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Abstract

Knowledge of critical properties, such as critical temperature, pressure, density, as
well as acentric factor is essential to calculate thermo-physical properties of chemical
compounds. Experiments to determine critical properties and acentric factor are ex-
pensive and time intensive; therefore, we developed a machine learning (ML) model
that can predict these molecular properties given the SMILES representation of a
chemical species. We explored directed message passing neural network (D-MPNN)
and graph attention network as ML architecture choices. Additionally, we investigated
featurization with additional atomic and molecular features, multi-task training, and
pre-training using estimated data to optimize model performance. Our final model
utilizes a D-MPNN layer to learn the molecular representation and is supplemented
by Abraham parameters. A multi-task training scheme was used to train a single
model to predict all the critical properties and acentric factor along with boiling point,
melting point, enthalpy of vaporization, and enthalpy of fusion. The model was eval-
uated on both random and scaffold splits where it shows state-of-the-art accuracies.
The extensive data set of critical properties and acentric factor contains 1144 chemical
compounds and is made available in the public domain together with the source code
that can be used for further exploration.
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1 Introduction

An equation of state (EOS) is a thermodynamic expression relating pressure, volume, and
temperature. It provides a means to calculate thermo-physical properties of a chemical
compound that are regularly used for various industrial applications, such as sizing equipment
and process design.1–3 Various EOSs have been proposed over the years to better describe
the behavior of species starting from the Van der Waals EOS to the recent GERG-2008.4

A common link between EOSs is the corresponding states theory, which uses the critical
point as a reference to compute reduced states. Therefore, knowledge of critical temperature
(Tc), pressure (Pc), density (ρc), and the acentric factor (ω) is required for many widely
used EOSs such as Peng-Robinson5 and Soave-Redlich-Kwong.6 Other than EOSs, various
models use critical properties as inputs to predict physiochemical properties such as diffusion
coefficients,7–10 surface tension,11,12 and solubilities.13–16 In addition, they are used to predict
Lennard-Jones parameters which are required to model transport and collisions in a reaction
rate calculation.10,17–19 It is clear that critical properties and acentric factor are widely used
in a multitude of fields, and thus it is important to have accurate values for the same.
However, obtaining these molecular properties through experiments is time-intensive and
expensive, and therefore, the development of computational prediction tools is necessary.

A widely used prediction approach for thermodynamic properties consists of the group contri-
bution (GC) methods. They have been particularly popular for critical property estimation
with leading models by Joback and Reid,20 Han and Peng,21 Nannoolal et al.,22 and the
Gani research group.23 More recently, GC models for critical properties were proposed by
Mansour and Korichi,24 and by Tahami et al.25,26 While GC methods are relatively easy to
implement and interpret, they typically suffer from lower accuracy and poorer generalizabil-
ity compared to more modern deep learning approaches. Recently, we evaluated GC and
machine learning (ML) approaches to predict solvation free energy and solvation enthalpy
for solute-solvent systems and found machine learning to be superior.27 This finding is in
line with Fu et al. who also showed ML to be superior when predicting the lipophilicity
of molecules.28 Given the recent success of ML for molecular property prediction, it is a
promising option for critical properties and acentric factor. However, ML for predicting
these properties has been lightly explored in the existing literature.

Several ML models29–31 have been developed to predict various subsets of critical properties
and acentric factor, but a single ML model that can predict all four properties has not yet
been reported. All ML and GC models in the literature have been exclusively tested on
random test-training splits, which assumes that chemical property prediction is an interpo-
lation problem. In recent years, multiple publications have convincingly shown that most
chemical prediction tasks are extrapolations.32–38 Thus, actual model errors are significantly
larger than those observed when random splits are used. It is important to test models
against more rigorous splits such as scaffold or substructure splits that better serve as a true
performance metric.
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Additionally, most ML models in the literature primarily employ heuristically chosen molec-
ular descriptors to construct feature vectors as compared to learning the optimal molecular
representation for a given task. Findings by Yang et al. show that learned molecular repre-
sentation outperformed fixed molecular fingerprints on several public data sets such as QM7,
QM8, QM9, ESOL, FreeSolv, Lipophilicity, BBBP, PDBbind-F, PCBA, BACE, Tox21, and
ClinTox.32 Feinberg et al. also found learned representations to be superior, especially for
scaffold splits, as they better generalize to molecules outside the training set.39 Existing ML
models often employ molecular descriptors that are not readily available, such as boiling
point and specific gravity used by Varamesh et al.,29 and quantum chemical (QM) descrip-
tors used by Banchero and Manna.30 While QM descriptors are more generalizable, they are
computationally expensive to calculate and their accuracy relies heavily upon the accuracy
of chosen QM methods.

In addition to model architecture, a key challenge to obtaining good ML performance lies in
the lack of good-quality training data. Most models, including this work, have less than 1000
training data for critical property prediction, which is relatively small for machine learning
applications to cover diverse chemical space. Data scarcity is a common problem faced in
ML, and multi-task learning can help mitigate the problem in some cases. During multi-task
learning, a single ML model is trained to predict multiple targets simultaneously rather than
predicting each target using a separate model. The underlying assumption of multi-task
learning is that it can leverage knowledge shared by other related targets and learn more
generalized representations. The advantage of a multi-task approach has been demonstrated
in many applications including drug discovery and bioinformatics.35,37,39–42 The ML model
for critical property and acentric factor prediction is expected to particularly benefit from
multi-task learning as correlations relating Tc, Pc, ρc, ω, with boiling point (Tb) have been
established in literature.43,44

In this work, we construct multi-task models with a graph convolution neural network
(GCNN) to predict the three critical properties (Tc, Pc, ρc) and acentric factor (ω). Directed
message passing neural networks (D-MPNN)32 and graph attention networks (GAT)45 are
explored as the GCNN layers, which can learn an optimized latent space molecular repre-
sentation during the prediction tasks. An exhaustive study is conducted on target grouping
to optimize the performance of multi-task models. This includes introducing four additional
chemical properties as auxiliary prediction targets, namely boiling point (Tb), melting point
(Tm), enthalpy of vaporization (∆Hvap), and enthalpy of fusion (∆Hfus), to compare whether
the model performs better with these auxiliary targets that are potentially correlated with
critical properties.46,47 We further evaluate the effect of passing additional atomic and molec-
ular features, including 2D RDKit descriptors,48 Abraham parameters,27 QM descriptors,
and 3D geometries, on the model performance. The effect of pre-training the model with a
larger, estimated data set prior to fine-tuning it with experimental data is also investigated.
Optimal GCNN layer type, target groupings, additional features, and pre-training set for
the three critical property and acentric factor predictions are identified through rigorous
comparison using random and scaffold split test sets. Open-source access to the final ML
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model, source code, and data set used in this study is provided.

2 Methods – Data Set and Data Split

2.1 Data Set Summary

The experimental data of critical properties and acentric factor are collected for 916 com-
pounds from several public sources.49–54 Data for four auxiliary phase change properties (Tb,
Tm, ∆Hvap, ∆Hfus) are also collected as a part of our data set. The auxiliary properties are
often published together with the critical properties, and some of these properties have been
previously seen to be correlated.46,47 The Pearson correlation coefficient matrix presented
in Figure S2 of the Supporting Information reveals that strong correlations exist between
certain targets, especially among Tc, Tb, and ∆Hvap. These auxiliary property data are
therefore included as prediction targets for multi-task models. The data are collected for
the compounds containing H, C, N, O, S, P, F, Cl, Br, and I atoms. The compiled data are
standardized by converting the compound names and CAS numbers to SMILES and InChI
using PubChemPy,55 CIRPy,56 and RDKit.48 If multiple chemical identifiers are given by
the original data source (e.g. both compound name and CAS number are available), the
InChI strings converted from all chemical identifiers are compared to ensure they agree with
each other. Mean values are used when multiple data are available for the same compound.
The summary of the collected data is presented in Table 1. The data set contains a total
of 5539 compounds, primarily due to a large number of experimental data available for Tb

and Tm compared to critical properties. More details regarding the data collection, data
distribution, and data statistics can be found in Supporting Information Section S1.

Table 1: The number of data points (N Total), mean values, standard deviations (Std. Dev.),
and minimum and maximum (Min, Max) values in the compiled data set. This excludes the
data from the external test set.

Data Type Symbol (Unit) N Total Mean Std. Dev. Min Max
critical temperature Tc (K) 888 588.87 126.86 33.13 983.00

critical pressure Pc (bar) 782 37.93 19.08 6.00 220.32
critical density ρc (mol/L) 818 3.231 2.160 0.485 17.874
acentric factor ω (-) 524 0.359 0.175 -0.215 1.389
boiling point Tb (K) 5188 467.68 110.91 20.30 988.15
melting point Tm (K) 3138 259.81 77.09 14.00 700.15

enthalpy of vaporization ∆Hvap (kJ/mol) 367 34.52 11.08 0.92 71.01
at boiling point

enthalpy of fusion ∆Hfus (kJ/mol) 815 15.04 12.96 0.12 105.04
at melting point

Total number of compounds for Tc, Pc, ρc, and ω only 916
Total number of compounds 5539
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Among all the data sources used in this work, Yaws’ handbook49 contains the most amount
of data and includes both experimental and estimated data for various molecular properties.
The majority of the estimated data obtained from Yaws are computed using the Joback
method, but the source of some data is unclear. Adding the estimated data to the training
set would cause data contamination as they are not true experimental values; yet, excluding
data points is not always the optimal choice especially when experimental data are scarce.
To circumvent this issue, the estimated data from Yaws are used to pre-train the ML model
prior to fine-tuning the model with experimental data. The details of the pre-training process
are outlined in Section 3.4, and the summary of the pre-training data set is provided in the
Supporting Information Section S2.

We additionally collected 276 Tc, 185 Pc, and 89 ρc experimental data from the published
work by Tsonopoulos, Ambrose, and their coworkers,57–62 and used them as an external test
set to evaluate a final ML model. These data were compiled with an extensive comparison
of multiple data sources and uncertainty analysis in their original work and also contain
more recent experimental measurements compared to Yaws’ handbook. Therefore, this data
set can serve as a more accurate test set for a final model assessment. The summary of the
data statistics that include these additional data can be found in the Supporting Information
Sections S14. The total number of compounds for critical properties and acentric factor data
becomes 1144 after including these data.

2.2 Experimental Uncertainties in the Data Set

Most of the data are obtained from Yaw’s handbook, but it does not report any experimental
uncertainties. However, a subset of the molecules contained in our data set have been
explored in detail by Ambrose et al.,61–64 Tsonopoulos et al.,58,65,66 Gude et al.,67 Daubert
et al.,68 Kudchadker et al.,57 and Marsh et al.59,60 who have reported experimental errors
for each measurement. It should be noted that these error values were not obtained via
statistical analysis, but via consideration of the range of values reported in the literature for
each compound. The error reported for each molecule depends on the number of reported
experiments for a given molecule. Therefore, molecules that are difficult to measure due
to reasons such as a lack of commercial availability at high purity and instability at their
critical points have larger errors. Hence, the experimental uncertainty does not scale with the
absolute value. In addition, the variance amongst the literature values reported by different
experiments is nearly always greater than the random error reported in each experiment.
Given this, it is likely that the error source is systematic and varies based on the specific
apparatus which was used to generate the data. We recommend the following references [
57,59,60,63–68] for detailed information on the errors.
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2.3 Data Split for Model Comparison

We employ random and scaffold splits to evaluate model performance on interpolation and
extrapolation tasks, respectively. To create random splits, the data are randomly split into
90% training/validation sets and 10% test sets using 5 folds. All compounds in the test
set are chosen to have at least two carbon atoms since GC and ML models are typically
unsuitable for smaller compounds. In the case of scaffold splits, we first manually select
substructures on which we can evaluate out-of-range model performance. Molecules con-
taining any of the chosen substructures are identified and separated into a test set using
RDKit and SMARTS strings of substructures. The substructures are grouped such that
each test set is approximately 10% of the data set. A total of three test sets (three folds)
were prepared spanning 16 different substructures for the scaffold split. For both splits, the
remaining 90% of the data set is randomly split to form an 80 % training and 10% validation
set. The validation set is used to determine the epoch when training is stopped. We used a
randomly split validation set for the scaffold split task for two major reasons. First, we have
a relatively small data set with low substructure diversity. In this case, the further removal
of entire substructures to form a validation set greatly reduces the information contained in
the training set, leading to worse performance. Second, if the validation set contains spe-
cific substructures there is a chance that the model trains to overfit to those substructures.
Hence, the randomly split validation set is used to determine early stopping for both the
random and scaffold split models.

Within each fold, we generate an ensemble of 25 models that use different random seeds for
parameter initializations and training/validation splits. Thus, the prediction for each test
set is the average prediction from the ensemble of 25 models. The ensembling approach
has been previously demonstrated to result in improved model accuracy,32,35,69 in addition
to serving as a measure of epistemic uncertainty which can be calculated from the sample
standard deviation across all ensembles.70 Optimal target groupings and additional features
are chosen using only the first fold for both random and scaffold splits. Hyperparameters
are optimized using only the training set of the first fold. The final model performance is
then evaluated using all test folds (5 folds for the random split and 3 folds for the scaffold
split) by computing the mean and the sample standard deviation across the folds.

We ensure that the molecules chosen for the test sets or molecules containing the substruc-
tures in the test set are removed from the pre-training set (estimated data) as well. It should
be noted that the test sets consist only of experimental data. The list of the substructures
chosen for the scaffold splits can be found in Supporting Information Section S3. All test
and training sets are also provided as a part of the Supporting Information.
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2.4 Evaluation Metric and Scaling Data

Root mean square error (RMSE) is used as a primary evaluation metric for model perfor-
mance. Scaling is essential to prevent biasing the model towards targets that have larger
numeric values. Therefore, all 8 targets are scaled (Z-scored) by subtracting the mean value
and dividing by the standard deviation prior to any model training, and Z-scored RMSE is
used for calculating the loss. Throughout our study, the Z-scored values are used to com-
pare various ML design choices. For the final error report, the scaled prediction values are
transformed back to the original unscaled values, and mean absolute error (MAE) and mean
absolute percent error (MPE) are additionally computed.

3 Methods – Models

Figure 1: Overview of the ML model architecture and different design choices used in this
work.
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An overview of the ML model architectures and different design choices is illustrated in
Figure 1. Four different design choices are considered: (1) the type of GCNN employed,
(2) target groupings for multi-task models, (3) additional atomic and molecular features,
and (4) transfer learning approach with the estimated data. Each of these design choices is
described in the subsequent subsections.

3.1 Neural Network Architectures

The neural net architectures used in this work can be divided into two parts: an embedding
layer, and an output layer. The embedding layer aims to learn the molecular representation
from the atom and bond feature vectors derived from the SMILES string. Different architec-
tures can be employed to learn molecular representation; in this work, we explore Directed
Message Passing Neural Network (D-MPNN) and Graph Attention Networks (GATv2). This
learnt representation is then passed through a fully connected feed forward neural network
(FNN) that outputs the prediction targets. Both D-MPNN and GATv2 models take the
SMILES string of a compound as an input and generate a graph structure of a molecule
with a set of initial atom and bond features. The featurization process used to convert
atoms and bonds into vectors has been described in detail by Yang et al.32 A list of all atom
and bond features is provided in Supporting Information Section S4. In addition to the
vanilla representation, we explored additional atom and molecular features specific to the
critical property and acentric factor prediction task as detailed in Section 3.3.

There are several hyperparameters associated with the neural network models used in this
work. Hyperparameters are separately optimized for D-MPNN and GATv2 based networks
using the software package Hyperopt71 and Optuna,72 respectively. Table S6 in Supporting
Information summarizes the different sets of optimized hyperparameters that are used to
train the models.

3.1.1 D-MPNN

Directed message passing neural network (D-MPNN) is a type of graph convolution model
that uses hidden states and messages associated with directed bonds (edges) instead of the
atom (nodes)-based message passing approach. The D-MPNN model is constructed using
the open-source Python code Chemprop (https://github.com/chemprop/chemprop).32 D-
MPNN is selected because several studies have demonstrated its excellent performance for
molecular property prediction.27,32,73 For more details on the D-MPNN model, the reader is
referred to the dedicated work by Yang et al.32
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3.1.2 GATv2

Graph Attention Networks extend the base graph convolution model by leveraging self-
attention layers. It works by performing a linear transform on the input nodes and uses the
output of this transform to calculate attention coefficients. The update functions and the
calculation of attention coefficients are described by Brody et al.74 GATv2 used in this work
employs a dynamic graph attention variant that is more expressive than the static attention
mechanism of the traditional GATs. The GATv2 layer has an additional hyperparameter
for multi-head attention, wherein several attention mechanisms run in parallel before they
are concatenated and linearly transformed to the expected dimension. Multi-head attention
allows the model to jointly attend to information from different representation sub-spaces.75

The GATv2 layer is imported from PyTorch geometric.74,76 The GATv2 model is constructed
using the open-source Python code Mlprop (https://github.com/Sayandeep00/chiral_
gnn/tree/ml_prop). Mlprop was developed using chiral gnn77 as a base. Several aspects of
Mlprop such as featurization, ensembling, and use of additional molecular and atom features
were inspired by Chemprop, but it boasts the added flexibility of switching between different
GNN layers that can be imported from the PyTorch libraries.32,77

3.1.3 Baseline Models

There are a few challenges in performing a fair comparison between the models proposed in
this work and other models. First, the data sets vary significantly in terms of size, diver-
sity, and handling of computational/predicted data. None of the existing publications has
provided means of recreating the exact data set used in their respective studies. Therefore,
directly comparing reported errors across existing literature is an infeasible option. Addition-
ally, we test our models on scaffold/substructure splits, which have not been considered in
previous studies that predict critical properties. Hence, there are no reference values for our
scaffold split results. In addition, several existing models in literature have problems such
as minor data leakage caused by using a test set to determine early stopping,30,31 unclear
data set selection criteria,24,25 and lack of information to enable retraining.30 Therefore, it
is necessary to obtain baseline models using our data set for a fair comparison. We compare
our models with the group contribution methods developed by Joback78 and by Nannoolal
et al.,22 and a radial basis function neural network with Morgan fingerprints based on the
models from the literature.30 The radial basis function layer is imported from the referenced
GitHub repository79 and implemented using the GATv2 framework.

3.2 Multi-task Learning and Target Weights

There are a total of 8 targets to predict, 4 of which are the critical properties and acentric
factor (main targets) and the other 4 are phase change properties (auxiliary targets). Several
studies indicate that multi-task learning with related targets can improve generalization and
prediction accuracy.41,42 Many empirical correlations imply the underlying link among Tc, Tb,
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Pc, ρc and ω,43,44 and therefore, multi-target training is expected to help model predictions.
Several target groupings are explored to optimize model performance. The baseline model
includes training 8 individual models for each of the molecular proprieties shown in Table 1.
Multi-target training is performed on groups that include: ‘Crit4’ - all the critical properties
and acentric factor (Tc, Pc, ρc, ω), and ‘All’ - all 8 targets. The data set for multi-target
training is often sparse, and hence masking is applied to compute the loss. One issue with
our multi-task approach is that the trained model may get biased towards a certain target
with much more data points. In our case, there is significantly more data for melting and
boiling points as shown in Table 1. We explore using different target weights for the loss
function as a means to correct for this data imbalance. Weighted data sets include: ‘All3w’
and ‘All5w’ where the loss values computed for the three critical properties and acentric
factor (Tc, Pc, ρc, ω) are weighed by 3 and 5 times greater, respectively, than the loss used
for the other four auxiliary targets (Tb, Tm, ∆Hvap, ∆Hfus).

3.3 Additional Features

The following additional features are examined for our models: 2D-RDKit (molecular), Abra-
ham (molecular), 3D-ACSF (atomic), and QM descriptors (atomic & molecular). Additional
atomic features are concatenated with a default feature vector of each atom before being
passed to the embedding layer. On the other hand, molecular features are appended to
the learned representation (output of the embedding layer) prior to the feed forward neural
network. A detailed description of each feature is provided below.

3.3.1 RDKit

Additional 2D molecular features generated by RDKit48 are explored. RDKit provides a
total of 200 2D descriptors, which have been shown to improve the model performance for
certain property predictions.27,32 These are filtered down to the 14 most relevant features for
our models based on variance threshold and random forest methods. A list of the 14 selected
RDKit features is provided in Supporting Information Section S6. The RDKit features are
normalized using the DescriptaStorus package.80

3.3.2 Abraham

Abraham solute parameters predicted using the SoluteML model by Chung et al.27 are
explored as additional molecular features. The Abraham parameters are chosen as one of
the optional features for our models as a correlation by Li et al.81 has revealed a direct
relationship between Tc and the Abraham parameters. The Abraham parameters consist of
five descriptors, E, S, A, B, and L, each of which is associated with a different physical
property of a compound.82 Normalized values are used for our ML models.
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3.3.3 QM Descriptors

QM atomic, bond, and molecular descriptors are calculated using an improved version of
the automated workflow previously developed by our group.83 Compared to the previous
version, the capability to calculate more atom and bond level descriptors and better support
for charged molecules are added. In this work, 3D conformers of the molecules are generated
from SMILES strings and then screened using the MMFF94s84 force field in RDKit. The
conformer with the lowest MMFF94s energy is further optimized at GFN2-xTB85 level of
theory followed by a frequency calculation at the same level and three DFT single point
calculations (i.e. neutral, cation +1, anion -1) at B3LYP/def2-SVP86 level of theory in
Gaussian 16.87 NBO 7.088 is then used to compute natural bond orbitals and associated
descriptors. Results from the QM calculations are processed to obtain the desired descriptors
using scripts in the automated workflow. To ensure the convergence of final optimized
geometries, structural and vibrational frequency checks are implemented throughout the
workflow.

While many different QM atomic, bond, and molecular features are computed, using all
features is not desirable since irrelevant features can introduce noise or distract the models.
Therefore, only two descriptors are selected as the final QM descriptors: Hirshfeld charge
(atomic) and Mulliken total dipole moment (molecular). These two features are chosen
because critical properties are associated with intermolecular forces, which are linked to the
polarity and dipole moment of a compound. Out of the 5539 compounds in the data set,
85 compounds failed structural optimization at the GFN2-xTB level. These compounds are
omitted from the training/validation and test sets of the ML models that use QM descriptors
as additional features. A complete set of calculated QM descriptors with their values are
provided as a part of the Supporting Information, and the automated workflow program
used for the QM calculations is available through GitHub.89

3.3.4 3D-ACSF

Additional atomic features are generated using the converged 3D geometries obtained from
the QM descriptor workflow described in the previous section. The 3D coordinates of each
molecule are converted to atomic 3D features using atom-centered symmetry functions (3D-
ACSF).90 ACSFs use multiple many-body functions to encode a local environment near an
atom within a molecule. Zhang et al. employed 3D-ACSF descriptors as initial atomic
features for their GNN models to predict aqueous solvation free energy and showed the
prediction improved compared to the baseline model that only used 2D featurization.91 We
adopt the same two-body symmetry functions as those used by Zhang et al. to generate
3D-ACSF atomic features. These functions give a total of 260 features for each atom within
a molecule. Because the majority of the 3D-ACSF features are found to be zero for the
compounds in our data set, only the 33 most relevant, non-zero features are selected as final
3D-ACSF atomic descriptors. Similar to the QM features, the 85 compounds that failed the
geometry optimizations are omitted from the training and testing sets of the ML models
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with 3D-ACSF features.

3.4 Pre-training with Estimated Data (Transfer Learning)

Pre-training has been previously found to be beneficial when training ML models for the
chemical space.35,73,92 Therefore, we investigate the extent of improvement in model per-
formance on experimental data when we pre-train using the estimated data. Pre-training
allows the model to leverage the estimated values or the data from unclear sources while
avoiding the risk of data contamination. In this transfer learning approach, the estimated
data set from Yaws49 is used to pre-train an ML model, and the optimized parameters from
the pre-trained model are subsequently used to initialize the parameters for a new model
that is fine-tuned with the experimental data set. None of the parameters are kept frozen
in the fine-tuning step. The baseline models are trained only with the experimental data for
comparison.

4 Results and Discussion

4.1 Results on Multi-Task Models

First, we investigate the impact of the multi-task learning approach. Figure 2 shows the
scaled RMSE errors of each target for the D-MPNN models trained on different target
groupings (“All”, “Crit4”, “Single”). Multi-task models (“All”, “Crit4”) have lower errors
across most targets for both random and scaffold splits compared to the single-task models
(“Single”). Therefore, the benefit of using multi-task training is evident. This observation is
supported when investigating the Pearson correlation amongst the different targets as shown
in Figure S2. We see that the targets have a strong correlation overall, and therefore, learning
about one target helps the prediction on others. It also benefits from a more generalizable
model that has a lower tendency to overfit on a specific task. Additionally, multi-task models
benefit from seeing more diverse molecules as Tb and Tm data have a lot more compounds
than the critical properties and acentric factor. Similar results are obtained for models using
GATv2, where the multi-task training using “All” yields lower losses than “Crit4”, which has
fewer targets. The results of the GATv2 models are shown in Figure S4 of the Supporting
Information.

We next investigate the effect of using different target weights in a loss function as a means
of balancing the data sets. As mentioned previously, Tb and Tm have substantially more
data points than the rest of the properties, and using an equal weight for all targets may
cause the model to be predominantly trained on the targets with more data. Therefore, we
perform a coarse search where the training loss arising from the three critical properties and
acentric factor is scaled by a factor of 3 for “All3w” and 5 for “All5w”. Figure 2 shows that
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Figure 2: Comparison of the multi-task learning approach for the D-MPNN model. Scaled
RMSE of each target is evaluated for different multi-task models using the random and
scaffold split test sets 1. The best performing model is filled with horizontal lines for each
target. The legend represents different target groupings and target weights used for each
model.

the errors of the “All3w” across almost all critical targets has an overall better performance
compared to “All” for both random and scaffold splits. Further indication of having a better
model comes from the observation that “All3w” outperforms “All” even on most of the
ancillary targets (Tb, Tm,∆Hvap) which were de-prioritized by adding weights. This result
demonstrates that in order to maximize the benefits of multi-task learning, it is important to
appropriately weigh the tasks such that each target is well represented in the loss function.
The results of the GATv2 models (Figure S4 in the Supporting Information) however, do
not have the same result as “All” is still the best performing target group.

Comparing the base case (“Single”) to the optimized target grouping (“All3w”), we see the
largest improvements for Tc and ρc. In case of Tc, it is likely that the large Tb and Tm

data have greatly benefited the predictions as they are strongly correlated with Tc. The
benefit for ρc seems to primarily come from co-training with other critical properties and
acentric factor as we do not see much improvement when comparing “All3w” to “Crit4”.
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According to the Pearson correlation coefficients (Figure S2), ρc does not appear to have
strong correlations with other properties, but it still greatly benefits from the multi-task
approach. This is also seen for Pc, which benefits from multi-task learning despite lacking
strong correlations. Nonetheless, the Pearson correlation coefficient is only a measure of
linear relationship, and it is possible that some underlying non-linear relationships among
the targets could be captured by our multi-task models. In case of ω, the multi-task models
also perform better than the single-target model for the random split but negligible difference
among the target groupings is observed for the scaffold split.

4.2 Results on Additional Features
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Figure 3: Scaled RMSE of each target for different additional features tested on the random
and scaffold split test sets 1. The best performing model is filled with horizontal lines for
each target. D-MPNN uses “All3w” and GATv2 uses “All”.

Several feature combinations were explored to further improve model performance as ex-
plained in Section 3.3. Figure 3 shows the results obtained from the feature study for both
D-MPNN and GATv2. In case of D-MPNN, we see that the Abraham parameters give the
best model performance. Its benefits are particularly evident when focusing on the scaffold
split results, where we see a significant reduction of Tc and ρc errors. Neither Abraham
nor the other features improve the predictions of Pc and ω, which imply that the optional
features do not provide any additional information for these two targets.

For GATv2, we see that additional parameters do not help predictions. Upon initial inves-
tigation, we observed that the latent vector representations from the two ML models have
relatively different magnitudes. For example, the latent vector of the GATv2 is O(10) while
that of the D-MPNN is O(1) - based on the averaged first norm value across the compounds
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in the scaffold split test set. We initially hypothesized that the model tends to ignore the
additional features that are an order of magnitude smaller than the other entries in the
latent vector. Therefore, an additional model was tested where Abraham parameters were
re-scaled to match the GATv2 latent representation scaling. Surprisingly, this model did not
have a statistically significant improvement in the model performance. Several alternative
hypotheses are therefore considered to explain the result. First, the latent representation
of the GATv2 model may already capture the trends that are covered by the additional
parameters explored in this work. Therefore, no new information is added when the addi-
tional features are concatenated to the latent representation, leading to no improvement in
performance. This would suggest that successful feature selection depends on both the task
and the model architecture. Another reason can be the difference in latent size that was
used for the D-MPNN and GATv2 architectures. GATv2 employed a latent vector of length
1200, while D-MPNN uses a latent vector of length 300. The additional features have a much
smaller length compared to the latent vector from the GATv2 and their effects may have
consequently diminished. The choice of latent vector size is a hyperparameter, and ideally
one would redo hyperparameter optimization for each set of additional features to obtain
the best performance. However, given the high computational costs, we did not re-optimize
the hyperparameters in this work.

Given that the critical properties are related to intermolecular interactions, we hypothesized
that 3D structural information may improve the predictions by providing relevant informa-
tion that cannot be described by the default 2D atom and bond features of our GCNNs.
However, strikingly poor performance is observed on the scaffold split when the 3D-ACSF
features are employed. The effect is more pronounced for GATv2, but the same trend is ob-
served for D-MPNN. The 3D-ACSF features appear to introduce noise into our models, and
thus it is possible that the 3D structure is not as relevant for the critical property prediction.
Another potential reason is that the ML models are very sensitive to errors in the optimized
3D geometries. The sensitivity of a ML model to the input 3D structure is demonstrated by
Spiekermann et al. in their work for reaction barrier height prediction.35 Molecules can have
many different structural conformations, and although a conformer search was performed
in our work to find the lowest energy conformer, it is challenging to search the entire con-
formational space due to a high computational cost. Some important conformers may have
been overlooked in our calculations, causing the 3D-ACSF features to perform poorly. It is
also possible that the 3D-ACSF factors might require re-optimization of hyperparameters
as it does change the featurization significantly. Moreover, an alternative method to encode
the 3D information from the optimized geometries may be more suitable for the property
predictions. The QM data set used to calculate the 3D-ACSF factors is provided open access
and can serve as a good basis for further investigation in this matter.
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Figure 4: Scaled RMSE of each target for various models tested with and without pre-
training. The errors are evaluated on the scaffold split test set 1. The best performing
model is filled with horizontal lines for each target. D-MPNN uses “All3w” with Abraham
features, and GATv2 uses “All” without additional features.

4.3 Results on Pre-Training

The effect of the pre-training on the scaffold and random splits are shown in Figure 4 and
Figure S5 (see the Supporting Information), respectively. For the random split, we do not
observe a statistically significant improvement in predictions when the models are pre-trained
with the estimated data set. The minimal benefit for random split is a recurring observation
that is previously seen during the additional feature study. However, the benefits of pre-
training is evident for scaffold splits as the errors for both D-MPNN and GATv2 decrease
when pre-training is used. Given its benefits, pre-training serves as a great way to use
estimated data, or data from unclear sources (experimental or predicted). Particular to our
study in which limited experimental data are available for the critical properties, existing
group contribution methods such as Joback can be effectively used to create a pre-training
data set. It is especially useful for GCNN models employed in this work since they are large
models that aim to learn the molecular representation as compared to using fixed descriptors.

In this study, a relatively simple pre-training scheme was employed as we used the pre-
trained model to initialize the parameters of a new, fine-tuned model. This already improves
performance, but there are multiple approaches to further optimize the pre-training task.
For example, different learning rates can be used during pre-training and fine-tuning, or
certain layers can be kept frozen in the fine-tuning step. We believe there is great potential
to effectively use pre-training for property prediction tasks where we often have pre-existing
models along with a dearth of experimental data.
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4.4 Final Models

Table 2 reports the errors from the best D-MPNN and GATv2 models for the three critical
properties and acentric factor. The results for the other four targets (Tb, Tm, ∆Hvap, and
∆Hfus) can be found in the Supporting Information Table S8. The best D-MPNN network
uses the target grouping “All3w” and the Abraham features, and is pre-trained with the
estimated data set. The best GATv2 model uses the target grouping “All” without any
additional features, and is also pre-trained with the estimated data set. For scaffold splits,
D-MPNN outcompetes GATv2 on Tc, while performing similarly for Pc, ρc, and ω. In the
case of the random splits, we see a better performance of D-MPNN for Tc and ρc, while the
errors for other targets are similar. Overall, the D-MPNN model has superior performance as
the mean errors are consistently lower for all target-split combinations. Based on the results
obtained during the optimization of model choices (target grouping, additional features, pre-
training), we see that performance on random splits does not change significantly with the
design choices. On the other hand, scaffold split results are sensitive, thus serve as a better
metric on which to evaluate and optimize the design choices.

Table 2: Error summary for the final D-MPNN and GATv2 models. The errors are computed
on 5 different test sets for the random split, and 3 different test sets for the scaffold split. We
report the mean and sample standard deviation (in parenthesis) of errors for both splits. The
sample standard deviation of errors are computed over 5 different test sets for the random
split, and are computed over 16 different substructures for the scaffold split. Both RMSE
and MAE are reported in the same unit as each target.

D-MPNN GATv2
Target Split RMSE MAE MPE (%) RMSE MAE MPE (%)
Tc Random 13.2 7.6 1.30 19.6 11.6 2.01

(K) (2.6) (0.8) (0.13) (5.2) (1.7) (0.31)
Scaffold 20.1 16.2 2.44 37.2 28.1 4.95

(5.6) (4.3) (0.89) (5.4) (4.2) (1.15)
Pc Random 2.09 1.31 3.82 2.21 1.46 4.48

(bar) (0.17) (0.09) (0.31) (0.27) (0.10) (0.46)
Scaffold 4.46 3.21 8.96 7.69 4.13 9.89

(2.73) (1.34) (5.64) (1.17) (1.01) (2.14)
ρc Random 0.120 0.075 2.78 0.141 0.097 3.67

(mol/L) (0.031) (0.009) (0.32) (0.022) (0.011) (0.45)
Scaffold 0.247 0.177 6.93 0.543 0.357 10.56

(0.159) (0.103) (4.86) (0.159) (0.156) (3.17)
ω Random 0.0511 0.0277 8.74 0.0486 0.0305 9.77
(-) (0.0245) (0.0059) (1.38) (0.016) (0.005) (1.39)

Scaffold 0.0494 0.0401 12.21 0.0667 0.048 16.07
(0.0336) (0.0246) (9.02) (0.0158) (0.0119) (1.42)

Principle component analysis (PCA) is performed on the latent representation for both
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Figure 5: Principal component analysis was performed on the latent representation obtained
for the D-MPNN and GATv2 models on scaffold split test set 1. 2D PCA analysis demon-
strates the importance of molecular size, aliphatic and aromatic nature of the molecule
towards critical properties, based on the clusters found in the reduced latent space. The first
two PCA directions explain 86% and 85% of the total variance for D-MPNN and GATv2
respectively.

D-MPNN and GATv2 as shown in Figure 5 for the scaffold split test set 1. Visually, D-
MPNN is able to form better clusters which can explain better predictions. Additionally,
both models identify molecular weight, aliphatic, and aromatic nature of the molecule to
be important factors when predicting critical properties. This is in agreement with basic
chemical intuition.

To further understand the sources of error and better explain the difference in performance
between the two architectures, we evaluate the error per substructure and error by the
number of carbons for all targets. In Figure 6, we see higher errors for bromine and chlorine
across all targets for both D-MPNN and GATv2 when compared to the other substructures.
This result is expected as bromine and chlorine are out-of-range atoms, i.e. they do not
appear in the training set. In case of Tc and ρc, D-MPNN performance is vastly superior to
GATv2 for chlorine and bromine. However, this is not sufficient evidence to claim that D-
MPNN performs better for out-of-range atoms given the similar performances for Pc and ω.
Figure S6 in the Supporting Information shows that both D-MPNN and GATv2 prediction
is worse for molecules with fewer carbon atoms on the scaffold split. This effect is most
prominent when molecules have zero or one carbon for which the error is significantly higher
across all targets. This observation can be explained when one considers the distribution
of the available training data as shown in the Supporting Information Figure S1. The
molecular weight distribution shows that there are only a few small molecules in the data
set. Additionally, molecules containing no carbon atoms (inorganic molecules) share little
commonality with organic molecules. Therefore, there is limited knowledge gained for the
inorganic compounds when the training data are primarily comprised of organics. It can be
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seen that there are a few data points for large molecules, but the predictions for them are
good. This result is best interpreted as the larger molecules being constructed by several
smaller molecules in an additive manner- the principal idea of GC methods. Therefore,
if the training data contain the small molecules that are the building blocks for the larger
molecules, the ML model is able to provide good predictions. For most use cases, molecules of
interest are primarily organic and have more than two carbon atoms, and therefore the error
reported in Table 2 should be an overestimate. When comparing D-MPNN and GATv2
for the small molecules, we see that there is no clear winner across all targets as we see
overlapping error bars. Therefore, neither architecture is particularly favored to generate
predictions for smaller molecules with less than two carbons.
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Figure 6: Final error comparison per scaffold. The numbers in the parenthesis refer to the
total number of molecules in the test set for the particular scaffold.

The final D-MPNN and GATv2 models are compared with the baseline RBFNN model and
the GC methods by Joback and by Nannoolal et al. in Supporting Information Figure S7.
We see that the D-MPNN model outcompetes all other models and is superior to the RBFNN
and GC methods for the majority of the targets. In the case of scaffold splits, we see lower
errors for Pc and ρc from the Joback GC method and lower errors for ρc and Tb from the GC
method by Nannoolal et al. However, unlike the ML models, these GC methods are trained
on different data sets which are highly likely to have some overlap with our scaffold test sets
(e.g. cyclohexane, pyridine, bromine, etc. See SI Figure S3.). Therefore, a direct comparison
between the performance of ML and GC methods is not possible for the scaffold splits. The
RBFNN model constructed using the Morgan fingerprint with a radius of 2 has the largest
errors for nearly all targets in both random and scaffold splits. This demonstrates that the
learned latent vector from the GCNN model provides a much better molecular representation
than fixed fingerprints for property predictions.
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Figure 7 shows the learning curve, a log-log plot showing the relationship between model
performance and training data set size for both random and scaffold splits. For the random
splits, RMSE for both Tc and ρc decrease linearly with increasing data set size, indicating
that adding more data to the training set will improve performance on these targets. In the
case of Pc, we see that beyond 100 data points in the training set, there is no significant
reduction in RMSE indicating that the model has likely reached the aleatoric limit. This is
further corroborated by the experimental errors reported in references [ 57,59,60,63–68] where
errors for Pc are O(1). Therefore, further improvement for Pc would require the collection
of experimental data with lower uncertainties. For ω we see that there is a decay in the
slope of the learning curve but it has not flattened like Pc; thus, there might be performance
improvements if more data are included but it is likely to be close to the aleatoric limit. The
learning curve for scaffold splits, as expected, is noisier than random splits but displays a
general trend of improving model performance with more training data. Additionally, the
higher errors in extrapolative predictions are an indication of poor coverage of the chemical
space. This lack of data coverage is further supported by the larger standard deviation in
model performance observed for the different test sets compared to each ensemble. It is clear
that increasing the size of the training data set will help model performance.
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Figure 7: The RMSE of the D-MPNN models trained with 2, 5, 10, 20, 40, 60, 80, and
100 % of the training set. The models are trained with “All3w” target grouping, Abraham
features, and pre-training.

However, it should be noted that improving data coverage is not just about including more
data points but also ensuring that the additional data include molecules that are sufficiently
different than the current data set. Collecting more experimental data would be ideal but
experimental measurements are costly and time-consuming. Furthermore, there are limi-
tations on the molecules whose critical parameters can be measured experimentally with
sufficient accuracy, primarily due to practical challenges such as high reactivity and instabil-
ity at the critical point, or inability to get pure samples which inhibit accurate experimental
measurements. As an alternative approach, computational methods such as Gibbs-ensemble
Monte Carlo (GEMC) simulations can be used to exponentially grow the data set in the fu-
ture.93,94 Transferable potentials for phase equilibria (TraPPE) is a common family of force
fields used for this application. This family contains several force fields that were trained on
specific molecular subsets.95–103 GEMC is able to get high accuracy of prediction of critical
parameters, often within experimental uncertainty limits, but it is computationally expen-
sive and slow to perform. Therefore, it is not a replacement for fast-solving ML models but
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an effective method for increasing the size of the existing data set to further improve ML
performance.

The parity plots of the best D-MPNN model on both random and scaffold splits are shown
in Figure 8. The parity plots for the other four targets (Tb, Tm, ∆Hvap, and ∆Hfus) can be
found in the Supporting Information Figure S8. It can be seen that the predictions closely
lie on the parity line for the majority of the targets. Relatively larger deviations are observed
for the acentric factor on the scaffold split. This is as expected as the acentric factor has the
fewest number of data compared to the critical properties. Nonetheless, the scaffold split is
designed to be more challenging, and our model is still able to provide reasonable predictions
for the acentric factor. The result of the best D-MPNN model on the external test set that
consists of the data from 57–62 is presented in the Supporting Information Table S9. The
RMSE of the model predictions on Tc, Pc, and ρc are 28.6 K, 4.01 bar, and 0.182 mol/L,
respectively. The R2 (coefficient of determination) values on Tc, Pc, and ρc are 0.96, 0.88,
and 0.96, respectively, which are similar to those of the scaffold split test set.
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Figure 8: Final D-MPNN parity plots. R2 and N represent the coefficient of determination
and the total number of test data, respectively.

The parity plots clearly show some outliers (fail cases) across all targets, especially for scaf-
fold splits. The outliers include molecules such as tetrabromomethane, tetrachloroethylene,
hexachloroethane, nitrosyl chloride, chlorine, hydrogen bromide, and hydrogen chloride. This
is expected as the bromine and chlorine were not present in the training set of the scaffold
split, and each of these compounds contains a high fraction of out-of-range atoms. Another
class that is poorly predicted includes small acids such as formic and acetic acid. Ambrose et
al. performed the experimental measurements and report that both formic and acetic acid
do not conform to general correlations.104 It is suspected that the special behavior is due
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to dimerization effects. Finally, we also have fluorocyclohexane which had significant errors
for both Tc and Pc. The poor performance was unexpected as cyclic rings were present in
the training set, the molecule is relatively large, comprised majorly of carbon, and does not
have any unique effects such as dimerization. The experimental values reported by NIST
for Tc and Pc are 667.93 K and 51.7259 bar respectively, while our model predicts 567.04
K and 41.11 bar.52 We considered other sources that report critical properties of fluorocy-
clohexane, and found that ThermoDataEngine (TDE) reports a critically evaluated value
(generated through assessment of available experimental and predicted data) of 575±16 K
and 37.7±24 bar for Tc and Pc respectively.105 The TDE values are in good agreement with
our predictions, leading us to believe that there were large experimental errors.

5 Conclusions

We developed a machine learning model to predict the critical temperature, pressure, density,
and acentric factor starting from a SMILES representation of a chemical species. It was tested
on both random and scaffold splits. To our knowledge, this is the first time that prediction
errors have been reported for scaffold splits within the critical property literature. The model
achieves state-of-the-art accuracies on both random and scaffold splits when compared to
baseline models. We explored various design options to optimize model performance. D-
MPNN and GATv2 were considered as graph convolutional layers that are used to learn the
molecular representations. For the critical property and acentric factor prediction task, we
obtain a better overall performance using D-MPNN than GATv2. Our results on additional
feature study show that Abraham parameters help the model achieve better performance
for critical property and acentric factor prediction. However, the effectiveness of additional
parameters is sensitive to model architecture as the latent representation varies depending
on the encoding layer architecture.

While investigating target groupings, our results indicate that a multi-task training scheme
where a single model is trained to predict all the critical properties and acentric factor
along auxiliary phase change properties is beneficial to model performance. The multi-
task approach is particularly useful for this task as the critical properties are known to
be physically correlated to the auxiliary properties. Additionally, for multi-task training,
weighting targets is important to achieve a good performance, especially when we have an
imbalanced data set i.e. certain targets have a lot more data points than others. We also
find that pre-training the model using estimated data from group contribution methods
such as Joback, followed by fine-tuning on experimental data helps reduce model errors
further. Using estimated data for pre-training is particularly useful when there is a dearth
of experimental data, as is the case with critical properties. The extensive critical property,
acentric factor, and phase change property data set containing 5680 chemical compounds
used for this work including the external test set, along with a complete set of QM descriptors
for each compound is made available in the public domain (see Section 6). We also provide
public access to our final model via source code.
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A natural extension of this work is to investigate other QM descriptors that have been
provided in the data set to further improve model performance. This work could also in-
volve computing QM descriptors at different levels of theory to investigate the effect of
QM accuracy on the ML model performance. It is also highly encouraged to perform Gibbs-
ensemble Monte Carlo (GEMC) simulations to compute high-accuracy critical property data
and increase the size of the data set, which is likely to improve model accuracy. Another
potential direction would be to improve the uncertainty estimates that were computed in this
work. This could include the use of methods discussed by Scalia et al, and Schwalbe-Koda
et al.106,107 Nevertheless, this work develops a state-of-the-art machine learning model for
predicting critical properties and acentric factor that can be built on in future endeavors.

6 Data and Software Availability

All data sets, data splits, additional features, QM calculations, final model predictions,
and final ML models are provided through Zenodo: https://zenodo.org/record/8072892.
The data sets and models are open access and distributed under the terms and conditions of
the Creative Commons Attribution (CC BY 4.0) license (https://creativecommons.org/
licenses/by/4.0/). Citations should refer directly to this manuscript. The final D-MPNN
models (Chemprop) that are distributed through Zenodo are pre-trained with all estimated
data and fine-tuned with all experimental data including the external test set. The sample
code on how to use the final models can be found at https://github.com/yunsiechung/

chemprop/tree/crit_prop. The code used to train the GATv2 models can be found at
https://github.com/Sayandeep00/chiral_gnn/tree/ml_prop.

7 Supporting Information

• PDF: Details of data collection, data distribution, scaffolds, default atom and bond
features used for the ML models, selected RDKit features, ML hyperparameters, results
of the GATv2 models, comparison of the final models with the baseline models, pre-
training results on the random split, final model error by a number of carbon atoms,
and final D-MPNN results on the other four targets (Tb, Tm, ∆Hvap, ∆Hfus)

• Zip: Data sets, data splits, additional features, and model predictions.
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