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An experimental investigation of natural convection for
vertical, parallel plates is made. It is found that there exist three
basic regions for the free convective phenomena for adjacent plates,
each region with a different dependence on the plate spacing b.

The first region occurs for the case where the plates are

at a large distance from each other, i.e. for large values of the
dimensionless parameter Gr b/L. This is the situation for
virtually no boundary layer interaction. For this situation the
heat transfer coefficient is

e

hb =.560 (Gr p/n

which turns out (as expected) to be independent of b.

For the region of very small Gr b/L the equation for the heat
transfer coefficient was found to be

hb =.0370 (Gr b/L)
 =k

This is the region where the boundary layers interfere and suppress
the convective process.

The third region is the region for intermediate values of
Gr b/L. No exact solution to this region quite applies since the
dependence is gradually changing in character. However an



approximate solution which matches the data reasonably well is

hb =.170 (Gr b/L)*
k

This information is then used to obtain a condition for

optimization of the free convection heat transfer in enclosed
vertical spaces. It was found that the optimum value of Gr b/L was
of the order of 100.
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NOMENCLATURE

Area of heat transfer, area of plates

Distance between adjacent plates

Specific heat of fluid

b

1

Proportionality constant

Proportionality constant

Proportionality constant

View Factor

Black=-surface over-all interchange factor

Over=-all interchange factor

 ~~
17

Gr

Acceleration due to gravity

q oT b3
Grashof Number =

3ATLGrashof Number S34 il

Coefficient of heat transfer

Mean value of the coefficient of heat transfer

Thermal conductivity of flu.

N11

Nu.

Nu,

Height of plates

Nusselt Number hb /k

Nusselt Number RL /k

[Local Nusselt Number hb/k

Pressure

p= Prandtl Number Ve



Rate of heat transfer

Temperature

5

-y

-—

T" wet

is

Temperature of ambient fluid

Mean Temperature of Plate

Temperature difference, T |

Velocity of fluid

Re

Dimension available for fins

Coordinate along plate normal to the driving force

Coordinate perpendicular to the driving force

Greek Letters

Thermal diffusivity, kfc f

Coefficient of volumetric expansion

Boundary layer thickness

Emissivity

Kinematic viscosity= JF

Density of fluid

Temperature difference, T = Teo

 Ee

".

I'emperature difference, T , = Too

Viscosity of fluid

1
Dimensionless pazameter from reference (6), 8 [a b/L



INTRODUCTION

Fluid motion which is caused solely by the density gradient

created by temperature differences is called natural or free

convection. In such flow heat is transferred from the surface of

the object to the fluid layers in its neighborhood.

Laminar free convection on a vertical surface has been

a subject of study since Lorenz (1)* published his pioneer paper

in 1881. Since then, however, a major part of the work on

natural convection over vertical plates has been confined to

single vertical plates under a variety of prescribed wall conditions

An exact solution of the boundary~layer differential equations for

free convection on a vertical flat plate with uniform wall temper

ature exists (2), and some excellent approximate solutions are

also available. (A solution from Eckert (3) is reproduced for

reference in Appendix I)

It can be shown, from dimensional considerations, that

the heat transfer in free convection is a function of the Grashof

number and the Prandtl number. Therefore, the dimensionless

hzat transfer coefficient, the Nusselt number, is then a function

of these same quantities:

Nu =f (Gr, Pr)
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One of the applications which has been given considerably

less attention is that concerning enclosed spaces, e.g. the case of

a number of parallel vertical plates in close proximity. For this

situation it can be shown that if the plates are close enough so that

there is interaction in the convective phenomena of adjacent plates,

the distance between the plates as well as the plate height must be

included in the analysis and therefore

Nu =f (Gr, Pr, b/L)

The purpose of this paper is to investigate the functional

dependence of the heat transfer coefficient of heated vertical

plates to the spacing between the plates. In the experimental

model to be used the enclosing fluid will be air

“Numbers in brackets pertain to numbered references in the

bibliographv
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THEORETICAL CONSIDERATIONS

For a single flat plate which is heated, the phenomena of

laminar free convection can be explained as follows. As the plates

are heated, the fluid in the immediate vicinity experiences an

increase in temperature as a result of the heat transfer from the

plate, and the fluid begins to rise vertically. In this manner a

boundary layer is developed, with zero thickness at the lower edge

and with increasing thickness in the upward direction.

If we have two adjacent plates, the effect is the same so long

as the thickness of the boundary layer everywhere remains less than

half the plate separation, i.e. so long as the two boundary layers

never intersect.

An exact solution applicable to both the above situations

can be found in reference (1). Also, an approximate solution using

the relatively simpler integral technique is reproduced in Appendix I

If instead of the case of non=interacting boundary layers

we have the situation where they do meet, the problem becomes more

involved. In fact an exact solution for this case is not available.

For the situation where the boundary lavers do not interact

we can derive the following expression for the boundary layer thickness.

- a Vy B Ow -Yy
§= 3.93 (ZL) (La52+) (Fp) x
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We can make this expression dimensionless by dividing this by

X
the plate spacing b, and noting that o =Pr.

5: 3.93 (952+ Pr }¥4 (4 Bou “4 yeb ( Pr ) ( Vv ) X b

Bath’
By forming a Grashof number rE and introducing .., the

height of the plate we can obtain the following:

£33 (agate) (er 4) (4)
it can be shown Fh ak

h =2k/&amp; (see reference (3), pg. 315)

If we use this relationship and form a Nusselt number based on the

plate spacing
hb

Nuk =2 b/§
can show that for the local Nusselt number

EI ve (LE)
Nu, = .508 (.952 + Pr) «(Gr b/1) x

Ne

By integrating this expression over the length of the

plate we can show that for non~interacting boundary layers the

average value of the Nusselt number is 4/3 the local value at the

top of the plates.
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For air with a Prandtl number Pr = 714

boyy
Nu = .504 (Gr I) :

This is valid for all situations where there is no boundary

layer interaction, i.e, for values of Gr po/Lwhich fulfill the

condition .

b 2A Omax.

Using this criteria in the equation for the dimensionless

boundary layer thickness we find that this expression for the

average value of the Nusselt number is valid for

~
Gr b/L#75000

It should be pointed out here that the parameter b shows

up in the equations only because of the way we defined our functions

By writing these equations out

- gBatblhhb/k = .504 ( yr TT) $

and rearrange a bit

- 8 aT v,
hb/k = .504 (Errth

it is obvious that b can be cancelled out and that L is the important

parameter. Note also that by multiplying both sides by L. we obtain

the standard form for the Nusselt number of a flat plate in free

convection.
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hL =
3 = .504

BaFr ree  4

Nu, =f (Gr)

As noted previously, if there is interaction, the situation

is much more complicated. The purpose of this paper is to

analyze the situation emperically and arrive at a practical

emperical equation which will describe the phenomena.

From a physical interpretation of the phenomena it is

expected that in the region where there is interaction the Nusselt

number will still depend on the same parameters with a particular

dependence on the ratio b/L.......

Nu =f (Pry, Gr, b/I} =f (Pr, Gr b/I}

and ior the case of constant Prandtl number

Nu =f (Gr b/I)
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CONSIDERATION OF RADIATION EFFECTS

[In ordzar to properly investigate the phenomena of

convection, it is important to correctly separate the effects of the

convective process from the simultaneous process of radiation.

There are two choices presented for making this correction

One can either directly measure the radiation or one can calculate

it, using the well known relationships of radiant heat transmission.

Unfortunately the proper measuring fechniques call for some

relatively elaborate equipment which were not available for this

investigation. Therefore, the method employed here was to

calculate the radiation for each condition examined.

To perform these calculations itis nreee ~ ry to know two

fundamental parameters: the view factor F, and the emissivity

Using these we can calculate the term

F=f (¢,F)

and use this in the radiation equation

2.= AF (1-1)

The view factor of interest for our geometry of vertical
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plates is that which measures the fraction of the radiation leaving

the reference plate which is intercepted by the cooler surroundings.

This F,g is 1 = F,9 where F,3 is the radiation which is intercepted

by the adjacent plates. If these adjacent plates were not held at

the same temperature as the reference plate there would be some

heat transfer q' where

g" = f(Fa,6,T,Ta)

Since however all plates were held at the same temperature the only

radiant heat transmission from the reference plate, Gs is given by

the previously cited relationship

y=AFe (1-1)
here

ye: (€-1)+ chiFio

1a]

Fo = Fio * Fia Fio

For any geometry employed the calculation of Fj involves

a lengthy algebraic derivation. This calculation has been performed,
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however, for the particular geometry used, i.e., for 2:1 parallel

rectangular planes, and has been tablulated in McAdams (4). Using

these results a plot of F,as a function of plate separation is plotted

graphically on the following page. Also plotted is the curve l-E,as

a function of plate separation.

A more involved process was the calculation of the plate

emissivity. In order to minimize the effect of any error resulting

from the uncertainty of this parameter, different surface finishes

with different emissivities were examined and the results of the

separate convective evaluations were compared. A single vertical,

heated plate of a given finish on the sides was allowed to stand

until well past the time necessary to achieve steady state. The edges

of the plate were painted with a heavy black lacquer of a known

emissivity of .97.

The temperature and heat dissipated by the plate were noted

and then, using the correlated data of previous investigations of

free convection the heat given off in free convection was calculated.

Also the heat lost to radiation from the edges was calculated.

Both these terms, the heat dissipated in convection and by

radiation from the edges were subtracted from the total dissipation.

Then the remaining power was used to calculate the emissivity of

the sides .







a Ra

All the tests run, at a number of power levels, compared

rery favorably within the limits of experimental error.

Once € and F were known the calculation of heat lost due

to radiation was relatively easy. It is of interest to know how

important any error in the value of € is in the final calculation.

Some typi cal evaluations are shown in Appendix II
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TEST APPARATUS

In the preceeding sections it has been noted that Nu =f (Gr, Pr, b/I)

For the studies proposed here the Prandtl number of the enclosing

fluid (air) may be considered to remain constant. Therefore we may

say that Nu =f (Gr, b/I). The apparatus must be designed to permit

the variation of these parameters and to measure the response of

the system to these changes.

The test section as shown in the drawing on the following page,

consisted of three parallel, vertical plates. The two outside plates

were made of aluminum. The center plate, which may be referred

to as the reference plate, was made of copper. All three plates

had the same dimensions of 8" x 4!" x 1/4"

At either end of each outside plate there was fastened a small,

hooked metal "slider'. These sliders were thermally insulated

from the plates by means of a pair of phenolic fiber washers. These

fixtures permitted the outside plates to slide on a pair of stainless

steel rods and allowed the plate spacing to be adjusted to anv value

desired. This distance and the parallel alignment of the plates was

measured bv means of a vernier micrometer .

The center plate was monitored by means of twenty-five copper

constantan thermocouples imbedded in a network of shallow channels
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These channels were then covered with a high conductivity, silver=

aluminum epoxy and the surface then ground smooth. This eliminated

as much as possible any variation of the temperature profile due

to disturbance of the plate geometry. The outside plates were

monitored by two thermocouples each, These thermocouples were

inserted from the outer side of the plates to prevent distrubing the

flow in the interior regions.

All three plates were heated by means of a pair of nichrome

heating coils wound from #32 wire. These elements were encased

in glass tubing and inserted in the center of the plates as shown

in the schematic. Care was taken to wind the coils so that the

electrical resistance of each was essentially the same. This was

controlled by winding the coils longer than necessary and cutting

them to the desired lengths after comparing their electrical character

istics at various power levels.

The reason copper was chosen for the center plate was to

reduce the thermal gradient in the reference section of the system,

i.e, to maintain as closely as possible an isothermal plate. It

should be noted also that this minimization of the thermal gradient

and the symmetry about the heating elements justify the monitoring

of only half of the plate



cI

The two coils in the reference plate were connected in a

parallel circuit and the power through them was regulated by one

of the two power supplies available. The four coils in the outer plates

were all connected in parallel and driven by the second power supply.

By this arrangement the power or temperature of the reference

plate could be controlled independently of the outer two.

The surface finish of the copper plate was varied. It consisted

in turn of either the bare copper~epoxy surface, a black painted

finish, and finally an aluminum surface.

This aluminume~on~copper surface was achieved by coating

the surface of the plate with an extremely thin layer of the high

conductivity epoxy and "ironing on' a piece of alloy aluminum foil

which had been cut to size. When the epoxy set, the surface had

adhered to the copper extraordinarily well. The thermal resistance

of the epoxy layer was éstimated to be of the order of 1/200 of a

degree Farenheit per BTU/hr. or quite negligible relative to the

parameters measured.

The thermocouple response was measured on a millivolt

potentiometer. The responses were measured directly and at times,

to make the procedure easier, through a rotary switch. There was

no measurable variation between the two methods.



A tabulation of all the apparatus used can be found in

Appendix III, List of Equipment.
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EXPERIMENTAL PROCEDURE

The fundamental experimental procedure involved in this

investigation was to monitor the temperature of a reference plate

as a function of both the heat given off by the plate in free convection

and its distance from two adjacent, parallel plates held at the same

temperature as the reference plate.

A total of three plates (rather than two, as was the practice

in some preceeding investigations (5))were used in order to make the

reference plate more sensitive to the spacing and to be able to

correlate the data with a minimum of corrections for extraneous

effects. The temperature of the center plate, which will often be

referred to as the reference plate, was monitored by means of

twenty-five thermocouples. The outside plate temperature was

monitored by means of four thermocouples. The ambient temper-

ature was read on a mercury thermometer and was cross checked

by means of a shielded thermocouple placed in the free air.

The process of taking the data was basically quite simple .

consisted of the following steps:

| , Adjusting the plate spacing on both sides of the reference

plate to the desired value.

~ Heating the center plate and the outside plates.
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2 Taking a preliminary set of temperature readings

to check if the outside plates were at the same temperature

as the reference plate.

t+. Adjusting the power into the outside plates to correct any

temperature difference found in the preceeding step.

. Taking the ambient temperature and noting the total5

power into the reference plate.

6. Taking the complete set of temne¢rature

for the plates.

readings

7. Calculating the corr~ctions for tne power lost to

radiation, etc.

8. Reducing the data to a meaningful form.

In order to minimize any errors which may arise due to

procedure, two basis cycling techniques were applied. The first

consisted of making a set of runs at a constant spacing and allowing

the power input to vary. And the second consisted of operating at

a constant power level and allowing the spacing to vary.

By plotting the temperature of the reference plate as a

function of time it was found that forty-five minutes were more

than sufficient waiting time to allow the system to come to steady

state



The losses of the system through the insulation to supports

was checked and found to be much less than any of the experimental

errors.

We should also note here that the temperature gradient which

existed in the copper plate was, at worst conditions, approximately

6% of the mean temperature difference from the copper plate to

ambient. That is to say, the temperature of the plate was every~

where within approximately £3% of the mean temperature.

The gradient in the aluminum plate was higher, but the temper-

atures were still within £5% of the mean temperature. Due to this

difference in the gradients it was obviously impossible to keep

the plates at exactly the same temperature, point for point. It

was, however, relatively easy to keep the mean temperatures the

same and the point by point temperatures varied bv no more than

+30, .

The corrections to the power dissipated consisted of subtracting

he following terms from the net power in:

L. The heat given off by radiation from the sides of the plates.

2. The heat given off by radiation from the ends of the plates.

3 The heat given off by free convection from the ends of the

rlates .
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All three of the above dissipations were extraneous to this

investigation. The only power of interest was that which remained

after these corrections, i.e. the heat dissipated by free convection

from the sides facing adjacent plates. This is the power which is

used in reducing the data in the following sections
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PRESENTATION AND DISCUSSION OF RESULTS

Since we have established that in free convection for adjacent

parallel plates the Nusselt number is a function of the Grashof

number and the ratio b/L, the most obvious and informative

presentation of the data would be a curve showing the variation

of Nu vs. Gr b/L. This has been done and is shown on Graph I.

From this graph it should be possible to obtain a functional

relationship between the parameters.

This curve is in very close agreement with that obtained by

W. Elenbaas (5). Also the shape of the curve is similar to the

relationship obtained by W. Hinkle (6) using an approximate

integral technique. Hinkle's equation relating Nu to Gr b/L may

he written

Nu ={(A«Be“CM +D o = Gr b/L

where

M.=81fcr b/L
where A, B, C, D, and E are constants to be determined

emperically. A relationship of this kind is very awkward to be

used in any practical application. Therefore, rather than adjust

the constants a simpler, approximate solution will be sought.
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From Graph I it can be seen that for high values of Gr b/L

the curve does approach the 1/4 power dependence predicted. There

is disagreement in the value of the proportionality constant. From

the graph

Nu = .560 (Gr b/L

instead of

Nu = .504 (Gr b/L}
iL

as predicted. Also the limit for the validity of this equation

occurs at a lower value than expected. Emperically, the 1/4

power dependence extends to Grashof numbers as low as 150 rather

than merely to 5 x 103 .

These discrepancies are probably due to the fact that our

constants were established by using results from the approximate

solution. Although the form of the solution can be predicted

reasonably well, such a variation in the constants must be expected

when applying the integral technique.

In the region of the curve where Gr b/L is small the log-log

relationship again assumes a straight line character and it can be

seen that

Nu = Constant Gr b/L = .037 Gr b/L

Chis behavior applies for Gr b/L smaller than approximately 25.
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Also, the value of the constant is found to be ,037,

[n the region between the two extremes of the curve, the

character changes gradually from the linear dependence to the 1/4

power dependence. As a first approximation we can assume a

1/2 power dependence in this region. The resulting approximate

curve for this region is shown as a dotted line on Graph I. This

fits the data well within 10%.

The table below sumr~~-"~-¢s these results.

Gr b/L

Gr b/L &amp; 25

A Gr b/L 4150

150 L Gr b/L

N {1

b/L
Nu= ,037 Gr "

b/L
Nu= 170 (Gr /

Nu= 560 (Gr b/L)

The physical phenomena behind the different behavior of

these regions may be reasonably explained in the following manner

At high values of Gr b/L, where the dependence is the 1/4

power equation, we have the situation of non~interacting boundary

layers. This was discussed at length in the chapter on Theoretical

Considerations. In this region the effective boundary laver

thickness is everywhere less than 1/2 the plate spacing and the

heat transfer is independent of the spacing.
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- 3 Yu

hb = C, (FBare b )
T Vv L

T= oc, (ESATA
In the region of linear dependence, at low values of the

Grashof number, the free convection is suppressed. This region

represents the situation when the boundary layers interact almost

immediately. This means that &amp; , the boundary layer thickness

becomes greater than 1/2 the plate spacing just above the leading

edge and therefore meets the boundary layer of the adjacent plate.

I'he combined layer then virtually fills the enclosed space and for a

major part of the distance along the plates the center line temperature

may be well abgve the actual ambient temperature of the fluid.

Looking at the equations for the heat transfer coefficient we find

a strong dependence on the plate spacing.

- 98a71 b¥
bh =Cy ( v*L )
= ® aT
a= Cc. k (ST) bd

In fact the heat transfer coefficient is proportional to the spacing

~11bed

The region in between these extremes is the region between

the situation of complete interaction and no interaction. That is,

the transition region is the case where the boundary layers interact
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part of the way up the channel. This corresponds to the gradual

change in slope of the curve, which indicates that the length of the

region of interference is gradually changing

Taking this into consideration a better solution for the

heat transfer coefficient in this region (relative to the first approximate
hb +
— aT

equation of k =C, @ReTb 2 can be obtained by doing this

analytical computation in stages. The thickness of the boundary

layer along the plates can be calculated and the points of intersection

found. Then for the region below the point of intersection, the equation

for no interaction may be used and for the region above, the equation

for complete interaction. The two results then may be suitably

averaged to give the net heat transfer coefficient. Although this

would still be an approximation it should give a result slightly closer

to the actual curve than the initial 1/2 power approximation.

In order to give an overall picture of the net effect of varying

the plate spacing, a more direct presentation of the data is often

meaningful. This direct effect can be shown by plotting the mean

temperature rise of the plate versus the power input for various values

of the spacing. This has been done for some of the data and is

shown in Graphs II«VIII and a composite of these curves in Graph I.

From these curves it is immediately obvious that as the spacing is

decreased from 3/4", the effectiveness of the free convective pheno=~

mena decreases noticeably. This is also emphasized in Graph I where

mean heat transfer coefficient for a typical ATis plotted against the

ratio b/T,























There is also another fact that should be noted. The curve

for b = 3/4" indicates that at this spacing the plate was cooler

than the plate for b =@ , rather than warmer as would be expected

from all that has been presented thus far.

There is no conclusive explanation for this. There is,

however, a physical argument which can be given to make this

behavior plausable.

The boundary layer in natural convection is an ''envelope"

for two fluid parameters: the temperature and the velocity.

Although the two are coupled, the correlation between the two is

not a one to one dependence. In the mode of interactions discussed

previously the principle behind the effects was essentially the fact

that the mideplane temperature for the interacting boundary layers

was effectively higher than the actual ambient temperature .

Furthermore it has been noted that the region for "destructive"

interference occurred at values of b/L much smaller than the

actual boundary layer thickness.

Perhaps then, in addition to the destructive interference

found for boundary layers whose mutual penetration is larger, there

is a secondary beneficial effect for those which just overlaop.

Analvtically, this argument mav be justified by noting that,

for boundary layers which just overlap, there no longer exists the
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condition that the fluid velocity go to zero at § . Therefore, the

velocity of the flow may be greater for slightly interacting boundary

layers without a corresponding increase of the mid-plane temperature

above the actual ambient. If this effect does exist then an improve~=

ment of the nature observed might be expected.

On the other hand, there is another potential explanation.

There is the possibility that though the radiation corrections discussed

were mutually consistant for the finite spacings investigated, the jump

to an infinite spacing (F=l) might have introduced a small error

which would show up as the effect observed. As plausable as this

possibility seems, the care taken to avoid this would tend to favor

the former argument of a beneficial interaction
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PRACTICAL CONSIDERATIONS

There are a great number of engineering applications for

free convection cooling (and heating) which make use of vertical

parallel plates or fins. In such applications it is quite important

to optimize the efficiency of the device. Using the relationships

found in the preceeding sections, some criteria for maximizing

the efficiency of a free convection system will be derived.

Since our curve for the Nusselt number as a function of the

Grashof number and b/L is continuous, and increases continually

with increasing Gr b/L, our three regions can be investigated

individually and the results matched at the boundary where the

regions meet,

In region I, for constant 8T and L, it can be shown that
k

3 Bar bY ee
h = .037 &gt;) b ~ bh

[n region II
k

= Bath! Yo T
h =.170 ar) b ~

[n region III

oo 4
h = .560 (@Barb ) 4 KX _constant

yeL b

The heat dissipated by a given svstem ‘n free convection is

proportional to the total surface area. The total area in a finned

system is equal to the area of a single fin times the number of fins
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For a given available dimension W, the number of fins (if we neglect
Ww

the fin thickness) is equal to b . Therefore the area is proportional

w
to b.

The heat transfer for a constant &amp;T is proportional to hA.

Combining this with the above equations we obtain the following

dependence in the three regions

Region I

3 wb W/ bv

Region II

Region III

J ~ pb+*W/b =constant

j~constant «W/b~1/b

Therefore if the product of Gr b/L for our system is in

region I, the net heat transfer by natural convection will be increased

considerably by using fewer fins at a wider spacing. The opposite

is true of region III. Here more fins can be added even though we

reduce the spacing. If Gr b/L is within region II, there is no change

in the heat transfer for a slight change in spacing
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Matching these three criteria at the points where fhe regions

merge we find that the optimum condition is for the system is that

the product Gr b/L should be in region II. This is indicated in the brief

sketch below.
/ x [ECD2 - Lbe ts | | b 96357

~L
Effectiveness

3
Lax.

FPievReXC

[t is worth emphasizing here that this analysis is valid only

if the boundary layers are essentially two dimensional. This

condition is satisfied if the dimension perpendicular to both b and L

is large compared to &amp;. If these results are to be applied to three

dimensional systems, e.g. vertical tubes, an equivalent diameter

must be used in place of the spacing b

Also it should be pointed out that a more exact analysis of the

optimum criteria could be carried out using a more accurate represent-

ation for region II than the 1/2 power approximation. This would then

result in more sharply defined conditions for optimum operation.
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This would replace the constant effectiveness of region II as sketched

above by a curved condition. However, after referring to the shape

of Graph I, it does not seem likely that the curve would vary from

the present horizontal line by very much
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CONCLUSION

From the data obtained in this investigation the following

conclusions may be drawn;

There are effectively three regions of flow in natural

convection heat transfer. First there is the region in which the

boundary layer forms naturally and remains unmolested. This

corresponds to the mode of free convection which is most familiar

and the case usually assumed in the design of systems. This occurs

when the free convection surfaces are far enough apart that there is

no mutual interference between the flow patterns.

At the other extreme is the case which is the situation

where complete mutual interference has occurred. This is the

case corresponding to placing free convection surfaces too close

to each other so that the boundary layers overlap considerably and

the convection phenomena is suppressed.

The third case is the region of transition. This is the

region which defines the gradual change from no interaction to

complete interaction. As would be expected the convection in this

region is effectively an average of the two extremes.

For each of these regions a practical emperical equation

was derived relating the effective heat transfer coefficient to the

parameters of the system. The limits of the three regions and the



equations governing the heat transfer are summarized below

~~ Gr b/L

Gr b/L « 25

25 4 Gr b/L 4 150

150 &amp; Gr b/L

Nu

Nu = .037 Gr b/L

Nu =.170 (Gr brn)

Nu = .560 (Gr brn)

In addition to the pronounced suppression of convection

at low values of Gr b/L, another effect was noted to occur for

slightly overlapping boundary layers. It appears that for such a

case there is the possibility of beneficial interaction, that is, a

possible increase in the effectiveness of the heat transfer. This

occurred for values of Gr b/L around 10° . It is expected that this

effect is due to mutual reinforcement of the velocities in the

boundary laver .

Using the basic data on the effectiveness of heat transfer

for the three regions a further analysis was carried out to discover

if there existed a condition which maximizes the hA product in

free convection. This would provide criteria for obtaining maximum

heat dissipation bv free convection per unit volume. The condition

for optimum operation is that the product of Gr b/L should be equal
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to 100, Any variation of plate spacing which increases or

decreases this value decreases the amount of heat that can be

dissipated at a given 8T . Since this product Gr b/L is proportional

4
tob , it is obvious that the proper spacing is quite critical for

optimum performance
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RECOMMENDATIONS

Although the results obtained in this investigation appear

quite inclusive concerning the natural convection process for adjacent,

parallel plates there remains much work which would be quite

informative.

In particular the possibility of increased heat transfer due

to the beneficial interaction in slightly overlapping boundary layers

should be investigated further.

Also a correlation of the results obtained here with a similar

investigation which might be carried out with b fixed and L as the

variable parameter would be of value.

In addition it is recommended that an investigation of free

convection in three dimensional systems such as vertical tubes be

andertaken. In such a system the interference is no longer along

a single surface, but rather occurs in more than one direction.

Tt would be of interest to know if there exists an effective parameter

similar to b which depends on the tube geometry and can be used

in equations of the type obtained here for two dimensional boundary

lavers
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APPENDIX I

An Approximate Solution of the Natural Convection
Boundary Layer Equations for a Single Vertical Plate

The coordinate system appropriate for this analysis is shown

in the figure on the following page.

This derivation makes the following assumptions:

The flow is steady, two-dimensional, incompressible, viscous,

and has constant properties. Furthermore, as in most boundary

layer investigations, the gradient of a quantity along the surface is

assumed negligible in comparison to the gradient in the direction

normal to the surface. With these approximations we can reduce

our analysis to a solution of the following equations:

Conservation of mass

JU |, Jv _
ox T3y =9°

Con servati on of momentum

d a 2 Sh rvise_gFoFev38
Conservation of energy

21 dT _ KK *T
®9x *VYY Tc, IY
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If we integrate these equations over the thickness of the

boundary layer and rearrange the terms, and include the buoyancy

force gx 278) &amp; Ly we obtain the following integral
o

equations:

5

2 fidget [ody - V (£5) oa

3

# ) uody = = (£2)...

We now approximate the temperature profile by a parabola

— &amp;O0=0w ( &lt;) (which fulfills the boundary conditions

B= Ow atyv=oand @=oatv= SS. We also make an approximation

for the velocity profile of the form u =u + ( |= ¥)"
° .

Noting that

! 2

A | Ow $UoOw
&amp; DD emm——ody = $0 5 fou Ay 3o

0

we can reduce our boundarv laver equations to the ‘oTm

AL (we§)=L g 8d6w- ifa
Ow

Ow dl (Us§)= 2% —¢*
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We solve these equations by assuming u_ and § to be

exponential functions of x:

Wo = H. x™

£ Ha. x"

Using these relations we

 ReJ
PY arm

Lie Hi HaX3

man H : men

man yHa X

obtain

s if) wef

: gBew Ha x"=H, 7x™"J 3 Ha

= 208 X
Ha

awme+rn-il=n=mMm-n

 Mm +N=|2

By solving for the exponents we find

™M /1

n=4
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Using these values

He Hx = gq Be. ~
T got ty

Hi Hp = 2X
40 Ha

o=5a7p (32+) (ES) %

Hz; = 3.93 (£2 +X ) 4 Cas ) (ZL)

We now have an expression for the maximum velocity

Umax = +5 Uo = . 766 v(-952+%) “(22 )% a

and the boundary layer thickness

5 = 39 o +o ipte. 3 -%( ) (.as Z)"4( 32 “7

Using the above we can derive an expression for the

dimensionless heat transfer coefficient

’ - Yi Ya
 ln =0.508 Pr fa (0.952 + Pr) “4 (Grg ) = hx
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For air with a Prandtl number of 0.714 we can obtain

7 Vr
Nu, =0.378 (Gr, °

This compares excellently with the exact solution obtained

by IE. Pohlhausen which resulted in a numerical constant of

0.360 instead of 0.378 as in the above equations.

The solution presented here is an approximate solution,

due to Von Karman, and discussed in Eckert and Drake (3),

pages 312-315,

I'. Von Karman, Z. angew, Math. Mech, 1,235 (1921)
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APPENDIX II

An analysis of the Error Introduced in the Calculation of
the Heat Dissipated by Radiation from the Sides Due to an Error in
the Surface Emissivity.

As was shown in the chapter on Radiation the heat dissipated

from the sides due to radiation is proportional to F which can be

obtained from the following equations.

~

F = ES
wo" Jy +

Fio= Fio + EF, Fa

Using these relations the value of + for some of the spacings

used will be compared for various values of the emissivity.

The value for F, =F, the black surface over-all interchange

factor,is taken from the graphs reproduced from McAdams (4) in

the Chapter on Radiation
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From the above it can be seen that an error in € does

not give an equivalent magnitude of error in the correction for

radiation from the sides. For instance at 3/4" a 50% error in on

would result in only a 30% difference in the radiation term and a

16% error in € would mean only a difference of 8% in the radiation.

At 1/4" this is even more pronounced. A 50% error results in a

22% difference and a 16% error in only a 5% discrepancy.

Therefore, it may be concluded that any error which may

have occurred in the values of emissivity derived would not show

ip as quite so large an error in the final calculation of the radiation

correction.

It should be noted here that the values of emissivity

were consistent to within + 8% so that the corrections can be

considered fairly accurate.
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Appendix III

List of £quipment

2 Transistorized D.C. Power Supplies, Consolidated Avionics

Corporation, Serial Z50-15

| Millivolt Potentiometer, Leeds and Northrup Co

Model No. 8686

l Rotary Switch, Leeds and Northrup Co.

1 Mercury Thermometer, Marsh Instrument Company

| Vernier Micrometer
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