
MIT Open Access Articles

Nearly Work-Efficient Parallel DFS in Undirected Graphs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ghaffari, Mohsen, Grunau, Christoph and Qu, Jiahao. 2023. "Nearly Work-Efficient
Parallel DFS in Undirected Graphs."

As Published: https://doi.org/10.1145/3558481.3591094

Publisher: ACM|Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and
Architectures

Persistent URL: https://hdl.handle.net/1721.1/150981

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/150981
https://creativecommons.org/licenses/by-nd/4.0/

Nearly Work-Efficient Parallel DFS in Undirected Graphs
Mohsen Ghaffari

MIT

Cambridge, MA, USA

ghaffari@mit.edu

Christoph Grunau

ETH Zurich

Zurich, Switzerland

cgrunau@ethz.ch

Jiahao Qu

ETH Zurich

Zurich, Switzerland

jiahao.qu@inf.ethz.ch

ABSTRACT

We present the first parallel depth-first search algorithm for undi-

rected graphs that has near-linear work and sublinear depth. Con-

cretely, in any 𝑛-node 𝑚-edge undirected graph, our algorithm

computes a DFS in 𝑂̃ (
√
𝑛) depth and using 𝑂̃ (𝑚 + 𝑛) work. All

prior work either required Ω(𝑛) depth, and thus were essentially

sequential, or needed a high poly(𝑛) work and thus were far from

being work-efficient.

CCS CONCEPTS

• Theory of computation → Parallel algorithms.

KEYWORDS

Parallel algorithms, depth-first search, work-efficient

ACM Reference Format:

Mohsen Ghaffari, Christoph Grunau, and Jiahao Qu. 2023. Nearly Work-

Efficient Parallel DFS in Undirected Graphs. In Proceedings of the 35th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’23), June
17–19, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3558481.3591094

1 INTRODUCTION

Depth-first search (DFS) is one of the basic algorithmic techniques

for graph problems, with a wide range of applications. In an 𝑛-node

and𝑚-edge undirected graph, a simple sequential algorithm com-

putes a DFS in𝑂 (𝑚 +𝑛) time. This is often covered in introductory

algorithmic courses. Unfortunately, the state-of-the-art parallel al-

gorithms for computing a DFS require at least Ω(
√
𝑛) processors to

run faster than this sequential algorithm. This significantly limits

the applicability of these parallel DFS algorithms, because having

Ω(
√
𝑛) or more processors is quite a high requirement for most

plausible applications. In this paper, we describe a parallel DFS

algorithm that runs faster than the sequential algorithm with just

poly(log𝑛) processors. Indeed, so long as the number of available

processors is in the range [1,Θ(
√
𝑛)]—which arguably captures a

wide range of practical settings of interest—this parallel DFS al-

gorithm provides the best possible speedup over the sequential

algorithm, up to logarithmic factors.

We next overview notions of work and depth in parallel algo-

rithms and how they determine the time complexity given a number

of processors. Then, we review prior work on parallel DFS compu-

tations. Afterward, we formally state our contributions.

This work is licensed under a Creative Commons Attribution-

NoDerivs International 4.0 License.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9545-8/23/06.

https://doi.org/10.1145/3558481.3591094

1.1 Background: Work & depth

Work and depth in parallel algorithms.We follow the standard

work-depth terminology [7].
1
For an algorithmA, the work𝑊 (A)

is defined as the total number of operations. The depth 𝐷 (A) is
defined as the longest chain of operations with sequential depen-

dencies, in the sense that the (𝑖 + 1)𝑡ℎ operation depends on (and

should wait for) the results of operations 𝑖 in the chain. The work

and depth bounds determine the time 𝑇𝑝 (A) for running the al-

gorithm when we have 𝑝 processor. We have 𝑇1 (A) =𝑊 (A) and
𝑇∞ (A) = 𝐷 (A) . A simple observation, known as Brent’s princi-

ple [8], gives the following general bound:

𝑊 (A)/𝑝 ≤ 𝑇𝑝 (A) ≤𝑊 (A)/𝑝 + 𝐷 (A) .

Work-efficient parallel algorithms. Parallel algorithms with

work𝑊 (A) asymptotically equal to the complexity of their se-

quential counterpart are known as work-efficient. If this equality
holds up to a poly(log𝑛) factor, the algorithm is called nearly work-
efficient. (Nearly) work-efficient parallel algorithms enjoy asymp-

totically optimal speed-up over sequential algorithms (up to loga-

rithmic factors) for a small number of processors. Once the number

of processors exceeds some threshold —asymptotically equal to

𝑊 (A)/𝐷 (A)—the time complexity bottoms out at 𝐷 (A). Thus,
an ultimate goal in devising parallel algorithms is to obtain (nearly)

work-efficient algorithms with depth as small as possible.

1.2 State of the art for parallel DFS algorithms

DFS is quite hard for parallel algorithms. Reif [14] showed that

computing the lexicographically first DFS—where the DFS should

visit the neighbors of a node according to their numbers—is P-
complete.

2
That is, if there is a poly(log𝑛)-depth poly(𝑛) work

algorithm for this problem, then there is such an algorithm for

all problems in P. This is why his paper was titled “Depth-first
search is inherently sequential.” Follow-up work on parallel DFS

algorithms thus focused on computing an arbitrary DFS, where the

order of visiting neighbors of a node gets chosen by the algorithm.

This is also the version of the DFS problem that we consider. The

most relevant prior work is by Aggarwal and Anderson [3] and a

follow-up by Goldberg, Plotkin, and Vaidya [9]. These give parallel

DFS algorithms, though focusing almost exclusively on depth and

require work much higher than the sequential algorithm.

Aggarwal and Anderson [3], building partially on a prior work of

Anderson[5], presented a randomized DFS algorithm for undirected

1
More concretely, we describe our work assuming the strongest PRAM variant,

CRCW with arbitrary writes. This is done for simplicity. The results can be extended

easily to the weaker variants, e.g., EREW, as the latter can simulate the stronger

variants at the cost of a logarithmic factor loss in depth and work. We did not attempt

to optimize the logarithmic factors in our results.

2
Technically, the P-completeness is for a decision variant which asks whether a

vertex 𝑣 is visited before another vertex 𝑢 or not.

273

https://doi.org/10.1145/3558481.3591094
https://doi.org/10.1145/3558481.3591094
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3558481.3591094

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Mohsen Ghaffari, Christoph Grunau, and JiahaoQu

graphs, with poly(log𝑛) depth and poly(𝑛) work.3 The latter is a
high and unspecified polynomial in 𝑛, which is at least Ω(𝑛3). This
high work complexity is, in part, due to its use of exact maximum

weight matching as a subroutine, for which known parallel algo-

rithms need a high poly(𝑛) work [12]. Goldberg et al.[9] devised a

deterministic variant of [3] with depth 𝑂̃ (
√
𝑛) and work poly(𝑛).

A closer inspection indicates that this deterministic algorithm re-

quires Ω̃(𝑚
√
𝑛) work.

To summarize, the state-of-the-art parallel DFS algorithms take

work much higher work than the sequential algorithm. Thus, they

require a high number of processors to run faster than the sequential

algorithm. Even in the work of Goldberg et al.[9], one would need

Ω(
√
𝑛 · poly(log𝑛)) processors to see any time advantage over the

sequential algorithm. This issue significantly limits the applicability

of these algorithms [3, 9] in the current (or plausible future) settings

of parallel computation.

1.3 Our contribution

We present the first nearly work-efficient parallel algorithm with

sublinear depth. This algorithm will outperform the sequential

counterpart as soon as we have poly(log𝑛) processors. In fact, it

exhibits an optimal speedup over the sequential algorithm, up to

logarithmic factors, if the number of processors is at most Θ(
√
𝑛).

Arguably, this range covers most of the practically relevant settings.

Theorem 1.1. There is a randomized parallel algorithm that, in
any 𝑛-node𝑚-edge undirected graph 𝐺 = (𝑉 , 𝐸), given a root node
𝑟 , computes a depth-first search tree of 𝐺 rooted at node 𝑟 , using
𝑂̃ (𝑚 + 𝑛) work and 𝑂̃ (

√
𝑛) depth, with high probability.

In the full version of this paper, we sketch how we can achieve

the same statement as Theorem 1.1 using a deterministic algorithm.

This is by replacing some randomized subroutines in algorithms

that we use from prior work with deterministic counterparts, and it

increases the depth and work bounds by only logarithmic factors.

Our algorithm for Theorem 1.1 follows the outer shell of the

approach of Aggarwal and Anderson [3]. The novelty is in the

internal ingredients. We adjust some parts of the algorithm to make

it nearly work-efficient, and in particular, we use (and develop)

certain batch-dynamic parallel data structures in several parts. The

latter allows us to ensure that the total work remains 𝑂̃ (𝑚 +𝑛). We

provide an algorithm overview in Section 3.

2 PRELIMINARIES

2.1 Basic definitions

We use two basic definitions from prior work [3]:

Definition 2.1. (Initial DFS segment) Consider a graph𝐺 = (𝑉 , 𝐸)
and a root node 𝑟 ∈ 𝑉 . An initial DFS segment, or simply an initial
segment, is a tree 𝑇 ′ = (𝑉 ′, 𝐸′) rooted in node 𝑟 , where 𝑉 ′ ⊆ 𝑉 and
𝐸′ ⊆ 𝐸, such that 𝑇 ′ can be extended to some depth-first search tree
𝑇 ′′ rooted in node 𝑟 . That is, there exists a depth-first search tree
𝑇 ′′ = (𝑉 , 𝐸′′) such that 𝐸′′ ⊇ 𝐸′.

Observation 2.2. A rooted tree 𝑇 ′ is an initial segment iff there are
no paths between different branches of 𝑇 ′ using vertices in 𝑉 − 𝑇 ′.

3
Aggarwal, Anderson, and Kao [4] later provided an extension to directed graphs,

with similar bounds. In this paper, our focus is on undirected graphs.

More formally, there should be no path connecting two incomparable
nodes of𝑇 ′ and made of internal nodes in𝑉 −𝑇 ′. Here, incomparable
means two nodes of 𝑇 ′, neither of which is an ancestor of the other.

Definition 2.3. (Separator) For a graph𝐻 with 𝑛′ vertices, a subset
of vertices𝑄 is called a separator if the largest connected component
of𝐻−𝑄 has size atmost 𝑛

′
2
. We call a separator𝑄 a 𝒌-path separator

if 𝑄 is made of 𝑘 vertex disjoint paths.

2.2 Basic tools from prior work

Prefix sum on a linked list. The prefix sums in an 𝑛-item linked

list can be computed in 𝑂 (log𝑛) depth and 𝑂 (𝑛) work [6]:

Lemma 2.4. Given a linked list (𝑥1, · · · , 𝑥𝑘) where each element 𝑥𝑖
is associated with a number 𝑦𝑖 , there is a deterministic algorithm that
computes the prefix sum in𝑂 (log𝑛) depth and𝑂 (𝑛) work. Moreover,
the value

∑𝑖
𝑗=1 𝑦 𝑗 can be accessed directly from 𝑥𝑖 .

Maximal matching. Luby [13] provides an efficient deterministic

maximal matching algorithm with𝑂 (log5 𝑛) depth and 𝑂̃ (𝑚) work.
We will use this in a black-box manner.

Lemma 2.5. Given a graph 𝐺 = (𝑉 , 𝐸), there is a deterministic
algorithm that computes a maximal matching in 𝑂 (log5 𝑛) depth
and 𝑂 (𝑚 log

5 𝑛) work.

3 ALGORITHM OVERVIEW

The outer shell of our algorithm is based on the classic approach

of Aggarwal and Anderson[3], which provides a poly(log𝑛)-depth
DFS algorithm but uses poly(𝑛) work for a high polynomial. The

approach is recursive. Let 𝐺 be the input graph, and 𝑟 be the DFS

root. We gradually grow an initial DFS segment of𝐺 until it becomes

a complete DFS tree of 𝐺 . See Section 2.1 for definitions. At the

start, the segment is simply the root 𝑟 . At each point, the initial

segment is extended such that the problem is reduced to finding a

new DFS tree in each connected component of the remaining graph,

and such that each component has size at most half of the previous

size. Thus, within log𝑛 recursions, the whole DFS is constructed.

The algorithm for extending an initial segment 𝑇 ′
to a full DFS

tree works as follows. For a connected component 𝐶 in 𝐺 −𝑇 ′
, by

Observation 2.2, there is a unique vertex 𝑥 ∈ 𝑇 ′
with the lowest

depth that has a neighbor 𝑦 ∈ 𝐶 . We construct a DFS rooted in 𝑦

for component 𝐶 , then connect it to 𝑇 ′
using the edge (𝑥,𝑦). This

is done in parallel for different connected components of 𝐺 −𝑇 ′
.

The core of the algorithm is to construct an initial DFS segment

that forms a separator for each component. This involves two parts:

The first part is to find a separator that consists of a small number

of vertex disjoint paths. The second part is constructing an initial

segment from this set of paths. We next discuss each of these parts

separately, in Section 3.1 and Section 3.2, and comment on how our

algorithm differs from that of Aggarwal and Anderson and achieves

𝑂̃ (𝑚) work.4

4
From now on, we focus on connected graphs. This implies that𝑚 = Ω (𝑛) and

thus allows us to state the work bound simply as 𝑂̃ (𝑚) , instead of 𝑂̃ (𝑚 + 𝑛) . Note
that connected components can be identified in 𝑂̃ (𝑚) work and poly(log𝑛) depth
via classical parallel algorithms [11].

274

Nearly Work-Efficient Parallel DFS in Undirected Graphs SPAA ’23, June 17–19, 2023, Orlando, FL, USA

3.1 Separator construction

The first part is to construct a separator with few paths.

Aggarwal-Anderson. Aggarwal andAnderson [3] present a poly(𝑛)-
work and poly(log𝑛) depth algorithm that computes an 𝑂 (1)-path
separator, as follows: We start with the trivial 𝑛-path separator that

consists of one path for each vertex. Then, in each iteration, we

reduce the number of paths by a constant factor while ensuring

that the paths form a separator. We continue this until at most a

constant number of paths are left. The core of the process is re-

ducing the number of paths by a constant factor. To do that, in a

rough sense, the basic idea is to match up and merge pairs of paths

iteratively. Aggarwal and Anderson [3] reduced this problem to a

minimum weight perfect matching problem. The latter is known

to be solvable using poly(log𝑛) depth and a high poly(𝑛) amount

of work[12], which is at least Ω(𝑛3) work. However, this approach
does not yield a work-efficient parallel algorithm as we are un-

aware of any 𝑂̃ (𝑚)-work algorithm for minimum-weight perfect

matching, even with a sublinear depth.

Our separator algorithm. To keep the work bound 𝑂̃ (𝑚), our sep-
arator will consist of 𝑂̃ (

√
𝑛) paths, instead of𝑂 (1). In Section 4, we

present a parallel algorithm that computes an𝑂 (
√
𝑛)-path separator

using near-linear work and 𝑂̃ (
√
𝑛) depth:

Theorem 3.1 (Separator Theorem). There is an algorithm
that finds an 𝑂 (

√
𝑛)-path separator 𝑄 in 𝑂 (

√
𝑛 log8 𝑛) depth and

𝑂 (𝑚 log
7 𝑛) work. Each path is stored as one doubly-linked list.

3.2 Construting an initial segment from the

separator paths

The second part assumes that we have a separator consisting of

several paths, and absorbs these paths into the current partial DFS

tree, forming a new initial DFS segment that includes all vertices

of these paths (and potentially some more).

Aggarwal-Anderson. Aggarwal and Anderson find a separator 𝑄

that consists of only 𝑂 (1) paths. Then, they add these paths to the

partial DFS tree essentially one by one. They find a path 𝑝 from the

lowest node in the partial tree 𝑇 ′
to a path 𝑙 in the separator. Then,

by adding the path 𝑝 to the partial DFS tree 𝑇 ′
, they can absorb

at least half of the vertices of 𝑙 into 𝑇 ′
. These operations can be

done using basic parallel spanning tree algorithms, in 𝑂̃ (𝑚) depth
and poly(log𝑛) work. After repeating the above procedure at most

𝑂 (log𝑛) times, all vertices in the separator get absorbed into 𝑇 ′
.

Our absorption algorithm. In contrast to the𝑂 (1)-path separator
of Aggarwal and Anderson, our work-efficient separator construc-

tion produces 𝑂 (
√
𝑛) paths. If we were to trivially absorb these

paths, the work required with the basic solution would be 𝑂̃ (𝑚
√
𝑛).

To make this part work-efficient, we need that the total work over

all absorptions is 𝑂̃ (𝑚). We will perform each absorption using

depth poly(log𝑛) and work linearly proportional to the sum of the

number of vertices on the paths and the number of edges adjacent

to the vertices on the path. These vertices and edges get deleted

from the remaining graph due to the absorption, and hence we can

argue that the overall work is 𝑂̃ (𝑚). The key algorithmic ingredi-

ent will be certain batch-dynamic parallel data structures, which

can perform large batches of updates to the graph using depth

poly(log𝑛) and work proportional to the total number of changes

in the graph. In Section 5 and Section 6, we present the algorithms

that provide this and prove the following theorem statement.

Theorem 3.2 (Absorption Theorem). Given an 𝑂 (
√
𝑛)-path

separator, where each path is stored as a doubly-linked list, there is
an algorithm that constructs an initial segment 𝑇 ′ ⊆ 𝐺 , where 𝑇 ′ is
also a separator for 𝐺 . The algorithm uses 𝑂 (

√
𝑛 log3 𝑛) depth w.h.p.

and 𝑂 (𝑚 log
3 𝑛) work in expectation.

4 SEPARATOR CONSTRUCTION

In this section, we prove the following theorem.

Theorem 3.1 (Separator Theorem). There is an algorithm
that finds an 𝑂 (

√
𝑛)-path separator 𝑄 in 𝑂 (

√
𝑛 log8 𝑛) depth and

𝑂 (𝑚 log
7 𝑛) work. Each path is stored as one doubly-linked list.

Proof. We start with 𝑄 consisting of one path for each vertex.

By Lemma 4.1, when 𝑄 consists of more than 48

√
𝑛 paths, we can

repeatedly reduce the number of paths in 𝑄 by a constant factor in

𝑂 (
√
𝑛 log7 𝑛) depth and𝑂 (𝑚 log

6 𝑛)work. After𝑂 (log𝑛) iterations,
we get a separator 𝑄 consisting of at most 48

√
𝑛 paths. □

4.1 Path Reduction

4.1.1 Review of Path Reductions in [3]. The crucial part of the sep-
arator construction is to reduce the number of paths by a constant

fraction while preserving the separator property of 𝑄 .

Suppose that initially,𝑄 has 𝑘 paths. Aggarwal and Anderson [3]

first divide the paths into a set 𝐿 of long paths and a set 𝑆 of short

paths. Initially,
1

4
𝑘 of the paths are placed in 𝐿 and the rest

3

4
𝑘

are placed in 𝑆 . The idea is to find a set of vertex disjoint paths

𝑃 between 𝐿 and 𝑆 . Each path 𝑝 in 𝑃 has one end on a long path

and the other end on a short path. All internal vertices of 𝑝 are

not contained in 𝑄 , and each path in 𝑄 intersects at most one path

in 𝑃 . We refer to a set of paths 𝑃 that satisfy all properties stated

above as valid. Suppose the path 𝑝 joins the path 𝑙 ∈ 𝐿 and 𝑠 ∈ 𝑆 .

Let 𝑙 = 𝑙 ′𝑥𝑙 ′′ and 𝑠 = 𝑠′𝑦𝑠′′ where 𝑥 and 𝑦 are the endpoints of 𝑝 ,

and 𝑠′ is equal or longer than 𝑠′′. Then 𝑙 is replaced by 𝑙 ′𝑝𝑠′, and 𝑠
by 𝑠′′, while we discard the path 𝑙 ′′.

Let 𝐿̂ and 𝑆 be the long and short paths that are joined, and 𝐿∗

be the part of long paths that get discarded. Besides 𝑃 being valid,
Aggarwal and Anderson [3] want two more properties:

(1) The set of paths 𝑃 are maximal.

(2) There is no path between 𝐿∗ and 𝑆 − 𝑆 .

Suppose that at least
1

12
𝑘 of the paths are joined, and 𝑄 remains

a separator after the replacement. Then the length of at least
1

9
of

the short paths are reduced by
1

2
. In at most𝑂 (log𝑛) such steps, at

least
1

4
𝑘 of the short paths are removed. When this happens, one

can stop because the number of paths in the separator has been

reduced by a constant fraction.

If either of the above two conditions fails, then they [3] can di-

rectly find a different𝑄 ′
such that it consists of less than a constant

fraction of paths than 𝑄 .

4.1.2 Path Reduction Algorithm. The bottleneck for the work in [3]
is the algorithm that finds a maximal 𝑃 . They reduce this problem

to the problem of minimum weight perfect matching, and solve

275

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Mohsen Ghaffari, Christoph Grunau, and JiahaoQu

it in poly(log𝑛) depth and using Ω(𝑛3) work via known perfect

matching algorithms [12]. In our paper, we crucially want work-

efficient algorithms, which use 𝑂̃ (𝑚) work:
Lemma 4.1. Given a separator 𝑄 that consists of 𝑘 paths, with
𝑘 > 48

√
𝑛, there is an algorithm that finds 𝑄 ′ that consists of at most

47

48
𝑘 paths in 𝑂 (

√
𝑛 log7 𝑛) depth and 𝑂 (𝑚 log

6 𝑛) work .
To prove this lemma, we find a set of vertex disjoint paths 𝑃 that

are valid (as defined above) with the exception that some of the

paths in 𝑃 have no endpoint in 𝑆 . We divide 𝑃 into 𝑃1 and 𝑃2 where

𝑃1 are the “matched” paths that have the other end on 𝑆 , while 𝑃2
are the “unmatched” paths, meaning that their other ends are not

on 𝑆 .

Similarly, let 𝐿̂1 be the paths of 𝐿 that are joined with 𝑆 using

𝑃1. Suppose that the long path 𝑙 = 𝑙 ′𝑥𝑙 ′′ ∈ 𝐿̂1 and the short path

𝑠 = 𝑠′𝑦𝑠′′ ∈ 𝑆 are joined by 𝑝 ∈ 𝑃1. We would like to learn whether

|𝑠′ | ≥ |𝑠′′ | so that we can determine which part of the short path

to join the long path. Since 𝑠 is provided as a doubly-linked list, we

make a copy of 𝑠 and only keep one direction of the doubly-linked

direction. Without loss of generality, let 𝑠 = 𝑠′𝑦𝑠′′ be the direction
that is kept. Then we assign the value 1 to each element on the

copied linked list, and we invoke Lemma 2.4 on the copied 𝑠 to learn

𝑦’s rank on the list. If 𝑦’s rank is greater or equal to
1

2
of the rank

of the last vertex on the list, then |𝑠′ | ≥ |𝑠′′ |. Otherwise, |𝑠′′ | > |𝑠′ |.
This operation can be performed simultaneously for all paths with

work proportional to the length of the paths and depth 𝑂 (log𝑛).
Without loss of generality we assume |𝑠′ | ≥ |𝑠′′ |, we then replace 𝑙

by 𝑙 ′𝑝𝑠′, 𝑠 by 𝑠′′, and we add the discarded part 𝑙 ′′ to 𝐿∗
1
.

For the path 𝑙 = 𝑙 ′𝑥𝑙 ′′ ∈ 𝐿̂2 and the unmatched path 𝑝 ∈ 𝑃2. We

replace 𝑙 with 𝑙 ′𝑝 , discard 𝑙 ′′. We add the discarded part 𝑙 ′′ to 𝐿∗
2
.

Denote the discarded parts as 𝐿∗ = 𝐿∗
1
∪ 𝐿∗

2
, the long paths that are

attached to 𝑃 as 𝐿̂ = 𝐿̂1∪ 𝐿̂2, and the short paths that are attached to
𝑃 as 𝑆 . Let 𝐷 = 𝑉 − 𝑃 −𝐿 − 𝑆 be the set of vertices not on any paths.

A picture for illustration is shown in Fig. 1. The three properties

we need are

(1) The set of paths 𝑃 are maximal in the sense that there is no

path from 𝐿 − 𝐿̂ to 𝑆 − 𝑆 with all internal vertices being in 𝐷 .

(2) There is no path between the discarded part 𝐿∗ and 𝑆 − 𝑆

with all internal vertices being in 𝐷 .

(3) The number of unmatched paths is small; concretely the

number of paths in 𝑃2 is less or equal to
1

48
𝑘 .

Suppose that these three conditions hold; we argue that either

the new 𝑄 = 𝐿 ∪ 𝑃 ∪ 𝑆 − 𝐿∗ remains a separator or we can directly

find a different 𝑄 ′
consisting of less than a constant fraction of

paths in 𝑄 . There are potentially two problems that can arise. In

each case, we find a different separator with a constant reduction

in the number of paths. We list the two potential problems below:

(1) The discarded parts of 𝐿∗ caused 𝑄 to no longer be a separa-

tor.

(2) The number of matched paths is too small, meaning the

number of paths in 𝑃1 is less than
1

12
𝑘 .

Aggarwal and Anderson [3] show that in either case, we can

immediately find another separator consisting of less than
47

48
𝑘

paths. In our algorithm, we can follow the same solutions for these

issues. For a review of their explanations, please see the full version

of our paper. For the rest of this section, we can assume that neither

problem arises. Thus 𝑄 remains a separator and at least
1

12
𝑘 short

paths belong to 𝑆 . Recall that originally, there are 3

4
𝑘 short paths.

So at least (𝑘
12
)/(3𝑘

4
) = 1

9
fraction of the original short paths have

their size cut in half. Thus, in 𝑂 (log𝑛) iterations, all short paths
will be absorbed.

We will show in Lemma 4.2 that finding the desired set 𝑃 can be

done in 𝑂 (
√
𝑛 log6 𝑛) depth and 𝑂 (𝑚 log

5 𝑛) work. For short paths
of the form 𝑠 = 𝑠′𝑦𝑠′′, determining whether |𝑠′ | ≥ |𝑠′′ | can be done

in 𝑂 (log𝑛) depth and 𝑂 (𝑛 log𝑛) work across all short paths. Since

we repeat the procedure at most 9 log𝑛 times, we prove the work

and depth bound of Theorem 3.1.

4.2 Path Merging

We first give a high-level description of our path-merging algorithm.

In the beginning, each long path chooses one end as its head. Then

each path simultaneously tries to extend itself from the head until

it reaches a short path. If a path cannot extend, it kills the head

vertex and backtracks one vertex. We continue the procedure until

the number of "active" long paths is less than

√
𝑛. This way, we

ensure that roughly at least

√
𝑛 of the work is parallelized, which

in turn bounds the total depth of the algorithm.

Lemma 4.2. Assume 𝑘 ≥ 48

√
𝑛. There is a parallel algorithm that

finds the set of paths 𝑃 satisfying the following three properties using
depth 𝑂 (

√
𝑛 log6 𝑛) and work 𝑂 (𝑚 log

5 𝑛).
(1) The set 𝑃 of paths is maximal, i.e., there is no path from 𝐿 − 𝐿̂

to 𝑆 − 𝑆 such that the internal vertices of the path are in 𝐷 .
(2) There is no path between the discarded part 𝐿∗ and 𝑆 − 𝑆 such

that the internal vertices of the path are in 𝐷 .
(3) The number of unmatched paths is small; concretely the num-

ber of paths in 𝑃2 is less or equal to 1

48
𝑘 .

We work on an auxiliary graph𝐺 ′
where we contract each short

path 𝑠 ∈ 𝑆 into a single vertex 𝑣𝑠 . Throughout the process, each

vertex in 𝐺 ′
is in one of three states, namely available, contained

in a (long) path, or dead. Initially, all vertices not contained in a

long path are available. For each long path 𝑙 , we pick an arbitrary

end as the head of that path, denoted as 𝑢𝑙 . Now, in each step, a

head vertex 𝑢𝑙 either gets matched to a neighbor 𝑣𝑙 that is still

available or it doesn’t get matched. If 𝑢𝑙 gets matched to 𝑣𝑙 , then 𝑣𝑙
joins the path 𝑙 , and 𝑣𝑙 becomes the new "head" of the path 𝑙 . If 𝑢𝑙
does not get matched, then only because of two possible reasons:

Either, the node 𝑢𝑙 corresponds to a contracted short vertex 𝑣𝑠 . If

that happens, we say that 𝑙 succeeded. If 𝑙 succeeded, then its head

vertex does not get matched and 𝑙 remains unchanged. Otherwise,

if 𝑢𝑙 does not correspond to a contracted short vertex 𝑣𝑠 , then 𝑢𝑙
has not been matched because all available neighboring vertices

of 𝑢𝑙 have been matched to different head vertices. In that case, 𝑢𝑙
dies and is removed from the path 𝑙 , and its predecessor𝑤𝑙 in the

path 𝑙 becomes the new head 𝑙 . If 𝑢𝑙 was the only node in 𝑙 , then

the path 𝑙 does not participate in the matching process anymore. If

the number of long paths attempting matching (or equivalently, the

number of head vertices not corresponding to a contracted vertex

𝑣𝑠) is less than
√
𝑛, then the process terminates, and we go to the

postprocessing phase described below.

For a path 𝑙 that successfully joins a short path, let 𝑙𝑜𝑙𝑑 be its

form before the above update, and 𝑙 ′𝑛𝑒𝑤 = {𝑣1, · · · , 𝑣𝑘 } be its form

276

Nearly Work-Efficient Parallel DFS in Undirected Graphs SPAA ’23, June 17–19, 2023, Orlando, FL, USA

" − $"! − $"" $""

%!

%"

"!∗""∗

&

&

'((− '($"!

Figure 1: Merging long and short paths.

after the update. The last vertex 𝑣𝑘 ∈ 𝐺 ′
on 𝑙𝑛𝑒𝑤 corresponds to

a contracted short path 𝑠 ∈ 𝑆 in the original graph 𝐺 . Thus, the

edge (𝑣𝑘−1, 𝑣𝑘) ∈ 𝐺 ′
corresponds to an edge (𝑣𝑘−1, 𝑣 ′𝑘) ∈ 𝐺 . We

replace 𝑣𝑘 with 𝑣 ′
𝑘
to get the corresponding path in 𝑙𝑛𝑒𝑤 in the

graph 𝐺 . Then 𝑝1 = (𝑙𝑛𝑒𝑤 − 𝑙𝑜𝑙𝑑) ∪ 𝑥 , where 𝑥 is defined to be the

only vertex in 𝑙𝑜𝑙𝑑 ∩ 𝑙𝑛𝑒𝑤 that was a head vertex during the path

merging algorithm. So 𝑝1 belongs to 𝑃1 and path 𝑙𝑜𝑙𝑑 belongs to 𝐿̂1.

Similarly, for a path 𝑙 that still participates in the matching pro-

cess when the algorithm terminates, let 𝑙𝑜𝑙𝑑 be its old form and

𝑙𝑛𝑒𝑤 be its form after the update. Let 𝑝2 = (𝑙𝑛𝑒𝑤 − 𝑙𝑜𝑙𝑑) ∪ 𝑥 ∈ 𝑃2

where 𝑥 is defined analogously. Path 𝑙𝑜𝑙𝑑 belongs to 𝐿̂2. For a path

𝑙 that is not participating because all the vertices on the paths are

dead, it belongs to 𝐿 − 𝐿̂1 − 𝐿̂2.

We see that 𝑃1 has one end on a long path and one end on a

short path. And 𝑃2 has one end on a long path and another on a

vertex not in 𝐿 or 𝑆 . Now we show why the paths we find satisfy

the above three properties. Property 3 holds because 𝑘 ≥ 48

√
𝑛

and the number of paths in 𝑃2 is less than
√
𝑛. So we have that the

number of paths in 𝑃2 is less than
1

48
𝑘 . For properties 1 and 2, we

observe that all vertices in 𝐿 − 𝐿̂1 − 𝐿̂2 or 𝐿
∗
are dead. Notice that a

vertex can only become dead if it was a head vertex of a long path

but failed to get matched in the matching process. Hence, we get

properties 1 and 2 from the following lemma.

Lemma 4.3. Suppose that a vertex 𝑣 becomes dead during the above
algorithm, then there is no path from 𝑣 to a vertex in 𝑆 − 𝑆 such that
the internal vertices of the path are in 𝐷 .

Proof. For a vertex 𝑣 to die, it must be a head vertex of a long

path during the matching process. It becomes dead if all its neigh-

bors are dead or they joined some other long paths. For the sake of

contradiction, suppose that there is a path 𝑝 = (𝑣1 = 𝑣, 𝑣2, · · · , 𝑣𝑘 =

𝑣𝑠) from 𝑣 to a contracted vertex 𝑣𝑠 formed from a short path with

all internal vertices being in 𝐷 . As 𝑣1 is dead and 𝑣𝑘 is available,

there exists some index 𝑖 with 𝑣𝑖 being dead and 𝑣𝑖+1 being avail-
able. Since 𝑣𝑖+1 is available at the end of the matching process, it

must have been in the available state throughout the whole match-

ing process. This yields a contradiction as when 𝑣𝑖 was attempting

matching, it could have been matched to 𝑣𝑖+1 which means 𝑣𝑖 would

not be dead. □

Proof of Lemma 4.2. We have shown that the output satisfies

all the guarantees of Lemma 4.2. Lemma 4.4, proven in the next

section, shows that there exists a parallel implementation of the

procedure with work 𝑂 (𝑚 log
5 𝑛) and depth 𝑂 (

√
𝑛 log6 𝑛), which

finishes the proof of Lemma 4.2. □

4.3 Parallel Implementation

It remains to discuss the parallel implementation of the procedure

described in Section 4.2. In particular, the remaining part of this

section is dedicated to proving the lemma below. We note that some

parts of the matching procedure are nontrivial. The main reason

the parallel implementation is nontrivial is that the number of steps

for computing the paths can be up to Θ(
√
𝑛). However, we can only

afford 𝑂 (𝑚 log
5 𝑛) work overall. Thus, the algorithm cannot afford

to read the whole input in each iteration, and we should ensure that

each edge is read only poly(log𝑛) times, in an amortized sense.

Lemma 4.4. There is a parallel algorithm that implements the proce-
dure described in Section 4.2 with𝑂 (𝑚 log

5 𝑛) work and𝑂 (
√
𝑛 log6 𝑛)

depth.

Recall that, at any point in time, a node is in one of three states

and can change its state at most twice. Moreover, in each step, the

number of vertices changing their state is equal to the number of

head vertices attempting to get matched. As the process stops once

less than

√
𝑛 head vertices attempt to get matched, this implies

that at least

√
𝑛 vertices change their state in each step. Hence,

the total number of steps is upper bounded by 2𝑛/
√
𝑛 = 𝑂 (

√
𝑛).

Therefore, it suffices to show that each step can be implemented

with𝑂 (log6 𝑛) depth. We say that an edge changes its state if one of

its endpoints changes its state. In particular, each edge changes its

state𝑂 (1) times. Therefore, it suffices to show that each step can be

implemented with work 𝑂 (𝑁𝑐ℎ𝑎𝑛𝑔𝑒 log
5 𝑛), where 𝑁𝑐ℎ𝑎𝑛𝑔𝑒 is the

total number of vertices and edges changing their state. Achieving

this bound is nontrivial; just reading all available neighbors of

a vertex 𝑢𝑙 trying to get matched might already exceed it. Thus,

our matching routine makes use of a data structure that allows

to efficiently get access to a subset of 𝑢𝑙 ’s neighbors that are still

available. We use the data structure from the lemma below.

Lemma 4.5. There is a data structure with the following guarantees:
The initial input is a graph 𝐺 = ({𝑣1, 𝑣2, . . . , 𝑣𝑛}, {𝑒1, 𝑒2, . . . , 𝑒𝑚})

277

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Mohsen Ghaffari, Christoph Grunau, and JiahaoQu

with 𝑛 ≥ 2 where all vertices are active in the beginning. The data
structure supports the following operations after initialization:

• MakeInactive({ 𝒊1, 𝒊2, . . . , 𝒊𝒌 }) takes an array consisting of
𝑘 ≥ 1 distinct indices between 1 and 𝑛 and marks the corre-
sponding vertices as inactive. This operation can be done in
𝑂 ((𝑘 +∑𝑘

𝑗=1 𝑑𝑒𝑔𝐺 (𝑣𝑖 𝑗)) log𝑛) work and 𝑂 (log𝑛) depth.
• Query(𝒊1, 𝒊2, . . . , 𝒊𝒌 , 𝒕) takes an array consisting of 𝑘 distinct
indices between 1 and 𝑛 and a number 𝑡 . The output is an array
𝑎 𝑗 for every 𝑗 ∈ [𝑘] containing 𝑡 distinct active neighbors of
vertex 𝑣𝑖 𝑗 . If 𝑣𝑖 𝑗 has fewer than 𝑡 active neighbors, then 𝑎 𝑗
contains one entry for each active neighbor of 𝑣𝑖 𝑗 . The work is
𝑂 (𝑘 · 𝑡 · log𝑛), and the depth is 𝑂 (log𝑛).

Initialization takes 𝑂 ((𝑚 + 𝑛) log𝑛) work and 𝑂 (log𝑛) depth.
The data structure uses a common technique, and we defer the

detailed description of it to the full version of this paper. On a

high level, the adjacency list of each node 𝑣 is augmented with

a balanced binary tree. The leaves correspond to 𝑣 ’s neighbors,

and each internal node keeps track of how many neighbors in the

corresponding subtree are still active. In our concrete case, the

input graph is the graph 𝐺 ′
. We also maintain the invariant that

a node is available if and only if it is marked as being active in

the data structure. Note that we can initialize the data structure

right at the beginning with 𝑂 (𝑚 log𝑛) work and 𝑂 (log𝑛) depth.
Now, let’s consider an arbitrary step of the algorithm. We denote

by𝑈 the set consisting of all head vertices 𝑢𝑙 trying to get matched.

Our matching procedure builds the matching gradually in𝑂 (log𝑛)
phases. In each phase, it uses Luby’s deterministic parallel maximal

matching algorithm (Lemma 2.5) as a black box on a graph that is

constructed with the help of the data structure. In more detail, in

phase 𝑖 , each node 𝑢 ∈ 𝑈 that has not been matched in previous

phases first selects 2
𝑖
arbitrary neighbors that are still available (in

particular, which haven’t been matched in previous phases). If𝑢 has

fewer such neighbors, it selects all of them. By making use of the

data structure, we can do the selection using 𝑂 (2𝑖 log𝑛) work per

node 𝑢 ∈ 𝑈 that has not been matched and 𝑂 (log𝑛) depth. Let 𝐻𝑖

be the bipartite graph where one side of the bipartition consists of

all nodes in𝑈 that have not been previously matched, and the other

side consists of all available nodes that have been selected by at least

one node. Moreover, there is an edge between a head vertex 𝑢 and

an available vertex 𝑣 if and only if𝑢 has selected 𝑣 . We then compute

a maximal matching of 𝐻𝑖 in𝑂 (|𝑉 (𝐻𝑖) | + |𝐸 (𝐻𝑖) | log5 𝑛) work and

𝑂 (log5 𝑛) depth using the algorithm of Lemma 2.5. In particular, one

has 𝑂 (2𝑖 log5 𝑛) work per vertex in 𝑈 that has not been matched

before. Then, the data structure is updated bymarking all previously

available vertices that have been matched as inactive. Note that we

can pay for this operation by charging𝑂 (log𝑛) to each such vertex

and 𝑂 (log𝑛) to each incident edge. We can do this charging as all

previously available vertices that have been matched change their

state (and thus also the incident edges). Also, after each phase, we

remove vertices from 𝑈 that don’t have any available neighbors.

Both the work and the depth of the algorithm are dominated by

the𝑂 (log𝑛) invocations of Luby’s deterministic maximal matching

algorithm. In particular, the overall depth is 𝑂 (log𝑛) ·𝑂 (log5 𝑛) =
𝑂 (log6 𝑛). To upper bound the work, consider some vertex 𝑢 ∈ 𝑈 .

First, consider that 𝑢 has been matched in some phase 𝑖 . Then,

informally speaking, the algorithm has done 𝑂 (2𝑖 log5 𝑛) work

on behalf of 𝑢 in all phases combined. If 𝑢 has been matched in

the first phase, then we charge 𝑂 (log5 𝑛) work to the node that 𝑢

matched with. If 𝑢 has not been matched in the first phase, then

at least 2
𝑖−1

neighbors of 𝑢 got matched in phase 𝑖 − 1. Thus, at

least 2
𝑖−1

edges incident to 𝑢 change their state, and therefore 𝑢

can charge each such edge𝑂 (log5 𝑛). We can use a similar charging

argument if 𝑢 has not been matched. Therefore, the work in each

step is 𝑂 (𝑁𝑐ℎ𝑎𝑛𝑔𝑒 log
5 𝑛). This shows the work and depth bound

of Lemma 4.4. It remains to argue correctness. In the last phase 𝑖 ,

we have 2
𝑖 ≥ 𝑛. Therefore, each vertex 𝑢 ∈ 𝑈 that has not been

matched before selects all its neighbors that are still available. Thus,

if themaximal matching in𝐻𝑖 does not match𝑢, then all its available

neighbors have been matched to other head vertices, which shows

that the final matching indeed satisfies the guarantees stated in the

previous section.

5 CONSTRUCTING AN INITIAL SEGMENT

FROM THE SEPARATOR PATHS

In this section, we prove Theorem 3.2, which shows how we can

add the𝑂 (
√
𝑛) paths in the separator to the partial DFS one by one,

using poly(log𝑛) depth for each path, and 𝑂̃ (𝑚) work overall. For

the sake of readability, we first restate the lemma.

Theorem 3.2 (Absorption Theorem). Given an 𝑂 (
√
𝑛)-path

separator, where each path is stored as a doubly-linked list, there is
an algorithm that constructs an initial segment 𝑇 ′ ⊆ 𝐺 , where 𝑇 ′ is
also a separator for 𝐺 . The algorithm uses 𝑂 (

√
𝑛 log3 𝑛) depth w.h.p.

and 𝑂 (𝑚 log
3 𝑛) work in expectation.

We want to construct an initial segment 𝑇 ′
that contains all the

vertices in 𝑄—the set of all vertices of the separator paths. We do

this by absorbing paths of 𝑄 into 𝑇 ′
one by one. To have a work-

efficient algorithm, we want to ensure that in each iteration of

absorbing a path, the total work is near-linear with respect to the

number of edges adjacent to the path that got absorbed into 𝑇 ′
.

Our algorithm uses a batch-dynamic parallel data structure. We

next describe the interface of this data structure and use that to

provide a proof for Theorem 3.2. The actual data structure that

proves this lemma is presented in Section 6.

Lemma 5.1. Given a graph 𝐺 = (𝑉 , 𝐸), a separator 𝑄 that consists
of some paths, and a root 𝑟 ∈ 𝐺 that forms the initial partial tree 𝑇 ′,
there is a data structure that supports the following operations.

• FindCC() returns a connected𝐶 ⊆ 𝐺−𝑇 ′ such that𝐶∩𝑄 ≠ ∅,
if no such 𝐶 exists, the function returns 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 .

• LowestNode(𝑪) takes a connected component𝐶 ⊆ 𝐺 −𝑇 ′, and
returns the vertex 𝑣 ∈ 𝐶 that is adjacent to a vertex in 𝑥 ∈ 𝑇 ′.
The vertex 𝑥 is the unique vertex with the lowest depth that is
adjacent to 𝐶 .

• FindPathS2P(𝑪 , 𝒙) takes a connected component𝐶 ⊆ 𝐺 −𝑇 ′

and a vertex 𝑥 ∈ 𝑇 and returns a path 𝑝 from 𝑥 to a vertex
𝑞 ∈ 𝑄 . All the vertices in 𝑝 are not in 𝑄 except for 𝑞.

• BatchDelete(𝒑) takes a path 𝑝 consists of vertices (𝑣1, · · · , 𝑣𝑘)
and deletes the vertices from 𝐺 −𝑇 ′.

Moreover, here are the work and depth of the above operations.

• FindCC() has work and depth 𝑂 (1).
• LowestNode(𝑪) has work and depth 𝑂 (1).

278

Nearly Work-Efficient Parallel DFS in Undirected Graphs SPAA ’23, June 17–19, 2023, Orlando, FL, USA

• FindPathS2P(𝑪 , 𝒙) has depth 𝑂 (log𝑛) w.h.p. If the function
returns a path 𝑝 , the work is 𝑂 (|𝑝 | log𝑛) where |𝑝 | is the
number of vertices on the path 𝑝

• BatchDelete(𝒑) has work𝑂 (|𝐸 (𝑝) | log3 𝑛) in expectation and
depth 𝑂 (log2 𝑛) w.h.p. where |𝐸 (𝑝) | are the number of edges
adjacent to the vertices in 𝑝 .

Having this data structure, we can now prove Theorem 3.2.

Proof of Theorem 3.2. To absorb the separator into the tree,

we sequentially find a path 𝑝 from a vertex 𝑞 ∈ 𝑄 ∩ (𝐺 −𝑇 ′) to a
vertex 𝑥 ∈ 𝑇 ′

, such that all the internal vertices of the path are in

𝐺 −𝑇 ′
. Suppose that 𝑞 belongs to the path 𝑙 = 𝑙 ′𝑞𝑙 ′′ in the separator,

and |𝑙 ′ | ≥ |𝑙 ′′ |. Then we take the longer half 𝑙 ′ and incorporate it

into the tree 𝑇 ′
, by adding the path 𝑝𝑞𝑙 ′ to the tree 𝑇 ′

. For the new

𝑇 ′
to remain an initial segment, we need 𝑥 to be the lowest vertex

in 𝑇 ′
adjacent to the connected component containing 𝑞.

For each path 𝑙 = 𝑙 ′𝑞𝑙 ′′, we need to learn whether |𝑙 ′ | ≥ |𝑙 ′′ |, so
that we can determine which part of the path to absorb in the initial

segment. Since 𝑙 is provided as a doubly-linked list, we make a copy

of 𝑙 and only keep one direction of the doubly-linked direction.

Without loss of generality, let 𝑙 = 𝑙 ′𝑦𝑙 ′′ be the direction that is kept.

Then we assign the value 1 to each element on the copied linked

list, and we invoke Lemma 2.4 on the copied 𝑙 to learn the rank of 𝑞

in the list. If this rank is greater or equal to
1

2
of the rank of the last

vertex on the list, then |𝑙 ′ | ≥ |𝑙 ′′ |. Otherwise, |𝑙 ′′ | > |𝑙 ′ |. This check
can be performed using depth 𝑂 (log𝑛) and work proportional to

the length of the path.

We also need to absorb the path 𝑝𝑞𝑙 ′ to 𝑇 ′
, and vertices on 𝑝𝑞𝑙 ′

should learn their depth in 𝑇 ′
. Suppose the absorption is through

the edge (𝑥,𝑦) with 𝑦 ∈ 𝑇 ′
where 𝑥 is the first vertex on the path

𝑝𝑞𝑙 ′. We next make each vertex in 𝑝𝑞𝑙 ′ learn its depth in 𝑇 ′
, using

𝑂 (log𝑛) depth and work proportional to the length of 𝑝𝑞𝑙 ′. For a
prefix sum computation, we initiate vertex𝑥 with the value𝑑𝑒𝑝𝑡ℎ𝑦—

i.e., the depth of vertex 𝑦 in the existing partial tree 𝑇 ′
—and we

initiate each remaining vertex on the 𝑝𝑞𝑙 ′ path with value 1. Then

we invoke Lemma 2.4 on the path to compute the prefix sum on

the list. As a result, all vertices on 𝑝𝑞𝑙 ′ learn their depth in𝑇 ′
. This

operation can be done in𝑂 (log𝑛) depth and𝑂 (|𝑝𝑞𝑙 ′ |) work where
|𝑝𝑞𝑙 ′ | is the length of the path.

We repeatedly call FindCC() to find a connected component con-

taining a vertex from𝑄∩(𝐺−𝑇 ′), then find 𝑥 using LowestNode(𝐶)

and call FindPathS2P(𝐶 , 𝑥) to find the desired path 𝑝 . Then we de-

termine whether |𝑙 ′ | ≥ |𝑙 ′′ |, and join the path 𝑝𝑞𝑙 ′ to 𝑇 ′
. Finally,

we call BatchDelete({𝑝𝑞𝑙 ′}) to delete the vertices from 𝐺 −𝑇 ′
.

Lemma 5.1 shows that the first two operations have depth and

work 𝑂 (1), the third operation has work 𝑂 (|𝑝 | log𝑛) and depth

𝑂 (log𝑛), and the last operation has 𝑂 (|𝐸 (𝑝) | log3 𝑛) amortized

work in expectation and depth 𝑂 (log2 𝑛), with high probability.

Here |𝐸 (𝑝) | are the number of edges adjacent to the vertices in 𝑝 .

Determining whether |𝑙 ′ | ≥ |𝑙 ′′ | and joining the path 𝑝𝑞𝑙 ′ to 𝑇 ′

can be done in 𝑂 (log𝑛) depth for one joining and 𝑂 (𝑛) work in

total overall joining operations. Since we repeat the above sequence

of operations 𝑂 (
√
𝑛 log𝑛) times, the algorithm uses 𝑂 (

√
𝑛 log3 𝑛)

depth w.h.p. and 𝑂 (𝑚 log
3 𝑛) work. □

6 DATA STRUCTURES

The data structure we use is based on a combination of the ones

developed by Acar et al. in [2] and [1], though we also need some

further modifications.

We work on 𝐺 −𝑇 ′
, and this graph undergoes vertex and edge

deletions. During the construction of the initial segment in Section 5,

we need to repeatedly find a path from the lowest vertex in the

partial tree 𝑇 ′
to a vertex in the separators, such that the path

is made of internal vertices in 𝐺 − 𝑇 ′
. To do that efficiently, we

maintain the connectivity structure of 𝐺 − 𝑇 ′
. We would like to

keep one spanning tree for each connected component of 𝐺 −𝑇 ′
.

The are two main problems that we want to solve using this data

structure. The first is that after joining a path to the partial DFS tree

𝑇 ′
, thus deleting its vertices from 𝐺 − 𝑇 ′

, we need to update the

connectivity structure of𝐺 −𝑇 ′
and in particular, as some edges get

deleted from the respective tree, we might have to find replacement

edges for them. The second problem is to maintain the connectivity

structure of 𝐺 − 𝑇 ′
such that we can answer path queries of the

following type efficiently: Given a set of vertices 𝐶 and a vertex 𝑥 ,

we need to report a path in 𝐺 −𝑇 ′
connecting 𝑥 to a vertex in 𝐶 ,

using poly(log𝑛) depth and work proportional to the path length.

In the batch-dynamic setting, a batch of updates (or queries)

are applied simultaneously; in our case, we will have batches of

deletions to𝐺−𝑇 ′
. For each such batch, wewould like thework to be

near-linearly proportional to the number of updates while keeping

the depth 𝑂 (poly log𝑛). For this purpose, we use a modified and

combined version of the data structures provided in [1] and [2]. We

first provide a brief recap of these and then present the combined

and adapted data structure that we need.

6.1 Connectivity and rake-and-compress data

structures

Before recapping the data structures of [1, 2], let us remark on a

small subtlety: their algorithms are written as supporting edge dele-

tions. However, we can generally treat vertex deletions as deleting

all edges adjacent to the vertex.

6.1.1 Parallelized connectivity data structure Algorithm. Consider
a graph undergoing (batches of) edge deletions, and suppose we

want to maintain a spanning tree for each connected component

of it. Acar et al. [1] provide a solution for this, which is essentially

a parallelized version of the sequential algorithm developed by

Holm, de Lichtenberg, and Thorup (HDT) [10]. The HDT algorithm

maintains a maximal spanning forest, certifying the graph’s con-

nectivity. We also note that although the work in the following

lemma is stated in expectation, by increasing the work by a factor

of 𝑂 (log𝑛), the work bound also holds w.h.p.

Lemma 6.1. There is a parallel batch-dynamic connectivity data
structure that maintains a maximal forest for a graph undergoing
vertex and edge deletions. Given any batch of edge deletions, the data
structure uses 𝑂 (log2 𝑛) expected amortized work per edge deletion.
The depth to process a batch of edge deletions is 𝑂 (log3 𝑛) w.h.p.

The main challenge is that, when an edge of the spanning forest

is deleted, which essentially breaks the tree of the component into

pieces, we need to see if there is a replacement edge that connects

279

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Mohsen Ghaffari, Christoph Grunau, and JiahaoQu

the pieces. Furthermore, we might have to do several of these simul-

taneously, for a batch of edge deletions. To solve this efficiently, the

HDT algorithm maintains a set of log𝑛 nested forests. The topmost

level of the nest forest represents a spanning forest of the entire

graph. Each level contains all tree edges stored in levels below it. A

key invariant we keep is that the largest component size at the level

𝑖 forest is at most 2
𝑖
. When an edge is searched and fails to become a

replacement edge in the forest, we decrease the level of that edge by

1. This way, we ensure that an edge is searched at most log𝑛 times

before it is deleted from our graph. Acar et al. [1] parallelize the

task of finding replacement non-tree edges by examining multiple

potential replacements at once, which gives the lemma we stated

above.

6.1.2 Parallalized Rake and Compress Tree. The rake and compress

operation for a static tree is a simple recursive procedure that

allows one to “process" a tree in 𝑂 (log𝑛) simple iterations. The

rake operation removes all leaves from the tree, except in the case

of a pair of adjacent degree-one vertices where it removes the

one with a smaller vertex id. The compress operation removes an

independent set of vertices of degree two that are not adjacent

to leaves. It is desired that this independent set has size within a

constant fraction of the maximum independent set (in expectation).

A simple analysis shows that after 𝑂 (log𝑛) iterations of rake and
compress, the tree shrinks to a single vertex. This is because a

constant fraction of the vertices in a forest are either leaves or

degree 2 vertices due to the degree constraint.

Rake-and-compress as a low-depth hierarchical clustering.

The rake and compress can be viewed as a recursive clustering

process. A cluster is a connected subset of vertices and edges of

the original forest. We note that a cluster may contain an edge

without containing both of its endpoints. The boundary vertices

of a cluster 𝐶 are the vertices 𝑣 ∈ 𝐶 that are adjacent to an edge

𝑒 ∈ 𝐶 . The vertices and edges of the original forest form the base
clusters. Initially, each vertex and each edge form its own cluster.

In the course of rake and compress, clusters are merged using the

following rule: Whenever a vertex 𝑣 is removed during rake or

compress operations, all of the clusters with 𝑣 as a boundary vertex

are merged with the base cluster containing 𝑣 ; we say 𝑣 represents

the new cluster. The children of a vertex are clusters that merged

together to form it, which we store in an adjacency list. Thus we

will have a collection of hierarchical forest {𝑇1, · · · ,𝑇𝑘 } where𝑇1 is
the original forest, and 𝑇𝑖+1 is generated from 𝑇𝑖 after one iteration

of the rake-and-compress. 𝑇𝑘 is the final forest in which every

connected component in the original forest is clustered into a single

cluster. An example rake and compress tree are depicted in Fig. 2

We need a dynamic version of this, which will allow us to answer

some type of queries in the tree, e.g., reporting a path in the tree

between two nodes. Consider a forest that undergoes edge deletions

and insertions (with the promise that all edges present after any

of these updates form a forest). We would like to maintain the

results of the rake and compresses operations during the 𝑂 (log𝑛)
iterations, while the forest undergoes these updates.

Acar et al. [2] first observe that the decision of whether to remove

a vertex 𝑣 only depends on 𝑣 ’s neighbors 𝑁 (𝑣) and the leaf status

of 𝑁 (𝑣). Then they argue that after one edge insertion/deletion,

only a constant number of vertices will have neighbors that change

their leaf status. These vertices are called affected vertices. Mean-

while, for all other vertices, the decisions of whether to remove

themselves are unaffected. In each subsequent iteration of the rake-

and-compress process, the number of affected vertices due to that

edge insertion/deletion grows by a constant additive factor. Thus

the work induced by one edge insertion/deletion is only 𝑂 (log𝑛),
yielding the following lemma. Like before, we note that although

the work in the following lemma is stated in expectation, by in-

creasing the work by a factor of 𝑂 (log𝑛), the work bound also

holds w.h.p.

Lemma 6.2. There is a dynamic data structure that maintains the
hierarchical forests {𝑇1, · · · ,𝑇𝑘 } where 𝑇1 is the original forest, and
𝑇𝑖+1 is generated from 𝑇𝑖 after one iteration of the rake-and-compress
process. And𝑇𝑘 is the final forest in which every connected component
in the original forest is clustered into a single cluster. For a 𝑛-node
forest that undergoes edge insertions and deletions, processes batch
insertions and deletions of 𝑘 edges in 𝑂 (𝑘 log𝑛) work in expectation
and 𝑂 (log(𝑛) log∗ (𝑛)) span w.h.p.

6.2 Overview of the combined data structure

The combined and adapted data structure we next present proves

Lemma 5.1. We first provide an overview of the data structure, and

we then discuss each of the operations and their complexities.

To explain the data structure, let us briefly summarize what we

will use it for. Our data structure is meant to be working on𝐺 −𝑇 ′
,

the graph induced by vertices that are not in the current initial

segment. We construct and maintain a parallelized HDT connectiv-

ity forest (as overviewed in Section 6.1.1). In addition, we keep a

rake-and-compress representation (as overviewed in Section 6.1.2)

for a copy of the HDT forest. The parallelized HDT forest is respon-

sible for keeping a maximal forest of 𝐺 −𝑇 ′
as it undergoes vertex

and edge detection. Whenever some edge deletions happen, the

replacement edges found by this parallelized HDT are also fed into

the rake-and-compress representations of the trees. The rake-and-

compress representation allows one to efficiently answer queries

about the component, e.g., finding a path between two vertices.

We augment the RC-tree with two different flags (from now on,

we use the phrase RC-Tree to refer to the tree’s rake-and-compress

representation). The first flag is the separator flag which helps us to

determine whether a connected component contains a vertex from

the separator 𝑄 . In the RC-Tree, each vertex has a flag indicating

whether it is in the separator 𝑄 . In the original tree𝑇1, a vertex has

a separator flag if it is in 𝑄 . When removing a vertex 𝑣 from the RC

tree, we merge all the clusters with 𝑣 as the boundary vertex to form

a new cluster. If any of the above clusters or 𝑣 has a separator flag,

the newly formed cluster will have the separator flag. Moreover, in

the adjacency list, we sort the children cluster such that the children

with separator flags appear in front of the children without separa-

tor flags. Finally, the clusters representing connected components

are sorted into a linked list where the connected components with

separator flags appear before the ones without the flags.

The second augmentation is the lowest neighbor augmentation

which helps us find a connection vertex of a connected component𝐶

to the partial tree𝑇 ′
. Before the first stage of the rake-and-compress

280

Nearly Work-Efficient Parallel DFS in Undirected Graphs SPAA ’23, June 17–19, 2023, Orlando, FL, USA

B C D

E

F

A B C D

E

F

A

B C D

E

F

AB C D

E

F

A

!! !"

!# !$

Figure 2: A recursive clustering of a tree. The tree consists of vertices {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 } and those vertices are connected by black edges. We use circles to represent

different clusters. 𝑇1: The vertices and edges in the original tree form the green clusters. 𝑇2: The blue vertices are removed to form the blue clusters. Vertices

{𝐴, 𝐸, 𝐹 } are removed through the rake operation. Vertex {𝐶 } is removed through the compress operation.𝑇3: {𝐵,𝐷 } are both leaf vertices in the tree. Through

tie-breaking, {𝐵} is removed to form the red cluster.𝑇4: The only (leaf) vertex 𝐷 in the tree is removed through the rake operation to form the purple cluster.

process, if a vertex 𝑣 has neighbors in the partial tree 𝑇 ′
, it is aug-

mented with (𝑣, 𝑑𝑣) where 𝑑𝑣 is the depth of the lowest depth tree

neighbor of 𝑣 . If 𝑣 has no tree neighbor, it is augmented with None.
When merging clusters formed by removing 𝑣 , suppose any of

the clusters or 𝑣 is augmented with anything other than None. Let
{(𝑣1, 𝑑𝑣1), · · · , (𝑣𝑘 , 𝑑𝑣𝑘)} be the augmentations of 𝑣 ’s children clus-

ters, the cluster formed by removing 𝑣 is augmented with (𝑣𝑖 , 𝑑𝑣𝑖)
where 𝑑𝑣𝑖 has (one of) the lowest depth among 𝑑𝑣1 , · · · , 𝑑𝑣𝑘 . Oth-
erwise, it is augmented with None. If 𝑣 is augmented with (𝑣𝑖 , 𝑑𝑣𝑖),
then 𝑣𝑖 has a neighbor 𝑦 ∈ 𝑇 ′

such that 𝑦 has the lowest depth

among all tree neighbors of vertices in the cluster formed by 𝑣 .

Next, we discuss the complexities of the operations provided by

the data structure. We first discuss FindCC(), LowestNode(), and

BatchDelete(), as they are simpler and shorter. Then, in a separate

subsection, we discuss FindPathS2P().

6.3 FindCC(), LowestNode(), and BatchDelete()

FindCC() has work and depth 𝑂 (1). This is because the connected
components of 𝐺 −𝑇 ′

are sorted such that connected components

with separator flags appear before those without. So we can just

check the separator flag of the first connected component in the

list. If it has the flag, then we return the connected component.

Otherwise, the function returns 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 .

LowestNode(𝐶) haswork and depth𝑂 (1) because it is augmented

with (𝑣, 𝑑𝑣). As described above, 𝑣 is the unique vertex with the

lowest depth that is adjacent to a vertex contained in the cluster,

and that cluster is the connected component 𝐶 .

For BatchDelete(𝑝), vertices in 𝐺 − 𝑇 ′
adjacent to 𝑝 learn the

depth of their new tree neighbors, so their lowest neighbor aug-

mentations are updated. Suppose vertices on 𝑝 have 𝑘 total neigh-

bors. Lemma 6.1 shows that deleting edges from the parallelized

HDT and finding the replacement edges have amortized work

𝑂 (𝑘 log3 𝑛). Since we can find a total of at most 𝑘 replacement

edges, by Lemma 6.2, inserting 𝑘 edges to the RC-Tree can be done

in 𝑂 (𝑘 log(1 + 𝑛/𝑘)) work in expectation and 𝑂 (log(𝑛) log∗ (𝑛))
depth w.h.p. This is because the vertices with augmentation up-

dates are the vertices adjacent to the deleted edges.

6.4 FindPathS2P

We first describe how to report a path between two given vertices.

Then we explain how to report a path between one set of vertices

and another vertex, which provides exactly FindPathS2P(𝐶 , 𝑥).

6.4.1 Point-to-point path queries. We first show that the Point-to-

Point queries FindPathP2P(𝑥 ,𝑦) between two vertices 𝑥 and 𝑦 in the

RC-Tree can be done using depth 𝑂 (log𝑛) and work proportional

to 𝑑 (𝑥,𝑦), where 𝑑 (𝑥,𝑦) is the distance between 𝑥 and 𝑦 in the

original tree.

Recall that the RC algorithm will produce a collection of hierar-

chical forests {𝑇1, · · · ,𝑇𝑘 } where 𝑇1 is the original forest, and 𝑇𝑖+1
is generated from 𝑇𝑖 after one iteration of the rake-and-compress

process. Also, 𝑇𝑘 is the final forest in which every connected com-

ponent in the original tree is clustered into a single cluster. Notice

that in forest 𝑇𝑖 , the edges are either edges in the original forest or

clusters formed by the compression of the vertices. The vertices

are either vertices in the original forest or clusters formed by the

rake-and-compress of the vertices.

Lemma 6.3. For two vertices 𝑥,𝑦 in the 1st level RC tree, there is an al-
gorithm that finds the path between 𝑥 and 𝑦 in work𝑂 (𝑑 (𝑥,𝑦) log𝑛)
and depth 𝑂 (log𝑛) w.h.p.

We first show that we can answer the path query between adja-

cent vertices in 𝑇𝑖 .

Lemma 6.4. Let 𝑥 , 𝑦 be two neighboring vertices in the 𝑖𝑡ℎ level of
the RC-Tree 𝑇𝑖 connected by the cluster edge 𝐸. There is an algorithm
that finds the path in the original tree between 𝑥 and 𝑦 in work
𝑂 (𝑑 (𝑥,𝑦) · 𝑖) and depth 𝑂 (𝑖).

Proof. We prove the above statement by induction. Suppose

that 𝑥,𝑦 are adjacent vertices in 𝑇1. Then the path between 𝑥,𝑦 is

281

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Mohsen Ghaffari, Christoph Grunau, and JiahaoQu

just (𝑥,𝑦), and the operation has work and depth 𝑂 (1). Now in 𝑇𝑖 ,

if 𝐸 is an edge from the original tree, then the path is still (𝑥,𝑦).
Suppose that 𝐸 is a cluster formed by the compression of the vertex

𝑧 in 𝑇𝑗 for 𝑗 ≤ 𝑖 − 1. Then 𝑧 is still neighboring with both 𝑥 and 𝑦

in 𝑇𝑗 . This is because once a vertex 𝑥 becomes a boundary vertex

of a cluster 𝐸 in 𝑇𝑗 , it will remain so in subsequent trees until 𝐸 is

merged with either 𝑥 or another vertex. Moreover, the path between

𝑥 , 𝑦 in the original tree is the union of the paths formed by (𝑥, 𝑧)
and (𝑧,𝑦). By induction, we can find the paths between (𝑥, 𝑧) and
(𝑧,𝑦) in parallel in depth𝑂 (𝑖 − 1), and work𝑂 (𝑑 (𝑥, 𝑧) · (𝑖 − 1)) and
𝑂 (𝑑 (𝑧,𝑦) · (𝑖 − 1)) respectively. Since 𝑑 (𝑥,𝑦) = 𝑑 (𝑥, 𝑧) +𝑑 (𝑦, 𝑧), the
work of finding the path between 𝑥,𝑦 in 𝑇𝑖 is

𝑂 (𝑑 (𝑥, 𝑧) · (𝑖 − 1)) +𝑂 (𝑑 (𝑧,𝑦) · (𝑖 − 1)) +𝐶 = 𝑂 (𝑑 (𝑥,𝑦) · 𝑖)
where𝐶 is the constant overhead cost, thus proving Lemma 6.4. □

Consider the general case where 𝑥,𝑦 are two vertices in the orig-

inal tree. We recursively generate a list (𝑋1, · · · , 𝑋𝑘), (𝑌1, · · · , 𝑌𝑘)
where 𝑋1 = 𝑥,𝑌1 = 𝑦, and

𝑋𝑖+1 =

{
𝑋𝑖 if 𝑋𝑖 is not merged in the formation of 𝑇𝑖+1
𝐶 if 𝑋𝑖 is merged to form the cluster 𝐶 in 𝑇𝑖+1

We find the largest 𝑖 such that 𝑋𝑖 ≠ 𝑌𝑖 . Since 𝑋𝑖+1 = 𝑌𝑖+1, we
have that 𝑋𝑖 and 𝑌𝑖 are children clusters of 𝑋𝑖+1 = 𝑌𝑖+1. Suppose
𝑋𝑖+1 is formed from the removal of vertex 𝑥𝑖+1. Finding the path

between 𝑥 and 𝑦 is equivalent to finding the paths between 𝑥 and

𝑥𝑖+1, and between 𝑦 and 𝑥𝑖+1. Moreover, 𝑋𝑖 and 𝑌𝑖 both have 𝑥𝑖+1
as one of their boundary vertices. In the following lemma, we show

that this can be done in work 𝑂 (𝑑 (𝑥, 𝑥𝑖+1) · 𝑖) and 𝑂 (𝑑 (𝑦, 𝑥𝑖+1) · 𝑖)
respectively, thus proving lemma Lemma 6.3.

Lemma6.5. Consider a vertex𝑥 in the RC-Tree with (𝑥 = 𝑋1, · · · , 𝑋𝑘),
where

𝑋𝑖+1 =

{
𝑋𝑖 if 𝑋𝑖 is not merged in the formation of 𝑇𝑖+1
𝐶 if 𝑋𝑖 is merged to form the cluster 𝐶 in 𝑇𝑖+1

We denote by 𝑥𝑖 the vertex that is removed to form 𝑋𝑖 . Suppose 𝑋𝑖
has 𝑦 as a one boundary vertex. Then there is an algorithm that finds
a path between 𝑥 and 𝑦 in work 𝑂 (𝑑 (𝑥,𝑦) · 𝑖) and depth 𝑂 (𝑖).

Proof. The proof is by induction. If 𝑖 = 1, 𝑥1 cannot have 𝑦 as a

boundary vertex. This is because only clusters formed by the edges

can have boundary vertices. If 𝑖 = 2, then the path between 𝑥 and 𝑦

is just the single edge path (𝑥,𝑦).
Now we consider the case where 𝑖 > 2. Suppose𝑋𝑖 = 𝑋𝑖−1. Then

𝑋𝑖−1 still has 𝑦 as its boundary vertex in 𝑇𝑖−1. This is because once
a vertex 𝑣 becomes a boundary vertex of a cluster 𝐶 in 𝑇𝑗 , it will

remain so in subsequent trees until 𝐶 is merged with either 𝑣 or

another vertex. Thus we have the result from induction.

Suppose 𝑋𝑖 ≠ 𝑋𝑖−1. We know that 𝑋𝑖−1 is a child cluster of 𝑋𝑖
formed by removing 𝑥𝑖 in 𝑇𝑖−1. In 𝑇𝑖−1, if 𝑋𝑖−1 has 𝑦 as one of

its boundary vertices, we have the result from induction. Suppose

𝑋𝑖−1 has 𝑥𝑖 as its boundary vertex and (𝑦, 𝑥𝑖) are neighbors in

𝑇𝑖−1. In this case, the path between 𝑥 and 𝑦 is the union of path

between (𝑥𝑖 , 𝑦) and (𝑥, 𝑥𝑖). The former path can be found in work

𝑂 (𝑑 (𝑥𝑖 , 𝑦) · (𝑖 − 1)) by Lemma 6.4, and the latter path can be found

by induction in work 𝑂 (𝑑 (𝑥, 𝑥𝑖) · (𝑖 − 1)), so the total work is still

𝑂 (𝑑 (𝑥𝑖 , 𝑦) · (𝑖 − 1)) +𝑂 (𝑑 (𝑥, 𝑥𝑖) · (𝑖 − 1)) +𝐶 = 𝑑 (𝑥,𝑦) · 𝑖

where𝐶 is the constant overhead cost, thus proving Lemma 6.5. □

6.4.2 Set-to-point path queries. Recall that in the original tree

𝑇1 each vertex is augmented with a flag. In 𝑇1, a vertex has the

separator flag if it is in 𝑄 . Moreover, a cluster has the separator if

any of its child clusters has the separator flag.

If 𝑥 has the separator flag, we just return 𝑥 . Otherwise, we re-

cursively generate a list (𝑥 = 𝑋1, · · · , 𝑋𝑘) where

𝑋𝑖+1 =

{
𝑋𝑖 if 𝑋𝑖 is not merged in the formation of 𝑇𝑖+1
𝐶 if 𝑋𝑖 is merged to form the cluster 𝐶 in 𝑇𝑖+1

We find the largest 𝑖 such that 𝑋𝑖 does not have the separator flag.

There are two cases to consider.

(1) Suppose that 𝑥𝑖+1 ∉ 𝑄 . Since 𝑋𝑖+1 has a separator flag, it

must have a child cluster 𝑌 that has the separator flag, and

the cluster 𝑋𝑖 does not have the separator flag. So we know

that there is a path from 𝑥 to some vertex 𝑞 ∈ 𝑌 ∩𝑄 using

𝑥𝑖+1, so we call FindPathP2P(𝑥 ,𝑥𝑖+1) and FindPath
′
𝑖
(𝑌 ,𝑥𝑖+1),

where we will describe below, to find the paths. The function

then returns the union of the above two paths.

(2) Suppose that 𝑥𝑖+1 ∈ 𝑄 . Then we can call FindPathP2P(𝑥 ,𝑥𝑖+1)
directly to find the path.

For the function FindPath’𝑖 (𝑌 ,𝑧), the subscript 𝑖 indicates that the

function is called on 𝑇𝑖 . We assume 𝑌 has 𝑧 as its boundary vertex

and 𝑌 has the separator flag. Suppose 𝑌 is formed from the removal

of vertex 𝑦 in𝑇𝑗 . Let 𝐸 be the (cluster) edge that connects 𝑦 and 𝑧 in

𝑇𝑗 , if 𝐸 has the separator flag, we go to the lower level tree and call

FindPath’𝑖−1(𝐸,𝑧). Otherwise, we know 𝐸 does not have any vertex

that belongs to 𝑄 . Let 𝐸′ be another child of 𝑌 that has the separa-

tor flag, then we can call FindPathP2P(𝑧,𝑦) and FindPath’𝑖−1(𝑦,𝐸′)
because the union of the above two paths is the desired path.

Thus the FindPath’ function follows the following recursive

(informal) relationship.

𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ′𝑖 = 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ′𝑖−1 + 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ𝑃2𝑃

The depth of FindPathS2P(𝐶, 𝑥) query is 𝑂 (log𝑛) w.h.p. This
is because the main function FindPathS2P only calls the function

FindPath’𝑖 at most once for some 𝑖 . For the function FindPath’𝑖 , as

shown above, the depth of the recursion is at most 𝑖 = 𝑂 (log𝑛)
w.h.p. In the meanwhile, we can run the FindPathP2P queries in

parallel, and those operations have depth 𝑂 (log𝑛) w.h.p.
For the function FindPathS2P(𝐶, 𝑥), suppose that the returned

path is a path between 𝑥 and a vertex 𝑦 ∈ 𝐶 . Then the work is

𝑂 (𝑑 log𝑛) w.h.p. where 𝑑 is the distance between (𝑥,𝑦) in the orig-

inal tree. This is because the work cost of FindPathS2P is the sum

of all the work from FindPathP2P and 𝑂 (log𝑛) overhead cost. The

work of FindPathP2P is proportional to its length, and the final path

returned by the function is the union of the paths returned by all

calls of FindPathP2P.

7 ACKNOWLEDGMENT

C. G. was supported by the European Research Council (ERC) un-

der the European Unions Horizon 2020 research and innovation

program (grant agreement No. 853109).

282

Nearly Work-Efficient Parallel DFS in Undirected Graphs SPAA ’23, June 17–19, 2023, Orlando, FL, USA

REFERENCES

[1] Umut A Acar, Daniel Anderson, Guy E Blelloch, and Laxman Dhulipala. 2019.

Parallel batch-dynamic graph connectivity. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 381–392.

[2] Umut A Acar, Daniel Anderson, Guy E Blelloch, Laxman Dhulipala, and Sam

Westrick. 2020. Parallel Batch-Dynamic Trees via Change Propagation. In Annual
European Symposium on Algorithms (ESA).

[3] A. Aggarwal and R. Anderson. 1987. A Random NC Algorithm for Depth First

Search. In ACM Symposium on Theory of Computing (STOC). 325–334.
[4] Alok Aggarwal, Richard J Anderson, and M-Y Kao. 1989. Parallel depth-first

search in general directed graphs. In ACM symposium on Theory of Computing
(STOC). 297–308.

[5] Richard Anderson. 1985. A parallel algorithm for the maximal path problem. In

ACM Symposium on Theory of Computing (STOC). 33–37.
[6] Richard J. Anderson and Gary L. Miller. 1990. A simple randomized parallel

algorithm for list-ranking. Inform. Process. Lett. 33, 5 (1990), 269–273. https:

//doi.org/10.1016/0020-0190(90)90196-5

[7] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3

(1996), 85–97.

[8] Richard P Brent. 1974. The parallel evaluation of general arithmetic expressions.

Journal of the ACM (JACM) 21, 2 (1974), 201–206.
[9] AV Goldberg, SA Plotkin, and PM Vaidya. 1988. Sublinear-time parallel algo-

rithms for matching and related problems. In IEEE Symposium on Foundations of
Computer Science (FOCS). 174–185.

[10] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic

deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,

2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723–760.
[11] Joseph JaJa. 1992. An introduction to parallel algorithms. Vol. 17. Addison-Wesley

Reading.

[12] Richard M Karp, Eli Upfal, and Avi Wigderson. 1985. Constructing a perfect

matching is in random NC. In ACM symposium on Theory of Computing (STOC).
22–32.

[13] Michael Luby. 1993. Removing randomness in parallel computation without a

processor penalty. J. Comput. System Sci. 47, 2 (1993), 250–286. https://doi.org/

10.1016/0022-0000(93)90033-S

[14] John H Reif. 1985. Depth-first search is inherently sequential. Inform. Process.
Lett. 20, 5 (1985), 229–234.

283

https://doi.org/10.1016/0020-0190(90)90196-5
https://doi.org/10.1016/0020-0190(90)90196-5
https://doi.org/10.1016/0022-0000(93)90033-S
https://doi.org/10.1016/0022-0000(93)90033-S

	Abstract
	1 Introduction
	1.1 Background: Work & depth
	1.2 State of the art for parallel DFS algorithms
	1.3 Our contribution

	2 Preliminaries
	2.1 Basic definitions
	2.2 Basic tools from prior work

	3 Algorithm Overview
	3.1 Separator construction
	3.2 Construting an initial segment from the separator paths

	4 Separator construction
	4.1 Path Reduction
	4.2 Path Merging
	4.3 Parallel Implementation

	5 Constructing an initial segment from the separator paths
	6 Data Structures
	6.1 Connectivity and rake-and-compress data structures
	6.2 Overview of the combined data structure
	6.3 FindCC(), LowestNode(), and BatchDelete()
	6.4 FindPathS2P

	7 Acknowledgment
	References

