
MIT Open Access Articles

RoboShape: Using Topology Patterns to Scalably
and Flexibly Deploy Accelerators Across Robots

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Neuman, Sabrina, Ghosal, Radhika, Bourgeat, Thomas, Plancher, Brian and Reddi, Vijay
Janapa. 2023. "RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators
Across Robots."

As Published: https://doi.org/10.1145/3579371.3589104

Publisher: ACM|Proceedings of the 50th Annual International Symposium on Computer
Architecture

Persistent URL: https://hdl.handle.net/1721.1/151105

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/151105

RoboShape: Using Topology Patterns to Scalably and Flexibly
Deploy Accelerators Across Robots

Sabrina M. Neuman∗
sneuman@seas.harvard.edu

Harvard University
Massachusetts, USA

Radhika Ghosal∗
rghosal@g.harvard.edu
Harvard University
Massachusetts, USA

Thomas Bourgeat
bthom@csail.mit.edu

Massachusetts Institute of Technology
Massachusetts, USA

Brian Plancher
bplancher@barnard.edu

Barnard College, Columbia University
New York, USA

Vijay Janapa Reddi
vj@eecs.harvard.edu
Harvard University
Massachusetts, USA

ABSTRACT
A key challenge for hardware acceleration of robotics applications is
the enormous diversity of possible deployment scenarios. To create
efficient accelerators while minimizing non-recurring engineering
costs, it is essential to identify high-level computational patterns
that are prescribed by the physical characteristics of the deployed
robot system and directly embed these domain-specific insights
into the accelerator design process. To address this challenge, we
present RoboShape, an accelerator framework that leverages two
topology-based computational patterns that scale with robot size:
(1) topology traversals, and (2) large topology-based matrices. Using
these patterns and building on prior work, we expose opportunities
to directly use robot topology to inform architectural mechanisms
including task scheduling and allocation, data placement, block
matrix operations, and sparse I/O data. Designing architectures
according to topology-based patterns enables flexible, scalable, opti-
mized accelerator deployment across the nonlinear design space of
robot shape and computing resources. With this insight, we estab-
lish a systematic framework to generate accelerators, and use it to
implement three accelerators for three different robots, achieving
speedups over state-of-the-art CPU and GPU solutions. For the
topologically-diverse iiwa manipulator, HyQ quadruped, and Bax-
ter torso robots, RoboShape accelerators on an FPGA provide a 4.0×
to 4.4× speedup in compute latency over CPU and a 8.0× to 15.1×
speedup over GPU for the dynamics gradients, a key bottleneck
preventing online execution of nonlinear optimal motion control
for legged robots. Taking a broader view, for topology-based appli-
cations, RoboShape enables analysis of performance and resource
utilization tradeoffs that will be critical to managing resources
across accelerators in future full robotics domain-specific SoCs.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589104

Figure 1: RoboShape leverages topology-based computational
patterns that scale with robot shape and size to flexibly de-
ploy accelerators across diverse robots (e.g., [4, 5, 14, 25, 40,
42, 49]) and computing resource constraints.

CCS CONCEPTS
•Hardware→Hardware accelerators; • Computer systems
organization → Robotics.

KEYWORDS
robotics, hardware accelerators, dynamics, motion planning
ACM Reference Format:
Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher,
and Vijay Janapa Reddi. 2023. RoboShape: Using Topology Patterns to
Scalably and Flexibly Deploy Accelerators Across Robots. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (ISCA
’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3579371.3589104

1 INTRODUCTION
In domains that interact heavily with the physical world, such as
robotics, the internet of things (IoT), augmented and virtual reality
systems, wearable devices, and healthcare monitoring technologies,
a key challenge to domain-specific hardware acceleration is the
enormous diversity of possible deployment scenarios. Hardware
acceleration is a promising solution to provide high-performance
and energy-efficient computation, but design requirements vary
with the physical characteristics of the target electrical, biological,
or mechanical system (e.g., the physical configuration and structure
of a robot’s limbs), as well as the performance demands of the task-
level application (e.g., fast control for dynamic motion through

https://doi.org/10.1145/3579371.3589104
https://doi.org/10.1145/3579371.3589104

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi

cluttered environments), and the constraints of the size, weight,
area, and power allocated to the onboard computing platform.

To navigate this large, diverse design space, it is necessary to
identify common computational patterns that are impacted by the
physical characteristics of the deployment scenario, and encode this
domain-specific information into systematic hardware design flows.
Such domain-informed design exposes a natural set of domain-
specific hyperparameters in hardware for emerging applications,
making it straightforward to implement accelerators for new de-
ployment scenarios by tuning those values (much like the optimiza-
tion of hyperparameters in neural network accelerators, e.g., weight
compression, MAC array size [38]). This enables agile, principled
design of accelerators across deployment scenarios without the
intervention of domain experts or hardware engineers.

Robotics is an emerging area of interest for hardware accelerator
design [1, 3, 16, 17, 22, 26, 27, 31, 32, 48, 51], and some promising
work has begun mapping out design flows [1, 16, 22, 26, 32, 48].
In particular, robomorphic computing [32] introduced the use of
physical robot characteristics as parameters for accelerator design (e.g.,
sparse functional units based on joints, and naive parallelization
based on robot limbs and links). However, this prior work had severe
scalability limitations: there was no branching support, and it did
not address scenarios where robot size (i.e., total rigid links) exceeds
the total processing elements that fit on a computing platform
(Fig. 1). To fully realize flexible deployment of accelerators, it is
necessary to manage tradeoffs across the diverse nonlinear design
space of robot shapes and sizes, and computing resource constraints.

To address this challenge, we present RoboShape: an accelerator
design framework that expands the scope of prior work, leveraging
topology-based computational patterns that scale with robot shape
and size, which are common across a broad class of critical com-
putations that underpin robotics applications [7, 11, 12, 29, 35, 52]
(Table 1). We expose opportunities to systematically use these scal-
able computational patterns to design architectural mechanisms
with topology-based domain-specific parameters, in order to flex-
ibly implement optimized accelerators scalably across different
robots and computational resource constraints.

In this work, we identify two key computational patterns that
scale with robot size and shape: 1○ topology traversal patterns and
2○ large topology-based matrices. Topology traversals propagate
computations down the tree of robot links and joints, e.g., to cal-
culate robot physics, and can scale with the total number of robot
links, 𝑁 , or as 𝑁 2. Sparse, large topology-based matrices, such as
the robot mass matrix [12], can scale as 𝑁×𝑁 , and display sparsity
patterns determined by independent robot limbs. These two pat-
terns can be used to systematically implement architectural mecha-
nisms parameterized by robot topology, including: task mapping,
scheduling, and allocation; task data placement; sparse block matrix
operations; and sparse I/O data patterns. Because topology-based
patterns scale with robot size and shape, using them to directly tune
an architecture that is natively parameterized according to these
patterns enables the systematic design of accelerators that can be
optimized and flexibly deployed across different combinations of
robots and computing resource constraints.

To demonstrate the use of these key topology-based computa-
tional patterns, our motivating example in this work is acceleration
of the first-order gradients of dynamics [7], a key computation that

traverses robot topology. In motion planning and control for rigid
body robots, prior work demonstrates that dynamics gradients can
take up to 30% to 90% of total runtime for some state-of-the-art
approaches (e.g., nonlinear optimal control [7, 32, 33, 39, 43]). Dy-
namics gradients are a bottleneck preventing nonlinear optimal
motion control with accurate whole-body modeling from being per-
formed online for complex robots, e.g., quadrupeds [4, 49] (Fig. 1).

We create an automated design framework and use it to imple-
ment accelerators for the dynamics gradients for multiple robots,
e.g., the iiwa manipulator [25], HyQ quadruped [49], and Baxter
torso [14], on a Xilinx XCVU9P FPGA. While this FPGA can fit
enough processing elements to completely parallelize the 7-link
iiwa robot, RoboShape’s flexible allocation is necessary to enable de-
ployment of accelerators on this platform for the larger 12-link HyQ
and 15-link Baxter (Fig. 1). For iiwa, HyQ, and Baxter, RoboShape-
generated dynamics gradient accelerators on an FPGA give a 4× to
4.4× speedup in compute latency over state-of-the-art CPU solu-
tions, and a 8× to 15.1× speedup over GPU solutions.

Using our framework, we also perform a novel study of the
influence of robot topology on the parallelism, performance, and
resource utilization of our dynamics gradient accelerators. Future
work towards a full robotics domain-specific system on chip (SoC)
will require navigation of this design space along with flexible
accelerator co-generation. To assist such efforts, we have packaged
RoboShape into an automated hardware generation flow, to be
released as an open-source project [2].

Key contributions of this work are that:
• We identify and leverage two computational patterns that
scale with robot size and shape, (1) topology traversals and
(2) large topology-based matrices, to expose opportunities
to flexibly implement architectural mechanisms (e.g., task
scheduling, sparse block matrix multiplication) for topology-
based robotics computations, unlocking a previously unex-
plored tradeoff space necessary for robotics accelerators;

• We present a novel robotics design framework for architects
to automatically generate accelerators using scalable mecha-
nisms that adapt to robot topology, and package the frame-
work as an automated open-source tool; and

• We evaluate automatically generated accelerators for three
topologically-diverse robots (manipulator, quadruped, torso)
on aXilinx XCVU9P FPGA, demonstrating compute speedups
of 4× to 4.4× over state-of-the-art CPU solutions and 8× to
15.1× over GPU solutions for dynamics gradients: a key bot-
tleneck preventing online nonlinear optimal motion control
for legged robots, which remain an elusive real-world deliv-
erable due to their computational bottlenecks.

2 BACKGROUND
Robotics Computational Pipeline. Core robot functionality can
be grouped into a three-stage pipeline: perception, mapping and
localization, andmotion planning and control. In perception, a robot
uses sensors to capture data about its surroundings, and performs
processing such as semantic segmentation, computer vision, and
sensor fusion to parse that data. In mapping and localization, a robot
constructs or updates a map of its environment, and determines its
location with respect to surrounding objects and agents. Finally, in

RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 2: Robot topology-based kernels are key computa-
tional building blocks formany common robotics algorithms.
The motivating example in this work is forward dynamics
gradients (∇FD) using RNEA and ∇RNEA [7], which can be
used for motion planning and control (highlighted above).

Figure 3: Topology-based patterns appear in some important
families of robotics algorithms, e.g., the dynamics gradients
(Alg. 1, using Alg. 2 and Alg. 3), and are bottlenecks in state-
of-the-art optimal robot motion control approaches.

motion planning and control, a robot determines and executes a
collision-free path of motion through its environment.

Rigid Body Dynamics & Gradients. Common topology-based
building block computations, such as rigid body dynamics and gra-
dients, underlie many algorithmic approaches to the robot pipeline
stages (Table 1). Rigid body dynamics algorithms are functions
of a robot’s joint positions, velocities, accelerations, and torques
(𝑞, ¤𝑞, ¥𝑞, 𝜏). They propagate velocities, accelerations, and forces (𝑣, 𝑎, 𝑓)
along the topology of rigid body robots according to link inertias
(𝐼) and transformations along links and across joints (𝑋 (𝑞), 𝑆). Ex-
amples of such algorithms are shown in Alg. 1, Alg. 2, and Alg. 3,
and are described in detail in prior work [12, 44]. A broad group

Table 1: Common Topology-Based Patterns in Robotics:
1○ Forward & Backward Traversals, 2○ Topology Matrices

Fw
d.
Ki
ne
m
at
ic
s[
12
]

In
v .
Ki
ne
m
at
ic
s[
12
]

CR
BA

[5
2]

D
ire

ct
M
−1

[7
]

RN
EA

[1
2,
29
]

A
BA

[1
1]

∇R
N
EA

[7
]

∇D
yn

am
ic
s[
7]

∇2
RN

EA
[3
5]

∇2
D
yn

am
ic
s[
35
]

Fwd. Traversal X X X X X X X X X
Bwd. Traversal X X X X X X X X X
Topology Matrix X X

of real robots can be described as trees of rigid links connected
by joints, e.g., manipulators, quadrupeds, torsos (Fig. 1), as well as
some approximations of flexible “soft” robots [19, 47]. In Sec. 5, we
evaluate accelerators for robots with different topologies.

Bottlenecks. The kinematics, dynamics, and dynamics gradi-
ents of these rigid body robots are necessary calculations for many
motion planning approaches. In particular, Sec. 3, Sec. 4, and Sec. 5
use forward dynamics gradients [7] (Alg. 1) as a motivating exam-
ple example to demonstrate accelerator implementation using our
framework because this is a critical bottleneck calculation that can
take 30% to 90% of the total runtime of state-of-the-art optimal con-
trol approaches to motion planning and control [7, 32, 33, 39, 43].

Along with dynamics, several key kernels are bottlenecks in
other motion planning approaches, e.g., collision detection for
sampling-based planning [31] (Fig. 2). To holistically accelerate
robotics workloads, it is critical to establish design frameworks that
can be methodically extended and can provide common interfaces
across algorithms and approaches, enabling designers to combine
flexible hardware IP in future end-to-end robotics SoCs.

Prior Work: Constant Sizes & Naive Parallelism. The initial
paper on robomorphic computing [32] (i.e., hardware designed
based on robot physical parameters) introduced several mechanisms
to use robot structure to guide accelerator design for physically-
based computations like rigid body dynamics gradients, however
these mechanisms focused on sparsity patterns in small constant-
sized matrices (6 × 6 elements), and on naive parallelization across
processing elements that was directly based on the total number of
links, 𝑁 , in the robot. This approach has a constant growth with
the number of links in the robot, and does not scale with robot size.

3 ROBOSHAPE: ARCHITECTURAL INSIGHTS
RoboShape’s architectural insights are based on two computational
patterns that scale with robot topology: 1○ topology traversal and
2○ topology-based matrix operations (Fig. 4). These patterns appear
across robotics kernels (Table 1), e.g., those related to physics that
we explore in this work (Fig. 3). We use these patterns to identify
mechanisms to enable the scalable, flexible accelerator deployment.

Scalable Computational Patterns from Robot Topology.
This work addresses computational patterns from robot topology
that scale with robot size in order to parallelize in ways that intel-
ligently make use of robot topology information (i.e., the branch-
ing structure of the robot’s limbs and links); and leverage sparsity
patterns in data structures that grow with the size of the robot
(𝑁×𝑁 links). Using these scalable topology-based computational
patterns enables us to flexibly design optimized accelerators for
different robots, delivering improved performance over previous

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi

Figure 4: We identify two common computational patterns based on (a) robot topology: 1○ topology traversal and 2○ topology-
based matrix operations. For, e.g., dynamics gradients (Alg. 1) on Baxter [14], both (b) forward and backward topology traversals
and (c) topology-based matrices reveal opportunities to leverage parallelism and sparsity exposed by the independence of robot
limbs. Such patterns scale with robot size and shape, enabling deployment flexibility.

work and other baselines (Sec. 5). This flexibility also unlocks the
ability to customize accelerator resource utilization in order to fit
accelerators on a given platform, or to co-optimize accelerator sizes,
e.g., for the design of full robotics systems-on-chip (SoCs).

Impact & Scope of Robot Topology Patterns. There are broad
classes of algorithms that rely on the propagation of physics values
through a robot’s body. While largely focused in motion planning
and control, they also appear in other robotics workloads, e.g., lo-
calization with an extended Kalman filter (EKF) (Fig. 2). RoboShape
addresses the hardware implications of topology-based compu-
tational patterns shared across these families of algorithms (e.g.,
kinematics, rigid body dynamics), and it is complementary to accel-
eration frameworks for other robotics algorithms to enable flexible
combination of computational elements into future robotics SoCs.

Motivating Example. We describe these common computa-
tional patterns in more detail below. We use forward dynamics
gradients (Alg. 1) [7] as our motivating example as it encompasses
other topology-based functions (RNEA and ∇RNEA, Alg. 2 and
Alg. 3) as subroutines. Our example robot is the Baxter torso [14],
which has 15 links: two 7-link arms, and a 1-link head (Fig. 4a).

3.1 Pattern 1○: Topology Traversals
There are many algorithms that propagate values up and down the
robot topology tree, making forward and backward passes along the
links of the robot. For example, in the dynamics gradient, a forward
and backward traversal of the topology tree is made for the inverse
dynamics (Alg. 2). The outputs of each per-link step of this traversal
are then used to seed forward and backward passes calculating the
partial derivatives of the inverse dynamics with respect to each link
(∇RNEA). For the 1-link head and two 7-link arms in the Baxter
robot, this results in per-link task patterns like those pictured in
Fig. 4b. These task patterns can be used to easily determine efficient
strategies for task data placement and task mapping, scheduling,
and allocation (see Sec. 3.3), and also to tune the parameters of
these strategies to deploy the same computational task graph under
different computing resource constraint scenarios.

3.2 Pattern 2○: Topology-Based 𝑁×𝑁 Matrices
There are also key robotics algorithms that require linear algebra
operations performed on large, often sparse topology-based matri-
ces that scale with the size of the robot (Table 1). For example, the

final step of the dynamics gradient algorithm requires two multi-
plications of dense partial derivative matrices with the inverse of
the mass matrix [12], a characteristic matrix with values related to
the robot’s joint space inertial properties. Sparsity patterns in the
mass matrix are determined by the a robot’s topology. For example,
Fig. 4c shows Baxter’s mass matrix. The head and two arms are in-
dependent branches of the robot, so they populate only the diagonal
of the matrix, along the entries that correspond to the links within
each of these three separate limbs. Robots with entirely indepen-
dent limbs follow this block diagonal pattern, whereas robots with
branches that share a large number of parent links have nonzero
off-diagonal entries. As the inverse of a block diagonal matrix (e.g.,
used in dynamics gradients) is block diagonal, this enables block
matrix operations on deterministic sparsity patterns (Sec. 3.3).

3.3 Using Topology-Based Architectural
Mechanisms for Accelerator Design

Using computational patterns that scale with robot size (Sec. 3.1
and Sec. 3.2), we identify several mechanisms to leverage topology
information for scalable accelerator design.

TaskMapping, Scheduling, & Allocation.We use robot topol-
ogy traversal patterns (Sec. 3.1) to map out task graphs for robotics
applications, and then perform scheduling and allocation of process-
ing elements for robotics processors, e.g., robomorphic sparse 6 × 6
linear algebra processing elements based on robot links and joints.
To achieve scalable solutions, in this work we evaluate topology-
based strategies and show that they leverage the branching struc-
ture of the robot to expose parallelism (Sec. 4) and deliver improved
performance over baselines, while conserving resources (Sec. 5).

Furthermore, using the parallelism of the robot topology and
tying that to performance and resource utilization tradeoffs exposes
architectural knobs (Sec. 5) that can be tuned to fit an accelerator
design onto platforms of different sizes, or to re-scale a design to
fit within area limits alongside other accelerators in a larger SoC.
These knobs also enable future work in dynamic tuning, e.g., doing
power gating of processing elements to manage Dark Silicon power
wall constraints; or to dynamically co-schedule different types of
kernels simultaneously on processing elements.

Task Data Placement. Studying topology traversal computa-
tional patterns also exposes opportunities for topology-informed
data placement, to minimize the costs of data movement. Depending

RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 5: Rigid body robot topologies are trees of (a) con-
nected links and branches. Topology information can be used
at design-time to determine data placement, e.g., (b) near-
compute storage for parent links and branch links.

Figure 6: Robots with independent limbs have a (a) block
diagonal sparse characteristic matrices that scale with robot
size (e.g., themassmatrix of a torso robot). Using this sparsity
pattern we can (b) tune block size to skip zero entries when
(c) scheduling and parallelizing linear algebra in hardware.

on the memory hierarchy and size available on the computational
substrate, it can make sense to choose a dataflow-style architecture
(like those popularized by neural network accelerators) and then
use the topology pattern to inform the design of near-processor
element storage for intermediate state, e.g., state saved wherever
branching occurs, so that computation can continue down the tree
and then resume back at the source of the branch. Fig. 5b illustrates
a dataflow-style processing element augmented with branch state
storage and parent link storage, which we implement in our accel-
erator framework in Sec. 4. This approach is tractable for many
common types of robots that have 1s to 10s of links (Fig. 1), but
future work could also extend this branch checkpoint locality ap-
proach to cache data placement to increase storage density for
robots with very large (100s to 1000s) numbers of links, e.g., hyper-
redundant and continuum robots, and rigid body approximations
of flexible “soft” robots [19, 47].

Sparse Block Matrix Operations. The topology-based matrix
patterns from Sec. 3.2 expose limb-based sparsity that can lead to
large patches of zeros in the (inverse) mass matrix of some robots.
This presents an opportunity to perform block matrix operations,
scaling the block size in order to skip large sections of zeros, reduc-
ing the total amount of work. For example, the 15 × 15 mass matrix
for the Baxter robot (Fig. 6a) can be divided into 4×4 blocks (Fig. 6b),
including blocks of all zeros, which can be skipped in matrix multi-
plication (labeled “NOP”). A dynamics gradient accelerator might
have per-link processing elements (PEs) that can perform matrix
vector multiplications, so one way to parallelize this operation in
hardware would be to feed nonzero blocks into parallel per-link
PEs (Fig. 6c) along with the columns of another matrix block.

Sparse I/OData. Sparse topology-basedmatrix patterns (Sec. 3.2)
enable data packet compression by skipping zeros when sending

matrices (or their multiplication products) over communication
channels. For example, Baxter’s 15× 15mass matrix (Fig. 6a) has 99
nonzero elements, making it 56% sparse. We elaborate in Sec. 5.2.

4 ROBOSHAPE: ACCELERATOR FRAMEWORK
In this section, we present an automated accelerator design frame-
work based on the computational patterns and insights explored in
Sec. 3. The RoboShape framework can flexibly implement acceler-
ators for a broad class of robotics computations (Table 1), across
different robotics deployment scenarios.

Overview. Fig. 7 gives an overview of the RoboShape frame-
work. RoboShape takes as inputs a standard robot description file
and a constraint on compute resources, given as the maximum pro-
cessing elements for forward and backward traversals (Fig. 4b), and
maximum block size for topology-based matrix operations (Fig. 4c).
With this, RoboShape:

• Parses the robot into a topology graph (Sec. 4.1);
• Uses 1○ robot topology traversal patterns in the application
to generates task graphs and transforms them into schedules
of tasks for processing elements (Sec. 4.2);

• Uses 2○ topology-based matrix patterns in the application
to adjust linear algebra block sizes to minimize operating on
zero values (Sec. 4.3); and

• Lowers computational patterns 1○ and 2○ to hardware by
tuning a template architecture that has been factored accord-
ing to these topology-based patterns (Sec. 4.4).

RoboShape outputs a streamlined topology-based accelerator design,
flexibly tailored to the robotic deployment. The following sections
provide details, using the dynamics gradient [7] and the Baxter
robot [14] as motivating examples.

4.1 Robot Parsing to Extract Topology
We parse a standard URDF robot description file input into a topol-
ogy that is a tree of articulated links connected by joints. URDF is
an XML-based file format that describes the physical characteristics
of a specific robot model. These files are provided by robot manu-
facturers to end users, and are leveraged by most common robot
simulators. An example is shown in Fig. 4a for the Baxter robot:
a torso with a head, and two arms that are each a chain of seven
rigid links connected by rotating joints. Note that robot topologies
with more complicated branching patterns (e.g., manipulators with
gripper fingers [5]) force more dependencies between links (Fig. 14).
For kernels involving derivatives, e.g., of dynamics (Alg. 1), this
increases partial derivative calculations.

4.2 Using 1○ Topology Traversal Patterns for
Task Allocation & Scheduling

We take the robot topology and use one or more of the 1○ topology
traversal computational patterns (Sec. 3.1) in the application to gen-
erate graphs of work tasks based on calculations performed on the
robot’s rigid links. We can then allocate processing elements (PEs)
to execute the tasks based on the maximum number of comput-
ing resources available within our input constraints, and generate
a schedule that indicates which PE works on which task at each

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi

Figure 7: The RoboShape framework takes in standard robot description XML files and computing resource constraints, and
produces accelerators. It (a) parses robot topology (Sec. 4.1); (b) uses 1○ topology traversal patterns to generate task schedules
for different hardware allocation operating points (Sec. 4.2); (c) uses 2○ topology-based matrix patterns to adjust block size
to minimize operating on zeros (Sec. 4.3); and (d) lowers high-level robot topology-based decisions to generate accelerator
hardware (in Verilog) by tuning a template architecture that has been factored according to topology-based patterns (Sec. 4.4).

time step. For example, Fig. 7b shows two schedules for a forward
traversal of Baxter’s dynamics gradients, for 3 PEs and for 4 PEs.

Forward and backward topology traversal patterns can be sched-
uled onto PEs using a modified depth-first search: given a total
number of PEs to allocate, for each step in the schedule and for
each PE, we look for the longest sequential thread of tasks. We
check that the next task in that thread has all prerequisite inputs
ready (e.g., RNEA’s inputs to ∇RNEA’s partial derivatives), and if
so, we schedule that task thread. When we hit a branch node in
the topology, we save and restore its state appropriately when we
process the next limb.

4.3 Using 2○ Topology-Based Matrix Patterns
for Blocking & Task Scheduling

Multiplication by the mass matrix can be scheduled onto PEs as
a blocked matrix multiplication, adjusting the block size for good
coverage of dense regions of the mass matrix (e.g., 4 × 4 blocks in
Fig. 6) and to minimize zero padding. For example, Fig. 7c shows a
6×6 block size for Baxter with wasteful zero padding, alongside the
superior 4 × 4 block size. Block matrix multiplication tasks can be
parallelized across per-link processing element hardware as shown
in Fig. 6c, and those per-PE tasks can be scheduled in a similar
manner to the topology-traversal tasks in the previous section.

4.4 Lowering to Hardware: Topology-Templated
Accelerator Architecture

To demonstrate flexibly supporting scalable topology-based com-
putation at the microarchitectural level, we generalize a dynamics
gradient accelerator design introduced in prior work [32], creat-
ing a new architecture (see Fig. 8) that is deliberately factored and
templated according to the robot-scalable computational patterns
introduced in Sec. 3: 1○ topology traversals and 2○ topology-based
matrices. This example architecture has three knobs that can be
tuned according to those patterns to flexibly deploy the hardware
template for different robot and computing constraint deployment
scenarios: total forward and backward traversal PEs (PEs𝑓 𝑤𝑑,𝑏𝑤𝑑),
and matrix multiplication block size (size𝑏𝑙𝑜𝑐𝑘). In Sec. 5.4 and
Sec. 5.5, we analyze the impact of robot shape on accelerator re-
source utilization by tuning these parameters.

Figure 8: Architecture for dynamics gradients, templated by
topology-based parameters (PEs𝑓 𝑤𝑑,𝑏𝑤𝑑 , size𝑏𝑙𝑜𝑐𝑘). Microar-
chitectural support includes: (a) storage for link schedules
(Sec. 4.2, Sec. 4.3); (b) control state machines for PEs; (c) stor-
age for RNEA outputs (Alg. 1); (d) storage to feed parent link
values back into PEs; (e) storage for branch link state, re-
stored when returning to branches; and (f) accumulators for
block mass matrix multiplication.

We introduce several architectural features to support per-link
PE schedules (Sec. 4.2 and Sec. 4.3). We provide (a) dedicated sched-
ule storage structures. To execute the schedules, there are (b) control
state machines that step through the schedules and marshal robot
link data to the correct PEs. Because the dynamics gradient example
has data dependencies passing from the RNEA to the ∇RNEA (see
Alg. 1), we add (c) intermediate storage structures for the outputs
of the RNEA step, as it is an input to the partial derivative tasks.

During execution of a thread of tasks along a limb (e.g., for-
ward traversal partial derivatives in Fig. 7b), and in between each
schedule step, partial results from the current link are stored in
(d) intermediate state, with mechanisms to flush the data when start-
ing on a new limb. Similarly, when a PE hits a branching node in

RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 2: Resource Utilization of RoboShape Designs

FPGA Resources (Xilinx XCVU9P) iiwa [25] HyQ [49] Baxter [14]

LUTs (1182k Total) 514552 (43.5%) 507158 (42.9%) 873805 (73.9%)
DSPs (6840 Total) 5448 (79.6%) 3008 (44.0%) 3342 (48.9%)

the robot topology that splits into several limbs, there are (e) check-
point registers that save the state at the current link, so that after
the current limb is completed, state can be restored.

Finally, to perform blocked multiplication (e.g., of the𝑀−1 ma-
trix (Alg. 1), we introduce (f) accumulators near the matrix data
structures to accumulate and store partial results.

5 EVALUATION
We evaluate the compute latency of RoboShape-generated accelera-
tors on an FPGA target platform for three different robots (Sec. 5.1,
Sec. 5.2), and analyze the resource utilization vs. performance design
space across six different deployments (Sec. 5.3, Sec. 5.4, Sec. 5.5).

Hardware Evaluation Platforms. As baselines, we use the
state-of-the-art Pinocchio [8] CPU and GRiD [45] GPU dynam-
ics libraries. We use an eight-core 3.8GHz Intel Core i7-10700K
CPU running Ubuntu 20.04 and a 1.7GHz NVIDIA GeForce RTX
3080 GPU with 8704 CUDA cores. These are comparable to plat-
forms onboard real robots: e.g., robots in the DARPA Robotics
Challenge [23, 24, 46, 50] had 4-core Intel i7 CPUs, and Boston
Dynamics’ Spot [4] has a 4-core Intel i5 CPU and an NVIDIA P5000
with 2560 CUDA cores. We disabled TurboBoost on the CPU and
fixed all cores at maximum frequency. HyperThreading was en-
abled for threadpool use. We implemented accelerators in Verilog
and Bluespec System Verilog on a Xilinx VCU-118 with a XCVU9P
FPGA, which offers many digital signal processing units (6840DSPs)
for our linear algebra-heavy workload.

Methodology. In Sec. 5.1, we measure compute latency for a
single computation averaged over one million trials. For CPU and
GPU results, time was measured with clock_gettime(), using
CLOCK_MONOTONIC. For FPGA accelerator compute latency, our
goal in Sec. 5.1 was to isolate compute time without measuring
I/O transfer time. (By contrast, in Sec. 5.2 we give full measured
FPGA timing results, including I/O overheads.) We leverage the
deterministic runtime (in clock cycles) of our design, multiplying it
by our synthesized clock frequency to isolate pure compute latency
through the accelerator. In Fig. 9, for No Pipelining, the latency of
the accelerator stages (see Fig. 8) are added. For Avg. w/ Pipelining,
we include pipelining between accelerator stages (Fig. 8).

Baselines & Parallelism. The state-of-the-art CPU software li-
brary [8] only parallelizes acrossmultiple computations (see Sec. 5.2),
and relies on vector operations within each computation. The state-
of-the-art GPU library [45], is both parallelized across CUDA cores
for a single computation (Sec. 5.1), and across streaming multipro-
cessors (SM) for multiple computations (Sec. 5.2).

5.1 Computation-Only Latency
We use RoboShape to implement dynamics gradient accelerators
on a Xilinx XCVU9P FPGA for three different real robots: iiwa [25],
HyQ [49], and Baxter [14], closing timing at 18ns, 18ns, and 22ns, re-
spectively, enabling clock speeds of 55.6-45.5MHz. The critical path
was through the input data marshalling logic set by the forward
pass schedule, so clock speed scaled with that schedule’s length.

0

2

4

6

8

10

12

iiwa HyQ Baxter

La
te

nc
y

of
 D

yn
am

ic
s G

ra
di

en
t [

us
]

CPU Baseline GPU baseline
Robomorphic Computing (FPGA): No pipelining RoboShape (FPGA): No pipelining
Robomorphic Computing (FPGA): Avg w/ pipelining RoboShape (FPGA): Avg w/ pipelining

15.08x

4.39x

8.58x

4.27x

8.00x

3.97x

Figure 9: Across a variety of real robots [14, 25, 49],
RoboShape-generated accelerators on FPGA leverage low-
overhead, streamlined parallel processing of robot links to
achieve speedups of 4.0× to 4.4× and 8.0× to 15.1× over state-
of-the-art CPU and GPU baselines [8, 45] for the latency of a
dynamics gradient computation. RoboShape gives identical
latency to the prior Robomorphic Computing (RC) [32] ac-
celerator for iiwa, but unlike prior work, RoboShape designs
are able scale to larger multi-limb robots (HyQ, Baxter).

RoboShape Generator Knob Settings.We sized our iiwa accel-
erator for direct comparison to priorwork [32]: PEs𝑓 𝑤𝑑,𝑏𝑤𝑑 , size𝑏𝑙𝑜𝑐𝑘
= 7, 7. Because closing timing requires repeated iteration of FPGA
synthesis, for HyQ and Baxter, we chose conservative values for the
parameters with reasonably low resource utilization (Table 2) to re-
duce place-and-route complexity: for HyQ, PEs𝑓 𝑤𝑑,𝑏𝑤𝑑 , size𝑏𝑙𝑜𝑐𝑘 =

3, 6; and for Baxter, PEs𝑓 𝑤𝑑,𝑏𝑤𝑑 , size𝑏𝑙𝑜𝑐𝑘 = 4, 4.
Comparison to CPU & GPU Baselines. Fig. 9 compares the

single computation latency on our target FPGA against CPU and
GPU baseline solutions [8, 45]. Even with conservative parameter
tuning and significantly lower clock speeds, RoboShape accelerators
achieve speedups of 4.0x to 4.4x and 8.0x to 15.1x compared to our
state-of-the-art baselines.

For CPU and FPGA, compute latency scales roughly with the
total number of links in the robots (7, 12, and 15 for iiwa, HyQ,
and Baxter). On the CPU this is caused by the computation being
done by one thread with only limited parallelism avaiable via vec-
tor operations. For the FPGA, our accelerators provide sufficient
parallelism to handle the longest limb length (7, 3, and 7 for iiwa,
HyQ, and Baxter) by allocating PEs𝑓 𝑤𝑑,𝑏𝑤𝑑 = 7 and 3 for iiwa and
HyQ. For Baxter, PEs𝑓 𝑤𝑑,𝑏𝑤𝑑 = 4 and the limb length = 7, but the
schedules are densely packed, so latency scaling stays roughly close
to 𝑁 , despite the smaller number of PEs.

Like with the CPU, the GPU uses a single SM for each dynamics
gradient calculation. As such, despite still having many available
threads on each SM, GPU latency is significantly higher than both
the CPU and FPGA accelerators as GPU pipelines are optimized for
throughput rather than latency, penalizing sequential operations.
In fact, GPU latency is similar between iiwa and HyQ because iiwa
is entirely sequential (a pathological case for the GPU), while the
larger HyQ robot has parallel limbs with short sequential chains.

Comparison to Prior Work: Robomorphic Computing. In
addition to CPU and GPU baselines, Fig. 9 compares the single

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi

Robomorphic Computing (RC) [32] accelerator (iiwa robot) against
three RoboShape accelerators (iiwa, HyQ, and Baxter robots). RC
only demonstrated a single accelerator for a robot with a single limb
(iiwa robot), not addressing the patterns of branching multi-limb
robot topologies. Instead, RC applies static parallelization fixed to
total robot links, and does not use the branching topology structure
of the robot– this leads to a resource blow-up that prevents RC from
fitting robots with large numbers of links within the constraints
of different compute platforms. By contrast, RoboShape uses robot
topology-based architectural insights to address (i) the scalability
challenge of deploying large robots within the resource constraints
of different compute platforms, and (ii) the flexibility challenge
of generating accelerators for diverse branching robot topologies
(e.g., quadrupeds, torsos). For example, even for the large Xilinx
XCVU9P FPGA, RC cannot scale beyond robots bigger than the 7-
link iiwa arm (which consumes 77.5% of DSP resources; beyond this,
it becomes difficult to close timing), whereas by using RoboShape’s
topology-based scheduling and allocation, we can automatically
implement FPGA-based accelerators for the iiwa (with identical
latency to the RC design), as well as two other topologically-diverse
robots of up to 15 links (Fig. 9). RoboShape’s novelty is that it adds
a layer of domain-informed architectural flexibility that enables
accelerators for topology-based applications (like RC) to scale to
larger robots and to flexibly re-configure designs to support complex
branching robots on diverse compute platforms.

Overheads of RoboShape vs. Custom Design. We compared
resource utilization on aXilinx XCVU9P FPGA against priorwork [32]
that specifically targeted the iiwa manipulator [25] with custom de-
sign (note that by contrast, the RoboShape framework supports mul-
tiple robots– see Fig. 9). For iiwa, our microarchitectural changes
enabling generalizability across robots and computing constraints
(see Sec. 4) introduce minimal overheads: 5.5% decrease in total
LUTs (43.5%, versus 49.0% in prior work); and 2.2% increase in dig-
ital signal processing (DSP) blocks (79.6%, versus 77.5% in prior
work). Overheads increase with robot size and complexity, but this
design generalization enables RoboShape to generate accelerators
for large multi-limb robots that flexibly fit within computing re-
source constraints, unlike prior work.

5.2 Coprocessor Roundtrip Latency with I/O
To analyze coprocessor roundtrip latency for the FPGA accelerator,
we deployed it as a coprocessor to a host CPU for a batch of multiple
dynamics gradients calculations. This computational pattern is
often seen across time steps in a motion trajectory for nonlinear
optimal control approaches to motion planning. Reasonable time
steps can range from 1-10 [6, 9, 13, 28], so we demonstrate an
intermediate value, 4, in this experiment. Note that some systems
use very large numbers of time steps, into the 100s [15, 30, 34]. This
greatly increases total I/O that must be transferred to a coprocessor,
so later in this section we propose I/O optimizations that would
help our system scale in future work.

Methodology. We run 4 time step computations, following the
methodology of Section 5.1. For the FPGA, we give full measured
results including I/O overheads (Fig. 10: Roundtrip Including I/O),
as well as the total compute-only latency, extracted using clock
periods and cycle counts, as in Sec. 5.1 (Fig. 10: Compute Only), to

0

5

10

15

20

25

30

iiwa HyQ BaxterLa
te

nc
y

of
 D

yn
am

ic
s G

ra
di

en
t f

or

4
M

ot
io

n
Ti

m
es

te
ps

 [u
s]

CPU GPU FPGA: Total Roundtrip include I/O FPGA: Compute Only

11.42x 6.93x

5.60x 3.78x

4.07x

2.17x

Figure 10: Deployed as a coprocessor, accelerator
computation-only latency achieves 2.2x to 5.6x and
4.1x to 11.4x speedups over CPU and GPU. However, high
I/O overheads reduce roundtrip latency, especially for the
largest robot (Baxter) which is slightly slower than CPU.
Future I/O optimizations, e.g., leveraging mass matrix
sparsity patterns to avoid sending zero values (Sec. 5.2), can
reduce I/O data size by 3x for HyQ and 2x for Baxter.

analyze I/O and pipeline stall latency. For these multiple computa-
tion experiments, the CPU library parallelizes between time step
computations, so because we use 4 time steps, 4 threads are created.
Within each thread, parallelism is leveraged through vectorized
operations. The GPU library paralleizes across streaming multipro-
cessor (SM) cores for the 4 time step computations, and within each
computation, multiple parallel CUDA core threads are created.

Coprocessor Latency Results. Fig. 10 gives latency results
for the multiple-calculation coprocessor experiments. The Com-
pute Only accelerator latency achieves 2.2x to 5.6x and 4.1x to 11.4x
speedups over CPU and GPU. However, the Roundtrip Including I/O
latency is slowed by the addition of I/O overheads, reducing these
speedups for the iiwa and HyQ robots to 2.0x and 1.4x over CPU,
and 4.1x and 2.6x over GPU. For the largest robot (Baxter, with 15
links), while the accelerator maintains a 1.5x speedup over GPU, it
experiences an 18% slowdown compared to the CPU. I/O overheads
increase with 𝑁 , the total number of links in the robot, since posi-
tion, velocity, and acceleration inputs scale per-link, and the mass
matrix and the output partial derivative matrices all scale as 𝑁 2.

Reducing these I/O overheads can help approach the compute-
only performance. One way is to improve inefficiencies in the Con-
nectal [20] tool used for PCIe communication in order to approach
the speed of PCIe Gen 3 (used by our GPU baseline), which is around
3x faster than the PCIe Gen 1-level connection used by our FPGA in
Fig. 10. Another improvement is to leverage topology-based spar-
sity patterns in the I/O data to avoid spending time receiving and
sending zeros (described in Sec. 3.3). We can skip zeros related to
mass matrix sparsity that are inputs to the coprocessor when receiv-
ing the mass matrix itself, and are outputs when sending back the
partial derivative matrices, which share these sparsity patterns. As
robots increase in total number of links 𝑁 , the mass matrix and par-
tial derivative matrices (which scale as 𝑁 2) become the dominant
portion of I/O packets, making up 84%, 90%, and 92% of the total
I/O bits for the iiwa, HyQ, and Baxter robots, respectively. While
iiwa’s mass matrix is fully dense, for robots with multiple limbs
such as HyQ and Baxter, we can skip zeros based on known spar-
sity patterns in the mass matrix, which is, e.g., 75% sparse for HyQ
and 56% sparse for Baxter. This results in expected I/O data size

RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 11: Left: Robots with different topologies [14, 21, 25,
49] as motivating examples to analyze resource utilization
in RoboShape accelerators. Right: Robot metrics in Table 3,
e.g., maximum descendants (Max desc).

Figure 12: Parameterizing accelerators based on robot topol-
ogy patterns exposes varied, but tractable (1000s of design
points) design spaces for different robots. Pareto frontier of
optimal co-design points annotated with red 𝑋s. LUTs and la-
tencies normalized tomaximum for each robot. Maximum la-
tencies are 829-7230 cycles; maximum LUTs are 507k-2600k.

reductions of 3.1x for HyQ and 2.1x for Baxter. These I/O speedups
will enable coprocessor-based accelerators to scale to even larger
robots, and to greater numbers of batched motion time steps.

Parallelism Tradeoffs vs. GPU. RoboShape extracts maximal
parallelism fromwithin each individual rigid body dynamics compu-
tation (Fig. 14), while GPUs are best at extracting parallelism across
multiple time steps of the same dynamics computation. This leads
to the FPGA accelerator having far lower latency than the GPU
(Fig. 9) for a single time step, but GPUs potentially having higher
throughput when used for multiple time steps. This throughput
limitation can be addressed with further I/O optimization (Sec. 5.2),
or by instantiating multiple RoboShape cores in an ASIC.

5.3 Robot Shape Implications for Accelerators
While Sec. 5.1 and Sec. 5.2 demonstrated speedups for single design
points produced with RoboShape, in the following sections we
broaden our scope to consider the diverse design space of robot
deployments, tying robot shape back to architectural insights to
guide accelerator design.

Diverse Robot Shapes. Robotics deployments are diverse, and
it is important for hardware designers to be able to analytically
understand how performance and hardware resource utilization
will change based on design choices under different deployment
conditions (e.g., robot shape and size, computing platform choices).
We characterize a diverse set of example robot deployments (see
Fig. 11) and analyze how robot shape impacts resource and perfor-
mance tradeoffs across RoboShape accelerators, according to the
computational patterns introduced in Sec. 3. The size and shape

Table 3: Topology Metrics for Robots in Fig. 11.

Topology Metric iiwa HyQ Baxter Jaco-2 Jaco-3 HyQ+arm

Total Links 7 12 15 7 12 19
Max Leaf Depth 7 3 7 9 9 7
Avg. Leaf Depth 7 3 5 9 9 3.8
Max Descendants 7 3 7 12 15 7
Leaf Depth StDev 0 0 2.3 0 0 1.6

of the robots in Fig. 11 can be broken down by total number of
links, the longest chain of links in the topology tree, the average
leaf depth, the max number of descendants of any given parent link
in the topology, and the standard deviation of leaf depth (Table 3).
For example, the Baxter robot has 15 total links. The longest chain
of links in Baxter is 7 links, through one of its arms. The average
leaf depth in Baxter is 5, because of its single-link head and two
7-link arms. The max descendants of any link is 7, again through
an arm. Finally, the standard deviation of leaf depth is 2.3 because
of the asymmetry between Baxter’s head and arms.

Resource-Performance Design Tradeoffs. RoboShape identi-
fies computational patterns that scale with the robot shape and size,
which enables us to perform analytical tuning of the parameters of
architectural mechanisms that use those patterns. This unlocks the
ability to analytically sweep parameters and study the impact of
deployment scenarios (i.e., robot and computing platform) on hard-
ware metrics of RoboShape accelerators (i.e., latency and resource
utilization). In this section, we evaluate different sweep studies.

Without a principled approach to accelerator design, the space
of system parameters can be enormous and intractable. By contrast,
designing accelerators that are parameterized by physical properties
provides an easy way to define knobs to tune that are meaningfully
tied to the deployment scenario. This makes it straightforward
to create tractable design spaces that can be navigated to select
desired optimized design points. For example, Fig. 12 shows design
spaces for RoboShape accelerators for the six robots in Fig. 11. The
following sections analyze design spaces for resource utilization
versus latency tradeoffs for RoboShape accelerators for different
robot and resource constraint operating points.

Key Insights: GuidingAcceleratorDesignwithRobot Topol-
ogy. The following sections analyze the relationship between robot
topology patterns and the performance and resource allocation of
RoboShape accelerators.We find three key insights: (1) traversal pat-
terns have topology-based bottlenecks and parallelism; (2) topology-
based matrix resource allocation leads to nonlinear performance;
and (3) topology-based tuning beats maximum resource allocation.

5.4 Robot Shape Impacts Resource Utilization
In this section, we establish physically-grounded intuition for which
features of robot topology contribute to efficient resource allocation
strategies for minimum latency in topology-based accelerators. We
find that the resource allocation and latency of topology traversal
patterns in dynamics gradients accelerators is affected by robot
limb symmetry, and that parallelism differs between forward and
backward traversals. We also demonstrate that robot shape has
a nonlinear effect on optimized resource allocation for minimum
latency for topology-based matrix operations.

Methodology. To analyze the impact of topology traversal pat-
tern computations, we use our RoboShape scheduling algorithms

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi

(Sec. 4) and a model of resource utilization (in LUTs and DSPs)
for processing elements (PEs) on the XCVU9P FPGA, extracted
from hardware synthesis reports for different resource allocation
strategies in which the total numbers of forward and backward tra-
versal PEs instantiated (PEs𝑓 𝑤𝑑,𝑏𝑤𝑑) are set to values based on the
robot topology metrics in Table 3: Total Links, which corresponds
to naive parallelism used in prior work [32]; Average Leaf Depth;
Maximum Leaf Depth; Maximum Descendants; a Hybrid approach,
allocating PEs for performing forward topology traversals set to
the maximum leaf depth, and PEs for backward traversals set to
the maximum descendants; and finally, Optimal Minimum Latency
values from an exhaustive search of the design space. For all alloca-
tion strategies in this section we are targeting a minimum latency
design point without constraints on overall resources (we perform
a resource-constrained analysis in Sec. 5.5).

Insight #1: Traversal Patterns Have Topology-Based Bot-
tlenecks & Parallelism. While Fig. 13a shows that nearly all
strategies achieve minimum latency across the robots (with several
exceptions discussed below), Fig. 13b demonstrates that they do
so by allocating very different amounts of resources. Resource uti-
lization based on Total Links grows rapidly for larger robots, while
other strategies achieve the same latency for the same or fewer
resources. This implies that naively scaling resources with the num-
ber of links vastly over-provisions resources. By contrast, allocation
by average leaf depth underprovisions resources and gives poor
latency on all robots except for iiwa and HyQ, where it happens to
equal the maximum leaf depths and number of descendants because
they are symmetric with no branches in their limbs.

The strategies that approach optimal allocation while meeting
minimum latency are Max Leaf Depth, Max Descendants, and the
Hybrid of those approaches. Fig. 14 illustrates how these strategies
correspond with physical intuition about traversing robot topolo-
gies with an example of the forward and backward traversals pat-
terns for the ∇RNEA subcomputation (Alg. 1). Allocating by Max
Leaf Depth is a reasonable approach for forward traversals because
there are narrow bottlenecks at the top of the tree, shaping the de-
pendencies of computations like partial derivatives so that the main
chain of parent link prerequisite values coming from the top of the
tree follow along the depth of the tree. For branching topologies
(e.g., Jaco-2 and Jaco-3), however, this approach underprovisions
the backward traversal and gives poor latency (Fig. 13), because the
wide tree bottom means that more parallel threads of execution can
launch based on parent link prerequisite values from the bottom of
the tree. Instead, allocation by Max Descendants does well in these
cases, by scaling with the wide bottom of such trees.

A Hybrid using Max Leaf Depth for the forward and Max De-
scendants for the backward traversal improves on both strategies,
consistently meeting minimum latency. For symmetric robots with
Leaf Depth StDev = 0, the resource utilization of the Hybrid heuris-
tic is on par with the optimal allocation as the upper bounds on
PEs𝑓 𝑤𝑑 and PEs𝑏𝑤𝑑 are maximum leaf depth and maximum num-
ber of descendants, respectively. Because all the limbs in symmetric
robots are of equal length, the optimal resource split equals these
upper bounds, so the design point found by the heuristic matches
the optimal one. For asymmetric robots, e.g., Baxter and HyQ+arm
with Leaf Depth StDev > 0, the Hybrid heuristic overprovisions
resources compared to the optimal allocation as the RoboShape

Figure 13: Optimal Minimum Latency finds a minimum la-
tency design point with lowest resource utilization, using
exhaustive search. Other strategies allocate resources based
on topology metrics (Table 3). Most achieve minimum la-
tency, but with varying resource utilization. Red 𝑋s mark
non-minimum latency configurations and blue stars (★) mark
the optimal configurations.

Topology Forward Traversal

Narrow Tree Top Bottleneck

Backward Traversal

Common Ancestors Parallelism

e.g.,
branching
topology

Figure 14: The degree of parallelism leveraged by traversal
computational patterns depends on robot topology. Forward
pass: parallel threads launched scales with number of inde-
pendent limbs. Backward pass: parallel threads scale with
number of common ancestors for leaf links.

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

[c
yc

le
s]

Block size

Latency

M
as

s M
at

rix

Figure 15: The design space of sparse block matrix multiply
is non-linear. An increase in block size can result in a decrease
in performance. Here we sweep block size from 1 to 10, for 3
block matrix-vector multiply units (Fig. 8).

scheduler takes advantage of the variation in limb length. In par-
ticular, it fits short threads of work into spaces in the task pattern
graph left empty by large threads, and squeezes the number of PEs
to below the upper bound set by metric-based heuristics.

Insight #2: Topology-Based Matrix Resource Allocation
Leads to Nonlinear Performance. The relationship between
resources allocated for the blockedmatrix multiply and its latency is
jagged and nonlinear, with increased resources sometimes resulting
in a decreased performance. Fig. 15 shows the latency of the blocked
mass matrix multiplication for different block sizes using HyQ

RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 16: Under resource constraints (e.g., Xilinx VCU118
and VC707 FPGA platforms), allocating more resources
can reduce performance due to the nonlinear design space.
Maximally-allocated designs often fail to match minimum
possible latency, while using more resources. Note: no design
point within the VC707 constraints exists for HyQ+arm.

as an example. For block sizes 3, 6, and 9, the blocks cover the
non-zero entries in the mass matrix sparsity pattern well without
much additional zero padding. For other block sizes, the blocks are
misaligned with the non-zero portions of the matrix, leading to
additional zero padding and wasted cycles of work that add latency.

5.5 Resource Constraints Impact Performance
Putting together both the topology traversal and the topology-
based matrix computational patterns, we now broaden our scope
to examine latency and resource utilization for different robots
across different resource constraint operating points imposed by
two different computing platforms. This analysis models the full
dynamics gradient accelerator architecture evaluated in Sec. 5.1
and Sec. 5.2, however we note that the patterns studied here and in
Sec. 5.4 appear across a class of topology-based algorithms (Table 1).

Methodology. We use the Xilinx VCU118 (1182000 LUTs, 6840
DSPs) and VC707 (303600 LUTs, 2800 DSPs). We generate robot
design spaces (Fig. 12), and threshold utilization by the LUT and
DSP constraints. We set the threshold to 80% of total resources.

Insight #3: Topology-Based Tuning Beats Maximum Al-
location. Figs. 16a and 16b show latency and utilization of the
maximally-allocated design point and the minimum latency design
point for the VCU118 and the VC707 FPGAs. We observe that the
latency of the maximally allocated design point often fails to match
the minimum latency possible; in fact the minimum latency design
points do so by using fewer resources than the maximal allocation.
For the accelerator architectures we evaluate, this resource over-
provisioning effect is dominated by the non-linear behavior of the
blocked matrix multiply, where allocating a larger block size can
counterintuitively reduce performance (recall Fig. 15).

6 RELATEDWORK AND DISCUSSION
Relationship to Other Robotics Hardware Acceleration. Ro-
boShape and other robotics acceleration frameworks [26, 32, 48]
are complementary: RoboShape uses robot topology to inform ar-
chitectural mechanisms, and by doing so, flexibly deploying scal-
able accelerators for different resource constraints and robots. This

principle can be interfaced with other acceleration frameworks.
There has been recent work in hardware acceleration for the three
core robotics pipeline tasks: perception [27], mapping and localiza-
tion [1, 16, 26, 51], and motion planning and control [3, 31, 32, 48].
Promising work has introduced deployment constraints into the de-
sign process [1, 16, 22, 26, 32, 48]. The RoboX [48] framework maps
model predictive control (MPC) optimization problems to compute
hardware. Pisces [1] co-optimizes performance and power for simul-
taneous localization and mapping (SLAM), and the Archytas [26]
flow tunes SLAM accelerators to meet power, latency, and resource
specifications. Robomorphic Computing [32] lays out a pathway
to design efficient functional units for dynamics based on robot
joint type. Work in autonomous unmanned aerial vehicles [16, 22]
explores co-designing hardware acceleration with drone weight.
For distributed computing, HiveMind [41] provides a framework
for coordinating hardware and software across drone swarms.

Relationship to Sparse Tensor Algebra Accelerators. Ro-
boShape complements existing sparse matrix-vector multiplication
(SpMV) work for large sparse matrices by addressing two classes of
topology-defined small-to-moderate sized and sparse robotics ma-
trices: small 6x6 joint/inertia matrices that are 40-60% sparse; and
moderately-sized NxN topology-based matrices (e.g., mass matrix),
where N (number of robot links) might range from 7-18 (Fig. 1) and
where the matrices are either fully-dense or 50-75% sparse (Fig. 11).
By contrast, most sparse tensor accelerators focus on large, very
sparse matrices (e.g., neural networks with 1000s of elements that
are up to 99.9% sparse) [32]. Approaches (e.g., compressed sparse
row encoding) that work well for such matrices incur unsuitable
overheads for RoboShape’s moderately sized and sparse matrices.

Hardware Design Frameworks and Tools. To address emerg-
ing domains, it is essential to employ languages, tools, and frame-
works to keep hardware design agile as applications evolve [18].
Hardware compiler frameworks and high-level synthesis (HLS)
tools [10, 36, 37, 53] are promising approaches to automate hard-
ware design; and can be enriched by integration with frameworks
like RoboShape that encode domain-specific insights into designs.

Beyond Rigid Body Dynamics. There are bottleneck kernels
in other motion planning techniques, e.g., collision detection for
sampling-based approaches [31]. To accelerate motion planning as
a whole, it is important to establish design methodologies across
all potential bottlenecks, so designers can compose flexible hard-
ware IP to accelerate diverse robotics applications. In this pursuit,
Roboshape’s principles can be integrated with existing accelerators.

7 CONCLUSION
RoboShape uses robot-topology-based architectural insights to ad-
dress (i) the scalability challenge of deploying large robots within
the resource constraints of different compute platforms, and (ii) the
flexibility challenge of generating accelerators for diverse branching
robot topologies. By encoding domain-specific insights, RoboShape
is a pathway towards future robotics system on chip (SoC) design.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation (CIFellows Grant 2030859, GRFP). All views expressed
do not necessarily reflect the views of the funding organization.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi

REFERENCES
[1] Bahar Asgari, Ramyad Hadidi, Nima Shoghi Ghaleshahi, and Hyesoon Kim. 2020.

Pisces: power-aware implementation of slam by customizing efficient sparse
algebra. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[2] Authors of RoboShape. Accessed in 2023. RoboShape Open-Source Repository.
github.com/robot-acceleration/roboshape

[3] Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri,
Maxim Likhachev, and Phillip B. Gibbons. 2022. RACOD: Algorithm/Hardware
Co-Design for Mobile Robot Path Planning. In Proceedings of the 49th Annual
International Symposium on Computer Architecture. ACM, 597–609.

[4] Boston Dynamics. Accessed in 2022. Spot | Boston Dynamics. bostondynamics.
com/spot

[5] Alexandre Campeau-Lecours, Hugo Lamontagne, Simon Latour, Philippe Fauteux,
Véronique Maheu, François Boucher, Charles Deguire, and Louis-Joseph Caron
L’Ecuyer. 2019. Kinova modular robot arms for service robotics applications. In
Rapid Automation: Concepts, Methodologies, Tools, and Applications. IGI global,
693–719.

[6] Vinicius Cardoso, Josias Oliveira, Thomas Teixeira, Claudine Badue, Filipe Mutz,
Thiago Oliveira-Santos, Lucas Veronese, and Alberto F De Souza. 2017. A model-
predictive motion planner for the iara autonomous car. In 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, 225–230.

[7] Justin Carpentier and Nicolas Mansard. 2018. Analytical derivatives of rigid body
dynamics algorithms. In Robotics: Science and systems (RSS 2018).

[8] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent
Lamiraux, Olivier Stasse, and Nicolas Mansard. 2019. The Pinocchio C++ library:
A fast and flexible implementation of rigid body dynamics algorithms and their
analytical derivatives. In 2019 IEEE/SICE International Symposium on System
Integration (SII). IEEE, 614–619.

[9] Robin Deits, Twan Koolen, and Russ Tedrake. 2019. LVIS: Learning from value
function intervals for contact-aware robot controllers. In 2019 International Con-
ference on Robotics and Automation (ICRA). IEEE, 7762–7768.

[10] Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz,
Jack Koenig, Chris Lattner, Andrew Lenharth, George Leontiev, Fabian Schuiki,
Ram Sunder, et al. 2021. MLIR as Hardware Compiler Infrastructure. InWorkshop
on Open-Source EDA Technology (WOSET).

[11] Roy Featherstone. 1983. The calculation of robot dynamics using articulated-body
inertias. The international journal of robotics research 2, 1 (1983), 13–30.

[12] Roy Featherstone. 2008. Rigid body dynamics algorithms. Springer.
[13] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson. 2014. Opti-

mization based full body control for the atlas robot. In 2014 IEEE-RAS International
Conference on Humanoid Robots. IEEE, 120–127.

[14] Cliff Fitzgerald. 2013. Developing baxter. In 2013 IEEE Conference on Technologies
for Practical Robot Applications (TePRA). IEEE, 1–6.

[15] Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli, and Moritz
Diehl. 2018. A family of iterative gauss-newton shooting methods for nonlinear
optimal control. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 1–9.

[16] Ramyad Hadidi, Bahar Asgari, Sam Jijina, Adriana Amyette, Nima Shoghi, and
Hyesoon Kim. 2021. Quantifying the design-space tradeoffs in autonomous
drones. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 661–673.

[17] Yinhe Han, Yuxin Yang, Xiaoming Chen, and Shiqi Lian. 2020. DaDu series-fast
and efficient robot accelerators. In 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 1–8.

[18] John L Hennessy and David A Patterson. 2019. A new golden age for computer
architecture. Commun. ACM (2019).

[19] Robert K Katzschmann, Cosimo Della Santina, Yasunori Toshimitsu, Antonio
Bicchi, and Daniela Rus. 2019. Dynamic motion control of multi-segment soft
robots using piecewise constant curvature matched with an augmented rigid
body model. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).
IEEE, 454–461.

[20] Myron King, Jamey Hicks, and John Ankcorn. 2015. Software-driven hardware
development. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 13–22.

[21] Kinova. Accessed 2022. Jaco Robotic Arm. assistive.kinovarobotics.com/product/
jaco-robotic-arm

[22] Srivatsan Krishnan, ZishenWan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra
Faust, Sabrina M. Neuman, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi.
2022. Automatic Domain-Specific SoC Design for Autonomous Unmanned Aerial
Vehicles. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 300–317.

[23] Eric Krotkov, Douglas Hackett, Larry Jackel, Michael Perschbacher, James Pippine,
Jesse Strauss, Gill Pratt, and Christopher Orlowski. 2017. The DARPA robotics
challenge finals: results and perspectives. Journal of Field Robotics 34, 2 (2017),
229–240.

[24] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai
Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. 2016.

Optimization-based locomotion planning, estimation, and control design for
the atlas humanoid robot. Autonomous Robots 40, 3 (2016), 429–455.

[25] KUKA AG. Accessed in 2022. LBR iiwa, KUKA AG. kuka.com/products/robotics-
systems/industrial-robots/lbr-iiwa

[26] Weizhuang Liu, Bo Yu, Yiming Gan, Qiang Liu, Jie Tang, Shaoshan Liu, and Yuhao
Zhu. 2021. Archytas: A framework for synthesizing and dynamically optimiz-
ing accelerators for robotic localization. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 479–493.

[27] Yanqi Liu, Giuseppe Calderoni, and Ruth Iris Bahar. 2020. Hardware Acceleration
of Monte-Carlo Sampling for Energy Efficient Robust Robot Manipulation. In
2020 30th International Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 284–290.

[28] Yeting Liu, Junjie Shen, Jingwen Zhang, Xiaoguang Zhang, Taoyuanmin Zhu,
and Dennis Hong. 2022. Design and control of a miniature bipedal robot with
proprioceptive actuation for dynamic behaviors. In 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 8547–8553.

[29] JYSM Luh, M Walker, and R Paul. 1980. Resolved-acceleration control of mechan-
ical manipulators. IEEE Trans. Automat. Control 25, 3 (1980), 468–474.

[30] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Ham-
moud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayaku-
mar, and Nicolas Mansard. 2020. Crocoddyl: An efficient and versatile framework
for multi-contact optimal control. In 2020 IEEE International Conference on Robot-
ics and Automation (ICRA). IEEE, 2536–2542.

[31] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J Sorin.
2016. The microarchitecture of a real-time robot motion planning accelerator.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–12.

[32] Sabrina M Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe, Srini-
vas Devadas, and Vijay Janapa Reddi. 2021. Robomorphic computing: a design
methodology for domain-specific accelerators parameterized by robot morphol-
ogy. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 674–686.

[33] Michael Neunert, Cédric De Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian,
Roland Siegwart, and Jonas Buchli. 2016. Fast nonlinear model predictive control
for unified trajectory optimization and tracking. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE, 1398–1404.

[34] Michael Neunert, Markus Stäuble, Markus Giftthaler, Carmine D Bellicoso, Jan
Carius, Christian Gehring, Marco Hutter, and Jonas Buchli. 2018. Whole-body
nonlinear model predictive control through contacts for quadrupeds. IEEE Ro-
botics and Automation Letters 3, 3 (2018), 1458–1465.

[35] John N Nganga and Patrick MWensing. 2021. Accelerating second-order differen-
tial dynamic programming for rigid-body systems. IEEE Robotics and Automation
Letters 6, 4 (2021), 7659–7666.

[36] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A com-
piler infrastructure for accelerator generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 804–817.

[37] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 69–70.

[38] NVIDIA. Accessed in 2022. NVIDIA Deep Learning Accelerator (NVDLA). nvdla.
org

[39] Zherong Pan, Bo Ren, and Dinesh Manocha. 2019. GPU-based contact-aware
trajectory optimization using a smooth force model. In Proceedings of the 18th
annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM,
4.

[40] Amit Kumar Pandey and Rodolphe Gelin. 2018. A mass-produced sociable
humanoid robot: Pepper: The first machine of its kind. IEEE Robotics &Automation
Magazine 25, 3 (2018), 40–48.

[41] Liam Patterson, David Pigorovsky, Brian Dempsey, Nikita Lazarev, Aditya Shah,
Clara Steinhoff, Ariana Bruno, Justin Hu, and Christina Delimitrou. 2022. Hive-
Mind: a hardware-software system stack for serverless edge swarms. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture.
800–816.

[42] Petoi. Accessed 2022. Bittle. petoi.com/bittle
[43] Brian Plancher and Scott Kuindersma. 2018. A Performance Analysis of Parallel

Differential Dynamic Programming on a GPU. In International Workshop on the
Algorithmic Foundations of Robotics (WAFR).

[44] B. Plancher, S. M. Neuman, T. Bourgeat, S. Kuindersma, S. Devadas, and V. Janapa
Reddi. 2021. Accelerating Robot Dynamics Gradients on a CPU, GPU, and FPGA.
IEEE Robotics and Automation Letters (RA-L) 6, 2 (2021), 2335–2342. https:
//doi.org/10.1109/LRA.2021.3057845

[45] Brian Plancher, Sabrina M Neuman, Radhika Ghosal, Scott Kuindersma, and
Vijay Janapa Reddi. 2022. Grid: Gpu-accelerated rigid body dynamics with
analytical gradients. In 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 6253–6260.

[46] Nicolaus A Radford, Philip Strawser, Kimberly Hambuchen, Joshua S Mehling,
William K Verdeyen, A Stuart Donnan, James Holley, Jairo Sanchez, Vienny

github.com/robot-acceleration/roboshape
bostondynamics.com/spot
bostondynamics.com/spot
assistive.kinovarobotics.com/product/jaco-robotic-arm
assistive.kinovarobotics.com/product/jaco-robotic-arm
kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
nvdla.org
nvdla.org
petoi.com/bittle
https://doi.org/10.1109/LRA.2021.3057845
https://doi.org/10.1109/LRA.2021.3057845

RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Nguyen, Lyndon Bridgwater, Reginald Berka, Robert Ambrose, Christopher Mc-
Quin, John D. Yamokoski, Stephen Hart, Raymond Guo, Adam Parsons, Brian
Wightman, Paul Dinh, Barrett Ames, Charles Blakely, Courtney Edmonson, Brett
Sommers, Rochelle Rea, Chad Tobler, Heather Bibby, Brice Howard, Lei Nui, An-
drew Lee, Michael Conover, Lily Truong, David Chesney, Robert Platt Jr., Gwen-
dolyn Johnson, Chien-Liang Fok, Nicholas Paine, Luis Sentis, Eric Cousineau,
Ryan Sinnet, Jordan Lack, Matthew Powell, Benjamin Morris, and Aaron Ames.
2015. Valkyrie: NASA’s first bipedal humanoid robot. Journal of Field Robotics
32, 3 (2015), 397–419.

[47] Federico Renda, Frédéric Boyer, Jorge Dias, and Lakmal Seneviratne. 2018. Dis-
crete cosserat approach for multisection soft manipulator dynamics. IEEE Trans-
actions on Robotics 34, 6 (2018), 1518–1533.

[48] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. 2018.
Robox: an end-to-end solution to accelerate autonomous control in robotics. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 479–490.

[49] Claudio Semini, Nikos G Tsagarakis, Emanuele Guglielmino, Michele Focchi,
Ferdinando Cannella, and Darwin G Caldwell. 2011. Design of HyQ–a hydrauli-
cally and electrically actuated quadruped robot. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 225, 6

(2011), 831–849.
[50] Anthony Stentz, Herman Herman, Alonzo Kelly, Eric Meyhofer, G Clark Haynes,

David Stager, Brian Zajac, J Andrew Bagnell, Jordan Brindza, Christopher Dellin,
Michael George, Jose Gonzalez-Mora, Sean Hyde, Morgan Jones, Michel Laverne,
Maxim Likhachev, Levi Lister, Matt Powers, Oscar Ramos, Justin Ray, David Rice,
Justin Scheifflee, Raumi Sidki, Siddhartha Srinivasa, Kyle Strabala, Jean-Philippe
Tardif, Jean-Sebastien Valois, J. Michael Vande Weghe, Michael Wagner, and Carl
Wellington. 2015. CHIMP, the CMU highly intelligent mobile platform. Journal
of Field Robotics 32, 2 (2015), 209–228.

[51] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. 2019. Navion: A 2-mw fully integrated real-time visual-inertial odometry
accelerator for autonomous navigation of nano drones. IEEE Journal of Solid-State
Circuits 54, 4 (2019), 1106–1119.

[52] MichaelWWalker andDavid EOrin. 1982. Efficient dynamic computer simulation
of robotic mechanisms. Trans. ASME J. Dynamic Systems, Measurement, and
Control 104, 3 (1982), 205.

[53] Felix Winterstein, Samuel Bayliss, and George A Constantinides. 2013. High-level
synthesis of dynamic data structures: A case study using Vivado HLS. In 2013
International conference on field-programmable technology (FPT). IEEE, 362–365.

	Abstract
	1 Introduction
	2 Background
	3 RoboShape: Architectural Insights
	3.1 Pattern 1⃝: Topology Traversals
	3.2 Pattern 2⃝: Topology-Based NN Matrices
	3.3 Using Topology-Based Architectural Mechanisms for Accelerator Design

	4 RoboShape: Accelerator Framework
	4.1 Robot Parsing to Extract Topology
	4.2 Using 1⃝ Topology Traversal Patterns for Task Allocation & Scheduling
	4.3 Using 2⃝ Topology-Based Matrix Patterns for Blocking & Task Scheduling
	4.4 Lowering to Hardware: Topology-Templated Accelerator Architecture

	5 Evaluation
	5.1 Computation-Only Latency
	5.2 Coprocessor Roundtrip Latency with I/O
	5.3 Robot Shape Implications for Accelerators
	5.4 Robot Shape Impacts Resource Utilization
	5.5 Resource Constraints Impact Performance

	6 Related Work and Discussion
	7 Conclusion
	Acknowledgments
	References

