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ABSTRACT

We show how to generically improve the succinctness of non-

interactive publicly veri�able batch argument (BARG) systems. In

particular, we show (under a mild additional assumption) how to

convert a BARG that generates proofs of length poly(<) · :1−n ,
where< is the length of a single instance and : is the number of

instances being batched, into one that generates proofs of length

poly(<, log:), which is the gold standard for succinctness ofBARGs.
By prior work, such BARGs imply the existence of SNARGs for de-

terministic time ) computation with succinctness poly(log) ).
Our result reduces the long-standing challenge of building publicly-

veri�able delegation schemes to a much easier problem: building

a batch argument system that beats the trivial construction. It also

immediately implies new constructions of BARGs and SNARGs

with polylogarithmic succinctness based on either bilinear maps or

a combination of the DDH and QR assumptions.

Along the way, we prove an equivalence between BARGs and a

new notion of SNARGs for (deterministic) RAM computations that

we call “�exible RAM SNARGs with partial input soundness." This

is the �rst demonstration that SNARGs for deterministic compu-

tation (of any kind) imply BARGs. Our RAM SNARG notion is of

independent interest and has already been used in a recent work

on constructing rate-1 BARGs (Devadas et. al. FOCS 2022).
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1 INTRODUCTION

E�cient veri�cation of computation is one of the most fundamen-

tal problems in theoretical computer science. Recently, with the

increasing popularity of blockchain technologies and cloud ser-

vices, e�cient veri�cation schemes are increasingly deployed in

practice. This reality motivates the study of succinct non-interactive

arguments (SNARGs) [17], which are short, easy to verify, and

computationally sound proofs that a statement G belongs to a po-

tentially complex language L. We would ideally like to construct

SNARGs, given a (short, e�cient-to-generate) common reference

string, for any language L decidable in non-deterministic time

) ( |G |), where the SNARG has proof size poly(_, log) ) and veri�-

cation time poly(_, log) ) + $̃ ( |G |) given security parameter _. In

the random oracle model, such SNARGs were already constructed

in a seminal work of Micali [17]; however, constructing SNARGs

in the “plain model" under falsi�able and preferably standard cryp-

tographic assumptions remains a grand challenge, and will require

overcoming some serious barriers [7].

In this work, we study two di�erent forms of SNARGs for re-

stricted computations: SNARGs for deterministic time-) computa-

tions and SNARGs for batch-NP computations (BARGs).

SNARGs for deterministic time-) computations. There are a num-

ber of recent (We use SNARGs to refer to publicly veri�able SNARGs,

which can be veri�ed given the crs alone. We mention that there

is a line of work, starting with [14, 15], that constructed various

privately veri�able SNARGs under standard assumptions. Since

our focus is on publicly veri�able SNARGs, we do not elaborate on

these works here.) constructions of this form of SNARG based on

falsi�able and standard assumptions:

• Kalai, Paneth and Yang [13] constructed SNARGs with suc-

cinctness poly(_,) n ) for any constant n > 0 under a falsi�-

able assumption on groups with bilinear maps.

• Jawale, Kalai, Khurana and Zhang [10] constructed SNARGs

for any size ( and depth � (log-space uniform) computation

with succinctness � · poly(_, log () under LWE.

• Very recently, Choudhuri, Jain and Jin [4] constructed poly(_,
log) )-succinct SNARGs from LWE.

SNARGs for batchNP computations (BARGs). In aBARG scheme,

the prover wants to prove : NP statements G1, . . . , G: (given wit-

nessesF1, . . . ,F: ) with communication complexity (and veri�ca-

tion time) signi�cantly smaller than : ·<, where each witnessF8

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.
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is at most< bits long. The key parameter of interest here is : , the

batch size, and we want protocols with a sub-linear (and ideally,

poly-logarithmic) dependence on : .

There have also been a number of recent constructions of BARGs

from standard assumptions:

• Choudhuri, Jain and Jin [3] constructed a BARG with suc-

cinctness poly(_,<) ·
√
: under a combination of the Qua-

dratic Residuosity (QR) and Decisional Di�e-Hellman DDH

assumptions (or QR and LWE, but this is subsumed below).

• The work of [4] constructed a BARG with succinctness

poly(_,<, log:) under LWE. Indeed, their BARG was the

key building block in their construction of a SNARG for

deterministic polynomial-time computations.

• Building upon [3], Hulett, Jawale, Khurana and Srinivasan [9]

constructed a BARG with succinctness poly(_,<) · :n for

any constant n > 0, under QR and DDH.

• More recently, Waters and Wu [19] constructed a BARG

with succinctness poly(_,<) · :n under the DLIN assump-

tion (They can rely on the “:-LIN assumption” for arbitrary

constant : ≥ 1, which we refrain from writing due to nota-

tion collision with the batch size : . We will sometimes refer

to this as the $ (1)-LIN assumption.) on bilinear maps.

BARGs imply SNARGs for P. The recent constructions of BARGs

and SNARGs for P are quite closely tied together: two recent works

[4, 16] showed that a BARG for batch NP with !-parameterized

(These works only considered the case !(:, _) = poly(_, log(:)),
but their results readily extend to any !.) succinctness poly(<) ·
!(:, _) implies a SNARG for any time-) computation with suc-

cinctness poly(_) · !(), _) assuming the existence of somewhere

extractable succinct commitments with local opening. (We show

in the full version that such commitments can be constructed from

any rate-1 string OT, which in turn can be constructed based on

any of the following assumptions: LWE, DDH, $ (1)-LIN, QR, or
DCR [6].)

The [4, 16] transformation requires that the underlying BARG

satisfy one key property regarding veri�cation time that we will also

assume throughout this work. (In [4], a BARG with this e�ciency

guarantee was referred to as a BARG for index languages. In this

work, we actually only assume the existence of an object that is

somewhat weaker than an index BARG; see the full version for

more details.) Namely, the BARG must be compatible with succinct

implicit inputs: if a time ℓ = ℓ (=) Turing machine generates G8 given

8 as input (for all 8), then verifying the BARG for (G1, . . . , G: ) can
be done in time polynomial in ℓ and (as before) sublinear or better

in : ·<. Note that this means the veri�er does not necessarily have

to read the : statements (Since a veri�er (in general) must read its

entire input in order to decide whether to accept a proof, a naive

BARG for : NP statements would require the veri�er to run for at

least : ·= time. This is unsatisfactory if the goal is to have e�ciency

sublinear in : .) (separately), but only their implicit description.

Throughout this introduction, when we refer to a BARG, we assume

it has this veri�er e�ciency guarantee.

These two works changed the focus of the community from

constructing SNARGs to constructing BARGs. Indeed, the recent

BARG constructions of [4, 9, 19] all imply constructions of similarly

e�cient SNARGs for P.

1.1 This Work

Both primitives discussed above – SNARGs for P and BARGs for

NP – have a “gold standard” for succinctness and veri�er e�ciency:

• SNARGs for time ) (deterministic) computation with com-

munication complexity poly(_, log) ).
• BARGs with communication complexity poly(_,<, log:).
• For both BARGs and SNARGs, veri�cation can require quasi-

linear additional time to process explicit inputs but should

otherwise match the communication complexity bounds.

However, of all of the recent constructions discussed so far, only

[10] (for bounded-depth deterministic computation) and [4] actually

match this e�ciency. The others [3, 9, 13, 19] achieve sublinear (and

sometimes sub-polynomial) but not polylogarithmic dependence

on) and/or : . In this work, our main question centers on achieving

optimal succinctness for BARGs and SNARGs:

�estion 1.1. When is it possible to build BARGs and SNARGs

with polylogarithmic (w.r.t. : or ) ) succinctness and veri�er e�-

ciency?

A second question we ask is whether there is any (partial) converse

to the [4, 16] result that BARGs imply SNARGs for P:

�estion 1.2. Does some kind of SNARG for deterministic com-

putation imply BARGs for NP?

A positive answer would establish a (loose) equivalence between

these two kinds of argument systems.

Our Results. We answer Question 1.1 by giving a generic pro-

cedure for boosting the e�ciency of BARGs. Speci�cally, we show

how to convert any BARG with succinctness poly(<) · :/? (_), for
some (su�ciently large) polynomial ? (_), into one with succinct-

ness poly(_,<, log:).

Theorem 1.3 (Informal, see Theorem 3.1). There is a polyno-

mial ? such that if there exists

• A BARG for NP with succinctness poly(<) · :/? (_) for all
su�ciently large : ≥ poly(_) (and e�cient veri�er), and

• A rate-1 (2-message) string OT, which can be constructed based

on LWE, DDH, $ (1)-LIN, QR, or DCR [6].

then there exists a BARG for NP with succinctness poly(_,<, log:)
(and e�cient veri�er).

We brie�y give some remarks on Theorem 1.3:

• A BARG with succinctness matching the hypothesis of The-

orem 1.3 follows from the existence of a BARG with suc-

cinctness poly(_,<) · :1−X for any constant X > 0.

– If we make a subexponential security assumption, it is

even possible to start with any BARG with succinctness

poly(_,<) · :
(log:)l (1) , by setting the security parameter

_ = poly log(:_′). However, the resulting fully succinct

BARG will only be secure against adversaries that run in

time quasi-polynomial in<_′, which is meaningful but

not ideal.

• Theorem 1.3 can start with BARGs with a long (poly(:,<, _))
common reference string, as long as the veri�er e�ciency

remains poly(<) · :/? (_) (taking as input only a designated

part of the crs of appropriate size). This is because a simple
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transformation can be used to �rst reduce the size of the crs

while preserving the above sublinear succinctness bound: to

prove : statements, pick a small constant n > 0 and execute

:1−n copies of the initial BARG with batch size :n (re-using

a single crs).

• The rate-1 string OT is used (solely) to construct a some-

where extractable hash (SEH) family with local opening .

This matches (For simplicity of the write-up, our SEH de�-

nition di�ers slightly from what was used in [4]. We make

use of a form of deterministic succinct commitment schemes,

while [4] allows randomization. However, such schemes can

always be derandomized with a (public seed) PRF, so the

primitives are equivalent.) what is required in the generic

transformations of [4, 16]. We state Theorem 1.3 using string

OT simply to highlight the variety of instantiations of the

building block, many of which were not previously known .

• We emphasize that our results (and proofs) are entirely in the

setting of non-interactive arguments. Unlike prior work such

as [2–4, 9, 10], we do not make explicit use of interactive

proofs or the Fiat-Shamir transform, but instead generically

convert a weakly succinct (non-interactive) BARG into a

strongly succinct BARG.

Theorem 1.3, combined with the works of [4, 16], reduces the prob-

lem of constructing ideal SNARGs for time-) computations to con-

structing any non-trivial BARG, one that is slightly more succinct

that simply sending all the NP witnesses in the clear.

As corollaries to Theorem 1.3, we obtain multiple new construc-

tions of BARGs for NP and SNARGs for P:

• Together with the result of [19], Theorem 1.3 gives a BARG

for NP with proof size poly(_,<, log:) and a SNARG for

time-) computations of size poly(_, log) ) (as opposed to

size poly(_,<, :n ) and poly(_,) n )) fromDLIN (or$ (1)-LIN)
on bilinear maps. Moreover, this BARG can be obtained from

the “base” scheme of [19] without their “bootstrapping” step.

• Together with the result of [3], Theorem 1.3 gives BARGs

and SNARGs with the above e�ciency from QR and DDH,

as opposed to having a
√
: dependence in [3] or a :n (or ) n )

dependence in [9].

Perhaps more importantly, we believe Theorem 1.3 is an impor-

tant foundation that will lead to new constructions of BARGs and

SNARGs, since it reduces this goal to a signi�cantly easier problem.

In order to prove Theorem 1.3, we also obtain an answer to

Question 1.2 by considering the setting of RAM delegation [1, 12].

We de�ne (and construct) a new notion of RAM SNARG, which we

call a �exible RAM SNARG with partial input soundness. We then

prove:

Theorem 1.4 (informal, see Theorem 3.3). Assuming the exis-

tence of rate-1 string OT, BARGs for NP are existentially equivalent

to �exible RAM SNARGs with partial input soundness.

We prove both directions of this equivalence (assuming rate-1

string OT):

(1) BARGs for NP imply �exible RAM SNARGs in an e�ciency-

preserving manner. This is a strengthening of the [4, 16]

result, which only constructs a weaker form of RAM delega-

tion from BARGs.

(2) Flexible RAM SNARGs, even with barely non-trivial succinct-

ness, imply BARGs with succinctness poly(_,<, log:).

Sequentially combining these two transformations yields Theo-

rem 1.3. Combining them the opposite order also implies that the

succinctness of �exible RAM SNARGs can be boosted.

In addition to facilitating Theorem 1.3, we believe that our notion

of �exible RAM SNARGs is of independent interest; indeed, it has

already been used to obtain a simpli�ed rate-1 BARG in [5].

2 OUR TECHNIQUES

Somewhere extractable BARGs (seBARGs). Before diving into

our techniques, we �rst simplify our problem by replacing BARGs

with a slightly stronger primitive without loss of generality. Namely,

we consider somewhere extractable BARGs, hereafter referred to as

seBARGs. A BARG is de�ned to be somewhere extractable if for

some (hidden) choice of 8 , given an appropriate trapdoor td for the

crs, it is possible to extract a witnessF8 for G8 given a valid BARG

proof. This is essentially an argument of knowledge property for

BARGs.

Conveniently, assuming the existence of somewhere extractable

hash functions with local opening, BARGs can easily be modi�ed

to be somewhere extractable with the standard “commit-and-prove”

approach (for example, this was used implicitly in [4, 16]). From

now on we work directly with seBARGs instead of BARGs, since

seBARGs are an easier-to-manipulate primitive.

Organization. We now give an overview of our proofs of both

directions of Theorem 1.4; these together also imply Theorem 1.3.

We begin by recalling RAM delegation and give intuition for why

it should be useful for constructing BARGs. We then discuss our

new notion of �exible RAM SNARGs with partial input soundness

and sketch our main proofs.

RAM delegation. A RAM SNARG, originally de�ned in [12], is

similar to a SNARG for deterministic computations but tailored

to the RAM computational model. Concretely, we consider the

simpli�ed setting of read-only RAM computation. A (read-only)

RAM algorithm is given query-access to a large input G (often

referred to as its “memory”) and returns some output ~. Queries to

memory are considered unit-cost operations.

In a RAM SNARG, the prover wants to convince the veri�er

that " (G) = ~ for some RAM machine " , input G , and output ~.

In addition to wanting veri�cation that is e�cient compared to

the runtime of" (G), it is also desired that veri�cation is sublinear

(preferably polylogarithmic) in the length of the input G . However,

the veri�er must have some “handle” on G in order for veri�cation to

be possible; to do so, the veri�er is given a digest d = Digest(crs, G),
which can roughly be thought of as a Merkle tree commitment to

G .

Given this syntax, we arrive at an important question: what does

it mean for a RAM SNARG to be sound? Observe that the map G ↦→
Digest(crs, G) is many-to-one, so the input G is not information-

theoretically de�ned from the point of view of the veri�er. Thus,

Digest(crs, ·) is always required to be collision-resistant, capturing

the intuition that the prover should be committed to some particular

input G when it sends d.
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In prior work [1, 4, 12, 13], soundness was formulated in two

di�erent ways:

• In [1, 12], a RAM SNARG is de�ned to be sound if it is com-

putationally hard to prove two contradictory statements;

namely, to prove that both" (G) = 0 and" (G) = 1 with the

same machine " and digest d (note that a speci�c input G

does not necessarily exist in this security notion; the prover

may not actually know one).

• In [4, 13], a weaker security property was used: a RAM

SNARG was de�ned to be sound if it is computationally

hard to simultaneously (1) make the veri�er accept with ma-

chine" , digest d, and output ~ and (2) produce an input G

such that " (G) ≠ ~ and Digest(crs, G) = d. Note that the

[1, 12] security de�nition implies this one.

Previous constructions of RAM SNARGs from standard assump-

tions [4, 13] (and those that follow by combining [4] with [3, 9, 19])

were only shown to satisfy the weaker of the above two de�ni-

tions. We emphasize that this soundness de�nition is quite weak:

soundness is guaranteed only against an adversary that “knows”

the entire memory G corresponding to a digest d. In this work, we

revisit the notion of RAM SNARGs and provide a new, stronger def-

inition of soundness that overcomes this weakness and facilitates

Theorems 1.3 and 1.4.

How to use SNARGs for RAM to build BARGs. Before getting to

our new de�nition, let us sketch why SNARGs for RAM are useful

for constructing BARGs; the connection is surprisingly simple in

hindsight. At a high level, the idea is for the prover % to treat its :

NP witnessesF1, . . . ,F: as the memory of a RAM machine. Thus,

the prover will compute d = Digest(crs,F1, . . . ,F: ) (where crs is
associated with some SNARG for RAM) and send d to the veri�er.

Now, the most naive approach would be for the prover to send a

SNARG thatF1, . . . ,F: are all validwitnesses forG1, . . . , G: , but it is

completely unclear how to argue soundness of the resulting BARG

relying on any soundness property of the SNARG. (We remark that

in the privately veri�able setting, the batch argument system of [1]

is somewhat similar to the “naive” construction above, but they do

not rely on a RAM SNARG. Instead, they rely on what later became

known as a quasi-argument for NP [13], which is a much more

powerful building block.) The problem is that fundamentally, there

is no way to guarantee that an adversarial prover %∗ who makes

the veri�er accept (with digest d) actually knows the contents of a

memory (F1, . . . ,F: ) that corresponds to d.

Instead, we will have the prover produce : di�erent SNARGs

c1, . . . , c: onmemory (F1, . . . ,F: ) with respect to : di�erent RAM

computations. Speci�cally, we de�ne the 8th RAM computation"8

to consider only the 8th “chunk” of memory and verify thatF8 is

a valid witness for G8 . An initial candidate BARG can then be the

digest d along with c1, . . . , c: ; the veri�er simply checks each c8
separately (with respect to d).

Although we have not argued soundness, this is already a non-

trivial candidate BARG! As long as each c8 is signi�cantly shorter

than< (the length of F8 ), the communication complexity of this

protocol will be signi�cantly shorter than the trivial bound of : ·<.

This establishes an intuitive connection between RAM SNARGs

and BARGs.

Challenges in Arguing Soundness. Despite having a simple candi-

date BARG with non-trivial e�ciency, soundness of this candidate

is not obvious and in fact does not seem to follow from previous

security de�nitions for RAM SNARGs. In fact, the problem seems

similar to the “naive” case: soundness of a RAM SNARG is only

guaranteed against adversaries that “know” the entire memory,

which isF1, . . . ,F: , but there is no way to argue that an adversary

%∗ must know such a long string (since the BARG itself is short).

However, there is a key di�erence from before: each RAM compu-

tation"8 only operates on a small fraction of its memory, namely,

F8 (ignoring all F 9 for 9 ≠ 8). Moreover, if Digest is somewhere

extractable [8] on < locations (henceforth called a <-SEH), it is

possible to argue that an adversary %∗ (at least inside a security
reduction) knows the fraction of RAM memory that is relevant to

any particular"8 . This opens up the possibility for the following

kind of security proof:

• Suppose that %∗ is a convincing prover for the BARG, and

let 8 be an index such that the statement G8 is false.

• Switch to a hybrid experiment in which the crs is statistically

binding (and extractable) onF8 . In this hybrid, it is possible

to produce both a valid BARG proof (where G8 is false (In

this overview, we assume for simplicity that the statements

G1, . . . , G: are �xed in advance. The situation is more subtle

if the G8 are chosen adaptively, but non-trivial security prop-

erties can be argued.)) and obtain the uniqueF8 consistent

with d.

• Argue that the proof c8 produced by %∗ contradicts the

soundness of the RAM SNARG.

Unfortunately, previous RAM SNARG security de�nitions [1, 4, 12,

13] are not compatible with this security reduction. As a result, we

next revisit and revise the foundations of RAM delegation.

Flexible SNARGs for RAM. There are two signi�cant issues with

previous notions of RAM SNARGs if we want to use them. First

of all, we want a RAM SNARG with the property that the Digest

algorithm is somewhere extractable on< locations. This begs the

question: do such RAM SNARGs exist? More generally, one can

ask: which additional properties can theDigest algorithm of a RAM

SNARG potentially have?

We address these questions by de�ning �exible RAM SNARGs,

which are a generic RAM SNARG template making use of an ar-

bitrary hash family with local opening. (A hash family with local

opening is a deterministic, computationally binding succinct com-

mitment to a long string G along with a procedure for producing a

short (poly(_)-size) opening to any bit G8 . This commitment need

not hide information about G . In this paper, we relax the standard

de�nition to allow for the hash key and hash output to each have

two parts: (potentially long) sender components (hk, v) and (short)

receiver components (vk, rt) (which are used for opening veri�-

cation).) Speci�cally, a �exible RAM SNARG is a scheme de�ned

relative to a generic hash family, which plays the role of the Digest

algorithm. A �exible RAM SNARG has the property that for any

secure hash family with local opening, the resulting RAM SNARG

is sound. In other words, �exible RAM SNARGs imply that any

hash family with local opening can be used as the Digest algorithm
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for a RAM SNARG. This tells us that we can plug in a Digest algo-

rithm that is somewhere extractable, provided that it also has local

openings.

Partial-Input Soundness. The second major problem with RAM

SNARGs is that, as stated earlier, they provide no security guaran-

tees against adversaries who produce a digest d∗ without knowledge
of a full opening of d∗ to an input G (representing the full contents

of a machine’s memory). This is problematic in scenarios where

a SNARG is used to prove statements about RAM machines that

only access a small fraction of their memory.

This motivates de�ning soundness (or argument of knowledge)

properties for RAM delegation schemes in situations where the ad-

versary does not know an entire input G . Formulating such security

notions can be quite subtle. In this work, for simplicity, we focus

on the following setting:

• The Digest hash function is extractable on some set of loca-

tions ( . This means that given an arbitrary d∗, it is possible
to extract an assignment G( so that an opening of d∗ to any

location 8 ∈ ( must reveal the bit G8 .

• The RAM machine" , when run on any memory consistent

with G( , only reads locations in ( . This is equivalent to the

assertion that this holds when" is run on the speci�c input

G∗ such that G∗8 = G8 for 8 ∈ ( and G∗8 = 0 otherwise.

In this situation, we say that a RAM SNARG satis�es partial-input

soundness if it is computationally hard to produce a machine " ,

digest d∗, output ~, and proof c such that

• The veri�er accepts (", d∗, ~, c), and
• " (G∗) ≠ ~, where G∗ is obtained from d∗ as above, and
" (G∗) only reads locations in ( .

We emphasize that this de�nition does not require that the adver-

sary possesses an opening (A natural alternative soundness de�ni-

tion would simply require that it is computationally hard for %∗ to
produce accepting (",~, d, c) and local openings to a substring G(
such that" (G∗) only reads locations in ( and" (G∗) ≠ ~. However,

for technical reasons, this turns out to be an insu�cient de�nition

to support our transformations, since we cannot always guarantee

(in our soundness reductions) that %∗ knows how to open G( .) of

d∗ to G( ; nevertheless, the string G( is well-de�ned (and e�ciently

accessible) in the security game.

Armed with this de�nition, we return to our main results relating

BARGs and RAM SNARGs: assuming the existence of rate-1 string

OT, the following two claims hold.

Claim 2.1. seBARGs imply �exible RAM SNARGs with partial-

input soundness.

Claim 2.2. Flexible RAM SNARGs with partial-input soundness

imply seBARGs. This transformation boosts succinctness from “non-

trivial” to poly(_,<, log:).

So far, we sketched a weak variant of Claim 2.2 that does not

boost succinctness.We conclude by discussing how to prove Claim 2.2

(in full) and Claim 2.1.

Boosting Succinctness via Recursion. Recall our candidate non-

trivial seBARG making use of a (�exible) RAM SNARG:

• The prover sends a digest d = Digest(F1, . . . ,F: ), and

• The prover sends : SNARGs c1, . . . , c: associated with d,

where c8 is a proof thatF8 is a valid witness for G8 .

We indeed show that this construction is sound assuming that

Digest is somewhere extractable and the RAM SNARG satis�es

partial-input soundness. However, this argument system is only

somewhat succinct: the size of the proof is |d| +∑ |c8 |, which grows

linearly with : . Can we do better?

The answer is that we can by adapting an insight from [4] to our

setting. (One can view [4] as implementing the following strategy:

(1) construct a weakly succinct interactive batch argument scheme,

(2) extend this particular scheme to a fully succinct interactive

batch argument scheme, and (3) compile it into a BARG using the

Fiat-Shamir transform [2]. (2) is accomplished via an interactive

recursion.

Theorem 1.3 suggests an alternative approach: (1′) build a weakly

succinct interactive scheme, (2′) apply the Fiat-Shamir transform

right away to get a weakly succinct BARG, and (3′) invoke Theo-
rem 1.3 to boost the succinctness generically. ) Namely, we observe

that the proof string (d, c1, . . . , c: ) has reduced the problem of

verifyingF1, . . . ,F: to the easier problem of verifying c1, . . . , c: .

Provided that the time to verify each c8 is at most half the time

required to verify eachF8 , we can pair adjacent proofs (c28−1, c28 )
together and obtain a batch NP veri�cation problem with :/2 wit-
nesses of complexity no larger than that of the originalF8 . Then,

instead of sending these witnesses (the c8 ) in the clear, we can have

the prover recursively run our protocol: send Digest(c1, . . . , c: )
and compute proofs c ′1, . . . , c

′
:/2 certifying that all pairs (c28−1, c28 )

would be accepted by the RAM SNARG veri�er. This recursion can

be executed log: times in total, resulting in a seBARG in which the

prover sends log: digests d0, . . . , dlog:−1, where d8 is a digest of

:/28 strings c (8)1 , . . . , c
(8)
:/28 that are RAM SNARG proofs computed

with respect to d8−1. At the end of the recursion, there will be a

single RAM SNARG proof c (log:) that the veri�er can receive and

check on its own.

Crucially, we observe that as long as the RAM SNARG is non-

trivially succinct – meaning that the computational cost of verifying

a pair (c1, c2) is lower than the cost of verifying a single NP wit-

ness F – then the resulting seBARG will have ideal succinctness

poly(_,<, log:). This is what enables our generic boosting results;

see the full version for more details.

Fully Local Hashing. So far, we have sketched how to construct

seBARGs given a �exible RAM SNARG with partial-input sound-

ness, when theDigest algorithm for the RAMSNARG is somewhere

extractable on< locations. Next, we address a technical issue with

this approach.

The problem is that �exible SNARGs for RAM are only as as

e�cient as the underlying Digest algorithm plugged into them.

Speci�cally, the veri�cation time of the SNARG grows with the

size of a local opening for Digest. However, a hash family that is

somewhere extractable on< locations must necessarily have an

output of length ≥ < [8], so opening veri�cation would seem to

require at least< time (even to read the hash value). This would

result in a RAM SNARG whose veri�cation time grows with <,

which for our candidate BARG above would be useless: the BARG’s

size would be larger than : ·<.
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This incompatibility is resolved with the recently introduced

notion of a “fully local (somewhere extractable) hash family” [5].

In such a hash familyH , a hash evaluation can be divided into two

parts: a long (length ≥ <) component v and a short (length poly(_))
component rt. (Similarly, the hash key can be divided into a long

component hk and a short component vk.) The hash family is then

required to be extractable given v and have local openings of rt of

size poly(_) to individual input bits. Finally, consistency between v

and rt is enforced; rt = H .Digest(crs, v) is a �xed function of v.

A fully local SEH hash family H resolves our technical issue

and enables a provable construction of seBARGs from �exible

RAM SNARGs. But how is this building block instantiated? [5]

constructed such hash families from the LWE assumption. Their

construction was complicated and required powerful tools (includ-

ing rate-1 FHE and seBARGs themselves!), but they were aiming

for a rate-1 fully local hash family.

In this work (see the full version), we give a simple construction

of a (low rate) flSEH family from any SEH family with local opening.

That is, we show that SEH families that are binding on a single

index (or on< indices with openings that grow linearly with<)

can be generically made fully local.

At a high level, our flSEH family is constructed as follows. Sup-

pose that we want to hash inputs G ∈ {0, 1}= in a way that is ex-

tractable on< indices 81, . . . , 8< ∈ [=]. Since a<-SEH requires open-

ings of size ≥ < (as discussed above), we instead separately hash

G < di�erent times using SEH functions ℎ1, . . . , ℎ< . Each ℎ 9 ←H
is set up to be extractable on poly(_) locations and have openings

of size poly(_). The resulting< hash values v1, . . . , v< are de�ned

to be the extractable hash output v; v is then digested using a hash

tree into a root rt of size poly(_). To open a bit G8 with respect to

the root rt, a hash function index 9 is selected pseudorandomly (The

notion of pseudorandomness required is that of a load-balancing

hash function: the = indices {1, . . . , =} should be mapped pseudo-

randomly into < buckets so that for any <-tuple (81, . . . , 8<) no
bucket has more than poly(_) of those indices in it.) (as a function

of 8), v9 is opened (w.r.t. rt), and then G8 is opened (w.r.t. v9 ). This

strategy enables us to make the overall hash family extractable on

index 8 by making the hash function ℎ 9 extractable on 8 , and thus

allows for<-location extractability with poly(_)-size openings. See
the full version for details.

Having resolved the local opening subtlety, this completes our

overview of Claim 2.2.

Constructing our RAM SNARGs from seBARGs. Finally, we turn

to Claim 2.1: constructing �exible RAM SNARGs with partial input

soundness from seBARGs. This construction additionally uses a

SEH family with local opening and closely follows the transfor-

mations of [4, 16]. To give a succinct proof that " (G) = ~ with

respect to a digest d (computed with respect to an arbitrary Digest

algorithm with local opening), compute a somewhere extractable

hash ℎ = SEH.Hash(st1, . . . , st) ), where st1, . . . , st) denotes the se-

quence of memory con�gurations for the execution of" (G). Then,
generate and send a seBARG that, roughly speaking, st8 → st8+1
for all 8 . More formally, the seBARG is executed on a batch NP

statement whose witnesses are openings to pairs (st8 , st8+1) along
with openings of d to the bit G 9 that st8 asks to read; theNP relation

checks that the correct bit is read and that the state transformation

st8 → st8+1 is executed correctly. Since this batch of NP statements

has a succinct representation (given by d along with ℎ and the

hash keys), the resulting RAM SNARG will be as succinct (up to

poly(_, |st|) factors) as the BARG.
The main di�erence from the [4, 16] setting is that we wish to

prove partial-input soundness, which states that a (malicious) prover

cannot produce a digest d and accepting SNARG proof (",~, c)
such that " (G∗) ≠ ~, where G∗ is constructed by extracting a

substring G( from d and setting all other G8 to 0. This follows from

a hybrid argument combining the (extractable) binding property of

Digest with the (extractable) soundness property of the seBARG.

Essentially, it is possible to argue sequentially that for every time-

step C , if the seBARG crs is set to be extractable on the Cth NP

statement, then the extracted state stC must match the state of

" (G∗) at time C . We refer the reader to the full version for more

details. We also remark that as a side result, we prove that our

construction satis�es the original [1, 12] de�nition of soundness,

which is incomparable to partial-input soundness.

This completes our sketch of Claim 2.1. Combining Claim 2.1 and

Claim 2.2 appropriately, we obtain Theorem 1.3 and Theorem 1.4.

2.1 Relation to [5]

A recent work of Devadas, Goyal, Kalai, and Vaikuntanathan [5]

(concurrently with a work of Paneth and Pass [18]) constructs

seBARGs that have rate 1 with respect to the size of an NP witness.

The notion of “rate-1 fully local hash” was introduced in an initial

version of [5] for their construction; we then used a relaxation of

their notion (a fully local hash family that has low rate) in this

work. Subsequently, an updated version of [5] gives a signi�cantly

simpli�ed construction of rate-1 seBARGs that leverages our notion

of �exible RAM SNARGs adapted to their rate-1 setting.

3 FORMAL RESULTS

In this section, we formally state our results (Theorems 1.3 and 1.4)

and show how they follow from the results proved in the full version

of this paper ([11] Sections 3 to 7).

Theorem 3.1. Assume the existence of rate-1 String OT with veri-

�able correctness ([11] De�nitions 4.1 and 4.2), or more generally a

SEH family with succinct local opening ([11] De�nition 3.3).

Then, there exists an explicit polynomial ? (_) such that the following

holds.

Let !(:, _) denote any function such that !(:, _) ≤ :/? (_) for all
su�ciently large : ≥ poly(_). Assuming the existence of a !(:, _)-
succinct index BARG for BatchCSAT, there exists a poly(_, log:)-
succinct index BARG for BatchCSAT. Moreover, there exists a poly(_,
log) )-succinct SNARG for P (and for RAM computation).

Remark 3.1. As discussed in the introduction,

• Index BARGs with e�ciency poly(<, _):1−X for any con-

stant X > 0 su�ce for the !(:, _) hypothesis, and thus imply

fully succinct BARGs (assuming a SEH).

• Index BARGs with e�ciency poly(<, _) :
(log:)l (1) with sub-

exponential security also su�ce by setting _ = poly log(: ·
_′) for a new security parameter _′. The resulting fully suc-

cinct BARG will only be secure against adversaries that run

1550



Boosting Batch Arguments and RAM Delegation STOC ’23, June 20–23, 2023, Orlando, FL, USA

in time quasi-polynomial in < · _′, as the proof of Theo-

rem 3.1 calls the weak BARG with batch size poly(<). This
is a signi�cant drawback but still a meaningful BARG.

As discussed in the full version, the use of index BARGs in these

two instantiations could be replaced with the use of (non-index)

BARGs for BatchCSAT. However, this remains a stronger assump-

tion than the existence BARGs for !: for some NP-complete lan-

guage !.

Proof Sketch of Theorem 3.1. [11] Lemma 4.5 tells us that

rate-1 String OT satisfying veri�able correctness implies an SEH

family with succinct local opening. In turn, [11] Theorem 5.2 im-

plies that an SEH family with succinct local opening implies the

existence of a flSEH family ([11] De�nition 5.1).

We proceed to prove Theorem 3.1 by a composition of several

transformations.

• By [11] Lemma 3.9,!(:, _)-succinct indexBARGs forBatchCSAT
(alongwith a SEH familywith local opening) imply! (2) (:, _)
= !(:, _) · poly(_)-succinct index seBARGs for BatchCSAT.
• By [11] Theorem 6.3, ! (2) (:, _)-succinct index BARGs for

BatchCSAT (along with a SEH family with local opening)

imply ! (3) (), _) = !(), _) · poly(_, log) )-succinct �exible
SNARGs for RAM with partial-input soundness.

• By [11] Theorem 7.1, ! (3) (), _)-succinct �exible SNARGs for
RAMwith partial-input soundness imply polylog-succinct in-

dex seBARGs provided that ! (3) (), _) ≤ ) /_ for su�ciently

large ) ≥ )0 (_).
• Finally, by [4, 16] we already know that polylog-succinct

index seBARGs imply SNARGs for P and for RAM. By [11]

Theorem 6.3, they in fact even imply �exible RAM SNARGs

with partial-input soundness.

Since each of the transformations can be implemented in a way

that incurs a �xed poly(_) overhead, the theorem follows. □

Corollary 3.2. There exist poly(_, log:)-succinct index BARGs
for BatchCSAT and poly(_, log) )-succinct SNARGs for P under ei-

ther

(1) The $ (1)-LIN assumption on a pair of cryptographic groups

with e�cient bilinear map, or

(2) A combination of the sub-exponential DDH assumption and

the QR assumption.

Proof. By [11] Appendix A, we know that under any of the

DDH, QR, and $ (1)-LIN assumptions, there exists a rate-1 string

OT scheme to ful�ll the hypothesis of Theorem 3.1.

Moreover, [19] constructed an index-BARG scheme forBatchCSAT

with sublinear succinctness under$ (1)-LIN on bilinear maps. They

�rst construct a scheme with (polylogarithmic online communica-

tion and) a large crs of size poly(:,<, _); instead of reducing the crs
size by using Section 5 of [19], we can simply execute :1−X copies

of the scheme with batch size :X (re-using the same short crs) to

immediately obtain sublinear overall succinctness (choosing small

enough X < 1/2).
Additionally, [3] constructed (Index BARGs were not de�ned in

[3], but it is easily seen that their construction satis�es the required

e�ciency property. [3] Corollary 1 and Corollary 2 establish ( |� | +
:)poly(_) e�ciency for�-index languages; by combining groups of

√
: statements together, we obtain sublinear succinctness. Similarly,

the notion of semi-adaptive soundness was not de�ned in [3], but

their unmodi�ed construction satis�es it.) an index-BARG scheme

for BatchCSAT with sublinear succinctness under sub-exponential

DDH and QR

Given these building blocks, the claimed results follow by Theo-

rem 3.1. □

Theorem 3.3. Assume the existence of rate-1 String OT with veri-

�able correctness ([11] De�nitions 4.1 and 4.2), or more generally a

SEH family with succinct local opening ([11] De�nition 3.3).

Then, poly(_, log:)-succinct index BARGs for BatchCSAT exist

if and only if poly(_, log), log# )-succinct �exible RAM SNARGs

with partial-input soundness ([11] de�nition 6.2) exist.

Proof. [11] Lemma 4.5 tells us that the String OT building block

implies an SEH family with succinct local opening. In turn, [11]

Theorem 5.2 implies that an SEH family with succinct local opening

implies the existence of a flSEH family.

The equivalence can then be established as follows:

• By [11] Lemma 3.9, succinct index BARGs for BatchCSAT

(along with a SEH family with local opening) imply succinct

index seBARGs for BatchCSAT.

• By [11] Theorem 6.3, succinct seBARGs forBatchCSAT (along

with a SEH family with local opening) imply �exible RAM

SNARGs with partial-input soundness.

• By [11] Theorem 7.1, �exible RAM SNARGs with partial-

input soundness (along with a flSEH family) imply succinct

BARGs for BatchCSAT. □
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