of 5 mL 

DMEM, 25 µL penicillin-streptomycin, 5 µL Amphotericin B, 10 µL DNase (40U / mL -20 °C; 

1:500), 50 µL collagenase (100 mg / mL; 1:100), and 50 µL CaCl2 (36 mM; 1:100). Samples 
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were then washed twice with PBS, and dissociated chunks were added to a 6cm dish with 

minimal media to promote adherence. Additional media containing Amphotericin B was added 

the following day. 

HEK293 and fibroblast cell culture conditions. 

HEK293-FS, split-PE2 3TZ and tail tip-derived Rosa26PE2/+ fibroblast cells were cultured in 

standard media consisting of Dulbecco’s Modified Eagle’s Medium (DMEM) (Corning), 

penicillin-streptomycin, and 10% (volume/volume) fetal bovine serum (FBS). All cultured cells 

were incubated at 37 °C and 5% CO2. 

Pancreatic ductal organoid isolation and culture. 

Pancreata from mice of the desired genotype were dissected manually and minced with a razor 

blade. Pancreas tissue was then dissociated by 20 minutes of gentle agitation in pancreas 

digestion buffer [1X PBS (Corning), 125 U/ml collagenase IV (Worthington)] at 37 ˚C. Tissue 

suspensions were then strained through 70 µM filters, washed with 1X PBS, and pelleted with 

slow deceleration by centrifugation. Cells were resuspended in 100% Matrigel (Corning) and 

plated as 50µL domes into 24-well plates (GenClone). Upon solidification of domes, cells were 

cultured in organoid complete media as previously described43, or alternatively, in complete 

medium as follows: AdDMEM/F12 medium supplemented with HEPES (1x, Invitrogen), 

GlutaMAX (1x, Invitrogen), penicillin/streptomycin (1x, VWR), B27 (1x Invitrogen), R-

Spondin1-Conditioned Medium (10% v/v), A83-01 (0.5µM, Tocris), murine Epidermal Growth 

Factor (mEGF, 0.05µg/mL, PeproTech), Fibroblast Growth Factor 10 (FGF-10, 0.1µg/mL, 

PeproTech), Gastrin I (0.01µM, Tocris), recombinant murine Noggin (0.1µg/mL, PeproTech), 

N-acetyl-L-cysteine (1.25mM, Sigma-Aldrich), Nicotinamide (10mM, Sigma-Aldrich) and Y-

27632 (10.5µM, Cayman Chemical Company).  
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Organoids were passaged using TrypLE Express (Life Technologies) for Matrigel digestion for 

15-30 minutes at 37 °C. Organoids were passaged for at least four passages prior to treatment 

with lentivirus. Organoids were infected at a high multiplicity of infection to ensure 100% 

recombination. Briefly, concentrated lentivirus (either diluted 1:9 or undiluted) was introduced to 

cell suspensions at the time of passage. Fluorescence microscopy confirmed Cre-mediated 

expression of mNG in organoids treated with UPEC, or mScarlet expression in organoids treated 

with UPEmS. For Trp53flox/flox lines, Nutlin-3a was added to organoid media (10 µM, Sigma-

Aldrich) to ensure purification of recombined organoids. For prime edited organoids harboring 

KrasG12D or KrasG12C mutations, organoids were cultured in the presence of 1 µM Gefitinib in 

full organoid media (Cayman) to select for the intended edit. Sotorasib (Selleck) was added to 

media at 1, 2, and 5 µM for experiments as indicated in the main text. MRTX1133 (MedChem) 

was added to the media at 2 or 5 µM as indicated in the main text. Selection of prime edited 

mutations was confirmed by deep amplicon sequencing of organoids several days after the initial 

infection with lentivirus, and then again after several passages under treatment with drug. For 

selection of transgene-containing cells from chimera-derived pancreatic organoids, organoids 

were treated with 800 µg / mL of Geneticin (GIBCO). All drug stocks were dissolved in DMSO 

(Sigma-Aldrich). Pancreatic organoids were maintained in culture for <30 passages. 

Organoid viability and proliferation were quantified using the alamarBlue HS Cell Viability 

Reagent (ThermoFisher Scientific). Viability reagent was directly added to organoid culture at 

1/10 media volume. After 24 hours, 200 µl of reagent-containing media was removed and 

assayed in replicate in a Tecan Infinite Pro m200 using the manufacturer’s parameters. For time 

course experiments, media containing 10% viability reagent was replenished after 1 PBS wash.  

Lung organoid culture. 
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Lung organoids were cultured as previously described80. Briefly, lungs were derived from 8–20-

week-old mice and transferred into 500µL dispase and minced. 3-5 mL digestion buffer 

containing Advanced DMEM/F-12, Penicillin/Streptomycin, Amphotericin B, 1 mg/mL 

Collagenase (Sigma, C9407-500MG), 40 U/mL DNase I (Roche, 10104159001), 5µM HEPES, 

and 0.36 mM CaCl2 was added for a 20-60 minute incubation at 37 ºC in a rotating oven. The 

resulting suspension was incubated in 1 mL ACK Lysis Buffer (Thermo, A1049201) for 3-5 

minutes at room temperature to lyse red blood cells. Samples were then washed two times with 

fluorescence-activated cell sorting (FACS) buffer (1X PBS with 1 mM EDTA and 0.1% BSA) 

and filtered through 40µm mesh to remove chunks. Samples were resuspended in 150 µL FACS 

buffer and CD45 cells were depleted using the EasySepTM Mouse CD45 Positive Selection kit 

(STEMCELL technologies, 18945) and preserving the flow through. Cells were then 

resuspended in FACS buffer containing 1x PBS, 0.1% BSA, and 2 mM EDTA and were stained 

with anti-mouse CD31-APC (1:500, Biolegend, 102507), CD45-APC (1:500, BD Biosciences, 

559864), EpCAM-PE (1:500, Biolegend, 118206), MHCII-APC-eFluor-780 (1:500, Thermo, 47-

5321-82) on ice for 30 minutes and then resuspended in FACS buffer containing DAPI (1µg/mL, 

Thermo, D1306). The suspensions were then sorted for DAPI-, CD31-, CD45-, EpCAM+, 

MHCII+ cells. Approximately 20,000 sorted AT2 cells were mixed with Growth Factor Reduced 

Matrigel (Corning) at a ratio of 1:9 and seeded onto multi-well plates as 20µL drops. The drops 

were incubated at 37 ºC for 15 minutes to solidify, and then overlaid with F7NHCS medium 

supplemented with Y-27632 (Cayman). The cultures were maintained in a humidified 37 ºC / 5% 

CO2 incubator at ambient O2 pressure. Media was replenished every 3-4 days using F7NHCS 

medium without Y-27632 and organoids were passaged 6-12 days after plating. For passaging, 

matrigel drops were dissolved in TrypLE Express (Sigma, 12604-013) and incubated at 37 ºC for 
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7-15 minutes. The organoid suspensions were then dissociated into single cells by vigorous 

pipetting, washed twice, resuspended in 1x PBS, and plated as described above. We typically 

plated 10,000 cells per drop. 

Generation of a 3TZ fibroblast cell line with the PE2 enzyme expressed from split inteins. 

A cell line based on murine 3TZs cells was developed to test Trp53-targeted pegRNAs on a 

Trp53+/+ background. Two plasmids containing halves of the PE2 enzyme and distinct antibiotic 

resistance genes were generated via Gibson Assembly. The split intein-based constructs 

described by Anzalone et al. (2019) were utilized to enable post-translational splicing of the 

intein motifs and subsequent joining of the halves to form the full PE2 enzyme21,81. Specifically, 

the N-terminal half of PE2 (the first 573 amino acids of the Cas9 nickase joined to the Npu N-

intein) was PCR-amplified from the U6-DNMT1-hSynapsin-PE2-Nterminal-P2A-EGFP-KASH-

lenti plasmid (Addgene no. 135955)  and then cloned into a puromycin resistance gene-

containing backbone. A blasticidin resistance gene-containing backbone was assembled into a 

second vector with a PCR-amplified DNA fragment encoding the C-terminal half of PE2 (Npu 

C-intein joined to the remaining C-terminal half of PE2), amplified from the hSynapsin-PE2-

Cterminal-lenti plasmid (Addgene no. 135956).  

After Gibson assembly and subsequent plasmid validation by Sanger sequencing, the two 

constructs were incorporated into lentivirus, which was used to transduce murine 3TZ fibroblast 

cells. Transduced cells were then incubated for 48 hours. After 48 hours, both infected and 

control cells were plated into 12-well plates and treated with a range of dilutions of both 

puromycin and blasticidin, maximally delivered at 10 µg / mL and 20 µg / mL, respectively. 

After confirming lentivirus-mediated resistance to both antibiotics in infected cells, a polyclonal 

cell line was maintained generally with standard media containing 8 µg / mL of puromycin and 
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12 µg / mL of blasticidin. Prime editing in the resulting split-PE2 3TZ cells was confirmed using 

the Dnmt1 pegRNA described in Figs. 2-3 as a positive control (Supplementary Figure 9). This 

cell line was then used to test cohorts of pegRNAs targeted to Trp53. 

Production of lentivirus and transduction. 

Lentivirus was produced by transfection of the expression vector into 293FS* cells along with 

psPAX2 (psPAX2 was a gift from Didier Trono - Addgene plasmid # 12260 ; 

http://n2t.net/addgene:12260 ; RRID:Addgene_12260) and pMD2.G (pMD2.G was a gift from 

Didier Trono - Addgene plasmid # 12259 ; http://n2t.net/addgene:12259 ; 

RRID:Addgene_12259) packaging plasmids at a 4:3:1 ratio using polyethylenimine or Mirus 

transfection reagent. For small-scale transfections, 4 x 105 cells were seeded per well in a 6-well 

plate (Corning). 24 hours after seeding, cells were transfected using 4 µL PEI or Mirus (Mirus 

Bio) according to the manufacturer’s specifications. For large-scale transfections, 7.5 x 106 cells 

were seeded in 15 cm plates (Corning). 24 hours after seeding, cells were transfected using 80 µl 

Mirus or PEI. Media was replaced 24 hours after transfection. 48-72 hours post-transfection, 

viral supernatant was collected and filtered through 0.45 µm filters. Large-scale virus was 

concentrated by ultracentrifugation at 25,000 rpm at 4˚C and then resuspended in Opti-MEM 

(Thermo-Fisher). 1 mL of small-scale viral supernatant was added directly to 1 x 10^5 cells at 

seeding in a 6-well plate (Corning) for transduction. Small-scale transductions were 

supplemented with polybrene (10 mg/mL, 1:1000, Sigma). Concentrated large-scale lentivirus 

and small-scale virus were stored at -80˚ C if not used immediately. Generally, cell lines were 

infected with small-scale virus while organoids were infected with large-scale virus. 

Lentivirus titer assay. 
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Quantification of lentiviral titer was performed as previously described using a GFP Cre reporter 

3TZ cell line14. Briefly, concentrated lentivirus was serially diluted and added to 10,000 cells. 48 

hours post-infection, cells were trypsinized and analyzed to calculate the percentage of GFP 

positivity by flow cytometry. 

Intratracheal delivery of lentivirus into the lung. 

Intratracheal lentiviral infection has been previously described82. Mice were anesthetized in an 

isoflurane chamber. 6 x 104 TU and 1 X 105 TU of lentivirus containing UPEC vectors encoding 

pegRNAs and Cre recombinase were injected intratracheally into Trp53flox/flox;Rosa26PE2/+ or 

Trp53flox/flox;Rosa26PE2/PE2 mice. Animals were monitored after injection to confirm recovery. 

Mice were at least six weeks old at the time of infection. Mice were sex and age matched within 

4 weeks across experimental arms. 

Orthotopic transplantation of pancreatic organoids. 

Orthotopic transplants of pancreatic organoids were performed with minor modifications from 

previously described protocols43,83,84. Briefly, animals were anesthetized with Isoflurane, the left 

abdominal side was depilated with Nair, and the surgical region was disinfected with Chloraprep 

swabstick (BD). A small incision (~1.5cm) was made in the left subcostal area, and the spleen 

and pancreas were exteriorized with ring forceps. The organoid suspension (containing 1x105 

organoid cells in 100µL of 50% PBS + 50% Matrigel) was injected using a 30-gauge needle into 

the pancreatic parenchyma parallel to the main pancreatic artery. Successful injection was 

verified by the appearance of a fluid bubble without signs of intraperitoneal leakage. The 

pancreas and spleen were gently internalized, and the peritoneal and skin layers were sutured 

independently using 4/0 PGA suture and 4/0 silk suture respectively (AD Surgical). All mice 

received pre-operative analgesia Buprenorphine Sustained-Release (Bup-SR, 0.5mg/kg) and 
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were followed post-operatively for any signs of distress. Organoid/Matrigel mixtures were kept 

on ice throughout the whole procedure to avoid solidification. For orthotopic transplantation, 

syngeneic C57BL/6J Rosa26PE2 mice (aged 6-17 weeks) were used as recipients. Male pancreatic 

organoids were only transplanted into male recipients. 

Animal studies. 

All mouse experiments described in this study were approved by the Massachusetts Institute of 

Technology Institutional Animal Care and Use Committee (IACUC) (institutional animal 

welfare assurance no. A-3125-01. KrasLSL-G12D and Trp53flox/flox mice have previously been 

described85,86. All mice were maintained on a pure C57Bl/6 background. Mice with the 

appropriate genotypes and between 7-20 weeks were chosen for in vivo experiments. Mice of 

both sexes were used for autochthonous lung tumor initiation, and male mice were chosen for 

orthotopic pancreatic organoid experiments as the transplanted organoid line was male-derived. 

Mice were assessed for morbidity according to guidelines set by the MIT Division of 

Comparative Medicine and were humanely sacrificed prior to natural expiration. 

Ultrasound imaging. 

Observation of murine pancreatic tumors with high resolution ultrasound was performed as 

described43,87. Animals were anesthetized with Isoflurane and the left subcostal region of animals 

was depilated with Nair. Animals were imaged with a Vevo3100/LAZRX ultrasound and 

photoacoustic imaging system (Fujifilm-Visualsonics). Anesthetized animals were positioned 

supine and angled on an imaging platform for visualization of peritoneal organs. Landmark 

organs including kidney and spleen were first identified prior to imaging. A thin layer of 

ultrasound gel was applied over the depilated region of the abdomen. The transducer 

(VisualSonics 550S) was positioned above the abdomen and set at the scanning midpoint of the 
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healthy pancreas or tumor. Approximately 10 mm of scanning area were used to capture the 

entirety of pancreas tumors, using a Z-slick thickness of 0.04 mm. Ultrasound scans were 

uploaded to Vevo Lab Software, from which representative images were exported. 

Rodent µCT. 

Control and tumor bearing mice were anesthetized by Isoflurane (3%, then maintained at  2.0-

2.5% in oxygen – VetEquip, Livermore, CA) and scanned in a prone position using a Skyscan 

1276 (Bruker Corp, Billerica, MA) with the following parameters: 100kVp source voltage, 200 

uA current, 0.5mm Aluminum X-ray filter, 108ms exposure time, 0.65 degree rotational step size 

over 360 degrees in a continuous rotation. With 4x4 detector binning, the nominal pixel size after 

reconstruction (Bruker NRecon software) was 40.16 micron. Data were visualized using ImageJ. 

Histology and immunohistochemistry. 

Upon sacrifice, pancreata from control and tumor-bearing animals were manually dissected from 

the peritoneal cavity. A tissue dye (Davidson) was used to mark tumor regions for histology. 

Tumor-bearing lung was flushed with 1X PBS and separated into separate lobes. Tissue was 

fixed in Zinc Formalin overnight, transferred to 70% Ethanol, and then embedded in paraffin. 

Hematoxylin and eosin (H&E) staining was performed per a standard protocol by the Hope 

Babette Tang Histology Facility at the Koch Institute. Digitally scanned images of H&E slides 

were obtained with an Aperio ScanScope at 20X magnification. Digital slides were uploaded to 

the Aiforia™ image analysis software. Histologic quantification of tumor grade was performed 

by an automated deep neural network and in consultation with veterinary pathologist Dr. 

Roderick Bronson. Training of the Aiforia algorithm has been previously described66. For grade 

calling, the nsclc_v25 algorithm was used. 
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Lungs were removed and inflated with Zinc formalin, then left in approximately 5 mL Zinc 

formalin for 24 hours. Afterwards, samples were switched to 70% ethanol, and later processed 

for paraffin embedding. For IHC, sections were cut at 4 µm and dewaxed. Antigen retrieval was 

performed using citrate buffer (pH = 6.0). Endogenous peroxidase was blocked using DAKO 

Dual Endogenous Enzyme Block, and endogenous species protein was blocked using 2.5% 

Horse Serum (Vecta). Slides were incubated at 4 ˚C overnight with the following antibodies: 

anti-NKX2-1 (1:1000, abcam, Cat# ab76013; RRID:AB_1310784), anti-SFTPC (1:5000, 

Millipore Sigma, Cat# AB3786; RRID:AB_91588), and anti-HMGA2 (1:1000, Cell Signaling 

Technologies, Cat# 8179S; RRID:AB_11178942). ImPRESS anti-Rabbit horseradish peroxidase 

and DAB Peroxidase Substrate Kit (Vector) were used to develop slides. Tissues were 

counterstained with hematoxylin. Slides were digitally scanned and analyzed using QuPath88. 

Isolation of genomic DNA. 

Genomic DNA was extracted from organoids or tissue using either the KAPA Express Extract 

kit (Sigma) or the Qiagen Puregene Core Kit A. Briefly, for extraction with KAPA Express, 

dissociated cells were pelleted, washed with PBS, and pelleted again prior to resuspension (per 

condition) in 100 µL consisting of 88 µL PCR-grade water, 10 µL of 10X KAPA Express 

Extract Buffer, and 2 µL of KAPA Express Extract enzyme. This and subsequent steps were 

followed per the manufacturer’s instructions. For the Qiagen Puregene Core Kit A, briefly, 

minced tumors or dissociated cells were pelleted and resuspended in Qiagen Cell Lysis Solution 

and vortexed. Protein and ethanol precipitation were then performed to isolate pure genomic 

DNA, which was used for PCR amplification, all steps executed according to the manufacturer’s 

instructions. Genomic DNA was then stored at 4 ºC or -20 ºC until use.  

DNA sequencing and analysis of genomic DNA samples. 
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Target loci were amplified from genomic DNA using PCR primers listed and described in 

Supplementary Table 4. Amplicons were then purified using either agarose gel extraction or 

using a QIAquick PCR purification kit (Qiagen). Purified amplicons were typically then 

submitted to the Massachusetts General Hospital Center for Computational and Integrative 

Biology’s DNA Core for next-generation sequencing (samples prepared according to guidelines 

provided for the CRISPR Sequencing service).  

Amplicons prepared for evaluating prime editing efficiency of the initial Trp53245- and Kras96-

targeted pegRNAs described in Supplementary Figs. 7 and 9 were sequenced as previously 

described17,89. Following amplification from genomic DNA, samples were given unique Illumina 

TruSeq barcodes for pooled sequencing. Barcoded PCR products were pooled and purified by 

electrophoresis with a 2% agarose gel using a Gel Extraction Kit (QIAGEN), eluting with 30 μL 

H2O. DNA concentration was quantified using a Qubit dsDNA High Sensitivity Assay Kit 

(ThermoFisher Scientific) and sequenced on an Illumina MiSeq instrument (single-end read, 

250–300 cycles) according to the manufacturer’s protocols.  

Sequencing reads stored in FASTQ files were aligned to reference amplicons and analyzed using 

the deep sequencing analysis program, CRISPResso276, V2.2.6, as a command-line tool in prime 

editing mode. General CRISPResso2 parameters employed for each target are described in 

Supplementary Note 1. The --split_interleaved_input parameter was included for paired-end 

data. Generally, prime editing efficiency was calculated as the percentage of reads aligning to the 

prime edited amplicon (excluding indels) relative to all reads aligning to both the prime edited 

and reference amplicons (including indels). Only reads with an average phred score >30 were 

considered44. Indel percentages were calculated in similar fashion using the total number of 

indel-bearing reads designated as “discarded” by CRISPResso2. In rare cases containing 
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contaminant reads from off-target amplicons, contaminating reads were removed in silico by 

requiring every analyzed read to possess 60-90% homology to the reference amplicon. For 

experiments involving pegRNAs that alter multiple nucleotides, the allele frequency tables 

output by CRISPResso2 were consulted to confirm that the majority of prime edited reads 

contained all of the intended nucleotide alterations. 

Immunoblotting. 

Pancreas organoids were dissociated with TrypLE for 30 minutes at 37 ºC, washed 6x with PBS, 

and then lysed in cell lysis buffer (RIPA with 100X HALT protease and phosphatase inhibitors). 

Protein concentration was quantified with the bicinchoninic acid (BCA) assay (Pierce) and 

boiled in 4x Laemmli Buffer + 355µM 2-mercaptoethanol for five minutes. 15 µg of reduced 

samples were loaded onto 4-12% Bis-Tris SDS-PAGE gels (Invitrogen) and run at 100V. Gels 

were transferred onto a PVDF membrane (60 V, 3 hours) and blocked with PBST (PBS + 0.5% 

Tween20) + 5% milk for one hour. Blots were incubated with primary antibody (p53 clone 

1C12, Cell Signaling Technology (CST), β-Actin clone 13E5, CST, 1:5000) overnight at 4 ºC, 

washed 3 times in PBST, incubated with HRP-conjugated secondary antibody in 5% milk for 

one hour at room temperature, and then washed 3 times in PBST. Blots were developed with 

Clarity or Clarity-Max ECL substrate (BioRad) and imaged on a ChemiDoc Gel Imaging System 

(BioRad). 

Mutation frequency analysis using cBioPortal. 

Somatic mutation frequencies of TP53 in human pancreatic cancer were retrieved from 

cBioPortal59,60 by querying this gene from four patient cohorts: CPTAC, TCGA (Firehose 

Legacy), QCMG, and ICGC. Overall mutation frequency was calculated as the fraction of 

patients possessing mutations at a specific codon divided by the total number of patients for 
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which TP53 mutation status had been profiled. The same analysis was applied for human lung 

adenocarcinoma, with the following patient cohorts: Non-Small Cell Lung Cancer90 (TRACERx, 

NEJM and Nature 2017) and Pan-Lung Cancer91 (TCGA, Nat Genet 2016). 
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CHAPTER 4: DISCUSSION 
In the work described in Chapter 2, my colleagues and I studied the immunopeptidome of 

pancreatic cancer, aiming to uncover new targets for immunotherapy. We were motivated by a 

burst of publications in recent years that described abundant noncanonical sources of cancer-

restricted peptide:MHC complexes 1,2. We sought to extend this search to pancreatic cancer, as 

such targets remain largely unexplored in this disease. Harnessing patient-derived organoids and 

matched whole-genome and RNA-sequencing, we found a wide variety of peptides derived from 

canonical and noncanonical sources in the immunopeptidomes of these samples. Critically, many 

peptides derived from open reading frames in transcripts that are functionally unexpressed in 

normal tissues, suggesting they may represent safe targets for immunotherapy. In other cases, we 

observed peptides from open reading frames that did not generate detectable peptides in the 

immunopeptidomes of normal tissues, establishing a second class of potentially safe targets that 

may be translated in a cancer-restricted fashion. 
We also uncovered mutation-derived neoepitopes in most samples, counter to expectations in the 

literature suggesting that most pancreatic tumors do not present neoepitopes. We established 

evidence that sequencing of bulk pancreatic tumors may obscure the presence of several 

neoepitopes in a subset of low-purity pancreatic tumors. Our results may have implications for 

improving bioinformatic prediction in ongoing clinical efforts that aim to vaccinate pancreatic 

cancer patients with predicted neoepitopes. 

Going forward, more work is needed to (1) identify additional sources of pancreatic cancer-

restricted epitopes, (2) establish rigorous methods to ascertain their off-tumor expression 

patterns, and (3) develop therapeutic agents that can effectively target them. In the sections 

ahead, I will explore each of these challenges in turn. 

Identifying the full scope of pancreatic cancer-restricted epitopes. 
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 To my knowledge, our work was the first to incorporate a proteogenomics approach to 

examine the immunopeptidome of human PDAC samples. I accomplished this in part with a 

computational pipeline that incorporates phased germline and somatic variants into patient-

specific protein databases. Most individuals harbor ~4 million germline variants compared to the 

reference genome 3. Prior work from Malachi Griffith’s laboratory has shown that ~5% of 

neoepitope-encoding somatic variants occur in-phase with proximal germline variants that would 

affect the predicted neoepitope sequence 4. I hypothesized such variants would also affect 

epitopes derived from retained introns, as intronic sequences generally do not experience the 

purifying selective pressure that constrains variation in exons 5. I was optimistic that a variant-

recoded search space would enable identification of more targets, but we did not identify any 

additional PDAC-restricted neoepitopes as a result of incorporating germline variants. We did 

identify hundreds of germline variant-derived epitopes, but none coincided with a somatic 

mutation. 

Retained introns may be an exception, as several detected peptides were mapped specifically to a 

shifted reading frame of a retained intron. Anecdotally, it is worth mentioning that I conducted a 

search for germline indels present within these introns and found numerous variants overlapping 

the coordinates of retained introns. However, additional validation is still required, including 

rigorous review of the candidate indels and comparison of their size to the reading frames from 

which potential intronic epitopes were detected.  

In general, incorporating germline variants did enable a slight overall increase (<1%) in the 

number of peptides identified in canonical protein-coding genes. Thus, germline variants may 

slightly shrink the large fraction of high-quality spectra that are often left unmapped in 

immunopeptidomics datasets 6. I did not extend this analysis to include germline variation within 



 216 

nuORFs or somatic frameshift sequences, which should be considered in future search spaces 

informed by proteogenomics. 

In general, our work was the first to expand the search for pancreatic cancer-restricted epitopes 

to include retained introns, somatic indels in tumor suppressor genes, and nuORFs derived from 

lncRNAs, pseudogenes, and untranslated regions. Work from the laboratories of Catherine Wu, 

Aviv Regev, and Steven Carr recently showed broad translation and MHC-I presentation of 

peptides from several classes of “noncoding” sequences in cancers cells. Notably, these included 

several transcripts that are transcribed and/or translated in a cancer-specific fashion, i.e., not in 

healthy tissues. A prior study from Elaine Fuch’s laboratory also showed broad translation of 5’ 

UTRs induced by the transcription factor SOX2, acting downstream of oncogenic RAS in mouse 

models of squamous cell carcinoma (SCC) 7. These findings are reminiscent of long-standing 

observations that cancer cells can ectopically express typically silenced genes as they undergo 

de-differentiation 8. Such genes include those whose expression is only seen in embryonic, 

placental, or reproductive tissues; mesothelin is one such example long-established in pancreatic 

cancer 9. Broad, cancer-specific dysregulation of the transcriptome and translation machinery 

appears to induce a similar effect for a cohort of nuORF-associated transcripts. This is supported 

by the apparent absence of some of these transcripts in healthy tissues, and by their potential 

induction by oncogenic RAS 7. Our findings furnish a large set of additional noncanonical 

peptides that seem to be restricted to PDAC or select healthy tissues, underscoring their 

therapeutic potential. 

While our work represents a significant step forward in the exploration of immunotherapy targets 

for pancreatic cancer, a vast array of additional sources remains unexplored. Most promising 

among these may be other classes of epitopes derived from cancer-specific splicing events. 
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Splicing dysregulation is a frequent feature of cancer 10. Studies have shown that cancer-specific 

splicing events, including exon shuffling, exon skipping, and alternative 3’ or 5’ splice site 

usage, can give rise to novel isoforms not previously observed in normal tissues 11,12. We did not 

explore these possibilities in Chapter 2, though the data we publish will provide an excellent 

resource for future researchers to search for epitopes derived from mis-splicing events in 

pancreatic cancer. To this end, future work should consider de novo transcript assembly based on 

RNA-Seq of PDAC organoids. Our analysis, while extensive, was only based on annotated 

transcripts 2, and it is conceivable that pancreatic cancer cells may produce novel transcript 

isoforms not currently captured in reference transcriptomes. 

 Finally, it is worth noting that the empirical methods employed in Chapter 2 almost 

certainly do not capture most peptides presented on pancreatic cancer cells. While we achieved a 

high depth of more than 15,000 peptides for each sample, it is thought that a typical human cell 

presents 100,000-750,000 peptide:MHC-I complexes per HLA gene 13. While many complexes 

will be duplicates harboring the same peptide, this statistic implies that current 

immunopeptidomics technology may only identify a small fraction of peptides presented by 

MHC-I in a given population of cells. Thus, improvements in the sensitivity of peptide:MHC-I 

mass spectrometry profiling will complement expanded search spaces, enabling identification of 

more epitopes still undiscovered. 

Methods to ascertain off-tumor expression patterns of candidate epitopes. 

 For all classes of candidate immunotherapy targets, it is important to rigorously evaluate 

normal tissue expression patterns. This helps designate which epitopes are therapeutically 

prohibitive, such as those expressed in vital tissues like the heart. Several clinical studies 

highlight the critical importance of anticipating off-tumor expression. For example, clinical trials 
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conducted with TCRs engineered to target peptides derived from two supposed cancer-restricted 

antigens, MART-1 and MAGE-A3, have encountered numerous safety issues. In the worst cases, 

these have resulted in treatment-induced fatalities 14,15; in others, they have spawned adverse 

events such as hearing loss, neurological toxicities, and severe colitis. Some of these toxicities 

were attributed to unanticipated expression of the antigen on normal cell types (e.g., MART-1 

expressed in melanocytes of the middle ear) 11, while others were attributed to cross-reactivity of 

the TCR to self-antigens distinct from the target 14. Severe toxicities may be an acceptable 

tradeoff for therapies that efficiently treat the disease, but they should be limited and managed as 

much as possible. 

 Consortium efforts like GTEx and the Human Protein Atlas afford researchers an 

unprecedented ability to examine transcript expression patterns throughout healthy tissues. For 

clinical application, it is imperative to examine these datasets as deeply and exhaustively as 

possible. While this will go a long way, it should be noted that these databases were historically 

restricted to profiling bulk tissues, though there is an increasing incorporation of single cell 

datasets. While a candidate target may not be identified as expressed in a bulk tissue, it remains 

possible that the target is expressed highly in a specific cell subtype, a signal that can be diluted 

in bulk sequencing datasets. Thus, in ideal practice, researchers should examine target expression 

in both large bulk sequencing and single-cell sequencing datasets. These efforts will better curate 

the expression patterns of candidate targets, including within rare tissue subtypes for which 

toxicity should be anticipated. This will inevitably shrink the list of viable, cancer-restricted 

targets, but it will better inform clinical trial design and enable management of toxicities that can 

be addressed. 
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Finally, the search for cancer-specific epitopes should not end with those naturally presented. Lu 

and colleagues have shown that inhibition of factors that regulate splicing proteins can unearth 

dozens of additional cancer epitopes 12. To this point, our work has shown that pancreatic cancer 

cells harbor hundreds of retained introns not identified in normal tissues. While these did not 

seem to generate frequent epitopes in our dataset, they represent a wellspring of potential 

protein-coding RNA species. Pharmacological efforts could focus on specifically enhancing the 

expression and stability of these transcripts, thereby promoting their translation and MHC-I 

presentation. This could serve to dramatically amplify the load of cancer-specific epitopes 

presented by pancreatic cancer cells.  

Developing therapeutic agents to effectively target PDAC-restricted epitopes. 

Target identification is a critical first step toward clinical translation. The next is development of 

an applicable therapeutic agent. The targets identified in my work could be amenable to many 

immunotherapeutic approaches. This includes the adoptive transfer of T cells specific to one or 

more of these targets, as well as cancer vaccines, which could be augmented to include both 

traditional neoepitopes and noncanonical epitopes described in Chapter 2. I consider these the 

most likely and currently practical therapeutic applications. In addition to adoptive cell therapy 

and cancer vaccines, I also imagine other applications that could be considered as new T cell 

engineering technologies evolve. I have outlined a few speculative examples below. 

MAP-specific CAR-T cells based on single-chain fragment variables 

The immune system may frequently fail to respond to epitopes presented by pancreatic tumors. 

Hedge and colleagues used a neoantigen-expressing mouse model of pancreatic cancer to show 

that a key reason may be a lack of T cell priming 16. This is explained by a scarcity of dendritic 

cells in the tumor microenvironment, which diminishes immunosurveillance and may prevent 
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activation of naïve T cells specific to tumor antigens. Other work from Stromnes et al. (2015) 

shows that adoptively transferred, tumor antigen-specific CD8+ cells can mediate tumor 

regressions in mouse models of PDAC. These studies suggest we can overcome the lack of an 

endogenous immune response through delivery of antigen-specific T cells established 

exogenously. 

In Chapter 2, my colleagues and I demonstrated a method to generate T cells specific to 

candidate PDAC-restricted epitopes using PBMCs from healthy donors. We are in the process of 

sequencing the TCRs at single cell resolution. Once sequenced, we will select the most frequent 

TCR clones and clone them into lentiviral constructs. Finally, we will transduce CD8+ T cell 

lines with the TCR constructs, followed by coculture of the engineered T cells with patient-

derived organoids. This will enable us to confirm and optimize antigen-mediated killing of 

pancreatic cancer cells. This procedure could also be harnessed clinically, by introducing 

validated, PDAC antigen-specific TCRs into patient-derived T cells, followed by adoptive cell 

transfer back into the patient. 

However, our study indicates that some cancer-restricted targets may not be amenable to this 

procedure. For example, IGF2BP3-encoded peptides represent a promising cohort of PDAC-

associated epitopes, but we were unable to identify T cells that recognize them. We attributed 

this to MHC-I presentation of IGF2BP3 peptides in thymic tissue, which probably eliminates 

IGF2BP3 peptide-specific T cells during central tolerance. However, as discussed in Chapter 1, 

new approaches enable researchers to engineer single chain fragment variables (scFvs) that bind 

with high affinity to specific peptide:MHC complexes. These can then be engineered as chimeric 

antigen receptors to form CAR-T cells, or they can be used as bi-specific antibodies that redirect 

CD8+ T cells against the antigen. Both approaches would bypass the limitations of native T cell 
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repertoires and enable the development of therapeutics that effectively target antigen-bearing 

pancreatic tumors.  

Dual TCR-engineered T cells conditional on a logical gate 

While a fair number of peptide:MHC complexes seem to be restricted to pancreatic cancer cells, 

this increases dramatically if we consider combinations of peptide:MHC pairs. For example, 290 

single peptide:MHC complexes were found in 100% of analyzed patient samples, and a subset of 

these complexes are PDAC-restricted. However, the commutative property dictates that these 

targets co-occur in up to 41,905 peptide:MHC complex pairs. A pair of complexes is more likely 

to be cancer-specific than a single complex, since the underlying transcripts will often exhibit 

different normal tissue expression patterns. Thus, in cancer cells, it is possible to observe the co-

expression of two transcripts that are rarely or never expressed together in normal tissues. With 

this in mind, one could envision an engineered cytotoxic T cell that would only kill its target 

upon the simultaneous recognition of two peptide:MHC complexes. 

Choe et al. demonstrated proof of this concept with synthetic notch (synNotch) CAR-T cells. In 

these cells, a synNotch receptor first recognizes its cognate antigen on a target cell, stimulating a 

downstream signaling pathway that directly activates transcription of the CAR. If the CAR then 

binds its cognate antigen on the same target cell, the T cell unleashes its effector response. Thus, 

target cell killing requires recognition of two antigens. Importantly, both synNotch receptors and 

CARs can be engineered to recognize custom targets with scFvs 17. With these considerations in 

mind, I hypothesize that the synNotch CAR-T approach could be repurposed to target two 

peptide:MHC complexes from the catalog of those established by the work in Chapter 2. By 

targeting two MAPs derived from different source transcripts with limited, mutually exclusive 

healthy tissue expression patterns, it may be possible to develop a large suite of novel T cell 
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therapies with a reduced risk of off-tumor, on-target toxicity concerns. In this way, researchers 

could convert PDAC-associated MAPs into PDAC-specific MAP pairs, as many of the PDAC-

associated MAPs identified in Chapter 3 seem to be solely expressed in PDAC cells and one 

normal tissue type. 

Next-generation animal models of human cancer. 

Cancer modeling reached an inflection point soon after the advent of CRISPR, when pioneering 

work from our laboratory and others showed that CRISPR technology can install somatic cancer 

driver mutations in vivo. These studies highlighted a new paradigm of rapid cancer modeling 

unconstrained by the construction of new germline alleles in mice. The work described in 

Chapter 3 further extended this paradigm with prime editing, a more versatile iteration of 

CRISPR technology. Prime editing enables researchers to model a broader spectrum of driver 

mutations than we could with prior technologies based on CRISPR-Cas9 and base editing. 

We introduced the first prime editing GEMM, inducing both lung and pancreatic tumors in vivo 

with custom mutations including both transition and transversion mutations. But the full 

potential of this system remains untapped. For example, future studies could employ UPEC 

derivatives that accommodate two or more pegRNAs for multiplexed prime editing. 

Combinations of point mutations, especially those including putative gain-of-function p53 

mutations, have been largely unexplored by models based on Cas9 and base editing. In principle, 

our system could model simultaneous point mutations, provided the availability of two pegRNAs 

of sufficient efficiency. This would enable a variety of interesting questions. For example, our 

work reinforced the notion that KRASG12C mutations are far less potent in generating pancreatic 

tumors than KRASG12D. However, it remains unclear what additional changes KRASG12C-driven 

pancreatic tumors require to bypass this limited oncogenic potential. Our study shows that 
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homozygous deletion of Trp53 is insufficient to promote tumorigenesis in combination with 

KRASG12C. Nevertheless, 2% of human pancreatic tumors are driven by G12C mutations 18. The 

prime editing GEMM could be used to test a variety of other hypotheses. For example, custom 

combinations of mutations in Trp53, Smad4, Cdkn2a, and/or other candidate driver genes could 

be studied in the presence of KrasG12C to identify genotypes that enable progression to pancreatic 

adenocarcinoma. These studies should be guided by examination of patient sequencing data, 

which will help prioritize candidate driver mutations that may frequently co-occur with 

KRASG12C.  

In addition to modeling primary mutations, this system represents a valuable co-clinical tool for 

studies of secondary mutations associated with targeted therapy resistance. As we show with the 

KrasY96C resistance mutation, prime editing GEMMs can mediate composite mutations within the 

same gene. This feature can be used to rapidly establish tumors harboring both primary and 

secondary mutations, thereby enabling in vivo studies that seek to identify novel therapeutic 

vulnerabilities unique to the resistant oncogene. This also allows preclinical trials of second-

generation therapies targeted against the resistant oncogene. 

Prime editing GEMMs also provide a versatile system for testing long-standing hypotheses 

regarding gain-of-function mutations in tumor suppressor genes, particularly Trp53. As 

discussed in Chapter 1, comparisons of the KPC mouse model, based on Trp53R172H, and models 

based on Trp53flox have shown that Trp53R172H promotes accelerated tumor progression, 

consistent with a gain-of-function effect. Similar effects have been posited or demonstrated for 

other p53 mutations (see Chapter 3), including TP53R248Q/W, but these remain untested in many 

cancer types that commonly exhibit these mutations. By affording broad editing versatility, 

prime editing GEMMs will facilitate rapid functional studies of these mutations. Ultimately, 



 224 

through dissection of individual driver mutations and their combinations, prime editing GEMMs 

will promote new discoveries that may reveal additional mutation-specific vulnerabilities, 

informing ever more precise treatment paradigms tailored to individual cancer genotypes. 
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Abstract 
The CD155/TIGIT axis can be co-opted during immune evasion in chronic viral infections and 

cancer. Pancreatic adenocarcinoma (PDAC) is a highly lethal malignancy, and immune-based 

strategies to combat this disease have been largely unsuccessful to date. We corroborate prior 

reports that a substantial portion of PDAC harbors predicted high affinity MHC class I-restricted 

neoepitopes and extend these findings to advanced/metastatic disease. Using multiple preclinical 

models of neoantigen-expressing PDAC, we demonstrate that intratumoral neoantigen-specific 

CD8+ T cells adopt multiple states of dysfunction, resembling those in tumor-infiltrating 

lymphocytes of human PDAC patients. Mechanistically, genetic and/or pharmacologic modulation 

of the CD155/TIGIT axis was sufficient to promote immune evasion in autochthonous neoantigen-

expressing PDAC. Finally, we demonstrate that the CD155/TIGIT axis is critical to maintain 

immune evasion in PDAC and uncover a combination immunotherapy (TIGIT/PD-1 co-blockade 

plus CD40 agonism) that elicits profound anti-tumor responses in preclinical models, now poised 

for clinical evaluation.  
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Introduction 
Pancreatic cancer is the third leading cause of cancer related deaths in the United States 1 

and, despite considerable progress in improving chemotherapeutic regimens 2,3, 

advanced/metastatic pancreatic adenocarcinoma (PDAC) continues to carry a dismal prognosis 

with fewer than 5% of patients surviving to five years. While insights regarding the molecular and 

cellular mechanisms of immune escape have fueled tremendous clinical successes in a range of 

tumor types, microsatellite-stable PDAC, which represents greater than 98% of all patients 4, has 

been largely refractory to available immune checkpoint blockade 5–7. While harboring an 

intermediate mutational burden 8, recent whole-exome sequencing efforts have demonstrated that 

the majority of early-stage human PDAC contains predicted neoepitopes 9,10.  In fact, neoantigen-

specific tumor-infiltrating lymphocyte (TIL) clones can be isolated from human PDAC 11–14 and 

CD8+ TILs express multiple co-inhibitory receptors, consistent with chronic antigen stimulation 

and T cell exhaustion/dysfunction 15. Extensive profiling of the immune landscape in human 

PDAC has uncovered a complex immune microenvironment, characterized by numerous immune-

suppressive cell populations and an enrichment in exhausted/dysfunctional CD8+ T cells, marked 

by elevated surface expression of the co-inhibitory receptor TIGIT 16,17. However, the tumor-

reactivity of dysfunctional/exhausted CD8+ T cells in PDAC is currently unknown. 

Previous work has investigated neoantigen expression in PDAC using transplantation of 

monolayer cell lines 18,19 or autochthonous genetically-engineered mouse models 20. However, the 

results of these studies have thus far been contradictory, with monolayer-based models leading to 

preponderant T cell-mediated rejection, while neoantigen-expression paradoxically leads to tumor 

acceleration in autochthonous PDAC. Organotypic culture has emerged as a robust complementary 

platform to traditional genetically-engineered animals for preclinical modeling 21–23 as orthotopic 
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transplantation of pancreatic organoids closely recapitulates the genetics and histopathology of 

human PDAC 22,24. 

Here we demonstrate that PDAC, including advanced/metastatic lesions, harbors predicted 

high affinity neoepitopes with novel MHC class I binding ability relative to their wild-type peptide 

counterparts. Using multiple preclinical models of neoantigen-expressing murine PDAC paired 

with co-clinical profiling of human PDAC, we uncover the CD155/TIGIT axis as both necessary 

and sufficient to maintain immune evasion in PDAC. Finally, we reveal a combination 

immunotherapy (TIGIT/PD-1/CD40a), which leverages this dependency, capable of eliciting 

profound anti-tumor responses in preclinical models. 

 

RESULTS 
Both localized and advanced/metastatic human PDAC harbor predicted high affinity 

neoepitopes 

Recent sequencing and computational studies have challenged the claim that pancreatic 

cancer harbors few predicted neoantigens 9,10. However, to date, neoepitope prediction in PDAC 

has primarily focused on missense mutations, which may be significantly underestimating the total 

neoantigen burden in PDAC. In addition, these analyses have largely been performed on early-

stage/resectable pancreatic cancer, which represents a minority of all PDAC patients 25 and, 

importantly, fails to encompass the patients most likely to be considered for immunotherapy 

clinical trials. 

To address the broader neoepitope landscape in PDAC, we developed a neoepitope 

prediction pipeline incorporating HLA allele typing, mutation calling, variant effect prediction, 

and peptide:MHC class I binding predictions; we also expanded the search space to consider 

variants derived from missense, frameshift, and in-frame insertion/deletion mutations (Figure 
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S1A, STAR Methods). Consistent with prior neoepitope prediction studies in PDAC, our pipeline 

uncovered a wealth of putative neoepitopes in early-stage resectable tumors, profiled as part of 

The Cancer Genome Atlas (TCGA) 26 (Figure 1A and Table S1). Even after excluding one patient 

with mismatch repair deficiency from the TCGA dataset, the majority of patients (86%, 127/148) 

harbored putative neoepitopes, with 73% (108/148) harboring one or more neoepitopes with 

predicted high affinity (<50 nM) for MHC class I (Figure 1A). We also examined instances of 

novel predicted MHC class I binding, in which variants were predicted to confer MHC class I 

binding (affinity <500 nM) or strong binding (<50 nM) ability relative to corresponding wild-type 

sequences predicted to have low affinity for MHC class I (>1000 nM) or frameshift-derived 

variants, which had no corresponding wild-type sequence. Using this ‘non-binding-to-binding’ 

analysis, we observed a considerable proportion of patients (81%, 120/148) whose tumors 

harbored one or more of these potentially immunogenic neoepitopes (Figure 1B). 
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Figure 1. Pancreatic adenocarcinoma harbors predicted high affinity MHC class I-restricted 
neoepitopes 
(A) Neoepitope landscape in TCGA PAAD cohort (n=148) color-coded by predicted affinity for 
MHC class I. 
(B) Predicted non-binder (NB) to binder (B) or strong binder (SB; <50 nM) neoepitopes in TCGA. 
(C) Neoepitope landscape in DFCI-PancSeq cohort (n=57) color-coded by predicted affinity for 
MHC class I. 
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(D) Predicted non-binder (NB) to binder (B) or strong binder (SB; <50 nM) neoepitopes in DFCI-
PancSeq. 
See also Figure S1 and Table S1. 
 

 

 

To extend these results, we performed a parallel analysis on the Dana-Farber Cancer 

Institute (DFCI) PancSeq cohort, which profiled 71 advanced/metastatic PDAC patients 27, 57 of 

whom had successful matched whole exome sequencing (WES) and mRNA-sequencing (RNA-

seq) available for analysis. All (100%, 57/57) of these advanced/metastatic patients harbored 

predicted neoepitopes, with a significant proportion (87%; 50/57) possessing predicted high-

affinity (<50 nM) neoepitopes (Figure 1C and Table S1). By performing a ‘non-binding-to-

binding’ analysis in biospecimens from advanced/metastatic disease, we found that the vast 

majority (98%; 56/57) harbored one or more of these neoepitopes (Figure 1D). In aggregate, we 

found that the overall PDAC neoepitope landscape is increased by 28.3% with the inclusion of in-

frame insertion/deletion and frameshift mutations (Figure S1 and Table S1). 

 

Neoantigen-expressing pancreatic organoids model immune clearance and immune evasion 

As a significant proportion of both localized and advanced/metastatic PDAC harbors 

predicted high-affinity MHC class I-restricted neoepitopes, we set out to develop improved 

preclinical models to delineate the molecular and cellular mechanisms of immune evasion in this 

subset of patients. Using CRISPR/Cas9-assisted homology-directed repair (HDR), we generated 

knock-in models using defined neoantigens, expressed from the Hipp11 safe harbor locus 28. 

Specifically, we utilized the high affinity MHC class I-restricted CD8+ T cell antigen (OVA257–264 

[SIINFEKL] - flanked by 17 amino acids on its N-terminus and 9 amino acids on its C-terminus 
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to ensure antigen processing), linked on a polycistronic transcript to the bright, monomeric red 

fluorescent protein mScarlet 29, or two recently described endogenously arising MHC class I-

restricted neoantigens: a single missense mutation in the laminin 4 alpha subunit (“LAMA4-

G1254V”) or a single missense mutation in alpha-1,3-glucosyltransferase (“ALG8-A506T”), 

which have been extensively characterized in murine sarcoma 30,31, fused to the C-terminus of 

mScarlet (Figure 2A and S2A). We derived ‘genetically-defined’ pancreatic organoids from 

healthy pancreata of genetically-engineered KrasLSL-G12D/WT; Trp53flox/flox; H11neoantigen (‘KP;SIIN’; 

‘KP;mLAMA4’; ‘KP;mALG8’) animals. Following ex vivo delivery of adenoviral Cre 

recombinase, pancreatic organoids express oncogenic Kras with loss of the p53 tumor suppressor 

gene (sufficient for tumorigenesis upon transplantation), in addition to stable and uniform 

neoantigen expression (Figure 2B and S2A). Orthotopic transplantation of neoantigen-expressing 

pancreatic organoids into immune-deficient recipients, using either a depleting antibody to 

specifically deplete the CD8 T cell compartment or Rag2-/- animals lacking an adaptive immune 

system, resulted in 100% penetrance of mScarlet-positive (mScarlet+) tumor formation (Figure 

2C). In contrast, when we orthotopically transplanted neoantigen-expressing organoids into 

immune-competent recipients, we observed two predominant outcomes: 1) immune-mediated 

clearance of all neoantigen-expressing tumor cells (no discernable tumor on necropsy and 

histologically normal pancreas that was negative for mScarlet expression [a surrogate for 

neoantigen expression], termed ‘non-progressor’) or 2) immune evasion (macroscopic tumor that 

retained mScarlet expression, histologically confirmed adenocarcinoma; termed ‘progressor’) 

(Figure 2D-E). 
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Figure 2. Neoantigen-expressing pancreatic organoids model immune clearance and immune 
evasion in the same tissue and antigenic context 
(A) ‘Hipp11-mScarletSIIN’ (top) and ‘Hipp11-mScarlet-mLAMA4’ or ‘Hipp11-mScarlet-mALG8’ 
(bottom) genomic loci after CRISPR/Cas9-assisted homology-directed repair and Cre 
recombination.  
(B) Brightfield (left) and fluorescent (right) images of KrasG12D/+;Trp53-/-; Hipp11-mScarletSIIN 
(‘KP;SIIN’) pancreatic organoids.   
(C-D) Brightfield (left) and fluorescence stereomicroscopic (right) images of representative 8-
week tumors following orthotopic transplantation of neoantigen-expressing pancreatic organoids 
into (C) immune-deficient (CD8a-depleted or Rag2-/-) animals or (D) immune-competent animals, 
depicting the range of tumor and antigenic outcomes in this context (‘progressor’, ‘intermediate’, 
‘non-progressor’).  
(E) Proportion of outcomes 5 weeks post-orthotopic transplantation (KP [n=15]; KP;SIIN [n=45]; 
KP;mLAMA4 [n-25]; KP;mALG8 [n=25]).   
(F) Tumor/pancreas weights 8-10 weeks post-orthotopic transplantation of KP;SIIN pancreatic 
organoids (n=5 ‘immune-deficient’; n=24 ‘non-progressor’; n=6 ‘intermediate’, n=30 
‘progressor’; horizontal bars represent median).  
 

 

In addition, we observed a reproducible subset of immune-competent recipients that 

retained small areas of mScarlet positivity in the absence of macroscopic tumor formation (termed 

‘intermediate’), potentially reflective of a state of immune equilibrium (Figure 2D-E). In line with 

this hypothesis, immune-evasive tumors were on average significantly smaller than tumors that 

arose in the absence of an immune selective pressure (p<0.01), suggestive of a prior state of 

immune equilibrium before ultimate immune escape (Figure 2F). While all three neoantigens 

evaluated exhibit high affinity for MHC class I, we were particularly struck by the observation that 

a substantial portion of pancreatic tumors harboring the highly immunogenic neoantigen 

(SIINFEKL) were able to escape immune control while maintaining antigen expression, 

suggesting that further study of this ‘progressor’ subset could offer insights into the range of 

mechanisms of immune evasion employed by human PDAC. 

Flow cytometric profiling demonstrated a range of CD8+ T cell infiltration in immune-

evasive tumors, reminiscent of previous profiling efforts in human pancreatic cancer 15. Likewise, 
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histopathologic analysis of immune-evasive tumors revealed both inter-tumoral and intra-tumoral 

heterogeneity, with some areas displaying T cell exclusion, a well-documented phenomenon in 

PDAC 15,32, but with other areas displaying robust CD8+ T cell infiltration into tumor nests (Figure 

S2C-D). Importantly, this inter- and intra-tumoral heterogeneity of T cell infiltration has been 

recently described in large-scale profiling efforts of the immune contexture in human pancreatic 

cancer 16,33. These data suggest that immune-evasive neoantigen-expressing tumors with CD8 

infiltration must either acquire defects in antigen processing/presentation and/or tumor-reactive T 

cells must be rendered dysfunctional over time. 

To evaluate potential mechanisms of immune escape, we re-isolated PDAC organoids from 

both immune-evasive KP;SIIN tumors and KP;SIIN tumors that arose in immune-deficient 

animals for ex vivo characterization. A well-established mechanism of immune escape is loss or 

downregulation of surface MHC class I, which has recently been explored in pancreatic cancer 

34,35. After purifying the malignant compartment through Nutlin-3a selection 36, we performed flow 

cytometry to characterize neoantigen expression (assessed via mScarlet expression) and surface 

expression of MHC class I (H-2Kb, H-2Db) and MHC class II on tumor-derived organoids (Figure 

2G and S2D-F). Importantly, we observed no loss of neoantigen expression and equivalent surface 

expression of H2-Kb, when comparing organoids derived from immune-evasive tumors to 

organoids derived from tumors that had never been exposed to immune selective pressure (Figure 

2G). Furthermore, these organoids retained responsiveness to interferon-g stimulation to further 

upregulate surface MHC class I, suggesting that loss of neoantigen or MHC class I surface 

expression was not a driving factor in the observed immune evasion. However, these experiments 

do not rule out other defects in antigen processing/presentation. 



 237 

To further establish that immune-evasive tumors retained full capacity to process and 

present neoantigen on their cell surface, we utilized an organoid-CD8+ T cell co-culture system. 

Immune-evasive (progressor) or immune-deficient KP;SIIN tumor-derived organoids were co-

embedded in a three-dimensional extracellular matrix with antigenically-stimulated OT-I CD8+ T 

cells (transgenic for a TCR specific for the SIINFEKL neoantigen in the context of H-2Kb; 37). 

Both sets of organoids underwent equivalent T cell-dependent killing across multiple 

effector:target (E:T) ratios (Figure 2H and Supplemental Movie 1), definitively demonstrating 

that organoids derived from immune-evasive tumors retain neoantigen expression and antigen 

processing/presentation capacity. 

 

Neoantigen-specific CD8+ T cells adopt multiple states of dysfunction in immune-evasive 

tumors 

As we observed evidence of an ongoing CD8+ T cell response in immune-evasive tumors, 

with retained neoantigen expression, we hypothesized that neoantigen-specific CD8+ TILs had 

become dysfunctional in these tumors. CD8+ T cell exhaustion, a state of T cell hypofunctionality 

38, has been observed in both murine 39 and human PDAC 15,16,33; however, the (neo)antigen 

specificity, or even tumor-reactivity, of these CD8+ TILs has not been firmly established. We 

utilized flow cytometric profiling to assess T cell exhaustion/dysfunction within the intratumoral 

neoantigen-specific compartment (CD44hiTetramer+). We observed no significant differences in 

the abundance of neoantigen-specific CD8+ T cells in progressor versus non-progressor animals 

(Figure 3A and S3A-B), but consistent with the hypothesis that neoantigen-specific CD8+ TILs 

become hypofunctional within immune-evasive tumors, we observed a decrease in their 

proliferative capacity (marked by Ki67) (Figure 3B). Furthermore, as co-expression of multiple 
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co-inhibitory receptors is thought to distinguish a more dysfunctional phenotype from activation 

40,41, we examined co-inhibitory receptor expression (PD-1, TIGIT, TIM-3, LAG-3) on 

neoantigen-specific TILs and observed a significant accumulation in co-expression of two or more 

co-inhibitory receptors in immune-evasive tumors (Figure 3C and S3A-B). When we compared 

immune-evasive (progressor) to intermediate or non-progressor animals, in addition to 

accumulation in progressor animals, we also observed a significant increase in the co-expression 

of inhibitory receptors: PD1+TIGIT+, PD1+TIM3+, and PD1+LAG3+ in intermediate animals 

(Figure S3A-B), suggesting that the acquisition of a hypofunctional phenotype may precede frank 

immune escape. To further investigate T cell dysfunction in these tumors, we examined 

TIM3+TCF1lo neoantigen-specific TILs, thought to mark a terminally exhausted population 42, 

which were enriched exclusively in immune-evasive tumors (Figure S3A-B). However, we also 

observed a small, but reproducible, population of PD1+TCF1hi “progenitor-like” neoantigen-

specific TILs (Figure S3A-B), suggesting that immune-evasive tumors harbor a population of 

neoantigen-specific TILs with potential for re-invigoration 42–44. 
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Figure 3. T cell exhaustion typifies the neoantigen-specific TIL response in immune-evasive 
PDAC 
(A) Flow cytometric quantification of neoantigen-specific (CD44hiTetramer+) TILs at 9-10 
weeks post-initiation. 
(B) Ki67+ population of CD44hiTetramer+CD8+ TILs from progressor tumors at indicated times 
following tumor initiation (scatter plot showing mean +/- SD). 
(C) Co-inhibitory receptor (PD-1, TIGIT, TIM-3, LAG-3) co-positivity as indicated by color in 
CD44hiTetramer+CD8+ TILs from ‘non-progressor’, ‘intermediate’, or ‘progressor’ 
tumors/pancreata. 
(D) Flow cytometric characterization of neoantigen-specific (CD44hiTetramer+) TILs at 5 weeks 
post-initiation in the respective neoantigen-expressing models. 
(E) UMAP projection of scRNA-seq of neoantigen-specific (CD8+CD44hiTetramer+) TILs from 
immune-evasive tumors.  
(F) Heatmap of differentially expressed genes between clusters with selected genes highlighted. 
(G) UMAP projections overlaid with gene module expression for “LCMV T cell exhaustion” 
(CM1) and “LCMV T cell chronic effector” (CM2). 
(H) UMAP projections overlaid with PAGODA gene expression programs (Pagoda36, 
Pagoda45).  
Statistical analyses: (A,B,D) two-sided Mann-Whitney U test (n.s. P=non-significant, * P<0.05, 
** P<0.01, *** P <0.001). 
See also Figure S3 and Table S2. 
 
 

 

To confirm that the observed T cell phenotypes were not unique to the SIINFEKL 

neoantigen, we performed flow cytometric immunophenotyping on neoantigen-specific CD8+ 

TILs from immune-evasive KP;SIIN, KP;mLAMA4, and KP;mALG8 tumors. We observed 

similar patterns of T cell exhaustion within the neoantigen-specific CD8+ TIL compartment in all 

three neoantigen-expressing models (Figure 3D). 

To further elucidate potential mechanisms of immune evasion, we performed single-cell 

RNA-seq 45 on intratumoral neoantigen-specific CD8+ T cells sorted from immune-evasive 

KP;SIIN tumors. After quality control filtering, we retained 447 neoantigen-specific TILs, 

clustered them into 4 distinct clusters and identified genes that are differentially expressed between 

cells in the four clusters (Figure 3E-F and Table S2). Consistent with our flow cytometric 
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characterization, cells in the largest cluster (cluster 0) had higher expression of numerous genes 

associated with CD8+ T cell exhaustion (Pdcd1, Havcr2, Lag3, Tox) (Figure 3F). We then scored 

the cells for gene modules derived from mouse CD8+ T cells in defined cell states from both acute 

and chronic lymphocytic choriomeningitis virus (LCMV) 46 and B16 melanoma 47.  In line with 

our previous observations, cluster 0 was enriched for ‘T cell exhaustion’ (CM1), but intriguingly 

was also enriched for a ‘chronic effector’ signature (CM2) (Figure 3G). Cells in two smaller 

clusters (clusters 1 and 2), showed higher expression of markers of naïve/memory CD8+ T cells 

(Sell, Ccr7, Klf2, Tcf7), potentially reflecting one or more aberrant memory-like cell states, and 

those in another small cluster (cluster 3) had higher expression of inhibitory Ly49 receptors (Klra6, 

Klra7) (Figure 3F), thought to mark a subset of  CD8+ T regulatory cells previously described in 

both autoimmunity 48,49 and cancer 47. Pathway and Gene Set Overdispersion Analysis (PAGODA) 

50 derived three de novo gene set signatures from our scRNA-seq data that overlaid clusters 1 and 

2 (Pagoda30) and cluster 0 (Pagoda36, Pagoda45) (Figure 3H and Table S2), further highlighting 

the heterogeneity within the neoantigen-specific CD8+ TIL compartment. 

We next compared CD44hiTetramer+ (antigen-experienced, neoantigen-specific) to 

CD44hiTetramerneg (antigen-experienced, NOT SIINFEKL-specific) CD8+ TILs by flow 

cytometry, and observed that, as expected, the CD44hiTetramer+ subset exhibited a significantly 

higher proportion of dysfunctional/exhausted TILs (Figure S3C), but intriguingly noted that a 

portion of CD44hiTetramerneg CD8+ TILs also exhibit marks of T cell dysfunction/exhaustion. This 

may reflect non-SIINFEKL tumor-reactivity (tumor-associated antigen or non-SIINFEKL 

neoantigen) or potentially bystander effects. We noted that TIGIT+PD1+ co-positivity best 

differentiated the neoantigen-specific compartment in these analyses, suggesting that these 

immune axes may play an outsized role in T cell dysfunction in this disease context. 
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Human PDAC harbors analogous populations of exhausted intratumoral CD8+ T cells 

To investigate if these observations were generalizable to human PDAC, we employed two 

parallel approaches. First, we obtained pancreatic adenocarcinoma specimens immediately 

following surgical resection and isolated intratumoral CD8+ T cells for flow cytometric profiling. 

Of 13 specimens evaluated, 9 had sufficient CD8+ TILs for further immunophenotyping (range 

202-17,895 live CD8+ TILs). In line with previous reports 15, the majority (67-99%) of CD8+ TILs 

were CD45RO+ (Figure 4A), reflective of prior antigen-experience, with a substantial portion of 

intratumoral CD8+ T cells co-expressing multiple co-inhibitory receptors (PD1+TIGIT+, 

PD1+LAG-3+, PD1+TIM-3+, TIGIT+TIM-3+) (Figure 4B), consistent with T cell exhaustion 51 and 

in line with our preclinical profiling. Indeed, we observed a population of TIM3+TCF1lo CD8+ 

TILs in the majority of tumors (Figure 4C), suggestive of terminal exhaustion 42–44. As 

PD1+TCF1hi (“progenitor-like”) CD8+ TILs have been demonstrated to underlie the proliferative 

burst in response to PD-1 blockade and are thought to be a primary driver of clinical responses to 

PD-1 blockade 42,43, we examined PD-1 and TCF1 co-expression in PDAC TILs. We observed 

PD1+TCF1hi CD8+ PDAC TILs in the majority of tumors, but these represented a small subset of 

CD8+ TILs (Figure 4D), potentially in line with the observed lack of clinical benefit using PD-

(L)1 blockade as monotherapy in PDAC 5–7. However, we also observed a population of HLA-

DR+Ki67+CD57neg CD8+ TILs in the majority of tumors (Figure 4E), suggesting that there are 

recently-activated, proliferating, and non-senescent intratumoral CD8+ T cells in PDAC with 

potential for therapeutic reinvigoration. 
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Figure 4. Human PDAC harbors exhausted CD8+ TILs 
(A) Flow cytometric profiling of human PDAC CD8+ TILs and CD8+ T cells from healthy 
peripheral blood for CD45RO expression. 
(B) Quantification of co-inhibitory receptor (TIGIT, PD-1, TIM-3, LAG-3) co-expression on 
CD8+ TILs from human PDAC resections compared to healthy peripheral blood.  
(C) “Terminally exhausted” TIM3+TCF1lo CD8+ TILs in human PDAC compared to healthy 
peripheral blood.   
(D) PD-1+TCF1lo and “progenitor-like” PD-1+TCF1hi CD8+ TILs in human PDAC compared to 
healthy peripheral blood.   
(E) HLA-DR+Ki67+CD57neg CD8+ TILs in human PDAC compared to healthy peripheral blood.   
(F) UMAP projection of scRNA-seq data from human PDAC patients (n=24) (Peng et al, 2019). 
(G) Computationally sorted cell subsets and UMAP projections overlaid with indicated 
genes/signatures. 
Statistical analyses: (A-E) two-sided Mann-Whitney U test (n.s. P=non-significant, ** P <0.01, 
*** P <0.001). (A-E: scatter plots showing median +/- SD). 
See also Figure S4. 
 

We next investigated T cell immunophenotypes in previously reported single-cell RNA-

seq of human PDAC patients (n=24) 52 (Figure 4F and S4B-C). We computationally ‘sorted’ 

CD3+CD8+ and CD3+CD4+ cells from this scRNA-seq dataset, and then examined the expression 

in these selected cells of T cell exhaustion-associated genes (encoding PD-1, TIGIT, TIM-3), as 

well as expression of de novo gene signatures derived from murine neoantigen-specific TILs 

(Figure 4F-G). All three de novo gene signatures (Pagoda30, 36, 45) from murine neoantigen-

specific TIL profiling were expressed in specific subsets of CD8+ TILs in human PDAC (Figure 

4G). Collectively, these data support the conclusion that CD8+ TILs in human PDAC are largely 

characterized by markers of T cell exhaustion, with analogous signatures to neoantigen-specific 

TILs from murine PDAC, suggesting that these preclinical models accurately recapitulate a subset 

of human disease. 

 

Elevated expression of PVR/CD155 in murine and human PDAC 
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Given the clear association with neoantigen-specific T cell exhaustion/dysfunction in 

murine immune-evasive tumors and the presence of analogous populations in human PDAC, we 

next examined inhibitory ligand expression. We evaluated protein expression of PD-L1 (the ligand 

for PD-1), Galectin 9 (the ligand for TIM-3), and CD155 (the ligand for TIGIT) using 

immunohistochemical analysis of murine immune-evasive PDAC tissue microarrays (TMAs). 

While we detected occasional PD-L1 and/or Galectin 9 positivity, the vast majority of tumor cells 

were negative or expressed low levels of these inhibitory ligands (Figure S5A). This is consistent 

with prior reports 15,53 that have shown human PDAC to be largely devoid of PD-L1 positivity 

within the malignant compartment. In contrast, elevated CD155 expression was observed on the 

majority of murine immune-evasive tumors (Figure 5A and S5A). Likewise, using 

immunohistochemical staining of human PDAC (n=36), CD155 was found to be elevated in a 

substantial fraction of cases (Figure 5B). We computed H-scores 54 for CD155 in both murine and 

human PDAC and found that CD155 expression was significantly higher in tumor samples 

compared to healthy pancreas controls (Figure 5A-B), although it is important to point out that 

approximately 20% of human tumors showed no CD155 expression. While we observed elevated 

CD155 expression, we cannot rule out the contribution of additional inhibitory ligands such as 

CD112, Ceacam1, FGL-1, and others, that were not directly assessed in this analysis. 
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Figure 5. Elevated CD155 expression within the malignant compartment in murine and 
human PDAC 
(A) Immunohistochemical analysis of CD155 (anti-mouse CD155; LS-C376428) on murine 
PDAC TMA, quantified by H-score (right). 
(B) Immunohistochemical analysis of CD155 (anti-human CD155; EPR22672-151) on human 
PDAC TMA, quantified by H-score (right). 
(C) Flow cytometric assessment of surface expression of CD155 (top) or PD-L1 (bottom) on 
genetically-defined (WT, K, P, KP) or tumor-derived organoids (from progressor or immune-
deficient animals) (scatter plots, horizontal bar represents median).  
(D-E) ECDF analysis of PVR expression in PAAD (D) or COAD (E) within indicated genetic 
cohorts. 
(F) CD155 (PVR) expression in TCGA PAAD patients stratified by total neoepitope burden 
(high: top 25%, low: bottom 25% from Figure 1A) 
Statistical analyses: A-B: two-sided Mann-Whitney U test (n.s. P=non-significant, * P <0.05), C: 
Welch’s t-test (n.s. P=non-significant, * P <0.05), D-F: Kolmogorov-Smirnov (KS). 
See also Figure S5. 
 

To assess inhibitory ligand expression specifically within the malignant compartment, we 

utilized our panel of murine tumor-derived organoids that had been purified using Nutlin-3a 

selection and human PDAC patient-derived organoids. Consistent with immunohistochemical 

results, we observed elevated surface expression of CD155 on patient-derived PDAC organoids 

(Figure S5C) and murine tumor-derived organoids using two independent monoclonal antibodies 

(Figure 5C). In contrast, we observed low level basal expression of surface PD-L1 on murine 

tumor-derived organoids (Figure 5C), although PD-L1 surface expression could be induced 

following treatment with 10 ng/mL interferon-g (Figure S5D). Notably, we observed elevated 

CD155 expression on organoids isolated from immune-evasive tumors, as well as organoids 

derived from tumors never exposed to an immune selective pressure, suggesting that CD155 

upregulation may be a common feature of pancreatic tumorigenesis that is co-opted for immune 

evasion rather than an acquired feature during immune escape.  

As CD155 expression appeared to be a characteristic of pancreatic tumorigenesis, we 

further investigated the genetic basis for this upregulation. To assess the impact of major genetic 
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driver events on CD155 expression, we derived an allelic series of isogenic pancreatic organoids 

from C57BL/6J mice: wild-type (WT), KrasLSLG12D/+ (K), Trp53flox/flox (P), 

KrasLSLG12D/+Trp53flox/flox (KP), which were isolated from normal pancreata of genetically 

engineered animals and ex vivo recombined with adenoviral Cre recombinase. Using these 

genetically-defined pancreatic organoids (GDO), we observed that CD155 surface expression was 

unchanged upon expression of either oncogenic Kras or loss of p53 alone, but was significantly 

increased in the presence of concomitant oncogenic Kras expression and p53 loss (Figure 5C), 

suggesting a possible interplay between these canonical PDAC-associated oncogenic events 

leading to upregulation of CD155 expression. 

To extend this observation, we assessed mRNA expression of PVR (encoding CD155), 

CD274 (encoding PD-L1), PVRL2 (encoding CD112), PDCD1LG2 (encoding PD-L2), and 

LGALS9 (encoding Galectin 9) within PDAC patient samples from TCGA stratified based on 

KRAS and/or TP53 mutational status. In line with our observations in murine PDAC, we observed 

significantly elevated expression of CD155 (PVR) in PDAC harboring both oncogenic KRAS and 

TP53 mutations/loss (‘KP’) compared to samples that were wild-type for either of these genes 

(‘non-KP’) (Figure 5D). We did not observe significant differences in other inhibitory ligand 

expression between these patient cohorts (Figure S5E). Of note, given the near universal presence 

of KRAS mutations in PDAC, we were unable to isolate the effects of KRAS mutation from TP53 

mutation/loss in this disease context. To evaluate whether a similar paradigm extends beyond 

PDAC and to attempt to isolate the effects of each oncogenic event, we stratified TCGA datasets 

from lung adenocarcinoma (LUAD) and colon (COAD) based on KRAS and/or TP53 mutational 

status. While in lung adenocarcinoma, mutation of either KRAS or TP53 alone were associated 

with elevated expression of CD155 (PVR) (Figure S5F), only the combination of oncogenic KRAS 
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and TP53 mutation/loss (KP) was associated with elevated CD155 (PVR) expression in colon 

cancer (Figure 5E), highlighting potential tissue-specific differences in CD155 (PVR) regulation. 

To further investigate the role of the CD155/TIGIT axis in human pancreatic cancer 

immune evasion, we leveraged our neoepitope prediction pipeline (Figure 1) to stratify patients 

into quartiles by overall neoepitope burden (<500 nM) and then queried CD155 expression. 

Tumors with a high burden (top quartile) of predicted neoepitopes exhibited on average a 

significantly elevated CD155 expression (Figure 5F). Likewise, as our earlier analyses (Figure 1) 

demonstrated that a substantial portion of human PDAC harbors neoepitopes with high 

agretopicity (non-binding to binding analysis) or high affinity for MHC class I (<50nM), 

characteristics that correlate with increased immunogenic potential 55, we queried whether a higher 

burden of neoepitopes within these classes is also associated with elevated CD155 expression. 

Analogous to total neoepitope burden, we observed significantly elevated CD155 expression in 

patients with a high burden of “non-binding to binding” neoepitopes (Figure S5F) and in patients 

with predicted high affinity neoepitopes (Figure S5G), further supporting a possible role for the 

CD155/TIGIT axis in human pancreatic cancer. 

 

Preclinical activity of TIGIT/PD-1/CD40a combination immunotherapy in neoantigen-

expressing PDAC 

Next, we set out to investigate the relevance of the CD155/TIGIT axis in a therapeutic 

context. As T cell dysfunction is associated with both chronic antigen stimulation and suboptimal 

costimulation 51, we reasoned that the combination of a CD40 agonist plus rationally-guided 

immune checkpoint blockade (ICB) might be able to overcome neoantigen-specific T cell 

dysfunction in these tumors. CD40 is known to be expressed on the surface of antigen presenting 



 250 

cells (APCs) and is crucial for mediating the crosstalk between APCs and T cells 17,56. Agonistic 

CD40 antibodies can substitute for CD154 (the natural ligand for CD40) and bypass the need for 

CD4+ T cell help 57 and importantly, can enhance anti-tumor responses with immune checkpoint 

blockade 39,58–60. Given accumulating evidence that the CD155/TIGIT axis likely plays a central 

role in PDAC 16, we opted to evaluate combination regimens targeting this axis. Importantly, the 

PD-1/PD-L1 and TIGIT/CD155 axes coordinately function to dampen a productive CD8+ T cell 

response and co-blockade has demonstrated synergy in preclinical models and in early-stage 

clinical trials 61–63. 

Following orthotopic transplantation of KP;SIIN organoids into immune-competent 

animals and confirmation of tumor establishment and progression, animals were randomized by 

baseline tumor volume to receive mono- or dual-immune checkpoint blockade (ICB), in the 

presence or absence of CD40 agonism at 6 weeks post-initiation. Specifically, animals were 

allocated to an isotype control arm or therapeutic arms (CD40 agonist, anti-PD-1, anti-TIGIT, anti-

TIGIT/PD-1, anti-PD-1 + CD40 agonist, anti-TIGIT + CD40 agonist, anti-TIGIT + anti-PD-1 + 

CD40 agonist) for treatment over 4 weeks and tumors were longitudinally evaluated through high-

resolution ultrasound imaging. Tumor response was determined according to the more stringent 

modified RECIST criteria 64, previously validated for volumetric tumor response in preclinical 

models. As expected, isotype control-treated tumors grew unabated with 0% objective response 

rate (ORR; mCR+mPR) and 0% disease control rate (DCR; mCR+mPR+mSD) ([n=15], Figure 

6A and S6A). Consistent with clinical observations, mono- or dual-immune checkpoint blockade 

(PD-1, TIGIT, or PD-1/TIGIT) exhibited no tumor responses (0% ORR/DCR for monotherapy; 

0% ORR and 22% DCR with TIGIT/PD-1 co-blockade; n=9-10 per arm) (Figure 6A and Figure 

S6A). While CD40 agonist (CD40a) monotherapy resulted in an 11% ORR (33% DCR, [n=9]), 
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the majority of animals quickly progressed through monotherapy. When CD40a was combined 

with either PD-1 blockade or TIGIT blockade, we observed primarily stabilization of disease with 

few tumor responses (9% ORR; 54% DCR with PD-1/CD40a; 0% ORR; 18% DCR with 

TIGIT/CD40a; [n=11 per arm], Figure 6A-B), consistent with the early clinical promise of 

CD40a/PD-1 combinations currently being evaluated in clinical trials 65. In contrast to all other 

combinations investigated, TIGIT/PD-1 co-blockade plus CD40 agonism produced significant 

tumor responses (46% ORR, 71% DCR) with 23% complete responses (mCR); [n=48], Figure 

6A-B). These data support the hypothesis that combinatorial strategies to simultaneously boost 

and reinvigorate an anti-tumor immune response are needed to overcome the profoundly 

immunosuppressive PDAC microenvironment and furthermore, that TIGIT blockade may 

overcome pre-existing or acquired resistance to CD40a/PD-1 therapy. Notably, all therapeutic 

arms were well tolerated as assessed by body status and animal weight. As anti-TIGIT antibodies 

have already demonstrated safety/tolerability in human patients, with hints of efficacy in other 

tumor types 63,66,67, and combination CD40 agonism + PD-1 blockade has shown early-clinical 

promise in PDAC 58, combination TIGIT/PD-1/CD40a is poised for rapid clinical evaluation. 
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Figure 6. TIGIT/PD-1/CD40a combination immunotherapy elicits anti-tumor responses in 
immune-evasive PDAC 
(A) Waterfall plot of evaluable tumors after 4 weeks of indicated control or experimental 
treatments.   
(B) Spider plots of treatment response to PD-1/CD40a (top) and TIGIT/PD-1/CD40a (bottom) 
during 4-week dosing period. 
(C) Representative immunohistochemical analysis of CD8a, cytokeratin 19 (CK19), CD155, and 
PD-L1 of responder tumors (mPR/mCR) following 28 days of TIGIT/PD-1/CD40a treatment. 
(D) Representative mfIHC with AOIs for Nanostring GeoMx DSP of a responder tumor (mPR) 
following 28 days of TIGIT/PD-1/CD40a treatment.  
(E-F) Flow cytometric analysis of (E) CD8+ T cells, and (F) G-MDSCs 
[CD45+CD11b+F4_80lowLy6ClowLy6Ghigh] following the indicated treatments. 
(G) Differential protein expression in ‘CD8 high’ versus ‘CD8 low’ AOIs in non-responder tumors 
following 28 days of TIGIT/PD-1/CD40a treatment. Red: FDR < 0.05. 
Statistical analyses: (A) two-sided Mann-Whitney U test of percent change at 4 weeks of therapy, 
(E-F) two-sided Mann-Whitney U test, (G) linear mixed effect model with Benjamini-Hochberg 
FDR (n.s. P=non-significant, * P <0.05, ** P<0.01, *** P <0.001, **** P <0.0001). 
See also Figure S6. 
 

To investigate the molecular mechanisms of effectiveness and resistance to TIGIT/PD-

1/CD40a combination therapy, we treated animals harboring immune-evasive tumors with 

TIGIT/PD-1/CD40a as described above. Tumors were tracked using weekly ultrasound imaging, 

to facilitate assignment of experimental treatment animals into responder (mPR/mCR), stable 

(mSD), or non-responder (mPD). Following 28 days of treatment, pancreatic tumors (or remaining 

pancreatic tissue in the case of complete response) were harvested for flow cytometric profiling, 

traditional immunohistochemical analysis, or spatially-resolved multiplex protein profiling using 

Nanostring GeoMx Digital Spatial Profiling (DSP).  

 We observed abundant intratumoral CD8+ T cells in responder animals (Figure 6C-D), 

with a less pronounced CD8+ infiltrate with clear areas of T cell exclusion in non-responder 

animals (Figure S6B-C). Immunohistochemical analysis also demonstrated elevated expression 

of PD-L1 and CD155 within the tumor-adjacent stroma of responder tumors (Figure 6C), 
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potentially reflecting a mechanism of acquired resistance to CD40 agonism, which may be 

overcome through TIGIT/PD-1 co-blockade. 

To further characterize changes in the immune microenvironment following TIGIT/PD-

1/CD40a therapy, we performed flow cytometric immunophenotyping of CD45+ immune cell 

subsets following 28 days of control (isotype) or experimental (TIGIT/PD-1/CD40a) therapy. In 

line with histopathologic characterization, we observed an increase in CD8+ T cell infiltration into 

responder (mCR/mPR) tumors and a concomitant decrease in immunosuppressive myeloid 

subsets, most strikingly in granulocytic myeloid-derived suppressor cells (G-MDSCs) (Figure 6E-

F). We also observed a significant decrease in overall myeloid infiltration (CD11b+) and 

monocytic MDSCs (M-MDSCs), but not in tumor-associated macrophages (TAMs) following 

TIGIT/PD-1/CD40a (Figure S6E-H). 

To more deeply profile the tumor immune microenvironment, we employed NanoString 

GeoMx Digital Spatial Profiling, which utilizes oligonucleotide-tagged antibodies containing a 

photocleavable linker and UV illumination of defined areas of interest (AOIs) to enable spatially-

resolved 40-plex protein labeling of tumors following TIGIT/PD-1/CD40a therapy. Consistent 

with our prior analyses, we observed abundant intratumoral CD8+ T cells in responder animals, 

with CD8+ T cells largely restricted to the periphery of non-responder tumors. In both responder 

and non-responder tumors, we observed markers of T cell activation/co-stimulation (Granzyme B, 

Ki67) in areas of high CD8+ T cell infiltration, but observed elevated expression of MDSC markers 

(CD11b, Ly6G/C) in areas of T cell exclusion uniquely in non-responder tumors (Figure 6G and 

Figure S6C-D), suggesting a potential role for MDSC-mediated T cell exclusion in resistance to 

therapy. 
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Collectively, these data support CD8+ T cell re-invigoration as a key marker of response 

and suggest that T cell exclusion, possibly mediated by G-MDSCs, may be a key driver of 

resistance. However, future studies will be needed to uncover potential biomarkers in tumors prior 

to treatment that can be used to select patient most likely to benefit from therapy. 

 

The CD155/TIGIT axis is sufficient to promote immune evasion in PDAC 

As an orthogonal approach to our organoid-based preclinical model, we adapted retrograde 

pancreatic duct delivery 68 to generate a genetically-tractable autochthonous mouse model of 

neoantigen-expressing PDAC. Specifically, we engineered the lentiviral vector used to initiate 

PDAC in KrasLSL-G12D/+;Trp53fl/fl (KP) animals to additionally encode expression of a defined 

neoantigen (‘mScarletSIIN’; OVA257–264 [SIINFEKL] and OVA323–339) (Figure 7A-B). Retrograde 

ductal instillation of Cre-expressing lentivirus led to histologically confirmed pancreatic 

intraepithelial neoplasia (PanIN) and/or pancreatic adenocarcinoma (PDAC) formation in ~90% 

of immune-deficient or immune-competent animals by 9 weeks post-initiation (Figure S7A). To 

examine the effects of neoantigen expression in autochthonous PDAC, we performed parallel 

surgeries in immune-competent and immune-deficient (using CD8a-depleting antibodies) KP 

animals. Analogous to Cre expression alone, ~90% of immune-deficient animals transduced with 

lentivirus expressing mScarletSIIN developed histologically confirmed PanIN/PDAC by 9 weeks 

post-initiation (Figure S7A). Importantly, tumors that developed in the absence of CD8+ T cells 

retained neoantigen expression (mScarlet positivity) within PanIN/PDAC lesions (Figure 7C and 

7E). In contrast, approximately 50% of immune-competent animals initiated with mScarletSIIN 

failed to develop tumors by 9 weeks post-initiation (Figure 7D-E and S7B), consistent with 

observations of immune clearance using orthotopic transplantation of neoantigen-expressing 
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organoids (Figure 2). However, unlike our organoid-based model, we observed a subset of animals 

(~40%) that developed macroscopic tumors that failed to maintain mScarlet expression (assessed 

by both fluorescence stereomicroscopy and immunohistochemical analysis), suggestive of 

immune editing (Figure 7D and S7D). This difference can likely be attributed site-specific effects 

of stochastic lentiviral integration in the autochthonous model, compared to expression of a 

neoantigen from a safe harbor locus in our organoid-based model. Lastly, while less frequent than 

in our organoid-based model, a reproducible subset (7-20%) of immune-competent animals 

initiated with mScarletSIIN developed immune-evasive tumors (Figure 7D-E and S7C). While 

we observed a robust neoantigen-specific CD8+ TIL response in both early-stage and late-stage 

lesions (Figure S7F-G), immune-evasive autochthonous tumors harbored intratumoral 

neoantigen-specific CD8+ T cells with co-expression of multiple co-inhibitory receptors (including 

PD-1+TIGIT+), suggestive of T cell exhaustion (Figure S7G), analogous to observations in our 

organoid-based model system and in human PDAC. 
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Figure 7. Elevated CD155/TIGIT signaling is sufficient to promote immune evasion in 
autochthonous PDAC 
(A) Lentiviral vectors used to generate autochthonous neoantigen-expressing PDAC or control.  
(B) Retrograde pancreatic ductal instillation of lentivirus.  
(C) Brightfield (left) and fluorescence stereomicroscopic (right) images of representative 9-week 
autochthonous tumors generated using mScarletSIIN in CD8a-depleted animals. 
(D) Brightfield (left) and fluorescence stereomicroscopic (right) images of representative 
outcomes (“cleared”, “edited”, “evaded”) in mScarletSIIN immune-competent animals. 
(E) Proportion of animals with mScarlet-positivity as assessed by fluorescence stereomicroscopy 
at 9 weeks post-initiation. 
(F) Lentiviral vectors and R26-dCas9-VPR knock-in allele used to modulate CD155 (PVR) 
expression in autochthonous PDAC. 
(G) Flow cytometric assessment of surface CD155 expression on pancreatic organoids following 
transduction with indicated lentiviruses. 
(H) Proportion of animals with mScarlet-positivity as assessed by fluorescence stereomicroscopy 
at 9-12 weeks post-initiation following indicated genetic or pharmacologic modulation. 
See also Figure S7. 
 

We took advantage of both the relative rarity of immune-evasive tumors and the genetic 

tractability of this model to evaluate whether genetic or pharmacologic modulation of the 

CD155/TIGIT axis could promote immune evasion. To investigate the effect of tumor-specific 

inhibitory ligand expression, we re-engineered the mScarletSIIN lentivirus to additionally express 

the cDNA for Pvr (encoding CD155) (Figure 7F). Using lentiviral transduction of KP pancreatic 

organoids, we confirmed expected upregulation of surface CD155 (Figure 7G). As an orthogonal 

approach, we utilized CRISPR-activation (CRISPRa) to overexpress CD155 from the endogenous 

Pvr locus. To facilitate efficient in vivo CRISPRa, we generated a knock-in allele at the Rosa26 

safe harbor locus 69 to enable Cre-mediated conditional expression of dCas9-VPR 70 linked to 

mNeonGreen to track recombined cells (Figure 7F). Using lentiviral transduction of KP;dCas9-

VPR organoids, we validated two sgRNAs targeting the promoter of Pvr, both of which 

upregulated surface CD155 to similar levels as cDNA expression (Figure 7G). One of the two 

sgRNAs tested (Pvra.2) consistently led to more uniform upregulation of surface CD155, and thus 

we opted to proceed with this sgRNA for in vivo evaluation. 
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To evaluate the effects of tumor-restricted inhibitory ligand overexpression in 

autochthonous neoantigen-expressing PDAC, we randomized KP animals to receive retrograde 

ductal instillation of control (mScarletSIIN) or CD155-mScarletSIIN lentiviruses. In parallel, 

KP;dCas9-VPR animals were instilled with mScarletSIIN lentivirus additionally encoding either 

a non-targeting (NT) control sgRNA or an sgRNA targeting Pvr (Pvra.2). Using either cDNA-

based or CRISPRa-based overexpression, tumor-specific CD155 upregulation resulted in an 

increase in the proportion of immune evasion. Specifically, Pvr cDNA elicited 39% [n=31] 

mScarlet+ tumors (an increase from 25% [n=16] in control animals) and Pvra.2 CRISPRa led to 

42% [n=12] immune evasion (an increase from 18% [n=11] in control animals) (Figure 7H), 

suggesting that forced elevation of CD155 promotes immune evasion in PDAC. 

Finally, to assay the effect of elevated TIGIT activity, we initiated autochthonous PDAC 

in KP animals using mScarletSIIN and randomized animals immediately following retrograde 

pancreatic duct surgery to receive a TIGIT agonistic antibody (clone 1G9) 71 or an isotype control 

antibody at the same dosing schedule. In line with our observations modulating CD155, 44% 

[n=25] animals in the TIGIT agonist arm exhibited immune evasion, compared to 24% [n=21] 

isotype control-treated animals (Figure 7H). While no approach was as effective as complete CD8 

depletion, collectively these data reinforce the functional importance of the CD155/TIGIT axis in 

PDAC immune evasion. 

 

Discussion 
Neoantigen-specific CD8+ T lymphocytes, which recognize cognate antigen presented in 

the context of MHC class I, are thought to underlie the success of current immune-based strategies 

72. Our present study bolsters the finding that the majority of patients with mismatch repair-

proficient pancreatic cancer harbor predicted high affinity MHC class I-restricted neoepitopes, 
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even in advanced/metastatic disease. Additionally, by expanding the search space for potential 

neoepitopes to include in-frame insertion/deletion and frameshift mutations, we demonstrate that 

the landscape of potentially immunogenic neoepitopes in PDAC can be substantially increased. 

Although our neoepitope predictions do not directly assess immunogenicity, our findings are in 

line with previous reports that have identified endogenous neoantigen-reactive CD8+ TILs from a 

subset of human PDAC patients 12. 

Taking advantage of insights garnered from our neoepitope profiling, we generated 

multiple orthogonal preclinical models of neoantigen-expressing pancreatic cancer and 

demonstrate that PDAC undergoes all three phases of immunosurveillance 73, with a subset of 

animals successfully evading immune clearance despite continued tumor-specific expression of a 

high affinity neoantigen. The preclinical models presented herein bear similarities to the recently 

reported KPC-OG model 20, with a number of key distinctions. While a genetically-encoded 

autochthonous neoantigen model avoids the potential contribution of wound healing responses 

associated with both orthotopic transplantation and retrograde pancreatic duct delivery of 

lentiviruses, the preclinical models we employed avoid widespread antigen expression during 

either embryonic pancreas development or adulthood, potential confounders in pancreas-specific 

Cre recombinase driven models 20. Additionally, the preclinical models presented in this study 

more readily isolate the neoantigen-specific CD8+ T cell contribution to immune evasion, 

compared to model systems that utilize full length OVA, which contains CD8+ T cell, CD4+ T cell, 

and B cell epitopes 20. Lastly, both orthotopic transplantation of pancreatic organoids and 

retrograde pancreatic duct delivery of lentiviruses offer the flexibility and genetic tractability to 

interrogate new and diverse neoantigen(s) and leverage CRISPR-mediated gene perturbations to 

rapidly evaluate specific biological hypotheses. While the incorporation of defined neoantigens 
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facilitates the tracking and immunophenotyping of tumor-reactive CD8+ T cells, it is important to 

note that these are not the only potential (neo)antigens present in these tumors. In fact, mScarlet, 

which is used as a surrogate readout of neoantigen expression in these models, is a foreign protein 

and may also contribute MHC class I- and class II-restricted neoantigens. Furthermore, there may 

be additional mutations accumulated during pancreatic tumorigenesis. Future studies will be 

needed to evaluate the functional consequences of varying affinity neoantigens and defined MHC 

class II neoantigens in pancreatic cancer. 

Using single-cell RNA-seq and flow cytometric profiling of neoantigen-expressing 

immune-evasive murine PDAC, we uncovered multiple classes of CD8+ TILs with markers of 

dysfunction and identify similar populations of intratumoral CD8+ T cells in human PDAC 

resection specimens, suggesting that these preclinical models accurately recapitulate a subset of 

human PDAC. While both murine and human PDAC prominently feature CD8+ TILs with markers 

of dysfunction, we also observed non-terminally exhausted CD8+ TILs and evidence of an ongoing 

intratumoral immune response. However, it is important to point out that in the case of human 

PDAC, we were unable to assess the tumor-reactivity of these populations. We likewise 

demonstrate the presence of “progenitor-like” 38,42–44 PD1+TCF1hi CD8+ TILs in human and 

murine PDAC, the latter of which are found within the neoantigen-specific TIL compartment, 

suggesting the potential for reinvigoration with immune checkpoint blockade. The near complete 

lack of clinical benefit provided by PD-(L)1-directed immune checkpoint blockade in human 

PDAC, an observation that is accurately recapitulated in our preclinical models, suggests that 

PDAC may employ additional molecular and/or cellular mechanisms of immune evasion that serve 

to limit the anti-tumor immune response. 
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Our characterization of the neoantigen-specific immune response has functionally 

implicated the co-inhibitory receptor TIGIT, and its cognate ligand CD155, as a critical axis 

driving PDAC immune evasion. We demonstrate that CD155 is upregulated on the surface of 

murine and human PDAC tumor cells, both in vivo and ex vivo. As PVR, the gene encoding CD155, 

has been reported to be upregulated by oncogenic KRAS in cell culture 74,75, it is tempting to 

speculate that the CD155/TIGIT axis might represent a critical immune checkpoint in additional 

KRAS-driven tumors. Our data support this and further points to a potential synergy between 

KRAS and TP53 mutations to upregulate CD155 expression, further refining the complex 

regulation of this inhibitory ligand. However, the molecular mechanisms underlying this synergy 

remain to be identified. We also demonstrate that the co-inhibitory receptor TIGIT is expressed on 

a subset of human and murine TILs, and in the latter case, further delineate that tumor-reactive 

(i.e., neoantigen-specific) CD8+ TILs express high levels of TIGIT. Tumor-specific 

overexpression of CD155 in neoantigen-expressing autochthonous pancreatic cancer leads to an 

increased proportion of immune-evasive tumors, and these results can be recapitulated using an 

agonistic TIGIT antibody. Thus, increased signaling flux through the CD155/TIGIT axis is 

sufficient to promote immune evasion in PDAC. In addition to CD8+ T cells, TIGIT is also 

expressed on regulatory T cells and natural killer (NK) cells 62,76,77 and TIGIT-mediated ligation 

of CD155 expressed on the surface of antigen presenting cells (APCs) has been demonstrated to 

impact dendritic cell maturation and consequent T cell priming 76. Future studies will be needed 

to carefully dissect the contributions of TIGIT and CD155 expression and signaling within these 

various cell compartments and their roles in PDAC immune evasion. 

A number of scenarios have been proposed to explain how PDAC evades the anti-tumor 

immune response, and previous reports have implicated almost every step in the cancer-immunity 



 263 

cycle 78. PDAC may bypass immune surveillance through loss of MHC class I surface expression 

34, exclusion of CD8+ T cells 15,32,79, induction of dysfunctional T cell programs 15,16, deficiencies 

in type I conventional dendritic cells 20,80, and/or recruitment of immune suppressive cell 

populations 32,81,82. However, the majority of these prior studies have been unable to isolate the 

effects of tumor and/or microenvironmental perturbations on the neoantigen-specific immune 

response. While our data support a crucial role for neoantigen-specific T cell dysfunction and the 

CD155/TIGIT axis in PDAC immune evasion, it is likely that multiple facets of the tumor-

immunity cycle are disrupted in PDAC. Indeed, we observed intratumoral areas of T cell exclusion 

within immune-evasive tumors in our model systems, suggesting that this may also contribute to 

immune escape in a subset of animals. Additionally, beyond the CD155/TIGIT axis, we uncovered 

multiple states of dysfunction within the neoantigen-specific TIL compartment, which can be 

functionally interrogated in future studies. 

Immune modulation has emerged as a promising therapeutic strategy for numerous tumor 

types. However, it is likely that tissue of origin, histologic subtype and/or genetic alterations might 

dictate disparate mechanisms of immune evasion 17,83 that call for rationally-guided combinatorial 

strategies. Prior efforts have reinforced the notion that approaches to both boost the endogenous 

anti-tumor immune response, whether through vaccination or CD40 agonism, and prevent T cell 

exhaustion are likely necessary in PDAC 17. Indeed, both therapeutic vaccination 84 and 

pharmacologic 85–87 strategies to boost the endogenous anti-tumor immune response are being 

investigated. Likewise, CD40 agonism, which licenses antigen-presenting cells to promote 

priming of T lymphocytes 56 has been extensively evaluated in preclinical PDAC models 39,59,60,88 

and combination therapy using CD40 agonism, PD-1 blockade, and cytotoxic chemotherapy has 

demonstrated early-stage clinical promise in human PDAC patients 58. Using multi-arm, 
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randomized and blinded preclinical trials, we demonstrate that TIGIT/PD-1 co-blockade in 

combination with CD40 agonism can reinvigorate an effective anti-tumor immune response in a 

subset of animals with immune-evasive PDAC. Mechanistically, we observed increased 

expression of inhibitory ligands following CD40 agonist containing combination immunotherapy.  

While these tumors displayed elevated CD155 expression within the malignant compartment at 

baseline, we observed increased non-tumor PD-L1 and CD155 expression following treatment. 

These results suggest that the PD-1/PD-L1 and CD155/TIGIT axes may represent nonredundant 

mechanisms of acquired resistance to CD40 agonist-based therapies and further support strategies 

that leverage co-blockade of these inhibitory axes. In addition, our profiling efforts point to a 

potential role for MDSC-mediated T cell exclusion as a mechanism of resistance to TIGIT/PD-

1/CD40a. Future studies in additional preclinical models of pancreatic cancer will evaluate the 

requirement for high affinity neoantigens in mediating this response and directly address additional 

combination strategies to overcome these resistance mechanisms. While our profiling of the 

neoantigen-specific immune response in PDAC nominates additional immune checkpoints for 

future preclinical evaluation, combinatorial targeting of TIGIT/PD-1/CD40a represents a 

particularly promising approach for rapid clinical translation. 
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Methods 
RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Tyler Jacks (tjacks@mit.edu). 

Materials Availability 

Plasmids generated in this study will be deposited to Addgene. Mouse lines and organoid lines 

generated in this study will made available to the broader scientific community upon request to 

the Lead Contact. 

Data and Code Availability 

The datasets generated and/or analyzed during the current study are available in the NCBI Gene 

Expression Omnibus (GEO) under accession number: GSE163059. Computer code for neoepitope 

predictions and scRNA-seq analysis will be made available upon request. Other software tools 

(including version numbers) for exome, RNA-seq, and scRNA-seq analyses are listed in the Key 

Resource Table. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Mice 

All animal studies described in this study were approved by the MIT Institutional Animal Care 

and Use Committee. All animals were maintained on a pure C57BL/6J genetic background. 

Generation of KrasLSL-G12D/+ and Trp53flox/flox (KP) mice has previously been described 89,90. OT-I 

TCR transgenic mice have been previously described 37. KP;Rosa26CAG-LSL-dCas9-VPR-P2A-mNeonGreen 

mice were generated as part of this study (described in detail below). 

mESC generation and CRISPR-assisted targeting 
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“KP*1”, a C57BL/6J KrasLSL-G12D/+; Trp53flox/flox (KP) murine embryonic stem cell (mESC) 

line, was generated by crossing a hormone-primed C57BL/6J Trp53flox/flox female with a C57BL/6J 

KrasLSL-G12D/+; Trp53flox/flox male. At 3.5 days post-coitum, blastocysts were flushed from the 

uterus, isolated, and cultured on a mouse embryonic fibroblast (MEF) feeder layer in 

‘ESCM+LIF+2i’ [Knockout DMEM (Gibco), 15% FBS (Hyclone), 1% NEAA (Sigma), 2 mM 

Glutamine (Gibco), 0.1 mM β-mercaptoethanol (Sigma-Aldrich) 50 IU Penicillin, 50 IU 

Streptomycin, 1000 U/ml LIF (Amsbio), 3 µM CHIR99021 (AbMole), 1 µM 

PD0325901(AbMole)]. After 5-7 days in culture the outgrown inner cell mass was isolated, 

trypsinized and re-plated on a fresh MEF layer. ES cell lines were genotyped for KrasLSL-

G12D/+;Trp53flox/flox, and Zfy (Y-chromosome specific). Primer sequences available upon request. 

ES cell lines were tested for pluripotency by injection into host blastocysts from albino mice to 

generate chimeric mice. 

 DNA mixes (1:1 mix of ‘U6-sgH11-eCas9-T2A-BlastR’ + ‘H11-mScarletSIIN targeting 

vector’ or 1:1 mix of ‘U6-sgR26-eCas9-T2A-BlastR’ + ‘R26-dCas9-VPR targeting vector’) were 

ethanol precipitated prior to DNA (1 µg) transfection of approximately 3*105 KP*1 mESCs in a 

gelatin-coated 24-well plate using Lipofectamine 2000 (Thermo Fisher) according to the 

manufacturer instructions. mESCs were selected with Blasticidin (6 µg/mL) for 2 days, starting 36 

hours post-transfection, prior to low-density re-plating on MEF feeder lines in absence of 

Blasticidin.  Large mESC colonies were manually picked using a stereomicroscope, expanded and 

evaluated for correct integration using PCR with primers spanning both the 5’ and 3’ homology 

arms (primer sequences available on request). Correct clones by PCR evaluation were evaluated 

using Southern blot analysis. Briefly, genomic DNA was digested overnight with NsiI-HF (for 

H11-mScaretSIIN targeting) or PacI (for R26-dCas9-VPR targeting). Digestions were 
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electrophoresed on 0.7% agarose gels and blotted to Amersham Hybond XL nylon membranes 

(GE Healthcare). Samples were probed with 32P-labeled 5’ external, 3’ external, and internal 

probes applied in Church buffer 91 (probe sequences available on request). 

Correctly targeted clones were injected into albino C57BL/6J blastocysts.  Chimerism was 

assessed by coat color. Pancreatic organoids were isolated from chimeric animals and “donor” 

organoids were purified from the host pancreas using 72 hours of Puromycin (6 µg/mL) selection 

(leveraging the presence of the Puromycin resistance gene within the LSL cassette upstream of 

Kras-G12D) 89. 

Organoid generation and characterization 

Pancreatic organoid isolation and propagation has been previously described 22. Briefly, 

for genetically-defined pancreatic organoids, pancreata were manually dissected from genetically-

engineered mice of the desired genotype.  Pancreata were then manually minced with razor blades 

and dissociated in pancreas digestion buffer [1x PBS, 125 U/mL collagenase IV (Worthington)] 

for 20 minutes at 37oC. Cell suspensions were filtered through 70 µm filters, washed with 1x PBS 

and centrifuged with slow deceleration. Cell pellets were resuspended in 100% growth-factor 

reduced Matrigel (Corning) and solidified at 37oC.  Cells were subsequently cultured in organoid 

complete media (minor modifications from previously described formulations 22 (see details 

below) and monitored for organoid outgrowth.  Organoids were passaged with TrypLE Express 

(Life Technologies) for at least 4 passages to purify the ductal component prior to Cre 

recombinase-mediated recombination.  For recombination, organoids were spinfected with 

adenoviral (Ad5-CMV-Cre) at a MOI >100 to ensure 100% recombination.  All organoids were 

authenticated by genotyping at Kras and Trp53 loci both prior to and following Ad-CMV-Cre to 

ensure proper recombination. See Table S3 for details on organoid lines. 
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Murine and human tumor-derived organoids were isolated following the same procedure 

as above with the exception of 30 minutes in pancreas digestion buffer.  Tumor-derived organoids 

were passaged at least four times prior to experimental manipulation to remove contaminating cell 

types.  P53 deficient organoids were selected via resistance to Nutlin-3a (10 μM, Sigma-Aldrich).  

Pancreatic organoids were maintained in culture for <20 passages.  

Media for pancreatic organoids was formulated based on L-WRN cell conditioned media 

(L-WRN CM) 92. Briefly, L-WRN CM was generated by collecting 8 days of supernatant from L-

WRN cells, grown in Advanced DMEM/F12 (Gibco) supplemented with 20% fetal bovine serum 

(Hyclone), 2 mM GlutaMAX, 100 U/mL of penicillin, 100 µg/mL of streptomycin, and 0.25 

µg/mL amphotericin. L-WRN CM was diluted 1:1 in Advanced DMEM/F12 (Gibco) and 

supplemented with additional RSPO-1 conditioned media (10% v/v), generated using Cultrex HA-

R-Spondin1-Fc 293T Cells. The following molecules were also added to the growth media: B27 

(Gibco), 1 μM N-acetylcysteine (Sigma-Aldrich), 10 μM nicotinamide (Sigma-Aldrich), 50 ng/mL 

EGF (Novus Biologicals), 500 nM A83-01 (Cayman Chemical), 10 μM SB202190 (Cayman 

Chemical), and 500 nM PGE2 (Cayman Chemical). Wnt activity of the conditioned media was 

assessed and normalized between batches via luciferase reporter activity of TCF/LEF activation 

(Enzo Leading Light Wnt reporter cell line).  

T cell culture 

OT-I splenocytes were harvested from C57BL/6J OT-I transgenic mice, and spleens were 

mashed through 70 µm filters. Red blood cells were lysed with ACK buffer for 2 min before cell 

suspension neutralization with PBS and pelleted for plating. Splenocytes were counted and 

adjusted to 1*106 cells/mL in T cell medium [RPMI 1640 (Corning) supplemented with 10% heat-

inactivated FBS, 20 mM HEPES (Gibco), 1 mM Sodium Pyruvate (Thermo Fisher), 2 mM L-
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Glutamine (Gibco), 50 µM β-mercaptoethanol (Gibco), 1X Non-Essential Amino Acids (Sigma), 

0.5X Pen/Strep (Gibco) with 10 ng/mL hIL-2 (Peprotech) and 1 µM SIINFEKL peptide 

(Anaspec)]. Splenocytes were activated for 24h at 37°C in a tissue culture incubator, before manual 

CD8a isolation according to manufacturer instructions (Milteny Biotec). OT-I T cells were 

subsequently expanded 4-6 days in T cell medium with 10 ng/mL hIL-2 prior to organoid co-

culture. 

Organoid + CD8 T cell co-culture 

Pancreatic organoids were dissociated using TrypLE Express (Life Technologies) and 

single cell suspensions were generated by vigorous resuspension. Activated OT-I CD8+ T cells 

(see above) and organoid cell numbers were determined by manual hemocytometer cell counting, 

and T cells + organoids were mixed at defined effector:target (E:T) ratios. Matrigel was then added 

(5 µL per well in black-walled 96-well plates (Corning) for Incucyte live cell imaging; 20-50 uL 

per well for culture in 24-well plates; final 85% Matrigel) before solidification at 37°C. Cells were 

cultured in complete organoid medium supplemented with 10 ng/mL hIL-2 (Peprotech). Incucyte 

images of co-cultures were acquired every 4 hours (Brightfield and RFP channels) for 6-10 days 

for Incucyte live cell imaging or imaged at Day 5-7 for larger cultures. 

Orthotopic transplantation 

Orthotopic transplantation of organoids was performed with minor modifications to 

previously reported protocols for orthotopic transplantation of pancreatic monolayer cell lines 93.  

Briefly, animals were anesthetized using Isoflurane, the left subcostal region was depilated (using 

clippers or Nair) and the surgical area was disinfected with alternating Betadine/Isopropyl alcohol. 

A small (~2 cm) skin incision was made in the left subcostal area and the spleen was visualized 

through the peritoneum. A small incision (~2 cm) was made through the peritoneum overlying the 
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spleen and the spleen and pancreas were exteriorized using ring forceps.  A 30-gauge needle was 

inserted into the pancreatic parenchyma parallel to the main pancreatic artery and 100 μL 

(containing 1.25*105 organoid cells in 50% PBS + 50% Matrigel) was injected into the pancreatic 

parenchyma. Successful injection was visualized by formation of a fluid-filled region within the 

pancreatic parenchyma without leakage. The pancreas/spleen were gently internalized and the 

peritoneal and skin layers were sutured independently using 5-0 vicryl sutures. All mice received 

pre-operative analgesia with Bup-SR and were followed post-operatively for any signs of 

discomfort or distress. Organoid/Matrigel mixes were kept on ice throughout the entirety of the 

procedure to prevent solidification prior to injection. For orthotopic transplantation, syngeneic 

C57BL/6J mice (aged 4-12 weeks) were transplanted. Male pancreatic organoids were only 

transplanted back into male recipients. 

Small rodent ultrasound 

Quantification of murine pancreatic tumors by high resolution ultrasound has been 

previously described 94. Briefly, animals were anesthetized using Isoflurane and the lateral and 

ventral abdominal areas were depilated using Nair. Sterile 0.9% saline (1 mL) was administered 

by i.p. injection prior to imaging to improve visualization of the pancreas. Animals were imaged 

using the Vevo3100/LAZRX ultrasound and photoacoustic imaging system (Fujifilm-

Visualsonics). Animals were placed on the imaging platform in the supine position and a layer of 

ultrasound gel was applied over the entirety of the abdominal area. The ultrasound transducer 

(VisualSonics 550S) was placed on the abdomen orthogonal to the plane of the imaging platform. 

Landmark organs, such as the kidney, spleen, and liver, were identified in order to define the area 

of the pancreas. The transducer was set at the scanning midpoint of the normal pancreas or 

pancreatic tumor and a 3D image of 10-20 mm, depending on tumor size, at a Z- slice thickness 
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of 0.04 mm. 3D images were uploaded to the Vevo Lab Software. The volumetric analysis function 

was used to define the tumor border at various Z-slices through the entirety of the tumor and derive 

the final calculated tumor volume.  

Preclinical trials 

Age- and sex-matched recipient C57BL/6J mice were purchased from The Jackson 

Laboratory (JAX) or bred in house. Orthotopic transplantation was performed as described above. 

Mice were monitored for tumor development at 4, 5, 6 weeks post-initiation using high-resolution 

ultrasound (as described above) to confirm tumor establishment and interval growth.  Animals 

with established tumors (baseline 10-220 mm3 by 6 weeks post-initiation; median 68 mm3) were 

randomized by tumor burden within 24 hours of baseline imaging to either control or experimental 

treatment arms. Researchers performing health checks, ultrasound imaging and interpretation were 

blinded to cohort allocation.  Isotype (control) arm consisted of 200 μg/mouse Rat IgG2a 

(BioXCell) + 100 μg/mouse Mouse IgG1 (BioXCell).  Experimental arms consisted of anti-PD-1 

95 (BioXCell; Clone 29F.1A12; Rat IgG2a; 200 μg/mouse, dosed i.p. every 2-3 days), anti-TIGIT 

71 (Absolute Antibody; Clone 1B4; Mouse IgG1; 100 μg/mouse, dosed i.p. every 2-3 days), CD40 

agonist 96 (BioXCell; Clone FGK4.5/FGK45; Rat IgG2a; 100 μg/mouse, dosed i.p. once every 4 

weeks) monotherapy or combination therapy as described in the text.  Animals were treated for 4 

weeks and weekly weights and ultrasound imaging was performed as described. Tumor response 

was assessed on all evaluable animals at time points (t) >10 days using modified RECIST 

(mRECIST) criteria, previously adapted for volumetric imaging and preclinical testing 64. Briefly, 

tumor volume (V) at each time point (t) was compared to the baseline tumor volume (Vbaseline) in 

a given animal: (percent change) ΔVolt = ((Vt -Vbaseline)/Vbaseline)*100%. For each animal, we 

calculated both a “BestResponse” (defined as the minimum ΔVolt for t>10 days)  and 
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“BestAvgResponse” (defined as the minimum average for t > 10 days, where for each time point 

(t), the average ΔVolt reflects that time point’s ΔVolt and all prior ΔVolt). Modified RECIST 

(mRECIST)  criteria were defined as: mCR = BestResponse <−95% and BestAvgResponse < 

−40%; mPR = BestResponse < −50% and BestAvgResponse < −20%; mSD = BestResponse < 

35% and BestAvgResponse < 30%; mPD = not otherwise specified. We also revised the mPD 

category to be more stringent and consider animals as mPD if the final tumor measurement showed 

³ 20% growth from baseline. See 64 for full details on mRECIST derivation and validation. 

Retrograde pancreatic duct delivery 

Retrograde pancreatic duct instillation of lentivirus has been previously described 68.  We 

adapted this technique in a number of ways.  Briefly, the ventral abdomen was depilated (using 

clippers or Nair) 1-2 days prior to surgery. Animals were anesthetized with Isoflurane and the 

surgical area was disinfected with alternating Betadine/Isopropyl alcohol. A small skin incision 

was made in the anterior abdomen (~2-3 cm midline incision extending caudally from the xiphoid 

process). A subsequent incision was made through the linea alba and incision edges were secured 

in place with a Colibri retractor. The remainder of the procedure was conducted under a Nikon 

stereomicroscope.  A moistened (with sterile 0.9% saline) sterile cotton swab was used to gently 

move the left lobe of the liver cranially towards the diaphragm. A second moistened sterile cotton 

swab was used to gently reposition the colon/small intestine into the right lower abdominal 

quadrant, until the duodenum was visualized.  The duodenum was gently repositioned (still in the 

abdominal cavity) using moistened cotton swabs until the pancreas, common bile duct and 

sphincter of Oddi were well visualized. The common bile duct and cystic duct were gently 

separated from the portal vein and hepatic artery using blunt dissection with Moria forceps. A 

microclip was placed over the common bile duct (cranial to pancreatic duct branching) to prevent 
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influx of the viral particles into the liver or gallbladder, forcing the viral vector retrograde through 

the pancreatic duct. To infuse the viral vector, the common bile duct was cannulated with a 30-

gauge needle at the level of the sphincter of Oddi and 150 μL of virus was injected over the course 

of 30 seconds.  Gentle pressure was applied at the sphincter of Oddi upon needle exit to prevent 

leakage into the abdominal cavity.  Subsequently, the microclip and Colibri retractor were 

removed. The peritoneum was closed using running 5-0 Vicryl sutures. The cutis and fascia were 

closed using simple interrupted 5-0 Vicryl sutures.  The entire procedure was conducted on a 

circulating warm water heating blanket to prevent intra-operative hypothermia.  All mice received 

pre-operative analgesia with sustained-release Buprenorphine (Bup-SR) and were followed post-

operatively for any signs of discomfort or distress. For retrograde pancreatic ductal installation, 

male mice (aged 3-6 weeks) and female mice (aged 3-8 weeks) were transduced with 250,000 TU 

(transducing units, see viral titering) in serum-free media (Opti-MEM; Gibco).   

Consistent with prior reports using retrograde pancreatic duct delivery of Cre-containing 

lentivirus 68, we observed that 17-24% of animals developed small soft tissue sarcomas (most 

frequently near the abdominal wall incision site) in addition to development of PanIN/PDAC in 

the pancreas, but these were easily discernable from pancreatic tumors. 

For experiments involving CD8 depletion, animals were dosed with CD8a depleting 

antibody (BioXCell, Clone 2.43, 200 μg/mouse, dosed intraperitoneally [i.p.] every 3-4 days) 

beginning one day prior to surgery. For TIGIT agonist experiments, animals were dosed with 

TIGIT agonistic mAb (BioXCell, Clone 1G9, Mouse IgG1, 100 μg/mouse, dosed intraperitoneally 

[i.p.] every 2-3 days) or Mouse IgG1 isotype control Ab (BioXCell, 100 μg/mouse, dosed 

intraperitoneally [i.p.] every 2-3 days) beginning one day after surgery.  
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METHOD DETAILS  

Molecular cloning 

H11-mScarletSIIN and R26-dCas9-VPR-mNG targeting vectors were generated using gBlocks 

(IDT) and Gibson assembly 97,98. U6-sgfiller-eCas9-T2A-BlastR was generated using Gibson 

assembly.  In order to insert sgRNAs, the vector was digested with FastDigest Esp3I (Thermo 

Fisher) and ligated with BsmBI-compatible annealed oligonucleotides. sgRNAs targeting Hipp11 

or Rosa26 were designed using Benchling (www.benchling.com), which was also used to predict 

potential off-target sites. 

Lentiviral vectors (LV-PGK-Cre, LV-PGK-Cre-EFS-mScarletSIIN, LV-PGK-PVR-P2A-Cre-

EFS-mScarletSIIN, LV-U6-sgRNAfiller-PGK-Cre-EFS-mScarletSIIN) were generated using 

Gibson assembly. In order to insert sgRNAs into LV-U6-sgRNAfiller-PGK-Cre-EFS-

mScarletSIIN, the vector was digested with FastDigest Esp3I (Thermo Fisher) and ligated with 

BsmBI-compatible annealed oligonucleotides. CRISPRa-compatible sgRNAs targeting Pvr were 

adapted from 99. See Table S5 for sgRNA and oligonucleotide sequences.  All vectors with detailed 

maps and sequences will be deposited into Addgene. 

Lentiviral production/titering 

Lentiviral plasmids and packaging vectors were prepared using endotoxin-free maxiprep 

kits (QIAGEN). Lentiviruses were produced by co-transfection of HEK293 cells with lentiviral 

constructs plus packaging vectors: PsPax2 (psPAX2 was a gift from Didier Trono - Addgene 

plasmid # 12260 ; http://n2t.net/addgene:12260 ; RRID:Addgene_12260) and Pmd2.G (pMD2.G 

was a gift from Didier Trono - Addgene plasmid # 12259 ; http://n2t.net/addgene:12259 ; 

RRID:Addgene_12259). Viral supernatant was harvested 48 and 72 hours post transfection, 

filtered through a 0.45 μm low-protein binding PVDF filter (EMD Millipore), and concentrated 
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by ultracentrifugation (25,000 rpm for 2 hours at 4°C).  Concentrated virus was resuspended in 

Opti-MEM (Gibco) and lentiviral aliquots were frozen and stored at -80°C.  Lentiviral titers were 

determined using Green-Go cells as previously described 100. 

Flow cytometry 

Flow cytometry of pancreatic organoids 

Pancreatic organoids were grown as described above.  Where indicated, organoids were 

treated with interferon-gamma (10 ng/mL; PeproTech) for 48-72 hours prior to analysis.  

Organoids were dissociated using TrypLE (15 minutes to minimize cleavage of surface proteins) 

washed with PBS, and filtered through 70 µm filters. Single cell suspensions were pelleted at 2000 

rpm and transferred to 96-well round-bottom plates for flow cytometric staining. Prior to surface 

staining, cell pellets were resuspended in Live/Dead dye (Ghost Dye Red 780, Tonbo Biosciences) 

diluted 1:1000 in PBS on ice for 20 minutes in the dark.  Surface staining was performed on cells 

in PBS with 1% heat-inactivated FBS on ice for 30 min in the dark. Antibody information in Table 

S4. 

Flow cytometry of murine PDAC 

Tumors/pancreata were collected in RPMI 1640 supplemented with 1% heat-inactivated 

FBS. Tumors were finely minced with scissors in MACS C tubes (Miltenyi Biotec), and digested 

for 30 minutes at 37°C with gentle agitation in 5 mL digestion buffer [1x HBSS (Gibco), 1 mM 

HEPES (Gibco), 1% heat-inactivated FBS, 125 U/mL collagenase IV (Worthington), 40 U/mL 

DNase I, grade II (Roche)]. Pancreas tumors were processed on a gentleMACS Octo Dissociator 

using the “m_spleen_04” program. Digestion buffer was neutralized with 5 mL heat-inactivated 

FBS, washed with PBS, and filtered through 70 µm filters. Single cell suspensions were pelleted 

at 1500 rpm with slow deceleration, and transferred to 96-well round-bottom plates for flow 
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cytometric staining. Spleen samples were mashed through 70 µm filters, collected in RPMI 1640 

supplemented with 1% heat-inactivated FBS and pelleted. Red blood cells were lysed with ACK 

buffer for 2 min before cell suspension neutralization with PBS, pelleted for plating and transferred 

to 96-well round-bottom plates for flow cytometric staining. Prior to surface staining, cell pellets 

were resuspended in Live/Dead dye (Ghost Dye Red 780, Tonbo Biosciences or Zombie Aqua 

Fixable Viability Dye, BioLegend) diluted 1:1000 in PBS on ice for 20 minutes in the dark. Surface 

staining was performed on cells in PBS with 1% heat-inactivated FBS on ice for 30 min in the 

dark. Cell pellets were fixed overnight in 1X fixation buffer (eBioscience), prior to 

permeabilization and intracellular staining for 1 hour in the dark at room temperature. Full 

antibody information in Table S4. 

Flow cytometry of human PDAC 

All human studies were performed using de-identified human biospecimens and studies 

were approved by the Massachusetts General Brigham Institutional Review Board and conducted 

according to the principles expressed in the Declaration of Helsinki. The study was in strict 

compliance with all institutional ethical regulations. All tumor samples were surgically resected 

primary pancreatic ductal adenocarcinomas and were de-identified prior to researcher processing. 

Briefly, freshly resected human PDAC specimens were transferred in RPMI 1640 on ice to the 

laboratory. Pancreas tumors were finely minced with scissors in MACS C tubes, and processed as 

described above for murine PDAC. Healthy peripheral blood (human PBMCs) from IRB-

consented healthy individuals was purchased from StemCell. Antibody information in Table S4. 

As all biospecimens were de-identified, information about age and sex is unavailable. PD-1 

staining was omitted during processing of one PDAC biospecimen, so this sample was not included 

into co-expression analyses with PD-1, but was included in other analyses. 
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For all flow cytometry experiments, samples were acquired on BD LSR II or LSR Fortessa 

machines, cell sorting was performed on a BD Aria IIIu. UltraComp eBeads (eBioscience) or 

single-fluorophore expressing organoids were used for compensation. For murine in 

vivo experiments, endogenous CD44loCD8+ T cells and healthy spleens were used for negative 

controls and gating. For human experiments, healthy peripheral blood was used as negative 

controls and gating. For in vitro experiments, unstained controls and fluorescence minus one were 

used for negative controls and gating. Specimens with fewer than 100 live CD8s (mouse) or 200 

live CD8s (human) were not considered for further immunophenotyping. FACS data was analyzed 

using Flowjo v10 software (BD Biosciences). 

Immunohistochemistry and pathology review 

Tissues were preserved in zinc formalin fixative for 16-24 hours within 1 hour of necropsy, 

transferred to 70% EtOH, and processed for paraffin embedding. For immunohistochemical 

staining, slides were blocked using Endogenous Peroxidase Block (Dako) or Bloxall Endogenous 

Peroxidase and Alkaline Phosphatase Block (Vector Labs) according to manufacturer instructions, 

followed by incubation with horse serum (Vector Labs) for 1 hour at room temperature. Slides 

were incubated with primary antibody overnight at 4°C. Details on epitope retrieval and primary 

antibodies can be found in Table S4.  The following day, slides were incubated with the 

appropriate anti-species HRP-conjugated secondary antibody (Vector Labs) for 30 minutes at 

room temperature. Slides were developed with DAB Peroxidase Substrate Kit (Vector Labs) unless 

otherwise indicated. 

For CD8 and CD4 co-staining, slides were blocked with Bloxall and normal horse serum 

as above. Slides were incubated with primary rabbit anti-CD8 antibody (Abcam EPR21769, 

1:1000) overnight at 4°C and with secondary Alkaline phosphatase anti-Rabbit IgG for 30 minutes 
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at room temperature. Slides were then developed with Vector Black Alkaline phosphatase 

substrate (Vector Labs) and blocked again with Bloxall and horse serum. Slides were incubated 

with primary rabbit anti-CD4 (Abcam EPR19514, 1:400) for 3 hours at room temperature and 

secondary HRP conjugated anti-Rabbit antibody for 30 minutes. Slides were developed with HRP 

Vina Green Chromogen (Biocare Medical).  All murine histologic diagnoses were confirmed with 

a pathologist (R.T.B.) specialized in rodent pathology. 

For CD155 IHC in human tissues, a pancreatic adenocarcinoma tissue microarray 

(PA1002b) was purchased from Biomax. Anti-CD155 (EPR22672-151] (ab267788; Abcam) was 

used at 1:500 dilution (final 1.01 μg/mL) following HIER with Tris-EDTA pH 9 (ab93684; 

Abcam). Slides were reviewed and scored by a board-certified pathologist (G.E.) with 

membranous staining on tumor cells scored based on intensity of staining as 0, 1+, 2+, 3+. Cores 

that were missing from TMA (n=1), lacked tumor epithelium (n=2), or that were found on 

pathologic review to likely represent pancreatic neuroendocrine tumor (n=1) were excluded from 

further analysis. H-scores were obtained by the formula: (3*percentage of strongly staining cells 

[3+]) + (2* percentage of moderately staining cells [2+]) + (1*percentage of weakly staining cells 

[1+]) as previously described 54. Histopathologic and immunohistochemical analyses were 

performed using QuPath 101. 

Nanostring GeoMx Digital Spatial Profiling 

FFPE tissues were sectioned and processed according to Nanostring GeoMx DSP guidelines. 

Briefly, 5 µm sections were placed on SuperFrost Plus slides. Details on epitope retrieval and 

primary antibodies can be found in Table S4.  Tissue morphology markers in the mouse solid 

tumor morphology kit included PanCK and CD45, and a custom CD8a stain was additionally 

included. Protein probe sets included the Immune Cell Profiling Core, IO Drug Target Module, 
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Immune Activation Status Module, and Immune Cell Typing Module. Geometric areas of interest 

(AOIs) were annotated for therapy response and spatial localization as tumor center, tumor 

periphery, CD8_high, CD8_low, responder, non-responder. The GeoMx platform was similarly 

used for mfIHC with the antibodies detailed above. 

Data QC, normalization, and feature-based selection 

Raw expression data were checked for quality and ERCC-normalized prior to statistical 

analysis. First, expression data were checked for hybridization quality by calculating hybridization 

factors. A hybridization factor for a given sample was defined as the mean of all HYB-POS values 

in the dataset divided by that sample’s HYB-POS value. Any samples with a hybridization factor 

of 10 or more were discarded.  

Three isotype control molecules were measured for each sample: Rb IgG, Rt IgG2a, and 

Rt IgG2b. Rt IgG2b, was removed as it showed a reduced correlation with other IgG controls and 

a greater root mean squared error with the other two (RMSE = 0.29 and 0.30, respectively). 

Samples were normalized by calculating a normalization factor based on the geometric mean of 

each sample’s Rb IgG and Rt IgG2a expression values. The mean of these geometric means was 

divided by a given sample’s geometric mean value to generate that sample’s specific normalization 

factor. Normalization was then performed by multiplying all proteins for a given sample by its 

respective normalization factor.  

Forty proteins—including S6, Histone H3, GAPDH housekeeping proteins—were 

measured. These proteins were filtered based on signal to noise ratio (SNR), as calculated by the 

ERCC-normalized expression for that feature divided by that sample’s geometric mean of Rb IgG 

and Rt IgG2a. A feature was retained if the median SNR value was greater than one. One protein, 
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CD163, had a median SNR of 0.29, but was kept for downstream analysis given prior reports of 

M2 macrophage polarization in immune evasion. 

Statistical Analyses 

Hierarchical clustering was performed on the z-scores of the log2 transformed normalized data 

using the R package pheatmap 102,103. Differential expression analysis was performed between 

CD8- compartments (2 mice; 11 ROIs) and CD8+ compartments (3 mice; 25 ROIs). To account 

for multiple samples taken within a given mouse, a mixed effect model implemented from the R 

package lmerTest 104. For a given protein, its log2 transformed expression was used as the 

dependent variable, CD8 status (CD8-, CD8+) was used as a fixed effect and mouse ID was used 

as the random effect (with random intercept). Satterthwaite's approximation 104 was used to 

estimate the degrees of freedom for p-value calculation. Any protein with a singular fitted model 

were discarded. To account for multiple hypothesis testing, the Benjamini-Hochberg FDR was 

used 105. 

 

Single-cell RNA sequencing  

Sorted cells were washed three times in 1x PBS (calcium and magnesium free) containing 

0.04% w/v BSA, and then quantified and titrated to a final concentration of approximately 300 

cells/µL. Using the Chromium Single Cell 3’ Solution (v3) according to manufacturer’s 

instructions, approximately 2000-5000 cells were partitioned into Gel Beads in Emulsion (GEMs) 

with cell lysis and barcoded reverse transcription of mRNA into cDNA, followed by amplification, 

enzymatic fragmentation and 5’ adaptor and sample index attachment. The recovery rate was ~800 

cells per sample after filtering for quality control. Sample libraries were sequenced on the HiSeq 
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X Version 2.5 (Illumina) with the following read configuration: Read1 28 cycles, Read2 96 cycles, 

Index read 8 cycles. 

Single-cell RNA sequencing analysis 

Data processing, cell clustering, and differential expression analysis 

Raw sequencing data was processed using Cell Ranger, version 3.0.2, and sequencing reads 

were aligned to the mm10 reference mouse transcriptome (version 3.0.0). After processing, Cell 

Ranger reported 789 cell-associated barcodes and detected 31,053 genes. These data were loaded 

into R, version 4.0.3, and further processed with Seurat, version 3.2.2 106. Genes not expressed in 

any cells were filtered out. After this, low-quality cells containing more than 10% of reads 

matching the mitochondrial genome were excluded. Cells with less than 100 detected genes were 

then filtered. Finally, cells lacking expression of either Cd8a or Cd3e were removed, and cells 

exceeding the 97th percentile (4,065) for number of detected genes were excluded to remove 

probable doublets. The resulting matrix used for downstream analyses was defined by 447 cells 

and 15,065 genes. Data normalization and scaling, variable feature selection, cell clustering, and 

differential gene expression analysis was performed using Seurat. Data were normalized by total 

expression per cell and scaled using a factor of 10,000 and log transformed (natural scale). The 

top 2,000 variable genes were selected using Seurat’s default “vst” method. The expression of 

these genes was then scaled and centered, and these genes were then used for all downstream 

analysis. Principal component analysis (PCA) was then performed for dimensionality reduction, 

and the first 30 principal components were selected with the elbow method as a heuristic. 

A k-nearest neighbor graph (KNN, k=20) was constructed in PCA space using the top 30 

principal components. Four clusters were detected using the Louvain method of community 

detection (default parameters and resolution = 0.69) 107.  Data was visualized using the Uniform 
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Manifold Approximation and Projection (UMAP) algorithm implemented in Seurat 108,109. Default 

parameters were used, with the following exceptions: the method parameter (“umap-learn”) and 

the metric parameter (“correlation”). Differential gene expression (min logfc = 0.4; min pct = 20) 

between clusters was assessed using the default Wilcoxon Rank Sum test.  

Gene Module Analysis 

Seurat’s AddModuleScore function (control parameter = 8) was used to calculate gene 

module scores for all cells. For this analysis, gene sets were derived from previously published 

gene modules (Table S2). For datasets providing human gene modules, a custom R script was 

generated to retrieve corresponding mouse orthologs from Ensembl with the biomaRt package 

(version 2.42.0) 110,111. 

To derive de novo gene modules from our scRNA-seq dataset, the Pathway and Gene Set 

Overdispersion Analysis (PAGODA) 50 framework from the SCDE package (version 2.14.0) was 

used. The analysis was performed starting with the raw counts for the same 447 cells that remained 

after filtering in the previous analysis. The knn error model was fit using min.count.threshold = 2 

and k = ncol(cd/4), where “cd” represented the matrix after clean.counts was performed with 

default parameters. Gene expression magnitudes were then normalized with trim = 3/ncol(cd) and 

max.adj.var=5. De novo gene modules were then determined using trim = 7.1/ncol(varinfo$mat) 

and n.clusters = 50 and otherwise default parameters for the pagoda.gene.clusters function. The 

top three de novo gene sets (modules 30, 36, and 45) with the highest over-dispersion Z score 

(adjusted for multiple hypotheses) that best distinguished the cellular subpopulations defined by 

SCDE were selected, and all cells were scored for these modules in Seurat as described above. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS  
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Statistical Analyses 

All graphs and statistical analyses were generated with GraphPad Prism 8 or in the R statistical 

programming language (R-project.org) as described above.  The following statistical tests were 

used in this study: (1) Two-sided Mann-Whitney test, (2) t-test with Welch’s correction, (3) 

Kolmogorov-Smirnov (KS). Figure legends specify the statistical tests used, exact value of n, 

definition of center, and dispersion and precision measures. Figure legends also specify how 

significance was defined. 

Clinical Data Analysis 

RNA-seq gene expression profiles (normalized counts) from primary tumors of lung 

adenocarcinoma (LUAD) 112, pancreatic ductal adenocarcinoma (PAAD) 26, and colorectal 

adenocarcinoma (COAD) 113 patients were obtained from The Cancer Genome Atlas (TCGA, 

gdac.broadinstitute.org). Patients within each cohort were limited to those included in the TCGA 

Pan-Cancer Atlas study 114 for which mutational profiles were available on cBioPortal (cBioPortal 

for Cancer Genomics, cbioportal.org) 115. Patients in the PAAD cohort were further limited to 

those included in the TCGA PAAD study 26. Within each cancer type, patients were grouped 

according to KRAS and TP53 mutational status, as retrieved from cBioPortal (KP = alterations in 

KRAS and in TP53; nonKP = the remainder of the cohort). Standardized expression levels of PVR 

were illustrated across KP and nonKP patient groups using Empirical Cumulative Distribution 

Function (ECDF) plots where significance was assessed using a Kolmogorov-Smirnov test.  

Neoepitope Prediction 

In the TCGA cohort, 148 PDAC patients were analyzed (of 150). One patient lacking a 

normal BAM file was excluded, and another patient was also excluded due to hypermutation 26. In 

the DFCI-PancSeq cohort, 57 patients with (1) annotated mutations, (2) both WES and RNA-Seq 
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data, and (3) sufficient tumor purity 27 were analyzed. Binary Alignment Map (BAM) files were 

obtained for PancSeq (aligned to GRCh37) and for TCGA (aligned to GRCh38). Thus, GRCh37 

was used as the reference genome for the PancSeq cohort in all downstream analyses, and GRCh38 

was used for the TCGA cohort. 

HLA typing was performed using two programs and with both RNA-Seq and WES data to 

assess robustness of HLA allele calls. HLA alleles for classical genes (HLA-A, -B, and C) were 

called using the HLA genotyping algorithm, OptiType, version 1.3.1 116, as well as seq2HLA, 

version 2.3 117, which was also used to identify alleles for HLA-E. Tumor and normal WES BAM 

files were used to create inputs to OptiType, which outperforms peer programs in WES-based 

HLA-typing 118, and RNA-Sequencing BAMs were used to create inputs to seq2HLA. WES BAMs 

were filtered to retain only reads mapping to the HLA region (6:28477897-33448354 in GRCh37; 

chr6:28510120-33480577 in GRCh38) with the genomics software suite, Samtools, version 1.10 

119. The BAMs were then converted to FASTQ format, and then filtered with the genome mapping 

tool, RazerS 3, version 3.5.8 120, as recommended in the OptiType documentation. RNA-Seq 

BAMs were sorted, converted to FASTQ format, and compressed before being used as inputs to 

seq2HLA. Both programs were run with default parameters. 

A custom python script was then employed to evaluate concordance between (1) normal 

and tumor HLA allele calls from WES and (2) seq2HLA and OptiType calls. Only 4/342 alleles 

(0.58%) in the PancSeq cohort and only 2/888 (0.23%) alleles in the TCGA cohort were called 

differently between tumor and normal WES-based calls. Given the consistency of OptiType calls 

for tumor and normal WES data, the OptiType allele was accepted as the final call to resolve 

discrepancies between OptiType and Seq2HLA. 
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Mutation Annotation Format (MAF) files were obtained for patients in both datasets and 

converted to Variant Call Format (VCF) files. VCF files were filtered to only retain single 

nucleotide variants (SNVs). Only PASS variants were available in the PancSeq MAF file and were 

thus not filtered further 27. Mutations in the TCGA cohort included non-PASS variants, which 

were all filtered in this cohort with the exception of some non-PASS mutations in known PDAC-

associated genes that had been marked as either panel_of_normals, clustered_events, or 

homologous_mapping_event in the TCGA MAF file. For these cases, genes that had variants 

marked as non-PASS more than twice by at least one of these filters were reconsidered. The 

following genes with a known association with PDAC based on a literature search were retained: 

KRAS, TP53, GNAS, RNF43, PLEC, FLG, AHNAK, APOB, CSMD1, PLXNA1, MCM6, MKI67, 

and SIPA1. This step was intended to reduce false negatives, and in the case of KRAS, this step 

retrieved 30 variants at residue position 12, a site known to confer oncogenic properties when 

mutated. 

Indel variants were called using the variant callers, Strelka2, version 2.9.2 121, and Scalpel, 

version 0.5.4 122. The structural variant and indel caller, Manta, version 1.6.0 123, was run prior to 

Strelka2 and these results were incorporated into the indelCandidates parameter for Strelka2. 

Scalpel was run with default parameters, with a bed file derived from the CGHub bitbucket account 

(https://cghub.ucsc.edu; whole_exome_agilent_1.1_refseq_plus_3_boosters.targetIntervals.bed). 

For the PancSeq cohort, the unmodified first 3 columns of this file were used. For the TCGA 

cohort, the coordinates in this file were converted to GRCh38 coordinates using the LiftOver tool 

from the UCSC genome browser 124. Scalpel failed to call variants for 13/148 TCGA patients due 

to excessive read buildup at some loci. To enable variant calling with Scalpel for these patients, 

the Picard tools’ DownsampleSam function (http://broadinstitute.github.io/picard/) was employed 
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to randomly downsample reads in the tumor BAM files of these patients by decrements of 10%, 

starting at 50%. This was done until Scalpel successfully called variants for each patient. Ten 

patients succeeded at 50%, two at 40%, and one at 30%.  

To reduce the contribution of caller-specific biases and hence the indel false positive rate, 

only those indels that were called and marked as PASS by both Scalpel and Strelka2 were retained. 

Variant call format (VCF) files containing the union of PASSed variants from Strelka2 and Scalpel 

were generated with a custom batch script, and variant allele frequencies were calculated using 

statistics output by Strelka2. These indel VCF files were then merged with the corresponding SNV 

VCF files for each patient using the vcf-shuffle-cols and vcf-concat functions from VCFtools, 

version 0.1.13 125.  

Variant consequence was then annotated using the Ensembl Variant Effect Predictor 

(VEP), version 99 126. The corresponding VEP cache for both GRCh37 and GRCh38 was 

downloaded and used to run the software offline. VEP was run using the Wildtype and 

Downstream plugins to annotate the effects of indels. The following parameters were employed: -

-symbol, --terms=SO, --cache, --offline, --transcript_version, --pick. The --pick parameter was 

reordered from the default to report the transcript with the most extreme consequence for each 

variant: rank, canonical, appris, tsl, biotype, ccds, length, mane.  

Neoepitopes were predicted with the HLA allele calls and variant effect predictions using 

the antigen prediction toolkit, pVACtools, version 1.5.7 127. For each mutation, mutant peptides 

were generated for lengths of 8-, 9-, 10-, and 11- amino acids, the spectrum of peptide lengths 

known to bind to MHC class I. MHC:peptide binding affinity was predicted for all peptide:MHC 

allele pairs with NetMHC-4.0, NetMHCpan-4.0, SMM (version 1.0), and SMMPMBEC (version 
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1.0) 119,128–130, and the median value across all affinity predictions was taken as a final, composite 

measure of binding affinity. 

After predictions were made by pVACtools, candidate neoepitopes from all patients were 

merged into a single matrix and filtered using a custom python script and the following criteria 

(based on parameters output by pVACtools): median peptide:MHC binding affinity < 500 nM, 

tumor DNA depth >= 5, tumor DNA variant allele frequency >= 0.07,  cysteine_count <=1, and a 

median wildtype:mutant peptide binding affinity fold-change >= 1. After filtering, the total number 

of remaining candidates was summed per patient and predicted neoepitopes were classified in the 

following binding affinity ranges: 50-500 nM, 10-50 nM, and 0-10 nM. Neoepitopes were also 

classified as nonbinders-to-binders (WT nM > 1000 and MT < 500 nM) and nonbinders-to-strong 

binders (WT nM > 1000 nM and MT < 50 nM). All frameshift-derived neoepitopes with a binding 

affinity < 500 nM and no corresponding wildtype peptide sequence were also classified as 

nonbinders-to-binders. 

scRNA-seq analysis of human PDAC 

Human PDAC scRNA-Seq data 52 was downloaded from the Genome Sequencing Archive 

(accession: CRA001160). A count matrix of 41,987 pre-processed cells was prepared from these 

data and used to create a Seurat object. Genes expressed in less than 10 cells were filtered out. 

Data normalization, scaling, variable feature selection, and principal components analysis were 

then carried out as described for the murine scRNA-Seq analysis. The first 15 principal 

components were used for the construction of the k-nearest neighbor graph and the UMAP plot 

(metric parameter = Euclidean). Clusters were then assigned using the Louvain method with a 

resolution of 1.  
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For the T cell subset analysis, cells were selected out from the larger dataset based on 

expression of CD8A and either CD3E, CD3D, or CD3G. Cells expressing both CD3 and CD4 were 

selected in the same way, using CD4 expression instead of CD8A. Genes detected in less than 5 

cells were then excluded from the 2 subset matrices individually. These two subsets were then 

merged to form a new matrix consisting of 3,409 cells and 18,349 genes. These data were then 

processed as described for the whole dataset, revealing batch effects that caused cells to separate 

in UMAP space according to their patient of origin. To construct a batch-corrected UMAP, 

Seurat’s integration workflow was performed 131. Cells were split into individual matrices 

according to their patient of origin, and matrices corresponding to patients possessing less than 50 

cells were excluded to accommodate a k.filter parameter of 50 for the integration anchor 

identification step. 3,320 cells remained after this step. Pearson residuals were then utilized for 

data normalization and scaling, as implemented in the SCTransform function 132. 3,000 integration 

features were then selected and incorporated as input in the integration anchors identification step. 

Principal components analysis, k-nearest neighbor graph and UMAP construction (PC dimensions 

= 14), and cluster annotation (resolution = 0.8) were then performed as described before. For 

feature plotting and differential gene expression analysis, the UMI count matrix of these cells was 

separately normalized and scaled as described for the whole dataset. Differential gene expression 

between clusters was then assessed with the Wilcoxon Rank Sum test. Genuine T cell clusters (0, 

1, 8, and 9) were then distinguished by differentially higher expression of CD3 and/or CD4 and 

CD8A and by a differentially reduced or complete lack of expression of antigen-presenting cell 

markers that defined other clusters. To plot murine TIL-derived PAGODA modules on human 

data, the custom R script described for module analysis of murine scRNA-Seq was employed to 

retrieve human orthologs of each gene comprising each PAGODA module. The human orthologs 
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were then used to compute module scores with Seurat’s AddModuleScore function (control 

parameter = 8). 
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Abstract 
Immune evasion is a hallmark of cancer, and therapies that restore immune surveillance have 

proven highly effective in cancers with high tumor mutation burden (TMB) (e.g. microsatellite 

instable (MSI) colorectal cancer (CRC)). Whether low TMB cancers, which are largely refractory 

to immunotherapy, harbor T cell neoantigens capable of engaging adaptive immunity remains 

unclear. Here, we show that tumors from all patients with microsatellite stable (MSS) CRC harbor 

predicted high-affinity clonal neoantigens despite low TMB. Unexpectedly, these neoantigens are 

broadly expressed at lower levels relative to those in MSI CRC, suggesting a potential role of 

antigen expression in tumor immune surveillance. To test this, we developed a versatile platform 

for functional interrogation of neoantigens with variable expression and applied it to novel 

preclinical colonoscopy-guided mouse models of CRC. While high expression of multiple high-

affinity Major Histocompatibility Complex I (MHC-I)-restricted neoantigens universally resulted 

in tumor rejection, low expression resulted in poor T cell cross priming and tumor progression. 

Strikingly, experimental or therapeutic rescue of priming rendered T cells fully capable of 

controlling tumors with low neoantigen expression. These findings underscore a critical role of 

neoantigen expression levels in immune evasion and suggest that poor expression or presentation 

may be a general feature of neoantigens acquired early in tumorigenesis. Finally, poorly expressed 

neoantigens, commonly excluded in tumor vaccine pipelines, may hold untapped therapeutic 

potential. 

 

Introduction 
Approximately 12% of CRC has defects in DNA mismatch repair (MMR) resulting in 

MSI1, with a high burden of mutation-derived tumor-specific antigens (neoantigens) that 

underlies favorable response to ICB2–4. The remaining majority of CRC is MSS with a lower 
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TMB. However, MSS CRC has more mutations, on average, than some cancers that respond 

favorably to ICB1,5, and cell surface presentation of neoantigen-derived epitopes (neoepitopes) 

on Human Leukocyte Antigen class I (HLA-I) has been observed in a small study of this tumor 

subtype6. This suggests that other factors, both tumor intrinsic and microenvironmental, likely 

contribute to the poor immunogenicity of MSS CRC and other immune “cold” cancers. Indeed, 

The intestinal microenvironment is tolerant to commensal bacteria and food-derived antigens, 

and these mechanisms may be co-opted by tumors to undermine immune responses7,8. In 

addition, the vast majority of CRC is associated with aberrant WNT/β-catenin signaling1, which 

can promote exclusion of dendritic cells and failure to prime productive T cell responses in 

melanoma and liver cancer9,10. To rigorously study the processes underlying T cell dysfunction 

and immunotherapy resistance, it is critical that preclinical models faithfully recapitulate the 

tissue microenvironment and genetics of the human disease. In addition, models should enable 

isolation of defined antigen-specific T cell responses. To our knowledge, no single model of 

CRC meets all of these criteria. Therefore, we adapted a technique employing endoscope-guided 

submucosal injection11 to induce genetically-defined tumors in the mouse colon harboring model 

CD8+ T cell antigens. 

An additional feature we sought to model is the role of neoantigen expression level in 

modulating the anti-tumor immune response. While mutations in cancer are generally enriched in 

poorly expressed genes due to reduced transcription-coupled repair12, this pattern is absent in 

MMR-deficient tumors13. This raises the possibility that poor immunogenicity of MSS CRC and 

other MMR-proficient cancers is not only due to lower burden but also lower expression of 

neoantigens. It is appreciated that antigen expression is a central determinant of the magnitude of 

T cell response in viral infection14, and low neoantigen expression or affinity for MHC-I results in 
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tumor immune evasion in flank transplant mouse models15,16. It is also clinically appreciated that 

tumors frequently evade immune recognition via loss of heterozygosity of HLA alleles and 

dysregulation of antigen processing and presentation17. Despite these results, there remains some 

controversy surrounding the role of initial T cell receptor (TCR) signaling strength in shaping T 

cell fate and function18. In cancer specifically, the impact of low neoantigen expression on T cell 

dysfunction is poorly characterized, and it is unclear if such T cell responses persist in the tumor 

and lymphoid tissues and are amenable to reinvigoration by ICB. As a proof-of-principle of our 

novel model system, we undertook deep mechanistic characterization of the role of neoantigen 

expression in tuning the anti-tumor T cell response, and performed preclinical trials of promising 

immunotherapeutic combinations and neoantigen vaccination.  

 

Results 
Microsatellite stable CRC is defined by both lower burden and expression of neoantigens. 

To guide development of a mouse model enabling tracking of tumor-specific T cell responses, we 

first developed a neoantigen prediction pipeline integrating multiple gold-standard HLA haplotype 

callers and affinity prediction algorithms (see Methods) and applied it to The Cancer Genome 

Atlas (TCGA) colorectal adenocarcinoma (COADREAD) sequencing dataset. This revealed that 

tumors from all MSS CRC patients (excluding rare cases with hypermutation) expressed at least 

14 (median of 121) single nucleotide variant (SNV)- or insertion/deletion (indel)-derived 

neoantigens with strong predicted binding to their respective HLA-I (IC50 ≤ 500 nM), despite a 

lower TMB compared to MSI-H (MSI high) CRC patients (Fig. 1a-b, Extended Data Fig. 1a). 

Interestingly, average neoantigen expression was also significantly lower in MSS versus MSI-H 

tumors (Fig 1b, Extended Data Fig. 1b), consistent with the enrichment of mutations in highly 

expressed genes observed in MMR-deficient tumors13. 
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Figure 1. Lower burden and expression of predicted neoantigens in MSS versus MSI-H CRC. 
Analysis of predicted neoantigens in human CRC (TCGA COADREAD) with high MSI (MSI-H), 
low MSI (MSI-L), and MSS. (a) Total expressed neoantigens with strong predicted HLA-I binding 
(IC50 ≤ 500 nM) by patient (excluding hypermutant MSS cases). (b) Spearman rank correlation 
matrix of MSS status (MSS versus MSI-H) and mean neoantigen expression, predicted affinity, 
burden, and clonality (adjVAF) by patient. Strength of correlation is represented by color scale 
(red = positive, blue = negative), and significance is indicated by asterisk with P- values displayed. 
(c) Proportion of patients expressing at least one clonal (adjVAF ≥ 0.5) neoantigen with very strong 
predicted binding affinity (IC50 ≤ 10 nM). (d-e) Analysis of expressed clonal neoantigens only. 
(d) Empirical cumulative distribution function of mean neoantigen expression by patient, showing 
enrichment of lower expression in MSS patients. Significance was assessed by two-sided 
Kolmogorov-Smirnov test. (e) Mean expression of clonal neoantigens by patient (FPKM, upper 
quartile-normalized).  
 

We also observed significantly lower average neoantigen clonality (tumor purity-adjusted 

variant allele frequency (adjVAF) ≥ 0.5) in MSS tumors (Fig. 1b, Extended Data Fig. 1c), which 

may contribute to lower expression. Given this and the fact that clonal neoantigens are more likely 

to elicit productive immune responses following immunotherapy19,20, we repeated our analysis 

focusing only on clonal neoantigens. Surprisingly, all tumors from MSS patients still expressed at 

least two clonal neoantigens (median of 42) (Extended Data Fig. 1d), and 58% of these tumors 

expressed at least one clonal neoantigen with predicted affinity as high or higher than the 

commonly used model CD8+ T cell antigen SIINFEKL (H-2Kb IC50 ≤ 10 nM)21 (Fig. 1c). 

Additionally, average clonal neoantigen expression was still significantly lower in tumors from 

MSS versus MSI-H patients (Fig. 1d-e). Allele-specific expression of all SNV-derived clonal 

neoantigens, while limited by sparse coverage, recapitulated these results (Extended Data Fig. 1e).  
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Finally, a published immunopeptidomics study of human MSS CRC identified three clonal 

HLA-I neoepitopes in two of five patient-derived organoids (PDOs) analyzed by mass 

spectrometry (MS)6. While this study is small and the number of neoepitopes validated is 

substantially lower than predicted, this suggests that ~40% of MSS CRC may present bona fide 

neoepitopes. Our analysis of these data showed that these neoepitopes fell in the 6th, 31st, and 45th 

percentiles of abundance of all detected HLA-I epitopes (Extended Data Fig. 1f-g). While peptide-

specific properties can influence the efficiency of separation and ionization in MS, this qualitative 

analysis suggests lower surface abundance than the majority of self-epitopes. Given that the 

detection limit of MS in these types of experiments is poorly defined, it is also possible that some 

bona fide neoepitopes were not recovered. Altogether, our integrated analysis of the TCGA and 

literature argue that many MSS CRC patients may harbor therapeutically actionable neoantigens. 

However, it remains poorly understood how low expression of neoantigens shapes resulting T cell 

responses in MSS CRC. 

 

Neoantigen expression level is a critical determinant of immune outcome in a novel 

orthotopic mouse model of colon cancer. We first developed an autochthonous model in 

Apcflox/flox mice initiated by lentivirus expressing Cre-recombinase and the ovalbumin antigen 

linked to luciferase (LucOS) (Extended Data Fig. 2a), as our group has previously done in models 

of lung cancer22 and soft-tissue sarcoma23. Injection with LucOS dramatically reduced tumor 

incidence in a T cell-mediated manner, and tumors that did arise invariably lost antigen expression 

(Extended Data Fig. 2b-e). To assess effects of antigen expression in established tumors, T cells 

were continuously depleted for 5 weeks, at which point tumors retained antigen expression. 

However, 7 weeks after withdrawal of depleting antibodies, tumors had grown and lost antigen 
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expression (Extended Data Fig. 2f-g). Given this potent immune editing and variability of antigen 

expression (Extended Data Fig. 2h), we developed an organoid model that maintains distinct levels 

of antigen expression throughout tumorigenesis. Organoid engineering also enables the use of a 

Kras mutant allele to model metastatic adenocarcinoma, which is confounded in the autochthonous 

model by concomitant Kras-driven fibrosarcoma formation (unpublished observations). 

 To enforce stable and continuous expression of antigen, we generated CRC organoids 

with SIINFEKL directly linked to Apc knockdown, an essential event in transformation. 

Specifically, we transformed normal colon organoids from C57Bl/6 KrasLSL-G12D; Trp53flox/flox 

(KP) mice with adenoviral Cre, followed by lentivirus expressing miR-30 shRNA against Apc 

(shApc)24 and SIINFEKL fused to the fluorophore mScarlet (mScarletSIIN) (Fig. 2a). Given that 

relief from Apc knockdown in shApc-transformed tumors results in regression24, dependence on 

shApc provides powerful selection against antigen loss (Extended Data Fig. 2i). Finally, deletion 

of Smad4, commonly mutated in CRC25, was achieved by CRISPR-Cas9 editing. Selection of 

organoids harboring complete mutation of all genes was performed following published 

protocols26,27. This resulted in isogenic quadruple-mutant (shAKPS) organoids modeling some of 

the most common genetic mutations in MSS CRC25 (Extended Data Fig. 2j), which are co-

mutated with high frequency in metastatic disease and associated with poor prognosis28. To 

investigate the importance of neoantigen expression level, we generated organoids with 400-fold 

range of mScarletSIIN fusion protein expression via modifications to the shApc-expressing 

lentivirus, including placement in reverse orientation to the promoter (EF1α initiates 

bidirectional transcription), removal of the Kozak consensus sequence, and replacing 25% of 

codons with rare variants (Fig. 2a-b, Extended Data Fig. 2k). Importantly, this flexible system is 
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broadly applicable to other cancers via linkage to relevant essential events (e.g. knockdown of 

Trp53) and is easily adapted to the study of other immune epitopes.  

  

Figure 2 A novel model of CRC reveals a critical role of neoantigen expression level 
in tumor immune evasion. (a) shApc-expressing lentiviruses used to transform KP organoids, 
with no (noSIIN), high (hiSIIN) and low (loSIIN) expression of SIINFEKL. Resulting shAKPS 
organoids were orthotopically-transplanted into the colons of syngeneic mice. (b) Expression of 
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mScarlet/mScarletSIIN and EGFP in expression variant organoids by flow cytometry. (c) TMT-
MS quantification of MHC-I bound SIINFEKL across expression variants. (d) Colonoscopy 
images of noSIIN tumor (RFP channel), hiSIIN scars (RFP channel, blue arrows indicate 
injection sites), and loSIIN tumor (GFP channel) 28 days post-transplant. (e) Efficiency of tumor 
formation 42 days post-transplant with noSIIN, hiSIIN, hiSIIN with antibody depletion of CD8+ 
T cells, and loSIIN organoids. (f-g) Stereoscopic brightfield and fluorescent images of loSIIN 
colon tumor (f) and liver metastases (g) 42 days post-transplant. (h-i) Example three color IHC 
(black = CD8, green = CD4, red = FOXP3) (h) and automated annotation by convolutional 
neural network (i). (j-k) Representative H&E and three color IHC of loSIIN primary colon tumor 
(j) and liver metastasis (k) 42 days post-transplant. Scale bar = 100 μM. (l) Quantification of 
CD8, CD4, and regulatory T cells infiltrating loSIIN and noSIIN tumors by convoluted neural 
network analysis. Each point represents at least one tumor from a single animal. (m-n) 
Identification of SIINFEKL tetramer-specific CD8+ T cells infiltrating 42 day loSIIN tumors by 
flow cytometry (m) and immunofluorescence (n) with in situ tetramer staining (green = tumor, 
white = CD8, red = SIINFEKL tetramer, blue = DAPI).  

 

To quantitatively compare surface MHC-I presentation of SIINFEKL across the 

expression series of organoids, we performed H-2Kb immunoprecipitation and multiplexed 

Tandem Mass Tag Mass Spectrometry (TMT-MS) on eluted peptides. While loSIIN through 

medSIIN showed near perfect linear correlation between SIINFEKL abundance and mScarletSIIN 

protein expression, hiSIIN unexpectedly showed an intermediate abundance (Fig. 2c, Extended 

Data Fig. 2l). Given that antigen expression in midSIIN and medSIIN was adjusted by altering 

translation efficiency, it is possible that ribosomal stalling and proteosomal degradation of 

mScarletSIIN are enhanced in these lines, resulting in greater surface presentation. Alternatively, 

high expression of mScarletSIIN in hiSIIN may lead to insoluble protein aggregates that are 

sequestered from antigen processing machinery. Regardless, these results validate the flexibility 

of our system to modulate surface presentation levels of neoantigen. While the multiplexed 

format of TMT-MS and high SIINFEKL signal intensity in some lines precludes meaningful 

intrasample comparisons of the abundance of SIINFEKL versus other epitopes, SIINFEKL 

abundance in loSIIN was only 0.4-fold above background signal in hiVGF, consistent with a low 

level of surface presentation. 
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 Endoscope-guided transplant of shAKPS organoids without antigen (noSIIN) efficiently 

induced tumors (Fig. 2d-e) and spontaneous metastases to liver and lung, with histology 

remarkably similar to human CRC (Extended Data Fig. 2m). In contrast, transplant of the highest 

expression variant (hiSIIN) resulted in CD8+ T cell-mediated rejection in all animals (Fig. 1h-i). 

While transplant of medSIIN also resulted in complete rejection, midSIIN and dimSIIN formed 

tumors with intermediate efficiency (Fig. 2e, Extended Data Fig. 2n-o), suggesting a non-discrete 

effect of neoantigen expression level in tumorigenesis. We also generated shAKPS organoids 

harboring different epitopes with high affinity for MHC-I, including SIYRYYGL (hiSIY), 

VGFNFRTL (hiVGF), and ITYTWTRL (hiITY) (Extended Data Fig. 2p). The latter two are mutant 

epitopes of Lama4 (G1254V) and Alg8 (A506T) that arose in a methylcholanthrene-induced 

mouse sarcoma, which were reported to be insufficient for tumor rejection but critical for ICB 

response in a syngeneic flank transplant model29. Here, all three epitopes resulted in tumor 

rejection (Extended Data Fig. 2q), demonstrating that immunogenicity is not idiosyncratic to 

SIINFEKL but a general feature of high expression of high-affinity epitopes. This also argues 

that the major genetic features of MSS CRC do not confer cell-autonomous resistance to T cell-

mediated killing. 

Strikingly, transplant of the lowest expression variant (loSIIN) induced tumors and 

metastases with similar efficiency, histology and infiltration as noSIIN organoids (Fig. 2d-l). CD8+ 

T cells were sparse and only modestly increased in loSIIN tumors, while helper and regulatory T 

cell infiltration was not significantly different (Fig. 2h-l, Extended Data Fig. 2m). This is 

characteristic of the immune “cold” landscape of MSS CRC in humans30. Importantly, immune 

escape in loSIIN tumors did not result from neoantigen ignorance, as advanced tumors were 

infiltrated by antigen-experienced (CD44+) and specific (SIINFEKL H-2Kb tetramer+) CD8+ T 
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cells (Fig. 2m-n). Altogether, these results demonstrate that MSS tumors can harbor high-affinity 

neoantigens despite poor T cell infiltration, and low neoantigen expression is an important 

mechanism of tumor immune evasion. 

 

Low neoantigen expression limits T cell effector commitment and drives early dysfunction. 

To investigate why loSIIN tumors escaped immune rejection, we first compared the kinetics of the 

antigen-specific T cell response in loSIIN versus hiSIIN lesions. Low neoantigen expression 

resulted in both delayed and lower magnitude response (Fig. 3a). Interestingly, this difference 

was far less pronounced in the caudal and iliac draining lymph nodes (DLNs) (Extended Data 

Fig. 3a), suggesting that early loSIIN T cells are either impaired in their ability to traffic to or 

proliferate within the tumor. The latter is unlikely, however, as loSIIN and hiSIIN T cells within 

tumors and DLNs showed no difference in proliferation (Extended Data Fig. 3b). Alternatively, 

T cells arriving at the tumor may have undergone deletional tolerance31, resulting in lower 

numbers. A critical step in the early maturation of functional T cell responses is effector 

differentiation, characterized by production of cytokines and cytolytic granzymes, such as 

Granzyme B (GZMB), and loss of progenitor potential. TCF1 is a marker of progenitor potential 

and is expressed in naïve, memory precursor and memory T cells32–34. Consistent with impaired 

effector differentiation, significantly more antigen-specific T cells from loSIIN tumors and DLNs 

were TCF1+/GZMB-, and significantly fewer were TCF1-/GZMB+, at 8 days (Fig. 3b,d-e, 

Extended Data Fig. 3c). This is unlikely a result of delayed kinetics, as the percentage of TCF1-

/GZMB+ T cells in loSIIN tumors at peak response (14 days) remained significantly lower (Fig. 

3c,f, Extended Data Fig. 3d). Unexpectedly, the percentage of antigen-specific T cells capable of 

secreting both TNFα and IFNγ effector cytokines was significantly higher in loSIIN versus hiSIIN 
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DLNs and not different in tumors at 8 days (Extended Data Fig. 3e). However, this cytokine-

proficient population also showed higher TCF1 and lower GZMB (Extended Data Fig. 3f), 

suggesting similar lack of effector differentiation. Strikingly, the percentage of double-negative 

(TCF1-/GZMB-) T cells was greater in loSIIN versus hiSIIN animals at 8 days (Fig. 3b,g), and 

became even more pronounced by 14 days (Fig. 3c,h). Absence of TCF1 and GZMB implies 

lack of progenitor and effector functionality and indicates dysfunction. Indeed, by 14 days TCF1-

/GZMB- antigen-specific T cells in loSIIN versus hiSIIN tumors showed higher expression of co-

inhibitory receptors PD-1, TIM3, LAG3, and 2B4 (Extended Data Fig. 3g), and an increased 

fraction co-expressing three or all four (Fig. 3i, Extended Data Fig. 3h). To further interrogate 

functionality of the loSIIN response, we performed an in vivo killing assay35 by transferring 

SIINFEKL-loaded “target” splenocytes into tumor-bearing mice. Consistent with rejection of 

hiSIIN organoids, targets were nearly completely eliminated in the DLNs and spleen 6 hours post-

transfer in hiSIIN, but not loSIIN, animals at 8 days (Fig. 3j-k, Extended Data Fig. 3i). Even at the 

peak of the loSIIN response (14 days), killing was incomplete (Fig. 3l-m, Extended Data Fig. 3j), 

with fewer targets killed per antigen-specific T cell (Fig. 3n). Finally, antigen-specific T cells 

infiltrating early loSIIN tumors showed a more clonal TCR repertoire (Extended Data Fig. 3k-l). 

Altogether, these results demonstrate that low neoantigen expression drives an immediately 

dysfunctional T cell response with attenuated magnitude, diversity, and per cell functionality. 

 

 To determine if these effects are mediated by discrete or continuous levels of neoantigen 

expression, we characterized the T cell responses to dimSIIN, midSIIN, and medSIIN organoids at 8 

and 14 days. Consistent with the tumor efficiency data (Fig. 2e) and a continuous model, 

SIINFEKL expression correlated strongly and positively with the magnitude of the initial T cell 
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response (8 days) (Fig. 3o-p). While no correlation was seen at 14 days (Extended Data Fig. 3m-

n), likely due to T cell contraction in the intermediate expressing lines, SIINFEKL expression 

correlated strongly and negatively with the percentage of TCF1-/GZMB- antigen-specific T cells 

at this time point (Fig. 3q-r, Extended Data Fig. 3o-p). These results demonstrate a continuous 

positive effect of neoantigen expression level on the magnitude of the T cell response and 

effector differentiation. 
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Figure 3 Low neoantigen expression drives impaired T cell effector commitment and 
dysfunction. (a) Total numbers of CD44+/CD8+ antigen-specific T cells isolated from lesions at 
8, 14, 21, 28, and 42 days post- transplant of hiSIIN (red) and loSIIN (blue) organoids by flow 
cytometry. (b-c) Antigen-specific T cell expression of TCF1 versus GZMB in tumors at 8 (b) 
and 14 (c) days. (d-e,g) Percent of antigen-specific T cells from DLNs and tumors at 8 days 
positive for TCF1 and negative for GZMB (d), negative for TCF1 and positive for GZMB (e), 
and double-negative for TCF1 and GZMB (g). (f,h) Percent of antigen-specific T cells from 
DLNs and tumors at 14 days negative for TCF1 and positive for GZMB (f), and double-negative 
for TCF1 and GZMB (h). (i) Percentage of TCF1-/GZMB- antigen-specific T cells from tumors 
at 14 days expressing 0, 1, 2, 3, and 4 inhibitory receptors (PD-1, TIM3, LAG3, and 2B4). (j-m) 
Representative in vivo killing assay histograms of transferred control (weak CTV stain) and 
SIINFEKL-loaded “target” (strong CTV stain) splenocytes and flow plots of antigen-specific T 
cells recovered from DLNs at 8 (j-k) and 14 (l-m) days post-transplant of hiSIIN (red) and 
loSIIN (blue) organoids. Percent of control and target populations are noted in histograms, and 
total number of antigen-specific T cells noted in flow plots. (n) Target killing normalized to 
number of antigen-specific T cells recovered in 14 day in vivo killing assay. (o-p) Total antigen-
specific T cells isolated from lesions at 8 days across all expression variant lines (o) and versus 
mScarletSIIN MFI (p). (q-r) Percent of antigen-specific T cells from lesions at 14 days double-
negative for TCF1 and GZMB across expression variant lines (q) and versus mScarletSIIN MFI 
(r). Dashed lines connect medians. Significance of correlations was assessed by Spearman’s rank 
correlation.  
 

T cells in tumors with low neoantigen expression become progressively dysfunctional. T cell 

dysfunction in human cancer is often attributed to upregulation of co-inhibitory receptors, terminal 

differentiation and loss of effector function, or “exhaustion”36,37. More recently, it has been shown 

that terminally-differentiated T cells in cancer are characterized by low TCF1 and high TIM3 

expression, and are regenerated by “progenitor exhausted” T cells that have high TCF1 and low 

TIM3 expression38–40. Consistent with progressive dysfunction, terminally-differentiated T cells 

(TCF1-/TIM3+) made up a greater proportion of the response at 42 compared to 8 days in loSIIN 

tumors, but not in hiSIIN rejected lesions (Fig. 4a,b, Extended Data Fig. 4a). In contrast, progenitors 

(TCF1+/TIM3-) were substantially depleted in loSIIN tumors by 42 days (Fig. 4a,b, Extended Data 

Fig. 4b). In addition to TIM3, antigen-specific T cells in loSIIN tumors at 42 days showed increased 

expression of PD-1, LAG3, and TIGIT (Fig. 4c). In loSIIN tumors, T cells negative for TCF1 and 

triple-positive for TIM3, PD-1, and LAG3 peaked at 42 days (Fig. 4d), consistent with progressive 



 313 

dysfunction. A similar trend was observed in TCF1+/TIM3- progenitor exhausted T cells double-

positive for PD-1 and LAG3 (Fig. 4e). Finally, loSIIN tumors and DLNs at 42 days showed a 

reduced percentage of TNFα and IFNγ double-positive antigen-specific T cells (Extended Data 

Fig. 4c-d), indicating loss of effector functionality. Therefore, in addition to immediate 

dysfunction, T cells responding to low tumor neoantigen expression undergo progressive 

exhaustion. 

 

 

Figure 4 T cells in tumors with low neoantigen expression become progressively 
dysfunctional. 
(a-b) Antigen-specific T cell expression of TCF1 versus TIM3 in tumors at 8 (a) and 42 (b) days 
post- transplant. (c) Representative histograms of inhibitory receptor expression on antigen-
specific T cells from tumors at 42 days post-transplant. (d-e) Percent TCF1-/TIM3+/PD-
1+/LAG3+ (d) and TCF1+/PD-1+/LAG3+ (e)  
antigen-specific T cells isolated from tumors at 8, 14, 21, 28, and 42 days post-transplant. Red = 
hiSIIN, blue = loSIIN.  
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T cell cross priming is limiting in the context of low neoantigen expression. Impaired effector 

differentiation and early dysfunction are indicative of poor priming, such as occurs in the 

absence of CD4+ T cell “help”41. While loSIIN and hiSIIN organoids lack a defined MHC-II-

restricted model neoantigen, depletion of CD4+ T cells completely rescued formation of hiSIIN 

tumors (Fig. 5a). Therefore, absence of help is unlikely the mechanism of dysfunction in the 

loSIIN model. It is possible that CD4+ T cells are primed against uncharacterized neoantigens in 

mScarlet, tumor-associated self-antigens, or microbial antigens in the colon microenvironment. 

Consistent with the importance of neoantigen expression level in priming, hiSIIN tumor formation 

was partially rescued in Batf3-/- mice, which lack conventional cross-presenting dendritic cells 

(DC1s) (Fig. 5a). To directly test the role of neoantigen expression level in cross presentation, 

we co-cultured bone marrow-derived dendritic cells (BM-DCs)—comprised of ~13% CD103+ 

DC1s—with naïve TCR-transgenic T cells specific to SIINFEKL (OT-1) (Extended Data Fig. 

5a-b). Compared to BM-DCs loaded with hiSIIN organoids, those loaded with loSIIN were 

markedly less capable of priming OT-1 proliferation and effector differentiation (Fig. 5b-e, 

Extended Data Fig. 5c). On the other hand, in vitro-primed OT-1s were equally capable of killing 

loSIIN as hiSIIN organoids when co-cultured (Fig. 5f-g). These results argue that neoantigen 

expression is limiting for T cell cross priming, but not tumor cell recognition by effector T cells.  
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Figure 5 Low neoantigen expression results in poor T cell cross priming. (a) Efficiency of 
tumor formation 6 weeks post-transplant of hiSIIN organoids into wild-type (WT) and Batf3 
knockout mice, and 3 weeks post- transplant into WT mice with continuous antibody depletion of 
CD4+ T cells. (b-e) Cross priming assay of 10,000 naïve OT-1s co-cultured with 50,000 
activated BM-DCs loaded with a range of water-lysed cells from noSIIN (grey), loSIIN (blue), 
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and hiSIIN (red) organoids. Flow cytometric quantification of CD44+ (b), Ki67+ (c), GZMB+ 
(d), and TNFα+/IFNγ+ (e) OT-1s. (f) Representative images of co-cultures with noSIIN, hiSIIN, 
and loSIIN organoids and in vitro-activated OT-1s at day 4. (g) Quantification of co-culture 
organoid confluence. E:T = effector to target ratio. (h) Efficiency of tumor formation 6 weeks 
post-transplant of loSIIN, loSIIN 4 weeks after transplant of hiSIIN (Re-challenge), loSIIN and 
hiSIIN at separate sites in the same animal (Separate), loSIIN and hiSIIN at the same sites 
(Mixed), and loSIIN concurrent with retro-orbital injection of 1x106 in vitro-activated OT- 1s. 
(i) Schematic of transplant of loSIIN (green) and hiSIIN (red) organoids at separate sites in the 
distal colon of the same animal (top), and stereoscopic brightfield (middle) and fluorescent 
(bottom) images of a co- transplanted colon 8 days post-transplant. (j-k) Flow cytometric 
analysis of antigen-specific T cells isolated from DLNs and lesions 8 days post-co-transplant of 
hiSIIN (red) and loSIIN (blue) organoids at separate sites in the same animals. (j) Total number 
of antigen-specific T cells. (k) Representative expression of GZMB versus TCF1. (l) Efficiency 
of tumor formation 6 weeks post co-transplant of loSIIN with hiSIIN, hiVGF, or hiITY at the 
same (Mixed) or separate sites in the colon of the same animals. (m) Representative histograms 
of H-2Kb and H-2Db expression on hiSIIN organoids post electroporation with Cas9 and sgRNA 
targeting the H2-K1 locus and pre- sorting. Purple = targeted; grey = no targeting control. 
Organoids were pre-treated with IFNγ. (n) Efficiency of tumor formation 4 weeks post-
transplant of Kb-KOSIIN, hiSIIN or co-transplant of loSIIN and Kb-KOSIIN in WT and Batf3 
knockout mice. (o-p) Representative stereoscopic brightfield and merged GFP/RFP fluorescent 
images of tumors 6 weeks post co-transplant of Kb-KOSIIN and loSIIN organoids in WT (o) and 
Batf3 knockout mice (p).  
 

To further interrogate priming in vivo, we performed: 1) re-challenge with loSIIN 

organoids 28 days after “vaccination” with hiSIIN organoids, 2) co-injection of loSIIN and hiSIIN 

organoids in the same animals, and 3) transfer of in vitro-activated OT-1 T cells concurrent with 

transplant of loSIIN organoids. All of these approaches resulted in complete rejection of loSIIN 

organoids (Fig. 5h), demonstrating unequivocally that efficiently primed T cells are capable of 

killing tumor cells with low neoantigen expression in vivo. Priming in the context of high 

neoantigen expression also rescued the phenotype of T cells infiltrating loSIIN lesions. Notably, 

antigen-specific T cells infiltrating loSIIN and hiSIIN lesions from the same animals (Fig. 5i) 

showed similar abundance (Fig. 5j) and overlapping expression of TCF1 and GZMB that is 

indistinguishable from that of animals transplanted with only hiSIIN organoids (Fig. 5k, Extended 

Data Fig. 5d-f). To determine if these effects are SIINFEKL specific, we performed co-injection 

of loSIIN and hiVGF or hiITY organoids in the same animals. While hiVGF and hiITY did not form 
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tumors in any animals, consistent with rejection of these lines when transplanted alone (Extended 

Data Fig. 1q), 100% of animals developed loSIIN tumors (Fig. 5l, Extended Data Fig. 5g), 

demonstrating that rescue of priming by hiSIIN is mediated through increased SIINFEKL 

expression.  

The incomplete penetrance of hiSIIN tumor formation in Batf3-/- animals implicates 

additional mechanisms of priming, such as direct priming by tumor cells or cross priming by 

non-DC1s. Consistent with this, we detected activated antigen-specific T cells in the colons and 

DLNs of most of these animals 6 weeks post-transplant, albeit at very low numbers (Extended 

Data Fig. 5h-j). To assess the role of direct priming, we used CRISPR/Cas9 to generate hiSIIN 

organoids lacking H-2kb (Kb-KOSIIN) (Fig. 5m, Extended Data Fig. 5k). Consistent with failure to 

present SIINFEKL, these organoids formed tumors with 100% efficiency in immunocompetent 

hosts. However, co-transplant of loSIIN with Kb-KOSIIN resulted in complete rejection of loSIIN in 

all but one animal (Fig. 5n), despite outgrowth of Kb-KOSIIN in all animals, demonstrating that 

SIINFEKL from Kb-KOSIIN is efficiently cross presented and this is the dominant mechanism of 

priming in our model. To further interrogate any potential contribution of direct tumor cell 

priming, we repeated the co-transplant experiments in Batf3-/- animals. In this DC1 deficient 

context, loSIIN formed tumors with ~40% efficiency when co-transplanted with Kb-KOSIIN, 

indistinguishable from the efficiency of tumor formation with hiSIIN transplanted alone (Fig. 5n). 

These results strongly suggest that direct priming by tumor cells is not operative, and that non-

DC1s play an important role in anti-tumor T cell cross priming in the colon.  

 

Therapeutic vaccination and agonistic anti-CD40 rescue the poorly primed T cell response.  

Given the central role of T cell priming in tumor immune escape in our model, we tested the 
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therapeutic potential of neoantigen vaccination in animals with established tumors. Mice with 

GFP-expressing tumors, as determined by colonoscopy, were randomly enrolled to receive 

SIINFEKL containing OVA250-270 (CGLEQLESIINFEKLTEWTSS) or non-specific mutant 

gp10020-39 (CAVGALEGPRNQDWLGVPRQL) peptide-based vaccines consisting of a peptide-

amphiphile and adjuvant amphiphile-CpG, which were administered at 14 and 21 days post-

transplant (Extended Data Fig. 6a). Vaccination with OVA250-270, but not non-specific peptide, 

induced profound expansion of tumor-specific T cells, with an average of 35% of peripheral blood 

CD8+ T cells displaying SIINFEKL specificity (Fig. 6a-b, Extended Data Fig. 6b-c). One week 

following the second dose, tumors in the OVA250-270 vaccine arm showed significantly greater 

reduction in size relative to the non-specific arm, with 7 of 8 (88%) decreasing in size (Fig. 6c). 

At termination (6 weeks), tumor burden was significantly reduced in the OVA250-270 vaccine arm, 

with four complete regressions (Fig. 6d). These results suggest that it may be therapeutically 

tractable to vaccinate against poorly expressed—albeit clonal—neoantigens, and that strict 

neoantigen expression cutoffs in anti-tumor vaccine pipelines should be re-evaluated. 
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Figure 6 Therapeutic vaccination and agonistic anti-CD40 are efficacious in low neoantigen 
expressing tumors. (a) Percent of total peripheral blood CD8+ T cells that are antigen specific 
(CD44+/SIINFEKL tetramer+) following two weeks (two doses) of OVA250-270, non-specific, 
or no peptide-based vaccination in loSIIN tumor- bearing mice. (b) Representative flow plot of 
peripheral blood antigen-specific CD8+ T cells from OVA250-270 vaccinated mouse. (c) Change 
in loSIIN tumor size as measured by longitudinal colonoscopy following 14 days (two doses) of 
OVA250-270 or non-specific vaccination. Significance was assessed by Wilcoxon rank-sum test 
of percent change in tumor size. (d) Primary tumor sizes at necropsy 28 days post-vaccine regimen 
initiation. (e- j) Immunotherapy preclinical trial of mice bearing loSIIN tumors. Waterfall plots 
show change in tumor size after 14 days of treatment, as determined by colonoscopy. (k-l) 
Representative colonoscopy white light and fluorescent images of tumors pre- and post-treatment 
from mice receiving no treatment (k) and αCD40/αPD- 1/αCTLA-4 (l). (m) Primary tumor sizes 
at necropsy 28 days post-treatment initiation. ACT = adoptive cell transfer of OT-1s. (n) Fraction 
of mice with any metastases (liver, lung, or omentum). (o-r) Representative brightfield and 
fluorescent images of primary colon tumor (o), liver (p), lung (q), and omental (r) metastases from 
an αPD-1-treated mouse 28 days post-treatment initiation.  
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We next asked whether more readily deployable antibody-based immunotherapies are 

efficacious in our model. Agonistic antibodies against the CD40 receptor (αCD40) enhance 

priming by potentiating the co-stimulatory function of antigen-presenting cells42. αCD40 is 

efficacious in preclinical mouse models of pancreatic ductal adenocarcinoma (PDAC), particularly 

when combined with ICB and immunogenic chemotherapy43. Recently, a phase Ib clinical trial in 

PDAC with αCD40 (APX005M), αPD-1 (nivolumab), and gemcitabine/nab-paclitaxel has shown 

promising early results44. This is particularly exciting in light of the low TMB and immunogenicity 

of PDAC, which, like MSS CRC, is refractory to ICB45. Therapeutic combinations with αCD40 

may be able to rescue or generate new T cell responses against weak affinity or poorly expressed 

neoantigens, or against tumor-associated self-antigens that lack high affinity T cell clones due to 

central tolerance. However, clinical studies in CRC are lacking.  

We performed preclinical trials in mice bearing loSIIN colon tumors starting 14 days post-

transplant (Extended Data Fig. 6a) with single agents αCD40, αPD-1, and αCTLA-4, as well as 

combinations αCD40/αPD-1, αCD40/αCTLA-4, and αCD40/αPD-1/αCTLA-4. Response was 

evaluated by colonoscopy at 28 days post-transplant following Response Evaluation Criteria In 

Solid Tumors (RECIST). All animals in the no treatment arm presented with progressive disease, 

while 2 of 12 (17%), 3 of 12 (25%), and 5 of 16 (31%) showed complete responses in the αPD-1, 

αCTLA-4, and αCD40 arms, respectively. Response was notably better in all combination arms, 

with 9 of 12 (75%), 8 of 12 (67%), and 12 of 17 (71%) complete responses in the αCD40/αPD-1, 

αCD40/αCTLA-4, and αCD40/αPD-1/αCTLA-4 arms, respectively (Fig. 6e-m, Extended Data 

Fig. 6d). Comparing all combination arms as a whole against single agent αCD40 showed 

significantly more objective responses (P = 0.02) and complete responses (P = 0.01, Fisher’s exact 

test). Interestingly, adoptive cell transfer (ACT) of one million ex vivo-activated OT-1 T cells at 
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14 days post-transplant significantly delayed tumor growth but only resulted in one complete 

response (Fig. 6m, Extended Data Fig. 6e), suggesting that transferred T cells rapidly become 

dysfunctional. 

 Despite initially delayed tumor growth in the single ICB arms, no significant difference 

in final tumor burden was observed at necropsy, suggesting only transient effect in the majority 

of tumors (Fig. 6m). In addition, incidence of metastasis was not significantly decreased in single 

ICB arms (Fig. 6n-r). These results are reminiscent of the poor response to ICB seen in MSS 

CRC and demonstrate that ICB is only modestly effective at rescuing a poorly primed T cell 

response. In contrast, single agent αCD40 significantly decreased primary tumor size at endpoint, 

while combination with ICB significantly reduced tumor size further (Fig. 6m). All treatment 

arms with αCD40 resulted in significantly reduced rates of metastasis (Fig. 6n), although this 

could reflect the absence of primary tumors in many of these animals. However, the combined 

rate of metastasis in animals with progressive disease across all αCD40 arms was still 

significantly reduced (Extended Data Fig. 6f). Interestingly, while ACT had no effect on 

reducing primary tumor size at endpoint, it resulted in complete control of metastatic tumor 

burden (Fig. 6n). 

 To determine if therapy resistance is mediated by down-regulation of antigen expression 

or MHC-I, we isolated ex vivo loSIIN tumor-derived organoids from two αCD40/αPD-1 escapers, 

three αPD-1 escapers, and three mice that received no treatment. All lines showed comparable 

sensitivity to IFNγ stimulation, expression of H-2Kb and mScarletSIIN, and were similarly 

sensitive to killing when co-cultured with activated OT-1s (Fig. 7). These results suggest that 

low neoantigen expression in MSS CRC obviates the need for dysregulation of antigen 

presentation, and is consistent with the lower frequency of such events in MSS versus MSI 
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cancers17. Critically, MSS tumors may remain sensitive to T cell killing if priming against poorly 

expressed neoantigens can be rescued (Fig. 8). Why some tumors escape treatment despite 

retaining intrinsic sensitivity to tumor-specific T cell killing is a question of considerable clinical 

value for future investigation, and one in which our novel platform is ideally positioned to 

address.  

 

Figure 7 Treatment naïve and refractory low neoantigen expressing tumors retain antigen 
presentation. (a-d) Flow cytometric analysis of H-2Kb and PD-L1 MFI (a-b) and representative 
histograms of expression (c-d) following IFNγ stimulation in loSIIN ex vivo tumor-derived 
organoids from mice with and without treatment. (e-f) Flow cytometric analysis of mScarletSIIN 
(e) and EGFP (f) expression in ex vivo tumor-derived organoids. (g) Representative images of 
co-cultures with ex vivo tumor-derived organoids and in vitro-activated OT-1s at day 4.  
 

Discussion 
The poor response of most CRC to immunotherapy represents a major unmet clinical need. 

Mouse models have provided invaluable insights into T cell dysfunction in cancer, but none to 

our knowledge recapitulate essential features of human CRC while facilitating detailed study of 
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antigen-specific T cells. Here, we developed colonoscopy-guided models that enable comparison 

of functional versus dysfunctional tumor-specific T cell responses in a context highly faithful to 

the microenvironment, genetics, histopathology, and metastatic progression of the human 

disease.  

We found that tumors from all MSS CRC patients in the TCGA harbored clonal 

neoantigens with high predicted HLA-I affinity, but that these were broadly expressed at lower 

levels compared to those from MSI CRC. This raises the intriguing possibility that poor 

immunogenicity in MSS CRC and other immune cold cancers is driven by both lower burden 

and lower expression of neoantigens. Consistent with this notion, our low neoantigen-expressing 

model, like MSS CRC, demonstrated poor T cell infiltration and response to ICB. Leveraging the 

defined antigen in our model, we showed that neoantigen expression is an analog input that tunes 

the quality of anti-tumor T cell priming in vivo. Limiting neoantigen expression shifts priming 

towards a tolerogenic response characterized by reduced magnitude, diversity, effector 

commitment, and per T cell functionality. These findings provide broader context to previous 

flank transplant studies that found lower levels of epitope expression15 or MHC-I binding 

affinity16 facilitate tumor immune escape, and a study that described early T cell dysfunction in 

an SV40 large T-antigen-driven model of liver cancer46. Indeed, a general feature of early 

immune evasion in cancer may be that T cell dysfunction begins as a tolerogenic program 

initiated during priming with insufficient antigen stimulation, in addition to a lack of local 

inflammatory and/or co-stimulatory cues. By extension, it is likely that immune responses 

against clonal neoantigens in cancer, at least those acquired early in tumorigenesis, are poorly 

primed and tolerogenic—axiomatic to their failure to restrain tumor outgrowth. We showed that 

rescuing early priming is sufficient to prevent tumor initiation with 100% efficiency in our 



 324 

model, consistent with the fact that early neoplasia lack the immunosuppressive mechanisms to 

evade efficiently primed T cell responses. We also showed that poorly primed T cells in our 

model undergo progressive exhaustion, in line with prevailing literature and suggesting that T 

cell dysfunction in cancer is a heterogenous state shaped by multiple processes operative early 

and late in tumorigenesis. Future studies combining lineage tracing and single cell sequencing 

technologies should help disentangle the contribution of distinct genetic and epigenetic programs 

to T cell dysfunction in cancer. 

Therapeutically targeting priming via αCD40 was highly efficacious in our model, 

particularly in combination with ICB, resulting in complete responses in the majority of animals. 

While ICB alone had no effect on the rate of metastasis, αCD40 and ACT almost completely 

prevented metastases, even in mice with progressive primary disease. Therefore, targeting 

priming may be especially efficacious against early metastatic lesions that may not be detected at 

the time of treatment. These results establish the preclinical utility of our model and highlight the 

therapeutic promise of combined αCD40 and ICB in the treatment of MSS CRC and other 

immune cold cancers. Given that no adequately powered clinical trials of αCD40 in CRC have 

been initiated to date, these results warrant further clinical evaluation. 

Our demonstration that anti-tumor immunity against a poorly expressed neoantigen can 

be rescued by therapeutic vaccination is particularly relevant to analogous efforts ongoing in 

humans47,48, justifying exploration of candidate neoantigens that by current practice might be 

considered too poorly expressed. In a recent consortium study integrating neoantigen prediction 

pipelines from 28 unique research teams, it was concluded that expression, among other 

variables, is an important predictor of neoepitope immunogenicity, and a minimum threshold of 

>33 transcripts per million was imposed47. However, neoepitope immunogenicity in this and 
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other studies was validated by experimentally measuring reactivity of existing T cells in patient 

blood or tumor47–49. Given that tumor-specific T cell responses in advanced tumors are by 

definition dysfunctional, particularly when poorly primed as we have demonstrated in our model, 

it is likely that the functional readouts of these assays are limited by low sensitivity. 

Additionally, it is possible that therapeutic priming against neoantigens overlooked by these 

assays could unleash productive T cell responses from naïve T cells or reservoirs of clonally 

expanded precursors in lymphoid tissues. Indeed, a recent phase 1b trial (NEO-PV-01) found 

that while personalized vaccines elicited de novo T cell responses in all patients, the vast 

majority showed no detectable responses in peripheral blood prior to vaccination48. Our findings 

argue that RNA sequencing in these trials should be performed at sufficient depth to distinguish 

lack of expression from dropout due to poor coverage, and that any detectable allele-specific 

expression of a clonal neoantigen is sufficient to nominate it for vaccination. Indeed, it has been 

shown in vitro that effector CD8+ T cells can lyse target cells presenting only three cognate 

epitope-bound complexes of MHC-I50. Therefore, tumor cells likely must undergo near absolute 

loss of neoepitope presentation to render responding T cells truly ignorant. 

Altogether, the results of our study describe a model in which tumors harboring a poorly 

expressed neoantigen elicit tolerogenic T cell responses and evade immune deletion, whilst 

remaining vulnerable to destruction by those same T cell responses following therapeutic 

priming (Fig. 8). It will be important to determine if therapies that potentiate priming mediate 

their effects predominantly through naïve T cells or reservoirs of antigen experienced T cells in 

the tumor bed or lymphoid tissues. Finally, the flexible organoid-based system developed here 

should facilitate a broad range of future studies of immune evasion and immunotherapy response 

in faithful models of cancer. 
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Supplementary materials: All supplementary figures, tables, and data our available from our 

publication in Nature Cancer. 

 

Methods 
TCGA neoantigen prediction analysis 

350 colon adenocarcinoma patients and 76 rectum adenocarcinoma patients were analyzed from 

The Cancer Genome Atlas COAD and READ studies. These represented all samples with tumor 

(−01A) and matched-normal whole-exome sequencing (WES), RNA-Seq, and mutation 

annotation format (MAF) files available. Sequencing data were obtained as Binary Alignment 

Maps (BAMs) files aligned to GRCh38. HLA-A, -B, and -C alleles were called using OptiType, 

v1.3.120. Tumor/normal WES BAMs were used to create inputs to OptiType. Reads were filtered 

to those mapping to the HLA region (chr6:28510120–33480577 in GRCh38) with Samtools 

v1.1061, converted to FASTQ and filtered with RazerS 3 v3.5.862, as recommended in the 

OptiType documentation. OptiType was run with default parameters. 

A custom Python v2.7.13 script was employed to evaluate concordance between normal and 

tumor HLA allele calls. 1917/2100 alleles (91.3%) in the COAD cohort and 428/456 (93.9%) 

alleles in the READ cohort were consistent between tumor and normal WES-based calls; the 

tumor allele was accepted as the final call to resolve discrepancies between calls from tumor and 

normal sample sequencing data. Patient MAFs were converted to Variant Call Format (VCF) and 

filtered to SNVs only. All non-PASS variants were removed except for some 

in KRAS and TP53 that had been marked as either panel_of_normals, clustered_events, or 

homologous_mapping_event in the TCGA MAF files. 
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Indels were called using Strelka2 v2.9.263 and Scalpel v0.5.464. Scalpel was run with default 

parameters, with a bed file derived from the CGHub bitbucket account (https://cghub.ucsc.edu; 

whole_exome_agilent_1.1_refseq_plus_3_boosters.targetIntervals.bed), with coordinates 

converted to GRCh38. Scalpel failed to call variants for 7/426 patients due to excessive read 

buildup at some loci; these samples were excluded from downstream analysis. VCF files 

containing the union of PASS variants from Strelka2/Scalpel were annotated with variant allele 

frequencies (VAF) from Strelka2 output and merged with corresponding SNV VCFs. 

Variant consequence was annotated using Ensembl Variant Effect Predictor (VEP) v9965 with 

Wildtype and Downstream plugins and the following parameters: --symbol, --terms=SO, --cache, 

--offline, --transcript_version, --pick. The --pick parameter was reordered from default to report 

transcript with most extreme consequence for each variant: rank, canonical, appris, tsl, biotype, 

ccds, length, mane. Neoepitopes were predicted with HLA allele calls and variant effect 

predictions using pVACtools v1.5.725. Mutant peptides were generated for lengths 8- through 11- 

amino acids. MHC:peptide binding affinity was predicted for all peptide:MHC allele pairs with 

NetMHC-4.0, NetMHCpan-4.0, SMM v1.0, and SMMPMBEC v1.021–24, and the median value 

across all affinity predictions was taken. 

Only neoantigens with evidence of expression (RNA-seq FPKM Upper Quartile Normalized 

(FPKM-UQ) > 0) were included in analyses. Tumor purity estimates (ABSOLUTE algorithm26) 

for TCGA COADREAD were acquired from a previous publication66. Neoantigen clonality was 

estimated by dividing WES level VAF by ABSOLUTE purity (adjVAF), with adjVAF ≥ 0.5 

considered clonal. This is an estimate of clonality only, as other factors not considered here can 

also influence VAF. 
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Tumor RNA-Seq BAMs were analyzed to detect and quantify SNV expression at the 

transcriptional level. For all SNVs corresponding to predicted neoepitopes, the corresponding 

chromosomal coordinates were used as inputs to bam-readcount v0.8.0, which was run with 

default parameters (-b 20) to obtain the sequencing depth and read counts for reference and 

alternative alleles at each position. A custom Python v2.7.13 script was constructed to parse the 

output from bam-readcount and to quantify RNA VAF. Allele-specific expression was calculated 

as the product of RNA VAF and corresponding gene expression (FPKM-UQ). While 

neoantigens with no gene level expression were excluded from analysis, those with RNA VAF = 

0 were included due to poor RNA-Seq coverage at many SNVs, and the high likelihood of 

detection failure versus true lack of expression. 

Mice 

Mice were housed in the animal facility at the Koch Institute for Integrative Cancer Research at 

MIT with a 12-hour light/12-hour dark cycle with temperatures within 68–72°F and 30–70% 

humidity. All animal use was approved by the Department of Comparative Medicine (DCM) at 

MIT and the Institutional Animal Care and Use Committee (IACUC). Apcflox/flox67, KrasLSL-

G12D68, Trp53flox/flox69, Rag2−/− 70, OT-171, R26Cas9−2A-EGFP72 and Batf3−/− 73 mice were maintained 

on a pure C57BL/6 background. Approximately equal numbers of male and female mice 

between 6 to 12 weeks of age were used for all experiments. Organoids were derived from 

female C57BL/6 mice, allowing transplant into male recipients without minor histocompatibility 

antigen-driven responses. loSIIN, dimSIIN, midSIIN, medSIIN, hiSIIN, loVGF, and loITY organoids were 

transplanted into R26Cas9−2A-EGFP mice, which are tolerant to EGFP. In some instances, 

hiSIIN organoids were transplanted into wild-type mice, with no differences in phenotype 

observed between host genotypes. hiVGF, hiITY, and Kb-KOSIIN organoids were transplanted into 
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wild-type or R26Cas9−2A-EGFP mice, whereas co-injection experiments with loSIIN were performed 

only in R26Cas9−2A-EGFP mice. 

Organoid isolation and transformation 

Normal colon crypts were isolated from wild-type female C57BL/6 mice as previously 

described11. Crypts and organoids were cultured in 60 μL domes comprised of 10 μL conditioned 

L-WRN (for primary crypts and wild-type organoids) or minimal media (for Apc knockdown 

organoids) and 50 μL of growth-factor reduced phenol-red free Matrigel Matrix (Corning) in 24-

well TC-treated Olympus plates (Genesee Scientific). Conditioned L-WRN media was produced 

as previously described74. Minimal media is comprised of 50X B-27 Serum-Free Supplement 

(Thermo Fisher), Penicillin/Streptomycin (Corning), and 100x GlutaMAX (Thermo Fisher). 

Lentivirus was produced in HEK-293 cells (ATCC) and concentrated as previously described75, 

and functional titers (Cre activity, mScarlet/EGFP fluorescence) measured as previously 

described76. Confluent organoids were dissociated to single cells using TrypLE Express (Thermo 

Fisher), diluted, and washed with PBS, and resuspended in 1.5 mL of appropriate media with 10 

μM of Y-27632 (Sigma-Aldrich). Organoids were divided into three wells of a 24-well plate and 

transduced with 10k to 100k transduction units (TU) of virus. The plate was then spun at 600g 

for 1 hour and incubated for 4 hours at 37 °C, after which organoids were plated in Matrigel. 

Adeno-Cre was used to recombine KrasLSL-G12D and Trp53flox/flox in normal KP organoids, after 

which organoids were grown in L-WRN + Y-27632 for 4 days and then selected for 1 week with 

10 μM NUTLIN-3A (Sigma-Aldrich). Complete recombination of KrasLSL-

G12D and Trp53floxl/flox was confirmed by PCR using published primers68,69. Next, organoids were 

infected with shApc-expressing lentiviruses. To select for stable integration, organoids were 

grown in minimal media lacking WNT (described above) one week after infection. Organoids 
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with lowest multiplicity of infection (~0.5), as determined by mScarlet or GFP fluorescence, 

were chosen. Finally, organoids were infected with integration-deficient lentivirus expressing 

Cas9 (lenti CRISPR v2)77 and sgRNA against Smad4 (5’-GATGTGTCATAGACAAGGT-3’)37, 

and selected by addition of TGFβ. Integration deficient lentivirus was generated using a D64V 

mutant psPax2 packaging vector78, and absence of integration was confirmed by absence of Cas9 

protein by Western blot, and sensitivity to puromycin killing. 

MHC-I immunoprecipitation and peptide isolation 

MHC-I (H-2Kb) peptide isolation was performed on x210 20 μl plugs per triplicate for each 

organoid line using a modified immunoprecipitation and protein filtration protocol, as described 

previously79. Organoids were grown to confluence over 3 days before stimulation with 10 ng/mL 

murine IFNγ (PeproTech) for 18 hours prior to harvest. Organoids were washed with PBS and 

mechanically liberated by vigorous pipetting in PBS. Cells were washed twice in 50 mL PBS and 

pellets snap frozen in liquid nitrogen. Pellets were lysed in 2 mL of lysis buffer containing 50 

mM Tris pH 8, 100 mM NaCl, 1 mM EDTA, 1% Triton X-100, 60 mM octylglucopyranoside 

(Sigma), 20 mM iodoacetamide, 10 U DNase, and 1x Halt protease inhibitors (Pierce). Isolations 

were performed with 40 μL (bed volume) of rProtein A Sepharose beads (GE Healthcare) 

preloaded with 1 mg anti-H-2Kb antibody (Y3, BioXcell). Peptides were eluted in 500 μL of 

10% acetic acid and purified with 10 kDa MWCO spin filters (PALL Life Science). 

Tandem mass tag mass spectrometry (TMT-MS) 

Dried down MHC-I eluted peptides were resuspended in 100 μL triethylammonium bicarbonate 

buffer and labeled with TMT16plex (Pierce, Rockford, IL, USA). Samples were then mixed and 

cleaned with C18 ZipTip (Millipore Sigma). 1/5 sample was used for one LC/MS/MS analysis. 

Samples were again dried and reconstituted in 2% formic acid (FA) for MS analysis. Peptides 
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were loaded with the autosampler directly onto a 50cm EASY-Spray C18 column (ES803a, 

Thermo Scientific). Peptides were eluted from the column using a Dionex Ultimate 3000 Nano 

LC system with a 5 min gradient from 1% buffer B to 5 % buffer B (100 % acetonitrile, 0.1 % 

formic acid), followed by 84.8 min gradient to 25%, and a 15.2 min gradient to 35%B, followed 

by a 12min gradient to 60%B, followed by a 4 min gradient to 80%B, and held constant for 4 

min. Finally, the gradient was changed from 80% buffer B to 99% buffer A (0.1% formic acid in 

water) over 0.1 min and held constant at 99% buffer A for 19.9 more minutes. The application of 

a 2.2 kV distal voltage electrosprayed the eluting peptides directly into the Thermo Exploris480 

mass spectrometer equipped with a FAIMS and an EASY-Spray source (Thermo Scientific). 

Mass spectrometer-scanning functions and HPLC gradients were controlled by the Xcalibur data 

system (Thermo Scientific). MS1 scans parameters were 60,000 resolution, scan range m/z 390–

1500, AGC at 300%, IT at 50ms. MS2 scan parameters were either at 45,000 or 60,000 

resolution, isolation width at 0.7, HCD collision energy at 30%, AGC target at 300% and IT set 

to 300ms. Cycle time for MS2 was 1sec for each MS1 scan. The scan cycle MS1/MS2 was 

repeated for FAIMS voltages at −40V, −60V and −80V. 

Tandem mass spectra were searched with Sequest (Thermo Fisher Scientific, San Jose, CA, 

USA; version IseNode in Proteome Discoverer 2.5.0.400). Sequest was set up to search a mouse 

uniprot database (database version July 3, 2020; 55650 entries containing common contaminants 

and the three proteins mScarlet-SIINFEKL, mScarlet-VGFNFRTL and EGFP) assuming no 

digestion enzyme (unspecific). Sequest was searched with a fragment ion mass tolerance of 0.02 

Da and a parent ion tolerance of 10.0 PPM. TMTpro was added as a fixed modification on K and 

N-terminus of peptides. Oxidation of methionine was specified in Sequest as a variable 

modification. Resulting peptides were filtered to exclude peptides with an isolation interference 
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of >30% and ppm error >+/−3ppm of the median ppm error of all PSMs. SIINFEKL intensity 

across samples was normalized by the overall abundance of all peptides detected in each sample. 

Organoid CRISPR/Cas9 RNP electroporation 

Confluent hiSIIN organoids were dissociated to single cells as described above and resuspended in 

100 μL OPTI-MEM. Ribonucleoprotein (RNP) complexes were formed by mixing 1.64 μL (0.1 

nmol) Alt-R Cas9 (IDT) with 3 μL (0.3 nmol) synthetic sgRNA (Synthego) and incubating for 

10–20 minutes at room temperature. Cells were then added to the RNP mix, 100 μL transferred 

to a 2 mm gap cuvette (Bulldog Bio), and electroporated using a NEPA21 electroporator 

(Bulldog Bio) with the following poring pulse parameters: 175 V, 5 msec length, 50 msec 

interval, 2 pulses, 10% decay rate, + polarity; and transfer pulse parameters: 20 V, 50 msec 

length, 50 msec interval, 5 pulses, 40% decay rate, +/− polarity. Electroporated organoids were 

resuspended gently in pre-warmed minimal media and incubated at 37°C for 15 minutes before 

plating in Matrigel. sgRNAs used for electroporation are: H-2Kb: 5’-

CAAUGAGCAGAGUUUCCGAG-3’; previously published B2m sequence79: 5’-

UUGAAUUUGAGGGGUUUCUG-3’. 

Colonoscopy-guided injections 

Orthotopic injection of lentivirus and organoids was performed similarly to previously described 

methods11,12. Intact organoids were always harvested two days post-passaging by washing in 

PBS and dissociating in Dispase. Matrigel was broken up by gentle scraping and pipetting four 

times using a 1 mL pipette and incubating at 37°C for 15 minutes. Organoids were washed 

thoroughly in PBS and resuspended in OPTI-MEM with 10% Matrigel at 50 organoids per μL. 

Intact organoids and lentivirus (20,000 or 100,000 TU/μL) were injected via Hamilton syringe 

(Hamilton, 7656–01) and custom injection needle (Hamilton, 33-gauge, small Hub RN NDL, 16 
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inches, point 4, 45-degree bevel, like 7803–05) fed through the working channel of the 

colonoscope and inserted into the colonic mucosa at ~30°. ~50 μL was delivered per injection, 

resulting in large “blebs” within the mucosa. 

Tissue preparation and flow cytometry 

Colon draining lymph nodes (DLNs, caudal and iliac) were harvested and mechanically 

dissociated in RPMI1640 (Corning) with 5% heat-inactivated fetal bovine serum (HI-FBS) 

(harvest media). Tumors were identified using a Dual Fluorescent Protein Flashlight, Model 

DFP-1 (Nightsea), dissected and placed in a digestion buffer containing 500 Units/mL 

Collagenase Type 1 (Worthington) and 20 μg/mL DNAse (Sigma-Aldrich) in harvest media, 

minced using surgical scissors and digested at 37 °C for 40 minutes with gentle agitation. 

Tumors were then further dissociated with a gentleMACS Octo Dissociator (Miltenyi Biotec) on 

the tumor_imp1.1 setting and filtered through a 100 μM filter. DLN and tumor preparations were 

divided for immediate staining or peptide stimulation. Intravenous CD45 staining prior to 

sacrifice of animals (to differentiate tissue-infiltrating versus circulating T cells) was not 

routinely performed, as this stained less than 1% of total SIINFEKL-specific T cells. 

Live/dead staining (ghost ef780 (Corning), 1:500) was performed in PBS and surface stains in 

FACS buffer (1 mM EDTA, 25 mM HEPES, 0.5% HI-FBS in PBS). Cells were fixed for 1 hour 

at room temperature in Fixation/Permeabilization Concentrate (Thermo Scientific) diluted 1:3 in 

Fixation/Permeabilization diluent (Thermo Scientific) and washed in permeabilization buffer 

(Thermo Scientific). Intracellular staining was performed in permeabilization buffer overnight at 

4 °C. Cells were washed and resuspended in FACS buffer for analysis on a BD LSRFortessa 4 

laser, 18 color flow cytometer running BD FACSDiva v8.0 software. Results were analyzed in 

FlowJo v10.4.2. Single lymphocytes were gated first on FSC-A versus SSC-A and then FSC-A 
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versus FSC-H. Then, live CD8+ T cells were gated on positive CD8α and negative ghost ef780 

staining. Antigen-specific CD8+ T cells were further gated on CD44 and tetramer positivity. 

Expression of additional markers was analyzed specifically in this antigen-specific CD8+ T cell 

population in all flow cytometric experiments on T cells presented in this manuscript. 

Antigen-specific in vivo killing assay 

Splenocytes were prepared for in vivo transfer as described by Durward et. al, 201045. Briefly, 

spleens were harvested from female C57Bl/6 mice, red blood cells lysed using ACK Lysing 

Buffer (Thermo Fisher), and cells resuspended in PBS in a round bottom 96-well plate at 

1×108 cells per mL. Half of the wells were pulsed with SIINFEKL peptide (Anaspec) at 1 

μg/mL, followed by labeling with the membrane dye CellTrace Violet (CTV; Thermo Fisher) at 

20 μM. The remaining wells were labeled with 2 μM CTV. Peptide loaded “target” and unloaded 

control splenocytes were then mixed 1:1 and 200 μL retro-orbitally injected (2×107 cells) into 

experimental animals 8- and 14-days post-transplant of organoids. DLNs and spleens were 

harvested 6 hours later and processed for flow cytometry as described above. Target and control 

splenocytes were identified by live/dead staining and CTV labeling intensity, and percent target 

killing determined relative to the control population. Targets killed per antigen-specific T cell 

was determined by dividing the total number of targets killed (control minus target splenocytes) 

by the total number of SIINFEKL tetramer+ CD8+ T cells. This metric was meaningful at 14 days 

when target killing was incomplete in both loSIIN and hiSIIN animals but precluded at 8 days by 

effectively complete target killing in hiSIIN animals. 

Peptide stimulation for cytokine staining 

Samples were prepared as described above, and prior to surface staining were stained with 

antibodies for Ly-6G (BioLegend, 1A8, 1:200), EpCAM (BioLegend, G8.8 1:80) and F4/80 
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(BioLegend, BM8, 1:80) in FACS buffer for 30 minutes at 4°C and depleted using Dynabeads 

Goat Anti-Mouse IgG kit (Thermo Fisher) following manufacturer recommendations. T cells 

were then stimulated in T-cell media (RPMI-1640 with 10% HI-FBS, 20 mM HEPES, 1 mM 

Sodium Pyruvate, 2 mM L-Glutamine, 50 μM β-mercaptoethanol, 1x non-essential amino acids, 

and 0.5x Penicillin/Streptomycin) with 1:1000 GolgiPlug (BD) and 2 μM Monensin Solution 

(BioLegend), and 1 μM SIINFEKL peptide (Anaspec) for 3 hours at 37 °C. Cells were washed 

and stained for surface and intracellular markers as described above. 

Bone marrow-derived dendritic cell (BM-DC) isolation and OT-1 co-culture 

Bone marrow from C57Bl/6 mouse femurs and tibias was isolated, red blood cells lysed, and 

cells plated at 1.5×106 cells per mL and cultured in T-cell media (described above) plus 600 

ng/mL recombinant human Flt-3L-Ig (hum/hum, BioXcell) and 5 ng/mL recombinant mouse 

GM-CSF (BioLegend). After 1 week, BM-DCs were switched to fresh media and activated with 

20 μg/mL of the mouse STING ligand DMXAA (InvivoGen). The following day, BM-DCs were 

plated in 96-well plates at 10,000 cells per well in fresh media (without DMXAA) and cultured 

with lysed organoids overnight. Organoids were first dissociated to single cells in TrypLE and 

counted, then lysed in water at 2×106 cells per mL for 10 minutes at 37 °C. Lysed cells were 

pelleted at 1000 G for 15 minutes and resuspended in BM-DC media at appropriate dilutions. 

The next day, loaded BM-DCs were washed and cultured with 50,000 naïve OT-1s per well. 

CD8+ T cells were purified from spleen and LNs of OT-1 mice using the CD8a+ T Cell Isolation 

Kit, mouse (Miltenyi Biotech) following manufacturer specifications. Cells were harvested at 72 

hours for staining and flow cytometric analysis. For cytokine stains, cells were treated with 

1:1000 GolgiPlug and 2 μM Monensin Solution for 3 hours prior to harvest. 

OT-1 T cell activation and organoid co-culture 
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Spleen and LNs from OT-1 mice were harvested in PBS, red blood cells lysed, cells resuspended 

in T cell media (described above) + 10 ng/mL hIL-2 (PeproTech) and 1 μM SIINFEKL peptide 

(Anaspec), counted, and plated at 1×106 cells per mL. Stimulation was performed for 24 hours at 

37 °C. CD8+ T cells were then purified using the CD8a+ T Cell Isolation Kit, mouse (Miltenyi 

Biotech), and expanded in T cell media + hIL-2 with daily splitting. T cells were used for ACT 

or co-culture assays at day 3 or 4. 

Organoids and OT-1s were plated at 0:1 and 5:1 effector to target ratios at 2500 organoid single 

cells in 10 μl minimal media and 50 μl Matrigel. Co-cultures were plated in triplicate at 20 μl per 

dome, grown in minimal media, and imaged on day 4. Total fluorescent area of organoids within 

images was quantified in ImageJ v2.1.0/1.53c by setting left and right thresholds of greyscale 

images to 22 and 255 on B&W setting, respectively, and analyzing particles with size threshold 

set to >20 pixel^2 and circularity set to 0.1–1.0 with holes included. 

Immunohistochemistry and automated quantification 

Tissues were fixed in zinc formalin, washed in 70% ethanol and paraffin embedded. Antigen 

retrieval was performed in citrate buffer pH 6 in a pressure cooker at 125 °C for five minutes. 

Blocking was performed with BLOXALL Endogenous Peroxidase and Alkaline Phosphatase 

Blocking Solution (Vector) followed by Normal Horse Serum (2.5%) (Vector). Slides were 

stained with CD8α (ab217344, Abcam) 1:1000 overnight, incubated with Alkaline Phosphatase 

(AP) anti-Rabbit IgG (Vector) and developed with Vector Black substrate (Vector). Sections 

then underwent a second round of antigen retrieval in a pressure cooker at 110 °C for two 

minutes, followed by co-incubation with FOXP3 (FJK-16s, eBioscience) 1:125 and CD4 

(ab183685, Abcam) 1:400 overnight. Sections were then sequentially incubated with AP anti-Rat 

IgG (Vector) and HRP anti-Rabbit IgG (Vector) and developed sequentially with Vector Red 
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(Vector) and Vina Green (Biocare Medical). Slides were counterstained with Harris Acidified 

Hematoxylin and dehydrated. Aqueous wash steps following counterstain were shortened from 1 

minute to 30 seconds to minimize loss of Vina Green stain. 

Immune infiltration was calculated by a convolutional neural network (CNN) trained to identify 

the three cell types stained (black = CD8, green = CD4, green/red = Treg), using Aiforia’s cloud-

based platform (Aiforia Technologies Oy). Whole slides were scanned with a Leica AT2 

(Aperio) using the Rainbow color profile. First, the CNN was trained to identify a tissue layer. 

Within that layer, the CNN was trained to identify black, green, and green/red staining. Within 

each of these layers, an object counter was trained to quantify the number of cells with the stain. 

Training was performed by manual annotation of each layer and counting of objects within 

training regions across 20 separate slides, with roughly five training regions per layer per slide. 

Performance was validated against human counting and found to be highly accurate and 

consistent. 

In situ SIINFEKL tetramer staining 

Tissue was stained in situ with SIINFEKL tetramer as previously described80. Tissues were 

additionally stained with CD8β AF647 (YTS156.7.7, BioLegend) (1:100), and anti-human β2-

microglobulin (β2M) PE (2M2, BioLegend) (1:50). Anti-β2M staining is specific to human β2M 

in the SIINFEKL tetramer and serves to amplify signal. Images were taken at 30X on an 

Olympus FV1200 Laser Scanning Confocal Microscope and analyzed in ImageJ v2.1.0/1.53c. 

In vivo antibody and vaccine dosing 

All antibody dosing was performed via intraperitoneal injection in PBS. αCD4 (GK1.5, 

BioXCell) and αCD8 (2.43, BioXCell) depleting antibodies were administered at 200 ug every 4 

days. αPD-1 (29F.1A12, BioXCell) was administered at 200 μg three times a week. αCTLA 
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(9H10, BioXCell) was administered at an initial dose of 200 μg, with all subsequent doses at 100 

μg, three times a week. αCD40 (FGK4.5, BioXCell) was administered once at the beginning of 

treatment at 100 μg. 

The adjuvant amphiphile-CpG (amph-CpG) and antigen amphiphile (amph-peptide) were 

produced as previously described53. Briefly, class B CpG 1826 oligonucleotide with a G2 spacer 

(5’-diacyl lipid-GGTCCATGACGTTCCTGACGTT- 3’) was conjugated via the 5’ end to an 18 

carbon diacyl tail. Antigen peptide OVA250–270 (CGLEQLESIINFEKLTEWTSS) and non-

specific mutant gp10020–39 (optimized S27P, EGP long52, CAVGALEGPRNQDWLGVPRQL) 

were conjugated via N’ cysteine residue to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[maleimide(polyethyleneglycol-2000] (Avanti Polar Lipids). Mice were vaccinated 

subcutaneously at the base of the tail with 1.24 nmol amph-CpG and 25 μg of amph-peptide, 

with half dose given to each side. Vaccination was performed once weekly starting 14 days post-

transplant of loSIIN organoids. 

Colonoscopy imaging 

Tumor progression was monitored longitudinally using a Karl Storz colonoscopy system with 

white light, RFP and GFP fluorescence. This consists of Image 1 H3-Z Spies HD Camera 

System (part TH100), Image 1 HUB CCU (parts TC200, TC300), 175-Watt D-Light Cold Light 

Source (part 20133701–1), AIDA HD capture system, and fluorescent filters in the RFP and GFP 

channels (all from Karl Storz). The endoscope used for imaging was the Hopkins Telescope 

(Karl Storz, part 64301AA) with operating sheath (Karl Storz, part 64301AA). To consistently 

measure tumor area, biopsy forceps (Richard Wolf) were fed through the operating sheath and 

positioned consistently given two landmarks: widthwise grooves that appear as concentric semi-

circles in the field of view, and a lengthwise groove at the forceps tip. Images were captured 
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upon gentle contact of forceps with tumor. Tumor area in the field of view and length of the 

lengthwise forceps groove were calculated using ImageJ v2.1.0/1.53c. Tumor area was 

normalized to groove length. 

TCR sequencing 

Using a BD FACSAria flow cytometer, live SIINFEKL tetramer-positive CD8+ T cells were 

directly sorted into 50 μl lysis buffer with proteinase K, from the Arcturus PicoPure DNA 

Extraction kit (ThermoFisher), in low binding microcentrifuge tubes (Biotix), and genomic DNA 

extraction performed following manufacturer instructions. Mouse TCRβ sequencing was 

performed by Adaptive Biotechnologies. Analysis was performed in R v4.0.2, and Simpson 

diversity calculated using the ‘Vegan’ v2.5.7 package. To account for differences in total 

numbers of T cells surveyed in samples between groups, unique productive TCR sequences were 

randomly downsampled to match between groups. Down-sampled data is presented in Extended 

Data Fig. 3k–l, although down-sampling did not impact observed trends. 

Statistics and reproducibility 

Statistical analyses and figure generation were performed in R v4.0.2 using built in functions and 

ggplot2 v3.3.3, beeswarm v0.3.1, corrplot v0.88 and RColorBrewer v1.1.2. For statistical 

assessment of differences in proportionality, Fisher’s exact 2×2 test was performed. For 

continuous data, two-tailed Wilcoxon Rank Sum test was performed, apart from the organoid 

and OT-1 co-culture results, which were analyzed with two-tailed Student’s t-test. Multiple 

comparison corrections were performed using Holm’s method. No statistical method was used to 

predetermine sample size. Of animals transplanted with loSIIN organoids, only those that formed 

tumors were taken for flow cytometric analysis. No other data were excluded from analyses. 

Preclinical trials were randomized, and investigators blinded to allocation during dosing, 
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colonoscopy imaging, and tumor quantification. Preclinical studies were performed across three 

independent cohorts with the aim of validating consistency and reaching 10 or more animals per 

treatment arm. All in vivo and co-culture experiments were repeated at least two times. No 

experiments presented in this manuscript failed to replicate. 
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