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ABSTRACT
We present an 𝑂 (log3 log𝑛)-round distributed algorithm for the

(Δ + 1)-coloring problem, where each node broadcasts only one

𝑂 (log𝑛)-bit message per round to its neighbors. Previously, the

best such broadcast-based algorithm required 𝑂 (log𝑛) rounds. If
Δ ∈ Ω(log3 𝑛), our algorithm runs in 𝑂 (log∗ 𝑛) rounds. Our algo-
rithm’s round complexity matches the state-of-the-art in the much

more powerful CONGEST model [Halldórsson et al., STOC’21 &

PODC’22], where each node sends one different message to each of

its neighbors, thus sending up to Θ(𝑛 log𝑛) bits per round. This is
the best complexity known, even if message sizes are unbounded.

Our algorithm is simple enough to be implemented in even

weaker models: we can achieve the same 𝑂 (log3 log𝑛) round com-

plexity if each node reads its received messages in a streaming fash-

ion, using only 𝑂 (log3 𝑛)-bit memory. Therefore, we hope that our

algorithm opens the road for adopting the recent exciting progress

on sublogarithmic-time distributed (Δ + 1)-coloring algorithms in

a wider range of (theoretical or practical) settings.

CCS CONCEPTS
• Theory of computation → Distributed algorithms; • Mathe-
matics of computing → Graph coloring.

KEYWORDS
CONGEST model, distributed graph coloring

ACM Reference Format:
Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn,

and Alexandre Nolin. 2023. Coloring Fast with Broadcasts. In Proceedings
of the 35th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’23), June 17–19, 2023, Orlando, FL, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3558481.3591095

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9545-8/23/06. . . $15.00

https://doi.org/10.1145/3558481.3591095

1 INTRODUCTION
The coloring problem and its distributed motivations. Our
focus is on Δ + 1-coloring: the problem of assigning one color from

{1, . . . ,Δ+1} to each node, such that no two neighboring nodes have
the same color. Here Δ denotes the maximum degree of the graph.

Coloring plays a pivotal role in distributed systems, as a clean way

to divide access to non-shareable resources, resolve contention, and

break symmetries. For instance, it is particularly important in wire-

less networking, for frequency allocation or channel assignment. A

characteristic of wireless communication is that nodes broadcast

their messages (reception is constrained by interference from other

broadcasts).

Distributedmodels. The coloring problem has been studied exten-

sively in distributed computing [9, 13, 22–25, 27–30, 36, 41]. Indeed,

this problem was the subject of the celebrated paper by Linial [33],

which introduced the LOCAL model of distributed computing. In

this model, 𝑛 processors form a graph 𝐺 = (𝑉 , 𝐸) where an edge

exists only between processors that can communicate. The result-

ing graph is called the communication graph 𝐺 and is the one to

be colored. Per round, each node can send one unbounded-size

message to each of its neighbors. The variant where the message

sent to each neighbor is bounded to 𝑂 (log𝑛) bits is known as the

CONGEST model [38].

Distributed coloring. Classic distributed algorithms for color-

ing [30, 34] achieved complexity 𝑂 (log𝑛) in the CONGEST model.

There has been exciting recent progress on sublogarithmic time

algorithms [9, 13, 23–25, 27–29], and the state of the art round

complexity is 𝑂 (log3 log𝑛) rounds. This is also the best known in

the more relaxed LOCALmodel, which allows unbounded message

sizes. However, unlike the earlier algorithm of [30], these faster

algorithms make some nodes send one different message to each

of their neighbors. Thus, each node may send up to Θ(𝑛 log𝑛) bits
in one round. The research question at the core of this paper is to

understand the extent to which one can compute a coloring fast if

we constrain the set of outgoing messages. Specifically,

Can we compute a (Δ + 1)-coloring as fast as in the
CONGEST model if, in each round, each node must
transmit the same𝑂 (log𝑛)-bit message to all its neigh-
bors?
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To the best of our knowledge, with this restriction, the best round

complexity known in general graphs remains the classic 𝑂 (log𝑛)
bound [9, 30, 34].

1.1 Our Results
We give a fast Δ + 1-coloring algorithm in the broadcast congest
model (or BCONGEST) where, per round, each node broadcasts one
𝑂 (log𝑛)-bit message to all of its neighbors.

Theorem 1. Let 𝐺 = (𝑉 , 𝐸) be any 𝑛-node graph with maximum
degree at most Δ. There is a distributed 𝑂 (log3 (log𝑛))-round algo-
rithm that Δ + 1-colors 𝐺 with high probability, where each node
broadcasts one𝑂 (log𝑛)-bit message in each round. If Δ ∈ Ω(log3 𝑛),
the algorithm runs in 𝑂 (log∗ 𝑛) rounds.

As a side remark, we note that the 𝑂 (log𝑛) complexity was the

best bound known for general graphs even in the much more re-

laxed broadcast congested clique model, in which each node can

send a 𝑂 (log𝑛) bit message to all other nodes. To emphasize, in

this model, the communication graph is a complete graph and every

two nodes are neighbors. The coloring is still with respect to the

input graph 𝐺 . This model is also sometimes known as the shared
blackboard model with simultaneous messages and the distributed
sketching model [5, 6, 16]. Our 𝑂 (log3 log𝑛)-round complexity im-

proves nearly exponentially over existing algorithms in this model.
1

Evenmore basic models? The overarching goal in our work is not
tied to any particular model. We would like to develop a distributed

algorithm that assumes the least provided power from the theoret-

ical model. The hope is that this makes the algorithm applicable

in a wider range of (theoretical or practical) settings. To that end,

we point out that our algorithm is basic enough to be implemented

even with limited memory per node, with only small additional

changes. Notice that a node may receive many messages from its

neighbors, up to Ω(𝑛 log𝑛) bits overall in one round. In general,

receiving so many bits would necessitate a significant memory for

the node, and it also can complicate the task of simulating this

algorithm in virtual graphs.
2
We show that our algorithm can

be adapted to work with the same round complexity when each

node processes its incoming messages in a streaming fashion, using

only poly(log𝑛) memory. We refer to this model as BCStream. See

Section 5 for a formal definition of the model.

Theorem 2. There is a distributed 𝑂 (log3 (log𝑛))-round algo-
rithm in BCONGEST for Δ+ 1-coloring graphs with high probability,
even if each node reads its received messages through a stream and
only has poly(log𝑛) memory.

1
If we increase the size of the message sent by each node in this BCC model from

𝑂 (log𝑛) to𝑂 (log3 𝑛) bits, then a celebrated work of Assadi, Khanna, and Chen [4]

provides a one round algorithm.

2
For instance, consider a frequent scenario in distributed graph algorithms: a virtual

graph is formed by contracting low-depth clusters of the network, each forming one

node of the virtual graph. Two clusters are neighbors if they contain adjacent network

nodes. Usually, the communications of each cluster should be sent along a low-depth

tree that spans the nodes of the cluster. If all the Ω (𝑛 log𝑛) bits should be delivered

to the cluster center, this can require Ω (𝑛) rounds, even for low-depth clusters.

1.2 Technical Contributions
1.2.1 Previous Algorithms & Challenges. We summarize the key

concepts in previous fast coloring algorithms and emphasize the

parts that do not work in the BCONGEST model.

A basic primitive in randomized coloring algorithms is a ran-
dom color trial: each node selects a color from its palette (its set of
available colors) uniformly at random and keeps the color if none

of its neighbors picked the same. The (permanent) slack of a node

is the excess number of colors in its palette compared to its degree.

Sufficient slack speeds up coloring dramatically: each node can

try multiple colors in each round, resulting in a 𝑂 (log∗ 𝑛)-round
coloring algorithm called MultiTrial [41]. As a color requires up
to 𝑂 (log𝑛) bits to describe, trying more than a constant number

of them is infeasible with 𝑂 (log𝑛) bandwidth. A solution by [28]

was to use pseudorandomness: say each 𝑣 tries a set of colors 𝑋𝑣 ,

then 𝑣 broadcasts a hash function ℎ𝑣 which each neighbor 𝑢 of

𝑣 uses to reply ℎ𝑣 (𝑋𝑢 ). A color that collides under ℎ𝑣 with none

of its neighbors is safe to adopt. However, this approach requires

individual responses ℎ𝑣 (𝑋𝑢 ) from each neighbor 𝑢. Therefore it

does not work with single-message broadcasts.

Challenge 1: How canwe performMultiTrialwith𝑂 (log𝑛)-
bit broadcasts? The previous approaches [28, 41] require
either large messages or individual responses.

Slack can be generated for nodes with a sparse neighborhood,

i.e., with Ω(Δ2) missing edges. The more difficult task in distributed

Δ + 1-coloring algorithms is to color the dense nodes. They can be

partitioned into dense clusters called almost-cliques. The second

key concept for fast coloring is to synchronize the colors tried within
each almost-clique, in the following sense: the color suggested to

each node should be random from the viewpoint of the nodes

outside the almost-clique, but there should be no conflicts between

nodes inside the almost clique. The earlier version of synchronized

color trial (SCT for short) involved gathering all the information

of the almost-clique for centralized processing [13, 29], requiring

high bandwidth. A simpler form of SCT of [27] has a leader node

permute its own palette and distribute the colors to the other nodes

of the almost-clique. This still requires different messages to be sent

along the different edges from the leader, making it incompatible

with BCONGEST.

Challenge 2: How can we synchronize color trials with
𝑂 (log𝑛)-bit broadcasts? The previous approaches [13,
27, 29] require either centralization or a node sending
up to Ω(Δ) messages.

Finally,MultiTrial requires ℓ = Ω(log1+Ω (1) 𝑛) slack in order to

fully color the graph with high probability. This is solved in [27] by

putting aside mutually non-adjacent sets of ℓ nodes in very dense

cliques, to be colored at the very end. [27] colors put-aside sets by

gathering all their relevant information (list of uncolored neighbors

and palette) and broadcasting the coloring from a leader node.

Challenge 3: How can we color the put-aside sets with
𝑂 (log𝑛)-bit broadcasts? The previous approach [27]
does not work as they require full information gathering
and dissemination.

Observe that Challenges 1 and 3 can easily be solved by in-

creasing the bandwidth to a small poly(log𝑛). On the other hand,
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Challenge 2 seems to require greater effort to implement with the

broadcast constraint, even with poly(log𝑛) bandwidth.

1.2.2 Our Algorithm. In this section, we give an overview of our

solutions to each of the challenges described earlier.

Multi-Color Trial. A subset of a known universe can be sampled

pseudorandomly in BCONGEST [26]. The problem is that when

MultiTrial is applied after SCT, each node has a different palette,

which is unknown to its neighbors. We solve this by reserving a

subset of the color space for use by MultiTrial. Namely, each node

𝑣 reserves the subset [𝑥 (𝑣)] = {1, 2, . . . , 𝑥 (𝑣)}, where 𝑥 (𝑣) is a
function of 𝑣 ’s neighborhood density. Both slack generation and

the synchronized color trial within 𝑣 ’s almost-clique are restricted

to using colors outside [𝑥 (𝑣)]. The key is then to show that: a) using

the colors [Δ + 1] \ [𝑥 (𝑣)] suffices for these steps, and b) enough

colors in [𝑥 (𝑣)] remain unused (by neighbors of 𝑣) forMultiTrial
to succeed.

Synchronized Color Trial. Our solution for the synchronized

color trial of an almost-clique 𝐾 is to use the clique palette of 𝐾 : the
set of colors not used by nodes in 𝐾 . We randomly permute this set,

in a distributed manner, and assign each color to a single uncolored

node of 𝐾 . This introduces two types of errors: a) not all nodes

receive a color to try, and b) nodes can receive non-usable colors (as

a node’s neighbors outside of 𝐾 might already be using its assigned

color). However, the errors are within acceptable bounds, and we

are still able to show that after SCT, each node has an uncolored

degree that is at most proportional to its slack, allowing for fast

mop-up by MultiTrial.
To learn the clique palette Ψ(𝐾) in an almost-clique 𝐾 , we ran-

domly assign nodes of 𝐾 into groups such that: a) every node is

adjacent to at least one node of each group, and b) each group

is connected and has a low diameter. Each group is tasked with

learning a part of the clique palette, which it teaches to the rest of

the almost-clique 𝐾 .

We also randomly assign nodes into groups to randomly permute

𝐾 . The random assignment roughly positions each node within the

output permutation 𝜋 . Each group, of much smaller size than 𝐾 ,

then randomly permutes its members. The small size of each group,

combined with relabeling its members with smaller IDs, makes

the description of a permutation of its members fit within small

bandwidth.

Coloring Put-Aside Sets. The put-aside set 𝑃𝐾 of an almost-clique

𝐾 has no edges to the put-aside sets in other almost-cliques. As

such, coloring 𝑃𝐾 can be done purely within 𝐾 . Our algorithm first

reduces the size of each 𝑃𝐾 to sublogarithmic. Then, it gathers

information about what remains of each 𝑃𝐾 . One randomized color

trial reduces |𝑃𝐾 | by a constant factor with probability 1−𝑒−Θ( |𝑃𝐾 | )
.

We compress the equivalent of𝑂 (log log𝑛) iterations of this process
into𝑂 (1) rounds by sampling the colors of all iterations in advance
and sending them all at once. To reach sublogarithmic sizewith high
probability, we run 𝑂 (log log𝑛) independent iterations in parallel.

We avoid congestion issues by using few colors per iteration and

by representing colors with few bits.

1.3 Related Work

Distributed Δ + 1-Coloring. The best round complexity of ran-

domized LOCAL (Δ + 1)-coloring, as a function of only the number

of nodes 𝑛, progressed from𝑂 (log𝑛) in the 80’s [3, 30, 34], through

𝑂 (
√︁
log𝑛) [29], to a recent 𝑂 (log3 log𝑛) [13]. The more recent

work [13, 29] made heavy use of both the large bandwidth and

the multiple-message transmission feature of the LOCAL model.

A crucial concept in these algorithms is shattering. For coloring,
shattering means coloring almost all the nodes such that each con-

nected component of the set of nodes that remain uncolored has

size at most poly(log𝑛). A similar concept was used originally by

Beck [10]. The idea was introduced to the distributed setting in [9].

The dominating factor in the time complexity is the deterministic

complexity of solving (a variant of) the problem on polylogarithmic-

sized problems. As there are now polylogarithmic-time algorithms

for deterministic coloring [40], with the fastest being 𝑂 (log3 𝑛)
[24], the randomized complexity is currently 𝑂 (log3 log𝑛) [13].
An 𝑂 (log5 log𝑛)-round CONGEST algorithm was given in [25],

improved to 𝑂 (log3 log𝑛) in [27]. These algorithms still require

transmitting different messages to all Ω(Δ) neighbors of a node.
Many distributed (Δ + 1)-coloring algorithms work immedi-

ately in BCONGEST, including the folklore 𝑂 (log𝑛)-round ran-

domized algorithms [30] and the randomized part of [9]. The best

deterministic algorithms known for small values of Δ, with com-

plexity �̃� (
√
Δ) + 𝑂 (log∗ 𝑛) [8, 22, 35] use the full power of the

LOCAL model, however. The 𝑂 (log3 𝑛)-round deterministic algo-

rithm of [24] also works in BCONGEST, but it is sensitive to the

palette size. When Δ ≤ poly(log𝑛), [24] with the shattering of

[9] colors in 𝑂 (log3 log𝑛) rounds of BCONGEST. Otherwise, if
Δ ≫ poly(log𝑛), dependency on the palette size can be resolved by

relabeling the palette, using network decomposition [23], as shown

for coloring in [25]. Hence, there is a 𝑂 (logΔ + poly(log log𝑛))-
round BCONGEST algorithm for (Δ + 1)-coloring.

Most known algorithms which work in BCONGEST were pub-

lished as CONGEST algorithms, without making explicit that they

also work with broadcast communication. Explicit mentions of the

model are becoming more and more frequent in recent years, with

examples in works on subgraph detection [32], flow and shortest

paths problems [12, 14, 21], and proof labeling schemes [37].

Distributed Sketching and Broadcast Congested Clique. The
palette sparsification theorem of [4] shows that even if each node

uniformly samples 𝑂 (log𝑛) colors, the graph can still be Δ + 1-

colored while restricting each node to use only a sampled color. This

has led to a (one-pass) streaming algorithm for Δ+ 1-coloring using
𝑂 (𝑛 poly(log𝑛)) space. It was recently shown that the actual col-

oring can also be computed distributively, in𝑂 (log2 Δ + log
3
log𝑛)

rounds ofCONGEST [20]. We utilize several technical lemmas from

the work of [20], while the actual results are almost completely

unrelated.

Palette sparsification is a one round/pass form of distributed
sketching (or shared blackboard), a technique of considerable cur-

rent interest [1, 6, 7]. The nomenclature that is closer to our setting

is the broadcast congested clique [11, 16, 31]. Whereas there are no

non-trivial lower bounds in the Congested Clique model for prob-

lems related to coloring, there is a recent Ω(log log𝑛)-round lower

457



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin

bound for the Maximal Independent Set problem in the broadcast

congested clique [6].

1.4 Organization of the Paper
After preliminary definitions and results in Section 2, we formally

describe our algorithm in Section 3 and give a proof of Theorem 1.

Section 4 details the BCONGEST implementation of the synchro-

nized color trial. We explain how to modify our algorithm for the

BCStreammodel in Section 5. We defer some technical and lengthy

proofs of new results to the full version [19].

2 PRELIMINARIES

Notation. For any integer 𝑘 ≥ 1, we denote the set {1, 2, . . . , 𝑘}
by [𝑘]. The communication network is 𝐺 = (𝑉 , 𝐸), we denote

by 𝑛 = |𝑉 | its number of vertices, for each 𝑣 ∈ 𝑉 we call 𝑑 (𝑣)
its degree and Δ the maximum degree of 𝐺 . For a vertex 𝑣 ∈ 𝑉 ,
we denote by 𝑁𝐺 (𝑣) = {𝑢 ∈ 𝑉 ,𝑢𝑣 ∈ 𝐸} its neighbors in 𝐺 . We

assume nodes have𝑂 (log𝑛)-bit unique identifiers named ID(𝑣). In
the BCONGEST model, nodes of 𝐺 communicate by broadcasting

𝑂 (log𝑛)-bit messages in synchronous rounds.

A partial coloring is a function C : 𝑉 → [Δ + 1] ∪ {⊥} such
that for any edge 𝑢𝑣 ∈ 𝐸, its endpoints receive different colors

C(𝑢) ≠ C(𝑣) unless C(𝑣) or C(𝑢) is ⊥ – which stands for “not

colored". With respect to any partial coloring C, we shall write 𝑑 (𝑣)
for the uncolored degree of 𝑣 , i.e., its number of uncolored neighbors

with respect to C. More generally, for any 𝑆 ⊆ 𝑉 , we write 𝑆 to

denote the set of uncolored nodes in 𝑆 (with respect to a partial

coloring). Our algorithm colors monotonically: once we fix C(𝑣), it
never changes.

When we say an event happens with high probability, or w.h.p.
for short, we mean with probability 1 − 𝑛−𝑐 for any suitably large

constant 𝑐 > 0. We implicitly choose the constant 𝑐 large enough

to union bound over polynomially many events.

2.1 Sparse-Dense Decomposition
The sparsity of a node counts the number of missing edges in its

neighborhood, with the important detail that if a node has degree

less than Δ, each “missing” neighbor counts as Δ missing edges.

Definition 1 (Sparsity). The sparsity 𝜁𝑣 of 𝑣 ∈ 𝑉 is

𝜁𝑣 :=
1

Δ

((
Δ

2

)
−𝑚(𝑁 (𝑣))

)
,

where𝑚(𝑁 (𝑣)) is the number of edges induced by 𝑁 (𝑣). Node 𝑣 is
𝜁 -sparse if 𝜁𝑣 ≥ 𝜁 and 𝜁 -dense if 𝜁𝑣 ≤ 𝜁 .

We decompose the graph into the locally sparse nodes and dense

clusters called almost-cliques. Almost-cliques can be thought of as

graphs that are 𝜀-close to Δ-cliques, in a property-testing sense.

Such decompositions are ubiquitous in randomized coloring [2, 4,

13, 25, 29, 39].

Definition 2. For 𝜀 ∈ (0, 1/3), an 𝜀-almost-clique decomposition
is a partition of 𝑉 (𝐺) into sets 𝑉sparse, 𝐾1, . . . , 𝐾𝑘 such that

(1) nodes in 𝑉sparse are Ω(𝜀2Δ)-sparse,
(2) for all 𝑖 ∈ [𝑘], almost-clique 𝐾𝑖 satisfies:

(a) |𝐾𝑖 | ≤ (1 + 𝜀)Δ,

(b) |𝑁 (𝑣) ∩ 𝐾𝑖 | ≥ (1 − 𝜀)Δ for all 𝑣 ∈ 𝐾𝑖 , and
(c) |𝑁 (𝑣) ∩ 𝐾𝑖 | ≤ (1 − 𝜀/2)Δ for all 𝑣 ∉ 𝐾𝑖 .

Definition 3 (External and Anti-Degrees). For a node 𝑣 in
an almost-clique 𝐾 , we call 𝑒𝑣 = |𝑁 (𝑣) \ 𝐾 | its external degree and
𝑎𝑣 = |𝐾 \𝑁 (𝑣) | its anti-degree. We shall denote by 𝑒𝐾 =

∑
𝑣∈𝐶 𝑒𝑣/|𝐾 |

the average external degree and 𝑎𝐾 =
∑
𝑣∈𝐾 𝑎𝑣/|𝐾 | the average anti-

degree.

Property 2c is not typically included in prior work (e.g., [4, 25]).

It was used recently in [7, 18]. We use it solely to prove Lemma 1.

An anti-edge is a missing edge between two nodes, i.e., an edge

in the complement graph. The following lemma is an immediate

consequence of Properties 2b and 2c.

Lemma 1. Let 𝐾 be an almost-clique. Every 𝑣 ∈ 𝐾 is (𝜀/2 · 𝑒𝑣)-
sparse.

The first CONGEST algorithm to compute almost-clique de-

compositions in 𝑂 (1) rounds (when Δ ∈ Ω(log2 𝑛)) was given by

[25]. It was then improved by [28] to arbitrary Δ in the CONGEST
model. [20] gives a simpler implementation of [28] that works in

BCONGEST and BCStream.

Lemma 2 ([20]). For any 𝜀 ∈ (0, 1/20), there exists an algorithm
computing an 𝜀-almost-clique decomposition in 𝑂 (𝜀−4) rounds of
BCONGEST with high probability.

Colorful Matching. In a Δ + 1-clique, the colors used in the clique

are exactly the colors used in the neighborhood of each node. An

almost-clique can have size larger than Δ+1. Thus, an almost-clique

with uncolored nodes might actually have an empty clique palette.

To solve this issue, [4] introduced the idea of colorful matching.

Definition 4 (Colorful Matching). A colorful matching in a
clique 𝐾 (with respect to a partial coloring C) is a matching of anti-
edges in 𝐾 (edges in the complement graph) such that 1) endpoints
of each anti-edge receive the same color, and 2) each anti-edge has a
different color.

Intuitively, if one contracts anti-edges of the colorful matching,

one reduces the size of the almost-clique while maintaining a proper

coloring. If the matching is large enough, the number of unused

colors in 𝐾 becomes greater than the number of uncolored nodes.

Definition 5 (Cliqe Palette). For each𝐾 , let the clique palette
Ψ(𝐾) = [Δ + 1] \ C(𝐾) be the set of colors not used in 𝐾 .

Claim 1. Let 𝐾 be an almost-clique and 𝑀 a colorful matching in
𝐾 . Then, for all 𝑣 ∈ 𝐾 ,

|Ψ(𝐾) | ≥ |𝐾 | + 1 + 𝑒𝑣 − 𝑎𝑣 + |𝑀 | .

Proof. The clique palette loses at most one color per colored

node but saves one for each anti-edge in the colorful matching;

hence, |Ψ(𝐾) | ≥ Δ + 1 − (|𝐾 | − |𝐾 |) + |𝑀 |. On the other hand,

observe that Δ ≥ |𝑁 (𝑣) ∩ 𝐾 | + 𝑒𝑣 and |𝐾 | = |𝑁 (𝑣) ∩ 𝐾 | + 𝑎𝑣 . The
claim follows.

By computing amatching of sizeΘ(𝑎𝐾 ), the clique palette always
contains colors for each node in 𝐾 . Computing a colorful matching

of size Θ(𝑎𝐾 ) can be done in 𝑂 (1) rounds as the clique contains
Θ(𝑎𝐾Δ) anti-edges and by trying colors, we expect Θ(𝑎𝐾 ) edges
to join the matching.
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Lemma 3 ([20]). Let 𝛽 < 1/(18𝜀) be a constant. There exists a
𝑂 (𝛽)-round algorithm called Matching that computes a colorful
matching of size 𝛽 · 𝑎𝐾 with probability 1 − 𝑛−Θ(𝐶 ) in every clique
𝐾 with 𝑎𝐾 ≥ 𝐶 log𝑛. Furthermore, at most 2𝛽 · 𝑎𝐾 nodes are colored
in each almost-clique during this step.

2.2 Distributed Coloring with Slack
Definition 6 (Palette). The palette Ψ(𝑣) of node 𝑣 , with respect

to a partial coloring, is the set of colors not used by its neighbors.

Definition 7 (Slack). The slack 𝑠𝐻 (𝑣) of a node 𝑣 in a subgraph
𝐻 is the difference between the size of its palette and its uncolored
degree in this graph: 𝑠𝐻 (𝑣) = |Ψ(𝑣) | − 𝑑𝐻 (𝑣). When 𝐻 is clear from
context, we simply write 𝑠 (𝑣).

There are three ways a node can receive slack: if it has a small

degree originally, if two neighbors adopt the same color, or if an un-

colored neighbor is inactive (does not belong to𝐻 ). We consider the

first two types of slack permanent because a node never increases
its degree, and nodes never change their adopted color. On the

other hand, the last type of slack is temporary: if some previously

inactive neighbors become active, the node will lose the slack that

those inactive neighbors were providing before. Elkin, Pettie, and

Su [17] observed that by trying random colors, nodes receive slack

proportional to their permanent sparsity.

Lemma 4 (Slack Generation, [17, Lemma 3.1]). Let 𝑣 be a 𝜁 -
sparse node for some 𝜁 . Suppose each node of𝐺 independently decides
w.p. 𝑝s = 1/200 to try a uniform color in [Δ+1]. Then, w.p. 1−𝑒−Θ(𝜁 ) ,
𝑣 has slack 𝑠 (𝑣) ≥ 𝛾 · 𝜁 where 𝛾 > 0 is a (small) universal constant.

Trying Colors From Lists.When we say a node tries a random
color, we mean that it broadcasts a color uniformly sampled from

some set (usually from its palette) and adopts the color if none

of its neighbors with smaller ID tried the same color. We refer to

this one-round procedure as TryColor. It is known that nodes with

Ω(log𝑛) uncolored neighbors see a constant fraction of them get

colored when they try random colors, w.h.p. [9].

Lemma 5. Let 𝐻 be a vertex-induced subgraph and 𝐿(𝑣) ⊆ Ψ(𝑣)
for each 𝑣 . Suppose there exists a globally known constant 𝛼 > 0 such
that every uncolored 𝑣 satisfies |𝐿(𝑣) | ≥ 𝛼 · 𝑑 (𝑣) ≥ 𝐶 log𝑛. If nodes
independently call TryColor w.p. 𝑝t = 𝛼/3 and samples a uniform

color in 𝐿(𝑣), then, w.p. 1 − 𝑛−Θ(𝐶 ) , the uncolored degree of every
node has decreased by a factor 2/3.

Trying multiple colors to take advantage of extra colors (i.e.,

slack) was proposed originally by [41]. It is a key component of

all recent fast randomized coloring algorithms [13, 27, 28]. A small

tweak suffices to bring the technique to BCONGEST.

Lemma 6 (Multi-Color Trial, [26, 27]). Let 𝐻 be a vertex-
induced subgraph of 𝐺 . Suppose that for each 𝑣 ∈ 𝐻 , there is a
𝐿(𝑣) list of colors satisfying
(1) 𝐿(𝑣) is known by each 𝑢 ∈ 𝑁𝐻 (𝑣),
(2) |𝐿(𝑣) ∩ Ψ(𝑣) | ≥ 2𝑑𝐻 (𝑣), and
(3) |𝐿(𝑣) ∩ Ψ(𝑣) | ≥ 𝑑𝐻 (𝑣) +𝐶 log

1.1 𝑛 for some constant 𝐶 > 0.
There exists an algorithm coloring every node of𝐻 in𝑂 (log∗ 𝑛) rounds
of BCONGEST with probability 1 − 𝑛−Θ(𝐶 ) .

Lemma 6 is a mere reformulation of [27, Lemma 1] with the

notable exception that it works in BCONGEST because of the addi-

tional Property 1. This allows the use of representative sets [26]. At
a high level, the technique is to save on the bandwidth necessary

to send Θ(log𝑛) random colors by instead sending a pseudoran-

dom sample. In BCStream, it can be implemented with 𝑂 (log3 𝑛)
memory but requires more work. We refer interested readers to [26,

Section 7]. The main idea is that a set ofΘ(log𝑛) random colors can

be represented by a random walk on an implicit expander graph.

2.3 Concentration Inequalities
We use the following variants of Chernoff bounds for dependent

random variables. The first one is obtained, e.g., as a corollary of

Lemma 1.8.7 and Theorems 1.10.1 and 1.10.5 in [15].

Lemma 7 (Martingales). Let {𝑋𝑖 }𝑟𝑖=1 be binary random vari-
ables, and𝑋 =

∑
𝑖 𝑋𝑖 . Suppose that for all 𝑖 ∈ [𝑟 ] and (𝑥1, . . . , 𝑥𝑖−1) ∈

{0, 1}𝑖−1 with Pr(𝑋1 = 𝑥1, . . . , 𝑋𝑟 = 𝑥𝑖−1) > 0, Pr(𝑋𝑖 = 1 | 𝑋1 =

𝑥1, . . . , 𝑋𝑖−1 = 𝑥𝑖−1) ≤ 𝑞𝑖 ≤ 1, then for any 𝛿 > 0,

Pr

(
𝑋 ≥ (1 + 𝛿)

𝑟∑︁
𝑖=1

𝑞𝑖

)
≤ exp

(
−min(𝛿, 𝛿2)

3

𝑟∑︁
𝑖=1

𝑞𝑖

)
. (1)

Suppose instead that Pr(𝑋𝑖 = 1 | 𝑋1 = 𝑥1, . . . , 𝑋𝑖−1 = 𝑥𝑖−1) ≥ 𝑞𝑖 ,
𝑞𝑖 ∈ (0, 1) holds for 𝑖, 𝑥1, . . . , 𝑥𝑖−1 over the same ranges, then for
any 𝛿 ∈ [0, 1],

Pr

(
𝑋 ≤ (1 − 𝛿)

𝑟∑︁
𝑖=1

𝑞𝑖

)
≤ exp

(
−𝛿

2

2

𝑟∑︁
𝑖=1

𝑞𝑖

)
. (2)

3 ALGORITHM AND ANALYSIS
In this section, we describe our algorithm and give the main tech-

nical ideas behind Theorem 1. Algorithm 1 gives a high-level de-

scription of our algorithm.

The main technical contribution is a 𝑂 (log∗ 𝑛)-round algorithm

for coloring graphs with Δ ∈ Ω(log3 𝑛). For low-degree graphs, a
𝑂 (log3 log𝑛)-round algorithm that works in BCONGEST is known

[9, 24]. We conjecture that our algorithm actually shatters the graph

in 𝑂 (log∗ 𝑛) rounds when Δ = 𝑂 (log3 𝑛). If this were true, [9]

would no longer be required for small Δ. This would make any im-

provement to the deterministic complexity of (deg+1)-list-coloring,
including beyond 𝑜 (log𝑛), carry over to our algorithm.

Algorithm 1. High Level Description of our Algorithm.

Parameters: Let 𝐶 = 𝑂 (1) be a large enough constant,

ℓ = 𝐶 log
1.1 𝑛 , 𝜀 = 10

−5
and 𝛽 = 401 . (3)

(1) Setting up. Compute an 𝜀-almost-clique decomposition

𝑉sparse, 𝐾1, . . . , 𝐾𝑘 . Compute outliers 𝑂𝐾 and inliers 𝐼𝐾 =

𝐾 \𝑂𝐾 in each clique 𝐾 (see Definition 8), as well as put-

aside sets 𝑃𝐾 (see Lemma 8). We define a value 𝑥 (𝐾) =
Θ(𝑎𝐾+𝑒𝐾+log𝑛) for each clique (see Eq. (5)). By extension,
let 𝑥 (𝑣) = 𝑥 (𝐾) for each 𝑣 ∈ 𝐾 .
Cliques are categorized as full, open, or closed (Defini-

tion 9). The following three steps aim at generating slack

for each type:
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(i) Slack Generation: each node tries a color in [Δ+1]\[𝑥 (𝑣)]
w.p. 𝑝s = 1/200.

(ii) Colorful Matching: by trying colors in [Δ+1] \ [𝑥 (𝐾)] for
𝑂 (𝛽) rounds, we color 𝛽𝑎𝐾 pairs of anti-edges in each

𝐾 .

(iii) Put-Aside Sets: we find in each full clique𝐾 a set 𝑃𝐾 ⊆ 𝐼𝐾
of size Θ(ℓ) such that 𝑃𝐾 has no edge to 𝑃𝐾 ′ for all

𝐾 ≠ 𝐾 ′
.

Each sparse node has Ω(Δ) permanent slack from the

slack generation step; hence, we color them in 𝑂 (log∗ 𝑛)
rounds with MultiTrial. We color outliers 𝑂𝐾 with colors

from [Δ + 1] \ [𝑥 (𝐾)] with MultiTrial using the Ω(Δ)
temporary slack provided by inactive inliers.

(2) Synchronized Color Trial. In each clique, we compute

the clique palette Ψ(𝐾) and sample a permutation 𝜋 of

𝐾 \ 𝑃𝐾 . Each node 𝑣 ∈ 𝐾 \ 𝑃𝐾 tries the 𝜋 (𝑣)-th color

of Ψ(𝐾). In open cliques (see Definition 9), we run an

extra 𝑂 (1) rounds of TryColor using only colors from

[Δ + 1] \ [𝑥 (𝐾)].
(3) Completing the Coloring. Uncolored nodes now satisfy

| [𝑥 (𝑣)] ∩ Ψ(𝑣) | ≥ 2𝑑 (𝑣) ,
and put-aside sets ensure that every node has slack Ω(ℓ).
Hence, inliers are colored in𝑂 (log∗ 𝑛) rounds byMultiTrial
with colors [𝑥 (𝐾)].

(4) Coloring Put-Aside Sets.We color put-aside sets in two

steps: first, we reduce their size to 𝑂 (log𝑛/log log𝑛) by
running non-adaptive randomized color trial. Then, each

node sends |𝑃𝐾 | + 1 colors from a poly(log𝑛)-sized set

of colors. This takes 𝑂 (1) rounds: 𝑂 (log𝑛/log log𝑛) ×
𝑂 (log log𝑛) bits to send.

The key technical idea is to reserve colors {1, 2, . . . , 𝑥 (𝐾)} in each
clique, where 𝑥 (𝐾) is an integer that depends on the density of 𝐾

(see Eq. (5)). It is straightforward to see that reserve colors [𝑥 (𝐾)]
are not used during Steps 1 and 2. The value of 𝑥 (𝐾) is chosen to be

greater than nodes’ degrees at the end of Step 2. This allows using

lists 𝐿(𝑣) := [𝑥 (𝑣)] for the MultiTrial in Step 3.

3.1 Step 1: Setting up
Assume we have an 𝜀-almost-clique decomposition 𝑉sparse, 𝐾1, . . . ,

𝐾𝑘 (see Definition 2). Sparse nodes can be colored in 𝑂 (log∗ 𝑛)
rounds [26], so we focus our attention on almost-cliques. We call

outliers the (possibly empty) set of nodes in each clique whose

external degree or anti-degree derives more than a constant factor

from the average.

Definition 8 (Inliers/Outliers). For each 𝐾 , we define its set
of outliers as

𝑂𝐾 = {𝑣 ∈ 𝐾 : 𝑒𝑣 ≥ 30𝑒𝐾 or 𝑎𝑣 ≥ 30𝑎𝐾 } . (4)

We call the remaining uncolored nodes 𝐼𝐾 = 𝐾 \𝑂𝐾 inliers.

In each clique, outliers represent only a small fraction of the

vertices; hence, they can be colored beforehand with the temporary

slack provided by their Ω(Δ) uncolored neighbors in 𝐼𝐾 . Claim 2

follows from Markov inequality and Chernoff bound (few nodes

are colored by slack generation).

Claim 2. For each 𝐾 , after generating slack and computing a
colorful matching, w.h.p. |𝐼𝐾 | ≥ 0.9Δ.

We classify cliques in three categories, depending on the degree

that nodes have after Step 2. Each type of clique receives slack

from different sources: full cliques from put-aside sets, open cliques

from the slack generation step, and closed cliques from the colorful

matching.

Definition 9 (Full/Open/Closed Cliqes). For each 𝑖 ∈ [𝑘],
we say that 𝐾 = 𝐾𝑖 is:

• full if 𝑎𝐾 + 𝑒𝐾 < ℓ , where ℓ is defined in Eq. (3),
• open if 𝐾 is not full and 2𝑎𝐾 < 𝑒𝐾 , and
• closed if 𝐾 is neither full nor open.

We denote by Kfull (respectively Kopen and Kclosed) the set of full
cliques (respectively open and closed cliques).

In each clique, we reserve 𝑥 (𝐾) colors depending on the clique’s

density. We will ensure that [𝑥 (𝐾)] ⊆ Ψ(𝐾) until we color inliers
with MultiTrial (Step 3). For a clique 𝐾 , define

𝑥 (𝐾) =


200ℓ if 𝐾 ∈ Kfull

400𝑎𝐾 if 𝐾 ∈ Kclosed

𝛾𝜀/8 · 𝑒𝐾 if 𝐾 ∈ Kopen

, (5)

where 𝛾 is the constant from Lemma 4. By extension, we write

𝑥 (𝑣) = 𝑥 (𝐾) for each 𝑣 ∈ 𝐾 .

Put-Aside Sets. Recall that to color in 𝑂 (log∗ 𝑛) rounds with

MultiTrial, nodes need slack at least ℓ = Θ(log1.1 𝑛) (Lemma 6,

Property 3). Nodes from very dense cliques do not receive enough

permanent slack from the slack generation phase. Following [27,

Section 5.4], we overcome this issue by putting aside sets of Θ(ℓ)
nodes in each highly-dense clique to provide temporary slack. These

sets remain uncolored until the very end of the algorithm. These

are necessary only in highly-dense cliques, whose nodes have𝑂 (ℓ)
external neighbors. It allows us to find put-aside sets such that no

edge connects sets from different cliques. The lack of connections

allows us to color each set independently at the very end. See [27,

Lemma 5] for a proof of Lemma 8.

Lemma 8 (Put-Aside Sets). There exists a𝑂 (1)-roundBCONGEST
algorithm finding subsets 𝑃𝐾 ⊆ 𝐼𝐾 of size 201ℓ in each almost-clique
𝐾 ∈ Kfull, such that 𝑃𝐾 has no edges to other 𝑃𝐾 ′ for 𝐾 ′ ≠ 𝐾 .

3.2 Step 2: Synchronized Color Trial
The idea of the following Lemma 9 (which is a reformulation of

[27]) is to distribute a set of colors to nodes in the clique. Each

color has a unique recipient. This avoids in-clique conflicts, and a

node can only fail to adopt the color it received due to choices of

its external neighbors. Therefore, the expected number of nodes to

fail is

∑
𝑣∈𝐾 𝑂 (𝑒𝑣/Δ) = 𝑂 (𝑒𝐾 ).

Lemma 9 ([27, Section 5.5]). Let 𝑥 be an integer, 𝐾 be a clique,
and 𝑆 = 𝐾 \ 𝑃𝐾 be such that 0.75Δ ≤ |𝑆 | ≤ |Ψ(𝐾) | − 𝑥 . Suppose 𝜋 is
a uniform permutation of [|𝑆 |]. If for each 𝑖 ∈ [|𝑆 |] the 𝑖-th node in
𝑆 tries the 𝜋 (𝑖)-th color in the set Ψ(𝐾) \ [𝑥], then w.h.p. the number
of nodes to remain uncolored is 8max{6𝑒𝐾 ,𝐶 log𝑛}. This holds even
if the random bits outside of 𝐾 are chosen adversarially.
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Lemma 10 shows that each clique has enough colors, even if

when we reserve 𝑥 (𝐾) colors.

Lemma 10. For all 𝐾 , |Ψ(𝐾) | − 𝑥 (𝐾) ≥ |𝐾 \ 𝑃𝐾 |.

Proof. We consider each type of clique separately. In a full

clique 𝐾 , recall that we computed a set 𝑃𝐾 of put-aside nodes of

size 201ℓ = Θ(log1.1 𝑛) that remain uncolored (Lemma 8). The

set 𝑆 of nodes participate in the synchronized color trial is |𝑆 | =
|𝐾 \ 𝑃𝐾 | ≥ 0.75Δ (by of Claim 2 and Δ ≫ ℓ). The number of

colors used in 𝐾 is bounded by the number of colored nodes; hence,

|Ψ(𝐾) | ≥ Δ−(|𝐾 |− |𝐾 |). Since each full clique has size at most Δ+ℓ ,
we infer |Ψ(𝐾) | ≥ |𝐾 | − ℓ . Put-aside sets have size |𝑃𝐾 | = 201ℓ , so

|𝐾 \𝑃𝐾 | = |𝐾 |−201ℓ ≤ |Ψ(𝐾) |−200ℓ = |Ψ(𝐾) |−𝑥 (𝑣) . (by Eq. (5))

Suppose that 𝐾 is open, i.e. 𝑎𝐾 ≤ 𝑒𝐾/2 (Definition 9). By sum-

ming on each 𝑣 ∈ 𝐾 over the bounds Δ ≥ |𝐾 ∩ 𝑁 (𝑣) | + 𝑒𝑣 and
|𝐾 | = |𝐾 ∩ 𝑁 (𝑣) | + 𝑎𝑣 , we get Δ − |𝐾 | ≥ 𝑒𝐾 − 𝑎𝐾 ≥ 𝑒𝐾/2. By our

choice of 𝑥 (𝐾),

|Ψ(𝐾) | − 𝑥 (𝐾) ≥ |𝐾 | + 𝑒𝐾/2 − 𝑥 (𝐾) ≥ |𝐾 | .
Suppose now that 𝐾 is closed. Denote by 𝑡 the number of nodes

colored during the slack generation step or as outliers. In closed

clique, we compute a colorful matching of size 𝛽𝑎𝐾 . Hence |Ψ(𝐾) | ≥
Δ − 𝑡 − 𝛽𝑎𝐾 . On the other hand, each edge in the matching colors

two nodes. Therefore, the number of uncolored nodes is

|𝐾 | ≤ |𝐾 | − 𝑡 − 2𝛽𝑎𝐾

≤ (Δ − 𝑡 − 𝛽𝑎𝐾 ) − (𝛽 − 1)𝑎𝐾 (because |𝐾 | ≤ Δ + 𝑎𝐾 )
≤ |Ψ(𝐾) | − 𝑥 (𝐾) . (by definition of 𝛽 , Eq. (3))

We now claim that each node has enough slack after SCT. Details

of its implementation and related proofs are postponed to a later

section (Section 4, Lemmas 16 and 19).

Lemma 11. At the end of Step 2, w.h.p. each 𝑣 ∈ 𝐾 satisfies
| [𝑥 (𝑣)] ∩ Ψ(𝑣) | ≥ 2𝑑 (𝑣).

Proof. By Lemma 10, cliques carry more colors than nodes they

try to color during SCT, and by Lemma 9, at most 𝑂 (𝑒𝐾 + log𝑛)
nodes remain uncolored per clique. Simple counting shows the

following claim.

Claim 3. After the synchronized color trial, every uncolored 𝑣 ∈ 𝐾
satisfies

• 2𝑑 (𝑣) + 𝑒𝑣 ≤ 𝑥 (𝑣) if 𝑣 ∈ Kfull ∪ Kclosed, and
• 𝑑 (𝑣) ≤ 80𝑒𝐾 if 𝐾 ∈ Kopen.

Observe that, since 𝑥 (𝑣) has the same value for each 𝑣 ∈ 𝐾 ,

and colors from [𝑥 (𝐾)] are not used to color nodes of 𝐾 , the only

reason some 𝑐 ∈ [𝑥 (𝑣)] might not belong to Ψ(𝑣) is if it is used by

an external neighbor of 𝑣 . For all 𝑣 ∈ 𝐾 with 𝐾 ∈ Kfull ∪ Kclosed,

Eq. (6) follows from Claim 3:

| [𝑥 (𝑣)] ∩ Ψ(𝑣) | ≥ 𝑥 (𝑣) − 𝑒𝑣 ≥ 2𝑑 (𝑣) . (6)

For 𝑣 ∈ 𝐾 with 𝐾 ∈ Kopen, we need 𝑂 (1) additional rounds of
TryColor to ensure Eq. (6). However, we need to preserve [𝑥 (𝐾)] ⊆
Ψ(𝐾). Thus, nodes of 𝐾 try random colors in Ψ(𝑣) \ [𝑥 (𝑣)]. We

now show it is enough to reduce the uncolored degree.

Let 𝑣 ∈ 𝐾 for any 𝐾 ∈ Kopen. By Claim 3, 𝑑 (𝑣) ≤ 80𝑒𝐾 ; we show

that |Ψ(𝑣) | − 𝑥 (𝑣) ≥ Ω(𝑒𝐾 ). By Lemma 5, even when using only

colors from Ψ(𝑣) \ [𝑥 (𝑣)], after one call to TryColor the uncolored
degree of each node decreases by a constant factor. After 𝑂 (1)
rounds, with high probability, the uncolored degree of each 𝑣 verifies

the desired equation.

Claim 4. For each 𝑣 ∈ 𝐾 , Δ − 𝑑 (𝑣) + 𝑒𝑣 ≥ 𝑒𝐾/2.

If 𝑒𝑣 ≤ 𝐶 log𝑛, by Claim 4, 𝑠 (𝑣) ≥ Δ − 𝑑 (𝑣) ≥ 𝑒𝐾/2 −𝐶 log𝑛 ≥
𝑒𝐾/3 because 𝑒𝐾 ≥ ℓ/2 ≫ 𝐶 log𝑛. If 𝑒𝑣 ≥ 𝐶 log𝑛, vertex 𝑣 receives

𝛾𝜀/2 · 𝑒𝑣 permanent slack from the slack generation step w.p. 1 −
𝑛−Θ(𝐶 )

(by Lemma 4). Overall, nodes use lists of size

|Ψ(𝑣) | − 𝑥 (𝑣) ≥ Δ − 𝑑 (𝑣) + 𝛾𝜀/2 · 𝑒𝑣 − 𝑥 (𝑣)
≥ 𝛾𝜀/2 · (Δ − 𝑑 (𝑣) + 𝑒𝑣) − 𝑥 (𝑣) (𝛾𝜀/2 < 1)

≥ 𝛾𝜀/4 · 𝑒𝐾 − 𝑥 (𝑣) (by Claim 4)

≥ 𝛾𝜀/8 · 𝑒𝐾 . (by Eq. (5))

By Lemma 5 with 𝛼 = 𝛾𝜀/640, after TryColor the uncolored de-

gree of each node reduces by a constant factor with high probability.

Lemma 11

3.3 Step 4: Coloring Put-Aside Sets
Our goal, in this section, is to reduce the size of put-aside sets to

𝑂 (log𝑛/log log𝑛). Once this is achieved, coloring their remaining

nodes only takes 𝑂 (1) rounds, as the next lemma shows.

Lemma 12. Suppose all nodes are colored except put-aside sets 𝑃𝐾
in each 𝐾 ∈ Kfull of size 𝑂 (log𝑛/log log𝑛). Then, w.h.p. we can
complete the coloring in 𝑂 (1) rounds of BCONGEST.

Proof. Recall that no edges exist between put-aside sets. Hence,

we color each put-aside set independently. We can assume without

loss of generality that |Ψ(𝐾) | = 𝑂 (log3 𝑛). Indeed, since nodes

have 𝑂 (log1.1 𝑛) external and anti-degree, any 𝐷 ⊆ Ψ(𝐾) of size
Θ(log3 𝑛) works as replacement for the clique palette when Ψ(𝐾)
is larger. Nodes use Algorithm 2 to learn Ψ(𝐾) in 𝑂 (1) rounds
(Lemma 16).

Therefore, describing a color 𝑐 ∈ Ψ(𝐾) takes 𝑂 (log log𝑛) bits.
If 𝑎𝐾 ≥ 𝐶 log𝑛, the clique palette has enough colors for every

node, i.e., |Ψ(𝐾) ∩ Ψ(𝑣) | ≥ |𝑃𝐾 | + 1. If 𝑎𝐾 < 𝐶 log𝑛, lists 𝐿(𝑣) =
Ψ(𝐾) ∪𝐶 (𝐾 \ 𝑁 (𝑣)) have |𝑃𝐾 | + 1 colors (Claim 1 with an empty

matching and 𝑎𝑣 extra colors). Since lists have size |𝑃𝐾 | + 1 =

𝑂 (log𝑛/log log𝑛) and each color takes𝑂 (log log𝑛) bits, nodes can
broadcast their list in 𝑂 (1) rounds. Nodes complete the coloring

without additional communication, simulating a greedy sequential

algorithm with the lists.

The following technical claim (which is a direct application of

Chernoff) allows us to assume we have global communication

within almost-clique if the number of messages to send is small

enough. In particular, nodes can learn all the identifiers from 𝑃𝐾 ,

therefore relabel nodes with 𝑂 (log log𝑛)-bit.

Claim 5 (Many-to-All Broadcast). Let 𝐾 be an almost-clique
with 𝑂 (Δ/log𝑛) nodes with an 𝑂 (log𝑛)-bit message to send to ev-
eryone in 𝐾 . Suppose each node with a message broadcasts it, before

461



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin

each node in𝐾 broadcasts𝑂 (1) messages it received, picked randomly.
Then, w.h.p., all messages are received by every node in 𝐾 .

The key difficulty in coloring put-aside sets lies in reducing

their sizes to 𝑂 (log𝑛/log log𝑛). We use a procedure CompressTry,
which simulates a sequential algorithm where nodes of the put-

aside set, in the order of their IDs, each perform 𝑂 (log𝑛/log log𝑛)
times a non-adaptive TryColorwith slack 𝑧. The following technical
lemma analyzes the performance of CompressTry. We defer its

proof and the exact description of CompressTry to the full version

[19].

Lemma 13. Let 𝐾 ∈ Kfull and fix a set 𝑆 ⊆ 𝐾 of size 𝑂 (log1.1 𝑛).
Furthermore, suppose each 𝑣 ∈ 𝑆 has a list 𝐿(𝑣) of at most 𝐶 log

1.1 𝑛

colors known to every 𝑢 ∈ 𝑆 , and such that |𝐿(𝑣) ∩ Ψ(𝑣) | ≥ |𝑆 | + 𝑧
for a fixed 𝑧 ≥ 𝐶 log𝑛/log log𝑛. Then, w.p. 1 − 𝑒−𝑧 − 1/poly(𝑛),
CompressTry colors all but 𝑧 nodes in 𝑆 . Furthermore, CompressTry
uses 𝑂 (log𝑛/log log𝑛) bandwidth.

Lemma 14 shows how we use CompressTry to reduce the size

of the put-aside sets. In cliques with colorful matching, nodes

have 𝑎𝐾 ∈ Ω(log𝑛) slack; CompressTry directly reduces 𝑃𝐾 to

𝑂 (log𝑛/log log𝑛) nodes by using the clique palette. In cliques

where 𝑎𝐾 < 𝐶 log𝑛, we first put-aside𝑂 (log𝑛) nodes to reduce 𝑃𝐾
to 𝑂 (log𝑛) using the clique palette. Then, nodes add colors used

by their anti-neighbors to their list, and CompressTry finishes to
reduce 𝑃𝐾 to 𝑂 (log𝑛/log log𝑛).

Lemma 14. There is a 𝑂 (1)-round BCONGEST algorithm reduc-
ing the number of uncolored nodes in 𝑃𝐾 to 𝑂 (log𝑛/log log𝑛) with
high probability.

Proof. For cliques such that 𝑎𝐾 ≥ 𝐶 log𝑛, Lemma 13 allows us

to directly reduce 𝑃𝐾 to a set of size 𝑧 := 𝐶 log𝑛/log log𝑛. This is
because, in such cliques, we compute a colorful matching of size

𝛽𝑎𝐾 ≥ 𝑎𝐾 +𝑎𝑣 , for each 𝑣 ∈ 𝑃𝐾 (which are inliers). Therefore, using

lists 𝐿(𝑣) := Ψ(𝐾), by Claim 1, |𝐿(𝑣) ∩Ψ(𝑣) | ≥ |𝑃𝐾 | +𝑎𝐾 ≥ |𝑃𝐾 | +𝑧.
Note that the clique palette can be publicly learned in 𝑂 (1) rounds
by Lemma 16. CompressTry succeeds only w.p. 1 − 𝑒−𝑧 , but by
repeating independently log log𝑛 times, the probability that at least

one instance succeeds is 1−𝑒−𝑧 log log𝑛 = 1−𝑛−𝐶 . Overall, we need
𝑂 (log𝑛/log log𝑛 · log log𝑛) = 𝑂 (log𝑛) bandwidth.

Henceforth, we assume that 𝑎𝐾 < 𝐶 log𝑛. The main difference

is that we do not have a colorful matching, so the clique palette

does not approximate Ψ(𝑣) well. We settle this in two steps.

From 𝑂 (log1.1 𝑛) to 𝑂 (log𝑛). Let 𝑆 ⊆ 𝑃𝐾 be an arbitrary subset

of 𝑃𝐾 of 31𝐶 log𝑛 nodes. By Claim 1, |Ψ(𝐾) ∩ Ψ(𝑣) | ≥ |𝑃𝐾 | − 𝑎𝑣 ≥
|𝑃𝐾 \ 𝑆 | +𝐶 log𝑛. Therefore, CompressTry with lists 𝐿(𝑣) = Ψ(𝐾)
and 𝑧 = 𝐶 log𝑛 reduces 𝑃𝐾 w.h.p. to size 32𝐶 log𝑛 (the 𝐶 log𝑛

nodes left uncolored in 𝑃𝐾 \ 𝑆 by CompressTry and the 31𝐶 log𝑛

uncolored nodes of 𝑆).

From 𝑂 (log𝑛) to 𝑂 (log𝑛/log log𝑛). Now, instead of using only

the clique palette, we augment lists with colors of anti-neighbors.

Let 𝐿(𝑣) := Ψ(𝐾) ∪ C(𝐾 \ 𝑁 (𝑣)). Since we are adding 𝑎𝑣 colors to
each list, Claim 1, even with an empty matching, gives us, |𝐿(𝑣) ∩
Ψ(𝑣) | = |Ψ(𝐾)∩Ψ(𝑣) |+𝑎𝑣 ≥ |𝑃𝐾 |. If we now put-aside a set 𝑆 ⊆ 𝑃𝐾
of 𝑧 := 𝐶 log𝑛/log log𝑛 nodes, lists 𝐿(𝑣) verify |𝐿(𝑣) ∩ Ψ(𝑣) | ≥
|𝑃𝐾 \𝑆 | +𝑧. To conclude, it remains to explain how nodes learn lists

𝐿(𝑣).

Since𝑎𝐾 < 𝐶 log𝑛, each node has atmost 30𝐶 log𝑛 anti-neighbors

in the clique. If we relabel nodes of 𝑃𝐾 using identifiers in [|𝑃𝐾 |]
(with Claim 5), every 𝑢 ∈ 𝐾 can describe the set 𝑃𝐾 \ 𝑁 (𝑣) with
a bit-map in one 𝑂 (log𝑛)-bit message. Note that only 𝑂 (log2 𝑛)
nodes will need to send a bit-map, i.e. at most 𝑂 (log𝑛) per node in
𝑃𝐾 . By Claim 5, all messages can be disseminated in 𝑂 (1) rounds
to all nodes in 𝐾 . Thus, all lists are known and we make log log𝑛

independent calls to CompressTry.

4 SYNCHRONIZED COLOR TRIAL IN
BCONGEST

At its core, synchronized color trial is simply about creating a

random bijection between (most of) a set of colors and (most of)

the uncolored nodes of a clique. Our implementation uses the clique

palette as a set of colors and randomly permutes the nodes. The

order of each node in the permutation tells it which color to take

in the clique palette. This entails two difficulties. Firstly, to make

use of its order in the sampled permutation, each node needs to

know the matching color in the clique palette. We show that 𝑂 (1)
rounds of BCONGEST suffice for all nodes to learn their clique

palette. The second issue is sampling the permutation, and entails a

more involved process. For simplicity, we describe an 𝑂 (log log𝑛)
permutation sampling procedure in the main text, which suffices

for Theorems 1 and 2, and defer a more involved 𝑂 (1) procedure
to the full version [19].

We will need the following technical lemma (which is an imme-

diate consequence of Property 2b and Chernoff).

Lemma 15. Let𝐾 be an almost-clique and an integer𝑘 ≤ Δ/(𝐶 log𝑛)
for some large enough𝐶 > 0. Suppose each 𝑣 ∈ 𝐾 samples 𝑡 (𝑣) ∈ [𝑘]
uniformly at random. Then, with high probability, for each 𝑖 ∈ [𝑘],
the set 𝑇𝑖 = {𝑣 ∈ 𝐾 : 𝑡 (𝑣) = 𝑖} satisfies that for any 𝑢,𝑤 ∈ 𝐾 ,
|𝑇𝑖 ∩ 𝑁 (𝑢) ∩ 𝑁 (𝑤) | ≥ (𝐶/4) log𝑛. We say that 𝑇𝑖 2-hop connects

𝐾 in that each pair of nodes in 𝐾 has a common neighbor in 𝑇𝑖 .

Note that since 𝑇𝑖 ⊆ 𝐾 , each 𝑇𝑖 also 2-hop connects itself, thus

has diameter 2.

Learning the clique palette. We learn the clique palette by divid-

ing the color space into 𝑂 (Δ/log𝑛) contiguous subpalettes. Given
a 2-hop connecting set of nodes to handle each subpalette – with a

trivial construction due to Lemma 15 – each node learns Ψ(𝐾) in
𝑂 (1) rounds. Recall that C(𝑆) denotes the set of colors currently
assigned to a set 𝑆 of nodes.

Algorithm 2. Procedure LearnPalette, in almost-clique 𝐾 .

Parameters: Let 𝐶 = 𝑂 (1) be a large enough constant, 𝑘 =

⌊Δ/(𝐶 log𝑛)⌋.
Assume 𝐾 to be split into 𝑘 2-hop connecting sets 𝑇1, . . . ,𝑇𝑘 .

Let 𝑅𝑖 := {1 + ⌊(𝑖 − 1) · (Δ + 1)/𝑘⌋, . . . , ⌊𝑖 · (Δ + 1)/𝑘⌋}, i.e.,
𝑅1, . . . , 𝑅𝑘 partition the color space [Δ + 1].
(1) Each 𝑣 encodes 𝑅𝑡 (𝑣) ∩ C(𝑁 (𝑣) ∩ 𝐾) into a 𝐶 log𝑛-sized

bit-map and broadcasts it.
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(2) For each 𝑖 ∈ [𝑘], each 𝑣 ∈ 𝐾 combines the bit-maps

received from its neighbors in 𝑇𝑖 , i.e., computes⋃
𝑢∈𝑁 (𝑣)∩𝑇𝑖

(
𝑅𝑖 ∩ C(𝑁 (𝑢) ∩ 𝐾)

)
and takes it for 𝑅𝑖 ∩ C(𝐾).

Lemma 16. Let𝐾 be an almost-clique of paletteΨ(𝐾). LearnPalette
has each 𝑣 ∈ 𝐾 learn Ψ(𝐾) in 𝑂 (1) rounds of BCONGEST.

Proof. In Δ + 1-coloring, learning Ψ(𝐾) is equivalent to learn-

ing the used colors C(𝐾). LearnPalette requires 𝑂 (1) rounds of
BCONGEST, as each node in 𝐾 only sends one𝐶 log𝑛-bit message.

Let us consider a color 𝑐 ∈ C(𝐾), a node 𝑣 ∈ 𝐾 , and argue that 𝑣

learn 𝑐 . Let 𝑅𝑖 be such that 𝑐 ∈ 𝑅𝑖 , and 𝑢 ∈ 𝐾 a node with color 𝑐 .

Since 𝑇𝑖 2-hop connects 𝐾 , there exists a node in 𝑇𝑖 ∩ 𝑁 (𝑢) ∩ 𝑁 (𝑣).
Such a node contains 𝑐 in the bitmap it computes in Step 1 of

LearnPalette, and 𝑣 receives this bitmap in Step 2. As this works

for every 𝑐 ∈ C(𝐾) and 𝑣 ∈ 𝐾 , all 𝑣 ∈ 𝐾 learn C(𝐾).

Sampling the permutation. At a high level, the 𝑂 (log log𝑛) al-
gorithm for permuting the nodes presented in this section has the

nodes undergo two shuffling steps. Nodes first undergo a “rough

shuffling”, which puts them into buckets, roughly positioning them

in the permutation. Each group then does a “fine shuffling” to give

each node its exact position.

An important step in both our 𝑂 (log log𝑛) and our 𝑂 (1) im-

plementation is giving nodes 𝑂 (log log𝑛)-bit labels unique within
their buckets. Using the smaller labels instead of the original node

IDs allows each bucket to save a multiplicative Θ(log𝑛/log log𝑛)
factor when describing a permutation of its elements.

Algorithm 3. Procedure Relabel, in 2-hop connected set of

nodes 𝑇 ⊆ 𝑉 , for subset 𝑆 ⊆ 𝑇 .
Parameters: Let 𝐶 = 𝑂 (1) be a large enough constant, 𝑥 :=

⌈𝐶 log𝑛/log log𝑛⌉.
(1) Each 𝑣 ∈ 𝑆 samples and broadcasts 𝑥 labels in [|𝑆 |2 log𝑛],

picked u.a.r. and independently.

(2) Each 𝑣 ∈ 𝑇 broadcasts an 𝑥-sized bit-map indicating, for

each 𝑗 ∈ [𝑥], whether multiple nodes in 𝑆 ∩ 𝑁 (𝑣) have
the same 𝑗th label.

(3) If for a minimum 𝑗 ∈ [𝑥], all nodes in 𝑆 have distinct 𝑗th

labels, 𝑆 uses them as new labels.

Lemma 17. Suppose 𝑆 has size poly(log𝑛). Relabel succeeds at
relabeling 𝑆 in 𝑂 (1) BCONGEST rounds, w.h.p.

Proof. First, note that 𝑂 (1) BCONGEST rounds suffice to com-

pute |𝑆 | for Step 1, as 𝑇 is 2-hop connected. Since |𝑆 |2 log𝑛 ∈
poly(log𝑛), each label sent by a node 𝑣 ∈ 𝑆 during Step 1 is repre-

sentable with 𝑂 (log log𝑛) bits. Thus, 𝑥 ∈ 𝑂 (log𝑛/log log𝑛) labels
can be transmitted in 𝑂 (1) rounds.

As 𝑇 2-hop connects itself (a fortiori 𝑆), two nodes of 𝑆 with a

common 𝑗th label are necessarily detected by a common neighbor

during Step 2. Taking the AND of all 𝑥-sized bitmaps sent in this

step, the nodes in 𝑇 all learn for which 𝑗 ∈ [𝑥] it holds that all
nodes of 𝑆 picked distinct 𝑗th labels.

We now analyze the probability that the relabeling succeeds,

i.e., that a 𝑗 ∈ [𝑥] as used in Step 3 exists. For each 𝑗 ∈ [𝑥],
each 𝑗th sampled label in 𝑆 has probability less than 1/(|𝑆 | log𝑛)
of conflicting with one of the other |𝑆 | − 1 𝑗th labels. Hence, by

union bound, the 𝑗th labels have a collision with probability at

most 1/(log𝑛). Having 𝑥 independent samples implies success with

probability at least 1− (log𝑛)−𝑥 = 1− 2
−𝑥 log log𝑛 = 1− 2

−𝐶 log𝑛 =

1 − 𝑛−𝐶 , i.e., w.h.p.

Algorithm 4. Procedure Permute, in almost-clique 𝐾 , on

subset 𝑆 ⊆ 𝐾 of the nodes.

Parameters: Let 𝐶 = 𝑂 (1) be a large enough constant, 𝑘 :=

⌊Δ/(𝐶 log𝑛)⌋, 𝑥 := ⌈𝐶 log𝑛/log log𝑛⌉.
(1) Rough bucketing. Each 𝑣 ∈ 𝐾 independently picks a

random 𝑡 (𝑣) ∈ [𝑘] u.a.r.
For each 𝑖 ∈ [𝑘], let 𝑇𝑖 := {𝑣 ∈ 𝐾 : 𝑡 (𝑣) = 𝑖} and 𝑆𝑖 :=
𝑇𝑖 ∩ 𝑆 .

(2) Counting buckets. For each 𝑖 ∈ [𝑘], the nodes in 𝑇𝑖
compute and broadcast |𝑆𝑖 |.

(3) Relabeling. Within each 𝑇𝑖 , 𝑖 ∈ [𝑘], use Relabel on 𝑆𝑖 .
(4) Permuting within buckets.Within each 𝑇𝑖 , the maxi-

mum ID node gathers the new labels of 𝑆𝑖 , picks a random

permutation 𝜌𝑖 of 𝑆𝑖 , and sends it to 𝑇𝑖 , all along a BFS

tree.

(5) Output. Each 𝑣 ∈ 𝑆𝑖 takes 𝜋 (𝑣) := 𝜌𝑖 (𝑣) +
∑
𝑗<𝑖 |𝑆 𝑗 | as its

index in the output 𝜋 .

Lemma 18. With high probability, Permute outputs a permuta-
tion of 𝑆 in 𝑂 (log log𝑛) rounds. For each permutation 𝜋 of 𝑆 , the
probability of sampling 𝜋 is bounded by 1

(1−1/poly(𝑛) ) · |𝑆 |!

Proof. By Lemma 15, the sets 𝑇𝑖 computed in Step 1 2-hop

connect 𝐾 , w.h.p., and in particular have diameter 2. Assuming

this holds, Step 2 only takes 𝑂 (1) rounds using a aggregation and

dissemination on the depth-2 BFS tree within each 𝑇𝑖 . This allows

each 𝑣 ∈ 𝑆𝑖 to compute

∑
𝑗<𝑖 |𝑆 𝑗 | for the last step of the algorithm.

In addition, it also holds w.h.p. that each 𝑆𝑖 ⊆ 𝑇𝑖 has size𝑂 (log𝑛).
Assuming this holds, running Relabel in Step 3 only requires 𝑂 (1)
rounds per Lemma 17, and it succeeds w.h.p. Finally, the process

takes𝑂 (log log𝑛) rounds due to Step 4, during which a leader node

within each 𝑇𝑖 broadcasts 𝑂 (log𝑛) labels of 𝑂 (log log𝑛) bits each.
We now argue the approximate uniformity of the sampling. Con-

sider the random process in which each node in 𝑆 picks a random

ordered bucket independently and u.a.r, and then each bucket is

permuted uniformly at random. Let 𝜇 be the distribution of the

permutation generated by this process. Clearly, 𝜇 is the uniform

distribution. Permute is the same as this process, except it does

not output anything if some high probability event E does not

hold. More precisely, the high probability event E corresponds

to all buckets being 2-connected, all buckets being of 𝑂 (log𝑛)
size, and Relabel succeeding. Let 𝜇1 be the distribution 𝜇 condi-

tioned on E holding, and 𝜇2 be 𝜇 conditioned on E not holding.

Distribution 𝜇1 is the output distribution of Permute, and we have

𝜇 = (1− 1/poly(𝑛))𝜇1 + (1/poly(𝑛))𝜇2. Thus, for each permutation

𝜋 , 𝜇1 (𝜋) ≤ 𝜇 (𝜋)/(1 − 1/poly(𝑛)) = 1/((1 − 1/poly(𝑛)) |𝑆 |!).

463



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin

Reducing the complexity to a constant. Our 𝑂 (1) implementa-

tion improves on the running time by splitting buckets from the

first “rough shuffling” into sub-buckets, and arguing that most such

buckets satisfy properties allowing them to use a leader to permute

themselves as in Algorithm 4, while buckets that fail this second

sub-bucketing are few enough that they can be efficiently permuted

with the help of the whole almost-clique. We sketch the main ideas

behind Lemma 19 here and defer all necessary details to the full

version [19].

Lemma 19. There is an algorithm simulating the permutation sam-
pling step of the synchronized color trial in𝑂 (1) rounds ofBCONGEST.

Proof sketch. For simplicity, let us assume we want to per-

mute the whole almost-clique 𝐾 . The overall structure of our 𝑂 (1)
algorithm for permuting 𝐾 is as follows:

(1) each 𝑣 ∈ 𝐾 picks random 𝑡 (𝑣) ∈ [𝑘] and 𝑡 ′ (𝑣) ∈ [𝑘′],
(2) Let 𝑆𝑖 := {𝑣 ∈ 𝐾 : 𝑡 (𝑣) = 𝑖} and 𝑆𝑖,𝑖′ := {𝑣 ∈ 𝑆𝑖 : 𝑡 ′ (𝑣) = 𝑖′}.

Each 𝑆𝑖,𝑖′ generates a random permutation 𝜌𝑖,𝑖′ of its elements,

(3) a node 𝑣 ∈ 𝑆𝑖,𝑖′ takes 𝜋 (𝑣) :=
∑

( 𝑗, 𝑗 ′ )< (𝑖,𝑖′ ) |𝑆𝑖,𝑖′ | + 𝜌𝑖,𝑖′ (𝑣) as
index in the output permutation 𝜋 .

The numbers 𝑘 and 𝑘′ used in our random assignments are

chosen of order 𝑘 ∈ Θ(Δ/log𝑛) and 𝑘′ ∈ Θ(log log𝑛). For every
node 𝑣 ∈ 𝐾 , in expectation, its neighborhood contains Θ(log𝑛)
members of each 𝑆𝑖 and Θ(log𝑛/log log𝑛) members of each 𝑆𝑖,𝑖′ .

We can claim that each node in 𝐾 has Θ(log𝑛) neighbors in each

𝑆𝑖 , w.h.p. For the sets 𝑆𝑖,𝑖′ , we argue that most of them have size

Θ(log𝑛/log log𝑛) and diameter 2.

We permute the sets 𝑆𝑖,𝑖′ of size Θ(log𝑛/log log𝑛) and diame-

ter 2 the same way that sets 𝑆𝑖 are permuted in the 𝑂 (log log𝑛)
algorithm: a node in them chooses a random permutation. The sets

being smaller makes the process Θ(log log𝑛) times faster.

Other sets 𝑆𝑖,𝑖′ use the assistance of the whole almost-clique to

permute themselves. Nodes in such sets 𝑆𝑖,𝑖′ each pick a big random

number, send it to all other nodes, and order themselves within

their 𝑆𝑖,𝑖′ according to the big random numbers. We argue that

there are few enough sets 𝑆𝑖,𝑖′ to be permuted using this method

that Many-to-All Broadcast (Claim 5) can be used.

Like the 𝑂 (log log𝑛) algorithm, the output distribution of the

𝑂 (1) algorithm is close-to-uniform, with the same argument.

5 COLORING IN STREAMING-CONGEST
Definition 10. WedefineBCStream to be theBCONGESTmodel

in which, per round, each node receives the messages from its neigh-
bors in a streaming fashion, using 𝑂 (log𝑐 𝑛) memory for some fixed
𝑐 > 0.

Note that results in BCStream constrain the size of the messages

more than equivalent results in CONGEST or BCONGEST. In the

latter models, the size of the messages can be freely changed be-

tween 𝑐 log𝑛 and 𝑐′ log𝑛 for two positive constants 𝑐 and 𝑐′ without
changing 𝜔 (1) asymptotic complexities. This is because, without a

memory constraint, for 𝑐 > 𝑐′ > 0, nodes can simulate an algorithm

using 𝑐 log𝑛-bit messages by buffering the 𝑐′ log𝑛-bit messages re-

ceived from each neighbor over ⌈𝑐/𝑐′⌉ rounds. Such buffering uses

Θ(Δ log𝑛) memory and is impossible in BCStream. In BCStream,

having a 𝑇 -round algorithm for a given problem means that there

exist constants 𝑐, 𝑐′ > 0 s.t. given that nodes can send messages of

size 𝑐 log𝑛 + 𝑐′, they can solve the problem in 𝑇 rounds.

Running a randomized color trial remains feasible underBCStream
constraints. As this consists of the core of our algorithm, most steps

carry over to this model. The technical difficulties to overcome are:

(1) (high-degree) nodes cannot store all colors used in their neigh-

borhood, in order to know their palette; and (2) dense nodes cannot

learn the full clique palette nor the full permutation 𝜋 during the

synchronized color trial.

Dealing with the first issue is fairly straightforward since in

order to overcome the broadcast constraint, nodes sample colors in

publicly known sets of colors (e.g., [Δ+1] or [𝑥 (𝑣)]). After sampling

colors in such a set, a node can learn which sampled colors belong

to its palette in one communication round (where each colored

node broadcasts its color).

The synchronized color trial (Step 2 of Algorithm 1) requires

more care. Note that a node 𝑣 merely needs to know its index in

the permutation 𝜋 (𝑣) and the 𝜋 (𝑣)-th color in the clique-palette.

Lemmas 16 and 18 are both based on the idea of “random bucketing”.

Let us focus on the permutation and consider Algorithm 4. As each

bucket contains 𝑂 (log𝑛) nodes, Relabel requires only poly log𝑛

memory (Algorithm 3). What remains, then, is to compute the

prefix sum

∑
𝑗<𝑖 |𝑆 𝑗 | counting the number of elements in buckets of

lower indices (Step 5 of Algorithm 4). Compared toBCONGEST, the
challenge is to avoid double counting. Indeed, in Step 2 of Permute,
nodes receive Θ(log𝑛) times each term |𝑆 𝑗 | of the sum.

Computing prefix sums

∑
𝑗<𝑖 |𝑆 𝑗 | can be done in 𝑂 (log log𝑛)

rounds of BCStream. To achieve this, we progressively merge to-

gether the 𝑆𝑖 ’s into larger groups, keeping track of the groups’ sizes

as they merge. Say groups have size 𝑧, the main idea is to merge

𝑧1/2 groups together. Computing the size of the result of this merge

involves summing 𝑧1/2 group sizes. In each group, nodes choose

a term to learn in the sum at random (among the 𝑧1/2 terms). In

expectation, 𝑧1/2 nodes are assigned to each term. Because of the

highly connected structure of almost-cliques, we can elect a unique
node for each term, allowing us to aggregate all values without

double counting. Since the sizes of the groups grow polynomially,

after 𝑂 (log log𝑛) rounds, all sums have been computed. As the

proof is quite technical, we defer it to the full version [19].

Lemma 20. Let𝑇𝑖 be a family of sets such as described in Lemma 15.
Suppose nodes of each group 𝑇𝑖 knows some value 𝑦𝑖 ≤ poly(𝑛).
There is a 𝑂 (log log𝑛)-round BCStream algorithm such that w.h.p.
all nodes in 𝑇𝑖 learn

∑
𝑗<𝑖 𝑦 𝑗 .

The same idea allows nodes to find the 𝑖-th color in the clique

palette. When the only remaining nodes are from the put-aside sets,

the algorithm only requires poly log𝑛 memory. Indeed, we can as-

sume the clique palette has size𝑂 (log3 𝑛) and we sample𝑂 (log3 𝑛)
colors at each step of the process. Observe that the communication

procedure described in Claim 5 works in BCStream if nodes know

in advance which messages they need to store (e.g., the 𝑖-th color in

the clique palette) or if the total number of messages is poly log𝑛

(e.g., when coloring the put-aside sets).
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