
MIT Open Access Articles

Indistinguishability Obfuscation, Range
Avoidance, and Bounded Arithmetic

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ilango, Rahul, Li, Jiatu and Williams, R. Ryan. 2023. "Indistinguishability Obfuscation,
Range Avoidance, and Bounded Arithmetic."

As Published: https://doi.org/10.1145/3564246.3585187

Publisher: ACM|Proceedings of the 55th Annual ACM Symposium on Theory of Computing

Persistent URL: https://hdl.handle.net/1721.1/151005

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/151005
https://creativecommons.org/licenses/by/4.0/

Indistinguishability Obfuscation, Range Avoidance, and Bounded
Arithmetic

Rahul Ilango∗

rilango@mit.edu
MIT

Cambridge, Massachusetts, USA

Jiatu Li
ljt714285@gmail.com

IIIS, Tsinghua University
Beijing, China

R. Ryan Williams†

rrw@mit.edu
MIT

Cambridge, Massachusetts, USA

ABSTRACT

The range avoidance problem (denoted by Avoid) asks to �nd a

string outside of the range of a given circuit � : {0, 1}= → {0, 1}< ,

where< > =. Although at least half of the strings of length< are

correct answers, it is not clear how to deterministically �nd one.

Recent results of Korten (FOCS’21) and Ren, Wang, and Santhanam

(FOCS’ 22) show that e�cient deterministic algorithms for Avoid

would have far-reaching consequences, including strong circuit

lower bounds and explicit constructions of combinatorial objects

(e.g., Ramsey graphs, extractors, rigid matrices). This strongly mo-

tivates the question: does an e�cient deterministic algorithm for

Avoid actually exist?

In this work, we prove under the existence of subexponentially

secure indistinguishability obfuscation (8O) that polynomial-time

deterministic algorithms for Avoid imply NP = coNP. Combining

this with Jain, Lin, and Sahai’s recent breakthrough construction

of 8O from well-founded assumptions (STOC’21, EUROCRYPT’22),

we provide the �rst plausible evidence that Avoid has no e�cient

deterministic algorithm. Moreover, we also prove the hardness of

Avoid based on polynomially-secure 8O and a weaker variant of

the Nondeterministic Exponential Time Hypothesis (NETH).

Extending our techniques, we prove a surprising separation in

bounded arithmetic, conditioned on similar assumptions. Assuming

subexponentially secure 8O and coNP is not in�nitely often in AM,

we show that Avoid has no deterministic polynomial-time algo-

rithm even when we are allowed$ (1) queries to an oracle that can

invert the given input circuit on an arbitrarily chosen<-bit string.

It follows that the dual Weak Pigeonhole Principle, the combinatorial

principle underlying Avoid, is not provable in Cook’s theory PV1.

This gives (under plausible assumptions) the �rst separation of

Cook’s theory PV1 for polynomial-time reasoning and Jeřábek’s

theory APC1 for probabilistic polynomial-time reasoning.

CCS CONCEPTS

• Theory of computation → Complexity theory and logic;

Proof complexity; Cryptographic primitives; Proof theory.

∗Supported by an NSF Graduate Research Fellowship and NSF CCF-1909429.
†Supported by NSF CCF-1909429.

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585187

KEYWORDS

circuit range avoidance, dual weak pigeonhole principle, indistin-

guishability obfuscation, bounded arithmetic

ACM Reference Format:

Rahul Ilango, Jiatu Li, and R. Ryan Williams. 2023. Indistinguishability

Obfuscation, Range Avoidance, and Bounded Arithmetic. In Proceedings

of the 55th Annual ACM Symposium on Theory of Computing (STOC ’23),

June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3564246.3585187

1 INTRODUCTION

Given a circuit� mapping =-bit inputs to<-bit outputs, where< >

=, at least half of the possible<-bit strings are never output by � .

How e�ciently can we �nd such a string? This meta-computational

problem is known as Range Avoidance:

Search Problem: Range Avoidance (a.k.a. Avoid)

Input: A Boolean circuit � with = inputs, and< > = outputs.

Output: A string ~ ∈ {0, 1}< such that for all G ∈ {0, 1}= ,

� (G) ≠ ~.

There is a simple randomized algorithm for Avoid: a uniformly

random ~ ∈ {0, 1}< will be outside the range of � with probability

at least 1−2=/2< ≥ 1/2. Is there an e�cient deterministic algorithm

for Avoid?

This question is especially intriguing because it does not seem

clearwhat the answer should be. Indeed, Ren-Wang-Santhanam [66]

remark

“It is unknown whether Avoid ∈ FNP, Avoid ∈ FP,

or their negations are implied by any plausible as-

sumptions. As far as we know, we do not even have a

good idea of what the ‘ground truth’ should be.”

(FNP and FP refer to the function versions ofNP and P respectively.)

Under a plausible derandomization assumption, there is a deter-

ministic polynomial-time algorithm for Avoid given access to an

NP-oracle [49]. In randomized polynomial time with an NP oracle,

one can repeatedly sample a uniformly random ~ ∈ {0, 1}< and

verify it is not in the range with the NP oracle. This process can be

derandomized, assuming ENP requires 2Ω (=) -sized circuits [45]. In

fact, Korten [49] shows that Avoid is in FPNP if and only if ENP

does not have 2> (=) -sized circuits in�nitely often, so �nding a de-

terministic algorithm for Avoid with a SAT oracle is equivalent to

proving circuit lower bounds.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1076

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0658-7813
https://orcid.org/0000-0003-2358-3141
https://orcid.org/0000-0003-2326-2233
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3564246.3585187

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

1.1 Background

Implications of Deterministic Algorithms for Range Avoidance.

Kleinberg, Korten, Mitropolsky, and Papadimitriou [44] initiated

the study ofAvoid (in their notation,Avoid is the problemU-Empty

for U ≥ 1). They showed that various explicit construction problems

can be reduced to Avoid, including the problem Complexity, of

outputting a function with high �-oracle circuit complexity, given

the truth table of the oracle �.1

In follow-up work, Korten [49] convincingly demonstrated that

deterministic algorithms for Avoid would have signi�cant con-

sequences for circuit complexity and combinatorics. For example,

letting� be a poly(2ℓ)-size circuit which takes as input descriptions

of 2ℓ/10-size circuits and outputs their 2ℓ -bit truth tables, solving

Range Avoidance on such � amounts to �nding truth tables of

high circuit complexity, a task that is widely believed to be solvable

in deterministic polynomial time.2 Korten extended this observa-

tion considerably, showing a deterministic Avoid algorithm would

imply deterministic constructions of a variety of other objects (e.g.,

Ramsey graphs, extractors, rigid matrices) where a random choice

su�ces, but explicit constructions are longstanding open problems.

Ren-Santhanam-Wang [66] found further striking consequences

of deterministic e�cient Avoid algorithms. Among many other

results, they show that a polynomial-time algorithm for NC0
4 cir-

cuits (NC0
:
denotes circuits in which each output only depends on

: inputs) with stretch < = = + => (1) would already yield func-

tions in E that require circuits of depth =1−> (1) , a major open

problem in circuit complexity. Guruswami-Lyu-Wang [29] improve

upon several reductions of Ren-Santhanam-Wang, and also show

that Range Avoidance is in fact solvable in deterministic poly-

nomial time for NC0
2 circuits. Gajulapalli-Golovnev-Nagargoje-

Saraogi [24] show that a deterministic polynomial-time algorithm

for Avoid on NC0
3 circuits with< = = + =2/3 implies breakthrough

explicit constructions of rigid matrices. They also give deterministic

polynomial-time algorithms forAvoid onNC0
:
circuits with stretch

< ≥ =:−1/log=.

What to Believe? Arguments and Counterarguments. All the above

results underscore the signi�cance of �nding nontrivial algorithms

for Range Avoidance and the importance of understanding how

di�cult Range Avoidance really is. Should we believe Range

Avoidance is in FP (the class of polynomial-time computable

functions), or not? To illustrate the depth of this question, we

brie�y consider some arguments and counterarguments.

From one point of view, it is natural to imagine a world in

which Avoid ∈ FP. From Korten [49], we already know that if

ENP doesn’t have subexponential-size circuits, then Avoid is in

FPNP. In light of this, it seems natural to believe that under the

stronger assumption that E (without an NP oracle) doesn’t have

1Kleinberg, Korten, Mitropolsky, and Papadimitriou [44] also showed that an extremely
low-stretch variant of Avoid, where one is given a circuit mapping from [2= − 1]
to [2=], is NP-hard (their Theorem 1). However, because the stretch of this variant
is exponentially small, the complexity of the problem is quite di�erent: for example,
this version can’t be easily solved with randomness, as the total number of inputs and
outputs only di�er by one.
2In more detail, constructing a 2=-bit truth table with circuit complexity 2Ω (=) in

poly(2=) time is equivalent to showing that E requires 2Ω (=) circuit complexity,
which is the main hypothesis powering the famous pseudorandom generators for
BPP = P [31, 70].

subexponential-size circuits (that is, the widely-believed conjec-

ture E ⊈ io-SIZE(2> (=)) [31]), one could show Avoid is in FP

(without an NP oracle). Furthermore, standard methods from pseu-

dorandomness [45] imply that there is a polynomial-time con-

structible hitting set for Avoid, assuming (for example) that E does

not have subexponential-size SAT oracle circuits. That is, under

plausible hypotheses, one can generate in FP a polynomial-size set

(B,< ⊆ {0, 1}< such that for every circuit� of size B with< outputs,

at least one ~ ∈ (B,< is not an output of � (see Appendix A of the

full version). However, checking which~ is a non-output apparently

requires an NP oracle.

To add to these points, the existence of a randomized algorithm

for Avoid seems to preclude a range of approaches to ruling out a

deterministic (FP) algorithm for Avoid. For example, in Appendix

B of the full version we present a barrier result against proving

Avoid ∉ FP using standard black-box randomized Turing reduc-

tions, which exploits the fact that a random string is a correct

answer with high probability. Still, the fact that Avoid has a fast

randomized algorithm does not necessarily mean that we should

believe it has a fast deterministic one. For an extreme example,

one can easily sample strings of high Kolmogorov complexity with

randomness, but one provably cannot do this deterministically at all:

su�ciently long strings generated by �xed deterministic algorithms

always have low Kolmogorov complexity [69, Chapter 6.4].

Indeed, one might believe Avoid ∉ FP because the opposite may

seem “too good” to be true. The prior work mentioned above shows

that, if Avoid ∈ FP, there are many interesting consequences for

lower bounds and explicit constructions. However, as we expect all

of those consequences to actually be true, these results alone don’t

give a strong argument that Avoid ∉ FP. Rather, they indicate that

the opposite may be hard to prove, as it would have signi�cant

consequences.

Another intuition for the di�culty ofAvoid is that the generality

of the problem allows for more power than merely generating

varieties of hard functions and special combinatorial objects, each of

which correspond to speci�c structured instances of Avoid. Solving

Avoid for all circuits, even arbitrary ones whose descriptions may

be very “scrambled” and complex, could be far more powerful than

the generation of interesting mathematical objects.

In summary, it was entirely unclear whether Range Avoidance

should be solvable in deterministic polynomial time, or not. In this

paper, we shall give evidence that is not, starting from the intuition

of the previous paragraph.

Indistinguishability Obfuscation. Before stating our results, we take

a quick detour to discuss one of our main tools: Indistinguishability

Obfuscation (8O), a notion �rst de�ned by Barak et al. [6, 7]. Roughly

speaking, an 8O is a polynomial-time probabilistic algorithm that

given a circuit � , outputs an “obfuscated” circuit 8O(�) computing

the same function. The security guarantee of 8O is that, for any

two circuits � and �′ of the same size that compute the same

function, 8O(�) and 8O(�′) are computationally indistinguishable

to a class of “adversaries” (for example, polynomial-sized circuits).

See Section 2.1 for a formal de�nition.

For many years, 8O had the dual de�ciency of neither having

any candidate constructions, nor having particularly interesting

applications. However, in the two decades since its de�nition, both

1077

Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic STOC ’23, June 20–23, 2023, Orlando, FL, USA

of these statements have seen dramatic reversals. While 8O’s se-

curity de�nition initially seems weak (as it only gives a guarantee

about circuits computing the same function), it turns out to be ex-

tremely powerful. We now know that nearly every cryptographic

primitive (e.g., one-way functions [48], public-key encryption [67],

multi-party non-interactive key exchange [10], etc.) can be con-

structed assuming 8O exists and NP is not in BPP in�nitely often

(see Section 1.3 of Jain-Lin-Sahai [33] for a more comprehensive

list).

Similarly, while many initial candidate constructions required

new assumptions that were later broken, groundbreaking work

of Jain, Lin, and Sahai [33] showed that 8O exists assuming four

“well-founded” assumptions (this has been improved to three as-

sumptions, in [35]). Moreover, the 8O they construct has strong

security properties: no polynomial-sized circuit adversary can dis-

tinguish the 8O of equivalent circuits except with subexponentially

small probability. We refer to 8O with these security properties as

JLS-security (a formal de�nition is in Section 2.1). Following the

work of Jain, Lin, and Sahai, 8O has now become a widely-believed

assumption in cryptography (see for example the recent Quanta

article of Klarreich [43]).

1.2 Our Results

In this paper, we give the �rst concrete evidence that Range Avoid-

ance is hard to solve deterministically when the number of outputs

<(=) = poly(=). In particular, our conditional lower bound for

Range Avoidance follows from indistinguishability obfuscation

and various forms of NP ≠ coNP. Our argument is quite general

in that it holds for a variety of parameters with trade-o�s on the

assumptions, but we state a simple version �rst.

Theorem 1. Assume that NP ≠ coNP and 8O with JLS-security

exists. Then for all 2 ≥ 1, there is a : ≥ 2 such that there is no

deterministic polynomial-time algorithm forAvoid on=: -size circuits

with = inputs and<(=) = =2 outputs.

That is, assuming NP ≠ coNP and JLS-secure 8O exists, there are

no e�cient deterministic algorithms for Avoid, even if the number

< of output bits is allowed to be an arbitrarily large polynomial

in =. Note that when< is an arbitrarily large polynomial in =, all

but an exponentially small fraction (2−<+=) of length-< strings are

outside of the range of � . Interestingly, the hard instances in our

proof are circuits � with at most two elements in their range!3 In

fact, one of those two elements is always the string 0< .

Beforewe discuss extensions of Theorem 1, let us brie�ymotivate

how the assumptions in Theorem 1 arise. Suppose a deterministic

algorithm for Avoid exists, and one is aiming to show a contra-

diction. What can you do with a deterministic algorithm, that you

could not do with a randomized algorithm (which we know exists)?

With a deterministic e�cient algorithm for Avoid, one can guaran-

tee that for every circuit � , there is a short “proof” that a speci�c

string ~� is outside the range of � . In particular, the computation

history of the deterministic Avoid algorithm running on � and

outputting ~� , constitutes such a “proof.” In contrast, it is unclear

how to get such a guarantee from the simple randomized algorithm

3Having a range of only two elements is best-possible, in a sense. For circuits� with
only one string in their range, there is a simple Avoid algorithm: output any<-bit
string di�erent from� (0=) .

forAvoid that picks a string uniformly at random. A priori, it seems

powerful that every circuit � has a short proof that a speci�c ~�
is outside its range. If the description � was complex enough to

function like a “black box,” then the shortest proof that ~� is not in

the range may simply evaluate � on all inputs and observe that �

never outputs ~� . Thus, at a very high level, a deterministic Avoid

algorithm may provide short proofs for statements that might not

have short proofs (motivating an assumption like NP ≠ coNP) for

circuits that behave like black boxes (motivating an assumption

like 8O). Of course, this is a very rough intuition; for more details

we point the reader to the (relatively short) proof of Theorem 1 in

Section 3. We remark that our work is certainly not the �rst time

that 8O is being applied in complexity theory (see Section 2.1 for

references).

Extensions. We now discuss extensions of Theorem 1, which

illustrate various tradeo�s between the time complexity of Avoid,

simulations of coNP with nondeterminism, and the allowed stretch

<. A more general version of our result rules out subexponential-

time (2=
> (1)

-time) deterministic algorithms for Avoid, as well as

algorithms for Avoid where the number of outputs< can be subex-

ponential in =. To rule out subexponential-time Avoid algorithms,

we apparently require a stronger (but still standard) notion of se-

curity for 8O than that of JLS-security. In particular, we need that

no subexponential-size circuit adversary can distinguish the 8O of

equivalent circuits, except with subexponentially small probabil-

ity. We refer to 8O with this security as subexponentially-secure 8O.

We point the reader to Section 2.1 for formal de�nitions, but we

stress that subexponentially-secure 8O is very plausible and holds if,

for example, corresponding security guarantees hold for the three

well-founded assumptions used by Jain-Lin-Sahai [34].

In the statement below (and throughout this paper) we always

assume the number of outputs<(=) is a time-constructible function.

Theorem 2. Assume subexponentially-secure 8O exists. For every

<(=) > = there is an B (=) = poly(<) such that, if there is a deter-

ministic C-time algorithm for Avoid circuits with<(=) outputs and

size B (=), then

coNP ⊆
⋃

:∈N

NTIME[C (<: (=))]

Here, NTIME[C] refers to the set of languages computable by a

nondeterministic Turing machine in time $ (C). Setting C = 2=
> (1)

,

we conclude that Range Avoidance cannot be solved in determin-

istic 2B
> (1)

time on circuits of size B , assuming subexponentially-

secure 8O and a rather weak exponential-time hypothesis. Let

NSUBEXP :=
⋂

:∈N NTIME[2=
1/:

].

Corollary 3. Assuming coNP ⊈ NSUBEXP and subexponentially-

secure 8O, Range Avoidance cannot be solved in deterministic 2B
> (1)

time on circuits of size B .

The assumption coNP ⊈ NSUBEXP is signi�cantly weaker than

what is often assumed in �ne-grained complexity. For example, the

Nondeterministic Exponential Time Hypothesis (NETH) [17, 18]

states that there is an Y > 0 such that unsatis�able 3SAT instances

with = variables cannot be refuted in nondeterministic 2Y= time.

Note NETH is a much stronger hypothesis than coNP ⊈ NSUBEXP.

1078

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

Setting<(=) to be any constructible function that is 2=
> (1)

in

Theorem 2, we conclude that even when the number of outputs<

is close to exponential in =, Avoid still does not have a polynomial-

time deterministic algorithm, assuming coNP ⊈ NSUBEXP and

subexponentially secure 8O.

Corollary 4. Assuming coNP ⊈ NSUBEXP and subexponentially-

secure 8O, Range Avoidance cannot be solved in deterministic

polynomial-time for every constructible<(=) = 2=
> (1)

.

We also prove that 8O with security weaker than JLS-security or

subexponential security can still be used to show the non-existence

of deterministic algorithms for Avoid. We show Avoid ∉ FP as-

suming only polynomially-secure 8O and a still weaker statement

than the typical NETH.

Hypothesis 5 (NETH for Circuits). There is an Y > 0 such that

Circuit Unsatis�ability on =-input circuits of size 2> (=) cannot be

solved nondeterministically in 2Y= time.

Theorem 6. Assuming NETH for Circuits and polynomially-secure

8O, Avoid is not in FP. Moreover, under the assumptions, it follows

that for all 1, 2 ≥ 1 there is an Y > 0 such that Avoid cannot be solved

in $ (22Y=) time on circuits of size 2Y= with = inputs and 1= outputs.

Note that, in the case of circuits with 2> (=) size and 1= out-

puts, exhaustive search solves Range Avoidance in time about

21=+> (=) . Under our assumptions, we rule out 2> (=) time for 2> (=) -

size circuits, when the number of outputs< is linear in =. Therefore,

even subexponential-time improvements over exhaustive search

for Range Avoidance should already be considered unlikely for

these parameters, under our assumptions.

Witness Encryption Su�ces. A careful inspection of our proofs

reveals that our use of indistinguishability obfuscation can be re-

placed with a seemingly weaker cryptographic primitive called

witness encryption. At a high level, witness encryption [26] allows

one to, given a SAT formula i , encrypt a message< such that only

recipients who know a satisfying assignment to i can decrypt<

(the actual de�nition is more involved, but this is the basic idea). It

is known that 8O implies witness encryption as a special case [25].

We state our results in terms of 8O instead of witness encryption for

two reasons. First, currently the only known way to construct wit-

ness encryption with our desired parameters under well-founded

assumptions is via 8O. Second, this paper is aimed primarily at a

complexity-theoretic audience, who is likely more familiar with the

notion of 8O than witness encryption.

Nevertheless, witness encryption is believed to be a weaker

assumption compared to 8O, and admits several plausible construc-

tions. Chen, Vaikuntanathan, and Wee [19] proposed a simple con-

struction from LWE-like problems, whose security was proved later

by Vaikuntanathan, Wee, and Wichs [72] based on LWE-like as-

sumptions. An alternative LWE-based construction was proposed

by Tsabary [71] under similar assumptions. Barta, Ishai, Ostrovsky,

andWu [8] also gave a construction in “generic group model” based

on an (unproven) hardness of approximation hypothesis of certain

coding problems.

Application: Separations in Bounded Arithmetic. Bounded arithmetic

refers to fragments of Peano arithmetic that aim to formalize the

(computational) complexity of reasoning. For instance, Cook’s theory

PV1 [22] corresponds to “reasoning in polynomial time”, Jeřábek’s

theory APC1 [36–38, 40]
4 corresponds to randomized polynomial-

time computation, and Buss’s theories (12 , (
2
2 , . . . correspond to the

polynomial-time hierarchy [12]. Indeed, theories corresponding

to other complexity classes such as TC0, NC1, and PSPACE have

been studied (see, e.g., [21, 51]). From a proof complexity point of

view, bounded theories can also be regarded as uniform versions of

propositional proof systems (see, e.g., [53]).

One motivation to study bounded arithmetic is that it may ex-

plain why longstanding complexity-theoretic conjectures such as

P ≠ NP andNEXP ⊈ P/poly are hard to prove. In contrast to barriers

such as relativization [5], natural proofs [65], and algebrization [2]

that capture the limitation of speci�c techniques, it is more desir-

able to demonstrate the unprovability of these conjectures in strong

mathematical theories with a solid logical foundation. Bounded

arithmetic provides an ideal testing ground for this program. On

the one hand, a rather large fragment of known algorithms and com-

plexity theory results can be formalized in bounded theories such as

PV1 and APC1 [58, 60, 61, 63]. On the other hand, connections be-

tween bounded arithmetic and complexity theory make it possible

to employ complexity-theoretic techniques to obtain unprovability

results, leading to exciting developments on the unprovability of

complexity upper bounds [14–16, 56] and lower bounds [52, 62, 64]

in PV.

To better understand the power of feasible reasoning, it is im-

portant to prove relations (separations or equivalences) among

bounded theories. In particular, it has been open for about twenty

years whether the dual Weak Pigeonhole Principle for PV functions5

(denoted by dWPHP(PV)) is provable in PV1. In other words, the

question is whether Jeřábek’s APC1, de�ned as PV1 +dWPHP(PV),

is the same as PV1. Here, dWPHP(PV) is the “logic version” of

Avoid
6 that says for every PV function 5 and every = and I, there is

a ~ ∈ {0, 1}=+1 such that for every G ∈ {0, 1}= , 5 (I, G) ≠ ~. Similar

to the complexity of Avoid, there has been no strong evidence

for either APC1 = PV1 and APC1 ≠ PV1. Known results on this

problem include the separation of the relativized versions of APC1

and PV1 [39] and a conditional separation based on the assumption

that P ⊂ SIZE[=:] for some : [54]. (However, this assumption con-

tradicts the widely-believed derandomization assumption that E

requires circuits of size 2Ω (=) .) Krajíček [55] recently proposed an

open problem of showing a conditional separation of PV1 and APC1

under a “mainstream hypothesis” as the �rst step to understand

the logical power of dWPHP(PV). Moreover, it might seem reason-

able to believe that APC1 is the same as PV1, since its complexity-

theoretic counterpart BPP = P follows from plausible circuit lower

bounds [31, 70].

In this work, we provide the �rst plausible evidence that Jeřábek’s

theory APC1 is a strict extension of PV1.

Theorem7 (Corollary 23, Informal). Assuming 8O with JLS-security

and coNP is not in�nitely often in AM, the dual Weak Pigeonhole

4Note the terminology APC1 was �rst used in [13].
5By Cobham’s characterization of the polynomial-time functions, PV functions (when
interpreted in the standard model) are exactly polynomial-time computable functions
(see Section 2.3 for details).
6Indeed, Korten’s investigation of the complexity of explicit constructions was inspired
by the early developments of Jeřábek’s theory APC1 , as noted in [49, 50].

1079

Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic STOC ’23, June 20–23, 2023, Orlando, FL, USA

Principle is not provable in PV (in particular,APC1 is a strict extension

of PV1).

Our proof utilizes the standard KPT Witnessing Theorem (see

Theorem 18) which extracts an algorithm for Avoid that is allowed

to invert the input circuit on a constant number of<-bit strings,

assuming APC1 is the same as PV1. Corollary 23 then follows from

an extension of the conditional lower bound for Avoidwhich holds

against polynomial-time algorithms with such circuit-inversion

oracles.7

Theorem 8 (Theorem 21, Informal). Assuming the existence of 8O

with JLS-security and NP is not in�nitely often in AM, there is no

polynomial-time algorithm for Avoid with $ (1) queries to a circuit-

inversion oracle.

This conditional lower bound stands in interesting contrast to

the fact that, under standard derandomization hypotheses (E does

not have 2Ω (=) -size circuits), there is a deterministic polynomial-

time algorithm for Avoid that makes polynomially-many circuit

inversion queries (follows from [49]; see Appendix C of the full

version). Alternatively, under a stronger assumption, namely E does

not have 2Ω (=) -size SAT-oracle circuits, we can construct a hitting

set of size poly(=) (see Appendix A of the full version) and then

�nd a non-output of the given circuit with poly(=) circuit-inversion

queries.

Under similar assumptions, we also demonstrate a separation

of APC1 and its fragment UAPC1 that is strong enough to prove

interesting results in complexity theory and formalize approximate

counting in Jeřábek’s framework [38], see Section 4.3 of the full

version for more details.

Application: the Oracle DerandomizationHypothesis for Time-Bounded

Kolmogorov Complexity. Our results also have bearing on other hy-

potheses regarding derandomization. Motivated by applications

in parameterized complexity and questions related to “instance

compressibility,” Fortnow and Santhanam [23] introduced the Ora-

cle Derandomization Hypothesis (ODH). Roughly speaking, ODH

says that, given a length-= truth table I of an arbitrary Boolean

function, one can e�ciently deterministically generate a truth table

~ of length at least =.01 such that the function represented by ~ has

circuit complexity =Ω (1) even when the circuits are given oracle

access to the function represented by I. (See Hypothesis 24 for a

formal de�nition, and Section 5 for a comparison to the related

problem Complexity.)

This hypothesis is especially intriguing because it is unclear

whether it should be true or false. Indeed, Fortnow and Santhanam

remark:

“In our opinion, quite apart from its relevance to com-

pressibility, the Oracle Derandomization Hypothesis

is interesting in its own right because it tests our intu-

itions of which kinds of derandomization are plausible

and which are not... We do not have a strong belief

7The drawback of the lower bound result comparing with Theorem 2 is that the as-
sumption NP ≠ coNP is strengthened to coNP ⊈ i.o. AM due to technical reasons.
Intuitively, we need the Goldwasser-Sipser protocol in AM (see Lemma 13) for ap-
proximate counting, and we only know how to “eliminate” oracle queries in the range
avoidance algorithm assuming in�nitely often lower bounds for coNP.

about the truth of our derandomization assumption,

but we do believe it is hard to refute.”

Using essentially the same proof as in Theorem 1, we rule out a

related time-bounded Kolmogorov complexity version of ODH (for-

mally, Hypothesis 25) under plausible assumptions. Roughly speak-

ing, Hypothesis 25 says that given a string I of length =, one can

e�ciently deterministically generate a string ~ of length =.01 such

that the conditional polynomial-time bounded Kolmogorov com-

plexity of ~ given I is at least =Ω (1) . Here, the conditional C-time

bounded Kolmogorov complexity of ~ given I refers to the length

of the shortest program that outputs G on input ~ in time C (|G |) (see

Section 2.4 for a formal de�nition) [46, 47, 68].

Theorem 9 (Informal version of Theorem 26). The time-bounded

Kolmogorov complexity ODH is false assuming NP ≠ coNP and

subexponentially secure 8O exists.

It is a tantalizing open question as to whether one can extend

this result to rule out ODH itself. To prove Theorem 9 we crucially

make use of the fact that, in this version of ODH, the computational

model is able to read the entire string I. In contrast, in the (original)

ODH setting, the computational model is only allowed to make a

limited number of queries to the string I.

2 PRELIMINARIES

We assume basic familiarity with notions in computational com-

plexity [3]. We �rst review two extensively used tools: Indistin-

guishability Obfuscation and interactive (Arthur-Merlin) protocols.

We also provide a brief introduction on bounded theories PV1 and

APC1 (see [21, 51, 53] for more detailed expositions), as well as the

time-bounded Kolmogorov complexity.

2.1 Indistinguishability Obfuscation

De�nition 10 (Indistinguishability Obfuscation). A polynomial-

time randomized algorithm 8O that takes as input a security param-

eter _ and a circuit � , and randomness A is an indistinguishability

obfuscator with security ((, n) if both of the following hold:

• Perfect Functionality: For all� and _, 8O(1_,�) outputs a

circuit computing the same function as � with probability

one over its randomness.

• Indistinguishability: For all _, any two circuits � and

�′ of size at most _ computing the same function, and any

((_)-sized adversary circuit �, we have that

| Pr[�(8O(1_,�) = 1] − Pr[�(8O(1_,�′) = 1] | ≤ n (_)

When _ is clear from the context, we write 8O(�) instead of

8O(1_,�). When we want to specify the randomness A used by the

8O algorithm, we write 8O(1_,�; A).

We say an 8O is polynomially-secure if it is secure for some

((=) = =l (1) and n (=) < 1/=l (1) . We say it is subexponentially-

secure if it is secure with ((=) = 2=
X
and n (=) = 2−=

X
for some

X > 0. We say it is JLS-secure if it is secure with ((=) = =l (1) and

and n (=) = 2−=
X
for some X > 0. For our results, it is important

that our adversaries are non-uniform circuits.

The breakthrough results of Jain-Lin-Sahai [33, 35] give con-

structions of both JLS-secure and subexponentially secure 8O.

1080

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

Theorem 11 (Informal version of Jain-Lin-Sahai [35]). If three

“well-founded” cryptographic assumptions hold, then JLS-secure 8O

exists.

Theorem 12 (Informal version of Jain-Lin-Sahai [34]). Assuming

three “well-founded” cryptographic assumptions are secure against

subexponential-sized adversaries with subexponential advantage, then

subexponentially secure 8O exists.

Other Complexity TheoryWork Using iO.. Building on the work of

Bitansky, Paneth, and Rosen [9], Garg, Pandey, and Srinivasan [27]

show that computing Nash Equilibria (and thus the TFNP class

PPAD) is intractable assuming one-way permutations and 8O exist.

Impagliazzo, Kabanets, and Volkovich [30] show that if 8O exists

then the Minimum Circuit Size Problem [41] is in ZPP if and only

if NP ⊆ ZPP.

2.2 Arthur-Merlin Protocols

An Arthur-Merlin protocol [4] for a language ! ⊆ {0, 1}∗ is de�ned

as a constant-round interactive protocol between a computationally

unbounded prover (Prover) and a polynomial-time probabilistic

veri�er (Verifier). For a given input G ∈ {0, 1}= that is accessible

by both Prover and Verifier, Prover wants to convince Verifier that

G ∈ ! (even if G ∉ !) with poly(=) bits of communication, whereas

the Verifier needs to decide whether G ∈ ! based on the information

provided by Prover. Formally, the protocol needs to satisfy the

following properties.

• Completeness: If G ∈ !, it is possible for Prover to send

poly(=)-bits ofmessages in constant rounds such thatVerifier

accepts with probability at least 2/3.

• Soundness: If G ∉ !, given any messages from Prover,

Verifier accepts with probability at most 1/3.

The complexity class AM is de�ned as the languages that have

a sound and complete Arthur-Merlin protocol. As coNP ⊆ AM

implies the collapse of PH [11], it is widely believed that coNP ⊈

AM and therefore UNSAT ∉ AM. Indeed, we know that NP = AM

assuming a standard derandomization hypothesis: namely, there

exists a language ! ∈ NE∩coNE requiring nondeterministic circuits

of size 2Ω (=) [45, 59]. This implies that coNP is unlikely to even be

in�nitely often in AM.

Goldwasser-Sipser Set Lowerbound Protocol. We will need a well-

known Arthur-Merlin protocol for approximately counting the size

of a set that has e�ciently computable membership queries.

Lemma 13 ([28], also see [3, Section 8.4]). There is an Arthur-Merlin

protocol such that the following holds. Suppose that both Prover and

Verifier receive a circuit � : {0, 1}= → {0, 1} and a number B ≤ 2= .

Let (= {G ∈ {0, 1}= | � (G) = 1}. Then

• Completeness: If |(| ≥ B , then there exist messages Prover

can send such that Verifier accepts with probability at least

2/3.

• Soundness: If |(| ≤ B/2, then regardless of what Prover sends,

Verifier accepts with probability at most 1/3.

Moreover, the protocol is a two-round public-key protocol: Verifier

�rst sends a random seed A and receives a message<; then it deter-

ministically decides whether to accept based on A and<.

2.3 Bounded Theories PV1 and APC1

Cook [22] de�ned the theory PV related to polynomial-time com-

plexity as an equational theory (i.e. sentences are of the form C = D

for terms C and D). Based on a machine-independent characteri-

zation of FP due to Cobham [20], it can be shown that the set of

function symbols introduced in PV (when interpreted in the stan-

dard model) is exactly FP. PV1 is de�ned as a �rst-order theory

that is a conservative extension of PV axiomatized by universal

sentences. The formal de�nitions of PV and PV1 are tedious and

we refer interested readers to [53, Chapter 12]. We de�ne TPV to

be the universal true theory over the language L(PV) of PV over

the standard model N.8

To formalize the probabilistic methods that are widely used

in complexity theory and combinatorics, Jeřábek [36–38, 40] in-

troduced an extension of Cook’s PV by including the dual Weak

Pigeonhole Principle for PV function symbols as axioms, which is

now known as APC1 (stands for approximate counting). Let 5 (®F, G)

be function symbols9, and let<(=) > = be a function. We de�ne

the dual weak Pigeonhole Principle for 5 (®F, ·) with stretch function

<,10 denoted by dWPHP< (5), as

dWPHP< (5) :=∀= ∈ Log ∀®F ∃~ ∈ {0, 1}< (=)

∀G ∈ {0, 1}= 5 (®F, G) ≠ ~, (1)

which claims that 5 (®F, ·) : {0, 1}= → {0, 1}< (=) cannot be surjec-

tive. Here, ∀= ∈ Log is short for ∀# ∀= = |# |, which means that

the feasible reasoning is with respect to strings of length = instead

of log=. We use dWPHP(5) (where< is omitted in the subscript)

to mean dWPHP< (5) for<(=) = = + 1. We de�ne

dWPHP(PV) := {dWPHP(5) | 5 ∈ L(PV)},

and the theory APC1 is de�ned as PV1 + dWPHP(PV). Since any

polynomial-time function can be computed with a multi-output

polynomial-size circuit, APC1 can also be de�ned equivalently as

PV1 + dWPHP(Eval), where Eval(�, G) evaluates the circuit � on

the input G .

Remark 14. The stretch function< for dWPHP(PV) used to de-

�ne APC1 can be a subtle issue, as we cannot prove an equivalence

between dWPHP(PV) with di�erent stretch functions within PV1
(such equivalence can be proved within Buss’s theory (12 for poly-

nomial computation, see, e.g., [39, Theorem 3.1]). Jeřábek [39] also

proved that PV1 (U) (a relativised version of PV1) cannot prove the

equivalence of dWPHP(U) between di�erent parameters. This will

not be a problem for us, since our unprovability result works for the

weakest version of dWPHP (i.e. with stretch function<(=) allowed

to be an arbitrarily large polynomial). △

We remark that, besides the application of bounded arithmetic to

understanding complexity barriers, there are also recent interesting

applications in propositional proof complexity [42] and cryptogra-

phy [32].

8That is, TPV contains all sentences of the form ∀®G V for some quanti�er-free formula
V that are true in the standard model N.
9Note that the inclusion of ®F is crucial; if we remove ®F in the de�nition of APC1 , we
will obtain a (possibly) weaker fragment of APC1 (see, e.g., [64, Section 2]).
10In the rest of the paper, we assume that the stretch function< (=) is a PV-function.
This is without loss of generality, as the set of PV functions (when interpreted in the
standard model) is exactly FP, the class of polynomial-time computable functions.

1081

Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic STOC ’23, June 20–23, 2023, Orlando, FL, USA

2.4 Time-Bounded Kolmogorov Complexity

There are multiple notions of time-bounded Kolmogorov complex-

ity in the literature; in this paper, we consider the following. Let

U be a �xed universal Turing machine such that U(",G, 1C) runs

the Turing machine encoded by " for C steps on the input G and

outputs the string on the tape.

Let C : N→ N be a function.

De�nition 15 (Time-Bounded Kolmogorov Complexity [46, 47,

68]). TheKC -complexity of a string G ∈ {0, 1}= , denoted byKC (G), is

the minimum ℓ such that for some" ∈ {0, 1}ℓ , U(", Y, 1C (=)) = G .

De�nition 16 (Conditional KC -Complexity). The KC -complexity of

a string G ∈ {0, 1}= conditioned on a string~, denoted by KC (G |~), is

the minimum ℓ such that for some" ∈ {0, 1}ℓ , U(",~, 1C (=)) = G .

Although the de�nitions of KC -complexity and conditional KC -

complexity depend on the universal Turing machine U, the results

in this paper (as well as most results on these notions) are not

sensitive to the choice of U. Therefore we will omit U and simply

use “the encoding of"” to denote the encoding of" with respect

to U.

3 NO EFFICIENT DETERMINISTIC
ALGORITHMS FOR RANGE AVOIDANCE

In this section, we prove Theorem 1 and Theorem 2. We restate

both of these theorems below.

Reminder of Theorem 1. Assume that NP ≠ coNP and 8O with

JLS-security exists. Then for all 2 ≥ 1, there is a : ≥ 2 such that there

is no deterministic polynomial-time algorithm for Avoid on =: -size

circuits with = inputs and =2 outputs.

Reminder of Theorem 2. Assume subexponentially-secure 8O

exists. For every<(=) > = there exists an B (=) = poly(<) such that

if there is a deterministic C-time algorithm for Avoid circuits with

<(=) outputs and size B (=), then

coNP ⊆
⋃

:∈N

NTIME[C (<: (=))]

We prove Theorem 2 and remark in the proof how to modify it

prove Theorem 1.

Proof of Theorem 2. We will show that, under the assump-

tions, there is a C (poly(B))-time nondeterministic algorithm A for

the coNP-complete problem of checking whether a propositional

formula with = variables and $ (=) size11 is unsatis�able. Our algo-

rithmA takes as input an$ (=)-size formulai with = variables, and

A accepts i if and only if i is unsatis�able. A works as follows:

(1) Nondeterministically guess a ~ ∈ {0, 1}< (=) and an A ∈

{0, 1}poly(=+_) where _ = poly(<(=)).

(The degree of the polynomial for _ will be chosen later.)

11To see this problem is coNP-complete, note that an arbitrary formula can be made
linear-sized with polynomial blowup while preserving unsatis�ability: simply add
extra variables that do nothing.

(2) Let� [i,~] denote a circuit12 that takes = input bits, outputs

<(=) > = bits, and satis�es

� [i,~] (G) =

{

0< (=) , if i (G) = 0

~, if i (G) = 1 .

(3) Accept if and only if ~ = Avoid(8O(� [i,~]; A)).

(Here, we abuse notation and let Avoid and 8O denote their

corresponding algorithms.)

This completes the description of A.

We now argue the correctness of the reduction A. Observe

that, by construction, 8O(� [i,~]; A) is a circuit with =-inputs,<(=)-

outputs, and size poly(<(=)). (To see this size bound, note thati has

size $ (=), so � [i,~] has size $ (<(=)2) for some constant 2 ≥ 1,

and 8O blows up this size by at most a �xed polynomial in _ =

poly(<(=)).) Thus, by setting B to be a su�ciently large polynomial

in <, the input circuit 8O(� [i,~]; A) to the Avoid algorithm in

item 3 is indeed an instance where the algorithm is assumed to

work. Furthermore, it is easy to see thatA runs in nondeterministic

time C (poly(<(=)))+poly(<(=)) = C (poly(<(=))). Hence, to prove

the theorem we just need to show soundness (if A accepts, then

i is unsatis�able) and completeness (if i is unsatis�able, then A

accepts).

First we show soundness. SupposeA acceptsi . Then there exists

~ and A such that ~ = Avoid(8O(� [i,~]; A)). By the correctness of

Avoid and the perfect functionality of 8O, we know that ~ is not in

the range of � [i,~]. By construction of � [i,~], this means that i

is not satis�able.

Now we show completeness. Suppose the formula i is unsatis�-

able. For simplicity of notation, we let< =<(=) in the following.

We begin by considering the output distribution of the Avoid algo-

rithm on 8O(� [i, 0<]; A) for uniformly random A (notice we have

set ~ here to be 0<). Since Avoid always outputs a string in {0, 1}< ,

there exists a “frequent” string ~★ such that

Pr
A
[~★ = Avoid(8O(� [i, 0<]; A))] ≥ 2−< .

We now consider what happens when we set ~ = ~★. The crucial

point is this: because i is unsatis�able, observe that � [i, 0<] and

� [i,~★] compute the same function! Therefore, by the subexponen-

tial security of 8O, there is an n > 0 such that for every adversary

� of size 2_
n
taking input of length poly(<(=)),

�

�

�Pr
A
[�(8O(� [i, 0<]) = 1] − Pr

A
[�(8O(� [i,~★]) = 1]

�

�

� < 2−_
n
.

In particular, we can consider the non-uniform13 circuit adversary

�(-) that outputs 1 if and only if Avoid(-) = ~★. Without loss of

generality, we can assume the size of � is at most 2poly(< (=)) , as

the exhaustive search algorithm for Avoid would provide such a

size bound. Thus the size of � is at most

2poly(< (=)) ≤ 2_
n

when _ is a su�ciently large polynomial in<. (To modify this proof

to prove Theorem 1 instead, the only di�erence is to observe that,

if C (@) = poly(@), then it su�ces to have 8O with JLS-security in

this step, since the circuit checking if the output of Avoid equals

12It does not matter precisely how we implement� [i, ~]; the argument will work as
long as our� [i, ~] satis�es the speci�cation and has size poly(< (=)) .
13The non-uniformity comes from ~★.

1082

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

~★ has polynomial size.) Consequently, applying 8O security to �,

we derive

Pr
A
[~★ = Avoid(8O(� [i,~★]; A))]

≥ Pr
A
[~★ = Avoid(8O(� [i, 0<]; A))] − 2−_

n

≥ 2−< − 2−_
n
> 0,

by setting _ to be a su�ciently large polynomial in<. Hence, we

can conclude there is an A such that

~★ = Avoid(8O(� [i,~★]; A)),

so A will accept i . □

Remark 17. For readers familiar with the cryptographic notion

of witness encryption [26], we note that in Theorem 2 (and in fact

all theorems in this paper that assume 8O), we can relax the as-

sumption that 8O exists to the potentially weaker assumption that

witness encryption with similar security and a deterministic de-

cryption algorithm exists. Informally, witness encryption allows

one to encrypt a string ~ with a SAT formula i such that

• (Correctness). If i is satis�able, then one can e�ciently

decrypt ~ given a satisfying assignment.

• (Security). If i is unsatis�able, then the encryption of ~ and

0 |~ | are computationally indistinguishable.

Garg et al. [25] observed that 8O implies witness encryption (with

a deterministic decryption algorithm) as a special case. Indeed, in

Garg et al.’s construction, one can witness-encrypt a message~ with

a formula i by outputting 8O(� [i,~]). We are implicitly using this

construction in our proofs.

To modify the proof of Theorem 2 to use witness encryption

instead, one modi�es the algorithm A to the nondeterministic

algorithm below:

(1) Nondeterministically guess a ~ ∈ {0, 1}< (=) and an A ∈

{0, 1}poly(=+_)

(2) Let 4 be the witness encryption of the string ~ according to

i using randomness A and security parameter _.

(3) Let� be the circuit that takes as input a string G ∈ {0, 1}= and

attempts to output the decryption of 4 using the purported

witness G (if decryption fails, output 0<).

(4) Accept if and only if ~ = Avoid(�).

The analysis of the new algorithm is essentially the same as the

analysis of the originalA, where the perfect functionality and indis-

tinguishability properties of 8O are now replaced by the correctness

and security properties of the witness encryption scheme respec-

tively. Our other proofs using 8O can be similarly modi�ed. △

The proof of Theorem 2 can be generalized in several other ways.

For one, the same proof also works to rule out zero-error random-

ized algorithms (although zero-error randomized algorithms also

imply deterministic algorithms under a derandomization assump-

tion).

The proof can also be generalized to workwith just polynomially-

secure 8O. To do this, instead of NP ≠ coNP, we consider a nonde-

terministic version of the exponential time hypothesis:

Reminder of Hypothesis 5. (NETH for Circuits) There is an

Y > 0 such that Circuit Unsatis�ability problem on =-input circuits of

size 2> (=) cannot be solved nondeterministically in 2Y= time.

Hypothesis 5 is in fact a much weaker statement than the usual

NETH, which posits that nondeterministically refuting unsatis�-

able 3-CNFs requires 2Y=-size proofs veri�able in 2Y= time. We

only require an exponential lower bound in the case of refuting

subexponential-size circuits.

Reminder of Theorem 6. Assuming NETH for Circuits and the

existence of polynomially-secure 8O, Avoid is not in FP. Moreover,

under the assumptions, it follows that for all 1, 2 ≥ 1 there is an Y > 0

such that Avoid cannot be solved in $ (22Y=) time on circuits of size

2Y= with = inputs and 1= outputs.

Proof. The algorithm for UNSAT in our proof is essentially the

same as that of Theorem 2, except we analyze the case of a very

large security parameter _.

Assume there is a universal constant3 ≥ 1 and an algorithm� for

polynomially-secure 8O which runs in time $ ((B · _)3) on circuits

of size B with security parameter _. Furthermore, assume that there

are universal constants 1, 2 ≥ 1 such that for all su�ciently small

U ∈ (0, 1), Range Avoidance can be solved in $ (22U=) time on

circuits of size 2U= with = inputs and 1= outputs. Given the assump-

tions, we show how to construct a nondeterministic algorithm for

proving the unsatis�ability of arbitrary subexponential-size circuits

in subexponential time.

Fix 1, 2 ≥ 1. Let< = 1=, U ∈ (0, 1) be a constant to be chosen

later, and � be an algorithm for Range Avoidance as described

above. Let Y > 0 be an arbitrarily small constant. Given a circuit i

with = inputs and size 2> (=) , we run precisely the same reduction

as Theorem 2, except with an exponentially large value of _.

(1) Nondeterministically guess ~ ∈ {0, 1}< and A ∈ {0, 1}ℓ ,

where ℓ = (poly(|i |)_)3 and _ = 2n ·= .

(The parameter ℓ is upper-bounded by the running time of

�.)

(2) Let � [i,~] be a circuit taking = input bits and outputting<

bits with the speci�cation:

� [i,~] (G) =

{

0<, if i (G) = 0

~, if i (G) = 1.

(3) Accept if and only if ~ = �(�(� [i,~]; A)).

It takes poly(|i |) time to construct � [i,~]. Given our assump-

tion on algorithm �, the output of �(� [i,~]) is a circuit of size

(poly(|i |)_)3 = 2Y3=+> (=) . Thus our algorithm� for Range Avoid-

ance applies to the circuit �(� [i,~]), by setting U = 2Y3 so that

(poly(|i |)_)3 = 2Y3=+> (=) ≤ 2U= . Therefore the above algorithm

runs in nondeterministic time 22U= = 22Y23= . As the input circuit i

has size 2> (=) , 2 and 3 are �xed, and Y > 0 can be made arbitrarily

small, this would refute NETH for Circuits.

As in the proof of Theorem 2, it remains to show that i is unsat-

is�able if and only if there is a ~ and A such that ~ is the output of

� on �(� [i,~]; A). First, if such ~ and A exist, then analogously to

the proof of Theorem 2, we conclude that i is unsatis�able by the

construction of � [i,~].

1083

Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic STOC ’23, June 20–23, 2023, Orlando, FL, USA

For the other direction, suppose that i is unsatis�able. As in the

proof of Theorem 2, we know that there is some ~★ ∈ {0, 1}< such

that

Pr
A
[~★ = �(�(� [i, 0<]; A))] ≥ 2−< .

Given ~★, we may de�ne an “adversary” circuit � which has ~★ ∈

{0, 1}< hard-coded, takes in an input circuit �′ (ostensibly simu-

lating �(� [i,~]; A) on some ~ and A), and outputs 1 if and only if

~★ = �(�′). Using a standard translation of C-time algorithms into

$ (C3)-size circuits, the input circuit�′ only has to have size at most

23Y3=+> (=) . Translating the composition of �, �, and � [i,~] into

circuits, the size of the adversary circuit � is at most 26Y23= , which

is only polynomially larger than its input circuit �′.

Assuming polynomially-secure 8O, since � [i, 0<] and � [i,~★]

compute the same function, we have for every constant ≥ 1 that
�

�

�Pr
A
[� (�(� [i, 0<]; A)) = 1] − Pr

A
[� (�(� [i, 0<]; A)) = 1]

�

�

� <

1

_
,

which implies

Pr
A
[~★ = �(�(� [i,~★]; A))]

≥ Pr
A
[~★ = �(�(� [i,~★]; A))] −

1

_

≥
1

2<
−

1

_
. (2)

The above probability is greater than 0, provided that 2< < _ , i.e.,

_ > 2</ . (3)

Recall that we set _ = 2Y= for an arbitrarily small �xed Y > 0, and

< = 1= for a �xed 1 ≥ 1, while the constant ≥ 1 can be as

arbitrarily large as needed (independently of all other constants).

Therefore (3) holds.

By (2), there is an A such that ~★ = �(�(� [i,~★]; A)), which

completes the proof. □

4 APPLICATION IN BOUNDED ARITHMETIC:
SEPARATING APC1 AND PV1

In this section, we prove a conditional separation of the bounded

theories APC1 and PV1, assuming that 8O with JLS-security exists

and coNP is not in�nitely often in AM.

The only result from logic that we need is the standard KPT

Witnessing Theorem for ∀∃∀ formulas, which connects the prov-

ability of any (∀∃∀)-sentence with a Student-Teacher game for

interactively computing a witness to the existential quanti�er.

Theorem 18 (KPT Witnessing Theorem for TPV [57]). For every

quanti�er-free formula i (®G,~, I) in the language L(PV), if TPV ⊢

∀®G ∃~ ∀I i (®G,~, I), then there is a: ∈ N andL(PV)-terms C1, C2, . . . , C:
such that

TPV ⊢ ∀®G ∀I1 ∀I2 . . . ∀I:

:
∨

8=1

i (®G, C8 (®G, I1, . . . , I8−1), I8) . (4)

It is well-known that the terms C1, C2, . . . , C: extracted from the

proof in the KPT Witnessing Theorem can be interpreted as an :-

round interactive computation of a witness ~ such that ∀I i (®G,~, I)

given the input ®G . Consider the following game between a Student

who wants to �nd a correct witness ~ and a Teacher who will pro-

vide help. In the �rst round, the Student proposes ~1 := C1 (®G)

as a candidate, and, in the case, ~1 is not a correct witness of

∃~ ∀I i (®G,~, I), the Teacher provides a counterexample I1 such

that i (®G,~1, I1) is false. The Student then proposes a new candi-

date ~2 := C2 (®G, I1) based on the counterexample given in the �rst

round, and the Teacher, again, provides a counterexample I2 if ~2 is

not a correct witness, etc. Equation (4) means that after : rounds of

interaction between the Student and the Teacher, at least one of the

~1, ~2, . . . , ~: proposed by the Student has to be a correct witness

of ∃~ ∀I i (®G,~, I). We refer the readers to [53] for more discussion

about the KPT Witnessing Theorem and the Student-Teacher game.

4.1 Provability of dWPHP and the Tractability
of Avoid

The KPT Witnessing Theorem (Theorem 18) provides a connection

between the provability of dWPHP and the tractability of Avoid,

in the sense of the Student-Teacher game. Let Eval(�, G) := � (G) be

the circuit evaluation function. Recall that dWPHPℓ (Eval) refers to

the following sentences:

dWPHPℓ (Eval) := ∀= ∈ Log ∀circuits � : {0, 1}= → {0, 1}ℓ

∃~ ∈ {0, 1}ℓ ∀G ∈ {0, 1}= [Eval(�, G) ≠ ~] .

Suppose that dWPHPℓ (Eval) is provable in TPV. Then there is a

constant-round Student-Teacher game that �nds a ~ ∈ {0, 1}ℓ wit-

nessing the existential quanti�er, where the Teacher provides coun-

terexamples for the universal quanti�er over G ∈ {0, 1}= . Taking

a closer look at this game, we can see that this corresponds to an

algorithm for Avoid with circuit-inversion oracle queries, which is

formally de�ned as follows.

De�nition 19 (Solving Avoid with a Circuit-Inversion Oracle).

Let < = <(=) and : = : (=). A polynomial-time algorithm with

: circuit-inversion oracle queries for Avoid with < outputs is a

polynomial-time oracle algorithm � such that given a circuit � :

{0, 1}= → {0, 1}< and access to an oracle O(·) : {0, 1}< → {0, 1}=

with at most : queries, �O(·) (�) outputs a ~ ∈ {0, 1}< such that

� (O(~)) ≠ ~. Furthermore, O(~) always returns an G such that

� (G) = ~, when such an G exists.

Theorem 20. For every constructive function<(=) ≤ poly(=) such

that<(=) > =, if TPV ⊢ dWPHPℓ (Eval), then Avoid with< outputs

has a polynomial-time algorithm with $ (1) circuit-inversion oracle

queries.

Proof. Let<(=) = poly(=) be some constructive function. By

the assumptions, we know that

TPV ⊢ ∀= ∈ Log ∀� ∃~ ∈ {0, 1}< (=) ∀G ∈ {0, 1}= [Eval(�, G) ≠ ~] .

By the KPT Witnessing Theorem (Theorem 18), there is a : = $ (1)

and L(PV)-terms C1, C2, . . . , C: such that

TPV ⊢ ∀= ∀� ∀I1 . . . ∀I=

(

[Eval(�, I1) ≠ C1 (=,�)]∨

[Eval(�, I2) ≠ C2 (=,�, I1)] ∨ · · · ∨

[Eval(�, I:) ≠ C: (=,�, I1, . . . , I:−1)]
)

.

Now we show that given any circuit � : {0, 1}= → {0, 1}< (=)

and access to an oracle O : {0, 1}< (=) → {0, 1}= , there is a poly-

nomial time algorithm that makes : queries to O(·) and �nds a

1084

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

~ ∈ {0, 1}< (=) such that � (O(~)) ≠ ~. Let 51, 52, . . . , 5: ∈ FP

be the functions that are the interpretations of C1, C2, . . . , C: , re-

spectively, in the standard model. We play the aforementioned

Student-Teacher game, where in the 8-th round, the Student pro-

poses ~8 := 58 (=,�, I1, . . . , I8−1), and the Teacher responds with

I8 := O(~8). By Equation (4) and the soundness of TPV in the

standard model, we know that for some 8 ∈ [:], the Teacher

fails to provide a correct counterexample I8 in the 8-th round, i.e.,

Eval(�, I8) ≠ ~8 . The algorithm can then output ~8 . □

4.2 Impossibility of Solving Avoid with a
Circuit-Inversion Oracle

Now we show that Avoid has no polynomial-time algorithm with

$ (1) circuit-inversion oracle queries under plausible assumptions

by generalizing the proof of Theorem 2.

Theorem 21. Let < = <(=) = poly(=) and : = $ (1) such that

< ≥ = + 1. Assume that coNP is not in�nitely often in AM and

8O with JLS-security exists. Then there is no polynomial-time de-

terministic algorithm for Avoid on circuits with< outputs using :

circuit-inversion oracle queries.

Proof. Let < and : be de�ned as above and let 8O be a JLS-

secure indistinguishability obfuscator. To prove that Avoid with

the given parameters cannot be solved in deterministic polynomial

time, it su�ces to show that for every :-query oracle algorithm �,

there exists a circuit � mapping =-bits to<-bits and a (consistent)

inversion oracle O(·) : {0, 1}< → {0, 1}= such that �O(·) (�)

outputs a ~ where � (O(~)) = ~ (in which case, � fails to solve

Avoid on �). For any polynomial-time algorithm � that makes :

queries to O(·) : {0, 1}< → {0, 1}= , we can decompose � into

: + 1 polynomial-time algorithms �1, �2, . . . , �:+1 (without oracle

queries) that work as follows:

• �1: Given the input circuit � , it computes ~1 = �1 (�) and

queries O(~1).

• �2: Letting G1 be the answer to the last query, it computes

~2 = �2 (�, G1) and queries O(~2).

• �3: Letting G2 be the answer to the last query, it computes

~3 = �3 (�, G1, G2) and queries O(~3).

• . . .

• �:+1: Letting G: be the answer to the last query, it computes

~:+1 = �:+1 (�, G1, . . . , G:) and outputs ~:+1.

Therefore to rule out the existence of the oracle algorithm �

as described above, it su�ces to show that for all deterministic

polynomial-time algorithms �1, . . . , �:+1, there is a circuit � :

{0, 1}= → {0, 1}< , strings ~1, . . . , ~:+1 ∈ {0, 1}< , and strings

G1, . . . , G:+1 ∈ {0, 1}= such that:

• (Oracle Consistency). For all 8, 9 ∈ [: +1] such that~8 = ~ 9 ,

we have G8 = G 9 .

(That is, the oracle gives consistent answers G8 to input

strings ~8 .)

• (Oracle Inverting). For every 8 ∈ [: + 1], we have � (G8) =

~8 = �8 (�, G1, . . . , G8−1).

(That is, given ~8 , the oracle indeed provides an G8 such that

� (G8) = ~8 .)

To add more detail, the aforementioned circuit � and any oracle

satisfying O(~8) = G8 for every 8 ∈ [: + 1] can force each �8
(equivalently, the 8-th oracle query of �) to output ~8 . In such a

case, �:+1 (equivalently, the oracle algorithm �) outputs a string

~:+1 = � (G8+1) that is in the output range of the input circuit � ,

and thus does not solve Avoid.

We �rst introduce some notation. For =-variable 3-CNF formu-

las i1, . . . , i: of size = and strings ~1, . . . , ~: ∈ {0, 1}< , we let

� [i1, . . . , i: ;~1, . . . , ~:] denote a polynomial-size circuit that takes

an input (G, 8) ∈ {0, 1}= × [:] and outputs

� [i1, . . . , i: ;~1, . . . , ~:] (G, 8) :=

{

0<, if i8 (G) = 0

~8 , if i8 (G) = 1 .

In the case that we do not specify ai8 and its corresponding~8 , such

as in � [i1, i2;~1, ~2] for : = 3, we adopt the convention that any

missing i8 is the trivial unsatis�able formula ⊥ and ~8 = 0< . For

instance when : = 3, � [i1, i2;~1, ~2] := � [i1, i2,⊥;~1, ~2, 0
<].

Fix any polynomial-time algorithm � with : oracle queries and

its decomposition as polynomial-time algorithms �1, �2, . . . , �:+1.

We begin by making the following claim.

Claim 22. For all 9 ∈ {0, . . . , : + 1} and for all su�ciently large =,

there exist =-variable satis�able 3-CNF formulas i1, . . . , i 9 of size

=, strings G1, . . . , G 9 ∈ {0, 1}= , and strings ~1, . . . , ~ 9 ∈ {0, 1}< such

that the following holds.

• For all distinct 81, 82 ∈ [9], if i81 = i82 , then G81 = G82 .

• For every 8 ∈ [9], i8 (G8) = 1.

• Let �̂ 9 = 8O(� [i1, . . . , i 9 ;~1, . . . , ~ 9]; A). Over the random

seed A of 8O, it holds with probability at least 2−Ω ((2:− 9)<)

that for every 8 ∈ [9], ~8 = �8 (�̂ 9 , G1, . . . , G8−1).

Observe that when 9 = : + 1, Claim 22 implies the existence

of i1, . . . , i:+1, G1, . . . , G:+1, and ~1, . . . , ~:+1 that satisfy the afore-

mentioned Oracle Consistency property (which follows from the

�rst bullet of Claim 22) andOracle Inverting property (which follows

from the second and the third bullet of Claim 22 and the perfect

functionality of 8O). Indeed, this claim shows that the polynomial-

time algorithm� with : circuit-inversion oracle queries will fail on

�̂:+1 (� will output a string in the range of �̂:+1) with probability

at least 2−Ω ((:−1)<) . Therefore, to prove the theorem, it remains

to prove Claim 22.

Before we start, one crucial de�nition is in order. De�ne a circuit

� to be 9-good if for every 8 ∈ [9],~8 = �8 (�, G1, . . . , G8−1). In other

words, � is 9-good if it satis�es the property in the third bullet of

Claim 22.

We prove Claim 22 by induction on 9 . The base case 9 = 0 is

trivially true. Now we assume the claim is true for 9 − 1, which

gives 3-CNF formulas i1, . . . , i 9−1 of size =, strings G1, . . . , G 9−1,

and strings ~1, . . . , ~ 9−1 that make the claim true for 9 − 1. Let

_ = poly(<) be the security parameter to be determined later, and

let ℓ = poly(=, _) be the randomness complexity of 8O with security

parameter _. We de�ne an AM protocol P, detailed in Algorithm

1, that attempts to solve UNSAT (i.e., the Prover aims to convince

the Veri�er that a given formula is unsatis�able). For simplicity,

we assume without loss of generality that our formulas are 3-CNFs

with = clauses and = variables.

1085

Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic STOC ’23, June 20–23, 2023, Orlando, FL, USA

Input: A 3-CNF formula i (G) on = variables and clauses.

1 Prover sends 3-CNF formulas i1, . . . , i 9−1, strings

G1, . . . , G 9−1 ∈ {0, 1}= , and ~1, . . . , ~ 9 ∈ {0, 1}< ;

2 Verifier rejects if i8 (G8) ≠ 1 for some 8 ∈ [9], or i81 = i82
and G81 ≠ G82 for distinct 81, 82 ∈ [9];

// For A ∈ {0, 1}ℓ, let

�A9 := 8O(� [i1, . . . , i 9−1, i ;~1, . . . , ~ 9]; A).

// Let � : {0, 1}ℓ → {0, 1} be a circuit such that

� (A) = 1 if and only if �A9 is 9-good.

3 Prover and Verifier run the Goldwasser-Sipser protocol

(Lemma 13) on the instance (�, X);

// The parameter X = 2ℓ−Ω ((2:− 9)<).

// Prover aims to convince Verifier that

|{A ∈ {0, 1}ℓ | � (A) = 1}| ≥ X.

Algorithm 1: The AM protocol P that aims to solve UNSAT.

Completeness of P. We now show that the AM protocol P is

complete; the Veri�er accepts every unsatis�able 3-CNF formula i

on = variables with probability at least 2/3. Let i be an arbitrary

unsatis�able formula, and let �̂ 9−1 be the random variable �̂ 9−1 :=

8O(� [i1, . . . , i 9−1;~1, . . . , ~ 9−1]; A) de�ned over A ∈ {0, 1}ℓ . By the

induction hypothesis, we know that

Pr
A ∈{0,1}ℓ

[

�̂ 9−1 is (9 − 1)-good
]

≥ 2−Ω ((2:− 9+1)<) .

By an averaging argument, there is a ~ ∈ {0, 1}< such that

Pr
A ∈{0,1}ℓ

[

[�̂ 9−1 is (9 − 1)-good] ∧ [~ = � 9 (�̂ 9−1, G1, . . . , G 9−1)]
]

≥ 2−Ω ((2:− 9+1)<) · 2−< = 2−Ω ((2:− 9)<) . (5)

Let~ 9 ∈ {0, 1}< be one such~, and let �̂ 9 be the random variable

�̂ 9 := 8O(� [i1, . . . , i 9−1, i ;~1, . . . , ~ 9]; A) de�ned over A ∈ {0, 1}ℓ .

Since i is unsatis�able, it follows that

� [i1, . . . , i 9−1, i ;~1, . . . , ~ 9] and � [i1, . . . , i 9−1;~1, . . . , ~ 9−1]

compute the same function. By the JLS-security of 8O, we know that

�̂ 9 and �̂ 9−1 are 2
−_Y -indistinguishable against any polynomial-

size adversary. To verify that a circuit �̂ of poly(=) size is 9-good,

we need to check ~8 = �8 (�̂, G1, . . . , G8−1) for every 8 ∈ [9], which

can be done by a circuit of poly(=) size. This means by Equation (5)

that

Pr
A ∈{0,1}ℓ

[

�̂ 9 is 9-good
]

= Pr
A ∈{0,1}ℓ

[

[�̂ 9 is (9 − 1)-good] ∧ [~ 9 = � 9 (�̂ 9 , G1, . . . , G 9−1)]
]

≥ 2−Ω ((2:− 9)<) − 2−_
n
. (6)

Let _ := <2/n
= poly(=) and X := 2ℓ · (6) = 2ℓ−Ω (2:− 9)< . The

Prover will work as follows. In the �rst step, the Prover sends

3-CNF formulas i1, . . . , i 9−1, strings G1, . . . , G 9−1 ∈ {0, 1}= , and

~1, . . . , ~ 9 ∈ {0, 1}< . By Equation (6), we know that �̂ 9 is 9-good

with probability at least X/2ℓ , which means by the de�nition of

� : {0, 1}ℓ → {0, 1} (which can be implemented in poly(=) size)

that there is a Prover for the Goldwasser-Sipser protocol in Line

3 of Algorithm 1 such that the Veri�er accepts with probability at

least 2/3. This concludes the completeness of the protocol P.

Employ the Lack of Soundness. At this point, we have shown

that P is a polynomial-time AM protocol attempting to check un-

satis�ability, and that P has the completeness property. By the

assumption that coNP is not in�nitely often in AM, P cannot solve

unsatis�ability even in�nitely often, which means that this P does

not have soundness for all su�ciently large =. In other words, there

is a Prover such that for su�ciently large =, the Veri�er accepts

some satis�able 3-CNF formula i on = variables with probability

> 1/3. Let i 9 be this formula i and let

• 3-CNF formulas i1, i2, . . . , i 9−1,

• strings G1, G2, . . . , G 9−1 ∈ {0, 1}= , and

• strings ~1, ~2, . . . , ~ 9 ∈ {0, 1}<

be the message sent in Line 1 (of Algorithm 1) by this Prover on

the input i 9 . Since the Veri�er does not reject in Line 2, we have

• i8 (G8) = 1 for every 8 ∈ [9 − 1], and

• for all distinct 81, 82 ∈ [9], if i81 = i82 , then G81 = G82 .

We de�ne the string G 9 ∈ {0, 1}= to be G8 if there is some 8 ∈ [9 − 1]

such thati8 = i 9 ; otherwise, we set G 9 to be an arbitrary=-bit string

such that i 9 (G 9) = 1. Now we show that the formulas i1, . . . , i 9 ,

strings G1, . . . , G 9 ∈ {0, 1}= , and strings ~1, . . . , ~ 9 ∈ {0, 1}< satisfy

the conditions of Claim 22, which will conclude the proof.

Let �̂ 9 be the random variable de�ned as

�̂ 9−1 := 8O(� [i1, . . . , i 9 ;~1, . . . , ~ 9]; A) .

Since the Veri�er accepts with probability > 1/3, by the soundness

of the Goldwasser-Sipser protocol (Lemma 13), we know that

Pr
A ∈{0,1}ℓ

[

�̂ 9 is 9-good
]

≥
1

3
· 2−ℓ · X = 2−Ω ((2:− 9)<) .

This implies the third bullet of Claim 22. The �rst two bullets hold

by the de�nition of i8 , G8 , and ~8 . □

By combining Theorem 20 and Theorem 21, we conclude that

dWPHPℓ (Eval) is not provable in TPV based on the assumptions of

Theorem 21. Since TPV is an extension of PV1, this further means

that dWPHP(PV) is not provable in PV, which separates PV1 and

APC1. We summarize the results as follows.

Corollary 23. Assume the existence of JLS-secure 8O and coNP is not

in�nitely often inAM. For every constructive function ℓ (=) ≤ poly(=)

such that ℓ (=) > =, TPV ⊬ dWPHPℓ (Eval). In particular, APC1 is a

strict extension of PV1.

5 THE ORACLE DERANDOMIZATION
HYPOTHESIS FOR TIME-BOUNDED
KOLMOGOROV COMPLEXITY

In this section, we investigate the Oracle Derandomization Hypoth-

esis (ODH) and its variants.

Hypothesis 24 (Oracle Derandomization Hypothesis [23]). For

any < with = ≤ < ≤ poly(=), there is a deterministic algorithm

� mapping < bits to = bits such that for all I ∈ {0, 1}< we have

1086

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

that ~ = �(I) satis�es that the circuit complexity14 of ~ given oracle

access to I is at least =Ω (1) (when ~ and I are viewed as truth tables

in the natural way).

We note that ODH is closely related to the Complexity problem

studied by Kleinberg, Korten, Mitropolsky, and Papadimitriou [44],

which is de�ned as follows:

Search Problem: Complexity

Input: A length-= truth table I of a Boolean function.

Output: A length-= truth table ~ such that the circuit com-

plexity of the function represented by ~ given oracle access to

the function represented by I is at least Ω(=
log2 =

).

There are two main di�erences between ODH, and having a

deterministic polynomial-time algorithm for Complexity. First,

to solve Complexity, one is interested in truth tables with near-

maximal conditional circuit complexity, while in ODH it su�ces to

output truth tables that have conditional circuit complexity =Ω (1) .

Second, inComplexity, |I | = |~ |, while in ODH one needs to handle

cases where |~ | is polynomially smaller than |I |.

We consider a time-bounded Kolmogorov complexity version of

ODH. Roughly speaking, this version says that given a string I of

length =, one can e�ciently deterministically generate a string ~ of

length =.01 such that the time-bounded Kolmogorov complexity of

~ given I is large. We give a formal de�nition below.

Hypothesis 25 (Time-Bounded Kolmogorov Complexity Oracle

Derandomization Hypothesis). For every< with = ≤ < ≤ poly(=)

and for any C = poly(=), there is a deterministic algorithm�mapping

< bits to = bits such that for all I ∈ {0, 1}< we have that ~ = �(I) is

a string such that KC (~ |I) = =Ω (1) .

Theorem 26. Hypothesis 25 is false assuming NP ≠ coNP and

JLS-secure 8O exists.

Proof. The proof is very similar to the proof of Theorem 2.

Let< = poly(=) and C = poly(=) be parameters we set later. For

contradiction, let � be an algorithm mapping< bits to = bits such

that for all I ∈ {0, 1}< we have KC (~ |I) = Ω(=n) for some n > 0,

where ~ = �(I).

We give a polynomial-time nondeterministic algorithm for check-

ing if an =n/2-variable formula i is unsatis�able.

(1) Nondeterministically guess strings ~ ∈ {0, 1}= and A ∈

{0, 1}poly(=+_) where _ = poly(=) is the security parame-

ter of the JLS-secure 8O to be determined later.

(2) Let � [i,~] denote a poly(=)-size circuit that takes = input

bits and outputs< bits and satis�es

� [i,~] (G) =

{

0<, if i (G) = 0

~, if i (G) = 1 .

(3) Set I to be the<-bit string given by the description of the

circuit 8O(� [i,~]; A). (We set< > = so that this is possible.

We can also pad the description with zeroes if necessary.)

(4) Accept if and only if ~ = �(I).

14Actually, [23] considers nondeterministic circuit complexity instead of the usual
circuit complexity.

It is easy to see that this is a polynomial-time nondeterministic

algorithm. We now will show soundness and completeness for

su�ciently large =.

First, we show soundness. If i is satis�able, then we claim that

for all choices of ~ and A , we have KC (~ |I) ≤ $ (=n/2). This is

because if i is satis�able, then there is an input G★ ∈ {0, 1}=
n/2

such that i (G★) = 1. Consequently, � [i,~] (G★) = ~. Thus, when

I is interpreted as the description of the circuit 8O(� [i,~]; A), we

have I (G★) = ~. This shows that KC (~ |I) ≤ $ (=n/2) (setting C to

be a su�ciently large polynomial). This completes our proof of

soundness.

Now we show completeness. Suppose i is unsatis�able. As in

the proof of Theorem 2, we consider� being run on 8O(� [i, 0=]; A)

for uniformly random A . As � must output an element of {0, 1}= ,

we know there’s a ~★ satisfying

Pr
A
[~★ = �(8O(� [i, 0<]; A))] ≥ 2−= .

To this end, we (just as in Theorem 2) consider an adversary circuit�

which takes in a circuit�′ (ostensibly of the form�′
= 8O(� [i, 0<])

and outputs 1 if and only if ~★ = �(�′). As in Theorem 2, we can

argue that the size of the adversary � is small enough that our 8O

assumption applies.

As in Theorem 2, � [i, 0=] and � [i,~★] compute the same func-

tion. Thus, by the JLS-security of 8O, applied to the adversary circuit

� on the input circuits 8O(� [i, 0=]) and 8O(� [i,~★), we have

Pr
A
[~★ = �(8O(� [i,~★]; A))]

≥ Pr
A
[~★ = �(8O(� [i, 0<]; A))] − 2−_

n

≥ 2−= − 2−_
n
> 0

by setting _ to be a su�ciently large polynomial in =. Thus, there

is an A such that

~★ = �(8O(� [i,~★]; A)),

so A accepts i . □

6 CONCLUSION

We conclude with several open questions and directions of particu-

lar interest.

Intractability of C-Avoid? For a given circuit class C (e.g., AC0,

TC0, NC1), Ren, Santhanam, and Wang [66] introduce the C-Avoid

problem, which considers Avoid over circuits drawn from C. They

showed many interesting lower bound consequences from showing

C-Avoid is in FP (or even FPNP).

Our work suggests the following natural question:

What is the “weakest” circuit class C such that, under

plausible assumptions, C-Avoid is not in FP?

It seems reasonable that NC-Avoid (i.e., Range Avoidance over

poly(log=)-depth circuits of poly(=) size) is not in FP, under similar

assumptions to ours.

Intractability of Range Avoidance on Uniform Circuits? The spe-

ci�c instances used to show lower bound and combinatorial con-

sequences of Avoid ∈ FP [29, 50, 66] arise from uniform circuits.

Formally, for these instances, there is a deterministic machine"

with an$ (1)-bit description such that, given 1= ," runs in poly(=)

1087

Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic STOC ’23, June 20–23, 2023, Orlando, FL, USA

time and prints the description of a �= on = inputs and < > =

outputs. Could Avoid on such uniformly-generated circuits be in

FP? On the one hand, our arguments concluding Avoid ∉ FP evi-

dently rely on the non-uniformity of input circuits in a crucial way.

On the other hand, since (for example) NP-complete problems on

uniformly-generated instances typically remain hard in a di�erent

way (e.g., NEXP-complete), some of the authors are skeptical that

this special case of Avoid is easy.

The Landscape Around Range Avoidance. Prior to our work, there

were no examples of a relational problem that has both an e�-

cient randomized algorithm (i.e. in the class FBPP) and an ine�-

cient deterministic algorithm (for example, in FPH), but was un-

likely to have an e�cient deterministic algorithm. (For compari-

son, Aaronson, Buhrman, and Kretschmer [1] give an example of

problem that is in FEXP ∩ FBPP but unconditionally not in FP.)

Avoid has these properties, and (for large stretch) apparently lies

in (FBPP ∩ FPH) \ FP, under the assumptions of this paper. What

are other examples of such problems? The space of such problems

seems interesting to study, in itself.

The Structure of Probabilistic Feasible Reasoning. We have demon-

strated that under plausible assumptions, PV1 is a strict sub-theory

of APC1. Furthermore, the fragment UAPC1 of APC1 that sustains

the basic mechanism of Jeřábek’s approximate counting framework

[38] is strictly weaker than APC1 under similar assumptions. This

motivates revisiting the question of what is the “right” theory to

capture probabilistic feasible reasoning. For instance, we may ask

the following question: Is UAPC1 conservative over PV1? Is there a

strict fragment ofUAPC1 that (in some sense) captures probabilistic

feasible reasoning? Are there interesting mathematical theorems

that are provable in APC1 but not provable in UAPC1 (or its weaker

fragments)?

ACKNOWLEDGMENTS

We thank Lijie Chen, Yilei Chen, Aayush Jain, Antonina Kolokolova,

Oliver Korten, Rachel Huijia Lin, Zhenjian Lu, Pavel Pudlák, Igor

Carboni Oliveira, Hanlin Ren, Amit Sahai, Rahul Santhanam, Neekon

Vafa, Vinod Vaikuntanathan, and Tianqi Yang for discussions on

this work. Hanlin Ren pointed us to the Oracle Derandomization

Hypothesis. Part of the work was done when Jiatu Li was visiting

the University of Warwick as an intern of Igor Carboni Oliveira.

REFERENCES
[1] Scott Aaronson, Harry Buhrman, and William Kretschmer. 2023. A Qubit, a

Coin, and an Advice String Walk Into a Relational Problem. Electron. Colloquium
Comput. Complex. TR23-015 (2023). https://eccc.weizmann.ac.il/report/2023/015

[2] Scott Aaronson and Avi Wigderson. 2009. Algebrization: A New Barrier in
Complexity Theory. ACM Trans. Comput. Theory 1, 1 (2009), 2:1–2:54. https:
//doi.org/10.1145/1490270.1490272

[3] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern
Approach. Cambridge University Press. http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521424264

[4] László Babai. 1985. Trading Group Theory for Randomness. In STOC. ACM,
421–429. https://doi.org/10.1145/22145.22192

[5] Theodore P. Baker, John Gill, and Robert Solovay. 1975. Relativizations of the P
=? NP Question. SIAM J. Comput. 4, 4 (1975), 431–442. https://doi.org/10.1137/
0204037

[6] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. 2001. On the (Im)possibility of Obfuscating Pro-
grams. In CRYPTO (Lecture Notes in Computer Science, Vol. 2139). Springer, 1–18.
https://doi.org/10.1007/3-540-44647-8_1

[7] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. 2012. On the (im)possibility of obfuscating programs.
J. ACM 59, 2 (2012), 6:1–6:48. https://doi.org/10.1145/2160158.2160159

[8] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. 2020. On Succinct
Arguments and Witness Encryption from Groups. In CRYPTO (1) (Lecture Notes
in Computer Science, Vol. 12170). Springer, 776–806. https://doi.org/10.1007/978-
3-030-56784-2_26

[9] Nir Bitansky, Omer Paneth, and Alon Rosen. 2015. On the Cryptographic Hard-
ness of Finding a Nash Equilibrium. In FOCS. IEEE Computer Society, 1480–1498.
https://doi.org/10.1109/FOCS.2015.94

[10] Dan Boneh and Mark Zhandry. 2017. Multiparty Key Exchange, E�cient Traitor
Tracing, and More from Indistinguishability Obfuscation. Algorithmica 79, 4
(2017), 1233–1285. https://doi.org/10.1007/s00453-016-0242-8

[11] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. 1987. Does co-NP Have
Short Interactive Proofs? Inf. Process. Lett. 25, 2 (1987), 127–132. https://doi.org/
10.1016/0020-0190(87)90232-8

[12] Samuel R Buss. 1985. Bounded arithmetic. Princeton University.
[13] Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. 2014. Frag-

ments of Approximate Counting. J. Symb. Log. 79, 2 (2014), 496–525. https:
//doi.org/10.1017/jsl.2013.37

[14] Jan Bydzovsky, Jan Krajícek, and Igor Carboni Oliveira. 2020. Consistency of
circuit lower bounds with bounded theories. Log. Methods Comput. Sci. 16, 2
(2020). https://doi.org/10.23638/LMCS-16(2:12)2020

[15] Jan Bydzovsky and Moritz Müller. 2020. Polynomial time ultrapowers and the
consistency of circuit lower bounds. Arch. Math. Log. 59, 1-2 (2020), 127–147.
https://doi.org/10.1007/s00153-019-00681-y

[16] Marco Carmosino, Valentine Kabanets, Antonina Kolokolova, and Igor Car-
boni Oliveira. 2021. LEARN-Uniform Circuit Lower Bounds and Provability in
Bounded Arithmetic. In FOCS. IEEE, 770–780. https://doi.org/10.1109/FOCS52979.
2021.00080

[17] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan
Paturi, and Stefan Schneider. 2016. Nondeterministic Extensions of the Strong
Exponential Time Hypothesis and Consequences for Non-reducibility. In ITCS.
ACM, 261–270. https://doi.org/10.1145/2840728.2840746

[18] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. 2020. On Exponential-
Time Hypotheses, Derandomization, and Circuit Lower Bounds: Extended Ab-
stract. In FOCS. IEEE, 13–23. https://doi.org/10.1109/FOCS46700.2020.00010

[19] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. 2018. GGH15 Beyond
Permutation Branching Programs: Proofs, Attacks, and Candidates. In CRYPTO
(2) (Lecture Notes in Computer Science, Vol. 10992). Springer, 577–607. https:
//doi.org/10.1007/978-3-319-96881-0_20

[20] Alan Cobham. 1965. The intrinsic computational di�culty of functions. Proc.
Logic, Methodology and Philosophy of Science (1965), 24–30.

[21] Stephen Cook and Phuong Nguyen. 2010. Logical foundations of proof complexity.
Vol. 11. Cambridge University Press Cambridge.

[22] Stephen A. Cook. 1975. Feasibly Constructive Proofs and the Propositional
Calculus (Preliminary Version). In STOC. ACM, 83–97. https://doi.org/10.1145/
800116.803756

[23] Lance Fortnow and Rahul Santhanam. 2011. Infeasibility of instance compression
and succinct PCPs for NP. J. Comput. Syst. Sci. 77, 1 (2011), 91–106. https:
//doi.org/10.1016/j.jcss.2010.06.007

[24] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant
Saraogi. 2023. Range Avoidance for Constant-Depth Circuits: Hardness and Al-
gorithms. CoRR abs/2303.05044 (2023). https://doi.org/10.48550/arXiv.2303.05044
arXiv:2303.05044

[25] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. 2016. Candidate Indistinguishability Obfuscation and Functional
Encryption for All Circuits. SIAM J. Comput. 45, 3 (2016), 882–929. https:
//doi.org/10.1137/14095772X

[26] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness en-
cryption and its applications. In STOC. ACM, 467–476. https://doi.org/10.1145/
2488608.2488667

[27] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. 2016. Revisiting the
Cryptographic Hardness of Finding a Nash Equilibrium. In CRYPTO (2) (Lecture
Notes in Computer Science, Vol. 9815). Springer, 579–604. https://doi.org/10.1007/
978-3-662-53008-5_20

[28] Sha� Goldwasser and Michael Sipser. 1989. Private Coins versus Public Coins in
Interactive Proof Systems. Adv. Comput. Res. 5 (1989), 73–90.

[29] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. 2022. Range Avoid-
ance for Low-Depth Circuits and Connections to Pseudorandomness. In AP-
PROX/RANDOM (LIPIcs, Vol. 245). Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 20:1–20:21. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20

[30] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. 2018. The Power of
Natural Properties as Oracles. In Computational Complexity Conference (LIPIcs,
Vol. 102). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:20. https:
//doi.org/10.4230/LIPIcs.CCC.2018.7

[31] Russell Impagliazzo and Avi Wigderson. 1997. P = BPP if E Requires Exponential
Circuits: Derandomizing the XOR Lemma. In STOC. ACM, 220–229. https:
//doi.org/10.1145/258533.258590

1088

https://eccc.weizmann.ac.il/report/2023/015
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/22145.22192
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1007/978-3-030-56784-2_26
https://doi.org/10.1007/978-3-030-56784-2_26
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1007/s00453-016-0242-8
https://doi.org/10.1016/0020-0190(87)90232-8
https://doi.org/10.1016/0020-0190(87)90232-8
https://doi.org/10.1017/jsl.2013.37
https://doi.org/10.1017/jsl.2013.37
https://doi.org/10.23638/LMCS-16(2:12)2020
https://doi.org/10.1007/s00153-019-00681-y
https://doi.org/10.1109/FOCS52979.2021.00080
https://doi.org/10.1109/FOCS52979.2021.00080
https://doi.org/10.1145/2840728.2840746
https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1145/800116.803756
https://doi.org/10.1145/800116.803756
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.48550/arXiv.2303.05044
https://arxiv.org/abs/2303.05044
https://doi.org/10.1137/14095772X
https://doi.org/10.1137/14095772X
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590

STOC ’23, June 20–23, 2023, Orlando, FL, USA Rahul Ilango, Jiatu Li, and R. Ryan Williams

[32] Abhishek Jain and Zhengzhong Jin. 2022. Indistinguishability Obfuscation via
Mathematical Proofs of Equivalence. In FOCS. IEEE, 1023–1034. https://doi.org/
10.1109/FOCS54457.2022.00100

[33] Aayush Jain, Huijia Lin, and Amit Sahai. 2021. Indistinguishability obfuscation
from well-founded assumptions. In STOC. ACM, 60–73. https://doi.org/10.1145/
3406325.3451093

[34] Aayush Jain, Huijia Lin, and Amit Sahai. 2022. Personal Communication.
[35] Aayush Jain, Huijia Lin, and Amit Sahai. 2022. Indistinguishability Obfuscation

from LPN over F? , DLIN, and PRGs in NC0 . In EUROCRYPT (1) (Lecture Notes in
Computer Science, Vol. 13275). Springer, 670–699. https://doi.org/10.1007/978-3-
031-06944-4_23

[36] Emil Jeřábek. 2004. Dual weak pigeonhole principle, Boolean complexity, and
derandomization. Ann. Pure Appl. Log. 129, 1-3 (2004), 1–37. https://doi.org/10.
1016/j.apal.2003.12.003

[37] Emil Jeřábek. 2005. Weak pigeonhole principle, and randomized computation.
Ph. D. Dissertation. Ph. D. thesis, Faculty of Mathematics and Physics, Charles
University, Prague.

[38] Emil Jeřábek. 2007. Approximate counting in bounded arithmetic. J. Symb. Log.
72, 3 (2007), 959–993. https://doi.org/10.2178/jsl/1191333850

[39] Emil Jerábek. 2007. On Independence of Variants of the Weak Pigeonhole Princi-
ple. J. Log. Comput. 17, 3 (2007), 587–604. https://doi.org/10.1093/logcom/exm017

[40] Emil Jeřábek. 2009. Approximate counting by hashing in bounded arithmetic. J.
Symb. Log. 74, 3 (2009), 829–860. https://doi.org/10.2178/jsl/1245158087

[41] Valentine Kabanets and Jin-yi Cai. 2000. Circuit minimization problem. In STOC.
ACM, 73–79. https://doi.org/10.1145/335305.335314

[42] Erfan Khaniki. 2022. Nisan-Wigderson Generators in Proof Complexity: New
Lower Bounds. In CCC (LIPIcs, Vol. 234). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 17:1–17:15. https://doi.org/10.4230/LIPIcs.CCC.2022.17

[43] Erica Klarreich. 2020. Computer Scientists Achieve ‘Crown Jewel’ of Cryptogra-
phy. Quanta Magazine (Nov 2020).

[44] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadim-
itriou. 2021. Total Functions in the Polynomial Hierarchy. In ITCS (LIPIcs,
Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 44:1–44:18. https:
//doi.org/10.4230/LIPIcs.ITCS.2021.44

[45] Adam R. Klivans and Dieter van Melkebeek. 2002. Graph Nonisomorphism
Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Col-
lapses. SIAM J. Comput. 31, 5 (2002), 1501–1526. https://doi.org/10.1137/
S0097539700389652

[46] Ker-I Ko. 1986. On the Notion of In�nite Pseudorandom Sequences. Theor.
Comput. Sci. 48, 3 (1986), 9–33. https://doi.org/10.1016/0304-3975(86)90081-2

[47] Andrei N Kolmogorov. 1965. Three approaches to the quantitative de�nition
of information. Problems of information transmission (1965). https://doi.org/10.
1080/00207166808803030

[48] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon
Yogev. 2022. One-Way Functions and (Im)perfect Obfuscation. SIAM J. Comput.
51, 6 (2022), 1769–1795. https://doi.org/10.1137/15m1048549

[49] Oliver Korten. 2021. The Hardest Explicit Construction. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS. IEEE, 433–444. https:
//doi.org/10.1109/FOCS52979.2021.00051

[50] Oliver Korten. 2022. Derandomization from Time-Space Tradeo�s. In CCC
(LIPIcs, Vol. 234). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 37:1–37:26.
https://doi.org/10.4230/LIPIcs.CCC.2022.37

[51] Jan Krajíček. 1995. Bounded arithmetic, propositional logic, and complexity theory.
Encyclopedia of mathematics and its applications, Vol. 60. Cambridge University
Press.

[52] Jan Krajíček. 2011. On the Proof Complexity of the Nisan-Wigderson Generator
based on a Hard NP ∩ coNP function. J. Math. Log. 11, 1 (2011). https://doi.org/

10.1142/S0219061311000979
[53] Jan Krajíček. 2019. Proof complexity. Vol. 170. Cambridge University Press.
[54] Jan Krajíček. 2021. Small Circuits and Dual Weak PHP in the Universal Theory

of p-time Algorithms. ACM Trans. Comput. Log. 22, 2 (2021), 11:1–11:4. https:
//doi.org/10.1145/3446207

[55] Jan Krajícek. 2022. On the existence of strong proof complexity generators.
Electron. Colloquium Comput. Complex. TR22-120 (2022). https://eccc.weizmann.
ac.il/report/2022/120

[56] Jan Krajícek and Igor Carboni Oliveira. 2017. Unprovability of circuit upper
bounds in Cook’s theory PV. Log. Methods Comput. Sci. 13, 1 (2017). https:
//doi.org/10.23638/LMCS-13(1:4)2017

[57] Jan Krajíček, Pavel Pudlák, and Gaisi Takeuti. 1991. Bounded Arithmetic and
the Polynomial Hierarchy. Ann. Pure Appl. Log. 52, 1-2 (1991), 143–153. https:
//doi.org/10.1016/0168-0072(91)90043-L

[58] Dai Tri Man Le and Stephen A. Cook. 2011. Formalizing Randomized Matching
Algorithms. Log. Methods Comput. Sci. 8, 3 (2011). https://doi.org/10.2168/LMCS-
8(3:5)2012

[59] Peter Bro Miltersen and N. V. Vinodchandran. 2005. Derandomizing Arthur-
Merlin Games using Hitting Sets. Comput. Complex. 14, 3 (2005), 256–279. https:
//doi.org/10.1007/s00037-005-0197-7

[60] Moritz Müller and Ján Pich. 2020. Feasibly constructive proofs of succinct weak
circuit lower bounds. Ann. Pure Appl. Log. 171, 2 (2020). https://doi.org/10.1016/
j.apal.2019.102735

[61] Kerry Ojakian. 2004. Combinatorics in bounded arithmetic. Ph. D. Dissertation.
Carnegie Mellon University.

[62] Ján Pich. 2015. Circuit lower bounds in bounded arithmetics. Ann. Pure Appl.
Log. 166, 1 (2015), 29–45. https://doi.org/10.1016/j.apal.2014.08.004

[63] Ján Pich. 2015. Logical strength of complexity theory and a formalization of
the PCP theorem in bounded arithmetic. Log. Methods Comput. Sci. 11, 2 (2015).
https://doi.org/10.2168/LMCS-11(2:8)2015

[64] Ján Pich and Rahul Santhanam. 2021. Strong co-nondeterministic lower bounds
for NP cannot be proved feasibly. In STOC. ACM, 223–233. https://doi.org/10.
1145/3406325.3451117

[65] Alexander A. Razborov and Steven Rudich. 1997. Natural Proofs. J. Comput. Syst.
Sci. 55, 1 (1997), 24–35. https://doi.org/10.1006/jcss.1997.1494

[66] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. 2022. On the Range Avoidance
Problem for Circuits. In FOCS. IEEE, 640–650. https://doi.org/10.1109/FOCS54457.
2022.00067

[67] Amit Sahai and Brent Waters. 2021. How to Use Indistinguishability Obfuscation:
Deniable Encryption, and More. SIAM J. Comput. 50, 3 (2021), 857–908. https:
//doi.org/10.1137/15M1030108

[68] Michael Sipser. 1983. A Complexity Theoretic Approach to Randomness. In STOC.
ACM, 330–335. https://doi.org/10.1145/800061.808762

[69] Michael Sipser. 1997. Introduction to the theory of computation. PWS Publishing
Company.

[70] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. 2001. Pseudorandom Gen-
erators without the XOR Lemma. J. Comput. Syst. Sci. 62, 2 (2001), 236–266.
https://doi.org/10.1006/jcss.2000.1730

[71] Rotem Tsabary. 2022. Candidate Witness Encryption from Lattice Techniques.
In CRYPTO (1) (Lecture Notes in Computer Science, Vol. 13507). Springer, 535–559.
https://doi.org/10.1007/978-3-031-15802-5_19

[72] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. 2022. Witness Encryp-
tion and Null-IO from Evasive LWE. In ASIACRYPT (1) (Lecture Notes in Computer
Science, Vol. 13791). Springer, 195–221. https://doi.org/10.1007/978-3-031-22963-
3_7

Received 2022-11-07; accepted 2023-02-06

1089

https://doi.org/10.1109/FOCS54457.2022.00100
https://doi.org/10.1109/FOCS54457.2022.00100
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.2178/jsl/1191333850
https://doi.org/10.1093/logcom/exm017
https://doi.org/10.2178/jsl/1245158087
https://doi.org/10.1145/335305.335314
https://doi.org/10.4230/LIPIcs.CCC.2022.17
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1137/15m1048549
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.4230/LIPIcs.CCC.2022.37
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1145/3446207
https://doi.org/10.1145/3446207
https://eccc.weizmann.ac.il/report/2022/120
https://eccc.weizmann.ac.il/report/2022/120
https://doi.org/10.23638/LMCS-13(1:4)2017
https://doi.org/10.23638/LMCS-13(1:4)2017
https://doi.org/10.1016/0168-0072(91)90043-L
https://doi.org/10.1016/0168-0072(91)90043-L
https://doi.org/10.2168/LMCS-8(3:5)2012
https://doi.org/10.2168/LMCS-8(3:5)2012
https://doi.org/10.1007/s00037-005-0197-7
https://doi.org/10.1007/s00037-005-0197-7
https://doi.org/10.1016/j.apal.2019.102735
https://doi.org/10.1016/j.apal.2019.102735
https://doi.org/10.1016/j.apal.2014.08.004
https://doi.org/10.2168/LMCS-11(2:8)2015
https://doi.org/10.1145/3406325.3451117
https://doi.org/10.1145/3406325.3451117
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1137/15M1030108
https://doi.org/10.1137/15M1030108
https://doi.org/10.1145/800061.808762
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-031-22963-3_7

	Abstract
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Preliminaries
	2.1 Indistinguishability Obfuscation
	2.2 Arthur-Merlin Protocols
	2.3 Bounded Theories PV1 and APC1
	2.4 Time-Bounded Kolmogorov Complexity

	3 No Efficient Deterministic Algorithms for Range Avoidance
	4 Application in Bounded Arithmetic: Separating APC1 and PV1
	4.1 Provability of dWPHP and the Tractability of Avoid
	4.2 Impossibility of Solving Avoid with a Circuit-Inversion Oracle

	5 The Oracle Derandomization Hypothesis for Time-Bounded Kolmogorov Complexity
	6 Conclusion
	Acknowledgments
	References

