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Abstract

In the model of quantum cloud computing, the server executes a com-
putation on the quantum data provided by the client. In this scenario, it
is important to reduce the amount of quantum communication between
the client and the server. A possible approach is to transform the desired
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computation into a compressed version that acts on a smaller num-
ber of qubits, thereby reducing the amount of data exchanged between
the client and the server. Here we propose quantum autoencoders for
quantum gates (QAEGate) as a method for compressing quantum com-
putations. We illustrate it in concrete scenarios of single-round and multi-
round communication and validate it through numerical experiments. A
bonus of our method is it does not reveal any information about the
server’s computation other than the information present in the output.

Keywords: Quantum autoencoders, Quantum cloud computing, Quantum
gate

1 Introduction

Over the past decade, quantum computing technology underwent a rapid
series of advances. Both the size and power of quantum computers have been
steadily increasing over the years, recently entering a new regime of ”quan-
tum supremacy” [1], in which the output of the quantum computations can be
barely reproduced by the world’s best supercomputers. Milestone achievements
are the ”quantum supremacy” demonstrations by Google [2] and USTC [3],
using superconducting qubits and photonic qubits, respectively.

A promising direction in quantum computing is the study of cloud comput-
ing scenarios, where a client requests a remote server to perform some desired
quantum operations [4–6]. However, limits on the amount of quantum com-
munication between client and server constraint the size of the computations
that can be effectively implemented in quantum cloud computing.

In this paper, we address the problem of reducing the amount of commu-
nication needed by the server to perform a quantum operation on quantum
data provided by the client. The operation belongs to a parametric family of
quantum gates known to both parties, but the specifications of the gate are
known only to the server. Our objective here is to maximize the accuracy of
the executed quantum operation when the capacity of the communication link
and the total number of qubits exchanged between the server and the client
are limited.

Our main contribution is a method for compressing a parametric family
of quantum gates, turning it into another gate family acting on a smaller
number of qubits. Our method is based on autoencoders, a type of neural net-
works that have been very successful in classical machine learning [7], and have
been recently used for the compression of quantum states [8]. We introduce a
quantum gate autoencoder (QAEGate), providing the first quantum machine
learning model that takes gates, rather than states, as inputs.

Our method also addresses the problem of minimizing the amount of infor-
mation revealed to the client. In many situations, the server would not like

2            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

Article Title 3

to disclose any more information about the operation other than the unavoid-
able information revealed by the application of the operation on the client’s
input. Our method achieves this feature by constructing a blind compression
protocol, independent of the specifications of the operation.

Technically, the training of our QAEGate model is based on stochastic
gradient descent [9]. We prove that the training is guaranteed to converge in
polynomial time in the size of the initial operation. We then conduct numer-
ical experiments that show the effectiveness of QAEGate in various settings
including single-round and multi-round communication between the client and
the server.

The remainder of the paper is organized as follows. In Section 2, we
introduce some related works about quantum cloud computing and quantum
autoencoders. Some preliminaries on autoencoders and quantum supermaps
are provided in Section 3. Section 4 is devoted to introduce the quantum cloud
computing task discussed in this paper. The structure and training details of
our proposed QAEGate model are covered in Section 5. Then, we explain how
to apply our method to concrete scenarios of quantum cloud computing in
Section 6 and conduct some numerical experiments in Section 7. We conclude
this paper in Section 8, with discussions on future directions for our method.

2 Related work

Classical cloud computing involves the execution of a computation on a remote
server [10]. In the quantum version of this scenario [11], a client provides
an input state and asks a remote server to perform a sequence of quantum
gates on it. Designing practical quantum cloud computing protocols involves
addressing two important issues. The first issue is how to cope with the limited
amount of quantum communication available in realistic scenarios. Yang et al.
[12] addressed this by deriving a general lower bound on the minimum amount
of communication needed to specify the desired computation using theoretical
techniques from quantum Shannon theory. However, their results are limited
to scenarios where the server approximately implements the desired process
for n ≥ 1 times in parallel on n identical systems, rather than the general case.
The second issue is how to protect data privacy throughout the protocol. Sheng
et al. [13] proposed a model to prevent interception and disturbance in dis-
tributed quantum machine learning. Related issues have also been considered
in blind delegated quantum computation [4], where the authors introduced a
protocol to allow a client to safely have a server execute a desired quantum
computation. However, previous works have mainly focused on guaranteeing
data confidentiality on the client side rather than the server side. This leaves
room for further research on how to ensure data privacy and security from the
server’s perspective.

Quantum autoencoders for quantum states were proposed by [8] and has
been applied to quantum state compression and denoising quantum data
[14, 15]. The quantum model used in these works has a similar structure
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to classical autoencoders, taking as input a quantum state represented by a
fixed-length vector. This model, however, cannot be extended from quantum
states to quantum gates, which in general are provided as black boxes. To
convert a gate into a quantum state, one would have to apply it on a fixed
input state. However, such conversion is not reversible due to the quantum
No-programming theorem [16, 17].

3 Preliminaries

Autoencoders & Quantum autoencoders.

An autoencoder is composed of an encoder and a decoder. One of its main
application is dimensionality reduction, where the encoder maps a high-
dimensional vector input x to a low-dimensional representation h, and the
decoder maps h back to a reconstructed high-dimensional vector x′. In the
training process, the autoencoder is optimized so that the high-dimensional
vector x′ is as close as possible to the original high-dimensional vector x. If
x′ and x are close enough, the overall protocol provides a faithful compression
of the original input x into the low dimensional vector h. The structure of a
typical autoencoder is depicted in Figure 1.

Fig. 1 Structure of a typical autoencoder. In this specific example, the autoencoder com-
presses a 4-dimensional vector into a 2-dimensional vector.

Building upon the success of classical autoencoders, researchers in [8] intro-
duced the concept of quantum autoencoders. A quantum autoencoder also
consists of an encoder and a decoder, both typically implemented using param-
eterized quantum circuits. The typical structure of a quantum autoencoder is
shown in Figure 2, where the encoder converts an n-qubit input quantum state
ρ into an (n−a)-qubit quantum state, while the decoder converts the encoded
state back to an n-qubit quantum state ρ′. The training objective of the
quantum autoencoder is to minimize the difference between the original and
reconstructed quantum states, typically measured using a quantum fidelity or
distance metric. To train a quantum autoencoder, a quantum-classical hybrid
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scheme is typically used. In this scheme, the variational quantum circuits and
measurements are performed on the quantum computer, while optimization is
carried out via a classical optimization algorithm.

Fig. 2 Structure of a typical quantum autoencoder. In this specific example, the quantum
autoencoder compresses a n-qubit quantum state into a (n− a)-qubit state.

The Choi state & Overlap

A d×d matrix M can be viewed as a column vector in a d2-dimensional space,
using the correspondence M 7→ |M⟩⟩ :=

∑
i,j Mi,j |i⟩|j⟩. This correspondence

can be lifted to a one-to-one correspondence between quantum gates in dimen-
sion d, and quantum states in dimension d2 [18, 19]. Explicitly, a quantum
gate U is associated to the Choi state

CU :=
|U⟩⟩ ⟨⟨U |

d
. (1)

A convenient measure of closeness for two quantum states ρ and σ is their
overlap

f(ρ, σ) = Tr(ρσ) .

Therefore, using the overlap between the Choi states of two quantum gates as
a similarity measure is a natural choice.

Quantum supermaps.

A general quantum operation is represented by a quantum channel C, which is
a map from density operators to density operators [20]. A quantum supermap
[21, 22] S̃ maps a quantum channel C into a quantum channel C′ as C′ = S̃(C).
Every quantum supermap can be represented by a quantum circuit in Figure 3
[21], where the input quantum operation C sends states in Hin to states in
Hout and the output quantum operation C′ sends states on Kin to states in
Kout. The supermap is realized by two maps V and W located at the input
and at the output ports of the quantum operation C respectively. Quantum
supermaps are closely related to quantum cloud computing, as they can facil-
itate efficient implementation of quantum computations on remote quantum
servers. Specifically, a quantum supermap can be used to map the quantum
computation required by the client to the action of a quantum computation
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carried out by the server. This allows for delegated quantum computing, where
a client can delegate a quantum computation to a remote server. Therefore,
quantum supermaps have great potential to enable practical applications of
quantum cloud computing, including quantum machine learning and quantum
cryptography.

Fig. 3 Quantum supermap.

4 The Quantum Cloud Computing Task

In this paper we will focus on a basic scenario of quantum cloud computing,
depicted in Figure 4. A parametric family of n-qubit quantum gates {Ux}x∈X

with parameter x represents a set of possible quantum computations. A server
is able to implement a gate Ux, unknown to the client. The client chooses an
n-qubit input state ρ and asks the server to apply the gate Ux on it, thus
obtaining the state Ux(ρ) := UxρU

†
x. At the same time, the server wants to keep

x confidential, avoiding unnecessary information leaked to the client during
the communication.

A trivial way to achieve the above task is to have the sender send the
quantum state ρ to the server, who performs the required gate, and sends back
the output state Ux(ρ). However, the quantum communication is an expensive
resource, and it is often limited in realistic applications, making it difficult to
transmit a full n-qubit quantum state back and forth between the client and
the server. Here we consider the scenario where the capacity of the quantum
communication link is bounded by a ≤ n qubits.

In order to cope with the bottleneck on the amount of quantum com-
munication, we design a pair of quantum circuits, including an encoder E
implemented by the server and a decoder D implemented by the client. The
encoder E serves as a quantum supermap transforming an n-qubit quantum
channel to an a-qubit quantum channel, while the decoder D does the oppo-
site, recovering the n-qubit quantum channel from the output of the encoder.
Since the decoder is implemented by the client, who has no knowledge of the
parameter x, the supermap D must be independent of x. On the other hand,
the encoder is implemented by the server, and could in principle depend on x.
However, a dependence on x may result into a leakage of information to the
client. For this reason, we also require the encoder E to be independent of x.
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We will later show that this choice reaches the best possible confidentiality in
the ideal situation where Ux is accurately implemented.

Fig. 4 The basic scenario of quantum cloud computing. The client expects to apply a
quantum gate Ux on its own state ρ by communicating with a server over a communication
link of limited capacity.

5 Quantum Autoencoders for Quantum Gates

In this section we consider a basic scenario of quantum cloud computing with
one round of communication between client and server. In this scenario, we
develop a model of quantum autoencoders for quantum gates (QAEGate).
In the following, we will introduce the structure of the proposed model and
demonstrate its implementation and training through numerical experiments.
Furthermore, we prove that stochastic gradient descent has convergence guar-
antee in the training of our QAEGate model. We will extend our model to
more scenarios in Section 6.

5.1 Structure

Our model consists of an encoder and a decoder. The encoder produces an
encoded quantum gate by inserting the gate Ux into a suitable quantum circuit,
initializing n− a input qubits to a fixed state |0⟩, and discarding n− a output
qubits. The result is a (generally noisy) quantum channel acting on a qubits.
In turn, the decoder converts the a-qubit channel back into an n-qubit channel,
which aims to approximate the initial gate. The structure of the encoder and
the decoder are shown in Figure 5.

To construct the encoding and decoding circuits we use parameterized
unitary operators, which have been successfully employed to build varia-
tional quantum circuits [23, 24]. Our construction is depicted in Figure 5.
The encoder consists of two parameterized unitary operators, denoted by
Uθle and Uθre , depending on parameters θle = (θle1 , θle2 , ..., θlem) and θre =
(θre1 , θre2 , ..., θrem). The gates Uθle and Uθre are placed on the left and right
of the original quantum gate, respectively. The decoder consists of two unitary
operators Uθld and Uθrd , depending on parameters θld = (θld1 , θld2 , ..., θldm)
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and θrd = (θrd1 , θrd2 , ..., θrdm). The gates Uθld and Uθrd are placed on the
left and right of the encoded gate, combined with the identity gate on the
remaining n − a qubits. Note that these parameterized unitary operators are
independent of the parameter x of the original quantum gate here.

Fig. 5 Implementation details of QAEGate. The parameterized unitary operators in yellow
constitute the encoder while the parameterized unitary operators in green constitute the
decoder. In the encoding phase, we insert the gate Ux in the middle of the encoder, initialize
n− a input qubits to a fixed state |0⟩, and discard n− a output qubits to obtain a quantum
channel acting on a qubits. In the decoding phase, the decoder maps the channel back to
an approximation of the initial n-qubit quantum gate.

The choice of the parameters θle, θre, θld, and θrd is optimized in order
to maximize the similarity between the decoded quantum gate and the orig-
inal quantum gate. As a similarity measure, we use the overlap between the
Choi operators [18, 19], due to the relative ease of evaluating this quantity in
numerical experiments. As the optimization procedure, we will use a stochastic
gradient descent method, described in Subsection 5.2.

To run the optimization, one needs first to fix the parametrization of the
gates. The naive choice would be to pick a parametrization that can represent
arbitrary quantum gates. However, this approach has obvious difficulties:

• Describing an arbitrary n-qubit unitary transformation requires
an exponential number of parameters, and therefore a full opti-
mization of the parameters in the autoencoder is only feasible
for small values of n.

• Due to hardware restrictions of the current quantum computers,
it is difficult to implement arbitrary n-qubit unitary operators.
This is especially true for the client, who may only have the
ability to implement a small number of basic quantum gates.

To address these problems, we propose an implementation of QAEGate based
on an approximation of generic n-qubit unitary transformations that uses a
polynomial number of parameters. We implement the parameterized unitary
operators for n qubits by decomposing them into a sequence of parameterized
two-qubit unitary operators, where each pair of qubits corresponds to one
such operator. Figure 6 presents the case when n = 4. For each two-qubit

8            
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parameterized unitary operator, it is further decomposed into a sequence of
basic quantum gates, as depicted in Figure 7.

Fig. 6 Decomposition of a parameterized 4-qubit unitary gate into 6 parameterized two-
qubit gates.

Fig. 7 Decomposition of a two-qubit parameterized unitary gate.

Here RX(θ) is the quantum gate defined as follows.

RX(θ) := exp (iθσx) =

(
cos θ −i sin θ

−i sin θ cos θ

)
The other two gates RY (θ) and RZ(θ) are similar to RX(θ) but for Pauli

matrices σy and σz.
The two-qubit gate XX(θ) is the Ising coupling gate that commonly

appears in real-world quantum computers with trapped-ion architecture [25].
It is defined as XX(θ) := exp(iθσx⊗ σx) for the Pauli matrix σx, and written
in matrix form as:

XX(θ) =


cos θ 0 0 −i sin θ

0 cos θ −i sin θ 0
0 −i sin θ cos θ 0

−i sin θ 0 0 cos θ

 .

Y Y (θ) and ZZ(θ) are Ising coupling gates corresponding to Pauli matrices σy
and σz respectively.

5.2 Training

To find the optimal parameters of QAEGate, we adopt classical gradient-based
methods such as stochastic gradient descent [26].

9            
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We denote the parameters of QAEGate to be trained as θ. The training
set is composed of k quantum gates sampled randomly from {Ux}. In every
iteration, we select a quantum gate U from these k gates randomly and insert it
into the QAEGate. Then we calculate the overlap f between the Choi state C
of U and the Choi state C ′ of the decoded gate from the QAEGate. We define
the loss function as L = 1 − f here and update the parameters of QAEGate
according to the gradients ∇θL until the decoded quantum gate is close enough
to the original quantum gate or the maximum number of iterations is reached.
We describe the complete training process in Algorithm 1.

Algorithm 1 Quantum autoencoders for quantum gates (QAEGate).

Require: k quantum gates sampled randomly from {Ux}, maximum number
of iterations K, learning rate η, threshold δ.

1: Initialize QAEGate parameters θ randomly, i = 0, f = 1
2: while i < K or f > δ do
3: Select the quantum gate U randomly from k input gates
4: Insert U into the QAEGate
5: Calculate the Choi state C of U
6: Get the decoded gate from the QAEGate
7: Calculate the corresponding Choi state C ′

8: f = Tr(CC ′), which is the overlap between C and C ′

9: L = 1 − f
10: Calculate ∇θL and update θ as θ = θ − η∇θL
11: i = i + 1
12: end while

5.3 Convergence Analysis

We further prove that our proposed QAEGate can be efficiently trained by the
stochastic gradient-based method in Algorithm 1. Specifically, we obtain the
following convergence guarantee for n-qubit QAEGate model where the query
complexity represents the number of evaluations of the quantum circuit:

Theorem 1 (Convergence guarantee) If we perform SGD, as in Algorithm 1, to
optimize θ in the training of the QAEGate model, then the convergence rate is T =

O(n
2

ϵ4
) for achieving the condition E[∥∇θL∥2] ≤ ϵ2. If we consider the complexity of

estimating the gradients, then the query complexity is O(n
4

ϵ4
).

The proof is provided in the Appendix. While the stochastic gradient-based
method used in our proposed model has a convergence guarantee here, we
must note that gradient-based optimization for variational quantum circuits
can encounter barren plateaus [27] when dealing with large-scale problems.
This is a known limitation of our proposed model.
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6 Applications

In this section we first apply QAGate to a basic scenario of the quantum cloud
computing, in which we just consider single-round communication between the
client and the server. Also, there is just one family of n-qubit quantum gates
{Ux}x∈X stored in the server. Then, we extend the structure of QAEGate to
apply it to two more general scenarios. One allows multiple-round communi-
cation between the client and the server. The other enables the server to store
different families of n-qubit quantum gates.

6.1 Basic scenario

Let us start from the basic scenario introduced in Figure 4 of Section 4. The
client starts from a generic n-qubit input ρ and converts it into an a-qubit
state, by applying the gate Uθld and storing aside n − a qubits in a quan-
tum memory. Then, the a qubits are sent to the server through a quantum
communication link. The server implements the encoder supermap, convert-
ing the original n-qubit gate Ux into a quantum channel acting on a qubits.
The encoded channel is applied to an a-qubit state received from the client,
and produces an a-qubit state is sent back to the client through the quantum
communication link. Finally, the client performs the gate Uθrd on the a qubits
received from the server and on the n−a qubits previously stored in the quan-
tum memory. Overall, the operations performed at the client’s end implement
the decoder, transforming the a-qubit channel implemented by the server into
an approximation of the target n-qubit gate.

An advantage of the structure of QAEGate is that it can fulfill the server’s
confidentiality. Specifically, the server wants to forbid the client from obtain-
ing the detailed implementation of the gates, which is described by x in this
scenario. For sure, some information about x must be leaked to the client since
the client will be approximately granted one access to Ux, which could be used
to extract information about x, but we claim that an arbitrary malicious client
could not obtain more information than this minimal amount. Formally, we
obtain the following confidentiality guarantee for our model:

Theorem 2 (Confidentiality guarantee) In this protocol, the information about x
obtained by an arbitrary malicious client is no larger than the information about x
obtainable by accessing Ux once.

Proof We first consider how much information about x can be extracted given one
copy of Ux. We assume x follows a certain distribution, and we denote the random
variable of x as X. The most general way to extract information from a gate Ux is to
insert it into a quantum circuit and make measurements on the output of the circuit,
as shown in Figure 8(a). Let the output of the circuit to be Y , which is a random
variable correlated with X. We write Y = F(UX) to denote the relationship between
X and Y . The information one can know about X, by obtaining the value of Y , is the
mutual information I(X; Y ). The maximum amount of information one can learn

11            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

12 Article Title

(a)

(b)

Fig. 8 (a) A general quantum circuit F for extracting information about x from Ux. (b)
A general quantum circuit utilized by a malicious client to extract information about x by
communicating with the server.

about X is obtained by optimizing the circuit, which is Imax := maxF I(X; Y ).
Since any party who is able to access Ux could obtain this amount of information,
the server, who grants the client one use of Ux, would inevitably leak Imax amount
of information about x to the client.

Next, we consider a malicious client who wants to obtain the most information
about x. The server interacts with the client via the encoder, which is equivalent to
that the client has access to the encoded gate, which is a channel E(Ux). The most
general way for the client to extract information about x is to insert E(Ux) into
a circuit and measure the output of the circuit, as shown in Figure 8(b). Let this
circuit be D′ and its output be Y ′, which is related to X by Y ′ = (D′ ◦ E)(UX). The
maximum information the client could obtain is maxD′ I(X; Y ′).

Now, since E is determined by the server, the circuit D′◦E with variable D′ forms
a subset of the range of F , which contains all possible circuits taking Ux as input.
Therefore, the optimization over D′ is upper bounded by the optimization over F ,
and thus we have

max
D′

I(X; Y ′) ≤ Imax . (2)

The equation above proves Theorem 2, since the left hand side is the maximal infor-
mation obtainable by an arbitrary malicious client, and the right hand side is the
inevitable information leakage given one access to Ux.

□

6.2 Multi-round communication scenario

In this scenario, we relax the assumption of one-round communication and the
client can communicate with the server for multiple rounds. In each round,
the client can send to and receive from the sever an a-qubit quantum state
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through the quantum communication link. For this multi-round communica-
tion scenario, the server can exploit Ux more than once. Here we depict the
case of two-round communication in Figure 9.

Fig. 9 The multi-round communication scenario. The client can communicate with the
server for multiple rounds.

For the optimal performance, a general protocol may utilize different
encoders and decoders for each round of communication. Here we keep the
remaining n−a qubits of the output of the encoder in the first round and regard
it as a part of the input of the encoder in the second round. We depict such a
variation of the structure of the QAEGate model in Figure 10. The encoders
and decoders of the first and second round are separately parameterized.

Fig. 10 QAEGate for multi-round communication scenario.

6.3 Sequence of gates scenario

In this scenario, we consider a more general situation that the client expects
the server to execute a sequence of gates from different parametric families.
In Figure 11, we depict the simplest case that the length of the sequence is 2.
Here there are two classes of quantum gates, {Ux}x∈X and {Uy}y∈Y, stored in
the server. The client wants to obtain Uy(Ux(ρ)) by communicating with the
server.
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Fig. 11 Sequence of gates scenario. The client expects the server to execute a sequence of
gates from different parametric families.

In order to handle this scenario, we design the encoder and the decoder
with different structures and depict the modified QAEGate model in Figure 12.

Fig. 12 QAEGate for sequence of gates scenario.

The encoder is composed of four parameterized unitary operators, denoted
by Uθle1 , Uθre1 , Uθle2 and Uθre2 . The first two operators are placed on both
sides of Ux while the other two are placed on both sides of Uy. The decoder
is composed of three parameterized parameterized unitary operators, denoted
by Uθld , Uθmd and Uθrd .

7 Numerical Experiments

In this section, we examine the performance of our proposed models by numer-
ical simulation. We show the effectiveness of our proposed models in different
settings for gates based on the Heisenberg model. All simulations are imple-
mented by Tensorflow quantum [28] and performed on a single GPU. We train
the models by stochastic gradient descent in all of the experiments. More
details are provided in the Appendix.

14            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

Article Title 15

7.1 Heisenberg model

Heisenberg model [29] is a famous statistical mechanical model, which describes
a magnetic system of half spins. It can be defined by the Hamiltonian

H̃ = − 1

2

n−1∑
j=1

(Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1)

− 1

2

n∑
j=1

hσzj ,

where Jx, Jy, Jz and h are constants representing the strength of the coupling
and the external magnetic field, respectively. σx, σy, σz are the Pauli matrices.
n is the number of qubits in the quantum system. We define Heisenberg gates
as the quantum gates which represent evolution defined by a Hamiltonian
operator of Heisenberg model. These Heisenberg gates can be represented by

U(t) = exp(−iH̃t),

where H̃ is the Hamiltonian of a Heisenberg model and t is the evolution time.

7.2 Simulation results

Basic Scenario.

In this scenario, we set {Ux} stored in the sever as a class of Heisenberg gates
with Jx = Jy = Jz = 0.1 and h = 0.5.

Here we define the evolution time t as the parameter x, unknown to the
client. The client can only transmit a = 1 qubit or a = 2 qubits through
the quantum communication link. We consider three cases, n = 2, 3, 4, in the
experiment. We exploit a training set composed of 50 gates to optimize the
compression model and validate it on the test set composed of other 10 gates
in each experiment.

We show the training curves of the QAEGate model in Figure 13. Here the
x-axis represents the epoch number of the training, and the y-axis represents
the overlap between the Choi states of the original gate and the decoded gate.
We can see that all of the training processes converge finally, which conforms
to our convergence analysis in Theorem 1.
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Fig. 13 Training curves of the QAEGate for the basic scenario. We train three QAEGate
models for three classes of Heisenberg gates, n = 2, 3, 4, respectively. All of training curves
converge finally, which conforms to our convergence analysis.

Furthermore, we present the performance of our QAEGate model on test
sets in Figure 14. The y-axis represents the average overlap values between the
Choi states of the decoded quantum gate and the original quantum gate. We
can see that our QAEGate model achieves satisfactory performance in all of the
experiments, which confirms the effectiveness of our proposed communication
model empirically. Nevertheless, it is worth noting that QAEGate exhibits
better and more consistent performance when the dimension of the class of
Heisenberg gates {Ux}, denoted by n, is small. This could be attributed to
the greater difficulty in achieving good generalization as the complexity of the
gate class increases.

Fig. 14 The performance of our QAEGate model on test sets of the basic scenario visualized
by boxplots [30].
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Multi-round communication scenario.

In this scenario, we allow two-round communication between the server and
the client while they can only transmit a = 1 qubit through the quantum
communication link at a time.

We present the performance of our QAEGate model on test sets of the
two-round communication scenario in Figure 15. The results indicate that our
proposed model performs better when additional round of communication is
available, compared with the basic scenario with a = 1. Especially for the case
of n = 4, the average overlap value increases by 0.12 compared with the basic
single-round scenario. We also compare the case of a = 2 in the basic scenario
and the case of a = 1 in the two-rounds communication scenario. In both cases,
two qubits are sent to and received from the server in total. We find that our
proposed models have similar performance.

Fig. 15 The performance of our QAEGate model on test sets of the multi-round commu-
nication scenario visualized by boxplots [30].

Sequence of gates scenario.

In this scenario, we set {Ux} stored in the sever as a class of Heisenberg gates
with Jx = Jy = Jz = 0.1 and h = 0.5 and {Uy} as a class of Heisenberg gates
with Jx = Jy = 0.1 and Jz = h = 0.5. Here we define the evolution times of
them as x and y whose values can be different. The client still can only transmit
a = 1 qubit through the quantum communication link. We also consider three
cases, n = 2, 3, 4, in the experiment. The simulation results on test sets of this
scenario are shown in Figure 16 and our proposed model achieved satisfactory
performance in all three cases.
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Fig. 16 The performance of our QAEGate model on test sets of the sequence of gates
scenario visualized by boxplots [30].

8 Discussion and conclusions

We proposed a quantum machine learning model, QAEGate, for
communication-efficient quantum cloud computing, and applied it to single-
round and multi-round communication scenarios. In the single-round scenario,
the protocol avoids leakage of information about the server’s computation and
achieves a satisfactory performance in terms of overlap with the target gate
versus the number of qubits in its compressed version. By adjusting the struc-
ture of QAEGate, we applied our method to other two scenarios, involving
multiple gates and multiple rounds of communication between the client and
server.

The performance of our method has been tested numerically in a number of
examples. Due to the exponential complexity of simulating quantum gates on
classical computers, such analysis is necessarily limited to scenarios involving
a small number of qubits. On the other hand, our method is meant to be even-
tually run on real quantum computers, on which the complexity of QAEGate
grows only polynomially. The current progress of quantum hardware suggests
that a real-world test may take place not too far in the future.

An application of the techniques developed in this paper is learning
unknown quantum gates [31–33]. In this task, the goal is to imprint an
unknown gate into the state of a quantum memory from which the gate can be
accessed at a later time. Our QAEGate can be adapted to this task by adjust-
ing the structure of the encoder and the decoder so that quantum gates can
be encoded into quantum states. Referring to Figure 5, the idea is to choose
different number of qubits a and a′ for the input and output wires of the
encoder, respectively. In particular, one can set a to zero, meaning that the
encoder produces a quantum state of a′ qubits. The number of qubits a′ can
be regarded as the size of the quantum memory of a learning machine designed
to learn a generic gate from a given parametric family of quantum gates. An
interesting feature of our method is that it allows one to set the memory size
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(i.e. to fix a′) and to achieve approximate learning subject to constraints on
the available quantum memory.

Another interesting direction of future research is assessing the power of
quantum processors [34, 35]. It has been often pointed out that the number
of qubits in a quantum processor is not an appropriate measure, because the
presence of noise generally limits the set of achievable computations. Hence,
it is important to have more inclusive measures, that take into account not
only the raw number of qubits, but also the size of the set of operations imple-
mentable on them. The approach of quantum gate compression sheds light into
this problem by providing a rigorous notion of “effective size” of a quantum
processor, defined as the minimum number of qubits on which the operations
of the processor can be compressed with sufficiently high fidelity.

More specifically, the set of operations implemented by a given quantum
processor can be regarded as a parametric family of (generally noisy) quantum
gates. When the processor is not universal, such a family may be compressible
into operations acting on a smaller number of qubits, meaning that the compu-
tations achieved by the processor can be in principle simulated with a smaller
quantum computer. The size of this minimal simulator can then be regarded
as a measure of the computing power of the original quantum processor. Such
a measure is independent of the hardware implementation, and could be in
principle evaluated by connecting the given processor to a reference quantum
computer that runs the QAEGate algorithm, or a generalization of it working
with noisy input gates.

A limitation of the above approach is that the evaluation of the minimum
number of qubits requires a trusted quantum computer of the same size of
the original processor. On the other hand, once a sufficiently large universal
quantum computer becomes available, it can be used as a standard reference
for assessing the power of other quantum processors, and to construct efficient
simulations that can be run on universal quantum computers of smaller size.
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A Proof of Theorem 1

According to [36], we have the following lemma about convergence of SGD for
nonconvex functions:

Lemma 1 If a function f(x) is L1-smooth and we perform SGD update xt+1 ←
xt−η∇fi(xt) each time for a random i ∈ [n], then the convergence rate is T = O(L1

ϵ4
)

for finding E[∥∇f(x)∥2] ≤ ϵ2.

Therefore, we first discuss the smoothness property of the loss function
L(θ) in the training of QAEGate model. Note that the first- and second-
order Lipschitz smoothness are equivalent to Lipschitz continuity of the first-
and second-order derivatives. So we start with a lemma about the Lipschitz
continuity of multivariate functions [37].

Lemma 2 Given some function f : RM → R, if all partial derivatives of f are con-
tinuous, then for any a, b ∈ R the function f : [a, b]M → R is L-Lipschitz continuous
with

L =
√
M max

j∈{1,...,M}
sup

x∈[a,b]M

∣∣∣∣∂f(x)∂xj

∣∣∣∣ . (3)

Next we prove a more general result about the smoothness of measurement
probability of quantum circuits, and then show that L(θ) fits into this result.

Lemma 3 Consider a quantum circuit consisting of any number of fixed unitary gates
and M variable unitary gates U1(θ1), . . . , UM (θM ), where Uj(θj) := exp(iθjHj) for
some Hermitian operator Hj . Then the probability of any measurement outcome of
the output of this circuit is L1-smooth and L2-second-order smooth with respect to
θ = (θ1, . . . , θM ), where

L1 = 4MH2
max (4)

L2 = 8M3/2H3
max (5)
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where Hmax := maxj ∥Hj∥2 and ∥ · ∥2 is the induced operator norm defined as

∥A∥2 := sup
∥Ax∥2

∥x∥2
.

Proof Let |ψ0⟩ be the initial state of the circuit. Without loss of generality, we
assume the variable unitary gates are labeled as U1(θ1) to UM (θM ) according to the
order they are applied. Then the output of this circuit can be written as |ψθ⟩ :=
VMUM (θM ) . . . V1U1(θ1)V0|ψ0⟩, where V1, . . . , VM denotes the fixed unitary gates.
A measurement outcome can be described by a positive operator-valued measure
(POVM) element P with the property that P and I−P are both positive semidefinite,
where I is the identity operator of the output. The probability of this outcome is

f(θ) := Tr[P |ψθ⟩⟨ψθ|] = ⟨ψθ|P |ψθ⟩ . (6)

To study the smoothness of f(θ), we take the partial derivatives:

∂f(θ)

∂θj
=
∂⟨ψθ|
∂θj

P |ψθ⟩+ ⟨ψθ|P
∂|ψθ⟩
∂θj

= 2ℜ
(
∂⟨ψθ|
∂θj

P |ψθ⟩
)

∂2f(θ)

∂θj∂θk
= 2ℜ

(
∂2⟨ψθ|
∂θj∂θk

P |ψθ⟩+
∂⟨ψθ|
∂θj

P
∂|ψθ⟩
∂θk

)
∂3f(θ)

∂θj∂θk∂θl
= 2ℜ

(
∂3⟨ψθ|

∂θj∂θk∂θl
P |ψθ⟩+

∂2⟨ψθ|
∂θj∂θk

P
∂|ψθ⟩
∂θl

+
∂2⟨ψθ|
∂θj∂θl

P
∂|ψθ⟩
∂θk

+
∂⟨ψθ|
∂θj

P
∂2|ψθ⟩
∂θk∂θl

)
These partial derivatives can be bounded with vector and operator norms. For

a unitary operator U , ∥U∥2 = 1. For the POVM element P , ∥P∥2 ≤ 1. The second-
order partial derivatives can be bounded as:∣∣∣∣ ∂2f(θ)∂θj∂θk

∣∣∣∣ ≤ 2

∣∣∣∣ ∂2⟨ψθ|
∂θj∂θk

P |ψθ⟩+
∂⟨ψθ|
∂θj

P
∂|ψθ⟩
∂θk

∣∣∣∣
≤ 2

∥∥∥∥ ∂2⟨ψθ|
∂θj∂θk

∥∥∥∥
2

∥P∥2∥|ψθ⟩∥2 + 2

∥∥∥∥∂⟨ψθ|
∂θj

∥∥∥∥
2

∥P∥2
∥∥∥∥∂|ψθ⟩
∂θk

∥∥∥∥
2

≤ 2max
a,b

∥∥∥∥ ∂2|ψθ⟩
∂θa∂θb

∥∥∥∥
2

+ 2max
a

∥∥∥∥∂|ψθ⟩
∂θa

∥∥∥∥2
2

(7)

Similarly, for the third-order partial derivatives,∣∣∣∣ ∂3f(θ)

∂θj∂θk∂θl

∣∣∣∣ ≤ 2

∣∣∣∣ ∂3⟨ψθ|
∂θj∂θk∂θl

P |ψθ⟩+
∂2⟨ψθ|
∂θj∂θk

P
∂|ψθ⟩
∂θl

+
∂2⟨ψθ|
∂θj∂θl

P
∂|ψθ⟩
∂θk

+
∂⟨ψθ|
∂θj

P
∂2|ψθ⟩
∂θk∂θl

∣∣∣∣
≤ 2max

a,b,c

∥∥∥∥ ∂3|ψθ⟩
∂θa∂θb∂θc

∥∥∥∥
2

+ 6

(
max
a,b

∥∥∥∥ ∂2|ψθ⟩
∂θa∂θb

∥∥∥∥
2

)(
max
a

∥∥∥∥∂|ψθ⟩
∂θa

∥∥∥∥
2

)
(8)

Therefore, to show that the second- and third-order partial derivatives

are bounded, it suffices to show that maxa

∥∥∥∂|ψθ⟩
∂θa

∥∥∥
2
,maxa,b

∥∥∥ ∂2|ψθ⟩
∂θa∂θb

∥∥∥
2

and

maxa,b,c

∥∥∥ ∂3|ψθ⟩
∂θa∂θb∂θc

∥∥∥
2
are all bounded. We observe that

∂Uj(θj)
∂j =

∂ exp(iθjHj)
∂j =

iHjUj(θj), and we have

max
a

∥∥∥∥∂|ψθ⟩
∂θa

∥∥∥∥
2

= max
a
∥VMUM (θM ) . . . VaiHaUa(θa) . . . U1(θ1)V0|ψ0⟩∥2

≤ max
a
∥VMUM (θM ) . . . Va∥2 ∥Ha∥2 ∥Ua(θa) . . . U1(θ1)V0|ψ0⟩∥2
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= max
a
∥Ha∥2 = Hmax (9)

With similar derivations, we can obtain maxa,b

∥∥∥ ∂2|ψθ⟩
∂θa∂θb

∥∥∥2
2
≤ H2

max and

maxa,b,c

∥∥∥ ∂3|ψθ⟩
∂θa∂θb∂θc

∥∥∥
2
≤ H3

max. According to Eqs. (7) and (8), we obtain∣∣∣∣ ∂2f(θ)∂θj∂θk

∣∣∣∣ ≤ 4H2
max (10)∣∣∣∣ ∂3f(θ)

∂θj∂θk∂θl

∣∣∣∣ ≤ 8H3
max (11)

Consider
∂f(θ)
∂θj

as a function of θ. Since its partial derivatives
∂2f(θ)
∂θj∂θk

are bounded

by 4H2
max, according to Lemma 2,

∂f(θ)
∂θj

is L′
1-continuous with L′

1 = 4
√
MH2

max.

Then

∥∇f(α)−∇f(β)∥2 ≤
√
M max

j

∣∣∣∣∂f(α)

∂θj
− ∂f(β)

∂θj

∣∣∣∣
≤
√
ML′

1∥α− β∥2 = 4MH2
max∥α− β∥2 (12)

and therefore f is L1-smooth with L1 = 4MH2
max. Similarly, consider

∂2f(θ)
∂θj∂θk

as a

function of θ. Since its partial derivatives
∂3f(θ)

∂θj∂θk∂θl
are bounded by 8H3

max, according

to Lemma 2,
∂2f(θ)
∂θj∂θk

is L′
2-continuous with L

′
2 = 8

√
MH3

max. Then

∥∇2f(α)−∇2f(β)∥2 ≤M max
j,k

∣∣∣∣∂2f(α)

∂θj∂θk
− ∂2f(β)

∂θj∂θk

∣∣∣∣
≤ML′

2∥α− β∥2 = 8M3/2H3
max∥α− β∥2 (13)

and therefore f is L2-second-order smooth with L2 = 8M3/2H3
max. □

Based on above lemma, we obtain the following theorem:

Theorem 3 (Smoothness) The loss function L(θ) in the training of QAEGate model
is L1-smooth and L2-second-order smooth.

Proof Let p(θ) be the probability of outcome |+⟩ in the SWAP test when the gates
are parameterized with θ = (θle, θre, θld, θrd). Because of L(θ) = 1 − f(θ) and
f(θ) = 2p(θ) − 1, we just need to discuss the smoothness of p(θ). Since p(θ) is the
probability of a measurement outcome of a unitary circuit, and in this circuit, every
variable gate has the form of Uθ = exp(iθH), we can apply Lemma 3. Thus, p(θ)

is L1-smooth and L2-second-order smooth where L1 = 4MH2
max, L2 = 8M3/2H3

max

and M is the number of variable gates in the circuit. To prove Theorem 3, we only
need to show that Hmax is bounded.

The variable gates in our circuit only includes the following single- and two-qubit
gates:

RX(θ) := exp(iθσx), RY (θ) := exp(iθσy), RZ(θ) := exp(iθσz) (14)

XX(θ) := exp(iθσx ⊗ σx), Y Y (θ) := exp(iθσy ⊗ σy), ZZ(θ) := exp(iθσz ⊗ σz)
(15)
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Therefore, Hmax = max{∥σx∥2, ∥σy∥2, ∥σz∥2, ∥σx⊗σx∥2, ∥σy⊗σy∥2, ∥σz⊗σz∥2} =
1. □

Proof of Theorem 1 Based on Theorem 3, we have proved that L(θ) is L1-smooth,
where L1 = 4M . In our implementation, there is only one variable for each variable
unitary gate, so M = dimθ = O(n2) here. Then we can apply Lemma 1 and obtain

that the convergence rate is T = O(n
2

ϵ4
) for finding E[∥∇θL(θ)∥2] ≤ ϵ2. In order to

estimate the gradients, we have to compute the loss function for O(dimθ) = O(n2)
times. The total time complexity of the algorithm is O(n

4

ϵ4
).

□

B Details of Numerical Experiments

Data generation.

For each class of gates U(t) we considered in different scenarios, we randomly
generate 60 different U(ti), ti ∈ [0, 2] and split them into the training set and
the test set with ratio 50 : 10.

Hyperparameters

We set the learning rate η as 0.005, the maximum number of iterations K as
150 and the threshold δ as 0.999 in all experiments.

Impelementation details.

We implement our proposed model QAEGate based on Tensorflow Quantum
[28]. The parameterized quanum circuits are constructed by the tools provided
in Cirq [38] and the gradients are estimated by the differentiators based on
parameter shift rule [39].

Training details.

We employed stochastic gradient descent to train all the models in our experi-
ments, using a single GPU. The training time for all the experiments presented
in this paper is less than one hour.
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