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ON THE SECONDARY MOTION INDUCED BY OSCILLATIONS IN A SHEAR FLOW

SECTION I INTRODUCTION

One of the most basic and challienging problems in filnld
mechanics is to obtain an understanding of the various physi-
cal mechanisms involved during the transition from laminar to
turbulent flowe It could be called the missing link between
the two regimes of fluld motion, This problem has been sub-
jeet to a great deal of theoretical and experimental research,
eapecially over the last decade, and considerable progress
has been made to bridge the gap. However, there remains a
vast amount of work still to be done before our knowledge of
the transition phenomenon 1s complete. One may anticipate
that the final answer will include many simultaneous effects.

In order to study the breakdown ot laminar flow 1t is
necessary to follow the growtn of a disturbance superposed on
the basic flow. If this disturbance is of very small ampli-
tude the equations can be linearized and one can develop the
80 called linear theory of hydrodynamic stability. This
theory has been investigated in great detail and a survey of
the subject 1s given in the monograph by Lin [1]. There can
be no doubt that the initial trend of a small disturbance

will be adequately described by the resulta of the linearized



theory. Indeed there is now ample experimental evidence to
support this fact [2]. However as the oscillation grows the
non linear terms iIn the equations become important, and must
be included in the investigation.

It has long been recognizea that the inclusion of the
non linear terms adds two important new features to the pro-
blem. Firstly ﬁhere 1s the effect of the Reynolds stresses
in producing a redistribution of momentum and so a distortion
of the original velocity profile, and secondly the excitation
of higher harmonics of the original oscillation. For finite
amplitude oscillations the modification of the basic flow
through the action of the Reynolds stresses can be guite
appreciable, and this will in turn modify the rate of ex-
traction of energy from the mean flow to the disturbance, and
so the rate of growth of the disturbance. Meksyn and Stuart
|3] have caleculated these modifications for tne case of flow
between parallel plates, and also gave some calculations
showing that the production of higher harmonics pleays a less
important role., Thelr results show that an increase in the
amplitude of the oscillation produces a lower eritical Rey-
nolds number. More recently Stuart [4] has given a somewhat
simpler analysis based on energy methods and has obtained
good agreement with experiment for the case of flow between
rotating circular cylinders., Both these discussions consider

only two dimensional disturbances and for the case of ghannel
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flow the modified flow profile does not show a higher veloci-

ty gradient near the wall which might be anticipated for a
"more turbulent flow." The importance of the criticel layer
region as the "weak spot" of instability hus been stressed
by Lin [5]. He has shown that for disturbances in a paral-
lel flow all the harmonic components of the osecillation
simultaneously become important around the eritical layer,
before the amplitude of the fundamental is large enough to
cause any significant distortion of the mean flow.

The search for a sultable mechanism to describe the
onset of turbulence has aroused much interest. Several very
plausible theories have been proposed and all possess some
element of truth, although no single one appears to be the
complete answer. Landau's concept [6] of successive instabi-
lities seems intuitively very reasonable, and enables one to
picture the appearance of additional modes of oscillation
corresponding to a sequence of critical Reynolds numbers.
Gortler and Witting (7] have proposed a theory, in line with
Lendau's eonjecture, based on tne curvature of the stream-
lines causing a periodic vortex structure. There is experi-
mental evidence to support the existence of secondary vor-
tices although there has not been any definite confirmation
of the phase relationships involved.

A horseshoe vortex structure as the fundamental ele-

ment of transitlon has been proposed by Theordorson [8], who
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also suggested that two dimensionali disturbances are unimpor-
tant during transition. This latter conjecture is strongly
supported by the recent experiments of Schubauer, Klebanoff,
and Tidstrom, which we shall briefly discuss below [9] [10].

The presence of longitudinel vortices during transition
has been reported by many experimenters, These cen be ob=
served using dye and china clay techniques [11] [1Z].

Mention must be made of the relative importance of two
and three dimensional disturbances, This is a current issue
that has attracted much attention. On the basis of linea-
rized theory, Squire's result [13], namely that three dimen-
sional disturbances are equivalent to two dimensional ones
at a lower Reynolds number is applicebie, and so to estimate
the onset of instability one need only consider two dimen-
sional disturbances, However, no such result can be expected
to hold for oscillations of finite amplitude. Indeed one
would strongly suspect that as turbulence is an essentially
three dimensional phenomenon there must be a stage during
development when the three dimensional disturbances tend to
dominate., Two dimensional theory cannot be expected to
suffice, This simple observation suggests the obvious neces-
sity of a theoretical investigation of three dimensional
effects,

Recent experiments also poiﬁt strongly to tne desirabi-
1ity of such an investigation. Notable among the vast array



of experiments probing the phenomena of transition is the
work of Schubauer, Klebanotf, and Tiastrom, at the National
Bureau of Standards. Most of their work nas concerned boun-
dery layer transition on a flat plate. Pernaps the most
startling and significant fact revealed by these experiments
is the almost periodic spanwise variation of intensity with
peaks and valleys occupying fixed positions forming streets
of high and low intensity. Thls periodic spanwlse variaticn
causes a warping of the velocity profile, the turbulence
appearing to originate at these peaks and to spread Into the
valleys. More recently further experimental work on this
spanwise variation has been done and we shall have cccasion
to refer to it at a later stage,

This brief introduction points tothne multitude of ef-
fects observed and predicted during transition. If it serves
no other purpose at least 1t does pose the question as to
whether there is any advantage in a theoretical approach
which does not include all the non linear terms., The complete
solution of the non linear equations should automatically
include all of these effects. A detailed theoretical con-
sideration of all the non linear terms has been advocated by
von Kdrmdgn, and 1t is in this spirit that we have undertaken
the present preliminary investigation.

Our task 13 now quite clear, We require to examine

finite amplitude disturbances paying special attention to



the three dimensional oscillations, It is to be stressed
that this will be done by setting up a systematic perturba-
tion from the linear theory, and tnat & purely formal mathe-
matical approach is adopted, independent of empirical results.

It is difficult to give a detajled explanation of our
conclusions before the actual calculations have been made,
Therefore, at this stage only brief comment will be made on
the interpretation of the results, A detailed deseription
is given in Section V.

The quantity found to be of prime iImportance is the
mean secondary vorticity in the downstream direction., One
term in thils vorticity has a periodic spanwise variation and
produces a redistribution of momentum in planes perpendicular
to the direction of flow, It is this momentum exchange that
is responsible for an alternate steepening and flattening of
the wveloclty profile, causing a warping or crumbling effect
on the basic flow. Explicit formulas are obtained for the
rate of growth of t he second order mean motion. Superposed
on these secondary vortices there is tne vorticity of the
primary oscillation itself, This is periodic in the down-
stream direction and so the two effects combined should pro-
duce alternately partlal reinforcement and cancellation over
each wave length.

The results obtained are applicable to a general paral-

lel flow; but for illustrative purposes we have restricted



the detailed calculations to the case of a shear profile.

It 1s to be noted that although our interests are chiefly
with three dimensional disturbances we do not discount two
dimensional effects. The effects calculated by Meksyn and
Stuart are in fact included in our analysis. It is believed,
however, that in most situations tne spanwise profile dis-
tortion will be the more important mechanism during transi-

tion.



SECTION TII MATHEMATICAT, FORMULATION

We now proceed to give the mathematical formulation on
which the subsequent calculations will be based. As mentioned
in Section I, the caleculation of the second order vorticlty
will play a key role in this development. To this purpose it

would suffice to use the vorticity equation, namely,

CIAR QW dus 1w
it U TN TR e (2.1)

This will be given at the end of this section. But in order
to calculate the second order velocities 1t is convenient to
proceed directly from the equations of motion, together with

the continuity equation. That 1s,

Qv

UK —_
205 0, (2.2
an 3 a ¢

where we have supposed the fluid to be incompressible and all
quantlitlies are expressed in dimensionless tform.
We consider a basic flow U =U,ly), and wish to

trace the growth of a wave of small amplitude propagating in



the x direction and having a z variation in its ampli-
tude, that is standing waves in the spanwise direction.
This 1s not the most general infinitesimal oscillation, as
a purely two dimensional component could be superposed. In
the present investigation this two dimensional component of
the primary oscillation is neglected and we conslider only
the three dimensional effects. Some justificution is de=-
sirable in taking this apparently drastic step, and also it
is pertinent to add some qualitative remarks as to wnat the
additional characteristics would be if the two dimensional
component were not neglected. From a theoretical viewpoint
an investigetion of purely three dimensional oscillations
will yield the effects that originate only with these dis-
turbances. Of course in the practical situation these ef-
fects must be present to some degree for undoubtedly there
will always be some spanwise irregularity in the amplitude
of the oscillation. The gquestion then arises as to which
component wlll be dominant as transition is approached. We
believe that the three dimensional wave is the more impor-
tant one, There 1s strong experimental support for this
conjecture. Schubauer and Klebanorf in thelr experimental
reports say that transition never occurs without first being
preceded by a strong warping of the wave, Near the point of
breakdown of the linear theory and the onset of finite am-

plitude effects a typical ratio for the amplitudes of the
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two and three dimensional waves would appear to be about % .

What modifications are to be expected if the two dimen-
sional component of the primary oscillation is not neglected?
Firstly there will be the pureliy two dimensional effects,
namely a spanwise independent distortion of thne basic flow
and the generation of higher narmonics, exactliy as calculated
by Stuart. Also present wiil be second oraer interactions
of the two and three dimenslonal osciilations, The latter
will produce two components, the first being of high fre-
quency and the second of a guasl steady nature. These inter-
action effects can be expected to be more important than the
purely two dimensional ones; but neither should be comparable
to the dominating three dimensional disturbancess

Let a and B be dimensionless wave numbers associated
with the x and z directions, these being the downstream
and spanwise directions respectively. Limiting ocurselves to
a primary oscillation having a sinusoidal spanwise varistion
of amplitude, we may assume the velocity components and the

pressure to be of the form,

v b‘: 41 Z,t} =y ( 9,z ,t) + z [Um(g,l') érﬂ + Um.[:j ’lrﬂ] Cos rﬂz

=1

¥ Zz [Ull‘(lﬂ,ﬂ ree X v UL“(}; c-:.rorﬂ’ (i-l‘f)
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vinyzt) = Viyzt) +Z[\l«(3,t)em" - u,b) Ar“]oosrﬁz.
=\

+ Z {VL )" +\{UT5 )eﬂr‘ﬂ, (2.9)

r=2

W,z t)= Z[w ye™ w"‘gt)é"’“‘]smﬂz, 9.6)

=i

Py, 2= plyyzt) + ZE e 4 D™ Yuscdz, (1.7

An asterisk has been used to denote a complex conjugate,
and the term of zeroth order in F(l;‘j;z,t) 1s taken to be
the prescribed external pressure p,(x)., Bars denote mean
values taken with respect to x. Superscripts relate to the
order of the harmonic involved and subscripts to the orders
of magnitude of the various quuntities, Therefore if o is
taken as a scale representative of the amplitude of the dis-

turbance, we have,

U‘”( )t] — Q" u‘:‘%'\') + a"zuf,', L‘j,f) i ) (1-?)

() r )
Ult)= a Uy edWUng e - 0
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If the terms of order iy and higher are neglected

we have the usual linear theory. As this analysis is of an
exploratory nature we shall neglect terms of order o’ and
higher. In a complete investigation it would be necessary
to include all the higher order terms, This would enable us
to trace the growth of a disturbance through to fully de-
veloped turbulence., However, the analysis would be greatly
complicated by the inclusion of these higher order terms
and we shall therefore be content to work to this approxi-
mation,

Having set this limitation it is now desirable to drop

the superscripts and revert to a less cumbersome notation,

Anticipating the z dependence, we write,

Uly,zf) = vly) +a* _(Uw(\j,ﬂcos?gz "”b(‘i;ﬂ) +O(a“), (2.10)
vly,zt) = &(V,(g,t)us?ﬂz +Vb(5,t)) + 06", @.1)
Wly,zt) = oWy t)sndfz +wylt)) +0e, @.2)

pluzt)= poo + omlytiastz vplyd) + O, @.3)



(1)

viyh = aulyt) « O(e?),

av,(yf) + Ofa?,

<f'\

o
A
]

wWlyt) = awlyt) + Ofa’),

Pluf) = aplyt) +0(@Y,

Um(‘ﬁ t) 2 (fug_(tj,t) & O (q‘*)’
m(‘j f)=a Vz(tj t) i O(q‘*)

Wyt = Ewalyt) + 06

Py, t)= " p,(y,t) + O(@aY),

b = & liyt) + 0

z)

Vgt) = \“‘d ) + O(a",

13

(2. 14)

(2.15)

(2.16)

@.1)

@.18)

- (3. 19)

@.20)

@,21)

(2.22)

2.23)
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If the assumed forms for v, 6 ¥V, W, p are now substl-
tuted into the equations (2.2) and (2.3) we obtaln sets of
partial differential equations for the determination of the
various functions. In & given physical situation there
would also be corresponding sets of initial and boundary
conditions. The substitution is perfectly straight forward,

but tedious, and is therefore omitted. The results yleld,
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The set of equations (2.27) are the familiar ones of
the linear theory, and the sets (2.28) and (2.29) are those
determining the induced second harmonics, one of these being
purely two dimensional. The sets of equations (2.25) and
(2426) decide the way in which the non linear terms will
distort the original velocity profile., The velocity com-
ponents U, V, w,, I1nvolved in (2.26) result in a purely
two dimensional distortion; but are induced by the three
dimensional primary oscillation. This is a slightly more
general effect than that considered by Stuart. His analysis
would correspond essentlalily to the case £=s0. Our interest
centres on the three dimensional distortions determined by
the functions Ua, Va, Wa, in the set (l.25). These
modifications to the velocity profile will be sinusocidal in
Z and it might be anticipated that they will cause & span-
wise periodic steepening and flattening of the original
velocity profile., It 1s this three dimensional "crumbling
effect” that we now investigate.

For this purpose it is convenient to use the mean

vorticity components @-' XL,T;.} where,
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Thus we have,

- ]

g = ! (Ea M}nmz +gb) + O(a"),

a B, a'(ﬁhsmMz ) /‘LB) i O(a“), &(2.?0
Y = "% ¥ a’(Sacost ¥ 55) + Ola%), 2

where on referring to equations (2.10) (2.11) and (2.12),

2y
oW : -
gb - 5_E:J_b ’ A’LB = O s Sb = "%%jb . (7\.33)

The differential equation governing E’a is determined
by eliminating Pa from the set (1.25). We find,

A_}% I ng ) L ATARS w.wf) *(LEB; *ng)(VMT VT
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This last equation (and two similar ones) can, as we re-
marked earlier, be obtained from the vorticity equation
(2.1) on taking averages in X. In fact a very much more
general form can be obtained without approximation, or
assumption on the spanwlise dependence of the oscillation.

If u',v' W', are the components of the oscillation it

1s easily verified that,

% 'AZ)VW *‘A‘Z'WZF);—'-%—{-[&—? +ﬁf}?. (2.35)

%’l?:\
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SECTICN III CAICULATION OF DISTORTION EFFECTS AT

HIGH REYNOLDS NUMBERS

For flows at high Reynolds numbers the velocelty field
willl conform to the inviscid equations as a first approxl-
mation, except within the critical layer region, where
viscous corrections would be needed. A discussion of the
subtleties involved in this limiting process can be found
in Chepter B of Reference [1]. Indeed the invisecid limit
is justifiable for the case of amplified disturbances and
for neutral disturbances as a limiting case. If the com=-

plex wave velociﬁy is < = c. +ic:, then C, represents

iy
the wave speed, and C;% O 1implies amplified, neutral,

or damped disturbances respectivelys It 1s convenient to
introduce the amplitude functions for the primary oscilla-

tions; these are denoted by a circumflex. Thus,

—ilerct

U.[‘j)ﬂ = 8\\‘536 : and similarly for v, W,, and Pi.

In studying the growth or decay of an oscillation we
are interested in the case when c; 1s close to zero.
For the case of large Reynolds numbers we can find quite
slmple expliclit formulas for the rates of growth of the
second order veloeity modifications. For this purpose it
is convenient to rewrite equations (2.,25) and (2.34).

Dropping the viscous terms we have,

%—-\5‘ :,-.?ﬁwl =0, (:_“)
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The form of the solution is so written that the limiting

case c. —=>0 can be readily discussed, Clearly the
arbitrary function of integration gives the initial value
of em, which we may take as zero for the purpose at hand.
We note in passing that a more general result would be
obtained if use were made of equation (2.35).

Using this result for EL the time dependence of the

velocity components can easily be found. The results are,

oy
P
I
\
ol
=Y
&
”#—-
0,
X
B
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and, d__\&a. ¥ ?KG"_ = — Xﬁ-u) . (3&3\

These equations clearly show that the second order
mean velocities (which are sinusoidal in z) grow exponen-
tially in time, or in the case o1i neutral primary oscilla-
tions as powers of T . Similar growth rates can be found
for the purely two dimensionali distortions. The most ine-
teresting feature of this analysis 1s that it shows that
the non linearity induces a second order mean vorticity
having a component E“ in the downstream direction, It is
this mechanism which produces a spanwise periocdic momentum
exchange and causes a periodic warping of the original
velocity profile,

In the case of neutral disturbances, which can be
properly treated in the limit as c; >0 , we also get

a build up in the second order veloclty and vorticity

components, Using, lim efﬂ“t_) =ft and that
e Qexc; '

o P W, T T
c.=20 k?*fﬂl g E 4 we have for a neutral

disturbance,
0o == doy Lt ot 5 w=Rt;
d% 5 o ’ @ s
Wo = Qak‘j)t ) fat. PR Xak‘j)t J

3.1k



Therefore, even for neutral disturbances the secondary
flow will build up and eventually dominate.

The above results can be applied to & quite general
parallel flow problem. A knowledge of the solutions based
on linearized theory is sufficient to obtain results for
the rate of distortion of the basic flow. It is convenient
to 1list these mean second order gquantities for future

reference,

-

U.;COS:?KZ :{ du, | Vay) (aﬂ'—l——iwc ) ﬂ {%Ct Bws,?/éz
R T e Ic:

Vo tos 0z = [GQB)L o )}cosﬂg Z,

9\"<C..
&(3,\6\

\NaS\anz——[ A\j)( i‘“t lts;nwz

iof G

Eas\‘nwz-—-‘-{-s\(& ( e ﬂsln?gz

2ec;

—

We now perform these calculations for the shear profile

Us4) = tanh y. Suech a calculation will shed considerable
light on the mechanism involved,
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SECTION IV  APPLICATION TO THE CASE OF A SHEAR PROFILE

In this section detalled calculations are given for
the case of the shear profile U,4)=Tashy. Such a shear
flow can readily be approximated experimentally by mixing
two parallel streams, and so the theoretical predictions
should be capable of direct confirmation. At the time of
performing these calculations no experimental results, for
a shear flow with speclal attention to spanwise variations,
appear to be available. Such experiments would be highly
desirable.

If the equations (2.27) for the primary oscillation
are rewritten in terms of amplitude functions, we have, on

neglecting the wviscous terms,

e, + % L AR =0 (1. 1)

(-0, = - d@, .3)

A g 5, ' ( )

‘,_
-3
&

\
o
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and so by elimination,

For u.,%):—"f‘o.nhkj we have a point of inflexion at \d=O,

and there is a neutral oscillation [1] gilven by,
?
V=sechy ;e fi=1 =0. (1 6)

In fact one can set up & regulsr perturbation In c, about
this solution, using the method of variation of constants
[1]. As our interest centres on the case c. small, we
shall content ourselves with the first term of this per-
turbation.

A complste solution of the linear system corresponding

to the neutral oscillation with c=0, «*/f'=l, 1is,

3| = ;.‘;(_(gzcogec\‘\g — SCC‘\% Jﬁ,nl'\ \j] | (L¥1J

v, = sechy, (4.9)
\l’\\l‘ = Ba:sechxj, LH—.Q)

A

P= L."B‘sech . 4.10)
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Using these solutions in equations (3.5) and (3.6) we find,

iabﬂ = l_L_g_, [(\—-g?)coskzﬂ —@1, (L, 11)

\{QH) =0, [Ld-\])

As these equations have been obtalned for an inviscid fluid,
and for large Reynolds numbers (which 1s the case under
consideration), they will be reliable solutions outside the
critical layer, The singularities induced in G‘ ’ \ﬁl\, and
QM at u5-=0, are artificial ocnes in the sense that they
would not be present in any real fluld. On a c¢loser exami-
nation the singularities are seen to arise from the cross
wave component of the oscillation, and it can be remedied
by ineluding the viscous terms, as we shall describe below.

Corresponding to the neutral oscillation \7, -=sec\'u3’
the two dimensional component of this oscillation is given
by Ll + BQN = sechy Tan\rn;S / However the ecross
wave component is 58 = A0 + a'.aru'\\;. = -ﬂgsechg\j coth Y,
and has a pole at =0. The complete Tlifferential
equation for z is obtained by taking a suitable combil-
nation from the set (2.27). It is,

(g% __{toc?\fanlwﬂ + ﬂ& =ARsecky, (k13)
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Formally putting R infinite we have the inviscid

solution,

& T scahg 60“1\5 (e 1k)

It is well known that the critical layer has a thickness
of order ("R).j and it is within this region that the
solution a will be moaified by a boundary layer type
correction,

A formal method of dealing with a homogeneous second
order differential equation, involving a large parameter
whose coefficient has a turning point, has been given by
Langer [15]. The extension to the non homogemeous prob-
lem is very simples We sketcn the method as it applies
to the problem at hand. For convenience we write )C::.J{;
and first conslider the general solution &5. of the homo-

geneous equation:

d%‘ - [iXTﬂn\'\lj + i} a‘ S (4.19)

Let, o) =] Ty 4, - _ Yok [y ~ fur Ty, (1 1)

w™

zl4A) =ix }\ (3.(0) (.17
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-t- Lt
= )\ 2
Qu) K}w) (G) ) (L4.19)
wu) = Qu) he), (t.19)
N\'\cre, %" +zh =0, (H-QO)

A
A straightforward substitution then snows that | satisfies

the equation,

dﬁj iy [D:qunh'j + %l-'} ¥ L0 (20)

i
%— being regular and non zero in a neighborhood of 5"-'-0-

Equation (li.21) is considered the approximating differential

-2
equation for (4.1l5), and correct to order l we may
» A
write ¢‘ = Ll’l .

The solutions of equation (4,20) are the modified
Hankel functions of order one-third, \\‘&z) and L’lz.tz),

L 1
where, h(2) = (%‘-'Z%')B H(: (%z%)’ (k.22)

and 1’\,,(2) -:-l%z )é 1—% \%21‘)_ (4.23)
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Therefore as Q(g) is a known function of y , we can write

the general solution of equation (l+15) as,

¢. Y) = (Hl\\‘@) +Qz\'\;(?)} QH), (.24)

where Q. and pt-,_ are arbltrary constants,
Returning now to the non homogeneous problem the
solution 6@5) 1s required to be zero at y=0, and to
approach the inviscid solution fopr b’R)%ﬂ large. An
application of the method of variation of constants

readily shows that this solution is,
By) = *(’-{%%Qluisecﬁj L), (+.25)
ot

wnere | (z) 1s the Lommel function defined by,

L(Z) al X:(H’U h,.@) - \'l;\t)h‘(z-))df’ . 20)
W “\,Lz), \1,,(21)

W U\\@), \'\.,,(z)) being the Wronskian of the functions

h\z) and h,iz). In the usual normalization for the Hankel

functions,

Wihe ha) = - &i@)‘* , (k.27)
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The Lommel function L#(z) behaves like % foyr

|z! large and satisfies tne differential equation,
2
dJL A e (+.28)
z’.

The method of obtaining the preclse correction using
the Lommel function has been included for two reasons.
Firstly its use would be required in an exact treatment of
the problem, and secondly the form of the viscous modifica-
tion near tj—.:b is apparent., Indeed, to obtain the most
important results of the subsequent analysis 1t 1s neces-
sary to consider only the form of the modified quantities.
Subscripts m will be used to denote quantities with the
viscous correction included. Clearly from equation (L.25)

~

the modified solution for N\,y)will be of the form,

\(muﬁ) = Lu) %@«) ) where i ‘:ilhf, (.29)

and € 1s considered as a smuil parameter of order L—(R)‘Lg
Here iq(‘i\, calculated on the basis of ean Inviscid fluid,
has a pole of order three at \j::O, and behaves like

e it for large |y| (see equation (4.11)). R((K,) is of
the nafure of a boundary layer correction which is required
to have the following properties, %@L) is to be a regular

even monotone function of /h, to have a zero of order at

least four at 4]'-.=O , end to tend to unity in a strong
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exponential manner as M >co. For the present, these are
the only properties assumed for R@L)

We now calculate the second order velocities induced
by the vorticity distribution AXMM), defined above,
The differential equations to determine \7,\(\5} y \:t.., Lg)

are obtained from (3,12) and (3.,13). These are,

d\lm I ngﬁ,m -,-_O’ ([1'30)

£l

e T TP [4.31)

Rl o

Therefore b'y elimination we have,

i, AN =20 im, (1.32)

1

I

Qr\d Nm == dj—"—'-\ 3 (h’.%g)

=y
We require the solution of (Le32), for 570’ subject

to the conditions that Cf,,., (o) -==O} ana Qm L‘” >0 a5
Y200, G"“U) and QMW are derinea for ‘jéo as odd and
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even functions respectively, namely,
[ A . &
V) = =Vl 5 WalY) = Waly) | (1.3 0)

It is to be noted in passing tnat the solution of (4.32)
with §(M=O gives two dimensional potential type solutions.
The solution of (4.32), satisfying the conditions at

infinity, can be written down in explicit rorm by the

method of variation of constants, We have,

" Y A

i == 9™ U0 soh 260t &, li.35)
and,

A . 3 A

\-\{mm=—-—-f‘\eﬁwﬁj = X Xmlt)cos\\.?;g(tj—t) ar. ('-l-.%)

where both integrals are clearly convergent.

For \Tm(o) =0 . H 18 determined as,

B = | ko) sah2gt o s

(= =]

0nd S0, W, 0) = )zm@ W (4+.3%)
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A A
Using this value for the constant H) \Imbl and W )

can be rewritten in an alternative form, convenient for

small values of Y, namely,

i = | Vbsattl 0 —{[R hdh, (o0

""\‘MW o r cosh?g c)dr + (S )&’ tmcosmgg (U 0)

0

Approximate values for the constents ﬂ and \Rl,,.(o]
can be obtained in the following way.
Xm¢) can be expanded as a Laurent Series about

of the form,

A
a
Kalt) - ok T s a (.1e1)
where for the case at nand,

6, = 24(1-247. (e

= BT 3
Putting T = L and y = _%.v | we have from

equation (L4.37),

e K < ‘}\(Q[\e_%’) %ms;nk(zﬁr) 7, (4. 43)
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and so,

h - L"““EE L Q)Q'\ ar + 0. 3ok

Temoult o
o

In a similar way,

Nalo) = Lrn., R\T ) de ..Lkﬁa[frt%mdr F00), (4.4

O 0

Also from equation (L.29) using the same transformation,

. &A‘%ia@\%@]sm\,im o U%iakd)kmeff;r\sm\nzgﬁ\,

A 0
0 (4, 40)

and thus,

V) = . g -t %m A — L+a., X %\]’\d‘\’ + 00), (k.k1)
£

Thus for 4 large,
Vold) —> ——‘*3:2-_5 S 8 P)tr)df +00).  (wus)

Therefore QMQy tends to a constant value of order
%’ as we approech the outer edge of the critical layer,
On comparing equations (L.4ly) and (Le.48) 1t is seen that

it 1s this term that induces tne externul potential motioen,
H -284
e '
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This analysis shows very clearly the importance of the
critical layer, Although viscous forces are negligible
outside the small region 4 = OQ.E) , We see that they are
indeed responsible for inducing & potentlal component to
the secondary motion, which 1s dominant far away from the
critical layer. This two dimensional potential flow 1in
the y -z plane may be described as being due to a
source distribution at the critical layer of strength
@) = q. cos 2z per unit length., Here g, = - g’r’
and H 1s given by equation (lo.llt). This source distri-
bution is of O(%t), and determines the direction of
the circulation at infinity.
For the purposes of calculation we have taken
EV&)=|—~€4¢: This is used in place of the exact viscous
correction, as given previously in terms of the Lommel
function., The previous analysis shows that the only pos=-
sible discrepancy that can arise from this assumption is
in the numericel values within the critical layer. No
qualitative disagreement can result, With this choice of

%Vh), an integration by parts shows that,

So #A\ — & i = £T0), [y

ind VL") - TR 4,50
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On using these results we have from equatlons (4.y2),(L.43)

and (Lehl),

N - 832(\—341)[’&) + 0), (1.51)

W) = ( Flg )F(%) rO0),  ks2)

and so the final expressions for the second oraer velo-
cities become,
A

2 A
Oy = = 5€hy Vo, (+53)

Smwif

o0

A | -fbgg i\ -4 COsul' /g][l 1 ]Sm\‘\wt‘j’ﬂ‘“, (L"-'SL")

H‘ML g‘jly}_[_(l_ Yeoshl - B][ Jc.os\n?/g fu' ‘+5'a

sinh 2£
o0



38
These are convenient forms for Y large. Equations
(L.39) and (L4.40) are more suitable for y = Ole).
It 1s to be noted that the A component of the secon=-

& H
dary vorticity - xm , Will change sign if A>3

2

(and s0 «Z< 1 ). We confine our attention to the case

2
2
A 412— , corresponding to fairly slow spanwise variations
of amplitude. This case seems more likely to fit the

precticel situation. If /4° >3  and the secondary vor-
ticity changes sign as Y increases, the physical picture
would have to be modified. It 1s to be remembered that
;—;— is half the ratio of the wavelengths in the z and X
directions respectively.

The numerical calculations have been performed for

the typlcal case 4-_—_ ¢ has been taken as -% corres-

L.
ponding to R = 0(50‘) . A smaller 5 would merely confine
the rapid variations to a closer band near ye0, and induce
a larger potential component for the external f low, The
cholce ﬂzi is also convenient in that for Y.t f’
where we may take BQ—)& |, the integrals can be evaluated

by elementary methods. We have, (for y >z ),

G,h[tj) —-fa? +t&oﬂ‘nj +2+qnl'\tj +3Sink5 \Dglt&nl\%ﬂ, (‘1‘.5(,)

Wndg) = =AY+ 4 [cnedy ~Zsey -3 - Sy bty ] (o5



39

Numerical integration methods with steps of Yy = =
were used to calculate QM omcl \:Jm near ‘j‘—"O. The
resulting amplitude functions G«\, Cm’ and \ﬁm' are shown
in Fig. 1, for y (). O, and Vn are odd, and Whm is
an even function of y It is to be remembered that the
actual second order velocities also huve & periocdic =z
dependence and an exponential dependence on time (see
equation (3.15)).

Some clarification of the physicai situation is ob-
tained by finding the projections in the Y-z plane of
the streamlines for the secondary flow. These are found
from,

dy 4
ST | = : L 5%
Vin C.o‘sz,gz Qms{nzgz ( 4

On using equation (4e30) we have,

Mo _ 24t ?e 4, [ w.59)

~
Vi
and so the streamlines can be obtalned rrom the equation,

\7m ﬁ\“?/gz = consfqn"_. (H—LO)

For the case Kf— -%: $ = L, these streamlines are

5
shown in Flge 2. The actual streamlines will be, of

)

course, in the form of distorted splrals,
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Lastly we shall require the projections on the y-z

plane of the streamlines of tne primary oscillation, For

this purpose it is necessary to inciude & viscous modifi-

¢ation for \'RJ‘\xj\ . On assuming \:\\hm = /gcosech\j g(h),
A
and recalculating Xm using equation (3,5) 1t 1s found
&
that taking qh) = [ — 6'4' } gives good agreement
~

with X, over the whole range of .
With Vﬁ'\m = 5@5:(‘)\3 U ___e"E-'za)*) ) the stream-

lines for the primary oscillation are found by solving,

dy _ d=z _ [t 61)

V. cospz \Rh,hﬁfngz

Integrating we find,

3 iy
] ot~ *' |d
Sin )42 = s(nﬂz, eﬂj; °“‘t( ’ ),

(14.62)

\\

where Z=2Z, 6 wnen y=0. TFor the case ﬁ-—*é,i

2

these streamlines are shown in Fig. 3.
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SECTION V PHYSICAL INTERPRETATION OF THE RESULTS

In Seections II, III and IV, calculations have been
made for t he secondary velocitles 1nduced by oscillations
of finite amplitude. It is clear that thiz mechanism in
which the secondary vorticity produces a spanwise redis-
tribution of momentum will apply to non linear oscillations
in any parallel flow, although the phase relationships may
differ from case to case, Therelore in this discussion we
shall restrict ourselves to an interpretation in the case
of the shear profile for which detailed resuits were ob-
tained in Section IV.

For the x independent secondary 1'low we have velocity

components given by, (see (3.15)).

Up t:os-?/gz = Um(‘ﬂ cos,%g (e ‘——Ll 20« \‘) (5,1)
2= c;)

Vi un%z = ‘:Im\ﬁ)ws?!z (@h_;t:__l), | (5.2)

Wasndfz = smfzgz( 2";*6 ) (5.3)



Also the X component of vorticity 1s given by,

Basio?z - '&mwsth%z (6’\;5—__.), (5.%)

A A & A
Here Unlg), Vmly), ?(,,, 4y), are oad, and Wu(y) is an
even function of y.
The signs of umcos,?/fz sy Vm CoSQ,gZ, anrJ V\IMSI'n?,g:z,

in the cell y >0, 0<z< ¥, (wnere £,.5n242

is negative) are indicated by tne tollowing:

m z=0, Umwﬁ?gz =0 ;. "Nm C%ng 40', W $inQ[;2 =0,

= = . = iy i 2 "Df Smu“ .
Bt 2 %E, umoos?gz =0 3 \Imcos?gz =05 Was n?gz 20, e ‘ﬂrqeg-

0(r7-=;‘;-: Umﬁﬂsigzéo; VnCOSQBz > Y Nmsn'nﬂgz =0.

Therefore in this region we do have a consistent

physical picture, with a large scale eadying motion as

indicated by the streamlines in Fig. 2. The nett effect
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of the secondary flow is to induce a two dimensional cellu-
lar structure on the motion (Fig. 4), with momentum beling
fed in toward the viscous region at Z=0, 1:% 5 12%%..,
(where the amplitude of the osclllation is maximum), and
extracted at t he intermediate spanwise positions

Z = 4_._%:5, IZZJ/IS W (where the amplitude of the
oscillation is zerc). This lurge scale exchange process
produces an alternate excess and defect of X momentum
at these points, In turn, it is responsible for a span-
wise alternate bulging and thinning of the original
velocity profile., From Fig, 2 it can be seen that this
effect should be most pronounced at the outer edges of
the critical layer. The flow profile gradually beccmes
more and more warped until it eventually crumbles com-
pletely into turbulenca,

This pleture is somewhat modified by the effects due
tothe primary oscillation which is periodiec in X and
has a spanwise periodicity 2% (twice that of the
secondary rldw). The Y and =z components are in pnase
and produce the streasmline pattern inalcated in Fig, 3,
the sign of the vorticlty reversing itself every half
wavelength in the downstream direction. This x-vorticity
of the primary oscillation is en even function of Yy and
is of maximum effect at values of x where the amplitude
of the downstream component of the oscillation is zero.

This vortex structure 1s indicated in Fig. 5.



The steady vortex structure of the secondary flow

will therefore be modified by tne periodic switching on

and off of the primary osclllation. Superposing these
two mechanisms there results an alternate partiali re-
inforcement and cancellation of the two motions, each
half wavelength as we move downstream. This superposi-
tion is shown diagrammatically in Fig., 6, where for
1llustrative purposes it has been supposed that the re-
inforcement and cancellation is complete. Initially at
the onset of instability the effects of the primary os-
cillation will dominate; but eventually as the instabl-
lity becomes more violent the secondary flow, having a
faster growthrate, should triumph.

It is now possible to summarize the most important
features of the mechanlism discussed with reference to
the shear profile, If one proceeds downstream taking
cbservations over one spanwise period of the primary
oscillation (say 2z — —-%. | 8 7_-_».»/3? ), the theory
would predict the following effects to be prominent.
(1) A gradual bulging of the profile at 2z =0 and

z -.-_-:_% , and a thinning of the profile at z=:;:?-
(11) The appearance of two systems of four vortices
intensifyling once each half wavelength, as indi-
cated in Fig, 6; their effect being strongest
when the X component of the primary oscillation

has zero amplitude,

4l



(111) Wwhen this vortex structure is most apparent
(twice each wavelength) it should be accompanied
by an increased rate of bulging of the profile
at z =0, alternately above and below the point
of inflexion,

(iv) The points where there is an excess of
momentum, such as z=(0, should show up more
sharply than the points, such as =z = :*‘?1% ,
where there is a defect.

(v) The maximum effect of this alternate bulging
and thinning should be most prominent just out-
side the critical layer.

(vi) Turbulence would be expected to first appeapr
at the points of maximum bulging.

(vii) Although the vortex structure should be
strongest at the outer eages of the critical
layer, the large scale eddies should be detec-

teble well away from this reglon,
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SECTION VI CONCLUDING REMARKS

In this thesis we have used formal mathematical
methods to investigate finite amplitude oscillations
during the breakdown of laminar flow., It is to be em-
phasized that the results have evolved from a straight-
forward perturbation of the linear theory and that no
physical assumptions have been necessary. While we do
not discount ordinary two dimensional distortions, it
i1s felt that in many situations the formation of
secondary vortices and the associuted crumbling of the
profile will be more strongly evident. Certainly this
mechanism must be present to some degree during transi-
tion. In recent experimental literature there 1s re-
peated reference to the formation of this secondary
vortex structure.

During completion of this work Dr. G.B. Schubauer
and Mr. P.S. Klebanoff, in a private communicetion,
have very kindly forwarded the results of some recent
experiments on a Blasius profile, performed at the
National Bureau of Standards. Despite the vast diffe-
rence between the case of shear flow and boundary layer
instability, there is a very distinct qualitative agree-
ment with the present theory. One marked difference 1is
that the direction of the secondary vortices is reversed,

This discrepancy In the pnase relations 1s believed to
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be due to the very different nature of the problem. An
application of the present theory to the case of boundary
layer transition 1s planned in the near future.

Two further experimental papers have been brought
to the attention of the author during the preperation of
this thesis [16] [17].

The great importance of non linear effects during
transition makes it & problem clearly warran ting detailed
study. The complexity of the situation makes 1t all the
more desirable that any theoretical approach should be a
systematic one. It is belleved that the present investi-

gation is a step in this direction,
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