
MIT Open Access Articles

RaceInjector: Injecting Races to Evaluate and
Learn Dynamic Race Detection Algorithms

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wang, Michael, Srikant, Shashank, Samak, Malavika and O?Reilly, Una-May. 2023.
"RaceInjector: Injecting Races to Evaluate and Learn Dynamic Race Detection Algorithms."

As Published: https://doi.org/10.1145/3589250.3596142

Publisher: ACM|Proceedings of the 12th ACM SIGPLAN International Workshop on the State Of
the Art in Program Analysis

Persistent URL: https://hdl.handle.net/1721.1/151076

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/151076
https://creativecommons.org/licenses/by/4.0/

RaceInjector: Injecting Races to Evaluate and Learn
Dynamic Race Detection Algorithms

Michael Wang
mi27950@mit.edu

CSAIL, MIT

USA

Shashank Srikant
shash@mit.edu

CSAIL, MIT,

MIT-IBM Watson AI Lab

USA

Malavika Samak
malavika@csail.mit.edu

CSAIL, MIT

USA

Una-May O’Reilly
unamay@csail.mit.edu

CSAIL, MIT,

MIT-IBM Watson AI Lab

USA

Abstract

There exist no sound, scalable methods to assemble com-

prehensive datasets of concurrent programs annotated with

data races. As a consequence, it is unclear how well the mul-

tiple heuristics and SMT-based algorithms, that have been

proposed over the last three decades to detect data races,

perform. To address this problem, we propose RaceInjec-

tor—an SMT-based approach which, for any given program,

creates arbitrarily many program traces of it containing in-

jected data races. The injected races are guaranteed to follow

the given program’s semantics. RaceInjector hence can

produce an arbitrarily large, labeled benchmark which is

independent of how detection algorithms work. We demon-

strate RaceInjector by injecting races into popular program

benchmarks and generating a small dataset of traces with

races in them. Among the traces RaceInjector generates,

we begin to �nd counterexamples which four state-of-the-art

race detection algorithms fail to detect. We thus demonstrate

the utility of generating such datasets, and recommend using

them to train machine learning-based models which can po-

tentially replace and improve upon existing race-detection

heuristics.

CCS Concepts: • Software and its engineering→ Con-

current programming languages;Parallel programming

languages.

Keywords: Dynamic race detection algorithms, Race injec-

tion, Dataset generation, SMT-solvers

SOAP ’23, June 17, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0170-2/23/06.

h�ps://doi.org/10.1145/3589250.3596142

ACM Reference Format:

Michael Wang, Shashank Srikant, Malavika Samak, and Una-May

O’Reilly. 2023. RaceInjector: Injecting Races to Evaluate and Learn

Dynamic Race Detection Algorithms. In Proceedings of the 12th ACM

SIGPLAN International Workshop on the State Of the Art in Program

Analysis (SOAP ’23), June 17, 2023, Orlando, FL, USA. ACM, New

York, NY, USA, 8 pages. h�ps://doi.org/10.1145/3589250.3596142

1 Introduction

Data race detection in concurrent programs using their exe-

cution traces, i.e. dynamic analysis, has been shown to be in

NP-hard [23]. Practical algorithms designed to detect data

races hence rely either on heuristics [17, 19, 22, 24, 28, 29] or

SMT-solvers [7, 11, 16, 26, 32]. The goal of these algorithms

is to start with a trace, and determine if two con�icting

accesses in di�erent threads to a shared variable can oc-

cur concurrently in an alternate execution of the program.

Despite numerous such algorithms having been proposed

over the last few decades, it is surprising that there exist no

comprehensive benchmarks comprising industry-grade soft-

ware projects which have races annotated in them—either

annotated in the source code or in the traces—which would

help rigorously evaluate these algorithms. Consequently, it

is unclear what the true classi�cation accuracy rates (true-

positive, true-negative, etc.) of these algorithms are. For in-

stance, none of the larger benchmark datasets such as Da-

Capo [2], which have all been repeatedly and extensively

used in the evaluation of multiple race detection algorithms

cited above, have any ground-truth annotations.

One key reason for the lack of such datasets is the absence

of sound, scalable methods to assemble them. A few prior

works [9, 13, 20, 33] have released expert-annotated datasets

containing races. However, they are too small to be e�ective.

Jacontebe [20] contains a total of 19 data race bugs, RadBench

has 10 bugs, while GoBench [33] has 103 bugs for the Go

language. With such small datasets, it is hard to evaluate if

current algorithms commonly miss any race patterns.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

63

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589250.3596142
https://doi.org/10.1145/3589250.3596142

SOAP ’23, June 17, 2023, Orlando, FL, USA Wang, Srikant, Samak, and O’Reilly

Another approach to assembling such datasets has been

to run SMT-based race detection algorithms on industry-

grade software projects [9]. SMT-based race detection ap-

proaches, by their design, can provably detect true-positive

data races. The detected true-positive data races are used

as annotations and released as datasets. A major limitation

of these approaches however is the relatively small number

of constraints that SMT-solvers can solve at once. Longer,

more complex real-world software produce longer execution

traces, which in turn non-linearly increase the number of

constraints which SMT-solvers have to solve. Detection algo-

rithms typically circumvent this limitation by breaking the

trace into �xed-length windows and solving each window

as if they are independent of others [12]. The assumption of

independence of windows is not practical, thus limiting the

number and quality of races that can be detected. Moreover,

assembling a dataset using data races detected by known

detection approaches limits the nature of races we can test

other detection algorithms on. We further discuss other prior

works in Section 5.

As a direct consequence of this absence of scalable meth-

ods to assemble comprehensive annotated datasets, we argue

that the metrics that have been employed to evaluate any

new race detection algorithm do not accurately represent

their performance. Further, we argue that the lack of such

annotated datasets has potentially sti�ed the state-of-the-art.

• Evaluating race detection algorithms. Presently, the

e�cacy of newly proposed race detection algorithms is pri-

marily measured by the increase in the number of identi�ed

race conditions when compared to a previous algorithm.

Among heuristics-based algorithms [17, 19, 22, 24, 28, 29],

each new algorithm has successively proposed a set of rules

which purportedly improves upon previous algorithms. The

newer algorithms then demonstrate detecting races which

the previous algorithms did not. The newly detected races

are veri�ed manually by experts. In this process, it is unclear

how many true-positives and false-negatives each new set of

rules introduce. When an algorithm reports �nding # (say)

new bugs which a previous algorithm had not found, it is un-

clear what # is relative to—the total number of bugs which

either of these algorithms are supposed to �nd in the �rst

place. With surprisingly little attention paid to this essential

metric, it is unclear what the state of progress in data race

detection algorithms has been over the years.

Further, it is unclear whether an improvement proposed

using a set of new rules results in detecting newer classes of

data races, assuming there exist multiple semantic classes of

use-cases in a program’s execution behavior which manifest

as race bugs. It is quite possible that a proposed improvement

to an existing algorithm, while detecting a few new bugs,

may not necessarily cover a signi�cantly larger set of such

semantic classes. An annotated dataset with a diverse set of

bugs in them is the �rst step in establishing and quantifying

the semantic classes a detection algorithm covers.

• TrainingMLmodels.We posit that it is possible for data-

driven methods to replace the many heuristics which have

been proposed over the years for race detection. Heuristics

for race detection involve learning to draw edges between

events of interest in a program’s execution trace, and iden-

tifying cliques of connected or disconnected events. These

cliques are then used to reason about and infer the exis-

tence of potential races. These heuristics typically guaran-

tee soundness only for the �rst race they detect. Given the

inadequacy of existing guarantees, machine learning (ML)

models provide a practical alternative. ML models have been

shown to outperform expert-crafted heuristics when rea-

soning about graph-based data in the domains of compiler

optimization [5], network-graph analysis [3], pointer analy-

sis [14], fault localization [21] and more. While such learned

models will not be able to guarantee soundness even for

the �rst detected race, they may well o�er an improved per-

formance in reasoning with trace-based information over

expert-crafted heuristics. However, a key requirement to

train any ML model is a sizeable, well annotated dataset.

Our solution–SMT-based race injection.We propose in-

jecting races into existing concurrent software as an ap-

proach to scalably create comprehensive, annotated datasets.

Speci�cally, we inject data races into an execution trace of a

given program. We choose to inject into the execution trace

rather than the source code because injecting races into the

program source does not guarantee the race manifesting into

every execution trace of the program. This makes it di�cult

to evaluate race detection algorithms that employ dynamic

analysis methods. We refer to the execution trace before

injection as the base trace.

Adding two consecutive events that are con�icting (e.g. a

read event immediately followed by a write event to the same

variable without any synchronization mechanism) is the sim-

plest way to inject a race into the base trace. More di�cult

is to inject con�icting events that could possibly occur con-

secutively in a di�erent, random execution of the program.

Our goal thus is to generate traces in which such con�icting

events appear far apart in them, making them non-trivial

to detect. To achieve this, we propose RaceInjector, which

injects a trivial data race into any trace, and then uses an

SMT-solver to �nd an alternate, valid reordering of the base

trace where the con�icting events appear far apart. This ap-

proach is independent of how any race detection algorithm

works and the program generating the trace into which the

trivial race is injected. Our method importantly guarantees

the injection of a race while maintaining the semantics of

the base trace. Thus, RaceInjector generates traces with

injected races appearing at random, valid locations, mim-

icking a thread scheduler scheduling a program containing

a valid data race. To ensure RaceInjector generates data

races that appear arbitrarily far apart in a trace, we propose

a method which circumvents practical limitations of SMT-

solvers while guaranteeing semantics of the base trace. We

64

RaceInjector: Injecting Races to Evaluate and Learn Dynamic Race Detection Algorithms SOAP ’23, June 17, 2023, Orlando, FL, USA

describe our approach in detail in Section 3. In this work, we

generate a small dataset and demonstrate it on the research

questions that it helps address. We also show how it can

be easily extended to a comprehensive dataset. Among the

few traces we generate, we �nd traces with data races that

current state-of-the-art race detection methods fail to detect.

This demonstrates one immediate utility of RaceInjector.

A sample of these counterexamples can be found at h�ps:

//github.com/ALFA-group/RaceInjector-counterexamples. In

Section 4, we discuss other implications of RaceInjector.

2 Background

In this section, we provide a brief background on traces, data

races, and the race detection algorithms that we evaluate in

this work.

Traces. We assume a sequential consistency memory model

[18], where a program trace is a sequence of events on exe-

cuting a program. An event can be denoted as a tuple <op,

thread, loc>, where op is the operation that is performed,

thread is the thread which performed the operation, and

loc is the �le and line which performed the event. An op

can be one of the following: read(x), write(x), lock(L)

(thread has acquired a lock on L), unlock(L) (thread has

released the lock on L), fork(T) (a thread has forked a new

thread T), join(T) (a thread T has joined the current thread).

Nondeterminism in the scheduler can cause one program to

have many possible traces.

Correct reordering of traces.A trace f* is said to be a correct

reordering of trace f if it has the following properties:

1. Thread Ordering: The order of intra-thread events remains

the same in both f and f*.

2. Read-Write Consistency: For every read event in f and

f*, the most recent write event to the variable that is read

remains the same. This is to ensure that control �ow will

remain the same.

3. Locking Semantics: f* does not violate the semantics of

synchronization events, such as locks and unlocks.

Intuitively, f* is a correct reordering of f if any program

that produces f can also produce f*.

Data races. A data race occurs when two threads access the

same variable without any synchronization, where at least

one of these accesses is a write. Data races can be classi�ed

as observed or potential data races. An observed data race

is where a data race actively occurs in a trace, where two

threads attempt to concurrently access a shared variable

where at least one of the accesses is a write. Observed data

races are trivial to detect. A potential data race is where

no data race is observed, but there exists another correct

reordering of the trace where an observed data race could

occur. Potential data races are much harder to detect. See

Figure 1 for an example. Events 5 and 6 in red are an example

of an observed race, where two con�icting events occur

simultaneously. Events 1 and 10 in orange are an example of

thread 1 thread 2
1 w(z)
2 acq(lock)

3 w(x)

4 rel(lock)

5 w(y)

6 w(y)

7 acq(lock)

8 w(x)

9 rel(lock)

10 w(z)

Figure 1. Example of a potential data race on lines 1 and 10,

an observed data race on lines 5 and 6, and a safe access on

lines 3 and 8.

a potential race, where they do not occur consecutively in

this trace, but could in another correct reordering. Events 3

and 8 are not racy due to synchronization mechanisms.

Data race detection. We evaluate the following algorithms

in our work: Happens-Before (Lamport, 1976 [19]), Schedula-

ble Happens-Before (Mathur et.al., 2018 [22]), Weak Causally

Precedes (Kini et.al., 2017 [17]), and SyncP (Mathur et.al.,

2021 [24]). Happens-Before (HB) creates a partial ordering

in a trace between each intra-thread event, as well as be-

tween any critical regions, in the order of their appearance

in the trace. A partial order on a set (is a relation on (that

is re�exive, anti-symmetric, and transitive. Weak Causally-

Precedes (WCP) is a weakening of HB, meaning there are

fewer edges. This allows WCP to catch more races while

maintaining soundness for the �rst race.WCP only draws

edges between critical regions that have con�icting accesses

to a shared variable, and draws the edges between the release

events and the critical events. Schedulable Happens-Before

(SHB) is a strengthening of HB, and discovers fewer races

than HB. However, SHB guarantees soundness past the �rst

race. SyncP performs a scan for any data races that do not

reverse the order of any critical sections, and is not a partial

order. Unlike partial order based techniques, SyncP is unable

to detect any races that would require critical sections to be

reversed. However, it is guaranteed to catch all races which

do not need to reorder the critical sections.

3 Method

In this section, we describe howwe inject synthetic data races

into program traces. We begin with a motivating example.

Motivating example. The program P in Figure 2a reads and

writes to two variables x and y. One of its possible execution

traces is shown in Figure 2b. This is the base trace for our

injection. Originally, this program does not contain a data

race. We note that a thread switch occurs after event 6. We

can trivially inject a race directly after the thread switch by

adding two write events to the trace (lines 5-6, Figure 2c),

resulting in an observed data race.

To invoke non-trivial reasoning to detect our injected data

race, we propose using an SMT-solver to �nd a correct re-

ordering of the events in a trace such that (a) the original

trace’s semantics hold, and (b) the inserted events are moved

65

https://github.com/ALFA-group/RaceInjector-counterexamples
https://github.com/ALFA-group/RaceInjector-counterexamples

SOAP ’23, June 17, 2023, Orlando, FL, USA Wang, Srikant, Samak, and O’Reilly

✞ ☎
1 class Test {

2 static int x;

3 static int y;

4
5 void inc1() {

6 synchronized(lock){

7 x++;

8 }

9 }

10
11 void inc2() {

12 synchronized(lock){

13 y++;

14 }

15 }

16 }

17
18 public static void main(String[] args) {

19 Test test = new Test();

20 fork { test.inc1(); }

21 fork { test.inc2(); }

22 }
✝ ✆

(a) A simple program P with two threads and no

pre-existing data races

thread 1 thread 2

1 acq(lock)

2 r(x)

3 w(x)

4 rel(lock)

5 acq(lock)

6 r(y)

7 w(y)

8 rel(lock)

(b)Original execution trace of P (Fig 2a)

thread 1 thread 2

1 acq(lock)

2 r(x)

3 w(x)

4 rel(lock)

5 write(z)

6 write(z)

7 acq(lock)

8 r(y)

9 w(y)

10 rel(lock)

(c) Execution trace for Figure

2a, with a trivial race injected.

thread 1 thread 2

1 write(z)

2 acq(lock)

3 r(y)

4 w(y)

5 rel(lock)

6 acq(lock)

7 r(x)

8 w(x)

9 rel(lock)

10 write(z)

(d) The trace after running a

solver to move the racy events

apart.

Figure 2. A sample program P (left), and how we can inject a data race in its execution trace (right).

apart by some ! events. One such alternate reordering can

be seen in Figure 2d. Recall the de�nition of a data race:

two events that access the same variable, at least one of

which is a write, that occur in an unsynchronized manner.

Our solution to generating these data races has three steps

which we describe in detail: Step 1: Instrument and execute

a program; collect base traces of relevant events. Step 2: Add

a trivial data race to a base trace, and �nally, Step 3: Use an

SMT-solver to make the added race harder to detect.

Step 1. Trace collection. We start by logging a sequential

trace of data accesses and thread synchronizations in a pro-

gram. See Figure 2b for an example trace. Races are then

injected into the collected base traces and analyzed. This

decoupling of instrumentation and race injection allows for

several instrumentation frameworks to be used. We use MCR

[10] which instruments using the ASM framework [1]; Road-

Runner [8] which also instruments with ASM, and Calfuzzer

[15] which instruments using the SOOT compiler framework

[31]. SOOT and ASM allow the instrumentation frameworks

to modify the bytecode and intercept relevant events as they

occur during execution.

Step 2. Adding a trivial race. To modify a base trace to

add a trivial data race, we insert two new write events right

where there is a context switch between threads. See Figure

2c for an example of modifying the base trace in Figure 2b.

The writes are made to a new, dummy variable to ensure the

semantics of the original program remains the same.We only

inject one race into the base trace at a time before saving it.

Step 3. Using an SMT-solver tomove apart the added race.

After having injected a trivial race comprising consecutive

con�icting events, the goal is to then �nd an alternate valid

interleaving where the race-events are farther apart.

We set up = SMT variables E , where each variable E 9 ∈

[1, =] corresponds to an event that appears in the base trace

containing a total of = events. The value of E 9 signi�es the

location index where the event should appear. In trace 2b for

example, if E1 corresponds to event w(x), the assignment for

E1 corresponding to the trace would be 3, the location index

w(x) appears in the trace. Similarly, if E2 corresponds to

event w(y), the assignment of E2 corresponding to the trace

is 7. For a trace f , we then formulate a constraint equation in

a way that solving the constraints yields a valid assignment

made to each E 9 which results in an alternate trace f*. Our

constraints must ensure that the alternate trace is a correct

reordering as de�ned in Section 2 (thread ordering, read-

write consistency, locking semantics). These constraints have

been commonly de�ned in race detection to �nd alternate

reorderings [12, 27, 32]. Readers can refer to Said et al. [27]

for details. However, we introduce the following constraints

in order to inject data races into base traces:

• Distance between con�icting events. We supply a hy-

perparameter L which constrains the distance between the

inserted racy events.

• Additional constraints. We additionally ensure that the

indices assigned to each E 9 is positive, unique, and lies in the

interval [1, =].

We supply a conjunction of these constraints to an SMT-

solver which produces an assignment to each E 9 . These as-

signments correspond to a new, valid reordering of each

66

RaceInjector: Injecting Races to Evaluate and Learn Dynamic Race Detection Algorithms SOAP ’23, June 17, 2023, Orlando, FL, USA

event appearing in f , thus resulting in a new trace f*. Fur-

ther, f* contains the previously trivially injected race events

now at least ! events apart, and ensures the same execu-

tion semantics as that of f . We elide details of the symbolic

encodings of these constraints for the sake of brevity.

Moving events arbitrarily apart in a trace. The number

of constraints in the conjunction described above which

generates f* is typically prohibitively large for SMT-solvers

to solve. Our insight to circumvent this practical problem is to

incrementally move the introduced con�icting events farther

apart. We start with reordering the con�icting events (which

initially appear consecutively when injected) and the events

surrounding it in a window of �xed size. For the events in this

window,we generate the constraints described above and run

RaceInjector. We choose a window size in a way that the

number of constraints does not overwhelm the solver. Once

RaceInjector generates a reordering for the events in the

window, we slide the window over by a �xed length and run

RaceInjector again on the events that appear in the shifted

window. We ensure the shifted window contains at least

one of the two con�icting events we introduce, which will

have been reordered from their initial, consecutive indices.

Running RaceInjector iteratively over smaller, �xed-length

windows : times is computationally much more e�cient

than running the solver on a large number of events just

once—the number of constraints tend to grow superlinearly

with the number of events needed to reason about. We use a

window size of 100 in our implementation. We elide a proof

of correctness of our approach for the sake of brevity.

4 Results & Discussion

We demonstrate RaceInjector by using it with a suite of pro-

gram benchmarks used in prior works to generate a sample

of base traces containing data races (Section 4.1). Among the

generated traces, we also �nd counterexamples which state-

of-the-art race detection algorithms fail to detect (Section

4.2).

4.1 Generated Dataset: Quantitative Description

We employ RaceInjector to generate only a small, demon-

strative dataset comprising ∼1000 total traces in this work.

This is nonetheless su�cient to show the ease with which

RaceInjector can be extended to generate a comprehensive

dataset. We ran our experiments without any parallelization

using Java version 11.0.18, on a CPU running Ubuntu 18.04

with 96 GB RAM.

Base traces.We run each of the �ve program benchmarks

listed in Table 1 once on the testcases from Calfuzzer [15].

This instruments and generates one execution trace each for

each of the �ve programs. Table 1, columns 2, 3 and 4 docu-

ment statistics of each program’s base trace. Each program

has a di�erent number of threads (column 4). Consequently,

each trace presents a di�erent number of points of injection

(column 2) to introduce a trivial race—these are points at

which thread context-switches occur. We run RaceInjector

on each program’s trace (except for Jigsaw) for one hour,

with a goal of injecting races into as many entry points as

possible within the allotted one hour. Since Jigsaw is a signif-

icantly larger program than the rest, as seen by the length of

an average trace generated (column 3), we run RaceInjector

for ∼10 hours instead on the Jigsaw trace.

RaceInjector-generated traces. Running RaceInjector

results in a total of ∼1000 traces (sum of column 5). Columns

5, 6 and 7 in Table 1 document the statistics of the generated

traces. Note again, these are all guaranteed to contain data

races. The set of traces generated by RaceInjector for any

one program will all have the same length (column 3) be-

cause each trace is just one possible valid reordering of the

original. We �nd the number of traces (column 5) generated

in one hour of running RaceInjector is roughly the same

across the di�erent program benchmarks (ignoring Jigsaw).

In columns 6 and 7, we report the average distance and the

maximum distance between the injected con�icting events

in the traces generated by RaceInjector, which is measured

by counting the number of events between them.We observe

the average distances (column 6) to be signi�cantly greater

than zero, suggesting that the injected races, which are ini-

tially placed consecutively, end up signi�cantly apart in the

generated traces. From the standard deviations (subscripts in

column 6), we see very high variance in the distance between

injected races, suggesting the heterogeneity in the poten-

tial data races introduced by RaceInjector. In ArrayList

and TreeSet, the maximum distance between the injected

race events (column 7) nearly span the length of their base

traces (column 3). This demonstrates the �exibility o�ered

by RaceInjector to generate any number of traces with

guaranteed races that are varied in the locations they appear

in. This is a desirable feature for a high-quality annotated

dataset of such concurrent programs. It is important to note

that distance is not the sole determinant of whether a data

race is di�cult to detect. It is possible for a program to have

many events, but with no synchronization mechanisms. In

this case, races that are far apart would still be trivial to

detect. However, detecting races that are far apart has been

shown to be di�cult for previous algorithms [24].

Discussion: Scaling the dataset. To assemble a comprehen-

sive dataset, we recommend the following procedure: �rst,

execute a program multiple times to obtain di�erent base

traces. Second, run RaceInjector on every possible point of

injection in each base trace without constraining the time

taken to complete this process. Both the steps are easy to

parallelize. We plan to extend the race detection algorithms

evaluated to include more recent tools such as RPT [30],

static race detection methods like Infer [6], and SMT-based

methods [12].

67

SOAP ’23, June 17, 2023, Orlando, FL, USA Wang, Srikant, Samak, and O’Reilly

Table 1. Overview of RaceInjector results on a bench-

mark of programs. Column 1 lists the di�erent program

benchmarks in which RaceInjector injects races. Columns

2,3,4 describe the base traces. The remaining columns de-

scribe the traces generated by RaceInjector. Inj. pts. refers

to the number of injection points available in the base trace;

Thrd is the number of program threads.

Base traces RaceInjector-generated traces

Program #Inj. pts Length #Thrd #Gen. traces Avg race dist. Max race dist.

ArrayList 207 677 27 207 128±111 558
TreeSet 130 756 22 130 122±115 526
LinkedList 1767 14937 451 160 112±124 851
Stack 2036 11372 451 100 87±74 458
Jigsaw 3394 97110 78 467 693±777 7396

Table 2. Counterexamples generated by RaceInjector.

A✓ signi�es there exists at least one trace among theRaceIn-

jector-generated traces which is not detected by the corre-

sponding algorithm. # Missed reports the number of traces

the algorithm misses to detect (percentage mentioned within

parenthesis).

Algorithm ArrayList TreeSet Jigsaw Stack LinkedList # Missed

HB (1979) [19] ✓ ✓ ✓ p p 60 (5.6%)
SHB (2018) [22] ✓ ✓ ✓ p p 64 (6%)
WCP (2017) [17] p ✓ p p p 21 (2%)
SyncP (2020) [24] ✓ ✓ ✓ p p 22 (2%)

Discussion: True-negative samples. In proposing RaceIn-

jector, we only consider the problem of generating true-

positive data races. In our larger goal to assemble a com-

prehensive dataset large enough to train machine learning

models, we would also need a method to assemble examples

of true-negative cases in our dataset. As most pairs of con-

�icting accesses in software are not races, we can randomly

sample such accesses, verify them using simple algorithms

likeHB, and label them as true-negatives. This does not guar-

antee that any given pair of con�icting accesses are not racy,

thus we are unable to evaluate the false positive rates of

heuristic based algorithms without additional manual analy-

sis. However, machine learning algorithms are tolerant to a

small number of mislabeled samples.

4.2 Counterexamples to SOTA Algorithms

Table 2 shows that RaceInjector can easily produce coun-

terexamples to state-of-the-art (SOTA) detection algorithms.

This is important because it reveals for the �rst time their

sensitivity as well as guides future work to clearly de�ne new

rules and algorithms. We can potentially study the contribu-

tion of the di�erent rules present in the heuristics of di�erent

algorithms in the decisions made by the algorithms. Thus,

access to a comprehensive set of counterexamples can po-

tentially empirically justify the di�erent rules implemented

by these algorithms, and can also point to equivalences be-

tween some of these rules. While we do not directly study

the counterexamples, this is a compelling direction for future

work.

We now analyze the counterexamples generated byRaceIn-

jector that the di�erent algorithms fail to detect. They are

available at: h�ps://github.com/ALFA-group/RaceInjector-

counterexamples. The analysis that follows should be inter-

preted with caution because the number of counterexamples

is relatively small (fewer than 100), which does not support

statistical comparison tests. We will evaluate these claims

rigorously on a larger dataset in future work. This analysis

is instead indicative of the questions that can be studied.

SHB vs. HB. SHB guarantees soundness after the �rst de-

tected data race it detects in exchange for detecting fewer

races overall compared toHB. We should then expect SHB to

detect fewer races on average, and conversely miss detecting

more races. This is what we observe: SHB fails to detect 64

bugs RaceInjector generates (column 7, Table 2), 4 more

than HB. That said, the total percentage of bugs that the

algorithms fail to detect are roughly the same (∼6%). We will,

in the future, also compare whether they fail on the same

set of counterexamples.

SyncP vs. WCP. Despite SyncP following and improving

upon WCP, we do not see a notable increase in its perfor-

mance. Both fail to detect 2% of the generated races. On the

other hand, both algorithms improve upon HB, so it is ex-

pected to see a improvement of ∼4% in the races they fail to

detect when compared to HB.

LinkedList and Stack. We observe that none of the in-

jected data races in LinkedList and Stack fail any algo-

rithms (columns 5, 6, Table 2). Besides the low number of

samples generated, a possible reason could be the large num-

ber of unsynchronized threads. These two programs have

the largest number of threads relative to the length of their

traces (Table 1). We suspect these threads mostly involve un-

synchronized accesses, making the injected races relatively

easy to detect as well. If in the future our hypothesis that

the threads mostly involve unsynchronized accesses holds,

we will �lter out such injection points to reduce the number

of trivially detectable races in our dataset.

Table 2 indicates that RaceInjector is able to generate

data races which no SOTA method detects. This implies

RaceInjector �nds locations in a program trace which are

complex to reason about. To �nish, RaceInjector makes

the widespread adoption of classi�cation accuracy-related

metrics (true-positive, false-positive, true-negative, false-

negative) now possible when evaluating and comparing race

detection algorithms.

68

https://github.com/ALFA-group/RaceInjector-counterexamples
https://github.com/ALFA-group/RaceInjector-counterexamples

RaceInjector: Injecting Races to Evaluate and Learn Dynamic Race Detection Algorithms SOAP ’23, June 17, 2023, Orlando, FL, USA

5 Related Work

Prior work closest to RaceInjector has mostly compiled

known bugs that have been found over the years. Because

these bugs have already been found, it is di�cult to evaluate

the capability of new approaches to detect new bugs. Addi-

tionally, these datasets are far too small to train a machine

learning model, the largest being 985 races in Jbench [9].

JaConTeBe [20] is a benchmark of Java concurrency bugs,

which scrapes past papers and aggregates a list of 47 dis-

tinct bugs along with their causes. GoBench [33] is a dataset

of 103 bugs in Go, scraped from Github. RADBench [13] is

a dataset composed of snapshots of open-source software

projects with 10 total known bugs. Jbench [9] is a dataset

of Java data races, aggregated from artifacts of existing race

detection tools, and contains 985 unique data races. Jbench

contains 6 real-world applications, and 42 custom testcases

that were written during development of previous race de-

tection tools. Typically, all these benchmarks are curated by

either expensive manual analysis, or have been assembled

using existing tools, which greatly limits their usefulness in

evaluating and improving extant race detection algorithms

while RaceInjector is fully automated. Additionally, since

many of the samples have been curated using existing tools,

a machine learning model trained on these samples will be

unlikely to outperform the original tools used to �nd them.

There are also existing works on injecting synthetic bugs

into programs to train machine learning models [25], as

well as evaluating synthetic bugs [4]. In the future, a more

robust evaluation of RaceInjector-generated bugs will be

necessary to ensure they are representative of real-world

race conditions.

Acknowledgments

This work was partially supported by a grant from the MIT-

IBM Watson AI lab.

References
[1] [n. d.]. ASM bytecode analysis framework. h�ps://asm.ow2.io/

[2] Stephen M. Blackburn, Robin Garner, Chris Ho�mann, Asjad M.

Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel

Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony

Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,

Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking

Development and Analysis. In Proceedings of the 21st Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications (Portland, Oregon, USA) (OOPSLA ’06). As-

sociation for Computing Machinery, New York, NY, USA, 169–190.

h�ps://doi.org/10.1145/1167473.1167488

[3] Benjamin Bowman, Craig Laprade, Yuede Ji, and H Howie Huang.

2020. Detecting Lateral Movement in Enterprise Computer Networks

with Unsupervised Graph AI.. In RAID. 257–268.
[4] Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robert-

son, and Tim Leek. 2021. Evaluating Synthetic Bugs. In Proceed-

ings of the 2021 ACM Asia Conference on Computer and Commu-

nications Security (Virtual Event, Hong Kong) (ASIA CCS ’21). As-

sociation for Computing Machinery, New York, NY, USA, 716–730.

h�ps://doi.org/10.1145/3433210.3453096

[5] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoe�er,

Michael F P O’Boyle, and Hugh Leather. 2021. ProGraML: A Graph-

based Program Representation for Data Flow Analysis and Compiler

Optimizations. In Proceedings of the 38th International Conference on

Machine Learning (Proceedings of Machine Learning Research, Vol. 139),

Marina Meila and Tong Zhang (Eds.). PMLR, 2244–2253. h�ps://

proceedings.mlr.press/v139/cummins21a.html

[6] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W

O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM

62, 8 (2019), 62–70.

[7] Cormac Flanagan and StephenN. Freund. 2009. FastTrack: E�cient and

Precise Dynamic Race Detection. In Proceedings of the 30th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (Dublin, Ireland) (PLDI ’09). Association for ComputingMachinery,

New York, NY, USA, 121–133. h�ps://doi.org/10.1145/1542476.1542490

[8] Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner Dy-

namic Analysis Framework for Concurrent Programs. In Proceedings

of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering (Toronto, Ontario, Canada) (PASTE

’10). Association for Computing Machinery, New York, NY, USA, 1–8.

h�ps://doi.org/10.1145/1806672.1806674

[9] Jian Gao, Xin Yang, Yu Jiang, Han Liu, Weiliang Ying, and Xian

Zhang. 2018. Jbench: A Dataset of Data Races for Concurrency

Testing. In Proceedings of the 15th International Conference on Min-

ing Software Repositories (Gothenburg, Sweden) (MSR ’18). Associ-

ation for Computing Machinery, New York, NY, USA, 6–9. h�ps:

//doi.org/10.1145/3196398.3196451

[10] Je� Huang. 2015. Stateless Model Checking Concurrent Programs

with Maximal Causality Reduction. SIGPLAN Not. 50, 6 (jun 2015),

165–174. h�ps://doi.org/10.1145/2813885.2737975

[11] Je� Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Max-

imal sound predictive race detection with control �ow abstraction.

In Proceedings of the 35th ACM SIGPLAN conference on programming

language design and implementation. 337–348.

[12] Je� Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal

Sound Predictive Race Detection with Control Flow Abstraction. SIG-

PLAN Not. 49, 6 (jun 2014), 337–348. h�ps://doi.org/10.1145/2666356.

2594315

[13] Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and Koushik Sen.

2011. RADBench: A Concurrency Bug Benchmark Suite. In 3rd USENIX

Workshop on Hot Topics in Parallelism (HotPar 11). USENIX Asso-

ciation, Berkeley, CA. h�ps://www.usenix.org/conference/hotpar-

11/radbench-concurrency-bug-benchmark-suite

[14] Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning graph-

based heuristics for pointer analysis without handcrafting application-

speci�c features. Proceedings of the ACM on Programming Languages

4, OOPSLA (2020), 1–30.

[15] Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. 2009.

CalFuzzer: An Extensible Active Testing Framework for Concurrent

Programs. In Computer Aided Veri�cation, Ahmed Bouajjani and Oded

Maler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 675–681.

[16] Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock

Prediction. Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (oct

2018), 29 pages. h�ps://doi.org/10.1145/3276516

[17] Dileep Kini, UmangMathur, and Mahesh Viswanathan. 2017. Dynamic

Race Prediction in Linear Time. SIGPLAN Not. 52, 6 (jun 2017), 157–170.

h�ps://doi.org/10.1145/3140587.3062374

[18] Lamport. 1979. How to Make a Multiprocessor Computer That Cor-

rectly Executes Multiprocess Programs. IEEE Trans. Comput. C-28, 9

(1979), 690–691. h�ps://doi.org/10.1109/TC.1979.1675439

[19] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21, 7 (jul 1978), 558–565. h�ps:

//doi.org/10.1145/359545.359563

69

https://asm.ow2.io/
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/3433210.3453096
https://proceedings.mlr.press/v139/cummins21a.html
https://proceedings.mlr.press/v139/cummins21a.html
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/3196398.3196451
https://doi.org/10.1145/3196398.3196451
https://doi.org/10.1145/2813885.2737975
https://doi.org/10.1145/2666356.2594315
https://doi.org/10.1145/2666356.2594315
https://www.usenix.org/conference/hotpar-11/radbench-concurrency-bug-benchmark-suite
https://www.usenix.org/conference/hotpar-11/radbench-concurrency-bug-benchmark-suite
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3140587.3062374
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

SOAP ’23, June 17, 2023, Orlando, FL, USA Wang, Srikant, Samak, and O’Reilly

[20] Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao.

2015. JaConTeBe: A Benchmark Suite of Real-World Java Concurrency

Bugs (T). In 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE). 178–189. h�ps://doi.org/10.1109/ASE.2015.

87

[21] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu

Zhang, and Lingming Zhang. 2021. Boosting coverage-based fault

localization via graph-based representation learning. In Proceedings

of the 29th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering.

664–676.

[22] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What

happens-after the �rst race? enhancing the predictive power of

happens-before based dynamic race detection. Proceedings of the ACM

on Programming Languages 2, OOPSLA (2018), 1–29.

[23] UmangMathur, Andreas Pavlogiannis, andMahesh Viswanathan. 2020.

The Complexity of Dynamic Data Race Prediction. In Proceedings of the

35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saar-

brücken, Germany) (LICS ’20). Association for Computing Machinery,

New York, NY, USA, 713–727. h�ps://doi.org/10.1145/3373718.3394783

[24] UmangMathur, Andreas Pavlogiannis, andMahesh Viswanathan. 2021.

Optimal Prediction of Synchronization-Preserving Races. Proc. ACM

Program. Lang. 5, POPL, Article 36 (jan 2021), 29 pages. h�ps://doi.

org/10.1145/3434317

[25] Jibesh Patra and Michael Pradel. 2021. Semantic Bug Seeding: A

Learning-Based Approach for Creating Realistic Bugs. In Proceedings

of the 29th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering

(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machin-

ery, New York, NY, USA, 906–918. h�ps://doi.org/10.1145/3468264.

3468623

[26] Jake Roemer, Kaan Genç, and Michael D Bond. 2020. SmartTrack: e�-

cient predictive race detection. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation. 747–

762.

[27] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011.

Generating Data Race Witnesses by an SMT-Based Analysis. In NASA

Formal Methods, Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann,

and Rajeev Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

313–327.

[28] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,

and Thomas Anderson. 1997. Eraser: A dynamic data race detector

for multithreaded programs. ACM Transactions on Computer Systems

(TOCS) 15, 4 (1997), 391–411.

[29] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and

Cormac Flanagan. 2012. Sound Predictive Race Detection in Polynomial

Time. Association for Computing Machinery, New York, NY, USA,

387–400. h�ps://doi.org/10.1145/2103656.2103702

[30] Mosaad Al Thokair, Minjian Zhang, Umang Mathur, and Mahesh

Viswanathan. 2023. Dynamic Race Detection with O(1) Samples.

Proc. ACM Program. Lang. 7, POPL, Article 45 (jan 2023), 30 pages.

h�ps://doi.org/10.1145/3571238

[31] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimiza-

tion Framework. In Proceedings of the 1999 Conference of the Centre

for Advanced Studies on Collaborative Research (Mississauga, Ontario,

Canada) (CASCON ’99). IBM Press, 13.

[32] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009.

Symbolic predictive analysis for concurrent programs. In International

Symposium on Formal Methods. Springer, 256–272.

[33] Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue.

2021. GoBench: A Benchmark Suite of Real-World Go Concurrency

Bugs. In 2021 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 187–199. h�ps://doi.org/10.1109/CGO51591.
2021.9370317

Received 2023-03-10; accepted 2023-04-21

70

https://doi.org/10.1109/ASE.2015.87
https://doi.org/10.1109/ASE.2015.87
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3468264.3468623
https://doi.org/10.1145/3468264.3468623
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/3571238
https://doi.org/10.1109/CGO51591.2021.9370317
https://doi.org/10.1109/CGO51591.2021.9370317

	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Results & Discussion
	4.1 Generated Dataset: Quantitative Description
	4.2 Counterexamples to SOTA Algorithms

	5 Related Work
	References

