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Abstract

A microprocessor-based digital system was designed which would serve as the
control portion of a high-speed, low-jitter pulse generator. Existing systems use
analog techniques to generate the timebase and trigger-to-output delays, and are
thus subject to a large amount of time jitter on the pulse output. The system
presented uses digital techniques to stabilize a series of programmable oscillators to
generate these timing signals. The variable periods of the oscillators allow time
resolutions comparable to that of the currently available analog- based systems,
while the digital circuitry allows for constant monitoring of these oscillators to
reduce the jitter.

The system was tested and found to have 60 - 80 picoseconds of jitter on the leading
edge of the output signal, which is comparable to currently available high
performance pulse generators. The fact that this result did not meet the proposed
specification is due in large part to the a number of noise sources present in the test
implementation of the circuit. These noise sources were identified, and techniques
for reducing or eliminating their effects were discussed.

Thesis Supervisor: Professor Richard D. Thornton
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Overview

With the advancement of technology, today’s engineer is faced with a
problem. As device speeds increase, he must be able to verify that the systems or
components he designs will work at top speeds. For emitter-coupled logic (ECL)
components, this means frequencies of about 250 MHz, while, for gallium arsenide
(GaAs) devices, the frequencies can be much higher. The easiest way for the
engineer to test such systems is by repeatedly stimulating the system and observing

the results. The programmable pulse generator is made for such applications.

To be most effective, the ideal pulse generator would need to

1. produce an output pulse at frequencies up to the device-under-test’s
(DUT) maximum frequency (which for our purposes will mean 250
MHz),

2. be programmable to allow testing with a wide range of input
waveforms, and

3. have a trigger-to-pulse output jitter of aproximately 5 ps to allow for
observation of a small portion of the device-under-test’s (DUT) system
response if desired.

The low jitter specification is necessary to allow a user to examine such
characteristics as rise times with a high degree of accuracy. For example, if a user
wishes to observe an output rising edge with a risetime of 50-100 ps, but this signal
itself has 50 ps of jitter with respect to the trigger, this jitter is a significant
portion of the time window being observed, and will make it difficult for the user to

make very accurate measurements (see Fig. 1-1).



Figure 1-1: Jitter Reduces Measurement Accuracy

1.2 Proposed Methodology

Before discussing possible schemes for implementing our system, let us first
examine some currently available pulse generators which define "the state of the

art."

e Hewlett-Packard HP 8080A S04 - Frequencies up to 1 GHz, square-
wave output only, not programmable

® Hewlett-Packard HP 8161A - Frequencies up to 100 MHz,
programmable output, 50 ps + 0.1% jitter

® Colby Instruments, Inc. PG 4000A - Frequenmes up to 4 GHz, square-
wave output, not programmable

e EH Electronics SPG 2000 - Frequencies up to 200 MHz, programmable
output, 25 ps + 0.1%

® Tektronix PG502 - frequencies up to 250 MHz, not programmable, 25
ps + 0.1% jitter

We can see here that there is no commercially available pulse generator that meets
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our specifications for speed, stability, and programmablilty. The HP 8161A and the
SPG 2000 come closest to meeting these goals, but unfortunately are unable to meet
the stability specification of ~5 ps. This instability comes mainly from the fact
that they have analog timebases which are highly susceptible to noise from sources
such as power. supplies, digital subsystems, and the like [6]. The obvious way
around this would be to use a digital timebase, in which one would be working
against a threshold, instead of linear gain stages, and which would therefore be
easier to stabilize. Trigger-to-pulse delays could then be generated by simply

counting periods of this stable clock.

Unfortunately, this scheme dictates that the delay would have to be some
integer multiple of the clock frequency. Even at 1 GHz, then, the delay could only
be specified to 1 nanosecond, which is not fine enough. In order to take set-up time
measurements, for example, we would need to alter the spacing between two pulses
(eg. the data and clock inputs to a flip-flop) gradually to see when the output fails.
It would be convenient then to be able to specify delays with about 10 ps resolution.
This would take a clock running faster than standard login components would be

able to count.

The fastest clock speed that we would be able to count with standard
components would be 250 MHz, using Motorola 10KH series ECL components.
Using the above scheme, this would give us a minimum delay resolution of 4 ns. By
allowing the clock frequency to change though, we can increase the resolution

without having to count any faster than 250 MHz.

By using a programmable timer chip, developed at Tektronix, as the
foundation, we were able to implement a timebase that can be set for anywhere
from 125 MHz to 250 MHz with up to 13 bits of resolution (see section 3.5). This

allows us to match the delay resolution of wholly analog systems, but since the
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oscillator is controlled digitally, we can constantly monitor its performance and

change its inputs when necessary. This allows us the increased stability we need.

1.3 Perspective

Chapter 2 of this thesis deals with setting up the three programmable
oscillators in the system to generate a pulse output with the desired parameters. It
discusses the user interface system used in the test circuit, as well as the protocol
the system uses for communicating with an output stage. It is here that the
algorithms for calculating the oscillator inputs to achieve the desired pulse output
are discussed. Chapter 3 consists of a detailed description of the hardware
implementation of the system. It describes in detail the operation of the
programmable timer chips, as well as the self-calibration system and the control
system. The effects of noise on system stability are discussed in chapter 4, as are
ways of reducing noise, and calculations to determine how much noise is acceptable
before we can no longer meet the jitter specification. Chapter 5 describes a
procedure for measuring the time-jitter of the system, evaluates the system

performance, and draws conclusions.
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Chapter 2

Control Tasks

2.1 Overview

A simplified block diagram of a pulse generator would consist of three basic
blocks: user interface, output, and control. For the purposes of this thesis, we will
concentrate on the control section, and simply provide a method of communicating
with the user interface and the output stage. The control section must then be able
to:

1. Get information from the user,

2. Provide appropriate signals to the output stage based on this
information, and

3. Adjust itself to changing operating conditions.

2.2 User Interface

To simplify the system development, it was necessary to provide for a method
of allowing a user to control the system. To avoid having to design, build, and test
a front-panel display unit, I used a serial interface subcircuit, which had already
been designed at Tektronix, and for which driver software had already been written,
to connect the system to a standard RS232-C compatible terminal. The user
interface task was thus simplified to having to write software routines which allow
the user to

1. Debug the hardware,

2. Take measurements on the system for self-calibration, and
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3. Run the system.
The hardware debugging routines were developed as needed and were generally
implemented as continuous loops executing writes to individual hardware registers.
The performance of the registers and the parts of the circuit they drove could be
checked and, if necessary, fixed in this way. Similar routines could be incorporated

in the final product to provide hardware self-diagnostic capabilities.

2.3 Output Signals

In order to produce any kind of useful pulse output, a pulse generator must
supply three important pieces of information:
1. A trigger signal with which to synchronize the pulse,

2. A delay from the trigger output to the beginning of the pulse, and

3. A pulse width.
The system uses three programmable oscillator/timer chips, developed at Tektronix,
to synthesize these three signals. Please see sections 3.5 and 3.6 for a detailed

explanation of the operation and drive requirements of this chip.

The trigger signal is generated either from the output of one timer chip
(called the Repetition Rate Generator, or RRG) or from an external source by taking
this source and logically ANDing it with an inverted version of itself, delayed by 1.2
nanoseconds. This 1.2 ns pulse then becomes the TRIG signal to both the outside

world and the rest of the control system (see Fig. 2-1).

Another oscillator/timer (called the Leading Edge Delay generator, or LED) is
used to produce the delay from TRIG to the pulse leading edge. The chip makes use
of an internal burst counter to produce a signal, BTO, which is high for a specified

number of oscillator periods. The third oscillator/timer (the Trailing Edge Delay
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Figure 2-1: Generating the Trigger Signal
generator, or TED) is used similarly to produce a delay to the trailing edge of the
pulse output. By combining these two signals, then, we can produce the desired

pulse waveform.

2.4 Setting The Repetition Rate Generator

The user has the option of specifying either internal or external triggering. If
external triggering is selected, he must supply a trigger input signal, with
frequency of no more than 250 MHz (ie. period not less than 4 ns), which is high for
at least 1.2 ns so that a useful TRIG signal can be generated (see section 2.3). In
this case, the controller has only to configure the system to pass this EXTTRIG

input signal to the TRIG output circuit produce the TRIG output.

If the user selects internal triggering, however, the controller must not only
pass the RRG output to the TRIG circuit, but must also set up the RRG to produce
the output frequency specified by the user. In order to achieve the desired
frequency, we must calculate the correct drive currents for the oscillator inputs, as

well as the appropriate number, if any, to load into the timer’s on-chip divider.

To simplify this procedure, we can create a look-up table (as described in
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section 3.7) which contains the RRG output frequency for a given value of the input
currents (part of such a table appears in Table 2-I). The frequency values in this
table will range from less than 125 MHz to at least 250 MHz. Setting the currents
then becomes the relatively straightforward task of finding the appropriate place in

the table that the desired frequency falls.

Current 5 Frequency (MHz)
78 163.265
79 163.683
TA 164.103
7B 164.524
7C 164.949
7D 165.375
7E 165.802
7F 166.233
80 166.653
81 167.102
82 167.540
83 167.979
84 168.421
85 168.865
86 169.315
87 169.761

Table 2-1: Frequency vs. Current Look-up Table

For example, let us suppose that the user wishes to set a repetition rate of
165 MHz. Using Table 2-1, we see that 165 MHz lies between entries 7C (164.949
MHz) and 7D (165.375 MHz), so we therefore set the coarse value of the IPR input
to 7C. We must now linearly interpolate to find the correct settings for the IPR fine

and IPD inputs.

To set the IPD input, we must know which half of the interval the desired

output lies. The middle frequency in this example is
MIDFREQ = (164.949 + 165.375)/ 2 = 165.162

so the desired frequency is in the lower half of the interval and we can set the IPD

input to 7C.
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As stated in section 3.6, the range of the IPR fine register is such that 32 fine
steps corresponds to one coarse step. We therefore interpolate between the bottom

of the interval and MIDFREQ as follows:
F = {[64*(165 - 164.949)/(165.162 - 164.949)]+ 1}/2 =8.

Since the processor only does integer arithmetic operations, we have a convenient
way of expressing the frequencies as integers (see Section 3.7). By multiplying by
64, adding 1, and dividing by 2, we effectively round-off the value to the nearest

LSB, and eliminate truncation errors.

If the frequency specified by the user is not between 125 and 250 MHz, we
must calculate the number by which to divide the oscillator output. We must also
convert this frequency to a frequency in the relevant range so that we can use the
look-up table. Fortunately, both these tasks can be done simultaneously by simply
doubling the specified frequency until it becomes greater than 125 MHz. The
number of doubling operations thus performed is the power of two that we need to
divide the oscillator output by to get the desired frequency out. For example,-if' the
user specified an output frequency of 21 MHz, we would simply double this 3 times
to achieve a look-up frequency of 168 MHz. Once we set the oscillator output to
close to 168 MHz, we need only to enable the on-chip divider and divide by 8 to

achieve the necessary output.

2.5 Edge Delay Generation

The method used for generating the edge delay signals is similar to that used
for generating the repetition rate in that a look-up table and linear interpolation
are used. Instead of the oscillator frequency, however, the look-up table consists of
the oscillator output period vs. the current setting (see Table 4-I), and the timer

chip’s burst counter is used instead of the divider
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Once the LED and TED times are known, we can use the same algorithm to
set the inputs for the two remaining timer chips. If the desired delay is between 4
and 8 nanoseconds, the interpolation is carried out exactly as it was for the RRG
except that in this case, a higher index in the look-up table corresponds to a smaller

value of the output period.

If the delay needed is larger that 8 ns, we divide this delay by a number, N,
which will put it in the appropriate range. Once we set the oscillator inputs for
this divided delay, we simply load the burst counter with N to achieve the desired

delay output.
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Chapter 3

Circuit Description

3.1 Overview

Once a general architecture had been decided, it became necessary to
implement the system using real hardware. This chapter is intended to explain, in

depth, the functionality of the hardware.

The system consisted of six major subsystems:

1. The processor subsystem, including the program memory and address
decoding, which was used to execute the software and control the
system,

2. The Serial Interface which was used to communicate with a terminal
during system development,

3. The control registers which were used to hold information from the
processor to correctly configure the system,

4. The timer chips which contained the programmable oscillators and
were used to generate the appropriate timing signals for the output,

5. The "DAC Farm" which consisted of fifteen digital-to-analog
converters, used to supply the appropriate drive to the timer chip
oscillators, and

6. The diagnostic/calibration system which was used to monitor the
performance of the programmable oscillators.
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8.2 The Processor

The processor used was an Intel 80186 (see Fig. 3-1). This processor was
chosen primarily because there was an abundance of support software already
written for performing such tasks as allotting memory, configuring output ports,
and communicating with a terminal via the serial interface unit, which was also

conveniently available.
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Figure 3-1: The Processor and Memory

One major advantage of this processor is its Peripheral Chip Select (PCS)
capabilities. These PCS lines allowed us to partition the hardware into separate

areas of memory, and thus to simplify the software which drove this hardware.

Two ALS573 latches (U110 and U111) were used in conjunction with the
processor’s Address Latch Enable (ALE) output to demultiplex the address and data
lines from the 80186. A group of four ALS245 bidirectional buffers (U101 - U104)
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were used to boost the drive capabilities of these lines so they could drive the rest of
the circuit. Another pair of buffers served a similar purpose in the serial interface.
A small amount of combinational logic was used to enable these buffers when the

appropriate address space was selected.

The program memory consisted of two eight-bit wide ROMs with up to 64
Kbytes of address space to hold up to 128 Kbytes of code. There was also 128
Kbytes of RAM space to be used for performing calculations. The processor’s Upper
and Lower Chip Select lines (UCSL and LCSL, respectively) were used, along with
the Bus High Enable (BHEL) and least significant address bit (AO) and some

combinational logic, to select the appropriate memory chip(s).

3.3 The Serial Interface

The Serial Interface, as explained in section 3.3 allowed the processor to
communicate with up to two different devices which were selected by the 80186’s
PCS1 and PCS3 lines. We used a standard RS232 terminal to develop and test the
system. It would be possible, in the future, to create a front-panel which could

make the final production user-interface software somewhat simpler.

3.4 The Control Registers

There were two control registers which control the modes for the timer chips.
The first, called the the Edge Delay Control Register (edctrl), controled the Leading
and Trailing Edge Delay circuits (LED and TED, respectively). The other, called
the Repetition Rate Generator Control Register (rrgctrl) controled the Repetition
Rate Generator (RRG), the diagnostic source selector, the trigger output control,
and some of the TED circuit. There was also a trigger input control register, U390,

which provided the control signals for the external trigger input circuit.
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The OUTSEL bit of the trigger output control allowed the user to select
between an external trigger source or the output of the RRG circuit for the trigger
output. The OUTDIS bit disabled the trigger output when the source was being

changed, or when calibration was being performed.

3.5 The Timer Chips

The heart of the system was the three programmable oscillator/timer chips
developed at Tektronix. Each chip contains:
1. A programmable oscillator with current control inputs,
2. A 2" n divide-by circuit

3. A 14-bit programmable burst counter

3.5.1 The Oscillator

The on-chip oscillator is fully programmable ﬁ'c'ml 125 MHz to 250 MH:z
depending on the value of the currents supplied to the Input Duration (ID) and
Input Reset (IR) inputs, with ID defining the time that the output is high, and IR
defining the time that it is low. These times decrease as the current to the
corresponding input increases, so the output frequency is an increasing function of
the input currents. The maximum current allowed on each of these inputs is 4.1

mA.,

The oscillator also has five enable inputs, GI1 through GI5, which turn on
the oscillator. Inputs GI1 through GI4 are driven by the divider and burst counter
circuits, while GI5 is the logical OR of the chip-inputs G1 and G2. A pulse on any
of these lines of less than 60% of the programmed period of the oscillator will put
the oscillator in one-shot mode, where the oscillator output will go high for one

period of the divided output minus one half the programmed oscillator period (see
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Fig. 3-2). Normally, however, the oscillator is used either in burst mode (when
generating a delay) or in free-run mode with G2 held high (when running

calibration).

Gl
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Figure 3-2: Divided-by-four Oneshot Output

3.5.2 The On-Chip Divider

The divider subcircuit (see Fig. 3-3) is implemented using an 8-bit shift
register and eight toggle flip-flops, with the output of each toggle stage being used
to clock the next highest stage. The least significant bit of the counter is clocked
from the output of the oscillator itself. The shift register is loaded serially from the
DCIN (Divide Counter INput) pin, which is connected to the least significant bit of
the data bus (DATAO), with each rising edge of the DCLK (Divider CLocK) line. By
connecting the appropriate select line from the address decoder to DCLK, then, we
can write to this register one bit at a time by writing to the divider’s address (eg.
LEDDIV for the LED divider). We can read the contents of the shift register by
shifting the data out from the most significant bit of the shift register to the BDLT

pin. By connecting this pin back to DCIN through a tri-state buffer which is only
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enabled on a read, we were able to do a non-destructive read of the shift register

contents.

The divide-by number, N, which must be an integer power of 2, was set by
loading the shift register with the value 256 - N. If, for example, we wished to

divide the output by 4, we would load the shift register with
256 - 4 = 252

or, in binary,
100000000 - 000000100 = 11111100
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Figure 3-3: Divider Subcircuit
The outputs of this shift register are each logmally ORed with the DSET control line
and run into the RESET input of each of the toggle flip-flops. Bringing DSET low,
then, will enable only the least significant n bits of the divider.

The TTL signals D>0 and D>I can be used to expand this 8-bit divider to

any length, allowing us to produce any output frequency from 250 MHz down to
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essentially a DC output. The D>O output was also used to divide the oscillator
output by 256 and provide a TTL compatible signal for use in the calibration

subsystem (see section 3.7).

By dividing down the output of the RRG subsystem, then, we were able to get

output frequencies from 250 MHz down to
125 MHz / 256 = 490 KHz

3.5.3 The Burst Counter

The burst counter (see Fig. 3-4) is implemented with a string of fourteen
cascaded toggle flip-flops, and is clocked from the output of the oscillator when the
divider outputs are all zero. This counter is loaded via a 14-bit shift register which
is controlled similarly to the divider shift register, with BCLK and BCIN behaving
analogously to DCLK and DCIN. With BCLK and DCLK decoded to be different
addresses, we could run DATAO to BCIN as well as DCIN, since only one shift
register would be clocked at a time. Similarly, since the most significant bit of this
register was also connected to BDLT, we could use the same tri-state buffer as with

the divider to allow non-destructive reads of the burst counter.

A pulse of 1.1 to 1.8 ns on the BTGR input will trigger the start of a burst
(see Fig. 3-5) by loading the counter with the desired number of periods in the
burst. The BTO output is the logical OR of all the bits of the burst counter, and is
therefore high when a burst is being counted. It was this signal that was used to
produce the delay signals for the leading or trailing edge of the output pulse. By
combining the divider and the burst counter, then, we could produce a delay of as

small as 4 ns and as large as
8 ns * 256 * 16384 = 33.5 ms

from either the LED or TED sﬁbsystems (the burst counter of the RRG subsystem 1is

never used).
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Figure 3-4: Burst Counter Subcircuit
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Figure 3-5: Burst Counter Output Timing

3.6 The "DAC Farm"

To set the values for the current inputs of the oscillators, we used an
arrangement of five 8-bit digital-to-analog converters (Advanced Micro Devices, Inc.
DAC-08’s) to generate the ID and IR signals for each oscillator: three to generate

IR and two to generate ID (see Fig. 3-6).

The BASE register was used to drive two DACs, one for each input, and to set
the oscillator to a base frequency of just under 125 MHz. Two other DACs, IRC
(Input Reset Coarse) and IDC (Input Duration Coarse) were connected to these
BASE DACs to actually set the frequency between 125 and 250 MHz, and a third
DAC (FINE) was connected to the IR input as a fine adjustment to improve the

resolution.
The range of the BASE DACswais 3.1 mA, which is guaranteed to set the

oscillator to at least 125 MHz. The range of the IRC and IDC DACs was 4.1 mA.

Since it takes at least 2.0 mA to cover the 125-250 MHz range, this gave us a
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Figure 3-6: DAC Current Drivers
cvarse resolution of 7 bits. Setting the FINE DAC’s range to 0.12 mA (ie.

approximately 4.1/32) gave us another 5 bits of resolution on the IR input.

Thus, we could step through all the frequency settings, keeping
approximately a 50% duty cycle using the following steps:
1. Set the IDC, IRC, and FINE registers to 0

2. Set the BASE registers to yield a frequency of just under 125 MHz
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3. Increment the FINE register through one coarse step (32 settings)
4. Set the FINE register to 0 and increment the IDC register

5. Increment the FINE register through one coarse step

6. Increment the IRC register

7. Repeat from step 3.

This scheme then gave us
log(128) + log(2 * 32) = 13

bits of resolution for the oscillator frequencies.

3.7 The Diagnostic/Calibration System

The calibration system (see Fig. 3-7) consisted mainly of two counters - a gate
counter and an event counter. The gate counter was simply the TMR1 counter of
the 80186 driven by a TTL compatible, divided-by-256 version of either the 200
MHz reference oscillator or one of the programmable oscillators. By loading the
TMR1 MXB register with the appropriate number, we could produce a signal on the
TMR10OUT pin of the 80186 which was high for a known amount of time. The
event counter was a 24-bit counter, formed by cascading an 8-bit ECL counter with
the 16-bit TMRO counter on the 80186. This allowed us to count the number of
periods of either the reference oscillator or one of the programmable oscillators

while the GATE signal was high.

Using these two counters, then, we were easily able to calculate the frequency
or period of any of the three programmable oscillators. For example, to calculate
the frequency of the RRG oscillator, we would select the RRG as the source for the
event counter via DIAGSEL field of the rrgctrl register, and the reference oscillator
as the source for the TMR1 of the 80186 via the TMRSEL port. By loading the
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Figure 3-7: Calibration System Block Diagram
TMR1 MXB register with 12500, we got a signal on the TMR OUT1 pin of the

80186 which was high for
256 * 5ns * 12500 = 16 ms

Thus, the number recorded by the event counter was 16 times the frequency of the

RRG oscillator in kilohertz.

If, however, we wished to know the period of the LED oscillator, we would

select the reference oscillator as the event counter source, and the LED as the
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source for TMR1. By loading the TMR1 MXB register with 5000, we knew that the

LED period (in nanoseconds) was related to the event count (event) by
event = (5000 * 256 / 5 ns) * period ‘

and the number recorded by the event counter was then simply the period of the

selected oscillator in picoseconds times 256.

We used these methods to formulate look-up tables which simplified the task
of calculating the DAC inputs to achieve a given frequency output from the
oscillators. By taking a frequency measurement for each setting of the IPR and IPD
registers, we got the transfer curve of frequency vs. current (see table 2-I) which we

used to find the correct settings for the DACs as discussed in section 2.4.
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Chapter 4

Critical Performance Issues

4.1 Overview

Throughout the development of this system, we have been concerned with two
critical areas of performance: repetition rate and time-jitter. As technology
improves and device speeds become faster, the term "useful,” for a pulse generator,
will be defined in terms of these criteria. A pulse generator will have to perform

well in both these areas in order to test a circuit at the limits of its performance.

When testing a high performance circuit or chip, it is desirable to be able to
do two things:
1. Drive the DUT at its normal operating speed, and
2. Observe the behavior of the DUT at these speeds.
Currently, high-speed Emitter-Coupled Logic (ECL) chips are designed to run at
speeds of up to 250 MHz, while in other technologies, such as Gallium Arsenide,
devices run even faster [5]. We therefore need a system which can supply a
stimulus signal at such frequencies. In order to observe such a fast signal, we
would need to use a very fast measuring device, such as an oscilloscope. Even the
fastest oscilloscopes, however, are limited to bandwidths of about 400 - 500 MHz.
To look at signals faster than this or to increase the resolution with which we can

view a signal, it is often convenient to use techniques such as sampling.

The technique of sampling a periodic signal consists of recording the value of
that signal at a given time relative to a fixed trigger time (see Fig. 4-1). For each

period of the waveform, if we take a sample at a different time with respect to the



Figure 4-1: Sampling a Periodic Signal

trigger, we can eventually find the value of the signal at virtually any point in the
period [1]. In order to accurately recreate this signal, then, it is extremely
important that the value of a given sample actually be the value of the signal at
that time. Moreover, if the event we are examining is of very short duration, such
as the rising edge of an output signal, we want to be able to resolve very small

amounts of time between samples [4].

For example, if we have a signal we wish to sample at a time T after the
trigger, but instead sample it at time T+, the voltage we see could be substantially
different from the actual voltage of the signal at time T. Thus, any time jitter of the

pulse out with respect to the trigger will appear as noise on the scope (see Fig 4-2).

4.2 Factors Affecting Performance

In order to achieve the repetition rate goal of 250 MHz, we used the
programmable timer chip discussed in section 3.5, and some ECL circuitry designed
to run at this frequency. In order to keep the jitter as small as possible, though, we

needed to take into account many other factors.
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Figure 4-2: Time Jitter Affects a Sampled Signal

The relatively large amounts of jitter present in the devices listed in section
1.1 are due primarily to the analog manner in which they generate the trigger-to-
output delay [5]. To reduce this problem, we have implemented the delay
generation units digitally (see section 3.5), with a relatively small amount of easily

controlled analog circuitry to improve the resolution.

Although there are still a number of factors which contribute to jitter, and we
shall now examine how they can be controlled. But first, to discover what these
factors are, let us briefly examine what is involved in generating a pulse with this

system.

1. A trigger signal is generated which not only goes to the outside world,
but also signals the two edge delay generators to begin counting their
specified bursts. ,

2. The edge delay generators generate signals telling the output stage
when to start and end the pulse.

3. The output stage converts these signals into a pulse output.
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If this is the case, we can get jitter caused by noise on the internal trigger
line, noise in the output stage, or by variations in the frequency of the
programmable oscillators. Noise in the output stage is beyond the scope of this
thesis and will be assumed to be negligible. Noise on the trigger line can be reduced
by laying the board out in such a way as to minimize cross-coupling between the
trigger and the rest of the circuit (see section 4.3). By far the most significant

contribution to the jitter is caused by frequency instability in the oscillators.

The oscillators require a voltage reference, VREF, of -5.0 volts which must be
kept steady in order to keep the frequency stable. As long as there is less than 2
millivolts of ripple on the reference voltage input, the oscillator frequency is
guaranteed to be stable to within 0.01%. To set this voltage we used a LM145 -5
volt regulator which is specified to have only 150 microvolts of output noise and a
maximum change in output voltage of 15 millivolts per volt of input change.
Therefore, if the power supply is stable to within 1 tenth of a volt, the reference
voltage will be well within the 2 mv tolerance. In a future version of this system, a
better regulator could be used which would allow more power supply noise and still
stay within this tolerance. The problem of cross-coupled noise on this reference line

will be discussed in section 4.3.

Even if the oscillator inputs are completely stable, it is still possible to get
drift in the oscillator frequency due to temperature. Since we use look-up tables to
set the IR and ID drive currents to achieve a desired frequency, we can eliminate
this long-term variation by recalculating the look-up tables. In the present
software, this recalibration is done when the user wishes to change a pulse
parameter, but it could be done at other times. Since the trigger output is disabled
during recalibration, the most convenient time to perform this function would be

when the measuring device is not looking for a signal (ie. undergoing its own
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recalibration or some similar function). It would be beneficial, therefore, to allow

for an external signal to cause the pulse generator to undergo recalibration.

Since we now have an oscillator whose output frequency is stable enough for
given drive currents, we now have only the problem of noise affecting the ID and IR
inputs of the oscillators. Let us first examine the effects of such noise. Since any
noise will be small relative to the actual value of the currents, we can treat the
period vs. current table as being linear in the region of interest. We will concern
ourselves with the area of the table corresponding to small input currents, and thus
any noise will have a larger effect. For a BASE current value of .908 mA (ie. a

register value of 4B) we get the first four entries of a look-up table as in Table 4-1.

Register Value \ Current (mA) | Period (ps)
00 0.908 8001.6
01 0.924 7730.7
02 0.940 7469.4
03 0.956 7221.5

Table 4-I: Period vs. Input Current

The Slope of this curve between points 00 and 01 is
(8001.6 - 7730.7) / (908 - 924) = -16.93 ps/u A

for common mode noise present on both the IR and ID inputs. This means that, for
each g A of noise on one of the lines, the period will change by 8.47 ps. The power
supply sensitivity of the DACO08 digital-to-analog converter is, at worst case, .01%
of output change per 1% change in power supply voltage. A 0.1 volt change in the

power supply voltage will thus create a common mode period change of
[(0.1/15) * 100] * (924 * .0001) * 16.93 = 1.04 ps

which is within the desired tolerance. At the other end of the look-up table, we get
the values of Table 4-I. Between points AB and AC, this part of the curve has a

slope of
(3998.3 - 4033.5) / (3660 - 3644) = -2.2 ps/uA

and we can again calculate the period change for a 0.1 volt change in the power

supply as
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Register Value | Current (mA) ] Period (ps)
A9 3.612 4105.3
AA 3.628 4069.2
AB 3.644 4033.5
AC 3.660 3998.3

Table 4-11: Period vs. Input Current
[(0.1/ 15) * 100] * (3660 * .0001);“ 2.20 = 0.54 ps.
We see here that the decrease in the magnitude of the slope of the period vs.
current curve more than makes up for the increased magnitude of the current

variation.

4.3 Layout Considerations

Even if the voltage supplied by the power supply is perfectly stable, we can
still get effective power supply noise due to common impedance coupling on the
ground plane [3]. This effect is particularly troublesome in the case of TTL circuits
which induce enormous current spikes during gate transitions. The best way to
deal with problems of this sort, then, would be to separate the system into modules
according to power supply needs [2] like so:

1. TTL components, including the processor, memories, and registers,
2. ECL components, including the reference oscillator,
3. Digital-to-analog converters,

4. Analog components, including trigger input and output circuitry, and

5. Programmable oscillators
We can reduce the coupling between these modules by dividing the ground plane, as
shown in figure 4-3, and effectively instituting a multipoint ground system even
though all power supplies are referenced to the same ground [2].The current

requirements of the TTL components are met by adding a second ground path back
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to the power supply, besides the one used by the rest of the circuit. Bypass
capacitors are used in the vicinity of each digital component, including ECL and the

programmable oscillators, to reduce the ground coupling even further.

Figure 4-3: Test Circuit Board Layout

With power supply noise thus reduced, the other major contribution to the
output jitter is capacitive and inductive coupling on important signal lines like the
internal trigger line, the IR and ID inputs of the oscillators, and the VREF line to
the oscillators. For the test circuit, the board was laid out as in figure 4-3, where
the main concerns were separating the circuit by power supply needs, as discussed
earlier, and keeping the trigger line as short as poésible. By keeping the tﬁgger line
short, we not only reduce the opportunities for coupling (and thus for jitter) but we
alsé keep the skew as small as possible between the times that each edge delay

generator sees the trigger signal.

The biggest problem with this arrangement, however, is the fact that the
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reference oscillator was placed between the "DAC farm" and the programmable
oscillators, causing a large amount of noise on the IR and ID inputs to the
oscillators. It is this noise that is believed to be the main factor in the amount of
jitter seen in the test circuit (see section 5.2), although the noise could be reduced in

a future version by one of two ways.

The first method would be to rearrange the board so that the "DAC farm" is
nex to the oscillators (perhaps as in figure 4-4). This would not only remove the
reference oscillator as a noise source to the oscillator inputs, but would also shorten

these lines and make them less susceptible to cross-coupling noise.

&
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Figure 4-4: Possible Board Laymit to Reduce Noise

Another method which would reduce the effect of noise on the IR and ID lines
would be to keep the ground plane between them and any oscillating lines, although
the large number of such lines would make strict adherence to this constraint

difficult. It might be possible to use two layers of the board for signals which must
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be quiet and separate these from the other signal layers by the power and ground

planes, but this would make the task of circuit board layout significantly more

difficult.

The test circuit consisted of six signal layers, the ground plane, and a voltage
plane which was used to supply the appropriate voltages to the different parts of
the circuit (ie. +5 for TTL, -5 for ECL, and + 15 and -15 for the DACs). Subject to
the given component placement, however, the autorouting program we used was
still only able to achieve a 90% completion rate. It is possible that this could be
improved by laying the components out in a different pattern, but it is also likely
that imposing such constraints as mentioned above will significantly reduce this

completion rate.
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Chapter 5

Results and Conclusions

5.1 Test Procedure

To test the jitter performance of the system, we would need to supply a signal
to the trigger input of the system and observe the trigger output. By seeing how
much jitter is present on the trigger output, we would know how much jitter is
present in the trigger selection circuitry itself. Although this does not affect the
trigger-to-pulse jitter, we can use this as a reference to which we can compare the
pulse output and thus measure the jitter of the system. Using this signal as the
trigger source, we can generate a pulse output and examine the leading edge delay
signal. By measuring the jitter on this signal, and subtracting the jitter due to the
trigger selection, we can get a fairly accurate measure of the jitter performance of

the system.

5.2 Results

Unfortunately, we were unable to implement the external trigger input
circuitry, and so had no absolute reference from which to calculate the system jitter.
However, by generating an internal trigger, we could look at the edge delay signal
and approximately measure the jitter in this manner. When the output of the
timer chip was examined with a scope, it was estimated that the system had a
time-jitter of 60 - 80 ps. This is outside the range we were hoping for, but a
significant part of this jitter was due to the large amounts of cross-coupled noise on

the IR and ID inputs to the programmable oscillators, as discussed in section 4.3.
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The fact that the power supply voltages exceeded the 0.1 volt specification discussed

in section 4.2 also made a significant contribution to the jitter.

5.3 Conclusions

The purpose of this thesis was to design the control portion of a high-
performance pulse generator which would run at frequencies of up to 250 MHz, and
have output jitter of approximately 5 ps. A novel approach was implemented which
used both analog and digital techniques to achieve a timebase that is comparable to
state-of-the-art pulse generators in terms of speed, and which could be made to be
an order of magnitude better in terms of stability. Moreover, by implementing
certain parts of the system, such as the oscillators and the calibration system, in
faster technologies, the pulse generator could be made to run even faster without

significantly altering the present design.

Although the test system failed to exceed current stability standards, it
nonetheless managed to meet these standards. Since there were many factors
identified which contributed to jitter of the system, and procedures suggested which
would lessen the effects of these problems, it is believed that, with 1-Jroper care taken
in printed circuit board layout and signal routing, as well as some minor software
enhancements, the system can made to meet the proposed specifications of less than
5 ps of jitter, or at least to have less jitter than current state-of-the-art

programmable pulse generators.
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