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ABSTRACT

We show a general method of compiling any :-prover non-local

game into a single-prover (computationally sound) interactive game

maintaining the same quantum completeness and classical sound-

ness guarantees, up to a negligible additive factor in a security pa-

rameter. Our compiler uses any quantum homomorphic encryption

scheme (Mahadev, FOCS 2018; Brakerski, CRYPTO 2018) satisfying

a natural form of correctness with respect to auxiliary quantum

input. The homomorphic encryption scheme is used as a crypto-

graphic mechanism to simulate the e�ect of spatial separation, and

is required to evaluate : − 1 prover strategies out of : on encrypted

queries.

In conjunction with the rich literature on (entangled) multi-

prover non-local games starting from the celebrated CHSH game

(Clauser, Horne, Shimony and Holt, Physical Review Letters 1969),

our compiler gives a broad and rich framework for constructing

protocols that classically verify quantum advantage.
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1 INTRODUCTION

Quantum computing promises to usher in a new era in computer

science. There are several ongoing large-scale e�orts by Google,

Microsoft, IBM and a number of startups to demonstrate quantum

advantage, that is, to construct a quantum machine capable of com-

putations that no classical machine can replicate with comparable

speed. Central to the demonstration of quantum advantage is the

question of veri�cation. That is, can a classical machine check that

a given device is performing computations that no classical device

is capable of? (One could relax this requirement to allow a veri�er

with limited quantum capabilities, for example, preparing and trans-

mitting single-qubit states [3, 18]. In this paper, we deal exclusively

with classical veri�ers.)

Such veri�cation schemes for quantum advantage are central to

the ongoing race to construct non-trivial quantum computers. Sev-

eral mechanisms have been proposed to classically verify quantum

advantage:

(1) The Algorithmic Method: Ask the quantum machine to

do a computation, such as factor a large number [36], that

is believed to be hard for classical machines [28]. This is

the most straightforward way to check quantum advantage,

yet it is concretely very expensive and requires millions of

high-�delity qubits which is likely infeasible for near-term

quantummachines (see [19] for a recent, optimized estimate).

(2) The Sampling Method: Ask the quantum machine to (ap-

proximately) sample from a distribution, which is presum-

ably hard to accomplish classically [2, 14]. This results in

tasks that are feasible for near-term quantum machines [5],

yet su�ers from two problems. First, checking that the output

is correct (at least in the current proposals) is an exponential-

time computation that quickly becomes infeasible for a clas-

sical machine. Secondly, the question of whether approxi-

mate sampling is classically hard is less clear and has come

under question [29], despite hardness results for exact sam-

pling [10].

(3) The Interactive Method: The most recent example of a

way to demonstrate quantum advantage relies on using in-

teractive proofs and the fact that quantum algorithms cannot

necessarily be “rewound” which, in turn, is a consequence

of the quantum no-cloning principle. Starting with the work

of Brakerski, Christiano, Mahadev, Vazirani and Vidick [12],

there have been a handful of proposals reducing the number
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of rounds [13], improving the assumptions [37] and the com-

putational e�ciency and near-term feasibility [24], and ex-

tending tomore powerful guarantees such as self-testing [33]

and quantum delegation [31]. The practicality of the quan-

tum machine in these protocols (eg. [38]) seems to fall some-

where between (1) and (2), i.e., the prover is more practical

than with the algorithmic method but less than the sam-

pling method. Compared to (2), veri�cation by the classical

machine is e�cient.

Meanwhile, from more than half a century ago, starting with the

celebrated works of John Bell [6] and Clauser, Horne, Shimony and

Holt [16] to explain the Einstein-Podolsky-Rosen (EPR) paradox,

there is a rich body of work that came up with several methods

to test that two or more spatially separated, non-communicating

quantum devices can generate (testable) correlations that no pair

of classical devices can produce. This immediately gives us a test

of quantum advantage of a very di�erent kind, one whose validity

relies on the (non-falsi�able) physical assumption that devices do

not communicate.

(4) The Non-Local Method: Here, quantum advantage comes

from entanglement. Ask for a pair (or more) of spatially sepa-

rated, but entangled, quantum devices to perform a computa-

tion that no classical machine can replicate without commu-

nication. A classical example is the famed CHSH game [16],

or other violations of the Bell inequality. A rich class of non-

local games have since been constructed and this is an active

area of current research with many breakthroughs in the

last few years (e.g. [4, 20, 21, 32, 35] up until [23]). While

many of these games are attractive and super-e�cient (e.g.

using only a small constant number of qubits), this su�ers

from possible “loopholes”. That is, how does one ensure that

the provers do not subliminally communicate in some way?

Indeed, constructing so-called loophole-free demonstrations

of Bell inequality violations is a Nobel prize-winning [1] and

still active [22] area of research.

1.1 Our Results

A tantalizing question that comes out of the discussion above is the

relation between techniques used to construct multi-prover non-

local games and the ones used to construct single-prover proofs of

quantumness. On the one hand, the former relies on entanglement

whereas the latter relies on quantum non-rewinding. On the other

hand, the intellectual foundations of single-prover protocols for

quantum advantage sometimes come from non-local games. Indeed,

Kahanamoku-Meyer, Choi, Vazirani and Yao [24], in a recent work,

call their interactive single-prover protocol for quantum advantage

a “computational Bell test”. Yet, there have been no formal con-

nections between multi-prover non-local games and single-prover

interactive protocols for quantum advantage.

The central result of this work is the construction of a simple and

general compiler that gives us an interactive protocol demonstrating

quantum advantage starting from two building blocks.

Theorem 1.1. Given:

• Any :-prover non-local game with quantum value 2 and clas-

sical value B ; and

• Any quantum homomorphic encryption scheme satisfying

correctness with respect to auxiliary input (De�nition 2.3), that

can implement homomorphic evaluation of at least :−1 prover
strategies in the non-local game,

there is a 2:-message (We refer to a message from the prover to the

veri�er or the veri�er to the prover as a round or a message.) single-

prover interactive game with completeness 2 , realized by a quantum

polynomial-time algorithm, and soundness B + negl(_), against any
classical polynomial-time algorithm. Here, _ is a security parameter

that governs the security of the quantum homomorphic encryption

scheme and negl denotes a negligible function.

This gives us a rich class of protocols by mixing and matching

any non-local game (CHSH, Magic Square, Odd-Cycle Test, GHZ,

and many more) and any powerful enough quantum homomorphic

encryption scheme ([11, 30] both satisfy the appropriate correctness

property; see the full version for more discussion).

For example, an instantiation of our method using the CHSH

game and the quantum FHE scheme of Mahadev [30] gives us a

protocol that already improves on the state of the art in several

respects:

• Simplicity of the Assumption. Compared to [12], the pro-

tocols that come out of our framework do not require the

adaptive hardcore bit property, and therefore can be instanti-

ated from a variety of assumptions including Ring Learning

with Errors (Ring-LWE), (For example, [30] gives a template

for building QFHE from any “quantum capable classical ho-

momorphic encryption scheme” ([30] De�nition 4.2). [30] in-

stantiates this template from LWE, but there is an analogous

construction from Ring-LWE.) resulting in better e�ciency.

• Simpler Usage of Quantum Memory. Compared to [12,

24], our CHSH-based protocol only requires that the quan-

tum prover retain a single qubit of memory in between

rounds, while [12, 24] require _ entangled qubits to be re-

tained.

• Compared to [13, 37], our protocols do not require random

oracles. [13] uses random oracles in a crucial way to obtain

an instantiation from Ring-LWE, bypassing the adaptive

hardcore bit property. They simultaneously achieve a two-

round protocol in contrast to the 4-round protocol of [12].

• Compared to [24], our protocol requires 4 rounds as opposed

to their 6.

Our framework elucidates interactive protocols for quantum

advantage by separating them into an information-theoretic com-

ponent (namely, the non-local game) and a cryptographic compo-

nent (namely, the QFHE). We believe that the richness and extreme

simplicity of our transformation could eventually lead to a protocol

that concretely improves on the family of protocols in (3) above

in a signi�cant way. Philosophically, a remarkable aspect of our

framework is that it uses cryptography as a bridge to connect two

apparently di�erent sources of quantumness, namely entanglement

(used to construct non-local games) and non-rewinding (which un-

derlies the reason why single-prover proofs of quantumness as in

[12] work).

We proceed to describe a self-contained outline of our transfor-

mation below.
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1.2 Technical Overview

Our framework is conceptually simple, drawing inspiration from

similar compilers in the classical world [8, 9, 26, 27]. For the rest

of the introduction, we focus on compiling two-prover non-local

games and describe how to extend our construction to : provers in

Section 3.2. The basic idea is to convert any non-local game into

a single prover protocol by sending the prover the queries sent to

both provers in the non-local game. It is easy to see that if we do

this “in the clear”, we lose soundness, since by giving both queries

to a single prover, we lose the spatial separation condition. This is

precisely where the encryption scheme comes into play.

Using cryptography to enforce spatial separation. We enforce spa-

tial separation using an encryption scheme. Speci�cally, in our

protocol the veri�er samples two queries @1, @2 by emulating the

veri�er in the non-local game, and the interactive protocol proceeds

in rounds, as follows:

(1) The veri�er sends Enc(@1) to the prover.

(2) The prover sends an encrypted answer Enc(01).
(3) The veri�er then sends the second query @2 (in the clear).

(4) The prover replies with an answer 02.

The veri�er accepts if the decrypted transcript would be accepted

in the non-local game.

Comparison with classical compilers. We note that a 2-message

version of this protocol was used by Kalai, Raz and Rothblum [26,

27] (and in follow-upworks) to obtain 2-message delegation schemes

for classical computations. In this 2-message variant, the veri�er

simply sends all of the queries in the �rst message each encrypted

under independently chosen keys, and the prover computes each

answer homomorphically.

However, this transformation cannot be used as a protocol that

has a gap between classical and quantum winning probabilities.

This is the case since the soundness of the resulting 2-message

delegation scheme is proven only if the original non-local game

has non-signaling soundness, namely, assuming the provers cannot

cheat via a non-signaling (and therefore, via an entangled) strategy.

In other words, classical provers may be able to implement non-

signaling strategies, and these strategies can have value which

is at least as high as the quantum value. Thus, we cannot argue

that in the [27]-like 2-message protocol, a classical cheating prover

cannot emulate this non-signaling strategy. Instead, we consider

the 4-message protocol described above.

Our 4-message protocol also bears some resemblance to (al-

though is signi�cantly simpler than) the classical succinct argument

system of [9], which is also concerned with compiling MIPs (with

classical soundness) into single-prover protocols.

Completeness. We use the properties of the underlying encryp-

tion scheme to argue that any strategy of the (quantum) provers

in the non-local game can be emulated in our protocol (partially

“under the hood” of the encryption scheme). For this, we need our

homomorphic encryption scheme to have the following two prop-

erties:

• It needs to support the quantum operations done by the �rst

prover in the non-local game.

• It needs to be entanglement preserving in the following sense:

if a quantum circuit � is de�ned using a register A and is

homomorphically evaluated using a state |Ψ⟩AB that has

entanglement between A and another register B (which

is not input to �), the decrypted output ~ should remain

correlated with B (as it would be if � were evaluated using

the A register of |Ψ⟩). This property can be enforced via a

natural “aux-input correctness” property (De�nition 2.3).

We view correctness with respect to auxiliary input as a natural

requirement that one should expect to hold for a “typical” QHE

scheme. Indeed, some earlier works onQHE required even stronger

forms of entanglement preservation ([15] De�nition 3.6), but these

correctness variants were not studied for the more recent schemes

with classical ciphertexts [11, 30]. In the full version, we show that

our correctness de�nition follows from plain correctness under

mild structural assumptions; namely, if decryption is “bit-by-bit”

and homomorphic evaluation is “local.” In particular, this implies

that the seminal homomorphic encryption schemes due to Mahadev

and Brakerski [11, 30] satisfy these two properties.

Soundness. We argue that any computationally bounded classical

cheating prover in the 4-message protocol can be converted into a

local prover strategy in the 2-player game, with roughly the same

acceptance probability (see Theorem 3.2). This allows us to argue

quantum advantage: Namely, an honest quantum prover can obtain

the quantum value of the 2-player game, whereas any classical

prover can obtain only the classical value of the 2-player game.

We prove our desired soundness condition with a security re-

duction that rewinds the classical adversary, something that cannot

be done with a general quantum prover.

Special case: the CHSH game. To illustrate how our compiler

preserves soundness, we �rst analyze a simple special case of our

transformation where the 2-prover game is the CHSH game [16].

In the CHSH game, the veri�er sends i.i.d. random bits G,~ to %1, %2
(respectively); the provers are then supposed to return bits 0, 1 such

that 0 ⊕ 1 = G~. The best local strategy for this game has success

probability 3/4 (e.g., if %1, %2 assume that G~ = 0). This can be

proved with a straightforward direct analysis:

• Any (say, deterministic) local strategy can be described by

bits00, 01, 10, 11 (corresponding to the two provers’ responses

when the veri�er sends 0 or 1).

• The strategy is correct on query pair (G,~) if 0G ⊕ 1~ = G~.

• If the strategy is correct on both (G, 0) and (G, 1), then

0G ⊕ 11 = G = G ⊕ (0G ⊕ 10),

which can only occur if G = 10 ⊕ 11. Thus, at least one of the
four pairs (G,~) must be answered incorrectly.

By making use of rewinding, it is possible to give a direct com-

putational analogue of this soundness analysis for our 4-message

compiled protocol. In the 4-message protocol, an adversarial prover

%∗ is given as input a ciphertext Ĝ encrypting a bit G , and returns a

ciphertext 0̂ (which contains a message 0 = 0(G) that the veri�er
decrypts). Then, the veri�er sends a bit ~ and the prover replies

with a bit 1. Unlike the 2-prover setting, this bit 1 may depend on

G ; however, since G is encrypted, 1 itself should not reveal informa-

tion about G . However, one must be careful when arguing security
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because the veri�er’s decision (in the interactive game) makes use

of the decryption key sk, which can reveal information about G .

Nevertheless, there is a simple argument showing that a classi-

cal prover cannot convince + with probability higher than 3/4 +
negl(_):
• Let %∗ be an adversarial prover (deterministic without loss

of generality), and �x:

– A ciphertext Ĝ sent by the veri�er in the �rst round (sam-

pled as a random encryption of a random bit), and

– A ciphertext 0̂ returned by the prover in the second round.

• Moreover, let 10 and 11 denote the prover’s responses on

challenge ~ = 0 and ~ = 1 respectively (given �xed Ĝ, 0̂).

• Then, if the veri�er accepts both 10 and 11 (on challenges 0

and 1), we have

0 ⊕ 11 = G = G ⊕ (0 ⊕ 10),
where 0 = Dec(0̂). As before, this implies that 10 ⊕ 11 = G !

• Thus, if %∗ is more than 3/4-convincing, we will break the

security of the encryption scheme by guessing G with non-

negligible advantage over 1/2, given only Ĝ (and the encryp-

tion key):

– Given a ciphertext Ĝ , run %∗ on Ĝ to obtain 0̂.

– Run %∗ on ~ = 0, obtaining 10, and then rewind %∗ and
run %∗ on ~ = 1, obtaining 11.

– Output 10 ⊕ 11.
A straightforward calculation tells us that our advantage of

guessing G in this reduction (compared to random guess) is

non-negligible if %∗ wins the interactive game with proba-

bility non-negligibly higher than 3/4.
This proves the security of our transformation for the special case

of the CHSH game.

The General Case. Having illustrated the utility of our transfor-

mation in a special case, we now analyze its soundness for any

2-prover game.

Fix a classical cheating prover %∗ for the 4-message protocol, and

assume without loss of generality that it is deterministic (otherwise,

�x its random coins to ones that maximize the success probability).

The corresponding local provers (%∗1 , %
∗
2 ) for the 2-player game are

de�ned as follows:

• Fix the �rst 2 messages in the 4-message protocol, by choos-

ing any @′1 (e.g., it can be the all-zero string), computing

ct1 = Enc(@′1) and emulating %∗ to compute ct2 = %∗ (ct1).
• %∗2 has (ct1, ct2) hardwired. (We note that it su�ces to hard-

wire ct1 since ct2 = %∗ (ct1) can be computed from ct1.)

On input a query @2, it emulates the response of %∗, con-
ditioned on the �rst two messages being (ct1, ct2), to ob-

tain 02 = %∗ (ct1, ct2, @2). It outputs 02.
• %∗1 also has (ct1, ct2) hardwired (and thus can evaluate %∗2
on an arbitrary input). On input @1 it computes for every

possible 01 the probability (over @2 sampled conditioned on

@1) that the veri�er accepts (@1, 01, @2, %∗2 (@2)) and sends 01
with the maximal acceptance probability.

To argue that (%∗1 , %
∗
2 ) convinces the veri�er to accept with es-

sentially the same probability that %∗ does, we rely on the security

of the encryption scheme. Namely, we argue (by contradiction) that

if the veri�er accepts with probability signi�cantly smaller than

the acceptance probability of %∗ in the 4-message protocol, then

there exists an adversary A that breaks semantic security of the

underlying encryption scheme.

Speci�cally,A is given a challenge ciphertext ct, which it will use

to de�ne %∗1 and %∗2 (as above), and will use %∗1 and %∗2 in his attack.

The �rst barrier is that %∗1 may not be e�cient, which results withA
being ine�cient. Thus, we �rst argue that (a good enough approxi-

mation of) %∗1 can be emulated in time 2 |@1 |+ |01 | · poly(_), which
results in A running in that time as well. Loosely speaking, this is

done by estimating for every 01, the probability of acceptance, and

taking01 with themaximal acceptance probability. This explains the

exponential blowup in 01. To estimate the probability that (@1, 01)
is accepted (w.r.t. %∗2 ) we do an empirical estimation by choosing

many @2’s from the residual query distribution (conditioned on @1)

and compute the fraction of @2’s for which+ (@1, @2, 01, %∗ (@2)) = 1.

We use the Cherno� bound to argue that this empirical estimation

is close to the real probability of acceptance. Note that this esti-

mation requires sampling @2 from the residual query distribution

(conditioned on @1), and it is not clear that this can be done e�-

ciently. Thus, we hardwire into A many such samples for each

and every possible @1, which results with the exponential blowup

in @1. (However, this blowup can be avoided for many non-local

games; for example, if @1 and @2 are independent, or if the game is

a parallel repetition of a constant-size game. )

Given this 2 |@1 |+ |01 |poly(_)-time implementation of %∗1 , the hard-
ness reduction proceeds as follows. Loosely speaking, given@1, @

′
1, ct

where ct is either Enc(@1) or Enc(@′1) with equal probability, we

run the 2-prover game with (%∗1 , %
∗
2 ) corresponding to ct and with

the �rst query being @1, and then run it again with the �rst query

being @′1. If the veri�er accepts exactly one of these executions, then
we guess 1 to be the one corresponding to the winning execution;

otherwise, we output a random guess for 1.

Note that in our attack we broke the security in time 2 |@1 |+ |01 | ·
poly(_) and thus need to assume that the encryption scheme has

that level of security. For constant-size games, this is equivalent

to polynomial security; in general, this requires assuming the sub-

exponential security of the underlying FHE. However, as discussed

in the full version, it is possible to rely on polynomially-secure

FHE for certain superconstant-size non-local games such as parallel

repetitions of a constant-size game. We refer the reader to Section 3

for the details, and to the proof of Theorem 3.2 for the formal

analysis.

2 PRELIMINARIES

We let PT denote deterministic polynomial time, PPT denote proba-

bilistic polynomial time and QPT denote quantum polynomial time.

For any random variables� and � (possibly parametrized by a secu-

rity parameter _), we use the notation� ≡ � to denote that� and �

are identically distributed, and � ≈B � to denote that � and � have

negligible (_−l (1) ) statistical distance.We use� ≈2 � to denote that

� and � are computationally indistinguishable, namely for every

PPT distinguisher � , | Pr[� (�) = 1] − Pr[� (�) = 1] | = _−l (1) .

Quantum States. LetH be a Hilbert space of �nite dimension 2=

(thus, H ≃ C2= ). A (pure, =-qubit) quantum state |Ψ⟩ ∈ H is an
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element of the form

|Ψ⟩ =
∑

11,...,1= ∈{0,1}
U11,...,1= |11, . . . , 1=⟩

where {|11, . . . , 1=⟩}11,...,1= ∈{0,1} forms an orthonormal basis ofH ,

U11,...,1= ∈ C and

∑

11,...,1= ∈{0,1}
|U11,...,1= |

2
= 1.

We refer to = as the number of registers of |Ψ⟩.
We denote by " ( |Ψ⟩) the outcome of measuring |Ψ⟩ in the

standard basis (throughout this work we are only concerned with

standard basis measurements). For any set of registers I ⊆ [=], we
denote by"I ( |Ψ⟩) the outcome of measuring only the I registers

of |Ψ⟩ in the standard basis.

A mixed state 1 over H is a density operator (we use S(H)
to denote the space of density operators on H ) normalized so

that Tr
(
1
)
= 1. Every pure state |Ψ⟩ has a corresponding rank 1

mixed state |Ψ⟩⟨Ψ| such that for any PSD projection Π, we have

| |Π |Ψ⟩ | |2 = Tr(Π |Ψ⟩⟨Ψ|).
We sometimes divide the registers of H into named registers,

denoted by calligraphic upper-case letters, such as A and B, in
which case we also decompose the Hilbert space intoH = HA ⊗
HB , so that each pure quantum state |Ψ⟩ is a linear combination

of quantum states |ΨA⟩ ⊗ |ΨB⟩ ∈ HA ⊗ HB .
For any mixed state 1, we denote by 1A the reduced density

operator

1A = TrB (1) ∈ S(HA ),
where TrB is the “partial trace” linear operator de�ned by

TrB ( |ΨA⟩ ⟨ΨA | ⊗ |ΨB⟩ ⟨ΨB |) = |ΨA⟩ ⟨ΨA | · Tr( |ΨB⟩ ⟨ΨB |).

Quantum Ciruits and Locality. A quantum circuit is a sequence

of elementary quantum gates (taken from some complete basis) and

measurement operations. These operations are applied to an initial

state |k ⟩ and result in some �nal state |k ′⟩. For further de�nitions
related to quantum circuits and gate types, we refer the reader

to [34].

One direct consequence of this model is a form of locality: if

|k ⟩ = |k ⟩AB is shared between two registers (A andB), operations
of the form � ⊗ IdB (where � is a quantum circuit acting only on

A) can be performed without possession of the register B.

2.1 Non-local Games

Definition 2.1 (:-Player Non-local Game). A :-player non-

local game G consists of a PPT sampleable query distribution Q
over (@1, . . . , @: ) ∈ ({0, 1}=): and a polynomial time veri�cation

predicateV(@1, @2, . . . , @: , 01, 02, . . . , 0: ) ∈ {0, 1}, where each 08 ∈
{0, 1}< . The classical value and the quantum value of G are de�ned

below.

• Classical (local) value: The classical (or local) value E of G
is de�ned as:

max
%1,...,%: :

{0,1}=→{0,1}<
Pr

(@1,...,@: )←Q
[V(@1, . . . , @: , %1 (@1), . . . , %: (@: )) = 1]

• Quantum (entangled) value: The quantum (or entangled)

value E∗ of G is de�ned as:

sup
|Ψ⟩∈H1⊗...⊗H:

*8 ∈* (H8 ⊗C=),1≤8≤:

Pr
(@1,...,@: )←Q

[V(@1, . . . , @: , 01, . . . , 0: ) = 1]

where themaximum is over all:-partite states |Ψ⟩ ∈ H1⊗. . .⊗
H: (eachH8 is an arbitrary �nite-dimensional Hilbert space),

unitaries*8 acting on log dimCH8 += qubits respectively, and

answers 08 computed by applying *1 ⊗ . . . ⊗ *: to |Ψ⟩ ⊗
|@1 . . . @: ⟩, and measuring the �rst< qubits in eachH8 ; that

is,

(01, 02, . . . , 0: ) ← "I (*1 ⊗ . . . ⊗ *: ( |Ψ⟩ ⊗ |@1, . . . , @: ⟩))

for I = {1, . . . ,<} × [:]. We remark that without loss of

generality, |Ψ⟩ can be (and is above) taken to be a pure state.

We are interested in non-local games where quantum strategies

can win with probability strictly more than any classical strategy,

that is ones for which E∗ > E .

Remark 2.2. In this work, it is crucial to consider the complexity

of the honest provers in a non-local game, which is often not a

parameter of interest in the literature but instead hidden in the

description of the provers as a tuple of unitaries (*1, . . . ,*: ) and
state |Ψ⟩.

We explicitly consider non-local games where the each prover’s

unitary *8 can be implemented as a quantum circuit �8 of size

polynomial in a security parameter _. When G has constant size

(such as the CHSH or Magic square games) this holds automatically,

but this is a non-trivial requirement when the size of G grows with

_.

2.2 Quantum Homomorphic Encryption

We de�ne the notion of quantum homomorphic encryption [11, 30]

that is central to our framework. Unlike in [11], our de�nition re-

quires a form of correctness with respect to auxiliary input. However,

we show that this de�nition holds for QHE schemes satisfying mild

additional requirements, and in particular holds for the [11, 30]

schemes.

Definition 2.3 (�antum Homomorphic Encryption (QHE)).

A quantum homomorphic encryption schemeQHE = (Gen, Enc, Eval,
Dec) for a class of quantum circuits C is a tuple of algorithms with

the following syntax:

• Gen is a PPT algorithm that takes as input the security pa-

rameter 1_ and outputs a (classical) secret key sk of poly(_)
bits;

• Enc is a PPT algorithm that takes as input a secret key sk and

a classical input G , and outputs a ciphertext ct;

• Eval is a QPT algorithm that takes as input a tuple (�, |Ψ⟩ ,
ctin), where � : H × (C2)⊗= → (C2)⊗< is a quantum cir-

cuit, |Ψ⟩ ∈ H is a quantum state, and ctin is a ciphertext

corresponding to an =-bit plaintext. Eval computes a quantum

circuit Eval� ( |Ψ⟩ ⊗ |0⟩poly(_,=) , ctin) which outputs a cipher-

text ctout. If � has classical output, we require that Eval� also

has classical output.
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• Dec is a PT algorithm that takes as input a secret key sk

and ciphertext ct, and outputs a state |q⟩. Additionally, if ct
is a classical ciphertext, the decryption algorithm outputs a

classical string ~.

The above syntax is more general than the form required in [11];

we elaborate on this di�erence below. We require the following two

properties from (Gen, Enc, Eval,Dec):
• Correctness with Auxiliary Input: For every security pa-

rameter _ ∈ N, any quantum circuit � : HA × (C2)⊗= →
{0, 1}∗ (with classical output), any quantum state |Ψ⟩AB ∈
HA ⊗ HB , any message G ∈ {0, 1}= , any secret key sk ←
Gen(1_) and any ciphertext ct ← Enc(sk, G), the following
states have negligible trace distance:

Game 1. Start with (G, |Ψ⟩AB). Evaluate� on G and register

A, obtaining classical string ~. Output ~ and the contents

of register B.
Game 2. Start with ct← Enc(sk, G) and |Ψ⟩AB . Compute

ct′ ← Eval� (· ⊗ |0⟩poly(_,=) , ct) on register A. Compute

~′ = Dec(sk, ct′). Output ~′ and the contents of register B.
• ) -Classical Security: For any two messages G0, G1 and any

poly() (_))-size classical circuit ensemble A:
����� Pr

[
A(ct0) = 1

����
sk← Gen(1_)
ct0 ← Enc(sk, G0)

]

− Pr
[
A(ct1) = 1

����
sk← Gen(1_)
ct1 ← Enc(sk, G1)

] ����� ≤ negl() (_)) .

In words, “correctness with auxiliary input” requires that if QHE

evaluation is applied to a register A that is a part of a joint (en-

tangled) state inHA ⊗ HB , the entanglement between the QHE

evaluated output and B is preserved.

Remark 2.4. A quantum fully homomorphic encryption (QFHE)

is a QHE for the class of all poly-size quantum circuits. While

[11, 30] construct QFHE (with security against quantum distin-

guishers), weaker forms of QHE may yield more e�cient quantum

advantage protocols (see Section 4.2 for discussion).

Remark 2.5. In our de�nition of security, we only consider clas-

sical attacks. Classical security is su�cient for the purposes of this

work as protocols for quantum advantage are required to have

quantum completeness and classical soundness.

For the purposes of this paper, it su�ces to know the following

claim about the instantiability of De�nition 2.3.

Claim 2.6. The [11, 30] QFHE schemes satisfy De�nition 2.3 with

correctness holding for the class of all poly-size quantum circuits.

Claim 2.6 can be veri�ed by inspecting the constructions given

in [11, 30]. In the full version, we show mild generic conditions

under which a QFHE scheme satis�es correctness with respect to

auxiliary input, and sketch a proof of Claim 2.6.

3 OUR COMPILER: FROM NON-LOCAL

GAMES TO INTERACTIVE PROTOCOLS

In this section, we show how to use a quantum homomorphic

encryption scheme satisfying aux-input correctness (De�nition 2.3)

to convert a 2-prover non-local game into a single-prover interactive

protocol with computational soundness.

Definition 3.1 (Single-Prover Computationally Sound In-

teractive Game). A single-prover computationally sound (CS) in-

teractive game G consists of an interactive PPT veri�erV that takes

as input a security parameter 1_ and interacts with an interactive

prover. The classical (computationally sound) value and the quantum

(computationally sound) value of G are de�ned below.

• Classical CS value: G has classical CS value ≥ E if and only

if there exists an interactive polynomial-size Turing machineP
such that for every _ ∈ N,

Pr
[
(P,V)(1_) = 1

]
≥ E

where the probability is over the random coin tosses ofV , and

where (P,V)(1_) ∈ {0, 1} denotes the output bit of V(1_)
after interacting with P.
• Quantum CS value: G has quantum CS value ≥ E∗ if and
only if there exists a Hilbert space H and a quantum state

|Ψ⟩ ∈ H and an interactiveQPT prover P such that for every

_ ∈ N,

Pr
[
(P(|Ψ⟩),V)(1_) = 1

]
≥ E∗

where the probability is over the randomness of P andV .

3.1 Our Transformation, : = 2 case.

Fix a quantum homomorphic encryption schemeQHE = (Gen, Enc,
Eval,Dec) for a class of quantum circuits C (e.g. [11, 30], see

Claim 2.6). We present a PPT transformation T that converts any

2-prover non-local game G = (Q,V) into a single-prover com-

putationally sound interactive game T G (asociated with security

parameter _), de�ned as follows.

(1) The veri�er samples (@1, @2) ← Q, sk ← Gen(1_), and
@̂1 ← Enc(sk, @1). In the �rst round the veri�er sends @̂1 and

in the third round he sends @2.

(2) The veri�er, upon receiving 0̂1 from the prover in the �rst

round, and 02 in the second round, accepts if and only if

V(@1, @2,Dec(sk, 0̂1), 02) = 1.

Theorem 3.2. Fix any QHE scheme for a circuit class C, and
any 2-player non-local game G = (Q,V) with classical value E and

quantum value E∗, such that the value E∗ is obtained by a prover

strategy (�∗1,�
∗
2) with a quantum state |Ψ⟩ ∈ HA ⊗ HB where

�∗1 ( |Ψ⟩A , ·) ∈ C. Denote by |@1 | and |01 | the lengths of the query
and answer of the �rst prover, respectively. If the underlying QHE

encryption scheme is ) -secure, for ) (_) = 2 |@1 |+ |01 | · poly(_), then
the following holds:

(1) The quantum CS value of T G is at least E∗ − negl(_).
(2) The classical CS value of T G is at most E + negl(_).

Proof. Fix any 2-player non-local game G = (Q,V) with clas-

sical value E and quantum value E∗, such that the value E∗ is ob-
tained by a prover strategy (�∗1,�

∗
2) with the (joint) quantum state

|Ψ⟩ ∈ HA ⊗ HB , where �∗1 ∈ C.
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The quantum CS value of T G is at least E∗. Consider the follow-
ing QPT prover P∗:

(1) In the �rst round, upon receiving @̂1, P∗ computes ct′ ←
Eval(·A ,�∗1, @̂1) on the register A of |Ψ⟩AB , and sends ct.

As internal state, P∗ retains the contents of register B.
(2) In the second round, upon receiving @2, P∗ uses its internal

state 1B to compute and send 0′2 ← �∗2 (·B , @2).
We argue that

Pr
[
V(@1, @2, 0′1, 0

′
2) = 1

]
= E∗ − negl(_),

in the probability space where:

• (@1, @2) ← Q
• sk← Gen(1_) and @̂1 ← Enc(@1, sk)
• ct′ ← Eval(·A ,�∗1, @̂1) applied to |Ψ⟩AB and 1 set to the

contents of B.
• 0′1 = Dec(sk, ct′), and
• 0′2 ← �∗2 (1, @2)

By the aux-input correctness ofQHE (De�nition 2.3) and the fact

that �∗1 ∈ C, we see that for every @1, the mixed state consisting of

the distribution over (0′1, 1) above is the same (up to negligible trace

distance) as what would have been obtained by applying �1 ⊗ IdB
to ( |Ψ⟩AB , @1). By the contractivity of trace distance (with respect

to the map de�ned by �∗2 (·B , @2) andV), we conclude that

Pr
[
V(@1, @2, 0′1, 0

′
2) = 1

]
= Pr[V(@1, @2, 01, 02) = 1] ± negl(_)
= E∗ ± negl(_),

as desired.

The classical CS value of T G is at most E + negl(_). Suppose for
the sake of contradiction that the classical value of T G is E ′ = E +X
for a non-negligible X = X (_). This implies that there exists a

(deterministic) poly-size classical prover P̃ such that for every

_ ∈ N,
Pr

[
(P̃,V(T G)) (1_) = 1

]
= E ′,

whereV(T G) denotes the veri�er in the protocol T G . Next, for
every _ ∈ N we convert P̃ into (local) classical provers (P1,P2) =
(P1 (_),P2 (_)) such that there exists a negligible function ` such

that for every _ ∈ N,

Pr[(P1,P2,V) = 1] ≥ E ′ − ` (_) .

Since E ′ − ` (_) > E for su�ciently large _, this contradicts the fact

that the classical value of G is at most E .

To that end, for every 8 ∈ {1, 2} we denote by Q8 the residual
distribution of Q corresponding to player P8 . Namely, Q8 samples

(@1, @2) ← Q and outputs @8 . Similarly, we denote by Q|@1 to be

the distribution that samples (@′1, @
′
2) ← Q conditioned on @′1 = @1,

and outputs @′2.
We next de�ne (P1,P2):
(1) Choose @′1 ← Q1 and generate sk ← Gen(1_). Let ct1 ←

Enc(sk, @′1) and ct2 = P̃ (ct1) (i.e., ct2 is the �rst message

sent by P̃ upon receiving ct1 from the veri�er).

(2) P2 has the ciphertexts (ct1, ct2) hardwired into it. On in-

put @2, it simply emulates the response of P̃ given the �rst

three messages (ct1, ct2, @2) to obtain 02. It outputs 02.

(3) P1 also has (ct1, ct2) hardwired into it. On input @1, it com-

putes and outputs 01 that maximizes the probability of the

veri�er accepting (w.r.t. P2 de�ned above). Namely, it out-

puts

01 = argmax
01

Pr
@2←Q|@1

[V(@1, @2, 01,P2 (@2)) = 1] .

We next argue that there exists a negligible function ` = ` (_)
such that for every _ ∈ N,

Pr[(P1 (_),P2 (_),V) = 1] ≥ E ′ − ` (_),

as desired. To this end, suppose for the sake of contradiction that

there exists a non-negligible n = n (_) such that for every _ ∈ N,

Pr[(P1 (_),P2 (_),V) = 1] ≤ E ′ − n (_). (1)

We construct an adversary A of size 2 |@1 |+ |01 | · poly(_/n) that
breaks the semantic security of the underlying encryption scheme

with advantage n
4 .

The adversaryA will use his challenge ciphertext ct to de�ne P1
and P2, and will use P1 and P2 in his attack. Note that P2 can be

e�ciently emulated in time poly(_) (assuming _ is larger than the

communication complexity of G). However, P1 may not be e�cient.

In what follows we show that the maximization problem implicit in

P1 can be approximated in (non-uniform) time 2 |@1 |+ |01 | ·poly(_/n).
More speci�cally, we show that there exists a function � , that takes

as input a ciphertext ct and a query @1 ∈ Support(Q1), it runs in
time 2 |01 |+ |@1 | · poly( _n ), and for every @1 ∈ Support(Q1),

Pr
@2←Q|@1

[V(@1, @2,P1 (@1),P2 (@2)) = 1]

− Pr
@2←Q|@1

[V(@1, @2, � (ct, @1),P2 (@2)) = 1] ≤ n

2
, (2)

where P1,P2 are de�ned w.r.t. the ciphertext ct.

In what follows, we describe � as having randomized advice, but

we will later set its advice to be “the best possible", and thus ob-

tain a deterministic function. For every possible @1 ∈ Support(Q1),
we hardwire # =

9(_+|01 |)
n2

queries @2,1, . . . , @2,# sampled indepen-

dently from the distribution Q|@1.
� (ct, @1) is computed by approximating for every 01 the proba-

bility

?@1,01 = Pr
@2←Q|@1

[V(@1, @2, 01,P2 (@2)) = 1]

by its empirical value

? ′@1,01 =
1

#
|{8 : V(@1, @2,8 , 01,P2 (@2,8 ) = 1}|.

It outputs 01 with the maximal value of ? ′@1,01 .

Note that (as a circuit) � is of size 2 |@1 |+ |01 | · poly(_), since it has
hardwired into it # · 2 |@1 | queries hardwired (# for each possible

@1), and on input (ct, @1) it runs in time 2 |01 | ·# · poly(_). Thus, its
total size is as desired.

By a Cherno� bound, (The form of Cherno� bound that we use

here is that for-1, . . . , -# identically and independently distributed

in {0, 1}with expectation `, it holds that Pr
[
| 1#

∑#
8=1 -8 − ` | > X

]
≤

2−2#X2 . )

Pr
[
|? ′@1,01 − ?@1,01 | >

n

3

]
≤ 2−2# (n/3)

2
= 2−_ · 2−|01 |
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From the equation above (and applying a union bound over all 01)

indeed the di�erence between the two probabilities in Equation (2)

is at most n
3 + 2−_ ≤

n
2 , as desired.

We are now ready to de�ne our adversaryA that will use (�, %2)
to break semantic security. Speci�cally, A takes as input a tuple

(@1,0, @2,0, @1,1, @2,1, ct), where (@1,0, @2,0), (@1,1, @2,1) ← Q, and ct

is distributed by choosing sk ← Gen(1_) and 1∗ ← {0, 1}, and
sampling ct← Enc(sk, @1,1∗ ). It guesses 1∗ as follows:

(1) For every1 ∈ {0, 1}, run � (ct, @1,1 ) in time 2 |@1 |+ |01 | ·poly(_/n)
and compute 01,1 = � (ct, @1,1 ).

(2) If there exists 1 ∈ {0, 1} such that V(@1,1 , @2,1 , 01,1 ,P2 (
@2,1 )) = 1 andV(@1,1−1 , @2,1−1 , 01,1−1 ,P2 (@2,1−1 )) = 0,

then output 1. Else output a random 1 ← {0, 1}.
Note that by de�nition of P̃ and (P1,P2), it holds that for 1 = 1∗,

Pr
(@1,1 ,@2,1 )←Q

[V(@1,1 , @2,1 ,P1 (@1,1 ),P2 (@2,1 )) = 1] ≥ E ′.

Thus, by Equation (2), it holds that for 1 = 1∗,

Pr
(@1,1 ,@2,1 )←Q

[V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 1] ≥ E ′− n
2
. (3)

On the other hand, by our contradiction assumption (Equation (1)),

again making use of Equation (2), it holds that for 1 = 1 − 1∗,

Pr
(@1,1 ,@2,1 )←Q

[V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 1] ≤ E ′ − 3n

4
.

(4)

Denote by �Good the event that both

V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 1 for 1 = 1∗

V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 0 for 1 = 1 − 1∗

Similarly, denote by �Bad the event that both

V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 0 for 1 = 1∗

V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 1 for 1 = 1 − 1∗

Denote by � the event that

V(@1,1 , @2,1 , � (ct, @1,1 ),P2 (@2,1 )) = 1 ∀1 ∈ {0, 1}
Then by Equation (3),

Pr[�Good] + Pr[�] ≥ E ′ − n

2
,

and by Equation (4),

Pr[�Bad] + Pr[�] ≤ E ′ − 3n

4
,

which together imply that

Pr[�Good] − Pr[�Bad] ≥
n

4
. (5)

Thus we have

Pr
[
1 = 1∗

]
≥ 1

2
· (1 − Pr[�Good ∪ �Bad]) + Pr[�Good]

≥ 1

2
+ 1

2
(Pr[�Good] − Pr[�Bad])

=
1

2
+ n

8
,

as desired, where the �rst equation follows from the de�nition of

�Good and �Bad and the de�nition ofA, the second equation follows

from the union bound, the third equation follows from Equation (5).

This contradicts the security of QHE; thus, we conclude the desired

bound on the classical CS value of T G . □

3.2 Extension to :-Player Games

In this section, we generalize Theorem 3.2 to :-player games for

: > 2. We begin with a construction that is a 2:-round analogue

of the transformation T from Theorem 3.2: given any :-player

non-local game G, we de�ne the following interactive game T G :
(1) The veri�er samples (@1, . . . , @: ) ← Q, sk1, . . . , sk:−1 ←

Gen(1_), and @̂8 ← Enc(sk8 , @8 ) for each 1 ≤ 8 ≤ : − 1.
(2) For each 1 ≤ 8 ≤ : − 1, in round 28 − 1 the veri�er sends @̂8 .

In round 28 the prover responds with a ciphertext 0̂8 .

(3) In round 2: − 1 the veri�er sends @: ; in round 2: the prover

responds with some string 0: .

(4) The veri�er decrypts each 0̂8 with sk8 and accepts if and only

if the transcript (@1, 01, . . . , @: , 0: ) is accepting according to

G.
We prove the following theorem.

Theorem 3.3. Fix any QHE scheme (satisfying correctness with

respect to auxiliary inputs) for a circuit class C, and any :-player non-
local game G = (Q,V) with classical value E and quantum value E∗,
such that the value E∗ is obtained by a prover strategy (�∗1, . . . ,�

∗
:
)

with a quantum state |Ψ⟩ ∈ H1 ⊗ . . . ⊗H: with each�∗8 ∈ C (except

possibly �∗
:
). Denote by |@8 | and |08 | the lengths of the query and

answer of %8 , respectively. If the underlying QHE encryption scheme

is ) -secure, for ) (_) = 2
∑:−1

8=1 ( |@8 |+ |08 |) · poly(_), then the following

holds:

(1) The quantum CS value of T G is at least E∗.
(2) The classical CS value of T G is at most E + negl(_).

Proof. We brie�y sketch the quantum CS value of T G . Given a

:-tuple of entangled provers P1, . . .P: (with shared state |Ψ⟩), we
de�ne the following prover P for the interactive game:

• P initially has internal state |Ψ⟩A1,...,A:
.

• Given @̂8 (for each 1 ≤ 8 ≤ : − 1), P homomorphically eval-

uates the circuit de�ning P8 on register A8 and @̂8 (tracing

out any ancilla registers). P sends the encrypted answer 0̂8
to the veri�er.

• Given @: , P evaluates the circuit de�ning P: on A: (and

@: ), and sends the answer 0: to the veri�er.

Analogously to Theorem 3.2, the aux-input correctness of QHE im-

plies that the veri�er will accept with probability E∗ (P1, . . . ,P: ) ±
negl(_), where E∗ (P1, . . . ,P: , |Ψ⟩) denotes the value of strategy
(P1, . . . ,P: , |Ψ⟩). In more detail, we invoke aux-input correctness

and the contractivity of trace distance : − 1 times sequentially

(starting with auxiliary registers (A2, . . . ,A: ) and removing one

A8 each time).

We now bound the classical value of T G via the following argu-

ment. Suppose that a (computationally bounded) classical interac-

tive prover P̃ (deterministic without loss of generality) has value

E ′ in T G . We will construct local provers (%∗1 , . . . , %
∗
:
) winning G

with probability at least E ′ − negl(_).
To this end, we sample (@′1, . . . , @

′
:
) ← Q, secret keys sk′1, . . . ,

sk′
:−1 ← Gen(1_) and ct′8 ← Enc(sk′8 , @′8 ) for 1 ≤ 8 ≤ : − 1. Each

prover %∗8 has ct′1, . . . , ct
′
8 hardwired into its description. The prover
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%∗
:
simply emulates the last message function of %̃ ; namely, upon

receiving @: it emulates %̃ assuming that the �rst : − 1 messages

from the veri�er were ct′1, . . . , ct
′
:−1. We next de�ne %∗1 , . . . , %

∗
:−1

recursively starting with %∗1 .
Assuming we have already de�ned %∗1 , . . . , %

∗
ℓ−1 (this includes

the base case ℓ = 1), we de�ne %∗ℓ and an interactive prover %̃ℓ+1,...,:
that has ct′1, . . . , ct

′
ℓ hardwired to its description, and is sequentially

given @̂ℓ+1, . . . , @̂:−1, @: as inputs and returns 0̂ℓ+1, . . . , 0̂:−1, 0: as

outputs.

• %̃ℓ+1,...,: simply emulates %̃ using hard-coded ct′1, . . . , ct
′
ℓ .

• %∗ℓ is given as input @ℓ and outputs an optimum of the fol-

lowing maximization problem:

0∗ℓ = argmax
0ℓ

Pr
{@ 9 } 9≠ℓ←Q|@ℓ

[V(@1, 01, . . . @: , 0: ) = 1],

where 0 9 = %∗9 (@ 9 ) for all 9 < ℓ , and for all 9 > ℓ , 0 9 is

obtained by running %̃ℓ+1,...,: on encryptions (under fresh se-

cret keys) of @ℓ+1, . . . , @: and then (unless 9 = :) decrypting

the resulting answers.

Note that by construction, %∗
:
= %̃: , and %∗1 , . . . , %

∗
:
are indeed

local. Moreover, just as in the proof of Theorem 3.2, we can approxi-

mately solve themaximization problems de�ned in %∗1 , . . . %
∗
:−1 with

functions �1, . . . , �:−1 that can be implemented in time 2
∑:−1

8=1 |@8 |+ |08 | ·
poly(_). This is done, given an inverse polynomial error n , by

hard-coding for each @8 , # =
18:2 (_+|08 |)

n2
samples {@ (ℓ)9 } 9≠: (for

1 ≤ ℓ ≤ # ) from Q|@8 , and will result in provers �1, . . . , �:−1, %∗:
that attain value matching %∗1 , . . . , %

∗
:
up to error n/4.

Thus, to complete the proof of Theorem 3.3 it remains to prove

the following claim.

Claim 3.4. The tuple (%∗1 , . . . , %
∗
:
) has success probability at least

E ′ − negl(_).

Proof. Assume that (%∗1 , . . . , %
∗
:
) has success probability at most

E ′ − n for some non-negligible n . We �rst replace %∗8 by �8 de�ned

above, and obtain that (�1, . . . , �: ) has success probability at most

E ′ − 3n/4. We now derive a contradiction by a hybrid argument.

Speci�cally, for every 9 , we de�ne the quantity

Hyb9 = Pr
@1,...,@:←Q

for 8≤ 9 : 08=�8 (@8 )
for 8> 9 : 08=Dec(0̂8 ),
0̂8 output by %̃ 9+1,...,:

[V(@1, 01, . . . , @: , 0: ) = 1]

Note that Hyb0 is equal to the success probaiblity of %̃ , which is

equal to E ′ by assumption, while Hyb:−1 is equal to the value of

(�1, . . . , �: ).
We now claim that Hyb9 > Hyb9−1 − n

4:
− negl(_) for every

9 . To prove this, we will reduce from the security of QHE with

respect to ciphertext ct′9 ; note that �1, . . . , � 9−1 do not depend on ct
′
9 .

Ciphertexts ct′1, . . . , ct
′
9−1 will remain �xed for this entire argument,

while ct′9+1, . . . , ct
′
:−1 are not used by any algorithms in Hyb9−1 or

Hyb9 .

De�ne the auxiliary quantity Hyb′9 to be the same as Hyb9 , ex-

cept that ct′9 is sampled as Enc(sk′9 , @ 9 ), where @ 9 is the input sent
to � 9 in the experiment. Note that Hyb′9 > Hyb9−1 − n

4:
, because

the particular choice of 0∗9 = Dec(%̃ 9,...,: (ct′9 )) in the maximization

problem de�ning %∗9 would have value Hyb9−1 (as this strategy

matches the value of (�1, . . . , � 9−1, %̃ 9,...,: )), and � 9 approximates

the %∗9 maximization problem up to error n
4:
.

Moreover, it holds that Hyb′9 − Hyb9−1 = negl(_), or this would
result in an e�cient test distinguishing encryptions of @ 9 vs. en-

cryptions of @′9 (by an analogous reduction as in the proof of Theo-

rem 3.2).

Thus, by a hybrid argument, (As discussed in [17] (although con-

text di�ers slightly here), a hybrid argument can be applied because

the collection of indistinguishability claims Hyb′9 ≈ Hyb9−1 are

proved via a universal reduction ' from the security of QHE.) we

conclude that Hyb:−1 > Hyb0 − n
4 − negl(_) = E ′ − n

4 − negl(_),
contradicting our initial assumption. This completes the proof of

the claim. □

This completes the proof of Theorem 3.3. □

4 PROTOCOLS FOR VERIFYING QUANTUM

ADVANTAGE

In this section, we give a concrete instantiation of our framework

and outline directions for future work, focusing on obtaining pro-

tocols with simple(r) quantum provers. We proceed to describe a

concrete instantiation of our blueprint, using the CHSH game and

the Mahadev QFHE scheme.

4.1 Compiling the CHSH Game

We �rst recall the CHSH game.

Definition 4.1 (The CHSH Game). The CHSH game GCHSH
consists of the uniform query distribution QCHSH over (@1, @2) ∈
({0, 1})2 and veri�cation predicateVCHSH (@1, @2, 01, 02) which is 1

if and only if

01 ⊕ 02 = @1@2 (mod 2).
The classical value of this game is ECHSH = 0.75 and the quantum

value is E∗
CHSH

= cos2 (c/8) ≈ 0.85. The optimal quantum strategy

is as follows: The two players A,B share an EPR pair

1
√
2
( |0⟩A |0⟩B + |1⟩A |1⟩B)

where players A,B have the A,B registers respectively. Upon re-

ceiving @1, playerA measures her registerA in the Hadamard (c/4)
basis if @1 = 0, and in the standard basis if @1 = 1, and reports the out-

come 01 ∈ {0, 1}. Player B measures her register B in the c/8-basis
if @2 = 0 and in the 3c/8-basis if @2 = 1, and reports the outcome

02 ∈ {0, 1}.

By Theorem 3.2 and Claim 2.6, we have the following corollary:

Corollary 4.2. Consider the [30] QHE scheme for poly-size cir-

cuits in the To�oli and Cli�ord basis. Consider the CHSH gameGCHSH =

(QCHSH,VCHSH) and quantum strategy in De�nition 4.1 where

|Ψ⟩ = 1
√
2
( |0⟩A |0⟩B + |1⟩A |1⟩B)

and �∗1 ( |Ψ⟩A , ·) ∈ C.
The single-player computationally sound interactive game T G

has:

• quantum CS value ≥ E∗
CHSH

− negl(_) ≥ 0.85 − negl(_)
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• classical CS value ≤ ECHSH + negl(_) = 0.75 + negl(_).

Amplifying this gap can be done by sequential repetition. Alter-

natively, one can compile a parallel-repeated version of the CHSH

game to get a protocol with a large gap between the quantum and

classical CS values.

Prover E�ciency. The compilation of the CHSH game with Ma-

hadev’s QFHE (Corollary 4.2) results in a conceptually simple 4-

round protocol with a relatively simple quantum prover. Here, we

analyze the quantum prover’s algorithm.

Returning to the quantum strategy for the CHSH game (De�ni-

tion 4.1), playerA applies a controlled Hadamard gate to |@̄1⟩ |Ψ⟩A ,
and then measures the A register. This can be implemented by a

circuit�∗1 containing Cli�ord gates and a single To�oli gate [7]. Re-
call that in Mahadev’s scheme ([30]), evaluating Cli�ord gates only

requires applying the intended Cli�ord gate to a (Pauli one-time-

padded) encryption of the underlying state. To evaluate a To�oli

gate, the To�oli gate is applied to the encrypted qubit, followed by

3 “encrypted CNOT” operations and 2 Hadamard gates. The bulk of

the computational cost of the prover is in the encrypted CNOT oper-

ations. Using the trapdoor claw-free functions (TCF) for the classical

ciphertexts in the Mahadev QHE scheme, an encrypted CNOT op-

eration consists of creating a uniform superposition over the TCF

domain, evaluating the function in superposition, measurements

and Cli�ord gates. That is, this requires ? (_) := log |D| + log |R |
ancilla qubits corresponding to the TCF domain D and range R.
Concretely, the prover’s quantum operations in our compilation of

CHSH are as follows.

• The prover creates an EPR pair which involves applying a

Hadamard and a CNOT gate.

• The prover receives a classical ciphertext @̂1 from the veri�er

in round 1.

• The prover homomorphically evaluates�∗1 ( |Ψ⟩A , @1) (where
�∗1 implements player A’s strategy in CHSH). This uses the

constant number of qubits in �∗1 and 3? (_) ancilla qubits

for TCF evaluations. All of its operations are Cli�ord gates

except a single To�oli gate and 3 invocations of the TCF

evaluation algorithm run in superposition.

• The prover sends back a classical ciphertext, and receives

a bit @2 ∈ {0, 1} in round 2. It measures |Ψ⟩B in the c/8 or
3c/8 basis (depending on @2, as per player B’s strategy in

CHSH). It sends back the result as 02 ∈ {0, 1}. In particular,

the prover can discard the remaining qubits right after it

computes and sends its message in round 1.

Overall, the prover uses 3? (_) +$ (1) qubits, and the complexity

of its operations is dominated by the 3 TCF evaluations.We note that

designing a more e�cient QHE scheme supporting the controlled-

Hadamard gate, potentially based on simpler assumptions, is an

attractive route to improving the prover e�ciency.

4.2 Future Directions

Our work suggests several intriguing directions for future research.

Analyzing quantum soundness. In this work, we prove that (1)

the classical value of our cryptographically compiled game is at

most the classical value of the original non-local game, and (2) the

quantum value of the compiled game is at least the entangled value

of the non-local game, which is su�cient to establish quantum

advantage. However, we do not upper bound the quantum value of

the compiled game. Is the quantum value always at most the entan-

gled value of the non-local game (up to negligible factors)? Such

a general result would have powerful implications: for example,

[35] gives an e�cient-prover entangled MIP for deciding all BQP

(and QMA) languages, which would immediately be compiled into

a single-prover delegation scheme.

Protocols for quantum advantage with very simple quantum provers?

The honest quantum prover in our protocol has a simple and nat-

ural structure: for a �xed non-local game, �rst homomorphically

evaluate the %1 strategy on an encrypted question Enc(@1), and
then (in the clear) evaluate the %2 strategy on a question @2. In

particular, the second prover message can be computed using only

a constant-size quantum state and prover unitary (for a constant-

size game). Can we build a protocol where the entire honest prover

strategy is extremely e�cient?

Simpler homomorphic encryption schemes. Can we design better

somewhat homomorphic encryption schemes for the compilation

in Theorem 3.2? We note that the scheme only needs to support

the evaluation of one of the two provers’ strategies in the non-local

game, which can often be implemented by a simple circuit. For

example, designing a scheme that simply supports the controlled-

Hadamard gate would su�ce for compiling the CHSH game. This

may give a quantum advantage protocol with a simpler prover

strategy.

Protocols based on di�erent assumptions. We note that for quan-

tum advantage, we only need soundness against classical adver-

saries. Namely, the homomorphic encryption should have complete-

ness for some quantum gates, but only needs security against classi-

cal polynomial-time adversaries. This opens the door to designing

QHEs based on e.g. discrete log-style assumptions, or the hardness

of factoring, rather than learning with errors. (Indeed, quantum

advantage protocols have been constructed using factoring-based

TCFs; see [24]).

Understanding existing protocols. The existing interactive pro-

tocols for quantum advantage (to our knowledge, [12, 13, 24]) are

presented as an all-in-one package. Intuitively, a protocol testing

quantumness should have a component testing for quantum re-

sources, e.g. a test of entanglement, and a component that tests

computational power, i.e. the cryptography. Can existing proto-

cols be disentangled to two such components? A starting point

is [24] which has some resemblance to our CHSH compilation in

Section 4.1, although it does incur two more rounds.

More ambitiously, could we understand any single-prover quan-

tum advantage protocol as compiling a (perhaps contrived) :-player

non-local game via a somewhat homomorphic encryption scheme?

We leave it open to understand the reach and the universality of

our framework for constructing protocols for quantum advantage.
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