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ABSTRACT

The problem of learning threshold functions is a fundamental one

in machine learning. Classical learning theory implies sample com-

plexity of $ (b−1 log(1/V)) (for generalization error b with con-

�dence 1 − V). The private version of the problem, however, is

more challenging and in particular, the sample complexity must

depend on the size |- | of the domain. Progress on quantifying this

dependence, via lower and upper bounds, was made in a line of

works over the past decade. In this paper, we �nally close the gap

for approximate-DP and provide a nearly tight upper bound of

$̃ (log∗ |- |), which matches a lower bound by Alon et al (that ap-

plies even with improper learning) and improves over a prior upper

bound of $̃ ((log∗ |- |)1.5) by Kaplan et al. We also provide match-

ing upper and lower bounds of Θ̃(2log∗ |- |) for the additive error
of private quasi-concave optimization (a related and more general

problem). Our improvement is achieved via the novel Reorder-Slice-

Compute paradigm for private data analysis which we believe will

have further applications.
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1 INTRODUCTION

Motivated by the large applicability of learning algorithms to set-

tings involving personal individual information, Kasiviswanathan

et al. [18] introduced the model of private learning as a combi-

nation of probably approximately correct (PAC) learning [22, 23]

and di�erential privacy [10]. For our purposes, we can think of a

(non-private) learner as an algorithm that operates on a training set

containing labeled random examples (from some distribution over

some domain- ), and outputs a hypothesis ℎ that misclassi�es fresh

examples with probability at most (say) 1
10 . It is assumed that the

“true” classi�cation rule, which is unknown to the learner, is taken

from a (known) class � of possible classi�cation rules, where intu-

itively, learning becomes “harder” as the class � becomes “richer”.

A private learner must achieve the same goal while guaranteeing

that the choice of ℎ preserves di�erential privacy of the training set.

This means that the choice of ℎ should not be signi�cantly a�ected

by any particular labeled example in the training set. Formally, the

de�nition of di�erential privacy is as follows.

De�nition 1 ([10]). Let A : - ∗ → . be a randomized algorithm

whose input is a dataset� ∈ - ∗. AlgorithmA is (Y, X)-di�erentially
private (DP) if for any two datasets �,� ′ that di�er on one point

(such datasets are called neighboring) and for any outcome set � ⊆ .

it holds that Pr[A(�) ∈ � ] ≤ 4Y · Pr[A(� ′) ∈ � ] + X.

Since its inception, research on the private learning model has

largely focused on understanding the amount of data that is needed

in order to achieve both the privacy and the utility goals simul-

taneously (a.k.a. the sample complexity of private learning). The

holy grail in this line of research is to come up with a (meaning-

ful) combinatorial measure that given a class � characterizes the

sample complexity of privately learning � . However, after almost

15 years of intensive research, this question is still far from being

well-understood. At a high level, works on the sample complexity

of private learning can be partitioned into two meta approaches:

1. Deriving generic upper and lower bounds (as a func-

tion of the class I). This avenue has produced several

fascinating results, that relate the sample complexity of pri-

vate learning to the Littlestone dimension of the class � , a

combinatorial dimension that is known to characterize on-

line learnability (non-privately) [1]. However, the resulting

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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bounds are extremely loose (exhibiting a tower-like gap be-

tween them). Furthermore, it is known that, in general, this

is the best possible in terms of the Littlestone dimension

alone.

2. Focusing on speci�c test-cases, squeezing them until

the end to reveal structure. This avenue has produced

several fascinating techniques that has found many applica-

tions, even beyond the scope of private learning. Arguably,

the most well-studied test-case is that of one dimensional

threshold functions, where the class � contains all functions

that evaluate to 1 on a pre�x of the (totally ordered) domain

- .1 Even though this class is trivial to learn without privacy

considerations, in the private setting it is surprisingly com-

plex. The sample complexity of privately learning threshold

functions has been studied in a sequence of works [2, 4, 6–

9, 12, 16], producing many interesting tools and techniques

that are applicable much more broadly.

In this work we present new tools and proof techniques that

allow us to obtain a tight upper bound on the sample complexity

of privately learning threshold functions (up to lower order terms).

This concludes a long line of research on this problem. In addition,

we present matching upper and lower bounds for the related prob-

lem of private quasi-concave optimization. Before presenting our

new results, we survey some of the progress that has been made

on these questions.

1.1 On Our Current Understanding of Privately
Learning Threshold Functions

Early works on the sample complexity of private learning focused

on the case where the privacy parameter X is set to zero, known

as the pure private setting. While this signi�cantly limits the ap-

plicability of the model, the pure-private setting is often much

easier to analyze. Indeed, already in the initial work on private

learning, Kasiviswanathan et al. [18] presented a generic bound

of $ (log |� |) on the sample complexity of learning a class � with

pure privacy.2 This implies an upper bound of $ (log |- |) on the

sample complexity of privately learning threshold functions over

an ordered domain - (because |� | = |- | for this class). Beimel et

al. [4] presented a matching lower bound for proper pure-private

learners (these are learners whose output hypothesis must itself be

a threshold function). Feldman and Xiao [12] then showed that this

lower bound also holds for pure-private improper learners.

The sample complexity of privately learning thresholds in the

more general setting, where X is not restricted to be zero (known as

approximate privacy), was studied by Beimel at al. [6], who showed

an improved upper bound of $̃
(
8log

∗ |- |
)
on the sample complex-

ity. This is a dramatic improvement in asymptotic terms over the

pure-private sample complexity (which isΘ(log |- |)), coming tanta-

lizingly close to the non-private sample complexity of this problem

1Let - ⊆ R. A threshold function 5 over - is speci�ed by an element D ∈ - so
that 5 (G) = 1 if G ≤ D and 5 (G) = 0 for G > D. In the corresponding learning
problem, we are given a dataset containing labeled points from - (sampled from
some unknown distribution D over - and labeled by some unknown threshold
function 5 ∗), and our goal is to output a hypothesis ℎ : - → {0, 1} such that
errorD (ℎ, 5 ∗) ≜ PrG∼D [ℎ (G) ≠ 5 ∗ (G) ] is small.
2To simplify the exposition, in the introduction we omit the dependency of the sample
complexity in the utility and privacy parameters.

(which is constant, independent of |- |). Interestingly, to obtain

this result, Beimel at al. [6] introduced a tool for privately optimiz-

ing quasi-concave functions (to be surveyed next), a generic tool

which has since found many other applications. Bun et al. [8] then

presented a di�erent approximate-private learner with improved

sample complexity of $̃
(
2log

∗ |- |
)
, and another di�erent construc-

tion with similar sample complexity was presented by [7]. Bun

et al. [8] also showed a lower bound of Ω(log∗ |- |) that holds for
any (approximate) private proper-learner for thresholds. Alon et

al. [2] then proved a lower bound of Ω(log∗ |- |) that holds even for

improper learners for thresholds. Finally, a recent work of Kaplan et

al. [16] presented an improved algorithm with sample complexity

$̃ ((log∗ |- |)1.5).
To summarize, our current understanding of the task of privately

learning thresholds places its sample complexity somewhere be-

tween Ω(log∗ |- |) and $̃ ((log∗ |- |)1.5).

1.2 Privately Optimizing Quasi-Concave
Functions

Towards obtaining their upper bound for privately learning thresh-

olds, Beimel et al. [6] de�ned a family of optimization problems,

called quasi-concave optimization problems. The possible solutions

are ordered, and quasi-concavity means that if two solutions G ≤ I

have quality of at least @, then any solution G ≤ ~ ≤ I also has

quality of at least @. The optimization goal is to �nd a solution

with (approximately) maximal quality. Beimel et al. [6] presented

a private algorithm for optimizing such problems, guaranteeing

additive error at most $̃
(
8log

∗)
)
, where) is the number of possible

solutions. They observed that the task of learning thresholds can

be stated as a quasi-concave optimization problem, and that this

yields a private algorithm for thresholds over a domain - with

sample complexity $̃
(
8log

∗ |- |
)
. Since the work of Beimel et al. [6],

quasi-concave optimization was used as an important component

for designing private algorithms for several other problems, includ-

ing geometric problems [5, 13], clustering [11, 20], and privately

learning halfspaces [5, 17].

We stress that later works on privately learning thresholds (fol-

lowing [6]) did not present improved tools for quasi-concave op-

timization (instead they worked directly on learning thresholds).

As quasi-concave optimization generalizes the task of learning

thresholds (properly), the lower bound of [8] also yields a lower

bound of Ω(log∗) ) on the additive error of private algorithms

for quasi-concave optimization. That is, our current understand-

ing of private quasi-concave optimization places its additive error

somewhere between Ω(log∗) ) and $̃
(
8log

∗)
)
. An improved upper

bound would imply improved algorithms for all of the aforemen-

tioned applications, and a stronger lower bound would mean an

inherent limitation of the algorithmic techniques used in these

papers.

1.3 Our Contributions

For all informal theorems presented in this section, readers can �nd

their formal statements in the full version of our paper.
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Our main result is presenting a private algorithm for learning

thresholds, with optimal sample complexity (up to lower order

terms):

Theorem 1.1 (Informal). There is an approximate private algorithm

for (properly) learning threshold functions over an ordered domain -

with sample complexity $̃ (log∗ |- |).

This improves over the previous upper bound of $̃
(
(log∗ |- |)1.5

)

by [16], and matches the lower bound of Ω(log∗ |- |) by [2, 8] (up

to lower order terms). This concludes a long line of research aimed

at understanding the sample complexity of this basic problem. A

key to our improvement is a novel paradigm, which we refer to as

the Reorder-Slice-Compute paradigm (to be surveyed next), allowing

us to simplify both the algorithm and the analysis of [16].

Inspired by our simpli�ed algorithm for thresholds, we design

a new algorithm for private quasi-concave optimization with an

improved error of $̃
(
2log

∗)
)
, a polynomial improvement over the

previous upper bound of $̃
(
8log

∗)
)
by [6].

Theorem 1.2 (Informal). There exists an approximate-private algo-

rithm for quasi-concave optimization with additive error $̃ (2log∗) ),
where ) is the number of possible solutions.

As we mentioned, this immediately translates to improved al-

gorithms for all of the applications of private quasi-concave opti-

mization. Given the long line of improvements made for the related

task of privately learning thresholds (culminating in Theorem 1.1),

one might guess that similar improvements could be achieved also

for private quasi-concave optimization, hopefully reaching error

linear or polynomial in log∗) . Surprisingly, we show that this is

not the case, and present the following tight lower bound (up to

lower order terms).

Theorem 1.3 (Informal). Any approximate-private algorithm for

quasi-concave optimization must have an additive error at least

Ω̃(2log∗) ), where ) is the number of possible solutions.

We view this lower bound as having an important conceptual

message, because private quasi-concave optimization is the main

workhorse (or more precisely, the only known workhorse) for sev-

eral important tasks, such as privately learning (discrete) halfs-

paces [5, 17]. As such, current bounds on the sample complexity of

privately learning halfspaces are exponential in log∗ |- |, but it is
conceivable that this can be improved to a polynomial or a linear

dependency. The lower bound of Theorem 1.3 means that either

this is not true, or that we need to come up with fundamentally

new algorithmic tools in order to make progress w.r.t. halfspaces.

1.3.1 The Reorder-Slice-Compute paradigm. Towards obtaining

our upper bounds, we introduce a simple, but powerful, paradigm

which we call the Reorder-Slice-Compute (RSC) paradigm. For pre-

senting this paradigm, let us consider the following algorithm (call

it algorithm B) that is instantiated on an input dataset � , and then

for g ∈ N rounds applies a DP algorithm on a “slice” of the dataset.

(1) Take an input dataset � ∈ -= containing = points from

some domain - .

(2) For round 8 = 1, 2, . . . , g :

(a) Obtain an integer<8 , an (Y, X)-DP algorithm A8 and an

ordering ≺ (8) over - .

(b) (8 ← the largest<8 elements in � under ≺ (8) .
(c) � ← � \ (8 .
(d) A ← A((8 ).
(e) Output A .

As B performs a total of g applications of (Y, X)-DP algorithms,

standard composition theorems for DP state that algorithm B itself

is ≈ (Y√g, Xg)-DP. This analysis, however, seems wasteful at �rst

glance, because eachA8 is applied on a disjoint portion of the input

dataset � . That is, the (incorrect) hope here is that we do not need

to pay in composition since each data point from � is “used only

once”. The failure point of this idea is that by deleting one point from

the data, we can create a “domino e�ect” that e�ects (one by one)

many of the sets (8 throughout the execution. This is illustrated in

the following example.

Example 1.4. Suppose that - = N, and that<1 = · · · = <g = <

(for some parameter<), and that all of the orderings ≺ (1) , . . . , ≺ (g)
are the standard ordering of the natural numbers. Now consider the

two neighboring3 datasets � = {1, 2, 3, 4, 5, ...=} and � ′ = � \ {1}.
Then during the execution on � we have that (1 = {1, 2, . . . ,<}, (2 =
{< + 1, . . . , 2<}, and so on, while during the execution on � ′ we have
that ( ′1 = {2, . . . ,< + 1}, ( ′2 = {< + 2, . . . , 2< + 1}, and so on. That
is, even though � and � ′ di�er in only one point, and even though

this point is “used only once”, it generates di�erences in the output

distribution of all of the iterations, and hence, does not allow us to

avoid paying in composition.

A natural idea for trying to tackle this issue, which has been

contemplated by several previous papers, is to add noise to the

size of each slice [8, 16, 21]. Speci�cally, the modi�cation is that in

Step 2b of algorithm B we let (8 denote the largest (<8 + Noise)
elements (for some appropriate noise distribution), instead of the

largest<8 elements. The hope is that these noises would “mask” the

domino e�ect mentioned above. Indeed, in Example 1.4, if during

the �rst iteration of the execution on � the noise is bigger by one

than the corresponding noise during the execution on � ′, then we

would have that only (1 and ( ′1 di�er by one point (the point 1),

and after that the two executions continue identically. Thus, the

hope is that by correctly “synchronizing” the noises between the

two executions (such that only the size of the “correct” set (8 gets

modi�ed by 1), we can make sure that only one iteration is e�ected,

and so we would not need to apply composition arguments.

Although very intuitive, analyzing this idea is not straightfor-

ward. The subtle issue here is that it is not clear how to synchronize

the noises between the two executions. In fact, this appeared in

3In this paper, we use the “add-one” de�nition for neighboring. Namely, we say � and
�′ are a pair of neighboring data sets if �′ can be obtained by adding or removing
one item in � .
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several papers as an open question.4 Furthermore, this issue (al-

most) exactly describes the bottleneck in the algorithm of [16] for

privately learning thresholds, capturing the reason for why their

algorithm had sample complexity $̃
(
(log∗ |- |)1.5

)
. We analyze this

algorithm, and present the following result.

Theorem 1.5 (Informal). For every X̂ > 0, the RSC paradigm, as

described in algorithm B above (with appropriate noises of magnitude

≈ 1
Y ), is ($ (Y log(1/X̂)), X̂ + 2gX)-DP.

Note that the privacy parameter Y does not deteriorate with g , as

it would when using standard composition theorems. This bene�t is

what, ultimately, allows us to present our improved algorithms for

privately learning thresholds and for quasi-concave optimization.

As the Reorder-Slice-Compute paradigm looks generic, we hope

that it would �nd additional applications in future work.

1.3.2 A simulation-based proof technique. Towards analyzing our

RSC paradigm, we put forward a new proof technique. While

obvious in retrospect, and related to prior simulation-based ap-

proaches used for proving composition theorems for di�erential

privacy [15, 19], we believe that our formulation of this proof tech-

nique is instructive.

Consider an algorithm A whose input is a dataset, and suppose

that we would like to prove that A is DP. To do this, in the proof

technique we propose, we design two interactive algorithms: a

simulator S and a data holder � with the following properties. The

simulator is given two neighboring datasets �0 and �1 but does

not know which of these two datasets is the actual input. The task

of the simulator is to simulate the computation of A on the actual

input dataset �1 . The data holder has, in addition to �0, �1, access

to the private bit 1 (and therefore knows the identity of the actual

dataset �1 ). The simulator attempts to perform as much of the

computation as they can without accessing the data holder. That is,

ideally, the data holder is queried only when it is necessary for a

faithful simulation of A on �1 .

The privacy cost of the simulation is with respect to the leakage

of the private bit 1 during the interaction between the simulator

and the data holder. Formally,

Lemma 1.6. LetA be an algorithm whose input is a dataset. If there

exist a pair of interactive algorithms S and� satisfying the following

2 properties, then algorithm A is (Y, X)-DP.
(1) For every two neighboring datasets �0, �1 and for every bit

1 ∈ {0, 1} it holds that
(
S(�0, �1) ↔ � (�0, �1, 1)

)
≡ A(�1 ).

Here
(
S(�0, �1) ↔ � (�0, �1, 1)

)
denotes the outcome of S

after interacting with � .

(2) Algorithm � is (Y, X)-DP w.r.t. the input bit 1.

The proof of this lemma is immediate. Nevertheless, embracing

its terminology can simplify privacy proofs. The potential bene-

�t comes from the fact that in order to prove that A is DP, we

4We remark that the analysis of algorithm B (with the noises) becomes signi�cantly
easier when all the orderings throughout the execution are the same (as in the setting of
Example 1.4). The more general setting (with di�erent orderings) is more challenging,
and it is necessary for our applications. We refer the reader to [21] for a more elaborate
discussion.

design two other algorithms that are “working together” in order

to simulate A, under the assumption that both of them know the

two neighboring datasets, where � is trying to “steer” S towards

simulating A(�1 ).
Let us elaborate on the bene�ts of this proof technique in the

context of our RSC paradigm (speci�ed in algorithm B above, with

noisy slice sizes<8 ). Fix two neighboring datasets �,�
′. We design

a simulator that, in every iteration 8 ∈ [g], samples the noisy slice

size<8 , and checks if the resulting slices (8 , (
′
8 (corresponding to

�,� ′) are identical. If so, then the simulator does not need to access

the data holder, and therefore does not incur a privacy cost. When

the simulator encounters a step where (8 ≠ ( ′8 , it calls the data

holder to perform the computation. When called, in addition to do-

ing the computation, the data holder also attempts to “synchronize”

the two executions, and reports back to S if it succeeded. Once

synchronization is successful, the simulator can proceed without

further assistance from the data holder, and no more privacy cost

is incurred. We show that, when done correctly, the number of iter-

ations in which we incur a privacy cost is constant in expectation

and with probability at least 1 − X̂ it is at most $ (log(1/X̂)).

1.3.3 Our new upper bound for privately learning thresholds. To

obtain our (nearly tight) upper bound on the sample complexity

of privately learning thresholds, we present a new analysis (and

a simpli�cation) of the algorithm of [16], which is made possible

using our new RSC paradigm. We next survey the algorithm of [16]

and explain our improvements. We stress that this presentation is

oversimpli�ed. Any informalities made herein will be removed in

the sections that follow.

The interior point problem [8, 16]. Rather than directly designing

an algorithm for learning thresholds, the algorithms of [8, 16] (as

is ours) are stated for the simpler interior point problem: Given a

dataset � containing (unlabeled) elements from an ordered domain

- , the interior point problem asks for an element of - between the

smallest and largest elements in � . Formally,

De�nition 2. An algorithm A solves the interior point problem

(IP) over a domain - with sample complexity = and failure proba-

bility V if for every dataset � ∈ -= ,

Pr[min� ≤ A(�) ≤ max�] ≥ 1 − V,

where the probability is taken over the coins of A.

Note that this problem is trivial without privacy constraints (as

any input point is a valid output). Nevertheless, solving it with

di�erential privacy has proven to be quite challenging. In partic-

ular, as Bun et al. [8] showed, privately solving this problem is

equivalent to privately learning thresholds (properly).5 Thus, all of

the aforementioned upper and lower bounds w.r.t. thresholds apply

also to the IP problem, and it su�ces to study this simpler problem

in order to present upper and lower bounds for privately learning

thresholds (properly).

5This equivalence is very simple: Given a private algorithm for the IP problem, we can
use it to learn thresholds by identifying an interior point of the input points that reside
around the decision boundary. For the other direction, given an unlabeled dataset (an
instance to the IP problem), sort it, label the �rst half of the points as 1 and the other
half as 0, and use a private algorithm for thresholds in order to identify a decision
boundary. This decision boundary is a valid output for the IP problem.
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The algorithm of [16]. Kaplan et al. [16] presented an algorithm,

called TreeLog, for privately solving the IP problem. At a high level,

TreeLog works by embedding the input elements from the domain

- in a smaller domain of size log |- |, while guaranteeing that every
interior point of the embedded elements can be (privately) trans-

lated into an interior point of the input elements. The algorithm

is then applied recursively to identify an interior point of the em-

bedded elements. TreeLog can be informally (and inaccurately)

described as follows.

Input: Dataset � ∈ -= containing = points from the ordered

domain - .

(1) Let ) be a binary tree with |- | leaves, where every leaf is

identi�ed with an element of - .

(2) For a trimming parameter C ≈ 1
Y0
log 1

X
, let �le� and �right

denote the C smallest and C largest elements in � , respec-

tively. Let �̂ = � \ (�le� ∪ �right).
(3) Assign weights to the nodes of ) , where the weight of a

node D is the number of input points (from �̂) that belong

to the subtree of ) rooted at D.

(4) Identify a path c from the root of ) to a node Dc with

weight C (in a very particular way).

(5) Use the path c to embed the input points in a domain of

size log |- |, where a point G ∈ �̂ is mapped to the level

of the tree ) at which it “falls o�” the path c . That is, G is

mapped to the level of the last node D in c s.t. G belongs

to the subtree rooted at D. Points belonging to the subtree

rooted at Dc (the last node in c ) are not embedded (there

are C such points).

(6) Recursively identify an interior point ℓ∗ ∈ [log |- |] of the
(= − 3C) embedded points.

(7) LetD∗ be the node at level ℓ∗ of c . Privately choose between
the left-most and the right-most descendants of D∗; one of
them is an interior point w.r.t. the dataset �le� ∪ �right.

To see that the algorithm returns an interior point, suppose that

(by induction) the point ℓ∗ from Step 6 is indeed an interior point

of the embedded points. This means that at least one embedded

point is smaller than ℓ∗ and at least one embedded point is larger

than ℓ∗ (for simplicity we ignore here the case where these points

might be equal to ℓ∗). This means that at least one input point

Gbefore ∈ �̂ falls o� the path c before level ℓ∗ and at least one input

point Ga�er ∈ �̂ falls o� the path c after level ℓ∗. Observe that since
Gbefore falls o� c before level ℓ∗, is does not belong to the subtree

rooted at D∗ (the node at level ℓ∗ of c ). On the other hand, Ga�er,

which falls o� c after level ℓ∗, does belong to the subtree rooted at

D∗. That is, the subtree rooted at D∗ contains some, but not all, of

the input points (from �̂). Hence, either the left-most descendant

of D∗, denoted as D∗
le�-most

, or its right-most descendant, D∗
right-most

,

must be an interior point of �̂ . As �le� ∪ �right contains C points

which are bigger than any point in �̂ as well as C points which are

smaller than any point in �̂ , we get that one of D∗
le�-most

, D∗
right-most

is a “deep” interior point w.r.t. �le� ∪ �right (with at least C points

from each side of it). Choosing such a “deep” interior point (out of

2 choices) can be done using standard di�erentially private tools.

The privacy analysis of TreeLog is more challenging. The subtle

point is that the path c selected in Step 4 is itself highly non private.

Nevertheless, [16] showed that TreeLog is di�erentially private.

Informally, the idea is as follows. Fix two neighboring datasets �

and � ′ = � ∪ {I} and suppose that the same path c is selected

during both the execution on � and the execution on � ′. In that

case, the embedded datasets generated by the two executions are

neighboring, since except for the additional point I, all other points

are embedded identically. If this is indeed the case, and assuming

by induction that TreeLog (with one iteration less) is di�erentially

private, then the recursive call in Step 6 satis�es privacy. The issue

is that the path selected by TreeLog is data dependent and it could

be very di�erent during the two executions. Nevertheless, [16]

showed that when this path is chosen correctly, then it still holds

that neighboring datasets are mapped into neighboring embedded

datasets,6 which su�ces for the privacy analysis. Importantly, for

this argument to go through, it is essential that we do not embed

the “last” C points that fall o� the path c (the points that belong to

the subtree rooted at Dc ).

As the domain size reduces logarithmically with each recursive

call, after log∗ |- | steps the domain size is constant, and the recur-

sion ends. (This base case, where the domain size is constant, can

be handled using standard DP tools.) So there are log∗ |- | steps
throughout the execution. Hence, to obtain (Y, X)-DP overall, [16]

applied composition theorems for DP and used a privacy parameter

of ≈ Y√
log∗ |- |

in every step. This means that we trim ≈
√
log∗ |- |
Y

points with each iteration (in Steps 2 and 5) and we thus need at

least (log∗ |- |)1.5 input points in order to make it through to the

end of the recursion.

Leveraging the RSC paradigm to obtain our upper bound. As an ap-

plication of our RSC paradigm, we present a signi�cantly improved

analysis for algorithm TreeLog. Using the terminology of the RSC

paradigm, we observe that each iteration of TreeLog cuts out three

“slices” from the data: Two slices in Step 2 (the C smallest and C

largest elements) and one slice in Step 5 (the last C points along

the path which are not embedded). We show that the algorithm

can be written in terms of the RSC paradigm, where every slice

is “used only once”. As a result, we get that it su�ces to use a pri-

vacy parameter of (roughly) Y/log 1
X
for each step of the recursion,

while still ending up with (Y, X)-DP overall. So now we only trim

≈ 1
Y log

1
X
points in each step, and hence ≈ log∗ |- | points su�ce

in order to make it till the end of the recursion.

We stress that this is non-trivial to do without the RSC paradigm.

In particular, one of the challenges here is that the embedding used

by TreeLog is not order preserving, and the input points are “shuf-

�ed” again and again throughout the execution. As a result, there is

no a priori order by which we can de�ne the slices throughout the

execution. In fact, to make this work, we need to introduce several

technical modi�cations to the TreeLog algorithm, and to generalize

the RSC paradigm to support it.

1.3.4 Another application of the RSC paradigm: axis-aligned rectan-

gles. We brie�y describe another application of our RSC paradigm.

6More accurately, the distributions on embedded datasets during the two executions
are “close” in the sense that there is a coupling between neighboring embedded datasets
which have similar probability mass.

476



STOC ’23, June 20–23, 2023, Orlando, FL, USA Cohen, Lyu, Nelson, Sarlós, Stemmer

Consider the class � of all axis-aligned rectangles over a �nite 3-

dimensional grid-3 ⊆ R3 . A concept in this class could be thought

of as the product of 3 intervals, one on each axis. Recently, Sadig-

urschi and Stemmer [21] presented a private learner for this class

with sample complexity $̃ (3 · IP(- )), where IP(- ) is the sample

complexity needed for privately solving the interior point prob-

lem over - . As a warmup towards presenting their algorithm, [21]

considered the following simple algorithm for this problem.

Input: Dataset � ∈ (-3 × {0, 1})= containing = labeled points

from -3 .

Tool used: An algorithm A for the IP problem over - with

sample complexity<.

(1) Let ( ⊆ � denote set of all positively labeled points in �

(we assume that there are many such points, as otherwise

the all-zero hypothesis is a good output).

(2) For every axis 8 ∈ [3]:
(a) Project the points in ( onto the 8th axis.

(b) Let �8 and �8 denote the smallest (< + Noise) and the

largest (< + Noise) projected points, respectively, with-

out their labels.

(c) Let 08 ← A(�8 ) and 18 ← A(�8 ).
(d) Delete from ( all points (with their labels) corresponding

to �8 and �8 .

(3) Return the axis-aligned rectangle de�ned by the intervals

[08 , 18 ] at the di�erent axes.

The utility analysis of this algorithm is straightforward. As for

the privacy analysis, observe that there is a total of 23 applications

of the interior point algorithmA throughout the execution. Hence,

using composition theorems, it su�ces to run algorithm A with

a privacy parameter of roughly Y/
√
3 . However, this would mean

that< (the sample complexity of A) is at least
√
3/Y, and hence,

each iteration deletes ≈
√
3/Y points from the data and we need

to begin with |( | ≫ 31.5/Y input points. So this only results in an

algorithm with sample complexity $̃
(
31.5 · IP(- )

)
.

To overcome this, [21] designed a more complex algorithm with

sample complexity linear in 3 . They left open the possibility that

a better analysis of the simple algorithm outlined above could

also result in near optimal sample complexity. Indeed, this follows

immediately from our RSC paradigm: Every iteration reorders the

data points along a di�erent axis, takes out a “slice”, and computes

an interior point of this slice. Hence, by Theorem 1.5, it su�ces to

run A with a privacy parameter of ≈ Y/log( 1
X
), which avoids the

unnecessary blowup of
√
3 in the sample complexity.

Corollary 1.7. There is an approximate private algorithm for (prop-

erly) learning axis-aligned rectangles over a �nite 3-dimensional grid

-3 ⊆ R3 with sample complexity $̃ (3 · log∗ |- |).
1.3.5 Our results for quasi-concave optimization. As we mentioned,

Bun et al. [8] showed that privately learning thresholds is equiv-

alent to privately solving the interior point problem. To obtain

our results for quasi-concave optimization, we present a stronger

equivalence in the context of quasi-concave optimization. More

speci�cally, we show that private quasi-concave optimization is

equivalent to solving the interior point problem with “ampli�ed”

privacy guarantees.7 We leverage these ampli�ed privacy guaran-

tees to strengthen the lower bound of [8] for the interior point

problem, thereby obtaining our lower bound of Ω(2log∗) ) for pri-
vately optimizing quasi-concave functions. We also leverage this

equivalence in the positive direction, and design a suitable variant

of our DP algorithm for the IP problem (with “ampli�ed” privacy

guarantees), thereby obtaining our upper bound of $̃ (2log∗) ) for
privately optimizing quasi-concave functions.

1.4 Concluding Remarks

In this work, we present a nearly-optimal algorithm for privately

solving the interior point problem. As a result, we can get near-

optimal sample complexity for private learning thresholds and a

couple of other applications through the reduction presented in

[8]. This includes, e.g., �nding an approximate median of the data,

releasing threshold queries, and learning distribution with respect

to Kolmogorov distance. We also present nearly matching upper

and lower bounds for the task of private quasi-concave optimization.

In particular, the lower bound suggests a natural limit of the current

algorithmic techniques toward understanding private learning of

discrete halfspaces.

Perhaps more importantly, we introduce new tools and ideas

to obtain the aforementioned results. This includes the intriguing

Reorder-Slice-Compute paradigm, as well as a simulation-based

proof method to establish the privacy claim.

We �nd the simulation-based proof very useful in analyzing

dynamic algorithms. At a high level, by �xing two adjacent data

sets �, � ′, the simulation-based proof allows us to zoom in on the

computation and �nd out the most “privacy-leaking” steps with

respect to this speci�c pair of data sets �,� ′. Then, we argue the
privacy of the algorithm by designing a communication protocol

between a “simulator” and a “data holder”. We show that, knowing

the true input is from the pair {�,� ′}, the simulator only needs

to know a little bit more about the input to simulate the algorithm

faithfully. We quantify this “little bit” by bounding the information

leaked to the simulator from the data holder. We hope this analysis

method would inspire privacy proofs for more complex algorithms.

As our key application of this simulation-based proof method,

we present and analyze the Reorder-Slice-Compute paradigm. The

paradigm looks generic: it allows one to select a subset of data

according to some desired ordering and perform computation on

the selected items only. We can show a signi�cant privacy saving if

each item is only selected once. It is worth comparing the paradigm

with the well-known privacy ampli�cation by subsampling (PAS)

technique (see, e.g. [3]), where one ampli�es privacy by sampling a

subset of data and performing computation on the sampled data

only. Quantitatively, the privacy saving o�ered by RSC is strictly

weaker: if the data set contains = items, one can use slices of size

≈ =
g to perform g Y-DP computation with g di�erent groups of

items, and the total privacy loss is $̃ (Y). In contrast, by using PAS

to sample =
g items for each computation, one can perform a total

of $ (g2) computation and get overall privacy $̃ (Y). However, RSC
seems more versatile: it allows the data analyst to customize the

data analysis procedure based on the ordering of individuals, which

7It is not that the privacy parameters are ampli�ed, rather the resulting algorithm for
the interior point problem satis�es a stronger (stringent) variant of di�erential privacy.
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may be highly-sensitive information. It is also highly adaptive: the

ordering, as well as the algorithms one wants to run on the slices, do

not need to be �xed in advance. We hope to see more applications

of the RSC paradigm.

2 REORDER-SLICE-COMPUTE

In this section, we introduce a simpli�ed form of the Reorder-Slice-

Compute paradigm.We refer to the full version for the most general

form of our algorithm.

Notation. For two reals 0, 1 ≥ 0, we write 0 ≈Y 1 if 4−Y1 ≤ 0 ≤
4Y1. A dataset � ∈ -= can be viewed as a multiset of elements from

- : The private algorithms we consider are applied to the respective

multiset. We refer to an ordered multiset as a list. We consider two

multisets or two lists �,� ′ adjacent, if and only if one of them (say,

� ′) can be obtained by inserting a single element into the other.

We say that a deterministic mapping � : - ∗ → - ∗ from multisets

to lists is adjacency preserving, if for every pair of adjacent data

sets �, � ′ ∪ {G}, � (�) and � (� ′) are equal or adjacent lists. To

simplify the presentation, we will sometimes treat lists as multisets

and apply set operations on both multisets and lists (� ∪ {G} is the
multiset � with the multiplicity of G incremented by 1).

2.1 The Reorder-Slice-Compute Paradigm

Algorithm 1 (ReorderSliceCompute) describes our paradigm. The

algorithm performs g adaptively-chosen computations over disjoint

slices of an input dataset � . Each computation 8 ∈ [g] is speci�ed
by a tuple (<8 ,A8 , �8 ): an (Y, X)-DP algorithm A8 , a speci�ed ap-

proximate slice size (number of elements)<8 ∈ N, and an adjacency
preserving mapping �8 : -

∗ → - ∗ from data sets to lists.8

Given the tuple (<8 ,A8 , �8 ), we use �8 to process the input data

set �8−1, and select the �rst <̂8 :=<8 + Geom(1 − 4−Y ) elements of

the list �8 (�8−1) into the slice (8 . Then, we apply A8 to (8 , publish

the result, and set �8 to be the (multiset of the) elements of the list

�8 (�8−1) with the pre�x (8 removed.

The algorithm includes an optional delayed-compute phase, which

follows the slicing phase. The slices ((8 )g8=1 are kept internally. The
algorithm then adaptively receives a slice number 8 and an (Y, X)-
DP algorithm A ′8 , and publishes A ′8 ((8 ). Note that each slice is

called at most once and the choice of the next slice and the selected

algorithm may depend on results from prior slices.

We consider the total privacy cost of ReorderSliceCompute.

Intuitively, we might hope for it to be close to (Y, X)-DP, as each
data element contributes to at most one slice. The slices, however,

are selected from � in an adaptive and dependent manner. We can

bound the total privacy cost using DP composition, but this results

in a factor of g or
√
g (with advanced composition) increase in the

privacy cost. A surprisingly powerful tool is our following theorem

that avoids such dependence on g :

Theorem 2.1 (Privacy of ReorderSliceCompute). For every X̂ > 0,

Algorithm 1 is ($ (Y log(1/X̂)), X̂ + 2gX))-DP.

8One example is where �8 is a sorter that receives the data set� ∈ -= and a speci�ed
order ≺ on - and returns the sorted list of � by ≺ (as described in the intro). Our
paradigm allows for more general data processing than sorting. This �exibility enables
us to express a private algorithm for the interior point problem in this paradigm.

Algorithm 1: Reorder-Slice-Compute (RSC)

Input: Dataset � = {G1, . . . , G=} ∈ -= . Integer g ≥ 1.

Privacy parameters 0 < Y, X < 1.

1 Function SelectAndCompute(� ,<, A, �):

2 <̂ ←< + Geom(1 − 4−Y ) // Geom(?) denotes the

geometric distribution with parameter ?

3 ( ← the �rst <̂ elements in � (�)
4 � ← � (�) \ (
5 A ← A(()
6 return (�, (, A )
7 Program:

// Slice and Compute Phase:

8 �0 ← �

9 for 8 = 1, . . . , g do

10 Receive (<8 ,A8 , �8 ) where<8 ∈ N, an (Y, X)-DP
algorithm A8 , and an adjacency-preserving

mapping �8 : -
∗ → - ∗ from multisets to lists

11 (�8 , (8 , A8 ) ← SelectAndCompute(�8−1,<8 , A8 , �8)

12 Publish A8

// Delayed Compute Phase:

13 � ← [g]
14 while � is not empty do

15 Receive (8,A), where 8 ∈ � and A is an (Y, X)-DP
algorithm

16 � ← � \ {8}
17 Publish A((8 )

We can consider an extension of ReorderSliceCompute where

we allow for up to : compute calls for each slice. The calls can be

made at di�erent points and adaptively, the only requirement is

that they are made after the slice is �nalized. Our analysis implies

the following:

Corollary 2.2 (Privacy of ReorderSliceComputewith : computes

per slice). For every: ≥ 1 and X̂ > 0, an extension of Algorithm 1 that

allows for up to: computations on each slice is ($ (Y (:+log(1/X̂))), X̂+
2:gX))-DP.

We can also consider performing : adaptive applications of

ReorderSliceCompute. Interestingly, the factor of log(1/X̂) loss
in privacy is incurred only once:

Theorem 2.3 (: adaptive applications of ReorderSliceCompute).

For every : ≥ 1 and X̂ > 0, : adaptive applications of Algorithm 1

are ($ (Y (: + log(1/X̂))), X̂ + 2:gX))-DP.

In the following we prove Theorem 2.1 (privacy analysis of Al-

gorithm 1). We perform the privacy analysis using the simulation-

based technique outlined in Section 1.3.2. In Section 2.2 we intro-

duce a tool that we call the synchronizationmapping, that facilitates

the synchronization performed by the data holder. In Section 2.3 we

describe the simulator S and data holder � and establish that the

simulation faithfully follows Algorithm 1. In Section 2.4 we show
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that the data holder satis�es the privacy bounds of Theorem 2.1.

The proof of Theorem 2.1 then follows using Lemma 1.6.

The proof of Theorem 2.3 is a simple extension and is included

in Subsection 2.5.

2.2 The Synchronization Mapping

We specify a pair of randomized mappings '1Y , 1 ∈ {0, 1} that are
indexed by a state bit 1 with the properties described in Lemma 2.4.

Notation. For a set ( , Δ(() denotes the set of all distributions
supported on ( . Geom(?) denotes the geometric distribution with

stopping parameter ? . Formally, Pr[Geom(?) = :] = (1− ?): · ? for

every : ≥ 0.

Lemma 2.4 (Synchronization lemma). For every Y ∈ (0, 1), there
are two randomized mappings '0Y , '

1
Y : N→ Δ(N × {0, 1}) such that

the following statements hold.

(1) For every< ∈ N, supp('0Y (<)) ⊆ {(<, 0), (<, 1)},
and supp('1Y (<)) ⊆ {(<, 0), (< − 1, 1)}.

(2) '0Y (Geom(1 − 4−Y )) and '1Y (Geom(1 − 4−Y )) are
(Y, 0)-indistinguishable.

(3) For both 1 ∈ {0, 1}, Pr(U,V)←'1
Y (Geom(1−4−Y )) [V = 1] ≥ 1

6 .

Proof. We construct a sequence C0, . . . , C∞ ∈ [0, 1]N as follows:

C8 = max{0, 4−8Y + 4−(8+1)Y − 1}, ∀8 ≥ 0.

It is easy to see that C8 is non-increasing and C8 ≤ 4−(8+1)Y . Then,
we set

'0Y (0) =
{
(0, 0) w.p. 4−Y

(0, 1) w.p. 1 − 4−Y

and '1Y (0) = (0, 0) with probability one. For every 8 ≥ 1, we explic-

itly set

'0Y (8) =
{
(8, 0) w.p. C8 · 48Y

(8, 1) w.p. 1 − C8 · 48Y
,

and

'1Y (8) =
{
(8, 0) w.p. C8 · 4 (8+1)Y

(8 − 1, 1) w.p. 1 − C8 · 4 (8+1)Y
.

Note in particular that Pr['0Y (0) = (0, 1)] = 1 − 4−Y = 1 − C0.
Now we verify the validity of this construction. Obviously '0Y

and '1Y satisfy Property 1. We verify Property 2 now. We �rst have

Pr['0Y (Geom(1 − 4−Y )) = (0, 0)] ≈Y Pr['1Y (Geom(1 − 4−Y )) = (0, 0)] .
For every 8 ≥ 1, we have

Pr['0Y (Geom(1 − 4−Y )) = (8, 0)]
= (1 − 4−Y )4−8Y · C848Y

≈Y (1 − 4−Y )4−8Y · C84 (8+1)Y

= Pr['1Y (Geom(1 − 4−Y )) = (8, 0)] .
Fix 8 ≥ 0 and consider the output (8, 1). We have

Pr['0Y (Geom(1 − 4−Y )) = (8, 1)]
Pr['1Y (Geom(1 − 4−Y )) = (8, 1)]

=
4−8Y (1 − 4−Y ) (1 − C848Y )

4−(8+1)Y (1 − 4−Y ) (1 − C8+14 (8+2)Y )

= 4Y
1 − C848Y

1 − C8+14 (8+2)Y
.

Let us consider 1 − C848Y . If C8 = 0, then 1 − C848Y = 1. Otherwise,

1 − C84
8Y

= 48Y − 4−Y . Combining both cases, we conclude that

1 − C848Y = min{1, 48Y − 4−Y }. Similarly, we have 1 − C8+14 (8+2)Y =

min{1, 4 (8+2)Y − 4Y }. Therefore, it is clear that

4Y
1 − C848Y

1 − C8+14 (8+2)Y
=
4Y ·min{1, 48Y − 4−Y }
min{1, 4 (8+2)Y − 4Y }

∈ [4−Y , 4Y ] .

We have fully veri�ed Property 2. It remains to verify Property 3.

Let W ≥ 0 be the minimum integer such that CW = 0. Note that

for every input < ≥ W , with probability one, we have '1Y (<) =
(<−1, 1) for both 1 ∈ {0, 1}. Therefore, it is su�ces to lower bound

Pr[Geom(1 − 4Y ) ≥ W] = 4−YW . Since W is the minimum integer such

that CW = 0, we have CW−1 = 4−(W−1)Y + 4−WY − 1 > 0, implying that

4−YW >
1

1+4Y ≥
1
6 as Y ≤ 1. □

2.3 The Simulator and Data Holder

We describe the simulator and the data holder and establish that

the interaction is a faithful simulation of Algorithm 1 and hence

satis�es the �rst condition of Lemma 1.6. To simplify presentation,

we present the simulation for Algorithm 1 without the delayed

compute phase, and then explain how the simulation and analysis

can be extended to include delayed compute.

The simulator is described in Algorithm 2 and the data holder

query response algorithm is described in Algorithm 3. The simulator

receives as input two adjacent datasets�, � ′ = �∪{G}. It then runs
a simulation of Algorithm 1 and maintains internal state for both

cases of the input dataset being� (state 1 = 0) and the input dataset

being � ′ = � ∪ {G} (state 1 = 1). The simulation is guaranteed to

remain perfect only for the correct case 1. The simulator initializes

�0 ← � and updates the active elements �8 ⊂ �8−1 (�8−1) and the

applicable di� element G . The simulator maintains a status bit that

is initially 0 (two cases are not synchronized) and at some point the

status becomes and then remains 1 (two cases are synchronized).

When the status bit is 0, internal states aremaintained for both cases:

The active elements for case1 = 0 are�8 and the active elements for

case 1 = 1 are �8 and one additional element G (initially G ∈ � ′ \�
but can get replaced). When the status bit is 1, the internal state

is only that of the true case (the active elements of the true case

are �8 ), there is no di� element maintained, and the simulation

proceeds like Algorithm 1.

Until synchronization, the simulator slices the data set by emu-

lating SelectAndCompute. When the slices are such that they are

identical for both cases, that is, the <̂8 pre�x of �8−1 (�8−1) is equal
to the <̂8 pre�x of �8−1 (�8−1 ∪ {G}), the computation does not

depend on the state 1 and the simulator performs it and reports the

result A without accessing the data holder. The set of active elements

with the slice removed continue to di�er by the one element G ′ that
is the di�erence of the multisets �8−1 (�8−1 ∪ {G}) and �8−1 (�8−1).
If the slices for the two cases are di�erent, then let ? be the �rst

position of the list �8−1 (�8−1 ∪ {G}) that does not have the same

element as the same position of �8−1 (�8−1). Note that we must have

<̂8 ≥ max{?,<8 }. The slice for the case 1 = 1 includes an element

G ′ and the slice for 1 = 0 includes a di�erent element ~ at position

<̂8 of �8−1 (�8−1). The data holder (Algorithm 3) therefore must be

called to obtain a correct result A . The data holder redraws the slice

size <̂8 conditioned on it being at leastmax{?,<8 }. This provides an
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opportunity for synchronization without changing the distribution

(from the memorylessness property of the geometric distribution,

the di�erence under such conditioning is an independent draw

from the geometric distribution). The data holder attempts to syn-

chronize (that involves applying the randomized mapping that also

depends on 1). It reports back a triple: The computation result A ,

status indicating whether synchronization was successful, and a

slice size @̂ to remove from the pre�x of �8−1 (�8−1) to obtain �8 . If

there was no synchronization, the simulator computes the new di�

element.

Note that if there is no synchronization, the reported size results

in perfect removal by the simulator of the elements that participated

in the slice for both cases of 1 = 0 or 1 = 1. The element ~ that

participated in the slice for case 1 = 0 but not in 1 = 1 replaces

G . If the synchronization was successful, then the simulator no

longer maintains an additional element and the set �8 is exactly

�8−1 (�8−1) with the elements that participated in the slice for the

true case removed.

Lemma 2.5. For 1 = 0 (resp. 1 = 1), Algorithm 2 simulates the

execution of Algorithm 1 on the data set � (resp. � ∪ {G}) perfectly.

Proof. We prove that at the start of each round 8 ∈ [g], Al-
gorithm 2 maintains the current data set accurately by the triple

(�8−1, G, status), in the following sense.

• If 1 = 0, then the current data set is �8−1.
• Otherwise (i.e., 1 = 1), if status = 0, the current data set is

�8−1 ∪ {G}. If status = 1, the current data set is �8−1.

We prove the claim by induction on 8 ∈ [g]. This is clearly true

for 8 = 1. Now assume the statement holds for 8 − 1 ≥ 1. We prove

for the case of 8 . There are three cases:

Case 1. status = 1. In this case, the current data set is the same for

the two cases (that is, is independent of the private bit 1). Therefore,

the call to SelectAndCompute is a correct simulation.

Case 2. status = 0. In this case, let ? ≥ 1 be the rank of G in

�8−1 ∪ {G}. To simulate SelectAndCompute, we need to sample

<̂8 ← <8 + Geom(1 − 4−Y ), and use the �rst <̂8 elements in the

applicable list �8 (�8−1) or �8 (�8−1 ∪ {G}) to do the computation.

Algorithm 2 �rst samples <̂8 and tests if <̂8 < ? . The test yields

two cases:

• <̂ < ? . In this case, for both 1 ∈ {0, 1}, the pre�x is the same

and Algorithm 1 would select the same subset of elements.

Therefore, the simulator can perfectly simulate this case

without querying the private bit 1. It is easy to see that the

update from �8−1 to �8 is valid.

• <̂ ≥ ? . In this case, the private bit 1 ∈ {0, 1} does make a

di�erence. Hence, the simulator asks the data holder � to

do this round of SelectAndCompute, conditioned on <̂8 ≥
max(?,<8 ) (i.e., at least max(?,<8 ) elements are selected).

We need a well-known fact about Geometric distribution

(the memoryless property): suppose there is a random vari-

able G = 0 + Geom(1 − 4−Y ). Then, conditioned on G ≥ ~ for

some ~ ≥ 0, G is distributed as ~ + Geom(1 − 4−Y ). Therefore,
conditioned on <̂8 ≥ max(?,<8 ), Lines 2-3 in Algorithm 3

sample the number of participating elements perfectly.

Algorithm 2: The Simulator

Input: A pair of adjacent datasets �,� ′ = � ∪ {G}. Integer
g ≥ 1. Privacy parameters Y ∈ (0, 1), X > 0.

1 Program:

2 �0 ← �

3 G ← G

4 status← 0 // status = 1 indicates two data sets

have been “synchronized”

5 for 8 = 1, . . . , g do

6 Receive<8 ∈ N, an (Y, X)-DP algorithm A8 , and an

adjacency preserving map �8 : -
∗ → - ∗

7 if (status = 0) ∧ (�8 (�8−1) = �8 (�8−1 ∪ {G})) then
// Map � eliminated the diff element

8 status← 1 // Synchronized

9 if status = 1 then

10 (�8 , A ) ← SelectAndCompute(�8−1,<8 ,A8 , �8)

11 else

12 <̂8 ←<8 + Geom(1 − 4−Y )
13 G ′ ← �8 (�8−1 ∪ {G}) \ �8 (�8−1) // diff

element of mapped datasets

14 ? ← the rank of G ′ in �8−1 (�8−1 ∪ {G})
15 if <̂8 < ? then // This round does not

involve diff element

16 (8 ← the �rst <̂8 elements in �8 (�8−1)
// Slice (8 is the same if selected

from �8 (�8−1 ∪ {G})
17 �8 ← �8 (�8−1) \ (8
18 G ← G ′

19 A ← A8 ((8 )
20 else // This round involves diff element

21 @ ← max(?,<8 )
22 (@̂, new_status, A ) ←

Query(�8−1, G, @,A8 , �8 )) // Query the

data holder Algorithm 3 and receive

a triple

(@̂, new_status, A ) ∈ N × {0, 1} × Y
23 ( ← the �rst @̂ elements in �8 (�8−1)
24 if new_status = 0 then

// Synchronization failed

25 G ← the @̂-th largest element in �8 (�8−1)
26 �8 ← �8 (�8−1) \ (
27 else // Successful synchronization

28 �8 ← �8 (�8−1) \ (
29 status← 1

30 Publish A

31 return (�g , status, G)

Having sampled <̂, Algorithm 3 selects the pre�x of <̂ el-

ements from either �8 (�8−1) or �8 (�8−1 ∪ {G}) (depending
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Algorithm 3: The Query Algorithm to the Data Holder

Input: A private bit 1 ∈ {0, 1} indicating whether the input

data set is � (1 = 0) or � ′ = � ∪ {G} (1 = 1). Privacy

parameters Y ∈ (0, 1), X > 0.

1 Function Query(�, G, @,A, �):

2 Δ← Geom(1 − 4−Y )
3 <̂ ← @ + Δ
4 if 1 = 0 then

5 ( ← the �rst <̂ elements in � (�)
6 else

7 ( ← the �rst <̂ elements in � (� ∪ {G})
8 A ← A(()
9 (U, V) ← '1Y (Δ) // Try to synchronize

10 @̂ ← @ + U // @̂ is the reported number of

participating elements.

11 return (@̂, V, A )

on 1 ∈ {0, 1}), and runs A on the selected elements. This

part simulates Algorithm 1 faithfully.

Finally, Algorithm 3 runs the synchronization mechanism

and returns the triple (@̂, V, A ). Given this triple, we verify

the validity of the update from �8−1 to �8 . This is straight-

forward.

If 1 = 0, then it is always the case that <̂ = @̂, and note

that Algorithm 2 always removes the �rst <̂ elements from

�8 (�8−1), no matter what new_status is.

If 1 = 1, then we have <̂ = @̂+new_status. Depending on the
value of new_status, there are two cases: if new_status = 1,

then we update the data set from �8−1 ∪ {G} to �8 , where �8

is obtained by removing the �rst @̂ elements from �8 (�8−1).
Overall this process removes @̂+1 = <̂ elements. If new_status =

0, then we update the data set from �8−1 ∪ {G} to �8 ∪ {~}
where~ is the @̂-th element in �8 (�8−1). Over all this process
removes the �rst @̂ = <̂ elements from �8 (�8−1 ∪ {G}).

In summary, assuming the �rst (8 − 1)-rounds simulate Algorithm 1

perfectly, and the triple (�8−1, G, status) is accurately maintained

(in the aforementioned sense), we have shown that the 8-th round

of simulation is also perfect, and the triple is updated accurately.

By induction, this shows that the simulator simulates all of the g

rounds perfectly, as desired. □

Simulation with delayed compute. We outline the modi�cations

needed in the simulation when including the delayed compute

phase. It is straightforward to verify that it remains a faithful simu-

lation of ReorderSliceCompute with delayed compute.

The modi�ed simulator performs two phases. The �rst is the slic-

ing phase, that is the same as Algorithm 2 except that the modi�ed

simulator stores the slices (8 for steps 8 that did not require calls

to the holder. It also keeps track of the set of steps � for which it

called the data holder. Additionally, the calls to the data holder also

specify the step number 8 . In the second phase (delayed-compute)

the simulator handles 8 ∉ � by applying the provided algorithm

to the stored (8 and publishes the result. When 8 ∈ � , the simula-

tor calls the data holder with the speci�ed step number 8 and the

provided algorithm.

The modi�ed data holder (Algorithm 3) takes two types of calls,

depending on which phase the simulator is in. The �rst phase calls

correspond to the slicing. These calls are as described inAlgorithm 3,

except that: (1) we allow calls without computations (and results)

and (2) the call includes the step number 8 and the data holder stores

internally the applicable slice (8 .

In the delayed-compute phase calls, the input to the data holder

is (8,A), where 8 ∉ � is a step number for which it has (8 stored

and A an (Y, X)-DP. The holder publishes the output A((8 ).

2.4 Simulation Privacy Analysis

The following two lemmas imply that the data holder satis�es the

privacy bound stated in Theorem 2.1. They also imply the bound

stated in Corollary 2.2 for the extension where we allow : (Y, X)-DP
computations per slice.

Lemma 2.6. Each call by Algorithm 2 to Algorithm 3 in the �rst

phase is (3Y, 242YX)-DP and each call in the second phase is (2Y, 242YX)-
DP with respect to the private input 1 ∈ {0, 1}.

Proof. On a query, the output of Algorithm 3 is a triple (@̂, V, A ).
Note that the pair (@̂, V) does not depend on the result A . It will be

convenient for us to analyse the privacy cost by treatingAlgorithm 3

as �rst returning (@̂, V) and storing ( , and then at some later point,

taking A as input and computing and returning A ← A(().
Note that (@̂, V) = (U + @, V) where (U, V) ∼ '1Y (Geom(1 − 4−Y )).

Therefore, by Property 2 in Lemma 2.4, the pair (@̂, V) is (Y, 0)-DP
with respect to the private bit 1.

The algorithm chooses the set ( depending on the private bit 1.

In the following, we use (1 to denote the respective choice. Next,

having learned (@̂, V), from the viewpoint of the simulator, she can

deduce the following.

• If V = 0, the set (1 used in this query would be the �rst @̂

elements in � (�), or the �rst @̂ − 1 elements in � (�) plus
the extra element {G}, depending on whether 1 equals 0 or

1. Since (0 and (1 di�er by at most two elements, the result

A ∼ A((1 ) is (2Y, 242YX)-DP w.r.t. 1.

• If V = 1, the set (1 would be the �rst @̂ elements in � (�),
or the �rst @̂ elements plus the extra point {G}, depending
on the private bit 1. Since (0 and (1 di�er by at most one

element, the result A ∼ A((1 ) is (Y, X)-DP w.r.t. 1.

By the basic composition theorem, (@̂, V, A ) is (3Y, 242YX)-DP w.r.t.

the private bit 1.

Note that this holds also for the delayed-computes that are per-

formed in the second phase and are applied to (1 that are (2Y, 242YX)-
DP. □

Lemma 2.7. For every X̂ > 0, with probability 1 − X̂ , Algorithm 2

makes at most $ (log(1/X̂)) queries to Algorithm 3.

Proof. It su�ces to consider the number of calls made during

the �rst phase. Each time the simulator calls Algorithm 3, with

probability at least 1
6 , Algorithm 3 responds a triple with V = 1.

Further observe that once the simulator gets a triple with V = 1,

she will never send query to Algorithm 3 again. Therefore, the
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probability that the simulator sends more thanF ∈ N queries is at

most (5/6)F , as desired. □

Combining Lemma 2.6 and 2.7 proves Theorem 2.1.

2.5 Analysis for : Adaptive Applications of
Reorder-Slice-Compute

We outline the proof of Theorem 2.3.We follow the analysis as in the

proof of Theorem 2.1. We apply the simulator for the : executions

of ReorderSliceCompute. The privacy cost depends on the total

number of calls to Algorithm 3 which we bound as follows:

Lemma 2.8. Let the random variable /: be the number of calls to

Algorithm 3 in : executions of Algorithm 2. There is a constant 2 such

that for all : ≥ 1, X̂ > 0, Pr[/: ≥ 2 max{:, ln(1/X̂)}] ≤ X̂ .

Proof. The total number of calls to Algorithm 3 is dominated by

the sum of : independent Geom(?) random variables with param-

eter ? ≥ 1/6. Using tail bounds on the sum of Geometric random

variables [14], we obtain that for all _ ≥ 1,

Pr[/: ≥ _:/?] ≤ exp(−: (_ − 1 − ln _)) .
Substituting = = _:/? we obtain for = ≥ 10:/? = Ω(:): Pr[/: ≥

=] ≤ exp(−=/2). Therefore for some constant 2 , for all X̂ > 0,

Pr[/: ≥ 2 max{:, ln(1/X̂)}] ≤ X̂ . □
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