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A common problem with adopting Text-to-SQL translation in database systems is poor generalization. Specifi-
cally, when there is limited training data on new datasets, existing few-shot Text-to-SQL techniques, even
with carefully designed textual prompts on pre-trained language models (PLMs), tend to be ineffective. In
this paper, we present a divide-and-conquer framework to better support few-shot Text-to-SQL translation,
which divides Text-to-SQL translation into two stages (or sub-tasks), such that each sub-task is simpler to
be tackled. The first stage, called the structure stage, steers a PLM to generate an SQL structure (including
SQL commands such as SELECT, FROM, WHERE and SQL operators such as “<”, “>”) with placeholders for
missing identifiers. The second stage, called the content stage, guides a PLM to populate the placeholders in the
generated SQL structure with concrete values (including SQL identifies such as table names, column names,
and constant values). We propose a hybrid prompt strategy that combines learnable vectors and fixed vectors
(i.e., word embeddings of textual prompts), such that the hybrid prompt can learn contextual information to
better guide PLMs for prediction in both stages. In addition, we design keyword constrained decoding to ensure
the validity of generated SQL structures, and structure guided decoding to guarantee the model to fill correct
content. Extensive experiments, by comparing with ten state-of-the-art Text-to-SQL solutions at the time of
writing, show that SC-Prompt significantly outperforms them in the few-shot scenario. In particular, on the
widely-adopted Spider dataset, given less than 500 labeled training examples (5% of the official training set),
SC-Prompt outperforms the previous SOTA methods by around 5% on accuracy.
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1 INTRODUCTION
Text-to-SQL, which translates natural language (NL) questions to SQL queries, promises to enable
sophisticated data querying to non-technical end users. Supporting NL questions over tables has
many applications. For example, data visualization companies, such as Tableau and Power BI,
use NL questions to assist the construction of dashboards, where the required structured queries
over tables are relatively simple, e.g., most queries do not need joins or nested loops. In addition,
supporting Text-to-SQL translation has high demand from the database industry, e.g., Oracle [15]
and SalesForce [21].
The “Pre-train, Fine-tune” Paradigm. Language models, e.g., GPT-3 [2] and T5 [18], are pre-
trained on very large corpora to learn general knowledge. Fine-tuning adapts these PLMs to
downstream tasks using task-specific objective functions and datasets, e.g., question answering [32]
and text summarization [41]. Recent studies, based on Text-to-SQL benchmarks such as Spider [39],
show that the state-of-the-art (SOTA) performance on Text-to-SQL is achieved by fine-tuning large
PLMs, such as Picard [24], which fine-tunes T5 [18] in a simple end-to-end fashion.
Few-shot Text-to-SQL. A common scenario for Text-to-SQL is that oftentimes, for a new dataset
or domain, sufficient high-quality training data is not available and obtaining it requires expert
knowledge, which is very expensive and labor-intensive to acquire. In this paper, we refer to the
case of limited training data as few-shot Text-to-SQL. The “pre-train, fine-tune” paradigm tends to
be ineffective in this few-shot setting for Text-to-SQL, because the PLMs have poor generalization
given limited training data on new datasets.

One possible strategy to mitigate poor generalization is through prompting [14], where textual
prompts are used to explicitly guide PLMs to better reason about the tasks, e.g., “generate an SQL
query” or “write a Java program”. Unfortunately, for the few-shot Text-to-SQL scenario when there
is not enough training data, traditional prompting techniques also cannot solve the problem, as we
illustrate in the following example.
Example 1 (Prompting for Text-to-SQL). Consider the database 𝐷 in Figure 1(a) with two

tables, highschooler and friend. Let 𝑁 be an NL question that asks for high school students who

do not have friends. As shown in the figure, the ground truth SQL query 𝑄 uses the EXCEPT operator

to return the student IDs from the table highschooler that are not in the table friend.
We fine-tuned the pre-trained T5-large [18] model with the textual prompt 𝑃 in Figure 1(b) using 5%

of the training data of the database 𝐷 from the Spider [39] Text-to-SQL benchmark, which is around

300 (NL, SQL) pairs. During testing, the fined-tuned model still outputs the incorrect SQL query 𝑄 ′,
where the column name student_id should be id. After careful analysis, we find that the cause of
these failures is a discrepancy between the pre-training tasks and our Text-to-SQL task, where the

limited training data is not sufficient to adapt the PLM to new datasets. □

A Divide-and-Conquer SC-Prompt Framework. To address this problem, we propose Structure
and Content Prompt learning (SC-Prompt), a novel divide-and-conquer framework that divides
the Text-to-SQL task into two sub-tasks, such that each sub-task is simpler and more amenable to
limited training data, compared with the end-to-end Text-to-SQL task. Specifically, we consider
two stages (or sub-tasks) for Text-to-SQL translation:
(1) A structure stage that steers a PLM to generate an SQL structure with placeholders for

missing contents, and
(2) A content stage that guides a PLM to populate the placeholders in the generated SQL

structure with concrete values.
To better illustrate this idea, consider the following example.
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SELECT id 

FROM highschooler 

EXCEPT 

SELECT student_id 

FROM friend

SELECT student_id FROM highschooler 

EXCEPT 

SELECT student_id FROM friend

NL Question  N Database D

id name … grade

student_i
d

friend_id …

Ground Truth SQL query Q

What are the ids of 

high school students 

who do not have friends?

highschooler

friend

(a) Text-to-SQL. Input: NL question N, database D; Output: SQL query Q 

(b) Traditional prompt learning

Prompt P

What is the SQL query 

for the given question 

and database

PLM

Invalid SQL Query Q'

P, N, D Q’

SELECT [col] 

FROM [tab] 

WHERE [col] 

NOT IN 

(SELECT [col] 

FROM [tab])

[col] id 

[tab] highschooler 

[col] id 

[col] student_id 

[tab] friend

SELECT id 

FROM highschooler 

WHERE id 

NOT IN 

(SELECT student_id 

FROM friend) PLM

Translate the question 

into an SQL structure

Populate the SQL 

structure with 

specific values: S

Structure Prompt Ps

Content Prompt Pc

SQL Structure S

SQL Content C

SQL Query Q’’ = S + C

(C) Our SC-prompt framework with two-stage prompt learning

Ps, N, D S

C

Pc, N, D, S
Q(D) = Q’’(D)

Fig. 1. Text-to-SQL with few-shot prompt learning.

Example 2 (SC-Prompt for Text-to-SQL). Consider the example in Figure 1 (a) again. Figure 1

(c) depicts our two-stage strategy.

(1) Structure stage. In this stage, we use a structure prompt P𝑆 to generate an SQL structure 𝑆

containing only SQL commands (e.g., SELECT, FROM, WHERE) and operators (e.g., <, >), while
leaving all contents to be placeholders (e.g.,[col], [tab], etc).

(2) Content stage. In this stage, we use a content prompt P𝐶 , the previously generated SQL

structure 𝑆 , together with the NL question 𝑁 and the database 𝐷 to guide a PLM to fill the

content placeholders (e.g., the first [col] should be column “id”, the first [tab] should be table

“highshooler”, and so on).

Finally, we combine the SQL structure 𝑆 and SQL content𝐶 to generate an SQL query𝑄 ′′. Compared

with the ground truth query 𝑄 in Figure 1 (a), we note that SC-Prompt may predict a different

but equivalent SQL structure (e.g., EXCEPT vs. NOT IN), and correctly predicts the SQL query, i.e.,
𝑄 (𝐷) = 𝑄 ′′ (𝐷). □

Next, based on Example 2, we discuss why SC-Prompt is better than traditional end-to-end Text-
to-SQL translation in the few-shot learning setting. The structure stage focuses only on predicting
an SQL structure from an NL question, which is much easier than predicting a complete SQL query.
For the content stage, the task is to fill the content placeholders, a fill-in-the-blank task, which is

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 147. Publication date: June 2023.
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well aligned with the self-supervised mask language modeling for pre-training many PLMs (e.g.,
BERT [4] and T5 [18]).

Challenges and Solutions. Effectively realizing the proposed SC-Prompt framework raises two
main technical challenges.
The first challenge is that manually designed textual prompts [2] are not flexible enough to

effectively guide PLMs to solve different prediction problems in the two stages. An intuitive way to
improve predictions is to provide more contextual information. To this end, we propose a hybrid
prompt strategy that combines learnable vectors [13] and fixed vectors (i.e., word embeddings of
textual prompts). The learnable vectors are tuned during training and are used to provide contextual
information to better guide PLMs for prediction in both stages.
The second challenge is how to improve the decoding process of the PLMs. A typical auto-

regressive decoding process may not be effective, because large PLMs, such as T5 [18] used in our
paper, usually have a large number of (sub-word) tokens, which would increase the possibilities of
generating invalid SQL queries. To this end, we propose a fine-grained constrained decoding strategy
to help prune the search space of both stages to make invalid SQL queries less likely. In particular,
we design keyword-constrained decoding to ensure the validity of generated SQL structures, and
structure-guided decoding to guarantee that the model fills the correct content.
Contributions. We summarize our contributions as follows.
(1) We study the problem of few-shot Text-to-SQL translation (Section 2), and introduce a divide-
and-conquer framework SC-Prompt that divides the Text-to-SQL task into two simpler stages
(sub-tasks), namely a structure stage and a content stage (Section 3).
(2) We propose two novel techniques to tackle the challenges of this problem: structure and content
prompt construction (Section 4) and fine-grained constrained decoding (Section 5).
(3) We conduct extensive experiments on three Text-to-SQL benchmarks with different difficulty
levels. Our experimental results show that SC-Prompt significantly outperforms the advanced
Text-to-SQL solutions in the few-shot scenario (Section 7) 1.

2 FEW-SHOT TEXT-TO-SQL
This section first formalizes Text-to-SQL translation in Section 2.1, and then presents how to adopt
PLMs to solve the problem (Sections 2.2 and 2.3). Next, we propose a decomposition strategy, which
divides an SQL query into SQL structure and SQL content, to address the challenge of few-shot
Text-to-SQL (Section 2.4).

2.1 Text-to-SQL

SQL Queries. We consider standard SQL queries in relational databases, which consist of the
following elements2.
• Commands: These are SQL reserved keywords such as SELECT, WHERE, COUNT, etc.
• Operators: These include SQL arithmetic operators (e.g., “+”, “−”, “∗”), bit-wise operators
(e.g., “&”, “|”), comparison operators (e.g., “>”, “<”), and logical operators (e.g., “NOT IN”).
• Identifiers: These refer to database specific objects, such as tables, columns, etc (e.g., column
student_id in Figure 1).
• Constant Values: These are fixed data values, which can be categorical, numerical and
textual values. Note that the textual values would be enclosed in single quote marks.

1Code is available at https://github.com/ruc-datalab/SC-prompt
2https://en.wikipedia.org/wiki/SQL_reserved_words
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Text-to-SQL. Let𝑁 be an NL question,𝐷 be a relational database containing𝑛 tables {𝑇1,𝑇2, . . . ,𝑇𝑛},
and 𝑐𝑖 𝑗 be the 𝑗-th column of the 𝑖-th table 𝑇𝑖 . The problem of Text-to-SQL is to generate an SQL
query 𝑄 based on the question 𝑁 and the database 𝐷 .

2.2 Transformer-based Encoder-Decoder Models

Transformer Models. Transformer-based pre-trained language models (PLMs) [12, 18, 28] have
achieved tremendous success for textual data. Pre-trained on a massive amount of text corpora,
PLMs like BERT [4], BART [12], T5 [18], GPT-3 [2], etc. can effectively learn rich knowledge and
have been widely used in a variety of applications.
Encoder-Decoder Models. Transformer-based encoder-decoder models are the SOTA for many
generative tasks which generate an output object 𝑂 given the input object 𝐼 , such as sentiment
analysis, machine translation, and Text-to-SQL. In general, such a model consists of an encoder

and a decoder:
The encoder 𝑓encode (·) converts the input 𝐼 into a high-dimensional vector x, i.e., x = 𝑓encode (𝐼 ).
The decoder 𝑓decode (·) decodes the hidden vector x into an output sequence 𝑂 in an auto-

regressive way. Auto-regressive generation says that the probability distribution of a sequence
𝑠 = {𝑤1,𝑤2, . . . ,𝑤𝑛} can be decomposed into the product of conditional next word distributions:

𝑃Θ (𝑠 |𝐼 ) =
𝑛∏
𝑖=1

𝑃 (𝑤𝑖 |𝑤1:𝑖−1; 𝐼 ) (1)

where Θ denotes the parameters of the decoder, 𝐼 denotes the input of the encoder, and 𝑛 denotes
the length of the sentence 𝑠 . Therefore, the decoder aims to find the sentence with the highest
probability as the output. There are many decoding methods that can be used to achieve this goal,
such as greedy search, beam search, etc.

2.3 Text-to-SQL with Encoder-Decoder Models
Transformer-based encoder-decoder models have been widely used to support Text-to-SQL, and
representative models include NQG-T5 [26], PICARD [24], UnifiedSKG [34], etc. For Text-to-SQL,
the input 𝐼 to the encoder is an NL question 𝑁 and a database schema 𝐷 , and the output 𝑂 from
the decoder is an SQL query 𝑄 .
Note that, we also abuse the term 𝐷 as a database, not only a database schema, when it is

evaluated by an SQL query, e.g., 𝑄 (𝐷) and 𝑄 ′′ (𝐷) in Figure 1(c).

Text-to-SQL Fine-tuning. Task-specific fine-tuning effectively adapts PLMs to downstream tasks
using task-specific objective functions and datasets. For supporting Text-to-SQL translation, these
PLMs are typically fine-tuned with Text-to-SQL benchmarks such as Spider [39] and CoSQL [38].

2.4 SQL Decomposition
As discussed earlier, when there is limited training data (i.e., few-shot), it is hard to fine-tune PLMs
to directly output correct SQL queries. A viable solution is to decompose SQL queries into smaller
components, as these decomposed components are easier to learn. In this paper, we propose to
decompose each SQL query into two parts: SQL structure and SQL content, as defined below.
SQL Structure. SQL structure includes the SQL elements with only SQL commands and SQL

operators. In addition, we use placeholders within an SQL structure, such as [tab], [col], and [val],
to represent to-be-filled identifiers and constant values.
For example, in Figure 1(c), if we replace the identifiers in the gold query with placeholders,

it will be converted into an SQL structure representation: “SELECT [col] FROM [tab] EXCEPT
SELECT [col] FROM [tab]”.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 147. Publication date: June 2023.
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SQL Content. SQL content includes SQL identifiers and constant values. More specifically, we
concatenate placeholders and corresponding identifiers or constant values as the representation of
SQL content. For example, the representation of SQL content in Figure 1(c) is: “[col] id [tab]
highschooler [col] id [col] student_id [tab] friend”.
SQL Query = SQL Structure + SQL Content. The SQL structure and the SQL content correspond-
ing to one NL query can be trivially combined as an SQL query (see Figure 1(c)).

3 SOLUTION OVERVIEW

SQL  
Structure  

(S)

SQL  
Content  

(C)

SELECT id FROM highschooler WHERE id  
NOT IN (SELECT student_id FROM friend) 

SQL Query (Q)

what are the ids of high school 
students who do not have friends?

Question N Database Schema D

highschooler id name …

friend student_id friend_id …

PLM with Keywords 
Constrained Decoding

SELECT [col]  
FROM [tab]  
WHERE [col]  
NOT IN  
(SELECT [col]  
FROM [tab]) 

[col] id  
[tab] highschooler  
[col] id  
[col] student_id 
[tab] friend

Structure Prompt 
Construction

Content Prompt 
Construction

Structure prompt

Combination (SQL Structure + SQL Content)

① Stage-S ② Stage-C

PLM with Structure 
Guided Decoding

Content prompt

N, D N, D

S

Fig. 2. An overview of SC-Prompt. First, the structure stage steers the PLM to generate an SQL structure 𝑆 .

Then, the content stage guides the PLM to generate SQL content 𝐶 based on the structure 𝑆 . Finally, the

structure 𝑆 and content 𝐶 is combined to generate an SQL query 𝑄 .

Figure 2 shows an overview of our SC-Prompt framework for supporting few-shot Text-to-SQL
in two stages.
(1) The structure stage (Stage-S) steers the PLM to generate an SQL structure 𝑆 , based on the

NL question 𝑁 , the database schema 𝐷 , and a structure prompt.
(2) The content stage (Stage-C) guides the PLM to populate the placeholders in the generated

SQL structure with specific values, resulting an SQL content 𝐶 .
We then combine the predicted SQL structure 𝑆 and SQL content 𝐶 to generate an SQL query 𝑄

as described in Section 2.4.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 147. Publication date: June 2023.
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There are two core modules in our SC-Prompt framework, as shown in Figure 2: Prompt Con-

struction (blue rectangles) and Constrained Decoding (red rectangles), which we describe next.
Prompt Construction. Intuitively, the aim of prompt construction is to design a function 𝑓prompt
to transforms the NL question 𝑁 and the database schema 𝐷 into an instruction for a PLM, which
we denote as prompt P where P = 𝑓prompt (𝑁, 𝐷).

A straightforward implementation for 𝑓prompt is to use a natural language template, with input
and output placeholders, e.g.,

Translate NL to SQL, [𝑁 ] [𝐷], [𝑍 ]

where [𝑁 ] and [𝐷] are input placeholders, which can be populated with each input instance (𝑁, 𝐷),
and [𝑍 ] is the output blank, which will be predicted by the PLM. Obviously, this prediction task
can be formulated as the masked language modeling (MLM) problem, which is the pre-training
objective of most PLMs.

However, it is non-trivial to design an effective prompting function 𝑓prompt that will result in the
PLM making accurate predictions predictions. In SC-Prompt, we divide the procedure into two
stages: Stage-S and Stage-C, shown in Figure 2. Our approach is to design different prompts for
different stages, although, even then, it is difficult to manually design appropriate prompts that
effectively guide the PLM in each stage.

To address these challenges, we introduce a novel hybrid prompt strategy that combines learnable
vectors for learning more contextual information and fixed vectors (i.e., word embeddings of
manually designed textual prompts) for capturing domain knowledge. This hybrid prompt, in the
form of a high-dimensional vector, is fed to a PLM. More details of prompt construction for both
stages are given in Section 4.
Constrained Decoding. Given a constructed prompt P in the form of a vector, a typical (encoder-
decoder) PLM first uses its encoder to convert P into a high-dimensional hidden vector x, and then
uses its decoder to generate an SQL query 𝑄 , i.e.,

𝑄 = 𝑓decode (x) = 𝑓decode (𝑓encode (P)) (2)

A typical solution for decoder 𝑓decode is the auto-regressive method, as described in Section 2.2.
Large PLMs, such as T5 [18] used in our paper, usually have a large number of (sub-word) tokens,
which increases the possibilities of generating invalid SQLs. For this reason, constrained decoding
is introduced to make invalid SQL queries unpresentable [24]. However, existing solutions are
designed for directly generating SQL, instead of the structures and contents in our SC-Prompt
framework. Therefore, we introduce a fine-grained constrained decoding method, which takes
full advantages of our structure and content prompting mechanism. More details of constrained
decoding are given in Section 5.

4 PROMPT CONSTRUCTION
In this section, we first discuss two conventional prompt construction methods and their limitations
in Section 4.1. Then, we introduce our novel hybrid prompt construction method and its learning
method in Section 4.2 and Section 4.3 respectively.

4.1 Conventional Prompt Construction Methods

Textual Prompts. The most common way to construct a prompt is to design a textual template, as
mentioned in Section 3. Typically, a textual prompt consists of discrete tokens[17], such as a task
description, to guide the PLMs to obtain the desired output. For example, we can use prompts like
“translate to french, [input], [output]” to exploit PLMs’ excellent ability to handle generation

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 147. Publication date: June 2023.
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Question N Database D

PLM

Learnable vector 
initialization

… … …

vN

Concatenate 
               and 

…

vD

…

vEeD

1

4

eN eD

eN

V

1

eS
3

eC

Translate the question 
into an SQL structure

Structure Prompt PS

Populate the SQL 
structure with specific 
content: Structure S

Content Prompt PC

Concatenate  
        

Concatenate  

Hybrid structure 
prompt vector IS

Hybrid content 
prompt vector IC

5 6

2 4 3 4

What are the ids of  
high school students  
who do not …?

highschooler: id, … 
friend: student_id, 
friend…

2

vN, vD, vE 

vN vD vEvB

vB vB

Fig. 3. Hybrid prompt construction.

tasks including text summarization and machine translation. This method constructs prompts in a
human-interpretable way, which is currently the most intuitive method.

Note that, a textual prompt needs to be converted into a sequence of vectors, in order to be used
by the encoder-decoder Text-to-SQL architecture. This is often performed using word embeddings
of PLMs where each input token will be converted into a vector. For example, the NL question
𝑁 , after being tokenized as tok(𝑁 ) = 𝑡1, . . . , 𝑡𝑛 , will be converted into a sequence of vectors as
𝑒𝑁 = 𝑣1, . . . , 𝑣𝑛 , similar for the embeddings 𝑒𝐷 of the database schema 𝐷 (see Figure 3 for tok(𝑁 ),
tok(𝐷), 𝑒𝑁 and 𝑒𝐷 ). These prompts are considered to be fixed, meaning that they will not be
updated (or tuned) during training on new datasets.
Learnable Vectors. This prompt consists of learnable vectors (a.k.a. continuous vectors [11, 13]),
which can be optimized during training. For example, prompt tuning [11] prepends a series of
continuous vectors to the input as a prompt; this shows good performance on the SuperGLUE
benchmark [29]. This method expands the design space of prompt beyond human-interpretable
language, allowing PLMs to learn which features should be included in prompts.
Limitations. The main limitation of textual prompts is that they are designed manually, and thus
highly rely on the designers’ expertise. Even the most experienced designers struggle to discover
optimal prompt templates [10]. The main limitation of learnable vectors, as empirically verified by
PPT [7], is that prompt tuning on learnable vectors performs poorly with few-shot training and is
greatly influenced by the prompt initialization methods (see Section 4.2 for different initialization
methods).

4.2 Hybrid Prompt Construction
Although both methods have limitations, their advantages, as discussed above, are complementary.
The main advantage of textual prompts is that it is able to capture experts’ domain knowledge,
and the main advantage of learnable vectors is its adaptability to new datasets during training.
Based upon this observation, we propose a novel hybrid promptmethod to combine the best of both
worlds. Recall that SC-Prompt has two stages, as shown in Figure 2, the SQL structure stage and
the SQL content stage. Thus, we construct a hybrid prompt 𝐼𝑆 as the input for the structure stage,
and a hybrid prompt 𝐼𝐶 as the input for the content stage. Specifically, the construction process is
composed of an input preprocessing step and a hybrid prompt construction step, as shown in Figure 3.
Input Preprocessing Step.We first tokenize the input NL question 𝑁 and database schema 𝐷 .
The query 𝑁 is tokenized into a sequence of tokens as tok(𝑁 ) = 𝑡1, 𝑡2, . . . , 𝑡𝑛 , and the flattened
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database schema 𝐷 containing table names and column names into another sequence of tokens as
tok(𝐷) = 𝑡 ′1, 𝑡 ′2, . . . , 𝑡 ′𝑚 .

Afterwards, we use a PLM to convert the tokenized sequence to a vector sequence, where each
token will be converted to one high-dimensional vector. That is, the tokenized question tok(𝑁 )
will be converted into 𝑒𝑁 , and the tokenized database schema tok(𝐷) will be converted into 𝑒𝐷 , as
shown in Figure 3-❶. Note that, we use the snowflake symbol (^) to denote that these vectors are
fixed, which will not be tuned during training.
Hybrid Prompt Construction Step. Based on the above tokenization results, we construct the
textual prompts and the learnable vectors, respectively, and finally combine them to obtain the
hybrid prompt, as described as follows.
Sub-task Specific Textual Prompt. Since the two sub-tasks have different goals, we add textual
prompts composed of specific task descriptions to guide the model to produce the desired re-
sult. The structure prompt P𝑠 and content prompt P𝑐 are designed as follows:

• P𝑠 = “translate the question into an SQL structure”.
• P𝑐 = “populate the SQL structure with specific content: SQL structure 𝑆”.

Each of the above prompts will first be tokenized and then converted into a vector sequence
(same as the process of obtaining 𝑒𝑁 ), where 𝑒𝑆 is the vector sequence for P𝑠 (see Figure 3-❷) and
𝑒𝐶 is the vector sequence for P𝑐 (see Figure 3-❸). Note that, these vector sequences are also fixed.
Learnable Vectors. As it is hard to design appropriate fixed prompts to effectively guide PLMs, we
introduce learnable vectors, which can be tuned during training, for learning more contextual
information. The basic idea is to introduce four learnable vectors. Each one is designed for a
different purpose, e.g., question, database, and task, to help the PLM understand different aspects of
the input.
Formally, we introduce four learnable vectors {𝑣𝐵, 𝑣𝑁 , 𝑣𝐷 , 𝑣𝐸}, which are designed for different

purposes: (1) 𝑣𝑁 is for learning NL question 𝑁 specific features, (2) 𝑣𝐷 is for learning database 𝐷
specific features, and (4) 𝑣𝐵 and 𝑣𝐸 are for learning task specific features at the beginning and end of
the input context, respectively. The main intuition is that due to the positional encoding mechanism
of the transformer-based PLMs, the learnable vectors at the specific points can implicitly learn
the specific contextual information during training, so as to help the PLM understand different
parts of the input (e.g., the database schema) during prediction. Note that we only put the learnable
vectors in the input embedding layer, which is different from prefix-tuning [13] that prepends the
vectors to each layer in the encoder stack, including the input layer. Our experiments show that this
simpler solution is sufficient to achieve good performance in SC-Prompt. We conduct an ablation
study to demonstrate that our method works better than using one single learnable vector with
respect to one purpose (e.g., question, database, or task). Please refer to Section 7.2 for more details.

Next we describe three methods to initialize these four vectors.
(1) Random Initialization randomly initializes all the vectors based on a normal distribution.
(2) Vocabulary Initialization randomly samples words from the vocabulary of the PLM to initialize

the vectors.
(3) Keyword Initialization limits the initialization space to keywords related to our Text-to-SQL

task, e.g., “database”, “table”, “question”, etc.
Prompts Combination. Let the embedding of database 𝑒𝐷 be 𝑒𝐷 = 𝑒𝐷𝑛𝑎𝑚𝑒 ⊕𝑒𝑇 , where “⊕” is for vector
concatenation, 𝑒𝐷𝑛𝑎𝑚𝑒 is 𝑒𝐷 ’s sub-sequence w.r.t. the database name, and 𝑒𝑇 is 𝑒𝐷 ’s sub-sequence
w.r.t. the table schema.
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We first combine ❶ the embedding for the NL question and database schema with the learnable
vectors {𝑣𝑁 , 𝑣𝐷 , 𝑣𝐸} as follows:

V = 𝑣𝑁 ⊕ 𝑒𝑁 ⊕ 𝑣𝐷 ⊕ 𝑒𝐷𝑛𝑎𝑚𝑒 ⊕ 𝑒𝑇 ⊕ 𝑣𝐸 (3)

The combined vector sequence V is depicted in Figure 3-❹. As discussed above, the reason to do
such combination is to learn features for each learnable vector with different semantics.

For the structure stage, we concatenate the above vector sequence V, the task-specific vector 𝑣𝐵 ,
and the vectors for the structured prompt 𝑒𝑆 as the hybrid structure prompt (see Figure 3-❺):

𝐼𝑆 = 𝑣𝐵 ⊕ 𝑒𝑆 ⊕ V (4)

This hybrid structure prompt 𝐼𝑆 will be used as the input to the structure stage.
For the content stage, we concatenate the above vector sequence V, the task-specific vector 𝑣𝐵 ,

and the vectors for the content prompt 𝑒𝐶 as the hybrid content prompt (see Figure 3-❻):

𝐼𝐶 = 𝑣𝐵 ⊕ 𝑒𝐶 ⊕ V (5)

This hybrid content prompt 𝐼𝐶 will be used as the input to the content stage.

Example 3 (Hybrid prompt construction for Text-to-SQL). Consider the NL question 𝑁 and

the database 𝐷 in Figure 1.

Input preprocessing. First, the database 𝐷 is flattened to “Database: Network. Table highschooler:

id, name, . . . , grade; Table friend: student_id, . . . ”. And the flattened database is tokenized to a token

list: tok(𝐷) = [“database”, “:”, “network”, . . .]. Similarly, the NL question 𝑁 is also tokenized to

tok(𝑁 ) = [“what”, “are”, . . .]. Second, the base PLM is used to convert the tokens to high-dimensional

vectors: tok(𝐷) is converted to 𝑒𝐷 = 𝑒𝑑 ⊕ 𝑒𝑇ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙𝑒𝑟 ⊕ 𝑒𝑇𝑓 𝑟𝑖𝑒𝑛𝑑 ; tok(𝑁 ) is converted to 𝑒𝑁 .
Hybrid structure prompt construction. First, we combine 𝑒𝐷 and 𝑒𝑁 with the four learnable

vectors {𝑣𝐵, 𝑣𝑁 , 𝑣𝐷 , 𝑣𝐸} to get V = 𝑣𝑁 ⊕ 𝑒𝑁 ⊕ 𝑣𝐷 ⊕ 𝑒𝐷𝑛𝑎𝑚𝑒 ⊕ 𝑒𝑇ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙𝑒𝑟 ⊕ 𝑒𝑇𝑓 𝑟𝑖𝑒𝑛𝑑 ⊕ 𝑣𝐸 . Second, we
convert textual prompt P𝑠 to a vector sequence 𝑒𝑆 and concatenate it with 𝑉 and 𝑣𝐵 to get input 𝐼𝑆 for

predicting SQL structure: “SELECT [col] FROM [tab] EXCEPT SELECT [col] FROM [tab]”.
Hybrid content prompt construction. This stage is very similar to the previous stage, except

that the textual prompt P𝑐 contains the SQL structure 𝑆 generated above. we convert the textual prompt

P𝑐 to a vector sequence 𝑒𝐶 and concatenate it with𝑉 to form the input 𝐼𝐶 for predicting the SQL content:

“[col] id [tab] highschooler [col] id [col] student_id [tab] friend”.

4.3 Hybrid Prompt Leaning
In this section, we discuss how to learn the parameters in our constructed hybrid prompt (e.g., the
learnable vectors discussed above), and the base PLM.
SQL Structure Prompt Learning. Recall that this sub-task aims to infer the SQL structure without
specific values and identifiers. Next, we present how to train this sub-task through training data
preparation and prompt learning.
Training data preparation. To obtain the SQL structure representation, we replace the identifiers
and constant values of the ground truth SQL query with placeholders. We design three special
tokens as the placeholders: [col], [tab], [val], which represent a column name, table name, or
constant value, respectively.
Using Figure 1 as an example, the ground truth SQL query “SELECT id FROM highschooler

EXCEPT SELECT student_id FROM friend” is converted into the SQL structure representation
“SELECT [col] FROM [tab] EXCEPT SELECT [col] FROM [tab]”.
Prompt learning. As described in Section 4.2, the input 𝐼𝑆 of this sub-task is constructed according
to Equation. (4). Then, 𝐼𝑆 is fed into the base PLM for encoding, and the expected structure
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representation are generated through auto-regressive decoding. The trainable parameters here
include the SQL structure generator 𝐺𝑠 (i.e., the PLM used in Stage-S) and the learnable vectors,
which are denoted as Θ𝑠 . Next, we learn Θ𝑠 by minimizing the negative log-likelihood loss, i.e.,

𝐿(Θ𝑠 ) = −
1
𝑛

𝑛∑︁
𝑖=1

log 𝑃 (𝑆𝑖
𝑔𝑜𝑙𝑑
|𝐼 𝑖𝑆 ;Θ𝑠 )

= − 1
𝑛

𝑛∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

log 𝑃 (𝑆𝑖, 𝑗
𝑔𝑜𝑙𝑑
|𝐼 𝑖𝑆 ; 𝑆

𝑖,1
𝑔𝑜𝑙𝑑

, . . . , 𝑆
𝑖, 𝑗−1
𝑔𝑜𝑙𝑑

;Θ𝑠 )
(6)

where 𝐼 𝑖
𝑆
is the input of of the 𝑖𝑡ℎ training sample, 𝑆𝑖

𝑔𝑜𝑙𝑑
is the corresponding ground truth structure

representation, 𝑆𝑖, 𝑗
𝑔𝑜𝑙𝑑

is the 𝑗𝑡ℎ token of 𝑆𝑖
𝑔𝑜𝑙𝑑

and 𝑛 is the number of training samples.
SQL Content Prompt Learning. This sub-task aims to infer specific SQL content according to
the question and database schema. Again we will introduce two aspects of this module: training
data preparation and prompt learning.
Training data preparation. As this sub-task needs to fill specific content for each slot in the SQL
structure, to be consistent with SQL structure, we concatenate each placeholder and its corre-
sponding identifier or constant value to construct the SQL content representation. For example, for
Figure 2, the SQL content representation is “[col] id [tab] highschooler [col] id [col]
student_id [tab] friend”.
Prompt learning. The input 𝐼𝐶 of this sub-task is constructed according to Equation (5), and then
fed into the PLM for encoding, which generates output values through auto-regressive decoding.
The trainable parameters here include th SQL content generator 𝐺𝑐 (i.e., the PLM used in Stage-C)
and the learnable vectors, which are denoted as Θ𝑐 . Similar to SQL structure prompt learning, we
learn Θ𝑐 by minimizing the negative log-likelihood loss.

Algorithm 1 illustrates the overall process of hybrid prompt construction and learning. We train
the models for the structure and content sub-tasks separately. For each sub-task, we first construct
the corresponding hybrid prompt by combining learnable vectors and textual prompt (Section 4.2),
and then train the learnable parameters. In particular, we finetune the PLMs, and finetune the
learnable vectors only if they are used.

5 FINE-GRAINED CONSTRAINED DECODING
In this section, we describe optimizations for the decoding phases of the two SC-Prompt stages.
Constrained Decoding. Constrained decoding approaches enable us to assert control over the
result of text generation. This is valuable when we know exactly what are desired in the output.
This technique is widely used for neural program synthesis [24, 27].

For example, when generating an SQL structure 𝑆 , we know that only SQL commands, operators
and placeholders should be included in the output sentence, but not any content. For populating
SQL contents, we have a fixed structure, and only a few content placeholders need to be filled.
Beam Search. Beam search, which is different from greedy search, retains a list of hypotheses [33],
where the length of the hypotheses list is the beam size. Consider beam search of size 𝐾 : Beam
search keeps the most likely 𝐾 hypotheses at each time step and eventually chooses the hypothesis
that has the overall highest probability (the hypothesis probability is calculated by Equation (1)).
At time step 𝑖 , only the top-𝐾 next possible tokens at each possible hypothesis are retained while
the others are pruned. Taking the standard beam search process shown in Figure 4 as an example,
the top-2 possible tokens obtained in time step 1 are {“select”, “the”}, and the other tokens in the
PLM’s vocabulary are excluded because they are not in the top-2 possible tokens.
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Algorithm 1: Hybrid Prompt Construction and Learning.
Input: a Text-to-SQL dataset {𝑁𝑖 , 𝐷𝑖 , 𝑄𝑖 }𝑛𝑖=1

1 begin

2 Initialize the SQL structure generator 𝐺𝑠

3 Initialize learnable vectors {𝑣𝐵, 𝑣𝑁 , 𝑣𝐷 , 𝑣𝐸}
4 S𝑔𝑜𝑙𝑑 = {𝑆𝑖

𝑔𝑜𝑙𝑑
}𝑛𝑖=1 ← 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑄𝑖 )

5 {𝐼 𝑖
𝑆
}𝑛𝑖=1 ← 𝐻𝑦𝑏𝑟𝑖𝑑𝑃𝑟𝑜𝑚𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑁𝑖 , 𝐷𝑖 )

6 for s-epochs do

7 Generate the SQL structure: S𝑝𝑟𝑒𝑑 = {𝑆𝑖
𝑝𝑟𝑒𝑑
}𝑛𝑖=1 ← 𝐺𝑠 (𝐼 𝑖𝑆 )

8 Compute the negative log-likelihood loss: 𝐿(S𝑔𝑜𝑙𝑑 ;S𝑝𝑟𝑒𝑑 ;Θ𝑠 )
// Θ𝑠 denotes the parameters of SQL structure generator and the

learnable vectors

9 Update Θ𝑠

10 end

11 Initialize SQL content generator 𝐺𝑐

12 Initialize learnable vectors {𝑣𝐵, 𝑣𝑁 , 𝑣𝐷 , 𝑣𝐸}
13 C𝑔𝑜𝑙𝑑 = {𝐶𝑖

𝑔𝑜𝑙𝑑
}𝑛𝑖=1 ← 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑄𝑖 )

14 {𝐼 𝑖
𝐶
}𝑛𝑖=1 ← 𝐻𝑦𝑏𝑟𝑖𝑑𝑃𝑟𝑜𝑚𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑁𝑖 , 𝐷𝑖 )

15 for c-epochs do

16 Generate the SQL content: C𝑝𝑟𝑒𝑑 = {𝐶𝑖
𝑝𝑟𝑒𝑑
}𝑛𝑖=1 ← 𝐺𝑐 (𝐼 𝑖𝐶 )

17 Compute the negative log-likelihood loss: 𝐿(C𝑔𝑜𝑙𝑑 ;C𝑝𝑟𝑒𝑑 ;Θ𝑐 )
// Θ𝑐 denotes the parameters of the SQL content generator and

learnable vectors

18 Update Θ𝑐

19 end

20 end

Next, we combine constrained decoding and beam search to design decoding methods for the two
stages: keyword constrained decoding for SQL structure generation and structure guided decoding
for SQL content prediction.

5.1 Keyword Constrained Decoding
The SQL structure stage only needs to infer the SQL structure without specific content. Therefore,
the output of this stage should only contain valid commands (e.g., “SELECT”), operators (e.g.,
“>”), and special tokens (e.g., [col]) used for placeholders. To achieve this, we use a customized
vocabularyV𝑘𝑒𝑦 that only contains the above valid tokens, and limit the output of the decoder to
not exceed the vocabulary. Technically, we leverage the vocabularyV𝑘𝑒𝑦 to constrain beam search.
At time step 𝑖 , we further check the top-𝐾 possible tokens according to the vocabularyV𝑘𝑒𝑦 ; that
is, we filter out the tokens that are not inV𝑘𝑒𝑦 .

5.2 Structure Guided Decoding
For SQL content prediction, we use the SQL structure to guide the decoding process. Specifically,
we design different pruning strategies on beam search at slot-level and sentence-level.
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Time Step: 1                2                 3                4

<start>

select

[col]

all

the

sql

the

from

[col]

[col]

from

[tab]

where

[tab]

where

<start>

select

the

all

[col]
[col]

from

[col]

[val]

[tab]

where

Standard Beam Search

Constrained Beam Search

output

output

✘

✔

Fig. 4. Example of our fine-grained constrained decoding for the question and database schema in Figure 1.

Slot-Level. The goal of slot-level constraints is to ensure that the predicted content is consistent
with the slot (i.e., placeholder). For example, [col] can only be followed by the column name.
Technically, we check each time step of beam search, and set the score of candidate tokens that do
not match the slot to −∞. This allows the decoder to search over only valid content.
Sentence-Level. The goal of sentence-level decoding is to ensure that the generated SQL query is
semantically correct at the sentence-level. We use four consistency checks:

• Column-Table Consistency avoids the use of column names that are not in the FROM list
of SQL queries.
• Operator-Value Consistency avoids operations on values of incompatible types.
• Aggregation-Column Consistency avoids aggregation operations whose type does not
apply to its target column.
• Column-Column Consistency avoids operations on two columns whose value types do
not match each other.

Unlike the slot-level checks, sentence-level checks are performed after the beam search. That
is, after beam search outputs the 𝐾 hypotheses with the highest probability score, we check their
correctness. The one that is correct and has the highest probability score will eventually be selected.
If all the top-𝐾 hypotheses fail to pass these checks, we default to the hypothesis with the highest
probability.

Example 4 (Fine-grained constrained decoding). Consider the NL question𝑁 and the database

𝐷 in Figure 1.
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Keyword constrained decoding for the structure stage. The target output is “SELECT [col]
FROM [tab] EXCEPT SELECT [col] FROM [tab]”. The SQL structure decoder uses beam search

to keep the most likely 𝐾 hypotheses at each time step and leverages vocabularyV𝑘𝑒𝑦 to limit each

hypothesis to contain only valid SQL commands, operators and three placeholders. As shown in the

constrained beam search process in Figure 4, “the” in time step-1 is excluded from the subsequent beam

search.

Structure guided decoding for the content stage. The output is “[col] id [tab] highschooler
[col] id [col] student_id [tab] friend”. The SQL content decoder first ensures that each

slot is followed by the correct content. If the slot is [col], the next possible token “friend” will be

rejected because it is not a column name of the database 𝐷 . Then after the beam search outputs the

top-𝐾 hypotheses, the decoder checks the semantic correctness of each hypotheses and rejects the

hypotheses containing the following four errors: (i) Column-Table inconsistency. The column name “id”

appears in the hypothesis, but its corresponding table “highschooler” does not appear. (ii) Operator-

Value inconsistency. The comparison operator < operates on a textual value. (iii) Aggregation-Column

inconsistency. The aggregation operator SUM operates on the column “name”. (iv) Column-Column

inconsistency. The hypothesis is “[col] id [tab] highschooler [col] name [col] student_id
[tab] friend”, where “name” and “student_id” do not match because “student_id” is a numeric

column and “name” is string.

6 EXPERIMENTAL SETUP
6.1 Datasets
Table 1. Statistics of Text-to-SQL benchmarking datasets: #Instance, #DB, and #Domain represent numbers

of annotated instances, relational databases, and domains respectively, and #Table/DB denotes the average

number of tables per database.

Dataset #Instance #DB #Domain #Table/DB ORDER BY GROUP BY NESTED HAVING

Spider [39] 10181 200 138 5.1 1335 1491 844 388
CoSQL [38] 15598 200 138 5.1 2290 2171 840 688

GeoQuery [40] 877 1 1 6 20 46 167 9

We conduct experiments on three well-adopted benchmarking datasets for Text-to-SQL, with
differences in question types, query complexities and database diversities. Table 1 summarizes the
statistics of the three datasets.
Spider. Spider is a well-known large-scale and complex Text-to-SQL benchmark [39], which
contains 200 databases in the Spider dataset and covers 138 domains, such as colleges, clubs, TV
shows, government, etc. Specifically, each instance of the Spider dataset contains an NL question,
a database schema and an SQL query, annotated by humans. Overall, there are 10,181 instances
with 5,693 unique SQL queries. The SQL queries are divided into four difficulty levels according to
the complexity, namely easy, medium, hard, and extra hard. Among them, Spider randomly selects
7000 annotated instances as the training set. In this paper, to evaluate few-shot Text-to-SQL, we
randomly select four subsets from the training set, with the percentages of 5%, 10%, 15% and 20%.
CoSQL. CoSQL is a dialogue-based Text-to-SQL benchmark [38], where each dialogue simulates a
real-world database query scenario. A user interactively explores a database with NL questions.
We consider the SQL-grounded dialogue state tracking task in CoSQL, which aims to translate a
user’s NL questions into SQL queries given the interaction history of the user in a dialogue. In
particular, CoSQL contains 200 databases from 138 different domains, and 15,598 annotated (NL,
SQL) instances are divided into four difficulty levels. Compared with Spider, CoSQL demonstrates
greater language diversity (refer to [38] for details). Note that, we run experiments on four sizes of
few-shot training sets: 5%, 10%, 15% and 20%.
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GeoQuery. GeoQuery is a simple Text-to-SQL benchmark with only one database about US
geography [40]. It has 877 annotated instances, where each instance contains an NL question and
an SQL query. For fair comparison, we follow the existing approach SeqZero [36] (which will be
introduced later) to split the GeoQuery dataset based on the patterns of SQL queries, and thus
obtain three training sets with sizes: 536, 150 and 50.

6.2 Evaluation Metrics
For fair comparisons, we use the standard evaluation processes in the three benchmarks.
(1) The standard evaluation process in Spider measures Text-to-SQL performance using two

metrics, namely exact-set-match accuracy (EM) and execution accuracy (EX). Exact-set-match accu-
racy measures whether a generated SQL query is literally equal to the ground-truth SQL query.
We adopt the official evaluation script provided by Spider [39] to compute EM. However, as some
approaches may generate literally different but result-equivalent SQL queries, exact-set-match may
yield a problem of false negative evaluation. Thus, we also consider execution accuracy (EX), which
compares execution results of the generated and the ground-truth SQL queries retrieved from the
database.
(2) The standard evaluation process of CoSQL measures Text-to-SQL performance using two

metrics. First, like Spider, CoSQL considers the exact-set-match accuracy over all instances, without
considering the dialogues. Although this metric is called question match accuracy (QM) in its
original paper [38], for consistency, we also call it as exact-set-match accuracy (EM). The second
metric interaction match accuracy (IM) is designed for the dialogue-based Text-to-SQL process. It
computes the exact-set-match accuracy over all dialogue interactions. As each interaction may
contain multiple (NL, SQL) pairs, we consider an interaction being correct if all the instances in the
interaction are correctly predicted.
(3) The standard evaluation process of GeoQuery only considers the exact-set-match accuracy

(EM) as evaluation metric, following the existing baseline approaches [1, 36]. The main reason is
that this benchmark is relatively simple, e.g., containing only one database, and exact-set-match
accuracy would not incur the false negative evaluation issue. Thus, execution accuracy (EX) can be
omitted without affecting the evaluation results.

6.3 Baselines
To comprehensively evaluate the SC-Prompt framework, we used 10 state-of-the-art Text-to-SQL
methods at the time of writing as baselines: DT-Fixup [35], LGESQL [3], SmBoP [20] are specifically
designed for the Spider dataset; R2SQL [8] is specific to the CoSQL dataset; T5 [18] and PICARD [24]
can be applied to both Spider and CoSQL datasets; finally, Iyer et al. [9], GECA [1], Zheng and
Lapata [42], and SeqZero [36] are for designed for and reported to perform well on GeoQuery.
DT-Fixup [35] proposes a theoretically reasonable optimization strategy. It trains a deep-transformer
model on Text-to-SQL task and the reading comprehension task, which has good generalization
ability and fast convergence speed.
LGESQL [3] applies a line-graph enhanced relational graph attention network (RGAT) as the
encoder, and employs an additional edge-centric line graph constructed from a question-database
node-centric graph.
SmBoP [20] develops a semi-autoregressive bottom-up parser. We report the results of SmBoP
combined with Grappa [37], which is a BERT-like language model pre-trained on a large number
of question-SQL pairs, and have achieved superior performance.
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T5 [18] is a sequence-to-sequence language model pre-trained with fill-in-the-blank tasks over a
large-scale general corpus. To support Text-to-SQL, similar to [24, 26], we fine-tune the model in
an end-to-end manner.
PICARD [24] also uses pre-trained language models for Text-to-SQL. To improve the performance,
it constrains the auto-regressive decoders of transformer models through incremental parsing.
PICARD provides four decoding mode settings: off, lexing, parsing without guards, and parsing
with guards. Among these modes, parsing with guards can achieve the best performance, and thus
is considered in our experiments.
R2SQL [8] is a dynamic graph framework that effectively models context-dependent questions and
their complicated interaction. A dynamic memory decay mechanism integrates enriched contextual
relation representation, so as to further improve the performance.
Iyer et al. [9] proposes neural sequence models to map a natural language question directly to an
SQL query, bypassing any intermediate representation layers.
GECA [1] proposes a data augmentation method to provide a compositional inductive bias for
sequence-to-sequence PLMs, where synthetic training examples are generated by modifying real
Text-SQL pairs.
Zheng [42] proposes an auto-regressive decoding framework with lexical style alignments and
non-disentangled information processing capabilities to systematically generalize to unseen com-
positions of seen components of SQL queries.
SeqZero [36] decomposes an SQL query into a sequence of sub-clauses (i.e., SELECT, FROM
and WHERE sub-clauses), and uses PLMs to predict each sub-clause sequentially SeqZero adopts
zero-shot models to avoid overfitting in each sub-clause.
To evaluate the performance of our hybrid prompt construction strategy, we also consider two

simple end-to-end prompt construction methods, which are described in Section 4.1:
Textual Prompts + T5-Large. We use the Text-to-SQL task description as the prompt (e.g.,
“Translate the question into a SQL query.”) and fine-tune T5-Large in an end-to-end fashion.
Learnable Vectors + T5-Large. We use the learnable vectors as the prompt and fine-tune T5-Large
in an end-to-end fashion. Note that we use the standard prompt tuning method [11], i.e. only the
learnable vectors are trained, while parameters of PLM are fixed.

6.4 Implementation Details
We use T5 [18] as the base PLM. T5 is an encoder-decoder model pre-trained on the Colossal Clean
Crawled Corpus (C4). We set the dimension of our learnable vector (see Section 4) to 1024, so as to
be consistent with the base PLM. Besides, we implement the experiments with the open-source
toolkit Huggingface Trainer3 on a server with 4 NVIDIA RTX 3090 24GB GPUs. The Adafactor
optimizer is used to tune the parameters in our proposed framework. The SQL parser used in the
fine-grained constrained decoding phase is adapted from Picard [24], which is also our baseline
model. For three Text-to-SQL datasets, in order to improve the stability of training, we first use a
learning rate of 0.1 and a batch size of 32 to train the learnable vectors, and then use a learning rate
of 0.00005 and a batch size of 32 to train the learnable vectors and the base PLM. We set the max
input length to 512 and the inputs exceeding the length limit are truncated.

7 EXPERIMENTAL RESULTS
In this section, we first report the overall performance of our SC-Prompt framework on the three
benchmarks (Section 7.1). Then, we respectively evaluate our proposed hybrid prompt construction

3https://huggingface.co/docs/transformers/main_classes/trainer
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method (Section 7.2) and the fine-grained constrained decoding strategy (Section 7.3). Finally, we
discuss the evaluation with full training data (Section 7.4), and provide a case study to qualitatively
analyze the effectiveness of SC-Prompt (Section 7.5).

7.1 Overall Results

Spider: Table 2 reports the overall results of different methods on the Spider dataset. We first
analyze the results of existing methods with PLMs. First, LGESQL + ELECTRA-Large [3] and SmBoP
+ Grappa [20] achieve good performance, due to the task-specific PLMs used in these methods.
Specifically, LGESQL + ELECTRA-Large [3] devises graph attention networks to capture structure
information of NL questions and database tables, while SmBoP + Grappa [20] utilizes Grappa [37], a
BERT-like language model pre-trained on a large number of synthetically generated (NL, SQL) pairs.
The results show that such task-specific strategies are helpful to few-shot Text-to-SQL. Second,
general pre-trained seq2seq models also demonstrate their great potential for this task. Specifically,
Picard [24] and [26] also achieve good performance in the few-shot scenario using general PLMs
(e.g., T5) with an effective optimization strategy, rather than relying on task-specific PLMs.

To compare with Picard [24], our proposed SC-Prompt framework also adopts T5 as our base
PLM. The experimental results show that SC-Prompt significantly outperforms the baselines by
a large margin. For example, compared with Picard + T5-large [24], SC-Prompt improves the
exact-set-match accuracy and the execution accuracy by 5.1 and 4.6 respectively, given 5% training
data. In addition, we can observe that, the less the training data is, the more significantly SC-Prompt
outperforms the baseline methods. The results show that our SC-Prompt framework, which divides
Text-to-SQL into two simpler sub-tasks, can better tackle the challenge of limited training data.
CoSQL: Table 3 reports the overall results on the CoSQL dataset, which is a complex dialogue-
based Text-to-SQL benchmark. We have a similar observation that SC-Prompt outperforms all
the baselines, e.g., outperforming the previous SOTA by 3.2 on exact-set-match accuracy and 3.1

on interaction match accuracy given 5% training set. Picard + T5-Large [24] also achieves good
performance as general PLMs can effectively capture interaction context of NL questions. The
results show that SC-Prompt can improve the performance of dialogue-based Text-to-SQL, which
is more challenging than individual Text-to-SQL translations.
GeoQuery: Table 4 reports the overall results on the GeoQuery dataset. We can see that SC-Prompt
achieves the best performance among all the methods. Compared with the SeqZero [36] using
manually designed SQL decomposition, SC-Prompt achieves better results under different training
data sizes, even though the performance of our base PLM (T5-Large) is slightly worse than that of
SeqZero (with Bart-Large as base PLM). It is worth noting that, unlike the results on both Spider
and CoSQL datasets, SC-Prompt does not improve significantly compared to the previous SOTA
SeqZero when there is very few training instances (e.g., 50). The main reason is that SeqZero
adopts manually designed SQL decomposition, i.e., dividing an SQL query into SELECT, FROM and
WHERE sub-clauses, which also performs well as the GeoQuery dataset only contain one simple
database. In contrast, SC-Prompt does not rely on manually designed templates, but guides the
PLM to predict the SQL structure as well as SQL content. Obviously, SC-Prompt would be more
general in real-world scenarios, where we do not know which SQL sub-clauses a user’s SQL query
has.
An in-depth analysis on difficulty levels: To better understand the model performance on
different queries, we perform an in-depth analysis based on the different difficulty levels (i.e., Easy,
Medium, Hard, and Extra Hard) on the Spider and CoSQL datasets. Recall that the difficulty levels
are defined based on the number of SQL components, predicates, etc. Please refer to Section 6.1
for more details. Figure 5 shows the experimental results. We can see that SC-Prompt performs
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Table 2. Overall results of few-shot Text-to-SQL on the Spider dataset. We randomly select 5%, 10%, 15%

and 20% of the official training set as the few-shot training sets for evaluation. Note that the notation “-”

indicates that the source code of a method does not consider the evaluation metric.

Model EM (%) EX (%)

% Official training data 5% 10% 15% 20% 5% 10% 15% 20%

Existing Methods with PLMs

DT-Fixup [35] 22.9 36.1 41.3 48.2 - - - -
LGESQL + BERT-Large [3] 26.4 35.1 39.4 48.5 - - - -

LGESQL + ELECTRA-Large [3] 38.3 47.8 53.7 58.2 - - - -
SmBoP + Grappa [20] 36.9 48.2 56.2 58.7 - - - -

T5-Large [26] 34.0 42.7 45.3 50.1 37.3 46.2 48.1 52.5
Picard + T5-Large [24] 40.1 46.4 50.2 56.4 43.7 52.7 55.4 57.9

Conventional Prompt Learning Methods

Textual Prompts + T5-Large 34.7 43.5 46.1 50.4 37.9 47.1 48.3 53.1
Learnable Vectors + T5-Large 28.4 38.7 39.8 40.3 32.3 41.3 44.1 44.5
SC-Prompt (Our Approach)

SC-Prompt + T5-Large 45.2

(+5.1)
52.8

(+4.6)
57.2

(+1.0)
59.5

(+0.8)
49.1

(+5.4)
56.9

(+4.2)
59.3

(+3.9)
62.0

(+4.1)
w/o Hybrid Prompt Learning 43.7 49.5 54.2 56.6 46.2 54.4 57.1 59.6
w/o Constrained Decoding 39.5 48.1 50.2 52.4 42.7 50.3 51.9 55.1

Table 3. Overall results of few-shot Text-to-SQL on the CoSQL dataset. We randomly select 5%, 10%, 15% and

20% of the official training set as the few-shot training sets for evaluation.

Model EM (%) IM (%)

% Official training data 5% 10% 15% 20% 5% 10% 15% 20%

Existing Methods with PLMs

R2SQL [8] 21.3 27.9 31.9 34.8 4.1 6.5 7.2 9.6
T5-Large [26] 27.4 33.1 37.5 39.7 4.1 5.8 11.0 14.0

Picard + T5-Large [24] 30.2 35.6 39.8 42.1 6.9 8.3 13.4 16.2

Conventional Prompt Learning Methods

Textual Prompts + T5-Large 28.0 33.5 37.6 39.9 4.4 6.2 10.9 13.7
Learnable Vectors + T5-Large 22.9 28.1 32.5 33.1 4.1 5.1 8.6 9.9
SC-Prompt (Our Approach)

SC-Prompt + T5-Large 33.4

(+3.2)
38.3

(+2.7)
41.2

(+1.2)
44.2

(+2.1)
10.0

(+3.1)
10.1

(+1.8)
13.7

(+0.3)
16.1
(-0.1)

w/o Hybrid Prompt Learning 32.2 37.1 40.3 42.9 9.2 9.7 13.0 15.2
w/o Constrained Decoding 30.7 35.8 38.7 42.0 7.6 8.6 11.2 13.5

better than the baseline methods at all difficulty levels. In particular, we can see that on the Spider
dataset, LGESQL + ELECTRA-large [3] slightly outperforms the general PLM based method Picard
+ T5-Large on the Easy and Medium level. This is because the task-specific schema-linking layers
in LGESQL + ELECTRA-large can understand the training data more effectively. However, the
performance of SC-Prompt also exceeds these task-specific methods, showing that the divide-
and-conquer approach of SC-Prompt can address the problem of limited training data in few-shot
Text-to-SQL.
Conclusion: (1) With less training data, SC-Prompt is more effective. The main reason is that the
PLM is more prone to the poor generalization problem when there is very limited training data
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Table 4. Overall results of few-shot Text-to-SQL methods on the GeoQuery dataset. Following SeqZero [36],

we use 50, 150 and 536 training instances as the few-shot training sets for evaluation. The notation “-” indicates

the corresponding setting is not evaluated in the original paper.

Model EM (%)

#Training data 50 150 536

Existing Methods with PLMs

Iyer et al. [9] - - 40.0
GECA [1] - - 49.0

Zheng and Lapata [42] - - 69.6
BART-Large [12] 41.2 73.1 72.5

SeqZero + Bart-Large [36] 48.9 74.2 74.7
T5-Large 39.5 69.7 74.7

Conventional Prompt Learning Methods

Textual Prompts + T5-Large 40.6 73.6 77.5
Learnable Vectors + T5-Large 14.8 44.5 49.5
Our SC-Prompt Framework

SC-Prompt + T5-Large 49.0 (+0.1) 76.9 (+2.7) 81.3 (+3.5)
w/o Hybrid Prompt Learning 46.2 73.6 79.7
w/o Constrained Decoding 47.8 74.7 81.3
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(a) Comparison on the Spider dataset
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(b) Comparison on the CoSQL dataset

Fig. 5. Approach comparisons on the Spider and CoSQL datasets with respect to difficulty levels. As our

evaluation metrics have similar comparative results, we only show the results on EM here.

available (i.e., 5%). (2) SC-Prompt outperforms the baseline methods at all difficulty levels in the
few-shot setting.

7.2 Evaluation on Prompt Construction
This section focuses on evaluating two aspects of prompt construction, (1) comparing with con-
ventional prompt learning methods, and (2) evaluating different initialization and combination
methods for prompt construction.
Comparison with prompt construction methods. To evaluate the effectiveness of our hybrid
prompt construction, we consider the two conventional prompt construction methods, Textual
Prompts and Learnable Vector, as described in Section 4.1.
The experimental results on our three datasets are reported in Tables 2, 3 and 4, respectively.

Comparing “T5-Large” with “Textual Prompts + T5-Large”, we observe that the textual prompts
improves the performance of the base PLM through an appropriate task description. In contrast,
comparing “T5-Large” with “Learnable Vectors + T5-Large”, we observe that due to the reduction
of the trainable parameters (i.e., only the learnable vectors are trainable), the standard training
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Table 5. Comparison of different initialization methods for learnable vectors.

Method

Spider CoSQL GeoQuery

EM (%) EX (%) EM (%) IM (%) EM (%)

Random Initialization 51.3 55.8 38.7 11.0 79.1
Vocabulary Initialization 52.6 56.4 38.4 10.2 81.3
Keyword Initialization 52.8 56.9 38.3 10.1 81.3

Table 6. Evaluation on prompt combination methods.

Method

Spider CoSQL

EM (%) EX (%) EM (%) IM (%)

Only Before the NL Question 50.9 54.2 38.1 10.5
Only Before the Database 49.8 53.4 37.7 10.0

Only At the Tail 51.1 55.2 37.9 10.4
Our Prompt Combination Method 52.8 56.9 38.5 10.8

method of the learnable vectors [11] cannot achieve comparable performance as the standard
full-PLM fine-tuning method. However, since learnable vectors can learn specific semantic features
for different Text-to-SQL datasets, which can compensate textual prompts, SC-Prompt proposes a
hybrid prompt construction method to combine the best of these two methods. The ablation results
show that, even only with our hybrid prompt, SC-Prompt can effectively improve the Text-to-SQL
performance, and outperforms conventional prompt construction methods.
Evaluation on initialization methods for learnable vectors. We first compare the three
initialization methods for learnable vectors (see Section 4). In particular, we conduct experiments
on the Spider dataset and the CoSQL dataset using 10% of the official training data. As shown in
Table 5, initialization using keywords related to our Text-to-SQL task ( e.g., “database”, “table” and
“question”) is slightly better than vocabulary initialization that sampling from the PLM vocabulary.
The main reason is that the vocabulary initialization strategy may introduce a lot of noises, which
would affect the model’s understanding on the original input. In contrast, the keyword initialization
uses task related words to initialize the vectors, which can reduce the possibility of introducing
noises and achieve better performance.
Evaluation on prompt combination methods. For different prompt combination methods, we
perform an ablation study to compare the methods discussed in Section 4.2: only before the NL
question 𝑒𝑁 , only before the database 𝑒𝐷 , and only at the tail. We conduct experiments on both
the Spider dataset and the CoSQL dataset using 10% of the official training data. The experimental
results in Table 6 show that our method performs better than other methods. The main reason is
that putting the learnable vectors in different positions during the prompt construction process
can obtain prompts for different purposes (e.g., learning NL question specific features.), and they
can better guide the PLM to output the desired results.
Conclusion: (1) The combination of the textual prompts and the learnable vectors (i.e., hybrid
prompt learning) achieves the best results. (2) The three initialization methods perform similarly,
with the keyword initialization method slightly better. (3) Constructing the learnable vectors by
putting them in different positions works better than putting them in a single position.

7.3 Evaluation on Constrained Decoding
Observed from Tables 2, 3 and 4, the ablation results validate the effectiveness of constrained
decoding. For example, we can see that, in Table 2, SC-Prompt outperforms SC-Prompt w/o
Constrained Decoding, e.g., 45.2 vs 39.5 on EM given 5% training data. Furthermore, this section
evaluates the fine-grained constrained decoding method on the Spider dataset (using 10% training
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Fig. 6. The performance of different components under different beam sizes in our decoding method. This

experiment is conducted on the Spider dataset, using 10% of the training data. EX Acc. (%) and EM Acc. (%)

have similar comparative results, so we only show EM Acc. (%) here.

set). Specifically, we evaluate the performance of these two task-specific decoding methods under
different beam sizes. Recall that the beam size refers to the number of hypotheses retained by the
model during decoding. Thus, the larger the beam size is, the more likely the model can avoid the
risk of missing hidden high probability sequences. Note that, when the beam size is 1, the method
degenerates into a greedy search strategy. The experimental results are reported in Figure 6. We
can see that the performance of the four decoding methods increase, with the increase of beam size,
especially for the three decoding methods with constraints. We can also find SC-Prompt, which
is equipped with both keyword-constrained and structured-guided decoding, achieves the best
performance, which validates the effectiveness of our fine-grained constrained decoding strategies.
Conclusion: (1) The effect of the decoding method will increase with the increase of the beam
size. (2) Our fine-grained constrained decoding method, equipped with both keyword-constrained
and structured-guided decoding, achieves the best performance.

7.4 Evaluation with Full Training Data

Table 7. Method comparison given full training data.

Base PLM Method

Spider CoSQL

EM (%) EX (%) EM (%) IM (%)

T5-Large Picard 71.2 75.8 53.9 22.5
SC-Prompt 73.3 76.4 54.4 23.1

T5-3B Picard 75.5 79.3 56.9 24.2
SC-Prompt 76.9 81.1 57.6 26.3

Although the goal of SC-Prompt is mainly to solve the poor generalization problem in the few-
shot scenario, we also conduct experiments on the full training data setting to verify the effectiveness
of our proposed framework under different training data sizes. We conduct experiments on the
T5-Large model and the T5-3B model respectively, and compare them with the best baseline model
Picard [24]. Table 7 shows the experimental results on the Spider dataset and the CoSQL dataset.
Note that the GeoQuery dataset released by [5] only contains 536 training samples, and the results
in Section 7.1 have already considered the full training data. We can see that SC-Prompt performs
better than the baseline method on the two base PLMs. This shows that even if a large amount of
training data is used, the poor generalization problem still exists due to the large complexity of the
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Text-to-SQL task; and our divide-and-conquer framework of SC-Prompt is still effective under the
full training data setting.
Conclusion: When more training data is available (e.g., 100%), SC-Prompt still outperforms
baselines, but the gap becomes smaller, as expected.

7.5 Case Study
This section presents five illustrative examples selected from the Spider, CoSQL, and GeoQuery
datasets to qualitatively analyze the effectiveness of our proposed SC-Prompt framework. Table 8
shows the SQL queries generated using the conventional “Pre-train, Fine-tune” paradigm (i.e.,
T5-Large) and our SC-Prompt framework. From these examples, we have the following findings.
• SC-Prompt can alleviate the issue of overfitting limited training data. For example, T5-Large
incorrectly predicts the column name in Question-1 as “student_ id”, and incorrectly predicts
the table name in Question-5 as “city”, because these two column/table names occur frequently
in the training set. However, SC-Prompt can avoid such mistakes, as it first predicts the
SQL structure and then infers such column/table names by predicting SQL content, which is
easier for the PLM than predicting a whole SQL query.
• SC-Prompt can guide the model to better predict the SQL operators, such as AVG and SUM in
Question-4, thanks to the structure and content prompt learning strategy.
• SC-Prompt can better predict the SQL structure, as shown in Question-3. This is attributed
to the structure prompt and the fine-grained constraints that can effectively guide the auto-
regressive decoding process.

To summarize, these examples illustrate why SC-Prompt is better than traditional end-to-end
Text-to-SQL translation, in the few-shot learning setting. As mentioned in the Introduction, the
structure stage focuses only on predicting an SQL structure from an NL question, which is much
easier than predicting a complete SQL query. Moreover, for the content stage, the task is to fill the
content placeholders, a fill-in-the-blank task, which is well aligned with the self-supervised mask
language modeling for pre-training many PLMs (e.g., BERT [4] and T5 [18]).

8 RELATEDWORK
8.1 Text-to-SQL Semantic Parsing
The task of supporting Text-to-SQL with a natural language (NL) interface that allows a non-expert
user to access a relational database easily has been studied by the community over the last few
decades. In recent years, deep learning models using large-scale training data have substantially
improved the accuracy of text-to-SQL. Several methods propose complex encoder architecture
with graph-based layers to model the relationship between the natural language question and the
database schema. For example, RATSQL [30] proposes a relation-aware self-attention mechanism to
encode the hybrid question-schema graph. LGESQL [3] takes the topological structure of edges into
account and models the 1-hop edge features in text-to-SQL with a line graph. R2SQL [8] is proposed
to solve the conversational text-to-SQL task (e.g., CoSQL [38]), which encodes the relationship
in context-dependent questions via a dynamic graph framework. More recently, large PLMs (e.g.,
GPT-3 [2], T5 [18]) have shown to be effective in improving text-to-SQL and achieving state-of-art
performance that take advantage of the extensive knowledge in large-scale corpora. Different from
the previous methods with task-specific design, PLM-based methods [24, 26] can be applied to
different text-to-SQL datasets without specific modifications to the base PLMs. More importantly,
many studies [2, 6, 16] have shown the good performance of large PLMs in few-shot scenarios, which
is very important for Text-to-SQL that requires high-quality training data. Therefore, many works
have used large PLMs for few-shot Text-to-SQL. To bridge the gap between the natural language and
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Table 8. Case study of the generated SQL queries. Questions 1-2 are sampled from the Spider dataset (10%),

questions 3-4 are sampled from the CoSQL dataset (10%), and question 5 is sampled from the GeoQuery

dataset (536). The errors in the generated SQLs from T5-Large are highlighted in red.

Question-1: What are the ids of high school students who do not have friends?

★Ground Truth: SELECT id FROM highschooler EXCEPT SELECT student_id FROM friend
•T5-Large: SELECT student_id FROM highschooler EXCEPT SELECT student_id FROM
friend (×)
•SC-Prompt: SELECT id FROM highschooler WHERE id NOT IN (SELECT student_id FROM
friend) (✓)
Question-2:What are the different years in which there were cars produced that weighed less

than 4000 and also cars that weighted more than 3000?

★Ground Truth: SELECT DISTINCT year FROM cars_data WHERE weight BETWEEN 3000
AND 4000
•T5-Large: SELECT DISTINCT year FROM cars_data WHERE weight > 3000 (×)
•SC-Prompt: SELECT DISTINCT year FROM cars_data WHERE weight < 4000 INTERSECT
SELECT year FROM cars_data WHERE weight > 3000 (✓)
Question-3: Can you tell me the age of each teacher?

★Ground Truth: SELECT name, age FROM teacher
•T5-Large: SELECT t2.name, t2.age FROM course AS t1 JOIN teacher AS t2 ON t1.teacher_id
= t2.teacher_id GROUP BY t2.name (×)
•SC-Prompt: SELECT name, age FROM teacher (✓)
Question-4: What is the average GNP and total population in all nations whose government is

US territory?

★Ground Truth: SELECT AVG(gnp), SUM(population) FROM country WHERE government-
form = “US Territory”
•T5-Large: SELECT AVG(gnp), AVG(population) FROM country WHERE governmentform =
“US Territory” (×)
•SC-Prompt: SELECT AVG(gnp), SUM(population) FROM country WHERE governmentform
= “US Territory” (✓)
Question-5: What is the population of new mexico?

★Ground Truth: SELECT statealias0.population FROM state AS statealias0 WHERE
statealias0.state_name = “new mexico”
•T5-Large: SELECT cityalias0.population FROM city AS cityalias0 WHERE
cityalias0.city_name = “new mexico” (×)
•SC-Prompt: SELECT statealias0.population FROM state AS statealias0 WHERE
statealias0.state_name = “new mexico” (✓)

SQL queries, [27] and [25] first generate canonical natural language utterances with large PLMs and
then transform them to the target SQL queries. Next, considering that it is difficult for the PLM to
directly output long canonical utterance, SeqZero [36] decomposes the original canonical utterance
into multiple sub-clauses (e.g., SELECT-FROM-WHERE) through several manually designed natural
language templates and guides the model to predict each sub-clause sequentially.
Different from the above methods, SC-Prompt does not rely on any manually predefined tem-

plates or grammar rules. To tackle the challenge of limited training data, SC-Prompt decomposes
the complicated Text-to-SQL task into two simpler sub-tasks via structure and content prompt
learning. In addition, to generate semantically correct and executable SQL queries, SC-Prompt
introduces effective prompt construction and decoding strategies to enhance the performance of
the base PLM on the two sub-tasks.
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8.2 Few-Shot Learning with Prompt
PLMs combined with a “pre-train, fine-tune” paradigm have demonstrated excellent performance on
a wide range of tasks in recent years. However, most existing PLMs are pre-trained with language
modeling tasks (e.g., masked language modeling [4]), but the objectives of fine-tuning tasks are
quite different. The gap between pre-training and fine-tuning tends to make PLMs less effective,
especially under few/zero shot scenarios [14]. To address this problem, a novel “pre-train, prompt,

and predict” paradigm has been proposed [2, 19, 23] to effectively stimulate the knowledge from
PLMs. Instead of designing specific objectives to adapt PLMs to downstream tasks, in this paradigm,
downstream tasks are reformulated to a language modeling task by inserting language prompts,
and the outputs can be easily converted to the downstream task’s desired outputs. There are two
main methods for prompt designing. One is to use manual design of hard prompts consisting
of discrete words (e.g., task description) for prompt learning [2, 22, 27]. The other is not limited
to human-interpretable natural language, but uses soft prompt consisting of continuous vectors
that can be optimized by the PLM [11, 13]. In this work, we design a hybrid prompt construction
method to support (complicated) Text-to-SQL tasks. We first serialize the question and database
schema with continuous prompts, and then combine with different textual prompts to obtain the
task-specific input (structure or content).

9 CONCLUSION AND FUTUREWORK
In this paper, we have proposed SC-Prompt, a novel divide-and-conquer strategy for effectively
supporting Text-to-SQL translation in the few-shot scenario. We divided the process of Text-to-
SQL translation into two stages: the structure stage and the content stage. The Structure stage
generates an SQL structure, while the content stage fills the placeholders in the SQL structure by
SQL identifiers and constant values. We then propose a hybrid prompt to improve the encoding
phase, and use fine-grained constraints to make the decoding phase more effective. Our extensive
experiments conducted on multiple benchmark datasets for Text-to-SQL clearly show that SC-
Prompt outperforms the SOTA method when there is no enough train data (i.e., few-shot learning).
Although we are currently working on few-shot Text-to-SQL, our SC-Prompt framework can

be also applied to other meaningful executable languages, such as logical forms [31]. Therefore,
applying SC-Prompt to multiple semantic parsing tasks is an interesting future direction worth
exploring. In addition, we can also explore how to use transformer-based models with a limited
input length (e.g., 512) to encode extra large databases.
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