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Abstract 

Background and Objectives 

Determination of stomach tumor location and invasion depth requires delineation of gastric histological 

structure, which has hitherto been widely accomplished by histochemical staining. In recent years, alternative 

histochemical evaluation methods have been pursued to accelerate intraoperative diagnosis, often by bypassing 

the time-consuming step of dyeing. Owing to strong endogenous signals from coenzymes, metabolites, and 

proteins, autofluorescence spectroscopy is a favorable candidate technique to achieve this aim. 

Materials and Methods 

We investigated stomach tissue slices and block specimens using a fast fluorescence imaging scanner. To 

obtain histological information from broad and structureless fluorescence spectra, we analyzed tens of thousands 

of spectra with multiple machine learning algorithms and built a tissue classification model trained with 

dissected gastric tissues. 

Results 

A machine learning based spectro-histological model was built based on the autofluorescence spectra 

measured from stomach tissue samples with delineated and validated histological structures. The scores from a 

principal components analysis were employed as input features, and prediction accuracy was confirmed to be 

92.0%, 90.1%, and 91.4% for mucosa, submucosa, and muscularis propria, respectively. We investigated the 

tissue samples in both sliced and block forms using a fast fluorescence imaging scanner.  

Conclusion 

We successfully demonstrated differentiation of multiple tissue layers of well-defined specimens with the 

guidance of a histologist. Our spectro-histology classification model is applicable to histological prediction for 

both tissue blocks and slices, even though only sliced samples were trained.

 

Keywords: Spectroscopy, Autofluorescence, Machine learning, Histology 
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Introduction 

The histological examination of human organs has facilitated surgical disease diagnosis, as pathological 

stages—including tumor metastasis—are strongly correlated with the invasion depth of the primary lesion. 

Stomach cancer is the third commonest cancer type among Koreans (regardless of gender). Overall survival 

rates after cancer treatment are increasing every year with state-of-the-art diagnostics and treatment innovations. 

Since early tumor detection contributes greatly to extended life expectancy, it is important to understand the 

gastric histological concepts underpinning cancer invasion. 

Stomach tissue is composed of mucosa, submucosa, muscularis propria, subserosa, and serosa from the inner 

surface toward the outer layer. Stomach cancer generally originates in the mucosa and infiltrates into the 

subsurface structures; therefore, diagnostic tools for determining tumor invasion depths are needed to specify 

latent tumor layers in multi-layer structures. Microscopic analysis with histochemical staining has been widely 

employed in the fields of histology to investigate biological tissue structures. Alternative spectroscopic methods, 

including infrared [1], Raman [2], diffuse reflectance [3], autofluorescence [4] methods, and combined 

modalities [5], have been developed to enable quick medical decisions. Spectroscopy yields vibrational (infrared 

and Raman spectroscopy) and electronic (absorption and fluorescence) information about biological structures 

without chemical or biological labeling. Recently, machine learning (ML) [6] and deep learning [7] have risen 

to prominence in the field of optical and spectroscopic diagnosis, outperforming traditional data processing 

methods.  

Autofluorescence spectroscopy/imaging has been considered a superior non-destructive diagnostic method 

because it detects intense fluorescence signals from nascent endogenous fluorophores. Tissue autofluorescence 

[8] emanates from collagen [9, 10], elastin [11, 12], lipofuscin [13, 14], protoporphyrin [15, 16], and coenzymes 

[14, 17], meaning that autofluorescence spectroscopy does not require labeling with exogenous dyes, so the 

results can be quickly confirmed using simple steps. Furthermore, multiple studies have demonstrated that 

fluorescence lifetime can provide substantial diagnostic information, and fluorescence lifetime imaging 

microscopy (FLIM) has been applied for diagnosing several types of cancer, including ovarian [18], breast [19], 

and lung cancer [20]. Fluorescence measurement in the spectral domain takes advantage of simpler imaging 
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systems compared to those used with FLIM, but it requires elaborate mathematical or statistical analysis because 

typical autofluorescence spectra are broad and featureless, originating from multiple fluorophores. In recent 

years, ML algorithms have facilitated efforts to yield biological and medical information from infrared, Raman, 

and fluorescence spectra.  

In this work, we developed an automated classification method for stomach tissue using a fluorescence 

scanning system and ML. Gastric tissues were obtained from the National Cancer Institute (NCI) Cooperative 

Human Tissue Network (CHTN) and cut into two or more slices for histochemical and spectroscopic evaluation. 

Tissue substructures were indicated on histochemical images according to a three-domain (mucosa, submucosa, 

and muscularis) classification, and autofluorescence data from each domain were collected for ML training with 

the guidance of a histologist. Multiple ML algorithms were applied to train and validate models to predict slight 

differences in ten features extracted by principal component analysis (PCA). Finally, ML-guided prediction 

results were compared with expert-guided classification results on tissue slices and intact tissue specimens. 

 

Materials and methods 

Stomach tissue sample processing 

Stomach tissue samples were obtained from the Cooperative Human Tissue Network (CHTN) and IRB 

review is not required for our study because the samples were not collected specifically for the research. 

(https://couhes.mit.edu/definitions#Human%20subject). Fourteen frozen human stomach tissue specimens were 

scanned on a tissue scanner. Eleven of these were rapidly cooled and sliced using a cryotome (Cryostat HM 505 

E; MICROM International GmbH, Germany). Adjacent slices were used for autofluorescence measurement and 

hematoxylin and eosin (H&E) staining, respectively. During frozen section preparation, we minimally applied 

optimal cutting temperature (OCT) compound to avoid the unwanted detection of OCT signals from sliced 

tissues. 

The slice thickness was adjusted for optical biopsies: 100 µm for autofluorescence measurements and 20 

µm for histological examination. A single section from each sliced tissue was reserved for H&E staining, and 
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photomicrographs were examined histologically. The remaining slice section was sampled on a quartz glass for 

autofluorescence mapping. Figure 1(a) illustrates the dual usage of sample species in our study. Three tissues 

blocks were preserved without dissection to be analyzed without sectioning. For the tissue blocks, photographs 

and autofluorescence images were captured without H&E staining.  

 

Instrumental setup 

We assembled a high-speed fluorescence scanner equipped with a broadband laser-driven light source (EQ-

99-FC-S LDLS; Energetiq Technology, USA), a 355-nm ultraviolet laser (SNV-40F-000; Teem Photonics, 

France), a spectrometer (USB2000+; Ocean Optics, USA), a fiber-optic probe, and a motorized scanning stage 

(MS-6000-XY; Applied Scientific Instruments, USA). The overall design of the system is based on a previously 

described instrument. [5, 21] The fiber-optic probe utilized in this study consisted of three multi-mode fibers 

arranged in a triangular configuration. One fiber is used for laser excitation, another for broadband excitation, 

and the third for signal collection. However, the lamp commonly used for broadband excitation in diffuse 

reflectance measurement was not used in this study.  

Figure 1 (b) demonstrates the instrumental setup developed for this study. Sample tissues were placed on 

glass coverslips and placed on top of a large quartz plate (t = 175 × 175 × 1.6 mm) equipped on the stage, 

which was controlled using LabVIEW software (LabVIEW 2017; National Instruments, USA). Excitation light 

at 355 nm was transferred to the bottom of a cover slip through a fiber and irradiated beneath the sample to 

induce fluorescence. Subsequently, the emitted fluorescence signal was collected through another fiber located 

adjacent to the excitation fiber and delivered to the spectrometer. For the sake of simplicity in optical 

configuration and robustness of measurement, fluorescence light was not passed through optical filters. Signal 

collection was synchronized with step-by-step stage movement along the vertical and horizontal directions. 

Given that the fluorescence originated from the tissue components themselves (autofluorescence), it was 

unnecessary to stain the stomach tissues with fluorophores. 

For autofluorescence image analysis, a sample of about 10 × 10 mm was typically measured with a 

resolution of 100 µm and an exposure time at each point of 30 ms. The laser power was maintained at 40 µW 
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at the sample surface. The fiber bundle was placed directly under the quartz plate because excitation light 

expands at the outlet of the optical fiber. Thus, the spatial resolution was determined by the core size of the 

optical fibers and the distance between the fibers and sample stage. While analyzing the intrinsic 

autofluorescence from the tissue samples, we performed data preprocessing, including intensity correction, 

Savitzky-Golay smoothing, background subtraction, and cosmic-ray correction. After the fluorescence spectra 

were obtained, their spectral intensities were corrected to complement the performance of our system. The 

performance of the optical components and spectrometer were calibrated using an NIST traceable lamp (HL-

3P-CAL; Ocean Insight). The optical background and electronic offset were removed by subtracting the mean 

spectrum from bare coverslip, corresponding to the first row of autofluorescence map. 

 

Data and results 

Autofluorescence map, photograph, and hematoxylin and eosin–stained image 

Figure 2 shows the basic scheme of the autofluorescence-based tissue classification model developed in this 

work. In our classification study, tissue specimens excised from patients were divided into training and test sets 

for ML modeling and cut into two slices or more. One of the slices from a tissue block was reserved for expert-

based histology and stained with H&E and the other slice was reserved for photographic and fluorescence 

imaging without further treatment. With guidance from a histologist, each tissue sample was divided into three 

sub-tissue regions (mucosa, submucosa, and muscularis propria) on the H&E images. Moreover, to label the 

fluorescence spectra for the training set, each region on the photographic and fluorescence images was matched 

with the corresponding H&E image. Fluorescence spectra were preprocessed with intensity correction and 

baseline subtraction to improve ML prediction accuracy. PCA was conducted to reduce the dimensions of 

spectral data space, and multiple ML algorithms were performed simultaneously. The most accurate algorithm 

was selected for the final ML prediction to improve accuracy. 

Figure 3 demonstrates the four image types typically obtained in this study: H&E–stained histological 

images, photographic images, and the maps of peak intensity and peak shift of the highest autofluorescence 

band. H&E staining is a reference method for viewing cellular and tissue structure in histology in which H&E 
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dye stains the nuclei of a cell dark blue, and eosin stains the cytoplasm pink. The structure of gastric tissue can 

be completely classified based on H&E–stained preparations, and the red and blue dotted lines in Figure 3 (a) 

and (b) outline the mucosal and submucosal domains in tissue S−1 and S−2, respectively. The photograph of 

each sample was taken while the tissue was placed on the fluorescence scanning stage and accordingly matching 

autofluorescence map, as shown in Figure 2 (c)–(h). The peak intensity maps in Figure 3 (e) and (f) represent 

the integral values of autofluorescence from 400 to 600 nm at each point, and the peak shifts in Figure 3 (g) and 

(h) correspond to the center wavelengths of the highest peaks.  

Figure 4 (a) shows the images of eleven H&E–stained tissue slices and photographs of three tissue blocks. 

Samples sliced to a thickness of 100 μm are denoted as ‘S−’, and samples not sliced are denoted as ‘B−’. In the 

histological images, the regions outlined in red, blue, and green dotted lines represent the mucosal, submucosal, 

and muscularis propria domains, respectively. Among the tissue slices, four samples (S−5, S−7, S−9, and S−10) 

had single-layer structures of mucosa or muscularis propria, six samples (S−1, S−2, S−3, S−4, S−6, and S−8) 

had double-layer structures of mucosa/submucosa, and one sample (S−11) had a triple-layer structure of 

mucosa/submucosa/muscularis propria, as shown in the figure. The size and aspect ratio of the images was 

adjusted for comparison, and the scales for each image were different. 

Figure 4 (b) illustrates the autofluorescence intensity images of eleven tissue slices and three tissue blocks. 

All spectral intensities are shown in different scales for each image, and the scale bar for each image is shown 

in Figure S1 in the Supporting Information. For tissue blocks, the fluorescence intensity depends not only on 

the tissue composition but also on the contact environment on quartz glass. The voids and leakage of tissue fluid 

between tissue and glass influence changes in refractive index, affecting the collection efficiency of 

autofluorescence signals or generation of oscillating interference patterns. Fluorescence signals were collected 

through a fixed fiber probe, while moving the sample position at intervals of 100 µm in whisk–broom scanning 

mode. Impurities, such as dust collected during sample preparation, were distinguished from the signals of 

interest because they had distinct fluorescence spectra. 

 

Feature extraction using PCA 
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Since we recorded fluorescence with signal point-by-point mapping of tissue samples, the spectrum at each 

point was used for ML-guided tissue classification, and many spectra labeled by the histologist were trained for 

the modeling. For instance, when we set the spectra of S–1, S–2, S–3, S–4, and S–5 as the training set for ML 

modeling, a total of 18,000 spectra were included in the training set. To reduce the dimensions of numerous 

spectra, we extracted characteristic features using PCA. PCA scores were employed as training and validation 

input data, and the number of principal components (PCs) was important for improving modeling efficiency.  

The scree plot is a general method for determining the number of PCs to retain in an analysis by plotting the 

eigenvalue with respect to the number of PCs. Figure 5 (a) represents the eigenvalues for 30 principal factors, 

with the plot flattening out over four principal factors, representing when we performed PCA analysis on S–1, 

S–2, S–3, S–4, and S–5. The cumulative variance plot in Figure 5 (b) shows that four factors were sufficient for 

dimensionality reduction for PCA, which covers over 99.999% of eigenvalue space. Additionally, Figure 5 

demonstrates the loading vectors of (c) PC 1–5 and (d) PC 6–10, and the common spectral structures are shown 

in the plot. The first five loading vectors in Figure 5 (c) represent the main spectral shape of autofluorescence, 

and the sixth to tenth vectors in Figure 5 (d) incorporate the periodic oscillations resulting from the multiple 

reflections at the tissue–substrate interface. 

 

ML-based spectro-histology modeling  

During the experiments, we recorded fluorescence signals using point-by-point mapping in whisk–broom 

scanning mode. All the spectra were used for ML-guided tissue classification. A total of 60,457 

autofluorescence spectra were analyzed, with 18,000 in the training set and 42,457 in the test set. Since the ML 

classification was affected by training set selection, feature extraction, and the classification algorithm, we 

attempted to build a classification model using multiple ML algorithms with varying number of PCs. The 

accuracy of each ML model was compared using decision-tree, logistic-regression, Bayesian-classification, 

support-vector-machine, and k-nearest-neighbors algorithms. The bagging tree (random-forest algorithm) 

among the tested algorithms yielded the most accurate results for our dataset. The bagging tree model is a 

prominent ensemble learning algorithm that effectively combines the predictions from multiple decision tree 

9            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

models to enhance the accuracy and robustness of the overall model. These models operate by classifying input 

data into respective categories. 

Figure 6 shows the classification results of fourteen tissues in parallel with images of H&E–stained 

preparations. Figure 6 (a)–(c) show the H&E–staining images in the left column and classification maps in the 

right column, with the training set and test set of (b) tissue slices and (c) tissue blocks. Red, blue, green, gray, 

and black pixels represent mucosa, submucosa, muscularis propria, impurities, and empty background, 

respectively. The gray part of the noise originates from foreign substances, such as dust. Given that the 

prediction accuracy of ML varies depending on the data used for training, we attempted the learning with 

varying training set data. Finally, we divided all samples into training vs. test set, where the samples with clear 

histological structures were selected as the training set. For the classification results shown in Figure 6, five 

tissue samples (S–1 to S–5) were employed as the training set, and the other samples were used to test the 

prediction. Figure 6 (b) and (c) confirm that the most of the ML-based classification results were in concordance 

with the histological examinations in most tissues. 

The prediction accuracy for our model is summarized in Figure 7 (a), with accuracy values of 92.0%, 90.1%, 

and 91.4% for mucosa, submucosa, and muscularis propria, respectively. Additionally, we investigated the 

association between model prediction accuracy and the number of principal factors used for input features. 

Figure 7 (b) is the plot of prediction accuracies with respect to the number of PCs. The out-of-bag (OOB) 

observations were the observations not included in the bootstrap samples, and OOB classification errors in 

Figure 7 (c) were used to estimate the prediction error in the bagging tree algorithm. The plot in the figure 

represents the OOB error of our model with respect to the number of grown trees, and the optimal number of 

trees were determined based on OOB error calculations. 

 

Spectral analysis of autofluorescence spectra 

Autofluorescence spectra of individual tissue layers are shown in Figure 8. We present the spectra of S–1 

and S–5 as prototypical spectra of mucosal, submucosal, and muscularis propria layers. S–1 tissue had 

submucosa and mucosa, and S–5 had only muscle structure. In Figure 8 (b), (c) and (e), it is noted that 
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fluorescence intensity strength decreased from the submucosal layer to the mucosal layer to the muscularis 

propria. 

 

Discussion 

The mucosal and muscularis propria layers are composed of muscle fibers and epithelial cell line that emit 

relatively weak fluorescence, while the submucosal layer is composed of collagen fibers that emit strong 

fluorescence [22]. For colon tissue, it has been reported that superficial submucosal fluorescence originates 

mainly from collagen [23], and Izuishi et al. attribute the unexpected contribution of collagen to glycosylation 

and the relatively large amount in colon tissue. Considering the similar composition of gastric tissue and colon, 

we surmised that the main contributions of the mucosa and submucosa come from collagen components. The 

relative intensity of the muscularis propria fluorescence differed from that emitted by submucosa for tissues 

measured in our study. 

In the case of S−1 and S−2 in the figures, the photographs and autofluorescence maps match well with the 

images of H&E–stained preparations in terms of shape; however, the H&E images and 

photographic/fluorescence images did not always match well for all tissues. There were two reasons for 

dissimilarities between H&E–staining images and optical photographs. First, there were slight variations 

between sample compositions and structures were after the slice thickness of 100 µm was achieved because 

gastric tissue structure varies continuously along the depth. Second, the cryotome slicing process is delicate 

work and is cutter dependent. For instance, the pressure and speed of the cutting blade affect the shape and size 

of each slice. Even when the appearance of a photograph substantially differed from an H&E–staining image, 

the histologist could compare the H&E preparation and the photograph to match the inner structure. 

The prediction accuracy of ML modeling depends on the abundance of information, which is determined by 

the number of PCs in this study because the PCs were used as input features. To find the optimal number of 

features, we used the scree plot of cumulative variance shown in Figure 5, which depicts the accuracy of the 

PCA and reduction of dimensionality; four PCs seem to be sufficient for the reduction. Meanwhile, the accuracy 

of ML modeling increases in accordance with the number of PCs and remain constant over 6 PCs although 4 
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PCs for dimensionality reduction. To assure the model accuracy of multiple algorithms performed, we used 10 

PCs as an input feature for the training and validation. 

The prediction of our model is over 90%, as described in the confusion matrix in Figure 7 (a). This accuracy 

can provide the clinical decision on the depth of invasion of cancer across mucosa and submucosa. Unlike tissue 

slice, tissue blocks show the gradual structural transition among tissue layers because of their thickness. Depth-

resolved spectroscopic study is expected to shed light on resolving the layer of block tissue in three dimensions; 

previously, we investigated the fat structure of swine tissue with depth-resolved Raman spectroscopy [24]. 

Our tissue scanner could acquire a spectral image of a 10 × 10 mm2 tissue section with a resolution of 100 

µm in just 15 minutes; it could be significantly improved by using a high-power light source or faster stages. 

Compared to conventional biopsies, this method is faster as it only requires the analysis of the sliced and non-

sliced sample without the time-consuming preparation process. We have been developing the tissue scanner as 

an intraoperative cancer margin assessment tool. The goal is to reduce the secondary surgery rate caused by 

remaining cancer tissues by providing real-time feedback of surgical margins in the OR, especially during 

tissue-conserving surgery. As the system is based on intrinsic tissue signal, it does not require any additional 

tissue processing. Surgically removed tissues can be measured on the tissue scanner before transferring to the 

pathologist.  

With recent improvement of ML algorithms, not only cancer-noncancer differentiation but also 

differentiating subtypes of tissues have become possible. Whether ML-based spectro-histology can replace the 

current standard procedure is controversial because the discussion involves many non-technical aspects of the 

procedures. By utilizing accumulated database, pathology information on the freshly excised tissues will be 

available without in-house pathologists. Moreover, we also expect that the method can augment the current 

function of pathologists by providing a second opinion or supporting difficult cases. However, it is important 

to note that the use of machine learning technology in the operating room or endoscopy suite would require 

rigorous testing and validation to ensure its safety and effectiveness. Additionally, the technology would need 

to be integrated into existing clinical workflows, and trained clinicians should interpret and act on the results. 
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Conclusion 

In this study, we developed a method for rapidly diagnosing and classifying gastric cancer using 

autofluorescence and ML. We trained the ML algorithm using well-controlled specimen tissue and successfully 

classified the tissue blocks. We expect that our method will pave the way for label-free in situ tissue 

classification and optical diagnosis via endoscopy.
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Figure legends 

Figure 1. (a) Sampling of human tissues for histological and spectroscopic examination. (b) Schematic diagram 

of instrumental setup. 

 

Figure 2. The scheme of the machine-learning based spectro-histology classification model. The upper black 

dotted box corresponds to the training step in modeling, and the bottom red box corresponds to the test of our 

model with tissue blocks and slices. 

 

Figure 3. (a) and (b) H&E staining image, (c) and (d) optical photographic image, (e) and (f) autofluorescence 

intensity maps, and (g) and (h) peak shift maps for tissue S−1 and (e)-(h) tissue S−2, respectively. Red and blue 

dotted lines correspond to mucosal and submucosal regions, respectively. 

 

Figure 4. (a) Histological diagnosis of tissue slices (S−1 to S–11) and tissue blocks (B−1 to B–3): the regions 

outlined in red, blue, and green dotted lines represent the mucosal, submucosal, and muscularis domains, 

respectively. The classification was determined by a histologist. (b) Fluorescence intensity 

 

Figure 5. (a) The Scree plot and (b) cumulative variance with respect to principal components for machine 

learning modeling. (c)–(d) Calculated loading vectors of PC1 to PC5 of the fluorescence spectra training set 

tissues 

 

Figure 6. H&E–staining images (left column) and machine learning-based classification maps (right columns) 

of tissue slices belonging to the (a) training set and (b) test set. (c) Photographs and classfication maps of tissue 

blocks. 
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Figure 7. The accuracy of our machine learning–based model with respect to the number of principal 

components selected for dimensionality reduction and the table of true-positive rate (TPR) and false-negative 

rate (FNR), (b) Out-of-bag observation plot for the bagging tree model. 

 

Figure 8. Spatially resolved autofluorescence image of (a) S1 and (b) S-5 tissue slices and observed spectra 

obtained from the (c) mucosal, (d) submucosal, and (e) muscularis regions. 
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